WorldWideScience

Sample records for susceptibility contrast perfusion

  1. ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain

    Science.gov (United States)

    Welker, K.; Boxerman, J.; Kalnin, A.; Kaufmann, T.; Shiroishi, M.; Wintermark, M.

    2016-01-01

    SUMMARY MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice. PMID:25907520

  2. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  3. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients.

    Science.gov (United States)

    Jafari-Khouzani, Kourosh; Emblem, Kyrre E; Kalpathy-Cramer, Jayashree; Bjørnerud, Atle; Vangel, Mark G; Gerstner, Elizabeth R; Schmainda, Kathleen M; Paynabar, Kamran; Wu, Ona; Wen, Patrick Y; Batchelor, Tracy; Rosen, Bruce; Stufflebeam, Steven M

    2015-06-01

    This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. DSC-MRI is highly repeatable in high-grade glioma patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12

    Science.gov (United States)

    Jafari-Khouzani, Kourosh; Emblem, Kyrre E.; Kalpathy-Cramer, Jayashree; Bjørnerud, Atle; Vangel, Mark G.; Gerstner, Elizabeth R.; Schmainda, Kathleen M.; Paynabar, Kamran; Wu, Ona; Wen, Patrick Y.; Batchelor, Tracy; Rosen, Bruce; Stufflebeam, Steven M.

    2015-01-01

    OBJECTIVES This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS DSC-MRI is highly repeatable in high-grade glioma patients. PMID:26055170

  5. Comparison of Different Post-Processing Algorithms for Dynamic Susceptibility Contrast Perfusion Imaging of Cerebral Gliomas.

    Science.gov (United States)

    Kudo, Kohsuke; Uwano, Ikuko; Hirai, Toshinori; Murakami, Ryuji; Nakamura, Hideo; Fujima, Noriyuki; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Sasaki, Makoto

    2017-04-10

    The purpose of the present study was to compare different software algorithms for processing DSC perfusion images of cerebral tumors with respect to i) the relative CBV (rCBV) calculated, ii) the cutoff value for discriminating low- and high-grade gliomas, and iii) the diagnostic performance for differentiating these tumors. Following approval of institutional review board, informed consent was obtained from all patients. Thirty-five patients with primary glioma (grade II, 9; grade III, 8; and grade IV, 18 patients) were included. DSC perfusion imaging was performed with 3-Tesla MRI scanner. CBV maps were generated by using 11 different algorithms of four commercially available software and one academic program. rCBV of each tumor compared to normal white matter was calculated by ROI measurements. Differences in rCBV value were compared between algorithms for each tumor grade. Receiver operator characteristics analysis was conducted for the evaluation of diagnostic performance of different algorithms for differentiating between different grades. Several algorithms showed significant differences in rCBV, especially for grade IV tumors. When differentiating between low- (II) and high-grade (III/IV) tumors, the area under the ROC curve (Az) was similar (range 0.85-0.87), and there were no significant differences in Az between any pair of algorithms. In contrast, the optimal cutoff values varied between algorithms (range 4.18-6.53). rCBV values of tumor and cutoff values for discriminating low- and high-grade gliomas differed between software packages, suggesting that optimal software-specific cutoff values should be used for diagnosis of high-grade gliomas.

  6. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles.

    Directory of Open Access Journals (Sweden)

    Inseon Ryoo

    Full Text Available To evaluate the usefulness of dynamic susceptibility contrast (DSC enhanced perfusion MR imaging in predicting major genetic alterations in glioblastomas.Twenty-five patients (M:F = 13∶12, mean age: 52.1±15.2 years with pathologically proven glioblastoma who underwent DSC MR imaging before surgery were included. On DSC MR imaging, the normalized relative tumor blood volume (nTBV of the enhancing solid portion of each tumor was calculated by using dedicated software (Nordic TumorEX, NordicNeuroLab, Bergen, Norway that enabled semi-automatic segmentation for each tumor. Five major glioblastoma genetic alterations (epidermal growth factor receptor (EGFR, phosphatase and tensin homologue (PTEN, Ki-67, O6-methylguanine-DNA methyltransferase (MGMT and p53 were confirmed by immunohistochemistry and analyzed for correlation with the nTBV of each tumor. Statistical analysis was performed using the unpaired Student t test, ROC (receiver operating characteristic curve analysis and Pearson correlation analysis.The nTBVs of the MGMT methylation-negative group (mean 9.5±7.5 were significantly higher than those of the MGMT methylation-positive group (mean 5.4±1.8 (p = .046. In the analysis of EGFR expression-positive group, the nTBVs of the subgroup with loss of PTEN gene expression (mean: 10.3±8.1 were also significantly higher than those of the subgroup without loss of PTEN gene expression (mean: 5.6±2.3 (p = .046. Ki-67 labeling index indicated significant positive correlation with the nTBV of the tumor (p = .01.We found that glioblastomas with aggressive genetic alterations tended to have a high nTBV in the present study. Thus, we believe that DSC-enhanced perfusion MR imaging could be helpful in predicting genetic alterations that are crucial in predicting the prognosis of and selecting tailored treatment for glioblastoma patients.

  7. Cerebral perfusion MR imaging using FAIR-HASTE in chronic carotid occlusive disease. Comparison with dynamic susceptibility contrast-perfusion MR imaging

    International Nuclear Information System (INIS)

    Ida, Kentaro; Akaki, Shiro; Sei, Tetsuro; Kanazawa, Susumu; Tsunoda, Masatoshi

    2006-01-01

    To determine the efficacy of flow-sensitive alternating inversion recovery using half-Fourier single-shot turbo spin-echo (FAIR-HASTE) in detecting cerebral hypoperfusion in chronic carotid occlusive disease, we subjected 12 patients with various degrees of cervical internal carotid artery stenoses and/or occlusion (Stenosis group) and 24 volunteers (Normal group) to FAIR-HASTE. In addition, 10 out of 12 patients in the Stenosis group underwent dynamic susceptibility contrast-perfusion magnetic resonance imaging (DSC-pMRI) before and after revascularization in the dominantly affected side. The absolute asymmetry indexes (AIs) of both cerebral hemispheres in the Normal and Stenosis groups were compared in FAIR-HASTE. In addition, the AIs were compared with those in the Stenosis group before and after revascularization in both FAIR-HASTE and regional cerebral blood flow (rCBF), calculated with DSC-pMRI. A statistically significant difference was recognized between the AIs in the Normal and Stenosis groups (AI=2.25±1.92, 8.09±4.60, respectively; p<0.0001). Furthermore, in the Stenosis group the AIs on both FAIR-HASTE (8.88±4.93, 2.22±1.79, respectively; p=0.0003) and rCBF (7.13±3.57, 1.25±1.33, respectively; p=0.0003) significantly decreased after revascularization. In the Stenosis group, before revascularization, signal intensity on both FAIR-HASTE and rCBF had a tendency to be lower in the dominantly affected side. FAIR-HASTE imaging was useful in the detection and evaluation of cerebral hypoperfusion in chronic occlusive carotid disease. (author)

  8. Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging Demonstrates Reduced Periventricular Cerebral Blood Flow in Dogs with Ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Martin J. Schmidt

    2017-08-01

    Full Text Available The nature of ventriculomegaly in dogs is still a matter of debate. Signs of increased intraventricular pressure and atrophy of the cerebral white matter have been found in dogs with ventriculomegaly, which would imply increased intraventricular pressure and, therefore, a pathological condition, i.e., to some extent. Reduced periventricular blood flow was found in people with high elevated intraventricular pressure. The aim of this study was to compare periventricular brain perfusion in dogs with and without ventriculomegaly using perfusion weighted-magnetic-resonance-imaging to clarify as to whether ventriculomegaly might be associated with an increase in intraventricular pressure. Perfusion was measured in 32 Cavalier King Charles spaniels (CKCS with ventriculomegaly, 10 CKCSs were examined as a control group. Cerebral blood flow (CBF was measured using free-hand regions of interest (ROI in five brain regions: periventricular white matter, caudate nucleus, parietal cortex, hippocampus, and thalamus. CBF was significantly lower in the periventricular white matter of the dogs with ventriculomegaly (p = 0.0029 but not in the other ROIs. Reduction of periventricular CBF might imply increase of intraventricular pressure in ventriculomegaly.

  9. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    DEFF Research Database (Denmark)

    Falk, Anna; Fahlström, Markus; Rostrup, Egill

    2014-01-01

    that could best discriminate between grade II and III gliomas. METHODS: MRI (3 T) including morphological ((T2 fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W)+Gd)) and perfusion (DCE and DSC) sequences was performed in 39 patients with newly diagnosed suspected low-grade glioma after...... written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n = 7) gliomas. Statistical analysis of differences between...... grade II and grade III gliomas in histogram perfusion parameters was performed, and the areas under the curves (AUC) from the ROC analyses were evaluated. RESULTS: In DCE, the skewness of transfer constant (k(trans)) was found superior for differentiating grade II from grade III in all gliomas (AUC 0...

  10. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Xiao, Hua-Feng; Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin; Lou, Xin; Gui, Qiu-Ping; Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan

    2015-01-01

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10 -3 mm 2 /s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  11. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hua-Feng [302 Hospital of Chinese People' s Liberation Army, Department of Radiology, Beijing (China); Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); Lou, Xin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); University of California, Department of Neurology, Los Angeles, CA (United States); Gui, Qiu-Ping [People' s Liberation Army General Hospital, Department of Pathology, Beijing (China); Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan [General Electric Healthcare (China) Co., Ltd., Beijing; Wang, Danny J.J. [University of California, Department of Neurology, Los Angeles, CA (United States)

    2015-12-15

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10{sup -3} mm{sup 2}/s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  12. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  13. Differentiation of brain abscesses from glioblastomas and metastatic brain tumors: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging before and after mathematic contrast leakage correction.

    Science.gov (United States)

    Toh, Cheng Hong; Wei, Kuo-Chen; Chang, Chen-Nen; Ng, Shu-Hang; Wong, Ho-Fai; Lin, Ching-Po

    2014-01-01

    To compare the diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MRI before and after mathematic contrast leakage correction in differentiating pyogenic brain abscesses from glioblastomas and/or metastatic brain tumors. Cerebral blood volume (CBV), leakage-corrected CBV and leakage coefficient K2 were measured in enhancing rims, perifocal edema and contralateral normal appearing white matter (NAWM) of 17 abscesses, 19 glioblastomas and 20 metastases, respectively. The CBV and corrected CBV were normalized by dividing the values in the enhancing rims or edema to those of contralateral NAWM. For each study group, a paired t test was used to compare the K2 of the enhancing rims or edema with those of NAWM, as well as between CBV and corrected CBV of the enhancing rims or edema. ANOVA was used to compare CBV, corrected CBV and K2 among three lesion types. The diagnostic performance of CBV and corrected CBV was assessed with receiver operating characteristic (ROC) curve analysis. The CBV and correction CBV of enhancing rim were 1.45±1.17 and 1.97±1.01 for abscesses, 3.85±2.19 and 4.39±2.33 for glioblastomas, and 2.39±0.90 and 2.97±0.78 for metastases, respectively. The CBV and corrected CBV in the enhancing rim of abscesses were significantly lower than those of glioblastomas and metastases (P = 0.001 and P = 0.007, respectively). In differentiating abscesses from glioblastomas and metastases, the AUC values of corrected CBV (0.822) were slightly higher than those of CBV (0.792). Mathematic leakage correction slightly increases the diagnostic performance of CBV in differentiating pyogenic abscesses from necrotic glioblastomas and cystic metastases. Clinically, DSC perfusion MRI may not need mathematic leakage correction in differentiating abscesses from glioblastomas and/or metastases.

  14. Dynamic contrast enhanced MRI for perfusion quantification

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke

    2002-01-01

    Magnetic resonance imaging, during bolus passage of a paramagnetic contrast agent, is used world-wide to obtain parameters that reflect the pathological state of tissue. Abnormal perfusion occurs in diseases such as stoke and tumour. Consequently, perfusion quantication could have signi cant...... the contrastagent concentration, [Ca], and the changes in R2 or R 2 has been questioned. In this thesis, an MRI scanner sequence for detection of the longitudinal relaxation rate, R1 during bolus passage was modied for brain perfusion measurements, since the linearity between the changes in R1 and [Ca] is expected...... to be more robust. Successful brain perfusion quantication based on R1 weighted signals has not previously been reported, due to the poor signal to noise ratio of the images. Initial experiments reported in this thesis show that improved sequence may provide more accurate perfusion estimates in the brain...

  15. [Studying cerebral perfusion using magnetic susceptibility techniques: technique and applications].

    Science.gov (United States)

    Guzmán-de-Villoria, J A; Fernández-García, P; Mateos-Pérez, J M; Desco, M

    2012-01-01

    Perfusion MRI makes it possible to evaluate the cerebral microvasculature through changes in signal due to a tracer passing through blood vessels. The most commonly used technique is based on the magnetic susceptibility of gadolinium in T2*-weighted sequences, and the most commonly evaluated parameters are cerebral blood volume, cerebral blood flow, and mean transit time. Diverse technical aspects, like the sequence used, and the dose and speed of contrast material injection, must be taken into account in perfusion MRI studies. It is also essential to consider possible sources of error like contrast material leaks due to changes in the permeability of the blood-brain barrier. The most widely used clinical applications of perfusion MRI include the determination of the degree of aggressiveness of gliomas, the differentiation of some histological types of tumors or pseudotumors, and the evaluation of the penumbral area in acute ischemia. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  16. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    DEFF Research Database (Denmark)

    Thomsen, H; Steffensen, E; Larsson, Elna-Marie

    2012-01-01

    technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose: To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC......, and glioblastomas. Results: rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r ¼ 0.60) and to the cerebellum (r ¼ 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated......-MRI using two different regions for normalization and two different measurement approaches. Material and Methods: Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and r...

  17. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    International Nuclear Information System (INIS)

    Server, Andres; Nakstad, Per H.; Orheim, Tone E.D.; Graff, Bjoern A.; Josefsen, Roger; Kumar, Theresa

    2011-01-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  18. Myocardial perfusion assessment with contrast echocardiography

    Science.gov (United States)

    Desco, Manuel; Ledesma-Carbayo, Maria J.; Santos, Andres; Garcia-Fernandez, Miguel A.; Marcos-Alberca, Pedro; Malpica, Norberto; Antoranz, Jose C.; Garcia-Barreno, Pedro

    2001-05-01

    Assessment of intramyocardial perfusion by contrast echocardiography is a promising new technique that allows to obtain quantitative parameters for the assessment of ischemic disease. In this work, a new methodology and a software prototype developed for this task are presented. It has been validated with Coherent Contrast Imaging (CCI) images acquired with an Acuson Sequoia scanner. Contrast (Optison microbubbles) is injected continuously during the scan. 150 images are acquired using low mechanical index U/S pulses. A burst of high mechanical index pulses is used to destroy bubbles, thus allowing to detect the contrast wash-in. The stud is performed in two conditions: rest and pharmacologically induced stress. The software developed allows to visualized the study (cine) and to select several ROIs within the heart wall. The position of these ROIs along the cardiac cycle is automatically corrected on the basis of the gradient field, and they can also be manually corrected in case the automatic procedure fails. Time curves are analyzed according to a parametric model that incorporates both contrast inflow rate and cyclic variations. Preliminary clinical results on 80 patients have allowed us to identify normal and pathological patterns and to establish the correlation of quantitative parameters with the real diagnosis.

  19. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  20. Pediatric hemiplegic migraine: susceptibility weighted and MR perfusion imaging abnormality

    International Nuclear Information System (INIS)

    Altinok, Deniz; Agarwal, Ajay; Ascadi, Gyula; Luat, Aimee; Tapos, Daniela

    2010-01-01

    We report on an 11-year-old girl suffering from a typical attack of hemiplegic migraine with characteristic abnormalities in perfusion MR and susceptibility-weighted MR imaging findings. The imaging abnormalities were resolved 48 h after the attack. Susceptibility-weighted MR imaging findings correlated well with the MR perfusion, thus it can be used along with conventional MRI for evaluation of children with complex migraine attacks. Susceptibility-weighted MR imaging might have a diagnostic role in assessing the vascular events in hemiplegic migraine. (orig.)

  1. Radiological contrast media and pancreatic blood perfusion in anesthetized rats.

    Science.gov (United States)

    Linder, G; Carlsson, P O; Källskog, Ö; Hansell, P; Jansson, L; Riesenfeld Källskog, V

    2007-12-01

    Radiological contrast media (CM) have been suggested to be able to impair pancreatic microcirculation. To evaluate the effects of an iso-osmolar (iodixanol, 290 mOsm/kg H2O) and a low-osmolar (iopromide, 660 mOsm/kg H2O) CM on total pancreatic and islet blood perfusion. Thiobutabarbital-anesthetized rats were injected with iodine equivalent doses (600 mg I/kg body weight) of iodixanol or iopromide. Saline or low-osmolar mannitol (660 mOsm/kg H2O) solutions served as control substances. Blood perfusion measurements were then carried out with a microsphere technique. Iso-osmolar iodixanol had no effects on blood perfusion. Low-osmolar iopromide increased total pancreatic blood perfusion, whereas islet blood perfusion was unchanged. No differences were seen when mannitol solutions were given. Neither an iso-osmolar nor a low-osmolar CM affected pancreatic islet blood perfusion, whereas the low-osmolar CM increased total pancreatic blood perfusion. The absence of hemodynamic effect of low-osmolar mannitol suggests that the hyperosmolality per se of iopromide versus iodixanol does not induce the hemodynamic effect. The consequences of the effect of iopromide for pancreatic function remain to be established.

  2. Magnetic susceptibility imaging with a nonionic contrast agent

    International Nuclear Information System (INIS)

    Cacheris, W.; Rocklage, S.M.; Quay, S.; Dow, W.; Love, D.; Worah, D.; Lim, K.

    1988-01-01

    The magnetic susceptibility mechanism for MR imaging contrast enhancement has the advantage of providing useful information, such as cerebral blood flow, without crossing the blood-brain barrier. In this paper the authors report the use of a highly effective, relatively nontoxic chelate as a magnetic susceptibility agent. Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA) has an extremely low acute toxicity (LD-50, intravenous, mice ∼ 40 mmol/kg). Doses of 1 mmol/kg and 2 mmol/kg Dy-DTPA-BMA lowered the initial signal intensity 63% to 57%, respectively. The utility of this technique in detecting areas of reduced blood flow within the brain was demonstrated by imaging a rabbit with a cerebral perfusion deficit

  3. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1

    Science.gov (United States)

    Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea

    2005-01-01

    Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105

  4. Detection of resting myocardial perfusion defects by SonoVue myocardial contrast echocardiography.

    Science.gov (United States)

    Nahar, Tamanna; Li, Peng; Kuersten, Bettina; Batra, Sanjay; Vannan, Mani A

    2003-08-01

    SonoVue is a new microbubble contrast agent containing sulfur hexafluoride. We assessed the efficacy of SonoVue myocardial contrast echocardiography (MCE) to detect resting perfusion abnormalities. Nineteen adult patients with a wall motion abnormality in a screening echocardiogram were studied. Each patient received up to four bolus injections of 2.0 mL SonoVue (Bracco Diagnostics, Inc.) during echocardiographic examination using either B-mode(n = 12)or power Doppler(n = 7)imaging. Each patient also had SPECT nuclear perfusion imaging performed. Segmental assessment of myocardial perfusion from SonoVue MCE images were compared with corresponding SPECT nuclear images. Using B-mode imaging, the mean number of views obtained with a single SonoVue injection ranged from 1.4 to 1.9, with 2 or 3 injections required for a complete examination. Ninety-four percent of segments were scored as diagnostic. Agreement between B-mode and SPECT images was 72% for segments with a perfusion defect, 86% for normal perfusion, and 80% for segments with either perfusion defect or normal perfusion (all views combined). Using power Doppler imaging, the mean number of views obtained with a single SonoVue injection ranged from 1.0 to 1.3, with 2 to 4 injections required for a complete examination. Sixty-eight percent of segments were scored as diagnostic. Agreement between power Doppler and SPECT images was 67% for perfusion defects, 53% for segments with normal perfusion, and 59% for segments with either perfusion defect or normal perfusion (all views combined). SonoVue MCE has the potential to assess myocardial perfusion at rest. B-mode imaging was more accurate than power Doppler imaging when compared with SPECT nuclear imaging.

  5. Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method

    Directory of Open Access Journals (Sweden)

    Kadrmas Dan J

    2008-11-01

    Full Text Available Abstract Background Model-independent analysis with B-spline regularization has been used to quantify myocardial blood flow (perfusion in dynamic contrast-enhanced cardiovascular magnetic resonance (CMR studies. However, the model-independent approach has not been extensively evaluated to determine how the contrast-to-noise ratio between blood and tissue enhancement affects estimates of myocardial perfusion and the degree to which the regularization is dependent on the noise in the measured enhancement data. We investigated these questions with a model-independent analysis method that uses iterative minimization and a temporal smoothness regularizer. Perfusion estimates using this method were compared to results from dynamic 13N-ammonia PET. Results An iterative model-independent analysis method was developed and tested to estimate regional and pixelwise myocardial perfusion in five normal subjects imaged with a saturation recovery turboFLASH sequence at 3 T CMR. Estimates of myocardial perfusion using model-independent analysis are dependent on the choice of the regularization weight parameter, which increases nonlinearly to handle large decreases in the contrast-to-noise ratio of the measured tissue enhancement data. Quantitative perfusion estimates in five subjects imaged with 3 T CMR were 1.1 ± 0.8 ml/min/g at rest and 3.1 ± 1.7 ml/min/g at adenosine stress. The perfusion estimates correlated with dynamic 13N-ammonia PET (y = 0.90x + 0.24, r = 0.85 and were similar to results from other validated CMR studies. Conclusion This work shows that a model-independent analysis method that uses iterative minimization and temporal regularization can be used to quantify myocardial perfusion with dynamic contrast-enhanced perfusion CMR. Results from this method are robust to choices in the regularization weight parameter over relatively large ranges in the contrast-to-noise ratio of the tissue enhancement data.

  6. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis - initial results

    International Nuclear Information System (INIS)

    Eichinger, Monika; Puderbach, Michael; Zuna, Ivan; Kauczor, Hans-Ulrich; Fink, Christian; Gahr, Julie; Mueller, Frank-Michael; Ley, Sebastian; Plathow, Christian; Tuengerthal, Siegfried

    2006-01-01

    This paper is a feasibility study of magnetic resonance imaging (MRI) of lung perfusion in children with cystic fibrosis (CF) using contrast-enhanced 3D MRI. Correlation assessment of perfusion changes with structural abnormalities. Eleven CF patients (9 f, 2 m; median age 16 years) were examined at 1.5 T. Morphology: HASTE coronal, transversal (TR/TE/α/ST: 600 ms/28 ms/180 /6 mm), breath-hold 18 s. Perfusion: Time-resolved 3D GRE pulse sequence (FLASH, TE/TR/α: 0.8/1.9 ms/40 ), parallel imaging (GRAPPA, PAT 2). Twenty-five data sets were acquired after intravenous injection of 0.1 mmol/kg body weight of gadodiamide, 3-5 ml/s. A total of 198 lung segments were analyzed by two radiologists in consensus and scored for morphological and perfusion changes. Statistical analysis was performed by Mantel-Haenszel chi-square test. Results showed that perfusion defects were observed in all patients and present in 80% of upper, and 39% of lower lobes. Normal lung parenchyma showed homogeneous perfusion (86%, P<0.0001). Severe morphological changes led to perfusion defects (97%, P<0.0001). Segments with moderate morphological changes showed normal (53%) or impaired perfusion (47%). In conclusion, pulmonary perfusion is easy to judge in segments with normal parenchyma or severe changes. In moderately damaged segments, MRI of lung perfusion may help to better assess actual functional impairment. Contrast-enhanced 3D MRI of lung perfusion has the potential for early vascular functional assessment and therapy control in CF patients. (orig.)

  7. Delta-projection imaging on contrast-enhanced ultrasound to quantify tumor microvasculature and perfusion.

    Science.gov (United States)

    Sehgal, Chandra M; Cary, Theodore W; Arger, Peter H; Wood, Andrew K W

    2009-01-01

    The aim of this study was to assess the Delta-projection image processing technique for visualizing tumor microvessels and for quantifying the area of tissue perfused by them on contrast-enhanced ultrasound images. The Delta-projection algorithm was implemented to quantify perfusion by tracking the running maximum of the difference (Delta) between the contrast-enhanced ultrasound image sequence and a baseline image. Twenty-five mice with subcutaneous K1735 melanomas were first imaged with contrast-enhanced grayscale and then with minimum-exposure contrast-enhanced power Doppler (minexCPD) ultrasound. Delta-projection images were reconstructed from the grayscale images and then used to evaluate the evolution of tumor vascularity during the course of contrast enhancement. The extent of vascularity (ratio of the perfused area to the tumor area) for each tumor was determined quantitatively from Delta-projection images and compared to the extent of vascularity determined from contrast-enhanced power Doppler images. Delta-projection and minexCPD measurements were compared using linear regression analysis. Delta-projection was successfully performed in all 25 cases. The technique allowed the dynamic visualization of individual blood vessels as they filled in real time. Individual tumor blood vessels were distinctly visible during early image enhancement. Later, as an increasing number of blood vessels were filled with the contrast agent, clusters of vessels appeared as regions of perfusion, and the identification of individual vessels became difficult. Comparisons were made between the perfused area of tumors in Delta-projections and in minexCPD images. The Delta-projection perfusion measurements were correlated linearly with minexCPD. Delta-projection visualized tumor vessels and enabled the quantitative assessment of the tumor area perfused by the contrast agent.

  8. Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges

    Directory of Open Access Journals (Sweden)

    Junfeng Zhang

    2017-01-01

    Full Text Available Gliomas possess complex and heterogeneous vasculatures with abnormal hemodynamics. Despite considerable advances in diagnostic and therapeutic techniques for improving tumor management and patient care in recent years, the prognosis of malignant gliomas remains dismal. Perfusion-weighted magnetic resonance imaging techniques that could noninvasively provide superior information on vascular functionality have attracted much attention for evaluating brain tumors. However, nonconsensus imaging protocols and postprocessing analysis among different institutions impede their integration into standard-of-care imaging in clinic. And there have been very few studies providing a comprehensive evidence-based and systematic summary. This review first outlines the status of glioma theranostics and tumor-associated vascular pathology and then presents an overview of the principles of dynamic contrast-enhanced MRI (DCE-MRI and dynamic susceptibility contrast-MRI (DSC-MRI, with emphasis on their recent clinical applications in gliomas including tumor grading, identification of molecular characteristics, differentiation of glioma from other brain tumors, treatment response assessment, and predicting prognosis. Current challenges and future perspectives are also highlighted.

  9. Hepatic perfusion parameters of contrast-enhanced ultrasonography correlate with the severity of chronic liver disease.

    Science.gov (United States)

    Liu, Dong; Qian, Linxue; Wang, Jinrui; Hu, Xiangdong; Qiu, Lanyan

    2014-11-01

    In the study described here, we introduced a new ratio acquired with contrast-enhanced ultrasonography (CEUS): a liver parenchyma blood supply ratio that differentiates arterial and portal phases. Our purpose was to determine whether this ratio and other liver parenchyma perfusion parameters acquired with CEUS can be correlated with the severity of chronic liver disease. Twelve patients with non-cirrhotic chronic liver disease, 35 patients with cirrhosis (child class A: n = 10; child class B: n = 13; child class C: n = 12) and 21 healthy volunteers were examined by CEUS. Time-intensity curves were drawn for regions of interest located in liver parenchyma and right kidney cortex using QLAB quantification software. The arterial and portal phases were differentiated by the time to the maximum enhancement of right kidney and liver parenchyma perfusion data acquired from the time-intensity curves: the intensity of liver parenchyma perfused by hepatic arterial flow (I(ap)), the intensity of total perfusion of liver parenchyma (I(peak)), the intensity of liver parenchyma perfused by portal venous flow (I(pp)) and the ratio of portal perfusion to total perfusion of liver parenchyma expressed by the parameters I(pp)/I(peak), I(peak), I(pp) and I(pp)/I(peak) significantly decreased in patients with cirrhosis and in patients with non-cirrhotic chronic liver disease, whereas Iap increased. The parameters I(pp), I(peak), I(pp)/I(peak) and Iap correlated with the severity of chronic liver disease (r = -0.938, p Liver parenchyma perfusion parameters obtained by CEUS were correlated with the severity of chronic liver disease and have the potential to assess cirrhosis non-invasively. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs

    DEFF Research Database (Denmark)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Inger Susanne

    2012-01-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates....

  11. Contrast-enhanced ultrasonography to assess blood perfusion of skeletal muscles in normal dogs

    Science.gov (United States)

    OH, Juyeon; JEON, Sunghoon; CHOI, Jihye

    2015-01-01

    This study evaluated perfusion of skeletal muscle using contrast enhanced ultrasonography in humerus, radius, femur and tibia in normal dogs. Contrast enhanced ultrasonography for each region was performed after injecting 0.5 mL and 1 mL of contrast medium (SonoVue) in every dog. Blood perfusion was assessed quantitatively by measuring the peak intensity, time to the peak intensity and area under the curve from the time–intensity curve. Vascularization in skeletal muscle was qualitatively graded with a score of 0–3 according to the number of vascular signals. A parabolic shape of time–intensity curve was observed from muscles in normal dogs, and time to the peak intensity, the peak intensity and area under the curve of each muscle were not significantly different according to the appendicular regions examined and the dosage of contrast agent administered. This study reports that feasibility of contrast enhanced ultrasonography for assessment of the muscular perfusion in canine appendicular regions. PMID:25754794

  12. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    Science.gov (United States)

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.

  13. Comparison of increased venous contrast in ischemic stroke using phase-sensitive MR imaging with perfusion changes on flow-sensitive alternating inversion recovery at 3 Tesla

    International Nuclear Information System (INIS)

    Yamashita, Eijiro; Kanasaki, Yoshiko; Fujii, Shinya; Ogawa, Toshihide; Tanaka, Takuro; Hirata, Yoshiharu

    2011-01-01

    Background Increased venous contrast in ischemic stroke using susceptibility-weighted imaging has been widely reported, although few reports have compared increased venous contrast areas with perfusion change areas. Purpose To compare venous contrast on phase-sensitive MR images (PSI) with perfusion change on flow-sensitive alternating inversion recovery (FAIR) images, and to discuss the clinical use of PSI in ischemic stroke. Material and Methods Thirty patients with clinically suspected acute infarction of the middle cerebral artery (MCA) territory within 7 days of onset were evaluated. Phase-sensitive imaging (PSI), flow-sensitive alternating inversion recovery (FAIR), diffusion-weighted imaging (DWI) and magnetic resonance angiography (MRA) were obtained using 3 Tesla scanner. Two neuroradiologists independently reviewed the MR images, as well as the PSI, DWI, and FAIR images. They were blinded to the clinical data and to each other's findings. The abnormal area of each image was ultimately identified after both neuroradiologists reached consensus. We analyzed areas of increased venous contrast on PSI, perfusion changes on FAIR images and signal changes on DWI for each case. Results Venous contrast increased on PSI and hypoperfusion was evident on FAIR images from 22 of the 30 patients (73%). The distribution of the increased venous contrast was the same as that of the hypoperfused areas on FAIR images in 16 of these 22. The extent of these lesions was larger than that of lesions visualized by on DWI in 18 of the 22 patients. Hypointense signals reflecting hemorrhage and no increased venous contrast on PSI and hyperperfusion on FAIR images were found in six of the remaining eight patients (20%). Findings on PSI were normal and hypoperfusion areas were absent on FAIR images of two patients (7%). Conclusion Increased venous contrast on PSI might serve as an index of misery perfusion and provide useful information

  14. Hypovolemic shock complex: does the pancreatic perfusion increase or decrease at contrast-enhanced dynamic CT?

    Science.gov (United States)

    Higashi, Hiroki; Tamada, Tsutomu; Kanki, Akihiko; Yamamoto, Akira; Ito, Katsuyoshi

    2014-01-01

    The purpose of this study is to evaluate contrast enhancement effects of the pancreas at dynamic computed tomography (CT) to clarify whether pancreatic perfusion increases or decreases in severe trauma patients with hypovolemic shock. A total of 90 patients with (n=30) and without (n=60) blunt trauma and hypovolemic shock who underwent dynamic CT for abdomen was included. The measurement of CT attenuation values of the pancreas in the early phase and the late phase was performed to compare the contrast enhancement effects between patients with and without hypovolemic shock. The mean CT attenuation values of the pancreas in the early phase of dynamic CT in patients with hypovolemic shock [95.4±29.1 Hounsfield units (HU)] were significantly lower (P perfusion in patients with hypovolemic shock. The mean CT attenuation values of the pancreas in the late phase of dynamic CT in patients with hypovolemic shock (95.9±17.6 HU) were significantly higher (P perfusion in the early phase and delayed pancreatic enhancement in the late phase of contrast-enhanced dynamic CT was a common finding in patients with hypovolemic shock. © 2014.

  15. Isoattenuating insulinomas at biphasic contrast-enhanced CT: frequency, clinicopathologic features and perfusion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang; Xue, Hua-dan; Sun, Hao; Wang, Xuan; He, Yong-lan; Jin, Zheng-yu [Peking Union Medical College Hospital, Department of Radiology, Beijing (China); Zhao, Yu-pei [Peking Union Medical College Hospital, Department of General Surgery, Beijing (China)

    2016-10-15

    We aimed to determine the frequency of isoattenuating insulinomas, to investigate their clinicopathological features and to assess their regional pancreatic perfusion characteristics. Institutional review board approval was obtained, and patient informed consent was waived. From July 2010 to June 2014, 170 patients (66 male, 104 female) with endogenous hyperinsulinemic hypoglycemia underwent biphasic contrast-enhanced CT before surgery, and 129 of those patients also received preoperative whole-pancreas CT perfusion. A total of 181 tumours were proved histopathologically after surgery. Enhancement pattern and regional pancreatic perfusion characteristics were analyzed. Clinical features, tumour size and pathological grading were investigated. The frequency of isoattenuating tumours was 24.9 %. Tumour size and WHO grading was not significantly different between isoattenuating and hyperattenuating tumours. Tumour-free regions had identical blood flow (BF) regardless of their location (p = 0.35). Isoattenuating tumour-harbouring regions had lower BF compared with hyperattenuating tumour-harbouring regions; both showed higher BF compared with tumour-free neighbourhood regions (all p < 0.01). For patients with isoattenuating tumours, the overall hospital stay was longer (p < 0.01). A substantial subset of insulinomas were isoattenuating on biphasic CT. CT perfusion showed higher BF in tumour-harbouring regions compared to tumour-free regions, providing a clue for tumour regionalization. (orig.)

  16. Semi-automatic motion compensation of contrast-enhanced ultrasound images from abdominal organs for perfusion analysis

    Czech Academy of Sciences Publication Activity Database

    Schafer, S.; Nylund, K.; Saevik, F.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Dimcevski, G.; Gilja, O.H.; Tönnies, K.

    2015-01-01

    Roč. 63, AUG 1 (2015), s. 229-237 ISSN 0010-4825 R&D Projects: GA ČR GAP102/12/2380 Institutional support: RVO:68081731 Keywords : ultrasonography * motion analysis * motion compensation * registration * CEUS * contrast-enhanced ultrasound * perfusion * perfusion modeling Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.521, year: 2015

  17. Quantitative pulmonary perfusion imaging with 3-dimensional, contrast-enhanced MR: regional difference in the perfusion parameters of healthy volunteers

    International Nuclear Information System (INIS)

    Kim, Song Soo; Seo, Joon Beom; Kim, Nam Kuk; Do, Kyung Hyun; Lee, Young Kyung; Song, Jae Woo; Lee, Jin Seong; Kim, Jin Hwan

    2007-01-01

    We wanted to evaluate the regional differences in such perfusion parameters as pulmonary blood flow (PBF), mean transit time (MTT) and pulmonary blood volume (PBV) in the entire lung of healthy volunteers with using three-dimensional, contrast-enhanced MR imaging (3D CEMRI). Six healthy volunteers underwent dynamic 3D CEMRI (TR/TE 2.7/0.6 msec; flip angle 40 .deg. ; matrix 128 x 96; reconstructed matrix 256 x 192; rectangular field of view 450 x 315 mm; coronal 100-150mm-thick x 10 slabs; temporal resolution 1.0 sec; 35 dynamic phases) For all subjects, 2 mL of Gd-DTPA mixed with 3 ml of physiologic saline was administered as a bolus at a rate of 5 mL/sec, and this was followed by 20 mL of physiologic saline flush. From the signal intensity-time curves, the PBF, MTT and PBV maps were generated using indicator dilution theories and the central volume principle on a pixel-by-pixel basis. A total of 54 round, 1-cm sized ROIs were placed in the lung in each subject (6 ROIs per slab x 9 slices except for the most posterior slab). The regional differences of the measured parameters were statistically evaluated in the gravitational direction and in the upper-mid-lower direction by one-way ANOVA tests. The calculated PBF, MTT and PBV in the entire lung were 141.8 ± 53.4 mL/100 mL/min (mean ± SD), 5.35 ± 1.38 sec, and 13.4 ± 6.48 mL/100mL, respectively. In the gravitational direction, there was a significant increase in the PBF and PBV as it goes to the posterior direction (ρ < 0.05). No statistical difference was found in PBF or PBV between the upper, mid and lower lung zone areas. Regional difference in the various perfusion parameters of the lung in healthy volunteers can be quantitatively assessed with performing 3D CEMRI

  18. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    Science.gov (United States)

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (p<0.001, paired t-test), which is most likely due to the leakage of contrast agent through the disrupted blood brain barrier. This setup offers advanced MR imaging of small animals without the need for dedicated animal scanners or dedicated custom-made coils.

  19. Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging

    Directory of Open Access Journals (Sweden)

    Justin J. Tse

    2017-01-01

    Full Text Available Micro-computed tomography (micro-CT facilitates the visualization and quantification of contrast-enhanced microvessels within intact tissue specimens, but conventional preclinical vascular contrast agents may be inadequate near dense tissue (such as bone. Typical lead-based contrast agents do not exhibit optimal X-ray absorption properties when used with X-ray tube potentials below 90 kilo-electron volts (keV. We have developed a high-atomic number lanthanide (erbium contrast agent, with a K-edge at 57.5 keV. This approach optimizes X-ray absorption in the output spectral band of conventional microfocal spot X-ray tubes. Erbium oxide nanoparticles (nominal diameter 4000 Hounsfield units, and perfusion of vessels < 10 μm in diameter was demonstrated in kidney glomeruli. The described new contrast agent facilitated the visualization and quantification of vessel density and microarchitecture, even adjacent to dense bone. Erbium’s K-edge makes this contrast agent ideally suited for both single- and dual-energy micro-CT, expanding potential preclinical research applications in models of musculoskeletal, oncological, cardiovascular, and neurovascular diseases.

  20. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  1. Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Savvopoulou, Vasiliki; Vlahos, Lampros; Moulopoulos, Lia Angela [University of Athens, Areteion Hospital, Department of Radiology, Medical School, Athens (Greece); Maris, Thomas G. [University of Crete, Deparment of Medical Physics, Faculty of Medicine, Heraklion (Greece)

    2008-09-15

    To investigate the influence of age, sex and spinal level on perfusion parameters of normal lumbar bone marrow with dynamic contrast-enhanced MRI (DCE MRI). Sixty-seven subjects referred for evaluation of low back pain or sciatica underwent DCE MRI of the lumbar spine. After subtraction of dynamic images, a region of interest (ROI) was placed on each lumbar vertebral body of all subjects, and time intensity curves were generated. Consequently, perfusion parameters were calculated. Statistical analysis was performed to search for perfusion differences among lumbar vertebrae and in relation to age and sex. Upper (L1, L2) and lower (L3, L4, L5) vertebrae showed significant differences in perfusion parameters (p<0.05). Vertebrae of subjects younger than 50 years showed significantly higher perfusion compared to vertebrae of older ones (p<0.05). Vertebrae of females demonstrated significantly increased perfusion compared to those of males of corresponding age (p<0.05). All perfusion parameters, except for washout (WOUT), showed a mild linear correlation with age. Time to maximum slope (TMSP) and time to peak (TTPK) showed the same correlation with sex (0.22perfusion of the upper compared to the lower lumbar spine, of younger compared to older subjects and of females compared to males. (orig.)

  2. Morphological, contrast-enhanced and spin labeling perfusion imaging for monitoring of relapse after RF ablation of renal cell carcinomas

    International Nuclear Information System (INIS)

    Boss, Andreas; Martirosian, Petros; Schraml, Christina; Schick, Fritz; Clasen, Stephan; Fenchel, Michael; Claussen, Claus D.; Pereira, Philippe L.; Anastasiadis, Artistotelis

    2006-01-01

    MR perfusion imaging was applied for the assessment of completeness in the destruction of renal cell carcinomas by RF ablation (RFA) in a pilot study. An arterial spin labeling (ASL) approach was compared to conventional contrast-enhanced T1-weighted (CE-T1w) imaging. Ten patients suffering from renal cell carcinoma were treated by RFA. For the assessment of the extent of coagulation and for the detection of residual tumor, T1-weighted gradient-echo imaging, T2-weighted spin echo imaging and two different perfusion imaging techniques were performed before, 1 day and 6 weeks after RFA at 1.5 T. Perfusion imaging comprised CE-T1 weighted and FAIR-TrueFISP ASL imaging. Perfusion images recorded in the acute stage after RFA showed higher compliance to the definitive ablation volume reached after 6 weeks than T2-weighted images, which underestimated the true necrosis size. In the detection of residual tumor tissue, both modalities complimented each other. The exclusion of residual tumor tissue could more reliably be performed using perfusion-imaging methods. Both perfusion-imaging modalities showed sufficient imaging quality for post-interventional monitoring. Perfusion imaging provides a higher predictability of the completeness of tumor ablation and extent of coagulation than T2-weighted imaging alone. Since the results of the FAIR-TrueFISP sequence are promising, the administration of potentially nephrotoxic contrast media may be avoided in the respective patient cohort. (orig.)

  3. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  4. Assessment of brain metastases by means of dynamic susceptibility contrast enhanced MRI

    International Nuclear Information System (INIS)

    Knopp, M.; Wenz, F.; Debus, J.; Hentrich, H.R.

    2002-01-01

    Full text: To assess if pre therapeutic measurements of regional cerebral blood flow (rCBF) and volume (rCVB) are able to predict the response of brain metastases to radiation therapy and to assess the influence of radiosurgery on rCBF and rCBV on brain metastases and normal surrounding tissue. We examined 25 patients with brain metastases prior to high dose radiosurgery with conventional T1 and T2 weighted MRI and dynamic susceptibility contrast enhanced MRI (DSC MRI). For DSC MRI 55 T2*w GE images of two sections were acquired after bolus administration of 0.1 mmol/kg gadoteridol (ProHance) for the simultaneous measurement of brain feeding arteries and brain tissue. This allowed an absolute quantification of rCBF and rCBV. Follow-up examinations were performed 6 weeks and 3 months after radiotherapy and the acquired perfusion data were related to a 3 point scale of treatment outcome. Radiosurgery was performed by a linear accelerator with a 80% isodose of 18-20 Gv. For treatment planning the heads of the patients were immobilized by a cask mask to avoid head movement. DSC MRI was able to assess perfusion data in all patients. Higher pre therapeutic rCBV seems to predict a poor treatment outcome. After radiosurgery patients with tumor remission and stable disease presented a decrease of rCBV over time regardless of temporary tumor volume increase. Patients with tumor progression at the 3 month followup presented an increase of rCBV. Effects on normal surrounding tissue could not be observed. DSC MRI using Gadoteridol allows the non-invasive assessment of rCBV and rCBF of brain metastases and its changes due to radiosurgery. The method may also be able to predict treatment outcome. Furthermore radiofrequency effects on surrounding unaffected tissue can be monitored. Copyright (2002) Blackwell Science Pty Ltd

  5. Post-operative monitoring of tissue transfers: advantages using contrast enhanced ultrasound (CEUS) and contrast enhanced MRI (ceMRI) with dynamic perfusion analysis?

    Science.gov (United States)

    Lamby, P; Prantl, L; Fellner, C; Geis, S; Jung, E M

    2011-01-01

    The immediate evaluation of microvascular tissue flaps with respect to microcirculation after transplantation is crucial for optimal monitoring and outcome. The purpose of our investigation was to evaluate the clinical value of contrast-enhanced ultrasound (CEUS) and contrast-enhanced MRI (ceMRI) for monitoring the integrity of tissue flaps in plastic surgery. To this end, we investigated 10 patients (47 ± 16 a) between postoperative day 7 and 14 who underwent flap surgery in order to cover tissue defects in various body regions. For CEUS we utilized the GE LOGIQ E9 equipped with a linear transducer (6-9 MHz). After application of 2.4 ml SonoVue, the tissue perfusion was detected in Low MI-Technique (MI present, both technologies provide an optimal assessment of perfusion in cutaneous, subcutaneous and muscle tissue layers, whereby the detection of fatty tissue perfusion is currently more easily detected using CEUS compared to ceMRI.

  6. Sporadic insulinomas on volume perfusion CT: dynamic enhancement patterns and timing of optimal tumour-parenchyma contrast.

    Science.gov (United States)

    Zhu, Liang; Wu, Wen-Ming; Xue, Hua-Dan; Liu, Wei; Wang, Xuan; Sun, Hao; Li, Ping; Zhao, Yu-Pei; Jin, Zheng-Yu

    2017-08-01

    To assess enhancement patterns of sporadic insulinomas on volume perfusion CT (VPCT), and to identify timing of optimal tumour-parenchyma contrast. Consecutive patients who underwent VPCT for clinically suspected insulinomas were retrospectively identified. Patients with insulinomas confirmed by surgery were included, and patients with familial syndromes were excluded. Two radiologists evaluated VPCT images in consensus. Tumour-parenchyma contrast at each time point was measured, and timing of optimal contrast was determined. Time duration of hyperenhancement (tumour-parenchyma contrast >20 Hounsfield units, HU) was recorded. Perfusion parameters were evaluated. Three dynamic enhancement patterns were observed in 63 tumours: persistent hyperenhancement (hyperenhancement time window ≥10 s) in 39 (61.9%), transient hyperenhancement (hyperenhancement perfusion. Insulinomas have variable enhancement patterns. Tumour-parenchyma contrast is time-dependent. Optimal timing of enhancement is 9 s after AAT. VPCT enables tumour detection even if the hyperenhancement is transient. • Enhancement patterns of insulinomas are variable and tumour-parenchyma contrast is time-dependent. • An optimized single-phase scan found 77.8% tumours to be hyperenhancing. • Hyperenhancing tumours increase to 84.1% and 87.3% with biphasic/triphasic scan. • Volume perfusion CT enables detection of insulinomas with missed transient hyperenhancement.

  7. Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart

    DEFF Research Database (Denmark)

    Larsson, H B; Rosenbaum, S; Fritz-Hansen, T

    2001-01-01

    Measurement of myocardial and brain perfusion when using exogenous contrast agents (CAs) such as gadolinium-DTPA (Gd-DTPA) and MRI is affected by the diffusion of water between compartments. This water exchange may have an impact on signal enhancement, or, equivalently, on the longitudinal......(i)) by using a realistic simulation. These results were verified by in vivo studies of the heart and brain in humans. The conclusion is that water exchange between the vascular and extravascular extracellular space has no effect on K(i) estimation in the myocardium when a normal dose of Gd-DTPA is used. Water...... relaxation rate, and could therefore cause a systematic error in the calculation of perfusion (F) or the perfusion-related parameter, the unidirectional influx constant over the capillary membranes (K(i)). The aim of this study was to quantify the effect of water exchange on estimated perfusion (F or K...

  8. Effect of radiographic contrast media on renal perfusion - First results.

    Science.gov (United States)

    Lamby, P; Jung, F; Falter, J; Mrowietz, C; Graf, S; Schellenberg, L; Platz Batista da Silva, N; Prantl, L; Franke, R P; Jung, E M

    2016-01-01

    Intra-arterial administration of radiographic contrast media (CM) is discussed to impair renal perfusion. The pathogenesis of contrast-induced Nephropathy (CIN) is still not clarified. This trial was performed to prove the effects of two CM with different molecular structure on renal perfusion. A prospective, randomized study on 16 pigs was designed to compare the outcome after application of a low-osmolar iodinated CM (770 mOsm/kg H2O - Group1) and an iso-osmolar iodinated CM (290 mOsm/kg H2o - Group2).Color Coded Doppler Sonography (LOGIQ E9, GE, Milwaukee, USA) was applied for measuring the Renal Resistive Index (RRI) before and after the first, fifth, and tenth bolus of CM. Statistics was performed using analysis of variance for repeated measurements with the Factor "CM". All flow spectra were documented free of artifacts and Peak Systolic Velocity (PSV), Enddiastolic Velocity (EDV) and RRI respectively could be calculated. Mean PSV in Group 1 led to a decrease while in Group 2 PSV showed a significant increase after CM (p = 0,042). The course of the mean EDV in both groups deferred accordingly (p = 0,033). Mean RRI over time significantly deferred in both groups (p = 0,001). It showed a biphasic course in Group 2 and a decrease over time in Group 2. While iso-osmolar CM induced an increase of PSV and EDV together with a decrease of RRI, low-osmolar CM could not show this effect or rather led to the opposite.

  9. [Carotid artery wall perfusion of the plaque: three dimensional contrast sonographic imaging].

    Science.gov (United States)

    Nakaoka, Tsutomu; Shoji, Hidehiko; Tabeta, Hideyuki; Ikeshima, Hiroaki; Uchida, Tamao; Itou, Kenjirou

    2008-11-01

    We usually check stenosis rate in patients through the limited directions of angiography. This can result in insufficient evaluation. The importance of the condition of the carotid artery wall in fully accpted nowadays, and ultrasound sonography is being used as a means to study it. Neovascularization in the plaque is one of the pathological factors inducing plaque hemorrhage and rupture, and this is suspected of causing carotid artery stenosis, occlusion and artery-to-artery embolism. Harmonic image is a contrast specific imaging modality, which uses the nonlinear properties of ultrasound contrast agents by transmitting at the fundamental frequency and receiving at multiples of these frequencies. Pulse inversion harmonic image (PIHI), using pulse inversion to eliminate and strengthen the harmonic frequency, is more effective than conventional harmonic imaging. We can detect tissue perfusion by contrast sonographic imaging with PIHI. The routes of vascular wall feeding are as follows: One is diffusion through the endothelium and the other is through the vasa vasorum to the outer part of the medium. So there is no neovascularization at the inner side of the carotid artery. But some plaques have neovascularization in themselves, so we have tried to detect them by the intermittent and real time contrast sonographic imaging method with PIHI. We have already reported the evaluation of neovascularization by the intermittent method and classified from type I to type IV according to the distribution of neovascular vessels in the plaque. The real time contrast sonographic imaging method with PIHI has revealed some characters of neovascularization. Furthermore NV was observed through the real time 3D CAWP by matrix array, though there are some problem for the clinical application.

  10. Comparison of partial volume effects in arterial and venous contrast curves in CT brain perfusion imaging.

    Directory of Open Access Journals (Sweden)

    Alan J Riordan

    Full Text Available In brain CT perfusion (CTP, the arterial contrast bolus is scaled to have the same area under the curve (AUC as the venous outflow to correct for partial volume effects (PVE. This scaling is based on the assumption that large veins are unaffected by PVE. Measurement of the internal carotid artery (ICA, usually unaffected by PVE due to its large diameter, may avoid the need for partial volume correction. The aims of this work are to examine i the assumptions behind PVE correction and ii the potential of selecting the ICA obviating correction for PVE.The AUC of the ICA and sagittal sinus were measured in CTP datasets from 52 patients. The AUCs were determined by i using commercial CTP software based on a Gaussian curve-fitting to the time attenuation curve, and ii by simple integration of the time attenuation curve over a time interval. In addition, frames acquired up to 3 minutes after first bolus passage were used to examine the ratio of arterial and venous enhancement. The impact of selecting the ICA without PVE correction was illustrated by reporting cerebral blood volume (CBV measurements.In 49 of 52 patients, the AUC of the ICA was significantly larger than that of the sagittal sinus (p = 0.017. Measured after the first pass bolus, contrast enhancement remained 50% higher in the ICA just after the first pass bolus, and 30% higher 3 minutes later. CBV measurements were significantly lowered when the ICA was used without PVE correction.Contradicting the assumptions underlying PVE correction, contrast in the ICA was significantly higher than in the sagittal sinus, even 3 minutes after the first pass of the contrast bolus. PVE correction might lead to overestimation of CBV if the CBV is calculated using the AUC of the time attenuation curves.

  11. Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: development, validation and clinical applications

    International Nuclear Information System (INIS)

    Peladeau-Pigeon, M; Coolens, C

    2013-01-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast

  12. Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: development, validation and clinical applications.

    Science.gov (United States)

    Peladeau-Pigeon, M; Coolens, C

    2013-09-07

    Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast

  13. Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: development, validation and clinical applications

    Science.gov (United States)

    Peladeau-Pigeon, M.; Coolens, C.

    2013-09-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast

  14. Sporadic insulinomas on volume perfusion CT: dynamic enhancement patterns and timing of optimal tumour-parenchyma contrast

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang; Xue, Hua-dan; Liu, Wei; Wang, Xuan; Sun, Hao; Li, Ping; Jin, Zheng-yu [Peking Union Medical College Hospital, Department of Radiology, Beijing (China); Wu, Wen-ming; Zhao, Yu-pei [Peking Union Medical College Hospital, Department of General Surgery, Beijing (China)

    2017-08-15

    To assess enhancement patterns of sporadic insulinomas on volume perfusion CT (VPCT), and to identify timing of optimal tumour-parenchyma contrast. Consecutive patients who underwent VPCT for clinically suspected insulinomas were retrospectively identified. Patients with insulinomas confirmed by surgery were included, and patients with familial syndromes were excluded. Two radiologists evaluated VPCT images in consensus. Tumour-parenchyma contrast at each time point was measured, and timing of optimal contrast was determined. Time duration of hyperenhancement (tumour-parenchyma contrast >20 Hounsfield units, HU) was recorded. Perfusion parameters were evaluated. Three dynamic enhancement patterns were observed in 63 tumours: persistent hyperenhancement (hyperenhancement time window ≥10 s) in 39 (61.9%), transient hyperenhancement (hyperenhancement <10 s) in 19 (30.2%) and non-hyperenhancement in 5 (7.9%). Timing of optimal contrast was 9 s after abdominal aorta threshold (AAT) of 200 HU, with tumour-parenchyma contrast of 77.6 ± 57.2 HU. At 9 s after AAT, 14 (22.2%) tumours were non-hyperenhancing, nine of which had missed transient hyperenhancement. Insulinomas with transient and persistent hyperenhancement patterns had significantly increased perfusion. Insulinomas have variable enhancement patterns. Tumour-parenchyma contrast is time-dependent. Optimal timing of enhancement is 9 s after AAT. VPCT enables tumour detection even if the hyperenhancement is transient. (orig.)

  15. Interobserver Variation of the Bolus-and-Burst Method for Pancreatic Perfusion with Dynamic – Contrast-Enhanced Ultrasound

    Czech Academy of Sciences Publication Activity Database

    Stangeland, M.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Gilja, O.H.; Dimcevski, G.; Nylund, K.

    2017-01-01

    Roč. 3, č. 3 (2017), E99-E106 E-ISSN 2199-7152 Institutional support: RVO:68081731 Keywords : interobserver * dynamic contrast-enhanced ultrasound * perfusion * pancreas Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Medical engineering https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0043-110475

  16. Intramuscular Perfusion Response in Delayed Onset Muscle Soreness (DOMS): A Quantitative Analysis with Contrast-Enhanced Ultrasound (CEUS).

    Science.gov (United States)

    Kellermann, Marion; Heiss, Rafael; Swoboda, Bernd; Gelse, Kolja; Freiwald, Jürgen; Grim, Casper; Nagel, Armin; Uder, Michael; Wildner, Dane; Hotfiel, Thilo

    2017-10-01

    The purpose of this study was to analyse intramuscular perfusion response in ultrastructural muscle lesions, by applying contrast-enhanced ultrasound (CEUS) to a delayed onset muscle soreness (DOMS) model. Results of this analysis were compared to high-resolution 3 Tesla MRI T2-weighted sequences. 14 healthy participants were recruited. Average perfusion parameters, represented as Peak enhancement (contrast agent inflow) and wash-in area under curve (WiAUC) of the gastrocnemius (GM) and soleus muscle (SM) were assessed before (baseline) and 60 h after inducing DOMS by eccentric exercise. Additionally, conventional ultrasound, high-resolution 3T MRI, creatine kinase level, range of motion (ROM) of the ankle joint, calf circumference and muscle soreness data were collected. Perfusion quantification revealed a statistically significant increase of intramuscular perfusion, corresponding to an increase in peak enhancement of 129.6% (p=0.0031) and in WiAUC of 115.2% (p=0.0107) in the gastrocnemius muscle at post-intervention. At follow-up, the MRI investigations showed intramuscular oedema for GM in all participants corresponding to a significant rise in T2 signal intensity (p=0.001) and in T2 time value (p=0.005). CEUS seems to be able to detect intramuscular perfusion changes and therefore may contribute to gaining deeper insight into the histopathology, inflammatory reactions and regeneration processes of ultrastructural muscle lesions. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion

    International Nuclear Information System (INIS)

    Kao, Hung-Wen; Tsai, Fong Y.; Hasso, Anton N.

    2012-01-01

    To investigate the ability of susceptibility-weighted imaging (SWI) to predict stroke evolution in comparison with perfusion-weighted imaging (PWI). In a retrospective analysis of 15 patients with non-lacunar ischaemic stroke studied no later than 24 h after symptom onset, we used the Alberta Stroke Program Early CT Score (ASPECTS) to compare lesions on initial diffusion-weighted images (DWI), SWI, PWI and follow-up studies obtained at least 5 days after symptom onset. The National Institutes of Health Stroke Scale scores at entry and stroke risk factors were documented. The clinical-DWI, SWI-DWI and PWI-DWI mismatches were calculated. SWI-DWI and mean transit time (MTT)-DWI mismatches were significantly associated with higher incidence of infarct growth (P = 0.007 and 0.028) and had similar ability to predict stroke evolution (P = 1.0). ASPECTS values on initial DWI, SWI and PWI were significantly correlated with those on follow-up studies (P ≤ 0.026) but not associated with infarct growth. The SWI ASPECTS values were best correlated with MTT ones (ρ = 0.8, P < 0.001). SWI is an alternative to PWI to assess penumbra and predict stroke evolution. Further prospective studies are needed to evaluate the role of SWI in guiding thrombolytic therapy. (orig.)

  18. Quantification de la perfusion rénale par échographie de contraste, une étude pilote

    OpenAIRE

    Schneider, A.

    2013-01-01

    Mise en perspective Le rein est un organe vital dont la fonction dépend en grande partie d'une perfusion tissulaire adéquate. Les techniques actuellement utilisées pour étudier la microcirculation rénale sont soit invasives soit très dispendieuses. L'échographie de contraste est une nouvelle technologie, non invasive, facile à réaliser au lit du malade et pour laquelle certaines techniques récemment présentées semblent permettre de quantifier la perfusion d'un organe. Une telle technique p...

  19. Neural - levelset shape detection segmentation of brain tumors in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar

    2008-01-01

    A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)

  20. High resolution MR perfusion imaging of the kidneys at 3 tesla without administration of contrast media

    International Nuclear Information System (INIS)

    Boss, A.; Martirosian, P.; Graf, H.; Claussen, C.D.; Schlemmer, H.P.; Schick, F.

    2005-01-01

    Purpose: The feasibility of high-resolution arterial spin labeling (ASL) perfusion imaging of the kidneys was tested and proven at 3 Tesla using a flow-sensitive alternating inversion recovery (FAIR) true fast imaging in steady precession (TrueFISP) technique. Materials and methods: Kidney perfusion maps of six healthy volunteers and two patients were acquired using a clinical 3-Tesla whole-body scanner. An ASL sequence with FAIR spin preparation and a TrueFISP signal detection strategy was adapted for high-resolution perfusion imaging of the kidneys at 3 Tesla. To avoid banding artifacts in TrueFISP images, which are generally prominent at 3 Tesla, a frequency scout was implemented. Perfusion maps with an in-plane resolution of 1.5 mm were recorded in transverse and coronal orientation. For fast mapping of whole-kidney perfusion, an in-plane resolution of 2 mm was applied. Results: In all volunteers and patients, high-resolution perfusion images with excellent image quality were able to be obtained in a measuring time of approximately 10 minutes. The whole kidney was able to be mapped with good image quality in less than 10 minutes. For all slices, a suitable frequency offset made it possible to reproduce the kidneys without TrueFISP artifacts. Perfusion values of the renal cortex ranged from 250 ml/100 g/min up to 400 ml/100 g/min (mean cortical perfusion right kidney 316±43, left 336±40). (orig.)

  1. The correlation of contrast-enhanced ultrasound and MRI perfusion quantitative analysis in rabbit VX2 liver cancer.

    Science.gov (United States)

    Xiang, Zhiming; Liang, Qianwen; Liang, Changhong; Zhong, Guimian

    2014-12-01

    Our objective is to explore the value of liver cancer contrast-enhanced ultrasound (CEUS) and MRI perfusion quantitative analysis in liver cancer and the correlation between these two analysis methods. Rabbit VX2 liver cancer model was established in this study. CEUS was applied. Sono Vue was applied in rabbits by ear vein to dynamically observe and record the blood perfusion and changes in the process of VX2 liver cancer and surrounding tissue. MRI perfusion quantitative analysis was used to analyze the mean enhancement time and change law of maximal slope increasing, which were further compared with the pathological examination results. Quantitative indicators of liver cancer CEUS and MRI perfusion quantitative analysis were compared, and the correlation between them was analyzed by correlation analysis. Rabbit VX2 liver cancer model was successfully established. CEUS showed that time-intensity curve of rabbit VX2 liver cancer showed "fast in, fast out" model while MRI perfusion quantitative analysis showed that quantitative parameter MTE of tumor tissue increased and MSI decreased: the difference was statistically significant (P quantitative analysis were not significantly different (P > 0.05). However, the quantitative parameter of them were significantly positively correlated (P quantitative analysis can both dynamically monitor the liver cancer lesion and surrounding liver parenchyma, and the quantitative parameters of them are correlated. The combined application of both is of importance in early diagnosis of liver cancer.

  2. Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease

    International Nuclear Information System (INIS)

    Amarteifio, E.; Wormsbecher, S.; Krix, M.; Demirel, S.; Braun, S.; Delorme, S.; Böckler, D.; Kauczor, H.-U.; Weber, M.-A.

    2012-01-01

    Objective: To quantify muscular micro-perfusion and arterial perfusion reserve in peripheral arterial disease (PAD) with dynamic contrast-enhanced ultrasound (CEUS) and transient arterial occlusion. Materials and methods: This study had local institutional review board approval and written informed consent was obtained from all subjects. We examined the dominant lower leg of 40 PAD Fontaine stage IIb patients (mean age, 65 years) and 40 healthy volunteers (mean age, 54 years) with CEUS (7 MHz; MI, 0.28) during continuous intravenous infusion of 4.8 mL microbubbles. Transient arterial occlusion at mid-thigh level simulated physical exercise. With time–CEUS–intensity curves obtained from regions of interest within calf muscles, we derived the maximum CEUS signal after occlusion (max) and its time (t max ), slope to maximum (m), vascular response after occlusion (AUC post ), and analysed accuracy, receiver operating characteristic (ROC) curves, and correlations with ankle-brachial index (ABI) and walking distance. Results: All parameters differed in PAD and volunteers (p max was delayed (31.2 ± 13.6 vs. 16.7 ± 8.5 s, p post as optimal parameter combination for diagnosing PAD and therefore impaired arterial perfusion reserve. Conclusions: Dynamic CEUS with transient arterial occlusion quantifies muscular micro-perfusion and arterial perfusion reserve. The technique is accurate to diagnose PAD.

  3. Reproducibility of dynamic contrast-enhanced MRI and dynamic susceptibility contrast MRI in the study of brain gliomas: a comparison of data obtained using different commercial software.

    Science.gov (United States)

    Conte, Gian Marco; Castellano, Antonella; Altabella, Luisa; Iadanza, Antonella; Cadioli, Marcello; Falini, Andrea; Anzalone, Nicoletta

    2017-04-01

    Dynamic susceptibility contrast MRI (DSC) and dynamic contrast-enhanced MRI (DCE) are useful tools in the diagnosis and follow-up of brain gliomas; nevertheless, both techniques leave the open issue of data reproducibility. We evaluated the reproducibility of data obtained using two different commercial software for perfusion maps calculation and analysis, as one of the potential sources of variability can be the software itself. DSC and DCE analyses from 20 patients with gliomas were tested for both the intrasoftware (as intraobserver and interobserver reproducibility) and the intersoftware reproducibility, as well as the impact of different postprocessing choices [vascular input function (VIF) selection and deconvolution algorithms] on the quantification of perfusion biomarkers plasma volume (Vp), volume transfer constant (K trans ) and rCBV. Data reproducibility was evaluated with the intraclass correlation coefficient (ICC) and Bland-Altman analysis. For all the biomarkers, the intra- and interobserver reproducibility resulted in almost perfect agreement in each software, whereas for the intersoftware reproducibility the value ranged from 0.311 to 0.577, suggesting fair to moderate agreement; Bland-Altman analysis showed high dispersion of data, thus confirming these findings. Comparisons of different VIF estimation methods for DCE biomarkers resulted in ICC of 0.636 for K trans and 0.662 for Vp; comparison of two deconvolution algorithms in DSC resulted in an ICC of 0.999. The use of single software ensures very good intraobserver and interobservers reproducibility. Caution should be taken when comparing data obtained using different software or different postprocessing within the same software, as reproducibility is not guaranteed anymore.

  4. Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage.

    Science.gov (United States)

    Eichner, Cornelius; Jafari-Khouzani, Kourosh; Cauley, Stephen; Bhat, Himanshu; Polaskova, Pavlina; Andronesi, Ovidiu C; Rapalino, Otto; Turner, Robert; Wald, Lawrence L; Stufflebeam, Steven; Setsompop, Kawin

    2014-09-01

    To improve slice coverage of gradient echo spin echo (GESE) sequences for dynamic susceptibility contrast (DSC) MRI using a simultaneous-multiple-slice (SMS) method. Data were acquired on 3 Tesla (T) MR scanners with a 32-channel head coil. To evaluate use of SMS for DSC, an SMS GESE sequence with two-fold slice coverage and same temporal sampling was compared with a standard GESE sequence, both with 2× in-plane acceleration. A signal to noise ratio (SNR) comparison was performed on one healthy subject. Additionally, data with Gadolinium injection were collected on three patients with glioblastoma using both sequences, and perfusion analysis was performed on healthy tissues as well as on tumor. Retained SNR of SMS DSC is 90% for a gradient echo (GE) and 99% for a spin echo (SE) acquisition, compared with a standard acquisition without slice acceleration. Comparing cerebral blood volume maps, it was observed that the results of standard and SMS acquisitions are comparable for both GE and SE images. Two-fold slice accelerated DSC MRI achieves similar SNR and perfusion metrics as a standard acquisition, while allowing a significant increase in slice coverage of the brain. The results also point to a possibility to improve temporal sampling rate, while retaining the same slice coverage. Copyright © 2013 Wiley Periodicals, Inc.

  5. Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease

    Energy Technology Data Exchange (ETDEWEB)

    Amarteifio, E., E-mail: erick.amarteifio@med.uni-heidelberg.de [University Hospital of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Wormsbecher, S. [University Hospital of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Krix, M. [University Hospital of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Bracco Imaging Germany, Konstanz (Germany); Demirel, S. [University Hospital of Heidelberg, Department of Vascular Surgery, Heidelberg (Germany); Braun, S. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Delorme, S. [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Boeckler, D. [University Hospital of Heidelberg, Department of Vascular Surgery, Heidelberg (Germany); Kauczor, H.-U. [University Hospital of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Weber, M.-A. [University Hospital of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Department of Radiology, German Cancer Research Center, Heidelberg (Germany)

    2012-11-15

    Objective: To quantify muscular micro-perfusion and arterial perfusion reserve in peripheral arterial disease (PAD) with dynamic contrast-enhanced ultrasound (CEUS) and transient arterial occlusion. Materials and methods: This study had local institutional review board approval and written informed consent was obtained from all subjects. We examined the dominant lower leg of 40 PAD Fontaine stage IIb patients (mean age, 65 years) and 40 healthy volunteers (mean age, 54 years) with CEUS (7 MHz; MI, 0.28) during continuous intravenous infusion of 4.8 mL microbubbles. Transient arterial occlusion at mid-thigh level simulated physical exercise. With time-CEUS-intensity curves obtained from regions of interest within calf muscles, we derived the maximum CEUS signal after occlusion (max) and its time (t{sub max}), slope to maximum (m), vascular response after occlusion (AUC{sub post}), and analysed accuracy, receiver operating characteristic (ROC) curves, and correlations with ankle-brachial index (ABI) and walking distance. Results: All parameters differed in PAD and volunteers (p < 0.014). In PAD, t{sub max} was delayed (31.2 {+-} 13.6 vs. 16.7 {+-} 8.5 s, p < 0.0001) and negatively correlated with ankle-brachial-index (r = -0.65). m was decreased in PAD (4.3 {+-} 4.6 mL/s vs. 13.1 {+-} 8.4 mL/s, p < 0.0001) and had highest diagnostic accuracy (sensitivity/specificity, 75%/93%) for detection of diminished muscular micro-perfusion in PAD (cut-off value, m < 5{approx}mL/s). Discriminant analysis and ROC curves revealed m, and AUC{sub post} as optimal parameter combination for diagnosing PAD and therefore impaired arterial perfusion reserve. Conclusions: Dynamic CEUS with transient arterial occlusion quantifies muscular micro-perfusion and arterial perfusion reserve. The technique is accurate to diagnose PAD.

  6. Assessment of the effects of different sample perfusion procedures on phase-contrast tomographic images of mouse spinal cord

    Science.gov (United States)

    Stefanutti, E.; Sierra, A.; Miocchi, P.; Massimi, L.; Brun, F.; Maugeri, L.; Bukreeva, I.; Nurmi, A.; Begani Provinciali, G.; Tromba, G.; Gröhn, O.; Giove, F.; Cedola, A.; Fratini, M.

    2018-03-01

    Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCμT) is a powerful tool in the investigation of biological tissues, including the central nervous system (CNS), and it allows to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive sample preparations. However, specific sample preparation procedures aimed to optimize the achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here we report and discuss the effects of perfusion with two different fixative agents (ethanol and paraformaldehyde) and with a widely used contrast medium (MICROFIL®) on mouse spinal cord. As a main result, we found that ethanol enhances contrast at the grey/white matter interface and increases the contrast in correspondence of vascular features and fibres, thus providing an adequate spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either perfused paraformaldehyde or MICROFIL® compound, as these latter media do not affect tissues with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast agent, like MICROFIL®, but it is less invasive than ethanol and permits to visualise well both cells and blood vessels. However, a quantitative estimation of the relative grey matter volume of each sample has led us to conclude that no significant alterations in the grey matter extension compared to the white matter occur as a consequence of the perfusion procedures tested in this study.

  7. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    Science.gov (United States)

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  8. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    Energy Technology Data Exchange (ETDEWEB)

    Slapa, Rafal Z., E-mail: rz.slapa@gmail.com [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Kasperlik–Zaluska, Anna A. [Endocrinology Department, Center for Postgraduate Medical Education, Bielanski Hospital, Warsaw (Poland); Migda, Bartosz [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Otto, Maciej [Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, First Faculty of Medicine, Warsaw (Poland); Jakubowski, Wiesław S. [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland)

    2015-08-15

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients.

  9. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    International Nuclear Information System (INIS)

    Slapa, Rafal Z.; Kasperlik–Zaluska, Anna A.; Migda, Bartosz; Otto, Maciej; Jakubowski, Wiesław S.

    2015-01-01

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients

  10. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Jiji Ronny S

    2013-01-01

    Full Text Available Abstract Background The purpose was to determine the reproducibility and utility of rest, exercise, and perfusion reserve (PR measures by contrast-enhanced (CE calf perfusion magnetic resonance imaging (MRI of the calf in normal subjects (NL and patients with peripheral arterial disease (PAD. Methods Eleven PAD patients with claudication (ankle-brachial index 0.67 ±0.14 and 16 age-matched NL underwent symptom-limited CE-MRI using a pedal ergometer. Tissue perfusion and arterial input were measured at rest and peak exercise after injection of 0.1 mM/kg of gadolinium-diethylnetriamine pentaacetic acid (Gd-DTPA. Tissue function (TF and arterial input function (AIF measurements were made from the slope of time-intensity curves in muscle and artery, respectively, and normalized to proton density signal to correct for coil inhomogeneity. Perfusion index (PI = TF/AIF. Perfusion reserve (PR = exercise TF/ rest TF. Intraclass correlation coefficient (ICC was calculated from 11 NL and 10 PAD with repeated MRI on a different day. Results Resting TF was low in NL and PAD (mean ± SD 0.25 ± 0.18 vs 0.35 ± 0.71, p = 0.59 but reproducible (ICC 0.76. Exercise TF was higher in NL than PAD (5.5 ± 3.2 vs. 3.4 ± 1.6, p = 0.04. Perfusion reserve was similar between groups and highly variable (28.6 ± 19.8 vs. 42.6 ± 41.0, p = 0.26. Exercise TF and PI were reproducible measures (ICC 0.63 and 0.60, respectively. Conclusion Although rest measures are reproducible, they are quite low, do not distinguish NL from PAD, and lead to variability in perfusion reserve measures. Exercise TF and PI are the most reproducible MRI perfusion measures in PAD for use in clinical trials.

  11. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    Directory of Open Access Journals (Sweden)

    Stefan Hindel

    Full Text Available The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles

  12. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.

    Science.gov (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard

    2005-03-01

    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  13. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion.

    Science.gov (United States)

    Gordon, Yaron; Partovi, Sasan; Müller-Eschner, Matthias; Amarteifio, Erick; Bäuerle, Tobias; Weber, Marc-André; Kauczor, Hans-Ulrich; Rengier, Fabian

    2014-04-01

    The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues' temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990's. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and vascular systems of the extremities.

  14. Evaluation of pharmacokinetic models for perfusion imaging with dynamic contrast-enhanced magnetic resonance imaging in porcine skeletal muscle using low-molecular-weight contrast agents.

    Science.gov (United States)

    Hindel, Stefan; Papanastasiou, Giorgos; Wust, Peter; Maaß, Marc; Söhner, Anika; Lüdemann, Lutz

    2018-06-01

    Pharmacokinetic models for perfusion quantification with a low-molecular-weight contrast agent (LMCA) in skeletal muscle using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were evaluated. Tissue perfusion was measured in seven regions of interest (ROIs) placed in the total hind leg supplied by the femoral artery in seven female pigs. DCE-MRI was performed using a 3D gradient echo sequence with k-space sharing. The sequence was acquired twice, first after LMCA and then after blood pool contrast agent injection. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery, resulting in up to four times increased blood flow. The results obtained with several LMCA models were compared with those of a two-compartment blood pool model (2CBPM) consisting of a capillary and an arteriolar compartment. Measurements performed with a Doppler flow probe placed at the femoral artery served as ground truth. The two-compartment exchange model extended by an arteriolar compartment (E2CXM) showed the highest fit quality of all LMCA models and the most significant correlation with the Doppler measurements, r = 0.78 (P Reson Med 79:3154-3162, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia.

    Science.gov (United States)

    Nardini, Giordano; Di Girolamo, Nicola; Leopardi, Stefania; Paganelli, Irene; Zaghini, Anna; Origgi, Francesco C; Vignoli, Massimo

    2014-05-13

    Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions.

  16. Clearing of psoriasis documented by laser Doppler perfusion imaging contrasts remaining elevation of dermal expression levels of CD31

    NARCIS (Netherlands)

    Hendriks, A.G.M.; Kerkhof, P.C.M. van de; Jonge, C.S. de; Lucas, M.; Steenbergen, W.; Seyger, M.M.B.

    2015-01-01

    BACKGROUND: Vascular modifications represent a key feature in psoriatic plaques. Previous research with Laser Doppler Perfusion Imaging (LDPI) revealed a remarkable heterogeneity in the cutaneous perfusion within homogenous-appearing psoriatic lesions. Insights in the relation between perfusion

  17. Dynamic Contrast-Enhanced Perfusion MRI of High Grade Brain Gliomas Obtained with Arterial or Venous Waveform Input Function.

    Science.gov (United States)

    Filice, Silvano; Crisi, Girolamo

    2016-01-01

    The aim of this study was to evaluate the differences in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) perfusion estimates of high-grade brain gliomas (HGG) due to the use of an input function (IF) obtained respectively from arterial (AIF) and venous (VIF) approaches by two different commercially available software applications. This prospective study includes 20 patients with pathologically confirmed diagnosis of high-grade gliomas. The data source was processed by using two DCE dedicated commercial packages, both based on the extended Toft model, but the first customized to obtain input function from arterial measurement and the second from sagittal sinus sampling. The quantitative parametric perfusion maps estimated from the two software packages were compared by means of a region of interest (ROI) analysis. The resulting input functions from venous and arterial data were also compared. No significant difference has been found between the perfusion parameters obtained with the two different software packages (P-value < .05). The comparison of the VIFs and AIFs obtained by the two packages showed no statistical differences. Direct comparison of DCE-MRI measurements with IF generated by means of arterial or venous waveform led to no statistical difference in quantitative metrics for evaluating HGG. However, additional research involving DCE-MRI acquisition protocols and post-processing would be beneficial to further substantiate the effectiveness of venous approach as the IF method compared with arterial-based IF measurement. Copyright © 2015 by the American Society of Neuroimaging.

  18. Diagnostic value of amplitude-phase analysis in myocardial infarct. Comparison with thallium perfusion scintigraphy and contrast ventrilography

    International Nuclear Information System (INIS)

    Garcheva, M.; Trindev, P.; Shejretova, E.; Stoyanova, N.; Kaloyanova, P.; Khadzhikostova, Kh.

    1990-01-01

    The evaluation is based on the results of investigation of 34 patients who have had myocardial infarct without rhythm disturbances. Compared to contrast ventrilography, the amplitude-phase analysis (APA) of 'rest' radionuclide ventrilography show 80% sensitivity and 100% specificity, as well as high accuracy in determination of the type and localization of the kinetic disturbances. The comparison with the thallium perfusion scintigraphy demonstrates the possibility of APA to vizualize abnormal kinetic area of the myocardial wall and shows its independent significance in the cases of doubtful findings. APA is a powerful tool for unambigious differentiating of hypokinetic from akinetic and diskinetic areas. 1 tab., 1 fig., 4 refs

  19. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis

    DEFF Research Database (Denmark)

    Larsen, Anne Vibeke Andrée; Simonsen, Helle J; Law, Ian

    2013-01-01

    INTRODUCTION: To investigate if perfusion measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to differentiate radiation necrosis from tumor recurrence in patients with high-grade glioma. METHODS: The study was approved by the institutional review board......-PET and DCE-MRI agreed in classification of tumor status in 13 out of the 16 cases where an FDG-PET classification was obtained. In two of the remaining three patients, MRI follow-up and histology was available and both indicated that the DCE-MRI answer was correct. CONCLUSION: CBV measurements using DCE...

  20. Contrast-enhanced, real-time volumetric ultrasound imaging of tissue perfusion: preliminary results in a rabbit model of testicular torsion

    Science.gov (United States)

    Paltiel, H. J.; Padua, H. M.; Gargollo, P. C.; Cannon, G. M., Jr.; Alomari, A. I.; Yu, R.; Clement, G. T.

    2011-04-01

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the clinical investigation of a wide variety of perfusion disorders. Quantitative analysis of perfusion is not widely performed, and is limited by the fact that data are acquired from a single tissue plane, a situation that is unlikely to accurately reflect global perfusion. Real-time perfusion information from a tissue volume in an experimental rabbit model of testicular torsion was obtained with a two-dimensional matrix phased array US transducer. Contrast-enhanced imaging was performed in 20 rabbits during intravenous infusion of the microbubble contrast agent Definity® before and after unilateral testicular torsion and contralateral orchiopexy. The degree of torsion was 0° in 4 (sham surgery), 180° in 4, 360° in 4, 540° in 4, and 720° in 4. An automated technique was developed to analyze the time history of US image intensity in experimental and control testes. Comparison of mean US intensity rate of change and of ratios between mean US intensity rate of change in experimental and control testes demonstrated good correlation with testicular perfusion and mean perfusion ratios obtained with radiolabeled microspheres, an accepted 'gold standard'. This method is of potential utility in the clinical evaluation of testicular and other organ perfusion.

  1. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    Science.gov (United States)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  2. Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients

    Energy Technology Data Exchange (ETDEWEB)

    Ulyte, Agne [Vilnius University, Faculty of Medicine, Vilnius (Lithuania); Katsaros, Vasileios K. [General Anticancer and Oncological Hospital ' ' St. Savvas' ' , Department of Advanced Imaging Modalities - CT and MRI, Athens (Greece); University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); Liouta, Evangelia; Stranjalis, Georgios [University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); Boskos, Christos [University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); General Anticancer and Oncological Hospital ' ' St. Savvas' ' , Department of Radiation Oncology, Athens (Greece); Papanikolaou, Nickolas [Champalimaud Foundation, Department of Radiology, Centre for the Unknown, Lisbon (Portugal); Usinskiene, Jurgita [National Cancer Institute, Vilnius (Lithuania); Affidea Lietuva, Vilnius (Lithuania); Bisdas, Sotirios [University College London Hospitals, Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2016-12-15

    The prognostic value of the dynamic contrast-enhanced (DCE) MRI perfusion and its histogram analysis-derived metrics is not well established for high-grade glioma (HGG) patients. The aim of this prospective study was to investigate DCE perfusion transfer coefficient (K{sup trans}), vascular plasma volume fraction (v{sub p}), extracellular volume fraction (v{sub e}), reverse transfer constant (k{sub ep}), and initial area under gadolinium concentration time curve (IAUGC) as predictors of progression-free (PFS) and overall survival (OS) in HGG patients. Sixty-nine patients with suspected anaplastic astrocytoma or glioblastoma underwent preoperative DCE-MRI scans. DCE perfusion whole tumor region histogram parameters, clinical details, and PFS and OS data were obtained. Univariate, multivariate, and Kaplan-Meier survival analyses were conducted. Receiver operating characteristic (ROC) curve analysis was employed to identify perfusion parameters with the best differentiation performance. On univariate analysis, v{sub e} and skewness of v{sub p} had significant negative impacts, while k{sub ep} had significant positive impact on OS (P < 0.05). v{sub e} was also a negative predictor of PFS (P < 0.05). Patients with lower v{sub e} and IAUGC had longer median PFS and OS on Kaplan-Meier analysis (P < 0.05). K{sup trans} and v{sub e} could also differentiate grade III from IV gliomas (area under the curve 0.819 and 0.791, respectively). High v{sub e} is a consistent predictor of worse PFS and OS in HGG glioma patients. v{sub p} skewness and k{sub ep} are also predictive for OS. K{sup trans} and v{sub e} demonstrated the best diagnostic performance for differentiating grade III from IV gliomas. (orig.)

  3. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  4. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...

  5. Contrast-enhanced ultrasound with SonoVue could accurately assess the renal microvascular perfusion in diabetic kidney damage.

    Science.gov (United States)

    Ma, Fang; Cang, Yanqin; Zhao, Baozhen; Liu, Yuanyuan; Wang, Chaoqing; Liu, Bo; Wu, Tianfu; Song, Yaxiang; Peng, Ai

    2012-07-01

    The aim of this study was to investigate the clinical significance of real-time gray-scale contrast-enhanced ultrasound (CEUS) through evaluating renal microvascular perfusion in diabetic kidney damage. Diabetic patients (aged: 62.5±7.2, n=33) were divided into Group A with chronic kidney disease (CKD) Stages I and II (n=19) and Group B (n=14) with CKD Stages IV and V. Twenty-one healthy adults were selected as control group. The real-time and dynamic imaging from renal cortex was performed using contrast-enhanced ultrasound with SonoVue. The outage time-intensity curves (TICs) with >85% goodness-of-fit index were chosen for the analysis of basic intensity, intensity increment (A1), arriving time (AT), time to peak (TTP), mean transit time, peak intensity (PI) and total area under the curve (AUC). (i) After intravenous injection of a contrast agent, the renal artery, cortex, pyramid and renal vein were clearly displayed in sequence. (ii) TIC of renal cortical Perfusion in all groups showed an asymmetrical single-peak curve, which has an obvious ascending slope, peak and descending slope. The ascending slope was steep, whereas the descending slope was flat. However, the ascending slope in Group A and B was flatter than that in the control group. (iii) Compared to the control group, AT and TTP were all markedly prolonged but A1 and PI were significantly decreased in Group A and B (P<0.05). In Group A, the AUC had a trend of increase; however, the area under the ascending slope (AUC1), area under the descending slope (AUC2) and AUC were all decreased in Group B (P<0.05). (iv) AUC positively correlated with glomerular filtration rate (GFR) (r=0.472, P=0.01), but TTP did not correlate well with GFR (r=0.262, P=0.177). CEUS could accurately assess renal microvascular perfusion in a real-time and dynamic manner. PI, TTP and AUC could be used for the diagnosis of the renal microvascular damage in early and late stage diabetic patients. CEUS is a safe, noninvasive and

  6. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.

    Directory of Open Access Journals (Sweden)

    James R Guest

    Full Text Available BACKGROUND: Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. METHODOLOGY/PRINCIPAL FINDINGS: Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; p<0.001. Bleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died. CONCLUSIONS/SIGNIFICANCE: The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.

  7. Assessment of Semiquantitative Parameters of Dynamic Contrast-Enhanced Perfusion MR Imaging in Differentiation of Subtypes of Renal Cell Carcinoma

    International Nuclear Information System (INIS)

    Abdel Razek, Ahmed Abdel Khalek; Mousa, Amani; Farouk, Ahmed; Nabil, Nancy

    2016-01-01

    To assess semiquantitative parameters of dynamic contrast-enhanced perfusion MR imaging (DCE) in differentiation of subtypes of renal cell carcinoma (RCC). Prospective study conducted upon 34 patients (27 M, 7 F, aged 25–72 ys: mean 45 ys) with RCC. Abdominal dynamic contrast-enhanced gradient-recalled echo MR sequence after administration of gadopentetate dimeglumine was obtained. The time signal intensity curve (TIC) of the lesion was created with calculation of enhancement ratio (ER), and washout ratio (WR). The subtypes of RCC were as follows: clear cell carcinomas (n=23), papillary carcinomas (n=6), and chromophobe carcinomas (n=5). The mean ER of clear cell, papillary and chromophobe RCC were 188±49.7, 35±8.9, and 120±41.6 respectively. The mean WR of clear cell, papillary and chromophobe RCCs were 28.6±6.8, 47.6±5.7 and 42.7±10, respectively. There was a significant difference in ER (P=0.001) and WR (P=0.001) between clear cell RCC and other subtypes of RCC. The threshold values of ER and WR used for differentiating clear cell RCC from other subtypes of RCC were 142 and 38 with areas under the curve of 0.937 and 0.895, respectively. We concluded that ER and WR are semiquantitative perfusion parameters useful in differentiation of clear cell RCC from chromophobe and papillary RCCs

  8. [Application on the quantitative perfusion parameters of dynamic contrast-enhanced MRI in the pathological subtype of uterine leiomyoma].

    Science.gov (United States)

    Zheng, J; Zhao, Z H; Yang, J F; Zhao, L; Yang, L M; Hu, H J

    2017-04-18

    Objective: To analyze the value of the quantitative perfusion parameters of dynamic contrast-enhanced MRI(DCE-MRI) in the pathological subtype of uterine leiomyoma. Methods: A total of 35 cases of uterine leiomyoma confirmed by surgery and pathology were retrospectively analyzed in Shaoxing People's Hospital from October 2015 to May 2016.All cases underwent DCE-MRI. Quantitative perfusion parameters were prospectively measured and analyzed, including transfer constant (K(trans)) , efflux rate constant (K(ep)), extravascular extracellular space volume ratio (V(e)), blood plasma volume ratio (V(p)), permeability surface area product (PS) and plasma flow (F(p)) , using signal-input two-compartment tracer kinetic models (Extended Tofts model and Exchange model) in 35 leiomyoma cases.After the operation, the 35 cases were divided into three groups according to the pathological classfication , the ordinary, the cellular and the degeneration type.To analyze the differences among the three groups about the quantitative perfusion parameters of uterine leiomyoma. Compared with the gold standard of pathological findings, the ROC curves were drawn to evaluate the diagnostic efficacy of different quantitative perfusion parameters. Results: In the ordinary, cellular and degeneration type of uterine leiomyoma, K(trans) value were respectively(0.684±0.341), (1.897±0.458), (0.554±0.514)/min; K(ep) were respectively(1.004±0.685), (2.362±1.001), (1.274±1.093)/min; V(e) were respectively 0.789%±0.186%, 0.806%±0.203%, 0.537%±0.314%; V(p) were respectively 0.145%±0.196%, 0.502%±0.338%, 0.062%±0.106% and F(p) were respectively(0.792±0.461), (2.426±0.509), (0.628±0.551)ml/min.Among three groups, the value of K(trans), K(ep), V(e), V(p) and F(p) had statistical difference(all P difference. The value of K(trans), K(ep), V(p) and F(p) in cellular type were higher than the ordinary type(all P quantitative perfusion parameters of DCE-MRI , especially the value of K(trans), K

  9. Evaluation of blood perfusion in liver cirrhosis by dynamic contrast enhanced computed tomography

    DEFF Research Database (Denmark)

    Andersen, Mette L.; Fallentin, Eva; Lauridsen, Carsten Ammitzbøl

    2017-01-01

    -CT), in patients with varying degrees of cirrhosis categorised by Child Pugh score (CP). We compared the perfusion values and the hepatic perfusion index (HPI) ((AP/AP+PP) x 100) in between the three respective CP groups, to evaluate if AP, PP and HPI correlated with the CP level and hepatic venous pressure...... patients, and C in six patients. The mean values of AP were significantly increased in patients with CP C vs. A+B, (70,4 ml/ vs. 43.1) ml/min/100ml tissue (p=0.0003). Patients with Child Pugh A tended to have higher PP values, 117,7 and Child B+C 105.3 ml/min/100ml tissue, respectively (p=0,44). The HPI...... increased significant with the degree of cirrhosis (mean A 29.6/B 30,96/C 44.9 ml/min/100ml tissue ANOVA p=0,046). Testing for linear regression with PP and HVPG values, the r-values raised with CP score (CP A r=0,137 p=0,049, CP B r=0,314 p=0,215 and CP C r=0,427 p=0,12). We found no correlation between...

  10. The delay of contrast arrival in magnetic resonance first-pass perfusion imaging: a novel non-invasive parameter detecting collateral-dependent myocardium.

    Science.gov (United States)

    Muehling, O M; Huber, A; Cyran, C; Schoenberg, S O; Reiser, M; Steinbeck, G; Nabauer, M; Jerosch-Herold, M

    2007-07-01

    To establish the regional delay of contrast arrival in magnetic resonance perfusion imaging (MRPI) for the detection of collateral-dependent myocardium in patients with coronary artery disease. Observational study, case series; single centre, university hospital. 30 patients with coronary artery disease and collateral-dependent myocardium and 17 healthy volunteers. Resting and hyperaemic (adenosine) MRPI was used to determine the delay time (Deltat(d)) of contrast arrival between the left ventricle and collateral-dependent or antegradely perfused myocardium, and myocardial perfusion (MP, ml/min/g). In healthy volunteers, mean (SD) Deltat(d) at rest and during hyperaemia were 0.8 (0.4) and 0.3 (0.3) s, and MP was 1.14 (0.21) and 4.23 (1.12) ml/min/g. In patients Deltat(d) in antegradely perfused vs collateral-dependent myocardium was 0.9 (0.7) vs 1.7 (1.0) s at rest (p0.6 s (area under the curve (AUC) = 0.89) to detect collateral-dependent myocardium, while resting Deltat(d) (AUC = 0.77) and perfusion (AUC = 0.69 at rest or 0.70 during hyperaemia) were less accurate. MRPI-derived hyperaemic delay of contrast arrival detects collateral-dependent myocardium with high sensitivity and specificity. Perfusion was less sensitive, emphasising the clinical role of Deltat(d) in non-invasive detection of collateral-dependent myocardium.

  11. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Cao, Dairong [First Affiliated Hospital of Fujian Medical University, Department of Radiology, Fuzhou, Fujian (China); Wang, Xingfu [First Affiliated Hospital of Fujian Medical University, Department of Pathology, Fuzhou (China)

    2017-06-15

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice. (orig.)

  12. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI.

    Science.gov (United States)

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Wang, Xingfu; Cao, Dairong

    2017-06-01

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice.

  13. Non-ischemic perfusion defects due to delayed arrival of contrast material on stress perfusion cardiac magnetic resonance imaging after coronary artery bypass graft surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeo Koon; Park, Eun Ah; Park, Sang Joon; Cheon, Gi Jeong; Lee, Whal; Chung, Jin Wook; Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-04-15

    Herein we report about the adenosine stress perfusion MR imaging findings of a 50-year-old man who exhibited two different perfusion defects resulting from two different mechanisms after a coronary artery bypass surgery. An invasive coronary angiography confirmed that one perfusion defect at the mid-anterior wall resulted from an ischemia due to graft stenosis. However, no stenosis was detected on the graft responsible for the mid-inferior wall showing the other perfusion defect. It was assumed that the perfusion defect at the mid-inferior wall resulted from delayed perfusion owing to the long pathway of the bypass graft. The semiquantitative analysis of corrected signal-time curves supported our speculation, demonstrating that the rest-to-stress ratio index of the maximal slope of the myocardial territory in question was similar to those of normal myocardium, whereas that of myocardium with the stenotic graft showed a typical ischemic pattern. A delayed perfusion during long graft pathway in a post-bypass graft patient can mimick a true perfusion defect on myocardial stress MR imaging. Radiologists should be aware of this knowledge to avoid misinterpretation of graft and myocardial status in post bypass surgery patients.

  14. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhong Zheng, E-mail: jzz2397@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Shi, Wei, E-mail: sw740104@hotmail.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shi, Jin Long, E-mail: shij_ns@163.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shen, Dan Dan, E-mail: 1021121084@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Gu, Hong Mei, E-mail: guhongmei71@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Zhou, Xue Jun, E-mail: 56516400@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China)

    2017-02-15

    Purpose: Perfusion computed tomography (PCT) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide independent measurements of biomarkers related to tumor perfusion. The aim of this study was to compare the two techniques in assessing glioblastoma microvasculature. Materials and methods: Twenty-five patients diagnosed with glioblastoma (14 males and 11 females; 51 ± 11 years old, ranging from 33 to 70 years) were includede in this prospective study. All patients underwent both PCT and DCE-MRI. Imaging was performed on a 256-slice CT scanner and a 3-T MRI system. PCT yielded permeability surface-area product (PS) using deconvolution physiological models; meanwhile, DCE-MRI determined volume transfer constant (K{sup trans}) using the Tofts-Kermode compartment model. All cases were submitted to surgical intervention, and CD105-microvascular density (CD105-MVD) was measured in each glioblastoma specimen. Then, Spearman’s correlation coefficients and Bland-Altman plots were obtained for PS, K{sup trans} and CD105-MVD. P < 0.05 was considered statistically significant. Results: Tumor PS and K{sup trans} values were correlated with CD105-MVD (r = 0.644, P < 0.001; r = 0.683, P < 0.001). In addition, PS was correlated with K{sup trans} in glioblastoma (r = 0.931, P < 0.001). Finally, Bland-Altman plots showed no significant differences between PS and K{sup trans} (P = 0.063). Conclusion: PCT and DCE-MRI measurements of glioblastoma perfusion biomarkers have similar results, suggesting that both techniques may have comparable utility. Therefore, PCT may serve as an alternative modality to DCE-MRI for the in vivo evaluation of glioblastoma microvasculature.

  15. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Francisco Jose [Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Universidad de Zaragoza, 50018 Zaragoza (Spain) and Instituto de Nanociencia de Aragon, Universidad de Zaragoza, 50009 Zaragoza (Spain)]. E-mail: osoro@unizar.es; Gutierrez, Lucia [Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Universidad de Zaragoza, 50018 Zaragoza (Spain); Rosa Abadia, Ana [Dept. Farmacologia y Fisiologia, Universidad de Zaragoza, 50013 Zaragoza (Spain); Soledad Romero, Maria [Dept. Medicina y Psiquiatria, Universidad de Zaragoza, 50009 Zaragoza (Spain); Lopez, Antonio [CNAM - Zaragoza, 50009 Zaragoza (Spain); Jesus Munoz, Maria [Dept. Farmacologia y Fisiologia, Universidad de Zaragoza, 50013 Zaragoza (Spain)

    2007-04-15

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem{sup (R)}), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers.

  16. Multimodality functional imaging of spontaneous canine tumors using 64CU-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT

    DEFF Research Database (Denmark)

    Hansen, Anders E; Kristensen, Annemarie T; Law, Ian

    2012-01-01

    To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated.......To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated....

  17. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas-Initial study.

    Science.gov (United States)

    Slapa, Rafal Z; Kasperlik-Zaluska, Anna A; Migda, Bartosz; Otto, Maciej; Jakubowski, Wiesław S

    2015-08-01

    To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Christian; Ley, Sebastian; Puderbach, Michael; Plathow, Christian; Kauczor, Hans-Ulrich [Department of Radiology, Innovative Cancer Diagnostic and Therapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg (Germany); Bock, Michael [Department of Medical Physics in Radiology, Innovative Cancer Diagnostic and Therapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg (Germany)

    2004-07-01

    The purpose of this study was to assess the feasibility of contrast-enhanced 3D perfusion MRI and MR angiography (MRA) of pulmonary embolism (PE) in pigs using a single injection of the blood pool contrast Gadomer. PE was induced in five domestic pigs by injection of autologous blood thrombi. Contrast-enhanced first-pass 3D perfusion MRI (TE/TR/FA: 1.0 ms/2.2 ms/40 ; voxel size: 1.3 x 2.5 x 4.0 mm{sup 3}; TA: 1.8 s per data set) and high-resolution 3D MRA (TE/TR/FA: 1.4 ms/3.4 ms/40 ; voxel size: 0.8 x 1.0 x 1.6 mm{sup 3}) was performed during and after a single injection of 0.1 mmol/kg body weight of Gadomer. Image data were compared to pre-embolism Gd-DTPA-enhanced MRI and post-embolism thin-section multislice CT (n=2). SNR measurements were performed in the pulmonary arteries and lung. One animal died after induction of PE. In all other animals, perfusion MRI and MRA could be acquired after a single injection of Gadomer. At perfusion MRI, PE could be detected by typical wedge-shaped perfusion defects. While the visualization of central PE at MRA correlated well with the CT, peripheral PE were only visualized by CT. Gadomer achieved a higher peak SNR of the lungs compared to Gd-DTPA (21{+-}8 vs. 13{+-}3). Contrast-enhanced 3D perfusion MRI and MRA of PE can be combined using a single injection of the blood pool contrast agent Gadomer. (orig.)

  19. Assessment of quantitative perfusion parameters by dynamic contrast-enhanced sonography using a deconvolution method: an in vitro and in vivo study.

    Science.gov (United States)

    Gauthier, Marianne; Tabarout, Farid; Leguerney, Ingrid; Polrot, Mélanie; Pitre, Stéphanie; Peronneau, Pierre; Lassau, Nathalie

    2012-04-01

    The purpose of this study was to investigate the impact of the arterial input on perfusion parameters measured using dynamic contrast-enhanced sonography combined with a deconvolution method after bolus injections of a contrast agent. The in vitro experiments were conducted using a custom-made setup consisting of pumping a fluid through a phantom made of 3 intertwined silicone pipes, mimicking a complex structure akin to that of vessels in a tumor, combined with their feeding pipe, mimicking the arterial input. In the in vivo experiments, B16F10 melanoma cells were xenografted to 5 nude mice. An ultrasound scanner combined with a linear transducer was used to perform pulse inversion imaging based on linear raw data throughout the experiments. A mathematical model developed by the Gustave Roussy Institute (patent WO/2008/053268) and based on the dye dilution theory was used to evaluate 7 semiquantitative perfusion parameters directly from time-intensity curves and 3 quantitative perfusion parameters from the residue function obtained after a deconvolution process developed in our laboratory based on the Tikhonov regularization method. We evaluated and compared the intraoperator variability values of perfusion parameters determined after these two signal-processing methods. In vitro, semiquantitative perfusion parameters exhibited intraoperator variability values ranging from 3.39% to 13.60%. Quantitative parameters derived after the deconvolution process ranged from 4.46% to 11.82%. In vivo, tumors exhibited perfusion parameter intraoperator variability values ranging from 3.74% to 29.34%, whereas quantitative ones varied from 5.00% to 12.43%. Taking into account the arterial input in evaluating perfusion parameters improves the intraoperator variability and may improve the dynamic contrast-enhanced sonographic technique.

  20. Contrast enhancement by arterial perfusion during computed tomography (computed tomographic arteriography) of the pancreatic disease

    International Nuclear Information System (INIS)

    Takaki, Yukiari

    1983-01-01

    Computed tomographic arteriography (CTA) was performed on 52 cases of pancreatic disease in which was suspected clinically, and in which other method failed to yield a definitive diagnosis. For CTA, 65% meglumine diatrizoate 20 ml, diluted 1:3, was injected via a catherter inserted in an artery connected with the pancreas and the change with time of the pacreas CT number was studied. The normal pancreas stains deeply and the best contrast enhancement was obtained between 17 to 21 seconds after instillation of contrast medium. In the CTA findings in pancreatic cancer, low density areas with irregular internal structures are characteristic, and these characteristics were seen even in minute pancreatic cancers which could not be recognized by CT or the intravenous bolus injection method. On the other hand, in chronic pancreatitis, even when differentiation from pancreatic cancer is difficult with arterial and venous encasement in angiography, as long as the chronic pancreatitis is not very advanced ischemic changes are not seen, and this permits differentiation form normal pancreas. This also facilitates differentiation between pancreatitis and pancreatic cancer. In the intravenous bolus injection method, the chronological change of contrast enhancement in the pancreas was studied and the best contrast enhancement was obtained after 60 to 120 seconds. This method revealed no findings peculiar to pancreatic cancer. Based on the above, CTA was found to be useful for making in contributing to establishing a definitive diagnosis, detecting minute pancreatic cancer and to differentiate pancreatic cancer from chronic pancreatitis. (author)

  1. Control of susceptibility-related image contrast by spin-lock techniques.

    Science.gov (United States)

    Martirosian, Petros; Rommel, Eberhard; Schick, Fritz; Deimling, Michael

    2008-12-01

    Macroscopic magnetic field inhomogeneities might lead to image distortions, while microscopic field inhomogeneities, due to susceptibility changes in tissues, cause spin dephasing and decreasing T(2)() relaxation time. The latter effects are especially observed in the trabecular bone and in regions adjacent to air-containing cavities when gradient-echo sequences are applied. In conventional MRI, these susceptibility-related signal voids can be avoided by applying spin-echo (SE) techniques. In this study, an alternative method for the examination and control of susceptibility-related effects by spin-lock (SL) radiofrequency pulses is presented: SL pulses were applied in two different susceptibility-sensitive sequence types: (a) between the jump and return 90 degrees pulses in a 90 degrees (x)-tau-90 degrees (-x) magnetization-prepared Fast Low Angle Shot (FLASH) sequence and (b) between the 90 degrees pulse and the 180 degrees pulse in an asymmetric SE sequence. The range of Larmor frequencies used for spin locking can be determined for different B(1) amplitudes of the SL pulses, allowing control of image contrast by the amplitude of the SL pulses.

  2. Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior

    Science.gov (United States)

    Ma, Jianhua; Zhang, Hua; Gao, Yang; Huang, Jing; Liang, Zhengrong; Feng, Qianjing; Chen, Wufan

    2012-11-01

    Cerebral perfusion x-ray computed tomography (PCT) imaging, which detects and characterizes the ischemic penumbra, and assesses blood-brain barrier permeability with acute stroke or chronic cerebrovascular diseases, has been developed extensively over the past decades. However, due to its sequential scan protocol, the associated radiation dose has raised significant concerns to patients. Therefore, in this study we developed an iterative image reconstruction algorithm based on the maximum a posterior (MAP) principle to yield a clinically acceptable cerebral PCT image with lower milliampere-seconds (mA s). To preserve the edges of the reconstructed image, an edge-preserving prior was designed using a normal-dose pre-contrast unenhanced scan. For simplicity, the present algorithm was termed as ‘MAP-ndiNLM’. Evaluations with the digital phantom and the simulated low-dose clinical brain PCT datasets clearly demonstrate that the MAP-ndiNLM method can achieve more significant gains than the existing FBP and MAP-Huber algorithms with better image noise reduction, low-contrast object detection and resolution preservation. More importantly, the MAP-ndiNLM method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the MAP-Huber method.

  3. Diagnostic accuracy of unenhanced, contrast-enhanced perfusion and angiographic MRI sequences for pulmonary embolism diagnosis: results of independent sequence readings

    Energy Technology Data Exchange (ETDEWEB)

    Revel, Marie Pierre [Hopital Europeen Georges Pompidou, APHP, Departments of Radiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); Hotel-Dieu, Service de Radiologie, Paris (France); Sanchez, Olivier; Meyer, Guy [Hopital Europeen Georges Pompidou, APHP, Respiratory and intensive care and, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); INSERM Unite 765, Paris (France); Lefort, Catherine; Couchon, Sophie; Hernigou, Anne; Frija, Guy [Hopital Europeen Georges Pompidou, APHP, Departments of Radiology, Paris (France); Niarra, Ralph [Hopital Europeen Georges Pompidou, APHP, Clinical Epidemiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); Chatellier, Gilles [Hopital Europeen Georges Pompidou, APHP, Clinical Epidemiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); INSERM CIC-EC E4, Paris (France)

    2013-09-15

    To independently evaluate unenhanced, contrast-enhanced perfusion and angiographic MR sequences for pulmonary embolism (PE) diagnosis. Prospective investigation, including 274 patients who underwent perfusion, unenhanced 2D steady-state-free-precession (SSFP) and contrast-enhanced 3D angiographic MR sequences on a 1.5-T unit, in addition to CTA (CT angiography). Two independent readers evaluated each sequence independently in random order. Sensitivity, specificity, predictive values and inter-reader agreement were calculated for each sequence, excluding sequences judged inconclusive. Sensitivity was also calculated according to PE location. Contrast-enhanced angiographic sequences showed the highest sensitivity (82.9 and 89.7 %, reader 1 and reader 2, respectively), specificity (98.5 and 100 %) and agreement (kappa value 0.77). Unenhanced angiographic sequences, although less sensitive overall (68.7 and 76.4 %), were sensitive for the detection of proximal PE (92.7 and 100 %) and showed high specificity (96.1 and 99.1 %) and good agreement (kappa value 0.62). Perfusion sequences showed lower sensitivity (75.0 and 79.3 %), specificity (84.8 and 89.7 %) and agreement (kappa value 0.51), and a negative predictive value of 84.8 % at best. Compared with contrast-enhanced angiographic sequences, unenhanced sequences demonstrate lower sensitivity, except for proximal PE, but high specificity and agreement. The negative predictive value of perfusion sequences was insufficient to safely rule out PE. (orig.)

  4. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool contrast agent

    International Nuclear Information System (INIS)

    Fournier, Laure S.; Cuenod, Charles Andre; Bazelaire, Cedric de; Siauve, Nathalie; Frija, Guy; Clement, Olivier; Rosty, Christophe; Tran, Phuong Lan

    2004-01-01

    Macromolecular contrast-enhanced functional CT was performed to characterize early perfusion changes in hepatocellular carcinoma (HCC). Fourteen rats with chemically induced primary liver tumors ranging pathologically from hyperplasia to HCC and 15 control rats were investigated. Two dynamic CT scans using an experimental macromolecular contrast agent were performed on a single slice 11 and 18 weeks after tumor induction followed by pathological examination. A deconvolution mathematical model was applied, yielding the hepatic perfusion index (HPI), mean transit time (MTT), liver distribution volume (LDV) and arterial, portal and total blood flows (FA, FP, FT). Analysis was performed on one slice per rat, containing overall two hyperplasia, six dysplasia and 15 HCC. On the first scans, HCC at an early pathological stage had a low FP (-30%, P=0.002) but a normal arterial-portal balance. On the scan contemporary to pathology, HCC perfusion parameters showed an inversion of the arterial-portal balance (HPI +212%, P<0.0001), with a high FA (+56%, P=0.002) and a low FP (-69%, P<0.0001). Sensitivity and specificity of detection of HCC by perfusion CT were high (87 and 80%) on late scans; but also on the earlier scans (86 and 65%), even though only one (7%) was visible to the eye. Perfusion-CT allowed early detection of HCC. This technique could contribute in the detection and characterization of liver lesions in clinical studies. (orig.)

  5. Perfusion characteristics of parotid gland tumors evaluated by contrast-enhanced ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Laura V., E-mail: Laura.Klotz@med.uni-muenchen.de [Department of Surgery, University of Munich, Munich (Germany); Gürkov, Robert [Department of Otorhinolaryngology, University of Munich, Munich (Germany); Eichhorn, Martin E. [Department of Surgery, University of Munich, Munich (Germany); Siedek, Vanessa; Krause, Eike [Department of Otorhinolaryngology, University of Munich, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, University of Munich, Munich (Germany); Reiser, Maximilian F.; Clevert, Dirk-Andre [Department of Clinical Radiology, University of Munich, Munich (Germany)

    2013-12-01

    Purpose: Contrast enhanced ultrasound (CE-US) is a promising imaging modality for non-invasive analysis of parotid gland lesions because their vascularisation differs from normal gland tissue. This clinical study should further investigate CE-US as a diagnostic tool for parotid gland tumors. Materials and methods: 39 patients underwent CE-US measurements after intravenous application of a contrast agent (SonoVue, Bracco, Italy) before surgical tumor resection. Time–intensity curves gradients were calculated and parameters of intratumoral microcirculation were analysed. The vascularisation parameters were compared among the different tumor entities as defined per definitive histological diagnosis. Results: Histological analyses revealed 17 pleomorphic adenoma, 15 cystadenolymphoma and 7 malignoma. A significant difference of area below intensity time curve (AUC) and mean transit time (MTT) was measured in the malignant lesions compared to benign tumors (p < 0.05). A significant difference of AUC and maximum of signal increase (ΔSI{sub max}) for pleomorphic adenoma versus cystadenolymphoma was found (p < 0.05). Conclusion: CE-US seems to be a quantitative and independent method for the assessment of malign and benign parotid gland tumors. Further studies and clinical experience will have to validate this method as a reliable diagnostic tool that facilitates preoperative planning.

  6. Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes

    Energy Technology Data Exchange (ETDEWEB)

    Bouzerar, Roger; Chaarani, Bader; Baledent, Olivier [University Hospital, Image Processing Department, Amiens (France); Gondry-Jouet, Catherine [University Hospital, Radiology Department, Amiens (France); Zmudka, Jadwiga [University Hospital, Geriatric Unit, Amiens (France)

    2013-12-15

    The cerebrospinal fluid (CSF) plays a major role in the physiology of the central nervous system. The continuous turnover of CSF is mainly attributed to the highly vascularized choroid plexus (CP) located in the cerebral ventricles which represent a complex interface between blood and CSF. We propose a method for evaluating CP functionality in vivo using perfusion MR imaging and establish the age-related changes of associated parameters. Fifteen patients with small intracranial tumors were retrospectively studied. MR Imaging was performed on a 3T MR Scanner. Gradient-echo echo planar images were acquired after bolus injection of gadolinium-based contrast agent (CA). The software developed used the combined T1- and T2-effects. The decomposition of the relaxivity signals enables the calculation of the CP capillary permeability (K{sub 2}). The relative cerebral blood volume (rCBV), mean transit time (MTT), and signal slope decrease (SSD) were also calculated. The mean permeability K{sub 2} of the extracted CP was 0.033+/-0.18 s{sup -1}. K{sub 2} and SSD significantly decreased with subject's age whereas MTT significantly increased with subject's age. No significant correlation was found for age-related changes in rCBV and rCBF. The decrease in CP permeability is in line with the age-related changes in CSF secretion observed in animals. The MTT increase indicates significant structural changes corroborated by microscopy studies in animals or humans. Overall, DSC MR-perfusion enables an in vivo evaluation of the hemodynamic state of CP. Clinical applications such as neurodegenerative diseases could be considered thanks to specific functional studies of CP. (orig.)

  7. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... by fitting a gamma-variate function to the data. The tissue concentration vs time curves were deconvoluted using an input function obtained by arterial sampling. RESULTS: The ratio of gray to white matter CBV (1.9-2.5) as well as the fractional increase in rCBV during hypercapnia (about 30%) was found...

  8. The delay of contrast arrival in magnetic resonance first‐pass perfusion imaging: a novel non‐invasive parameter detecting collateral‐dependent myocardium

    Science.gov (United States)

    Muehling, O M; Huber, A; Cyran, C; Schoenberg, S O; Reiser, M; Steinbeck, G; Nabauer, M; Jerosch‐Herold, M

    2007-01-01

    Aim To establish the regional delay of contrast arrival in magnetic resonance perfusion imaging (MRPI) for the detection of collateral‐dependent myocardium in patients with coronary artery disease. Design and setting Observational study, case series; single centre, university hospital. Patients 30 patients with coronary artery disease and collateral‐dependent myocardium and 17 healthy volunteers. Methods Resting and hyperaemic (adenosine) MRPI was used to determine the delay time (Δtd) of contrast arrival between the left ventricle and collateral‐dependent or antegradely perfused myocardium, and myocardial perfusion (MP, ml/min/g). Results In healthy volunteers, mean (SD) Δtd at rest and during hyperaemia were 0.8 (0.4) and 0.3 (0.3) s, and MP was 1.14 (0.21) and 4.23 (1.12) ml/min/g. In patients Δtd in antegradely perfused vs collateral‐dependent myocardium was 0.9 (0.7) vs 1.7 (1.0) s at rest (p0.6 s (area under the curve (AUC) = 0.89) to detect collateral‐dependent myocardium, while resting Δtd (AUC = 0.77) and perfusion (AUC = 0.69 at rest or 0.70 during hyperaemia) were less accurate. Conclusions MRPI‐derived hyperaemic delay of contrast arrival detects collateral‐dependent myocardium with high sensitivity and specificity. Perfusion was less sensitive, emphasising the clinical role of Δtd in non‐invasive detection of collateral‐dependent myocardium. PMID:17344328

  9. Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Balvay, Daniel; Cuenod, Charles A.; Darai, Emile; Marsault, Claude; Bazot, Marc

    2010-01-01

    To prospectively evaluate the ability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess physiological microvascular states in normal myometrium. Eighty-five women (62 women of reproductive age, 23 postmenopausal) undergoing DCE-MRI of the pelvis were included. Microvascular parameters for the inner and outer myometrium were analysed using a pharmacokinetic model. These parameters were tissue blood flow (F), blood volume fraction (V b ), permeability-surface area product (PS), interstitial volume fraction (V e ) and lag time (Dt). In the women of reproductive age, the inner myometrium displayed higher F and PS, lower V b and V e , and longer Dt than the outer myometrium (p = 0.02, p = 0.01, p = 0.005, p = 0.03 and p = 0.01, respectively). The inner myometrium presented microvascular variations during the menstrual cycle with a pre-ovulatory peak followed by a fall reaching a nadir of F and V b about 4 days after ovulation. Compared with women of reproductive age, in the postmenopausal state, F and V b decreased in the outer myometrium, while PS, V e and Dt increased (p < 0.0001, p = 0.001, p = 0.001, p = 0.03 and p = 0.0004, respectively). DCE-MRI is a non-invasive technique that can measure variations of myometrial microcirculation, and thereby be potentially useful to help characterize the role and states of the myometrium in assisted reproductive therapy. (orig.)

  10. Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle [Assistance Publique-Hopitaux de Paris, Department of Radiology, Hopital Tenon, Paris (France); Universite Rene Descartes, Laboratoire de Recherche en Imagerie-INSERM U970, Paris (France); Hopital Tenon, Service de Radiologie, Paris (France); Balvay, Daniel [Universite Rene Descartes, Laboratoire de Recherche en Imagerie-INSERM U970, Paris (France); Cuenod, Charles A. [Universite Rene Descartes, Laboratoire de Recherche en Imagerie-INSERM U970, Paris (France); Hopital Europeen Georges Pompidou (HEGP), Department of Radiology, Paris (France); Darai, Emile [Assistance Publique-Hopitaux de Paris, Department of Gynaecology-Obstetrics, Hopital Tenon, Paris (France); Marsault, Claude; Bazot, Marc [Assistance Publique-Hopitaux de Paris, Department of Radiology, Hopital Tenon, Paris (France)

    2010-04-15

    To prospectively evaluate the ability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess physiological microvascular states in normal myometrium. Eighty-five women (62 women of reproductive age, 23 postmenopausal) undergoing DCE-MRI of the pelvis were included. Microvascular parameters for the inner and outer myometrium were analysed using a pharmacokinetic model. These parameters were tissue blood flow (F), blood volume fraction (V{sub b}), permeability-surface area product (PS), interstitial volume fraction (V{sub e}) and lag time (Dt). In the women of reproductive age, the inner myometrium displayed higher F and PS, lower V{sub b} and V{sub e}, and longer Dt than the outer myometrium (p = 0.02, p = 0.01, p = 0.005, p = 0.03 and p = 0.01, respectively). The inner myometrium presented microvascular variations during the menstrual cycle with a pre-ovulatory peak followed by a fall reaching a nadir of F and V{sub b} about 4 days after ovulation. Compared with women of reproductive age, in the postmenopausal state, F and V{sub b} decreased in the outer myometrium, while PS, V{sub e} and Dt increased (p < 0.0001, p = 0.001, p = 0.001, p = 0.03 and p = 0.0004, respectively). DCE-MRI is a non-invasive technique that can measure variations of myometrial microcirculation, and thereby be potentially useful to help characterize the role and states of the myometrium in assisted reproductive therapy. (orig.)

  11. Quantitative assessment of pulmonary perfusion using dynamic contrast-enhanced CT in patients with chronic obstructive pulmonary disease: correlations with pulmonary function test and CT volumetric parameters.

    Science.gov (United States)

    Guan, Yu; Xia, Yi; Fan, Li; Liu, Shi-yuan; Yu, Hong; Li, Bin; Zhao, Li-ming; Li, Bing

    2015-05-01

    Pulmonary function test (PFT) is commonly used to help diagnose chronic obstructive pulmonary disease (COPD) and other lung diseases. However, it cannot be used to evaluate regional function and morphological abnormalities. To quantitatively evaluate pulmonary perfusion imaging using dynamic contrast-enhanced (DCE) computed tomography (CT) and observe its correlations with PFT and CT volumetric parameters in COPD patients. PFT and CT pulmonary perfusion examination were performed in 63 COPD patients. Perfusion defects were quantitated by calculating the CT value ratio (RHU) between perfusion defects (HUdefect) and normal lung (HUnormal). Volumetric CT data were used to calculate emphysema index (EI), total lung volume (TLV), and total emphysema volume (TEV). Emphysematous parenchyma was defined as the threshold of lung area lower than -950 HU. Correlations between RHU and TLV, TEV, EI, and PFT were assessed using Spearman correlation analysis. The positive rate of perfusion defects on CT perfusion images was higher than that of emphysema on CT mask images (χ(2) = 17.027, P < 0.001). The Spearman correlation test showed that RHU was positively correlated with FEV1 (R = 0.59, P < 0.001), FEV1% Predicted (R = 0.61, P < 0.001), FVC (R = 0.47, P = 0.002), and FEV1/FVC (R = 0.65, P < 0.001), and negatively correlated with EI (R = -0.67, P < 0.001). CT perfusion imaging is more sensitive in detecting emphysema that is inconspicuous on CT images. RHU is correlated with PFT and CT volumetric parameters, suggesting that it is more sensitive in detecting early COPD changes and may prove to be a potential predictor of focal lung function. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Assessment of perfusion by dynamic contrast-enhanced imaging using a deconvolution approach based on regression and singular value decomposition.

    Science.gov (United States)

    Koh, T S; Wu, X Y; Cheong, L H; Lim, C C T

    2004-12-01

    The assessment of tissue perfusion by dynamic contrast-enhanced (DCE) imaging involves a deconvolution process. For analysis of DCE imaging data, we implemented a regression approach to select appropriate regularization parameters for deconvolution using the standard and generalized singular value decomposition methods. Monte Carlo simulation experiments were carried out to study the performance and to compare with other existing methods used for deconvolution analysis of DCE imaging data. The present approach is found to be robust and reliable at the levels of noise commonly encountered in DCE imaging, and for different models of the underlying tissue vasculature. The advantages of the present method, as compared with previous methods, include its efficiency of computation, ability to achieve adequate regularization to reproduce less noisy solutions, and that it does not require prior knowledge of the noise condition. The proposed method is applied on actual patient study cases with brain tumors and ischemic stroke, to illustrate its applicability as a clinical tool for diagnosis and assessment of treatment response.

  13. Contrast-enhanced 3T MR perfusion of musculoskeletal tumours. T1 value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters

    International Nuclear Information System (INIS)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Verbizier, Jacques de; Blum, Alain; Chen, Bailiang; Beaumont, Marine; Badr, Sammy; Cotten, Anne

    2017-01-01

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. (orig.)

  14. Contrast-enhanced 3T MR perfusion of musculoskeletal tumours. T1 value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Verbizier, Jacques de; Blum, Alain [Hopital Central, CHRU-Nancy, Service d' Imagerie Guilloz, Nancy (France); Chen, Bailiang; Beaumont, Marine [Universite de Lorraine, Laboratoire IADI, UMR S 947, Nancy (France); Badr, Sammy; Cotten, Anne [CHRU Lille Centre de Consultations et d' Imagerie de l' Appareil Locomoteur, Department of Radiology and Musculoskeletal Imaging, Lille (France)

    2017-12-15

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. (orig.)

  15. Study of proximal femoral bone perfusion with 3D T1 dynamic contrast-enhanced MRI: a feasibility study.

    Science.gov (United States)

    Budzik, Jean-François; Lefebvre, Guillaume; Forzy, Gerard; El Rafei, Mazen; Chechin, David; Cotten, Anne

    2014-12-01

    The objective of this study was to compare measurements of semi-quantitative and pharmacokinetic parameters in areas of red (RBM) and yellow bone marrow (YBM) of the hip, using an in-house high-resolution DCE T1 sequence, and to assess intra- and inter-observer reproducibility of these measurements. The right hips of 21 adult patients under 50 years of age were studied. Spatial resolution was 1.8 × 1.8 × 1.8 mm(3), and temporal resolution was 13.5 seconds. Two musculoskeletal radiologists independently processed DCE images and measured semi-quantitative and pharmacokinetic parameters in areas of YBM and RBM. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Intra- and inter-observer reproducibility was assessed. Area under the curve (AUC) and initial slope (IS) were significantly greater for RBM than for YBM (p < 0.05). K(trans) and kep were also significantly greater for RBM (p < 0.05). There was no significant difference in time to peak between the regions (p < 0.05). SNR, CNR, and intra- and inter-observer reproducibility were all good. DCE study of the whole hip is feasible with high spatial resolution using a 3D T1 sequence. Measures were possible even in low vascularized areas of the femoral head. K(trans), kep, AUC, and IS values were significantly different between red and yellow marrow, whereas TTP values were not. High-spatial-resolution dynamic contrast-enhanced MRI of hip structures is feasible. Intra- and inter-observer reproducibility is good. Red and yellow bone marrow have different perfusion patterns.

  16. Functional lung MRI in chronic obstructive pulmonary disease: comparison of T1 mapping, oxygen-enhanced T1 mapping and dynamic contrast enhanced perfusion.

    Directory of Open Access Journals (Sweden)

    Bertram J Jobst

    Full Text Available Monitoring of regional lung function in interventional COPD trials requires alternative endpoints beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI.20 COPD patients (GOLD I-IV underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1, oxygen-induced T1 shortening (ΔT1 and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach.Abnormal T1 and ΔT1 were highly prevalent in the patient cohort. T1 and ΔT1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80; p&0.001, and with each other (r = 0.80; p<0.001. In GOLD stages I and II ΔT1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1. The extent of T1 (r = 0.45; p<0.05, ΔT1 (r = 0.52; p<0.05 and perfusion abnormalities (r = 0.52; p<0.05 showed a moderate correlation with GOLD stage.Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i.v. contrast.

  17. Measurement of extracellular volume and transit time heterogeneity using contrast-enhanced myocardial perfusion MRI in patients after acute myocardial infarction.

    Science.gov (United States)

    Kunze, Karl P; Rischpler, Christoph; Hayes, Carmel; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Haase, Axel; Schwaiger, Markus; Nekolla, Stephan G

    2017-06-01

    To assess the ability of dynamic contrast-enhanced myocardial perfusion MRI to measure extracellular volume (ECV) and to investigate the possibility of estimating capillary transit time heterogeneity (CTH) in patients after myocardial infarction and successful revascularization. Twenty-four perfusion data sets were acquired on a 3 Tesla positron emission tomography (PET)/MRI scanner. Three perfusion models of different complexity were implemented in a hierarchical fashion with an Akaike information criterion being used to determine the number of fit parameters supported by the data. Results were compared sector-wise to ECV from an equilibrium T 1 mapping method (modified look-locker inversion recovery (MOLLI)). ECV derived from the perfusion analysis correlated well with equilibrium measurements (R² = 0.76). Estimation of CTH was supported in 16% of sectors (mostly remote). Inclusion of a nonzero CTH parameter usually led to lower estimates of first-pass extraction and slightly higher estimates of blood volume and flow. Estimation of the capillary permeability-surface area product was feasible in 81% of sectors. Transit time heterogeneity has a measurable effect on the kinetic analysis of myocardial perfusion MRI data, and Gd-DTPA extravasation in the myocardium is usually not flow-limited in infarct-related pathology. Measurement of myocardial ECV using perfusion imaging could provide a scan-time efficient alternative to methods based on T 1 mapping. Magn Reson Med 77:2320-2330, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT : Theoretical Models and Current Implementation

    NARCIS (Netherlands)

    Pelgrim, G J; Handayani, A; Dijkstra, H; Prakken, N H J; Slart, R H J A; Oudkerk, M; Van Ooijen, P M A; Vliegenthart, R; Sijens, P E

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET).

  19. Response Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Tensaouti, Fatima [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); Khalifa, Jonathan [Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Radiation Oncology, Toulouse (France); Lusque, Amelie [Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Biostatistics, Toulouse (France); Plas, Benjamin [CHU Toulouse, Department of Neurosurgery, Toulouse (France); Lotterie, Jean Albert; Berry, Isabelle [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); CHU Toulouse, Department of Nuclear Medicine, Toulouse (France); Laprie, Anne [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Radiation Oncology, Toulouse (France); Cohen-Jonathan Moyal, Elizabeth [Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Radiation Oncology, Toulouse (France); Toulouse Center for Cancer Research (U1037), Inserm, Toulouse (France); Lubrano, Vincent [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); CHU Toulouse, Department of Neurosurgery, Toulouse (France)

    2017-10-15

    The purpose of the study was to evaluate Response Assessment in Neuro-Oncology (RANO) criteria in glioblastoma multiforme (GBM), with respect to the Macdonald criteria and changes in contrast-enhancement (CE) volume. Related variations in relative cerebral blood volume (rCBV) were investigated. Forty-three patients diagnosed between 2006 and 2010 were included. All underwent surgical resection, followed by temozolomide-based chemoradiation. MR images were retrospectively reviewed. Times to progression (TTPs) according to RANO criteria, Macdonald criteria and increased CE volume (CE-3D) were compared, and the percentage change in the 75th percentile of rCBV (rCBV75) was evaluated. After a median follow-up of 22.7 months, a total of 39 patients had progressed according to RANO criteria, 32 according to CE-3D, and 42 according to Macdonald. Median TTPs were 6.4, 9.3, and 6.6 months, respectively. Overall agreement was 79.07% between RANO and CE-3D and 93.02% between RANO and Macdonald. The mean percentage change in rCBV75 at RANO progression onset was over 73% in 87.5% of patients. In conclusion, our findings suggest that CE-3D criterion is not yet suitable to assess progression in routine clinical practice. Indeed, the accurate threshold is still not well defined. To date, in our opinion, early detection of disease progression by RANO combined with advanced MRI imaging techniques like MRI perfusion and diffusion remains the best way to assess disease progression. Further investigations that would examine the impact of treatment modifications after progression determined by different criteria on overall survival would be of great value. (orig.)

  20. No detectable nephrotoxic side effect using a dimer, non-ionic contrast media in cerebral perfusion computed tomography in case of suspected brain ischemia

    International Nuclear Information System (INIS)

    Petrik, M.; Weigel, C.; Kirsch, M.; Hosten, N.

    2005-01-01

    Purpose: In suspected brain ischemia, the perfusion cerebral computed tomography (cCT) should be performed with the lowest amount of contrast media to avoid a contrast media induced nephropathy (CIN) even if the patient already is in renal failure. We were interested to find the best parameters for this examination. Material and methods: From February 2000 to March 2003, 138 patients (58 females, 80 males, mean age 66.8 years) underwent cCT-perfusion immediately after the admission to our stroke unit. Of these patients, 62% (n=86) had normal renal function and 38% (n=52) renal failure (up to 381 μmol/l basic serum creatinine). We varied volume (20-80 ml), flow (5 vs. 7.2. ml/s) and concentration (270 vs. 320 ml/mg iodine) of a dimer, non-ionic contrast media (Visipaque registered ) to establish 5 groups. So we got patients receiving 6 g, 12 g, 16 g, 19 g and 25 g of iodine. After generating the perfusion maps, two radiologists reviewed the quality of the maps and scored it (1-5). We measured the serum creatinine before contrast application and at follow up cCt (days 3 and 7). Results: The quality of the maps increases with increasing amount of iodine. However, the diagnostic result was not significantly better using more than about 16 g of iodine (e.g., 60 ml-7.2 ml/s - 270 mg/ml) in cCT-perfusion studies. Only one patient had a pathologic increase in serum creatinine (day 1: 93; day 4: 146 μmol/l) but died at day 5 because of massive co-morbidity and septic pneumonia. No CIN occurred even in the patient group with pre-existent renal failure. Conclusions: About 60 ml contrast media and a moderate flow rate of about 7 ml/s ensure good results in perfusion-cCT, even if the patients have poor blood circulation or arteriosclerosis. The use of a dimer, non-ionic contrast media (range of 6-25 g iodine) seems to minimize the risk of CIN in the daily routine. (orig.)

  1. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography

    Science.gov (United States)

    Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.

  2. Effect of contrast dose in the quantification of myocardial extra-cellular volume in adenosine stress/rest perfusion cardiac magnetic resonance examinations.

    Science.gov (United States)

    Caballeros, Meylin; Bartolomé, Pablo; Fernández González, Óscar; Greiser, Andreas; García Del Barrio, Loreto; Pueyo, Jesús; Bastarrika, Gorka

    2017-07-01

    Background Diffuse myocardial fibrosis can be quantified by calculating extra-cellular volume (ECV) from native and post-contrast T1 values using dedicated single bolus contrast medium injection protocols. Purpose To evaluate differences in T1 maps and myocardial ECV measurements in routine stress/rest perfusion cardiovascular magnetic resonance (CMR) examinations after injection of single and double dose of contrast medium. Material and Methods Thirty-seven consecutive patients (30 men; mean age, 62 ± 13 years) underwent clinically indicated adenosine stress/rest perfusion CMR examination to rule out myocardial ischemia following a conventional split-dose contrast medium injection strategy. Native and post-contrast T1 mapping was performed 15 min after the first (0.1 mmol/kg) and second (0.1 mmol/kg) dose of contrast medium using a breath-held Modified Look-Locker Inversion recovery (MOLLI) sequence. Student's t-test for paired samples, Bland-Altman plots, and concordance-correlation coefficients (CCC) for agreement between T1 and ECV calculations after single and double dose of contrast medium were calculated. Intra- and inter-observer agreement for measurements was also analyzed. Results Myocardial T1 values after single and double dose of contrast medium significantly differed (mean difference of 114.1 ± 19.9 ms, P < 0.01). A single dose of contrast agent provided slightly higher ECV values (mean difference of 2.3 ± 1.1%). CCC for ECV calculations was 0.66. Intra- and inter-observer agreement for all measurements was excellent (CCC ≥ 0.83). Conclusion Quantification of myocardial ECV on conventional stress/rest perfusion CMR examination is feasible. T1 maps obtained 15 min after 0.1 mmol/kg of contrast medium provide slightly higher myocardial T1 measurements and ECV values compared with T1 maps obtained after a total dose of 0.2 mmol/kg.

  3. Comparison of transient arterial occlusion and muscle exercise provocation for assessment of perfusion reserve in skeletal muscle with real-time contrast-enhanced ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Krix, Martin, E-mail: martin.krix@kabelbw.de [German Cancer Research Center, Research Program Imaging and Radiooncology, Department of Radiology, INF 280, D-69120 Heidelberg (Germany); Bracco Imaging Germany, Max-Stromeyer-Str. 116, D-78467 Konstanz (Germany); Krakowski-Roosen, Holger [German Cancer Research Center, Department of Translational Oncology, INF 280, D-69120 Heidelberg (Germany); Armarteifio, Erick [University Hospital of Heidelberg, Department of Diagnostic and Interventional Radiology, INF 110, D-69120 Heidelberg (Germany); Fuerstenberger, Susanne [University Hospital of Heidelberg, Department of Vascular Surgery, INF 110, D-69120 Heidelberg (Germany); Delorme, Stefan [German Cancer Research Center, Research Program Imaging and Radiooncology, Department of Radiology, INF 280, D-69120 Heidelberg (Germany); Kauczor, Hans-Ulrich; Weber, Marc-Andre [University Hospital of Heidelberg, Department of Diagnostic and Interventional Radiology, INF 110, D-69120 Heidelberg (Germany)

    2011-06-15

    Objective: Contrast-enhanced ultrasound (CEUS) is able to quantify muscle perfusion and changes in perfusion due to muscle exercise in real-time. However, reliable measurement of standardized muscle exercise is difficult to perform in clinical examinations. We compared perfusion reserve assessed by CEUS after transient arterial occlusion and exercise to find the most suitable measurement for clinical application. Methods: Contrast pulse sequencing (7 MHz) during continuous IV infusion of SonoVue (4.8 mL/300 s) was used in 8 healthy volunteers to monitor muscle perfusion of the gastrocnemius muscle during transient (1 min) arterial occlusion produced by a thigh cuff of a venous occlusion plethysmograph. Isometric muscle exercise (50% of individual maximum strength for 20 s) was subsequently performed during the same examination, and several CEUS parameters obtained from ultrasound-signal-intensity-time curves and its calculation errors were compared. Results: The mean maximum local blood volume after occlusion was 13.9 [{approx}mL] (range, 4.5-28.8 [{approx}mL]), and similar values were measured after sub-maximum exercise 13.8 [{approx}mL], (range, 4.6-22.2 [{approx}mL]. The areas under the curve during reperfusion vs. recovery were also similar (515.2 {+-} 257.5 compared to 482.2 {+-} 187.5 [{approx}mL s]) with a strong correlation (r = 0.65), as were the times to maximum (15.3 s vs. 15.9 s), with a significantly smaller variation for the occlusion method ({+-}2.1 s vs. {+-}9.0 s, p = 0.03). The mean errors for all calculated CEUS parameters were lower for the occlusion method than for the exercise test. Conclusions: CEUS muscle perfusion measurements can be easily performed after transient arterial occlusion. It delivers data which are comparable to CEUS measurements after muscle exercise but with a higher robustness. This method can be easily applied in clinical examination of patients with e.g. PAOD or diabetic microvessel diseases to assess perfusion reserve.

  4. Comparison of transient arterial occlusion and muscle exercise provocation for assessment of perfusion reserve in skeletal muscle with real-time contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Krix, Martin; Krakowski-Roosen, Holger; Armarteifio, Erick; Fuerstenberger, Susanne; Delorme, Stefan; Kauczor, Hans-Ulrich; Weber, Marc-Andre

    2011-01-01

    Objective: Contrast-enhanced ultrasound (CEUS) is able to quantify muscle perfusion and changes in perfusion due to muscle exercise in real-time. However, reliable measurement of standardized muscle exercise is difficult to perform in clinical examinations. We compared perfusion reserve assessed by CEUS after transient arterial occlusion and exercise to find the most suitable measurement for clinical application. Methods: Contrast pulse sequencing (7 MHz) during continuous IV infusion of SonoVue (4.8 mL/300 s) was used in 8 healthy volunteers to monitor muscle perfusion of the gastrocnemius muscle during transient (1 min) arterial occlusion produced by a thigh cuff of a venous occlusion plethysmograph. Isometric muscle exercise (50% of individual maximum strength for 20 s) was subsequently performed during the same examination, and several CEUS parameters obtained from ultrasound-signal-intensity-time curves and its calculation errors were compared. Results: The mean maximum local blood volume after occlusion was 13.9 [∼mL] (range, 4.5-28.8 [∼mL]), and similar values were measured after sub-maximum exercise 13.8 [∼mL], (range, 4.6-22.2 [∼mL]. The areas under the curve during reperfusion vs. recovery were also similar (515.2 ± 257.5 compared to 482.2 ± 187.5 [∼mL s]) with a strong correlation (r = 0.65), as were the times to maximum (15.3 s vs. 15.9 s), with a significantly smaller variation for the occlusion method (±2.1 s vs. ±9.0 s, p = 0.03). The mean errors for all calculated CEUS parameters were lower for the occlusion method than for the exercise test. Conclusions: CEUS muscle perfusion measurements can be easily performed after transient arterial occlusion. It delivers data which are comparable to CEUS measurements after muscle exercise but with a higher robustness. This method can be easily applied in clinical examination of patients with e.g. PAOD or diabetic microvessel diseases to assess perfusion reserve.

  5. Determination of arterial input function in dynamic susceptibility contrast MRI using group independent component analysis technique

    International Nuclear Information System (INIS)

    Chen, S.; Liu, H.-L.; Yang Yihong; Hsu, Y.-Y.; Chuang, K.-S.

    2006-01-01

    Quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) requires the determination of the arterial input function (AIF). The segmentation of surrounding tissue by manual selection is error-prone due to the partial volume artifacts. Independent component analysis (ICA) has the advantage in automatically decomposing the signals into interpretable components. Recently group ICA technique has been applied to fMRI study and showed reduced variance caused by motion artifact and noise. In this work, we investigated the feasibility and efficacy of the use of group ICA technique to extract the AIF. Both simulated and in vivo data were analyzed in this study. The simulation data of eight phantoms were generated using randomized lesion locations and time activity curves. The clinical data were obtained from spin-echo EPI MR scans performed in seven normal subjects. Group ICA technique was applied to analyze data through concatenating across seven subjects. The AIFs were calculated from the weighted average of the signals in the region selected by ICA. Preliminary results of this study showed that group ICA technique could not extract accurate AIF information from regions around the vessel. The mismatched location of vessels within the group reduced the benefits of group study

  6. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI.

    Science.gov (United States)

    Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E

    2017-06-01

    Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.

  7. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    Directory of Open Access Journals (Sweden)

    G. J. Pelgrim

    2016-01-01

    Full Text Available Technological advances in magnetic resonance imaging (MRI and computed tomography (CT, including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET. This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD, as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings.

  8. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    Science.gov (United States)

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  9. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla.

    Science.gov (United States)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill; Hansen, Adam E

    2009-11-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g/min); blood volume (6 +/- 2/4 +/- 1/7 +/- 6 mL/100 g) and permeability (0.9 +/- 0.4/0.8 +/- 0.3/3 +/- 5 mL/100 g/min) were estimated by using Patlak's method and a two-compartment model. A corroboration of these results was achieved by using model simulation. In addition, it was possible to generate maps on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability. (c) 2009 Wiley-Liss, Inc.

  10. Feasibility of continuous venous infusion of SonoVue for qualitative assessment of reversible coronary perfusion defects in stress myocardial contrast echocardiography.

    Science.gov (United States)

    Yip, Gabriel W; Chandrasekaran, Krishnaswamy; Miller, Todd D; Hagen, Mary E; Langins, Andrew P; Khandheria, Bijoy K

    2003-12-01

    To study the feasibility of continuous intravenous SonoVue contrast echocardiography for qualitative assessment of reversible myocardial perfusion in dipyridamole stress tests. Eleven patients (10 male and 1 female, mean age 66 years) with a history of chest pain and a clinical indication for stress sestamibi single photon emission computed tomography (SPECT) underwent concurrent SonoVue 99mTc myocardial contrast echocardiography (MCE). Of the total 176 segments obtained, 53 (30%) were regarded as indeterminate, 39 (22%) as discordant, and 84 (48%) as concordant between MCE and SPECT imaging. Two patients had abnormal SPECT results. The overall feasibility and specificity of MCE were 70 and 74%, respectively. The concordant (p = 0.59) and discordant (p = 0.55) segments were comparable with either MCE technique. However, continuous low-mechanical-index imaging produced fewer indeterminate segments (17 segments, 32%) than intermittent harmonic B-mode imaging (36 segments, 68%) (p = 0.04). Significantly more indeterminate segments were found in the left anterior descending artery territory. However, the overall concordance was similar (p = 0.5) in all three coronary artery territories. The concordance and discordance rates at different left ventricular levels (i.e., basal, mid, and apical) were similar (p = 0.50 and 0.08, respectively). Continuous-infusion SonoVue contrast echocardiography is feasible, with high specificity, for detecting myocardial perfusion defects as assessed by dipyridamole SPECT.

  11. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients

    International Nuclear Information System (INIS)

    Bauman, Grzegorz; Puderbach, Michael; Heimann, Tobias; Kopp-Schneider, Annette; Fritzsching, Eva; Mall, Marcus A.; Eichinger, Monika

    2013-01-01

    Purpose: To validate Fourier decomposition (FD) magnetic resonance (MR) imaging in cystic fibrosis (CF) patients with dynamic contrast-enhanced (DCE) MR imaging. Materials and methods: Thirty-four CF patients (median age 4.08 years; range 0.16–30) were examined on a 1.5-T MR imager. For FD MR imaging, sets of lung images were acquired using an untriggered two-dimensional balanced steady-state free precession sequence. Perfusion-weighted images were obtained after correction of the breathing displacement and Fourier analysis of the cardiac frequency from the time-resolved data sets. DCE data sets were acquired with a three-dimensional gradient echo sequence. The FD and DCE images were visually assessed for perfusion defects by two readers independently (R1, R2) using a field based scoring system (0–12). Software was used for perfusion impairment evaluation (R3) of segmented lung images using an automated threshold. Both imaging and evaluation methods were compared for agreement and tested for concordance between FD and DCE imaging. Results: Good or acceptable intra-reader agreement was found between FD and DCE for visual and automated scoring: R1 upper and lower limits of agreement (ULA, LLA): 2.72, −2.5; R2: ULA, LLA: ±2.5; R3: ULA: 1.5, LLA: −2. A high concordance was found between visual and automated scoring (FD: 70–80%, DCE: 73–84%). Conclusions: FD MR imaging provides equivalent diagnostic information to DCE MR imaging in CF patients. Automated assessment of regional perfusion defects using FD and DCE MR imaging is comparable to visual scoring but allows for percentage-based analysis

  12. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, Grzegorz, E-mail: g.bauman@dkfz.de [German Cancer Research Center, Division of Medical Physics in Radiology, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Puderbach, Michael, E-mail: m.puderbach@dkfz.de [Chest Clinics at the University of Heidelberg, Clinics for Interventional and Diagnostic Radiology, Amalienstr. 5, 69126 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); Heimann, Tobias, E-mail: t.heimann@dkfz.de [German Cancer Research Center, Division of Medical and Biological Informatics, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Kopp-Schneider, Annette, E-mail: kopp@dkfz.de [German Cancer Research Center, Division of Biostatistics, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Fritzsching, Eva, E-mail: eva.fritzsching@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Translational Pulmonology and Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Im Neuenheimer Feld 430, Heidelberg (Germany); Mall, Marcus A., E-mail: marcus.mall@med.uni-heidelberg.de [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); University Hospital Heidelberg, Department of Translational Pulmonology and Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Im Neuenheimer Feld 430, Heidelberg (Germany); Eichinger, Monika, E-mail: m.eichinger@dkfz.de [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); German Cancer Research Center, Division of Radiology, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany)

    2013-12-01

    Purpose: To validate Fourier decomposition (FD) magnetic resonance (MR) imaging in cystic fibrosis (CF) patients with dynamic contrast-enhanced (DCE) MR imaging. Materials and methods: Thirty-four CF patients (median age 4.08 years; range 0.16–30) were examined on a 1.5-T MR imager. For FD MR imaging, sets of lung images were acquired using an untriggered two-dimensional balanced steady-state free precession sequence. Perfusion-weighted images were obtained after correction of the breathing displacement and Fourier analysis of the cardiac frequency from the time-resolved data sets. DCE data sets were acquired with a three-dimensional gradient echo sequence. The FD and DCE images were visually assessed for perfusion defects by two readers independently (R1, R2) using a field based scoring system (0–12). Software was used for perfusion impairment evaluation (R3) of segmented lung images using an automated threshold. Both imaging and evaluation methods were compared for agreement and tested for concordance between FD and DCE imaging. Results: Good or acceptable intra-reader agreement was found between FD and DCE for visual and automated scoring: R1 upper and lower limits of agreement (ULA, LLA): 2.72, −2.5; R2: ULA, LLA: ±2.5; R3: ULA: 1.5, LLA: −2. A high concordance was found between visual and automated scoring (FD: 70–80%, DCE: 73–84%). Conclusions: FD MR imaging provides equivalent diagnostic information to DCE MR imaging in CF patients. Automated assessment of regional perfusion defects using FD and DCE MR imaging is comparable to visual scoring but allows for percentage-based analysis.

  13. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Su-Chin [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan, Republic of China and Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Cheng, Cheng-Chieh [Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States); Chang, Hing-Chiu [Department of Diagnostic Radiology, The University of Hong Kong (Hong Kong); Chung, Hsiao-Wen [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan (China); Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China); Chiu, Hui-Chu [Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 300, Taiwan (China); Liu, Yi-Jui [Department of Automatic Control Engineering, Feng-Chia University, Taichung 407, Taiwan (China); Hsu, Hsian-He; Juan, Chun-Jung, E-mail: peterjuancj@yahoo.com.tw [Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan and Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China)

    2016-04-15

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  14. Contrast adaptive total p-norm variation minimization approach to CT reconstruction for artifact reduction in reduced-view brain perfusion CT

    Science.gov (United States)

    Kim, Chang-Won; Kim, Jong-Hyo

    2011-03-01

    Perfusion CT (PCT) examinations are getting more frequently used for diagnosis of acute brain diseases such as hemorrhage and infarction, because the functional map images it produces such as regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) may provide critical information in the emergency work-up of patient care. However, a typical PCT scans the same slices several tens of times after injection of contrast agent, which leads to much increased radiation dose and is inevitability of growing concern for radiation-induced cancer risk. Reducing the number of views in projection in combination of TV minimization reconstruction technique is being regarded as an option for radiation reduction. However, reconstruction artifacts due to insufficient number of X-ray projections become problematic especially when high contrast enhancement signals are present or patient's motion occurred. In this study, we present a novel reconstruction technique using contrast-adaptive TpV minimization that can reduce reconstruction artifacts effectively by using different p-norms in high contrast and low contrast objects. In the proposed method, high contrast components are first reconstructed using thresholded projection data and low p-norm total variation to reflect sparseness in both projection and reconstruction spaces. Next, projection data are modified to contain only low contrast objects by creating projection data of reconstructed high contrast components and subtracting them from original projection data. Then, the low contrast projection data are reconstructed by using relatively high p-norm TV minimization technique, and are combined with the reconstructed high contrast component images to produce final reconstructed images. The proposed algorithm was applied to numerical phantom and a clinical data set of brain PCT exam, and the resultant images were compared with those using filtered back projection (FBP) and conventional TV

  15. Perfusion maps of the whole liver based on high temporal and spatial resolution contrast-enhanced MRI (4D THRIVE): Feasibility and initial results in focal liver lesions

    International Nuclear Information System (INIS)

    Coenegrachts, Kenneth; Ghekiere, Johan; Denolin, Vincent; Gabriele, Beck; Herigault, Gwen; Haspeslagh, Marc; Daled, Peter; Bipat, Shandra; Stoker, Jaap; Rigauts, Hans

    2010-01-01

    Purpose: To prospectively evaluate a new imaging sequence (4D THRIVE) for whole liver perfusion in high temporal and spatial resolution. Feasibility of parametric mapping and its potential for characterizing focal liver lesions (FLLs) are investigated. Materials and methods: Fifteen patients suspected for colorectal liver metastases (LMs) were included. Parametric maps were evaluated qualitatively (ring-enhancement and lesion heterogeneity) and compared to three-phased contrast-enhanced MRI. Quantitative analysis was based on average perfusion values of entire FLLs. Reference standard comprised surgery with histopathology or follow-up imaging. Fisher's exact test was used for qualitative and Kruskal-Wallis test for quantitative analysis. Results: In total 29 LMs, 17 hemangiomas and 4 focal nodular hyperplasias were evaluated. FLLs could be differentiated by qualitative assessment of parametric maps respectively three-phased contrast-enhanced MRI (Fisher's p < 0.001 for comparisons between LMs and hemangiomas and LMs and FNHs for both ring-enhancement and lesion heterogeneity) rather than by quantitative analysis of parametric maps (Chi-square for Kep = 0.33 (p = 0.847) and Chi-square for Kel = 1.35 (p = 0.509)). Conclusion: This preliminary study shows potential of 4D THRIVE for whole liver imaging enabling calculation of parametric maps. Qualitative rather than quantitative analysis was accurate for differentiating malignant and benign FLLs.

  16. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    International Nuclear Information System (INIS)

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A.

    2008-01-01

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (SE)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease

  17. CONTRAST

    DEFF Research Database (Denmark)

    Kristensen, Thomas Krogsgaard

    2007-01-01

    Dette er en afrapportering fra den årlige CONTRAST workshop, der i 2007 blev afholdt i Yaoundé, Cameroon.......Dette er en afrapportering fra den årlige CONTRAST workshop, der i 2007 blev afholdt i Yaoundé, Cameroon....

  18. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe (Japan); Fujisawa, Yasuko [Toshiba Medical Systems Corporation, Otawara (Japan); Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Sugihara, Naoki [Toshiba Medical Systems Corporation, Otawara (Japan); Yoshikawa, Takeshi [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe (Japan)

    2017-01-15

    Purpose: To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Materials and methods: Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR + PR) and 2) stable or progressive disease (SD + PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV{sub max}, and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. Results: The step-wise regression test showed that therapeutic effect (r{sup 2} = 0.63, p = 0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV{sub max}. Mean overall survival showed a significant difference for total perfusion (p = 0.003) and systemic arterial perfusion (p = 0.04). Conclusion: Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy.

  19. Brain capillary transit time heterogeneity in healthy volunteers measured by dynamic contrast-enhanced T1-weighted perfusion MRI

    DEFF Research Database (Denmark)

    Larsson, Henrik B.W.; Vestergaard, Mark B.; Lindberg, Ulrich

    2017-01-01

    based on a gamma-variate model of the capillary transit time distribution. In addition, we wanted to investigate if a subtle increase of the blood–brain barrier permeability can be incorporated into the model, still allowing estimation of CTH. Materials and Methods: Twenty-three healthy subjects were...... scanned at 3.0T MRI system applying DCE-MRI and using a gamma-variate model to estimate CTH as well as cerebral blood flow (CBF), cerebral blood volume (CBV), and permeability of the blood–brain barrier, measured as the influx constant Ki. For proof of principle we also investigated three patients...... response function. Conclusion: Our results open the possibility of characterizing brain perfusion by the capillary transit time distribution using DCE-MRI, theoretically a determinant of efficient blood to brain transport of important substances. Level of Evidence: 2. J. MAGN. RESON. IMAGING 2017;45:1809–1820....

  20. Quantitative contrast-enhanced first-pass cardiac perfusion MRI at 3 tesla with accurate arterial input function and myocardial wall enhancement.

    Science.gov (United States)

    Breton, Elodie; Kim, Daniel; Chung, Sohae; Axel, Leon

    2011-09-01

    To develop, and validate in vivo, a robust quantitative first-pass perfusion cardiovascular MR (CMR) method with accurate arterial input function (AIF) and myocardial wall enhancement. A saturation-recovery (SR) pulse sequence was modified to sequentially acquire multiple slices after a single nonselective saturation pulse at 3 Tesla. In each heartbeat, an AIF image is acquired in the aortic root with a short time delay (TD) (50 ms), followed by the acquisition of myocardial images with longer TD values (∼150-400 ms). Longitudinal relaxation rates (R(1) = 1/T(1)) were calculated using an ideal saturation recovery equation based on the Bloch equation, and corresponding gadolinium contrast concentrations were calculated assuming fast water exchange condition. The proposed method was validated against a reference multi-point SR method by comparing their respective R(1) measurements in the blood and left ventricular myocardium, before and at multiple time-points following contrast injections, in 7 volunteers. R(1) measurements with the proposed method and reference multi-point method were strongly correlated (r > 0.88, P < 10(-5)) and in good agreement (mean difference ±1.96 standard deviation 0.131 ± 0.317/0.018 ± 0.140 s(-1) for blood/myocardium, respectively). The proposed quantitative first-pass perfusion CMR method measured accurate R(1) values for quantification of AIF and myocardial wall contrast agent concentrations in 3 cardiac short-axis slices, in a total acquisition time of 523 ms per heartbeat. Copyright © 2011 Wiley-Liss, Inc.

  1. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization

    Science.gov (United States)

    Gong, Changfei; Han, Ce; Gan, Guanghui; Deng, Zhenxiang; Zhou, Yongqiang; Yi, Jinling; Zheng, Xiaomin; Xie, Congying; Jin, Xiance

    2017-04-01

    Dynamic myocardial perfusion CT (DMP-CT) imaging provides quantitative functional information for diagnosis and risk stratification of coronary artery disease by calculating myocardial perfusion hemodynamic parameter (MPHP) maps. However, the level of radiation delivered by dynamic sequential scan protocol can be potentially high. The purpose of this work is to develop a pre-contrast normal-dose scan induced structure tensor total variation regularization based on the penalized weighted least-squares (PWLS) criteria to improve the image quality of DMP-CT with a low-mAs CT acquisition. For simplicity, the present approach was termed as ‘PWLS-ndiSTV’. Specifically, the ndiSTV regularization takes into account the spatial-temporal structure information of DMP-CT data and further exploits the higher order derivatives of the objective images to enhance denoising performance. Subsequently, an effective optimization algorithm based on the split-Bregman approach was adopted to minimize the associative objective function. Evaluations with modified dynamic XCAT phantom and preclinical porcine datasets have demonstrated that the proposed PWLS-ndiSTV approach can achieve promising gains over other existing approaches in terms of noise-induced artifacts mitigation, edge details preservation, and accurate MPHP maps calculation.

  2. Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Chan, Wing P; Liu, Yi-Jui; Huang, Guo-Shu; Lin, Min-Fang; Huang, Sydney; Chang, Yue-Cune; Jiang, Ching-Chuan

    2011-03-01

    The purpose of this article is to relate intramedullary perfusion of the proximal femur to severity of osteonecrosis of the femoral head by using dynamic contrast-enhanced MRI (DCE-MRI). Twelve patients (14 symptomatic hips) who underwent DCE-MRI and had subsequent core decompression of the femoral head were examined. Hips were graded for severity according to MRI findings and were assigned scores of 0 (negative findings), 1 (focal marrow abnormalities), and 2 (subchondral collapse). Thirteen asymptomatic hips acted as controls. The DCE-MRI data were analyzed by use of a pharmacokinetic two-compartment model. Compared with control hips, there was significantly greater peak enhancement in the femoral head in hips of all grades (p femoral neck (p = 0.001) and intertrochanteric area (p = 0.001) in grade 2 hips. The time to peak was significantly delayed in the femoral head in grade 0 hips (p = 0.02) and in the intertrochanteric area in grade 2 hips (p = 0.003) compared with the controls. As evaluated by DCE-MRI, intramedullary peak enhancement in the femoral head increased with progression of idiopathic osteonecrosis of the femoral head, whereas there was delayed peak enhancement in the femoral head in hips with negative findings and intertrochanteric stasis in advanced osteonecrosis of the femoral head. Such perfusion changes as shown on MRI can occur with early osteonecrosis in the absence of other MRI abnormalities.

  3. A comparison of perfusion computed tomography and contrast enhanced computed tomography on radiation target volume delineation using rabbit VX2 brain tumor model

    International Nuclear Information System (INIS)

    Sun Changjin; Luo Yunxiu; Yu Jinming; Lu Haibo; Li Chao; Zhang Dekang; Huang Jianming; Wang Jie; Lang Jinyi

    2010-01-01

    Objective: To compare the accuracy of blood volume perfusion imaging (perfusion CT)with contrast enhanced 64-slice spiral computed tomography (CECT) in the evaluation of gross tumor volume (GTV) and clinical target volume (CTV) using rabbits with VX2 brain tumor. Methods: Perfusion CT and CECT were performed in 20 rabbits with VX2 brain tumor. The GTV and CTV calculated with the maximal and minimal diameter of each tumor in the blood volume (BV) maps and CECT were measured and compared to those in pathological specimens. Results: The mean value of the maximal and minimal diameter of GTV was (8.19 ± 2.29) mm and (4.83 ± 1.31) mm in pathological specimens, (11.98 ±3.29) mm and (7.03±1.82) mm in BV maps, while (6.36±3.85) mm and (3.17±1.93) mm in CECT images, which were significantly different (pathological specimen vs. BV map, t = 7.17, P =0.000;pathological specimen vs. CECT, t = 8.37, P = 0.000, respectively). The mean value of the maximal and minimal diameter of CTV in pathologic specimens was (12.87 ± 3.74) mm and (7.71 ± 2.15) mm, which was significantly different from that of GTV and CTV in CECT (t = - 3. 18, P = 0. 005 and t = - 4.24, P =0.000; t= -11.59,P=0.000 and t= -9.39, P=0.000), while similar with that of GTV in BV maps (t = - 1.95,P = 0. 067; t = - 2. 06, P = 0. 054). For CECT, the margin from GTV to CTV was 81.83% ±40.33% for the maximal diameter and 276.73% ± 131.46% for the minimal. While for BV maps, the margin was 7.93% ± 17. 84% and 12.52% ± 27. 83%, which was significant different from that for CECT images (t=7.36, P=0. 000 and t= -8.78, P=0.000). Conclusions: Compared with CECT, the BV map from 64-slice spiral CT perfusion imaging might have higher accuracy in target volume delineation for brain tumor. (authors)

  4. Myocardial perfusion assessed by contrast echocardiography and single photon emission computed tomography in the evaluation of patients with acute chest pain and normal electrocardiogram

    International Nuclear Information System (INIS)

    Soares, J. Jr.; Ferreira, S.M.A.; Matias, W. Jr.; Giorgi, M.C.P.; Izaki, M.; Luz, P.L.; Ramires, J.A.F.; Meneghetti, J.C.

    2002-01-01

    Aim : Evaluation of diagnostic accuracy of myocardial contrast echocardiography (MCE) in comparison with single-photon emission computed tomography (SPECT) for the detection of myocardial ischemia in patients with acute chest pain. Material and Methods : Eighteen patients (pts) with chest pain lasting ≥30 minutes, occurring within 6 hours of emergency room presentation and a normal or no diagnostic electrocardiogram were studied. Pts underwent rest MCE and SPECT. For both exams myocardial perfusion was assessed in the same 7 segments (apical, anterior, inferior, anteroseptal, inferoseptal, lateral and posterior) of left ventricle. A total of 126 segments were analyzed. Images were classified as positive for ischemia if they had a perfusion defect. Coronary angiography was performed if MCE or SPECT images were classified as positive for ischemia or by clinical indication. Otherwise the patients underwent stress SPECT. Significant coronary artery disease (CAD) was defined as ≥70% stenosis in a major coronary artery or its branches. Final diagnosis of an acute coronary event (ACE) was established in the presence of positive findings in MCE or SPECT in addition to significant CAD in the corresponding territory. Kappa statistics were calculated to evaluate the concordance between MCE and SPECT. κ values of ≤0.4, >0.4 and >0.7 indicate fair, good and excellent agreement, respectively. Results: Thirteen out of 18 pts underwent coronary angiography (seven pts had positive findings on SPECT, 2 on MCE, 2 on both exams and 1 had clinical indication). Significant CAD was detected on six. Five pts underwent stress SPECT and no perfusion defect was detected. Therefore, six pts (33.3%) had an ACE and 12 (66.6%) had not. There were no statistical differences between groups according to age, gender, duration of pain, free pain interval, presence of risk factors and antecedents. Concordance between MCE and SPECT for evaluation of perfusion defects showed a ? coefficient of 0

  5. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    /min); blood volume (6 +/- 2/4 +/- 1/7 +/- 6 mL/100 g) and permeability (0.9 +/- 0.4/0.8 +/- 0.3/3 +/- 5 mL/100 g/min) were estimated by using Patlak's method and a two-compartment model. A corroboration of these results was achieved by using model simulation. In addition, it was possible to generate maps...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  6. Use of Contrast-Enhanced Ultrasound to Study Relationship between Serum Uric Acid and Renal Microvascular Perfusion in Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-01-01

    Full Text Available Purpose. To investigate the relationship between uric acid and renal microvascular perfusion in diabetic kidney disease (DKD using contrast-enhanced ultrasound (CEUS method. Materials and Methods. 79 DKD patients and 26 healthy volunteers were enrolled. Renal function and urine protein markers were tested. DKD patients were subdivided into two groups including a normal serum uric acid (SUA group and a high SUA group. Contrast-enhanced ultrasound (CEUS was performed, and low acoustic power contrast-specific imaging was used for quantitative analysis. Results. Normal controls (NCs had the highest levels of AUC, AUC1, and AUC2. Compared to the normal SUA DKD group, high SUA DKD patients had significantly higher IMAX, AUC, and AUC1 (P<0.05. DKD patients with low urinary uric acid (UUA excretion had significantly higher AUC2 compared to DKD patients with normal UUA (P<0.05. Conclusion. Hyperuricemia in DKD patients was associated with a renal ultrasound image suggestive of microvascular hyperperfusion. The CEUS parameter AUC1 holds promise as an indicator for renal microvascular hyperperfusion, while AUC2 might be a useful indicator of declining glomerular filtration rate in DKD patients with decreased excretion of uric acid.

  7. Early changes in perfusion of glioblastoma during radio- and chemotherapy evaluated by T1-dynamic contrast enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Møller, Søren; Lundemann, Michael; Law, Ian

    2015-01-01

    BACKGROUND: The survival times of patients with glioblastoma differ widely and biomarkers that would enable individualized treatment are needed. The objective of this study was to measure changes in the vascular physiology of tumor using T1-dynamic contrast enhanced magnetic resonance imaging (DCE...... months post-Tx. DCE-MRI at three Tesla generated maps of blood flow (BF), blood volume (BV), permeability (Ki) and volume of distribution (Vd) using a combination of model-free deconvolution and Patlak plots. Regions of interest in contrast enhancing tumor and in normal appearing white matter were...

  8. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    Science.gov (United States)

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (pquantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

  9. Prevalence of first-pass myocardial perfusion defects detected by contrast-enhanced dual-source CT in patients with non-ST segment elevation acute coronary syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Schepis, Tiziano; Achenbach, Stephan; Marwan, Mohamed; Muschiol, Gerd; Ropers, Dieter; Daniel, Werner G.; Pflederer, Tobias [University of Erlangen, Department of Internal Medicine 2 (Cardiology), Erlangen (Germany)

    2010-07-15

    To investigate the prevalence and diagnostic value of first-pass myocardial perfusion defects (PD) visualised by contrast-enhanced multidetector computed tomography (MDCT) in patients admitted for a first acute coronary syndrome (ACS). Thirty-eight patients with non-ST segment elevation myocardial infarction (NSTEMI) or unstable angina (UA) and scheduled for percutaneous coronary intervention underwent dual-source CT immediately before catheterisation. CT images were analysed for the presence of any PD by using a 17-segment model. Results were compared with peak cardiac troponin-I (cTnI) and angiography findings. PD were seen in 21 of the 24 patients with NSTEMI (median peak cTnI level 7.07 ng/mL; range 0.72-37.07 ng/mL) and in 2 of 14 patients with UA. PD corresponded with the territory of the infarct-related artery in 20 out of 22 patients. In a patient-based analysis, sensitivity, specificity, negative and positive predictive values of any PD for predicting NSTEMI were 88%, 86%, 80% and 91%. Per culprit artery, the respective values were 86%, 75%, 80% and 83%. In patients with non-ST segment elevation ACS, first-pass myocardial PD in contrast-enhanced MDCT correlate closely with the presence of myocardial necrosis, as determined by increases in cTnI levels. (orig.)

  10. Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid

    Directory of Open Access Journals (Sweden)

    Sarah Sutter

    2017-01-01

    Full Text Available Objectives. Bone ischemia and necrosis are challenging to treat, requiring investigation of native and engineered bone revascularisation processes through advanced imaging techniques. This study demonstrates an experimental two-step method for precise bone and vessel analysis in native bones or vascularised bone grafts using X-ray microtomography (μCT, without interfering with further histological processing. Methods. Distally ligated epigastric arteries or veins of 6 nude rats were inserted in central channels of porous hydroxyapatite cylinders and these pedicled grafts were implanted subcutaneously. One week later, the rats were perfused with ink-gelatin and euthanised and the femurs, tibias, and grafts were explanted. Samples were scanned using μCT, decalcified, incubated with phosphotungstic acid (PTA for contrast enhancement, rescanned, and processed histologically. Results. Contrast-enhanced μCT displayed the course and branching of native bone vessels. Histologically, both central (−17% and epiphyseal vessels (−58% appeared smaller than in μCT scans. Hydroxyapatite cylinders were thoroughly vascularised but did not display bone formation. Grafts with a central artery had more (+58% and smaller (−52% vessel branches compared to grafts with a vein. Conclusions. We present a relatively inexpensive and easy-to-perform two-step method to analyse bone and vessels by μCT, suitable to assess a variety of bone-regenerative strategies.

  11. Dynamic Contrast-Enhanced Perfusion Area-Detector CT: Preliminary Comparison of Diagnostic Performance for N Stage Assessment With FDG PET/CT in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi

    2017-11-01

    The objective of our study was to directly compare the capability of dynamic first-pass contrast-enhanced (CE) perfusion area-detector CT (ADCT) and FDG PET/CT for differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with non-small cell lung carcinoma (NSCLC). Seventy-seven consecutive patients, 45 men (mean age ± SD, 70.4 ± 5.9 years) and 32 women (71.2 ± 7.7 years), underwent dynamic first-pass CE-perfusion ADCT at two or three different positions for covering the entire thorax, FDG PET/CT, surgical treatment, and pathologic examination. From all ADCT data for each of the subjects, a whole-chest perfusion map was computationally generated using the dual- and single-input maximum slope and Patlak plot methods. For quantitative N stage assessment, perfusion parameters and the maximum standardized uptake value (SUV max ) for each lymph node were determined by measuring the relevant ROI. ROC curve analyses were performed for comparing the diagnostic capability of each of the methods on a per-node basis. N stages evaluated by each of the indexes were then statistically compared with the final pathologic diagnosis by means of chi-square and kappa statistics. The area under the ROC curve (A z ) values of systemic arterial perfusion (A z = 0.89), permeability surface (A z = 0.78), and SUV max (A z = 0.85) were significantly larger than the A z values of total perfusion (A z = 0.70, p perfusion calculated using the dual-input maximum slope model was substantial (κ = 0.70, p perfusion ADCT is as useful as FDG PET/CT for the differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with NSCLC.

  12. Study of proximal femoral bone perfusion with 3D T1 dynamic contrast-enhanced MRI: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Budzik, Jean-Francois [Groupe Hospitalier de l' Institut Catholique de Lille / Faculte Libre de Medecine, Service d' Imagerie Medicale, Lille (France); Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHRU de Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille (France); Universite Catholique de Lille, Lille (France); Universite Nord de France, Lille (France); EA 4490 PMOI (Physiopathologie des Maladies Osseuses Inflammatoires) IFR 114 PRES Universite Lille Nord de France, Lille (France); Lefebvre, Guillaume; El Rafei, Mazen [Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHRU de Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille (France); Universite Nord de France, Lille (France); CHU Lille, Lille (France); Forzy, Gerard [Universite Catholique de Lille, Lille (France); Universite Nord de France, Lille (France); Groupe Hospitalier de l' Institut Catholique de Lille, Laboratoire de Biologie, Departement de Biostatistiques, Lille (France); Chechin, David [Philips Medical Systems, Suresnes (France); Cotten, Anne [Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHRU de Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille (France); Universite Nord de France, Lille (France); EA 4490 PMOI (Physiopathologie des Maladies Osseuses Inflammatoires) IFR 114 PRES Universite Lille Nord de France, Lille (France); CHU Lille, Lille (France)

    2014-12-15

    The objective of this study was to compare measurements of semi-quantitative and pharmacokinetic parameters in areas of red (RBM) and yellow bone marrow (YBM) of the hip, using an in-house high-resolution DCE T1 sequence, and to assess intra- and inter-observer reproducibility of these measurements. The right hips of 21 adult patients under 50 years of age were studied. Spatial resolution was 1.8 x 1.8 x 1.8 mm{sup 3}, and temporal resolution was 13.5 seconds. Two musculoskeletal radiologists independently processed DCE images and measured semi-quantitative and pharmacokinetic parameters in areas of YBM and RBM. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Intra- and inter-observer reproducibility was assessed. Area under the curve (AUC) and initial slope (IS) were significantly greater for RBM than for YBM (p < 0.05). K{sup trans} and k{sub ep} were also significantly greater for RBM (p < 0.05). There was no significant difference in time to peak between the regions (p < 0.05). SNR, CNR, and intra- and inter-observer reproducibility were all good. DCE study of the whole hip is feasible with high spatial resolution using a 3D T1 sequence. Measures were possible even in low vascularized areas of the femoral head. K{sup trans}, k{sub ep}, AUC, and IS values were significantly different between red and yellow marrow, whereas TTP values were not. (orig.)

  13. Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Budzik, Jean-François, E-mail: Budzik.jean-francois@ghicl.net [Lille Catholic Hospitals, Imaging Department, Lille Catholic University, Lille (France); PMOI Physiopathology of Inflammatory Bone Diseases, EA 4490, Lille (France); Ding, Juliette, E-mail: Ding.juliette@gmail.com [Lille Catholic Hospitals, Imaging Department, Lille Catholic University, Lille (France); Norberciak, Laurène, E-mail: Norberciak.Laurene@ghicl.net [Lille Catholic Hospitals, Biostatistics Department, Lille Catholic University, Lille (France); Pascart, Tristan, E-mail: Pascart.tristan@ghicl.net [Lille Catholic Hospitals, Rheumatology Department, Lille Catholic University, Lille (France); Toumi, Hechmi, E-mail: hechmi.toumi@univ-orleans.fr [EA4708 I3MTO, Orleans Regional Hospital, University of Orleans, Orleans (France); Verclytte, Sébastien, E-mail: Verclytte.Sebastien@ghicl.net [Lille Catholic Hospitals, Imaging Department, Lille Catholic University, Lille (France); Coursier, Raphaël, E-mail: Coursier.Raphael@ghicl.net [Lille Catholic Hospitals, Orthopaedic Surgery Department, Lille Catholic University, Lille (France)

    2017-03-15

    The role of inflammation in the pathogenesis of osteoarthritis is being given major interest, and inflammation is closely linked with vascularization. It was recently demonstrated that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could identify the subchondral bone marrow vascularization changes occurring in osteoarthritis in animals. These changes appeared before cartilage lesions were visible and were correlated with osteoarthritis severity. Thus the opportunity to obtain an objective assessment of bone vascularization in non-invasive conditions in humans might help better understanding osteoarthritis pathophysiology and finding new biomarkers. We hypothesized that, as in animals, DCE-MRI has the ability to identify subchondral bone marrow vascularization changes in human osteoarthritis. We performed knee MRI in 19 patients with advanced knee osteoarthritis. We assessed subchondral bone marrow vascularization in medial and lateral femorotibial compartments with DCE-MRI and graded osteoarthritis lesions on MR images. Statistical analysis assessed intra- and inter-observer agreement, compared DCE-MRI values between the different subchondral zones, and sought for an influence of age, sex, body mass index, and osteoarthritis garde on these values. The intra- and inter-observer agreement for DCE-MRI values were excellent. These values were significantly higher in the femorotibial compartment the most affected by osteoarthritis, both in femur and tibia (p < 0.0001) and were significantly and positively correlated with cartilage lesions (p = 0.02) and bone marrow oedema grade (p < 0.0001) after adjustment. We concluded that, as in animals, subchondral bone marrow vascularization changes assessed with DCE-MRI were correlated with osteoarthritis severity in humans.

  14. Anatomical reconstructions of the human cardiac venous system using contrast-computed tomography of perfusion-fixed specimens.

    Science.gov (United States)

    Spencer, Julianne; Fitch, Emily; Iaizzo, Paul A

    2013-04-18

    A detailed understanding of the complexity and relative variability within the human cardiac venous system is crucial for the development of cardiac devices that require access to these vessels. For example, cardiac venous anatomy is known to be one of the key limitations for the proper delivery of cardiac resynchronization therapy (CRT)(1) Therefore, the development of a database of anatomical parameters for human cardiac venous systems can aid in the design of CRT delivery devices to overcome such a limitation. In this research project, the anatomical parameters were obtained from 3D reconstructions of the venous system using contrast-computed tomography (CT) imaging and modeling software (Materialise, Leuven, Belgium). The following parameters were assessed for each vein: arc length, tortuousity, branching angle, distance to the coronary sinus ostium, and vessel diameter. CRT is a potential treatment for patients with electromechanical dyssynchrony. Approximately 10-20% of heart failure patients may benefit from CRT(2). Electromechanical dyssynchrony implies that parts of the myocardium activate and contract earlier or later than the normal conduction pathway of the heart. In CRT, dyssynchronous areas of the myocardium are treated with electrical stimulation. CRT pacing typically involves pacing leads that stimulate the right atrium (RA), right ventricle (RV), and left ventricle (LV) to produce more resynchronized rhythms. The LV lead is typically implanted within a cardiac vein, with the aim to overlay it within the site of latest myocardial activation. We believe that the models obtained and the analyses thereof will promote the anatomical education for patients, students, clinicians, and medical device designers. The methodologies employed here can also be utilized to study other anatomical features of our human heart specimens, such as the coronary arteries. To further encourage the educational value of this research, we have shared the venous models on our

  15. Early perfusion changes within 1 week of systemic treatment measured by dynamic contrast-enhanced MRI may predict survival in patients with advanced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bang-Bin; Yu, Chih-Wei; Liang, Po-Chin [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Hsu, Chao-Yu [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Taipei Hospital, Ministry of Health and Welfare, Department of Radiology, New Taipei City (China); Hsu, Chiun; Hsu, Chih-Hung; Cheng, Ann-Lii [National Taiwan University College of Medicine and Hospital, Department of Oncology, Taipei City (China); Shih, Tiffany Ting-Fang [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Taipei City Hospital, Department of Medical Imaging, Taipei City (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China)

    2017-07-15

    To correlate early changes in the parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) within 1 week of systemic therapy with overall survival (OS) in patients with advanced hepatocellular carcinoma (HCC). Eighty-nine patients with advanced HCC underwent DCE-MRI before and within 1 week following systemic therapy. The relative changes of six DCE-MRI parameters (Peak, Slope, AUC, Ktrans, Kep and Ve) of the tumours were correlated with OS using the Kaplan-Meier model and the double-sided log-rank test. All patients died and the median survival was 174 days. Among the six DCE-MRI parameters, reductions in Peak, AUC, and Ktrans, were significantly correlated with one another. In addition, patients with a high Peak reduction following treatment had longer OS (P = 0.023) compared with those with a low Peak reduction. In multivariate analysis, a high Peak reduction was an independent favourable prognostic factor in all patients [hazard ratio (HR), 0.622; P = 0.038] after controlling for age, sex, treatment methods, tumour size and stage, and Eastern Cooperative Oncology Group performance status. Early perfusion changes within 1 week following systemic therapy measured by DCE-MRI may aid in the prediction of the clinical outcome in patients with advanced HCC. (orig.)

  16. Simultaneous determination of arterial input function of the internal carotid and middle cerebral arteries for dynamic susceptibility contrast MRI

    International Nuclear Information System (INIS)

    Scholdei, R.; Wenz, F.; Fuss, M.; Essig, M.; Knopp, M.V.

    1999-01-01

    Purpose: The determination of the arterial input function (AIF) is necessary for absolute quantification of the regional cerebral blood volume and blood flow using dynamic susceptibility contrast MRI. The suitability of different vessels (ICA-internal carotid artery, MCA-middle cerebral artery) for AIF determination was compared in this study. Methods: A standard 1.5 T MR system and a simultaneous dual FLASH sequence (TR/TE1/TE2/α=32/15/25/10 ) were used to follow a bolus of contrast agent. Slice I was chosen to cut the ICA perpendicularly. Slice II included the MCA. Seventeen data sets from ten subjects were evaluated. Results: The number of AIF-relevant pixels, the area under the AIF and the maximum concentration were all lower when the AIF was determined from the MCA compared to the ICA. Additionally, the mean transit time (MTT) and the time to maximum concentration (TTM) were longer in the MCA, complicating the computerized identification of AIF-relevant pixels. Data from one subject, who was examined five times, demonstrated that the intraindividual variance of the measured parameters was markedly lower than the interpersonal variance. Conclusions: It appears to be advantageous to measure the AIF in the ICA rather than the MCA. (orig.) [de

  17. Automated Determination of Arterial Input Function for Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent Component Analysis

    Directory of Open Access Journals (Sweden)

    Sharon Chen

    2016-01-01

    Full Text Available Purpose. Quantitative cerebral blood flow (CBF measurement using dynamic susceptibility contrast- (DSC- MRI requires accurate estimation of the arterial input function (AIF. The present work utilized the independent component analysis (ICA method to determine the AIF in the regions adjacent to the middle cerebral artery (MCA by the alleviated confounding of partial volume effect. Materials and Methods. A series of spin-echo EPI MR scans were performed in 10 normal subjects. All subjects received 0.2 mmol/kg Gd-DTPA contrast agent. AIFs were calculated by two methods: (1 the region of interest (ROI selected manually and (2 weighted average of each component selected by ICA (weighted-ICA. The singular value decomposition (SVD method was then employed to deconvolve the AIF from the tissue concentration time curve to obtain quantitative CBF values. Results. The CBF values calculated by the weighted-ICA method were 41.1 ± 4.9 and 22.1 ± 2.3 mL/100 g/min for cortical gray matter (GM and deep white matter (WM regions, respectively. The CBF values obtained based on the manual ROIs were 53.6 ± 12.0 and 27.9 ± 5.9 mL/100 g/min for the same two regions, respectively. Conclusion. The weighted-ICA method allowed semiautomatic and straightforward extraction of the ROI adjacent to MCA. Through eliminating the partial volume effect to minimum, the CBF thus determined may reflect more accurate physical characteristics of the T2⁎ signal changes induced by the contrast agent.

  18. The Comparison of Computed Tomography Perfusion, Contrast-Enhanced Computed Tomography and Positron-Emission Tomography/Computed Tomography for the Detection of Primary Esophageal Carcinoma.

    Science.gov (United States)

    Genc, Berhan; Kantarci, Mecit; Sade, Recep; Orsal, Ebru; Ogul, Hayri; Okur, Aylin; Aydin, Yener; Karaca, Leyla; Eroğlu, Atilla

    2016-01-01

    The purpose of this study was to investigate the efficiency of computed tomography perfusion (CTP), contrast-enhanced computed tomography (CECT) and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron-emission tomography (PET/CT) in the diagnosis of esophageal cancer. This prospective study consisted of 33 patients with pathologically confirmed esophageal cancer, 2 of whom had an esophageal abscess. All the patients underwent CTP, CECT and PET/CT imaging and the imaging findings were evaluated. Sensitivity, specificity and positive and negative predictive values were calculated for each of the 3 imaging modalities relative to the histological diagnosis. Thirty-three tumors were visualized on CTP, 29 on CECT and 27 on PET/CT. Six tumors were stage 1, and 2 and 4 of these tumors were missed on CECT and PET/CT, respectively. Significant differences between CTP and CECT (p = 0.02), and between CTP and PET/CT (p = 0.04) were found for stage 1 tumors. Values for the sensitivity, specificity and positive and negative predictive values on CTP were 100, 100, 100 and 100%, respectively. Corresponding values on CECT were 93.94, 0, 93.94 and 0%, respectively, and those on PET/CT were 87.88, 0, 93.55 and 0%, respectively. Hence, the sensitivity, specificity and positive and negative predictive values of CTP were better than those of CECT and PET/CT. CTP had an advantage over CECT and PET/CT in detecting small lesions. CTP was valuable, especially in detecting stage 1 tumors. © 2016 S. Karger AG, Basel.

  19. Automatic determination of the arterial input function in dynamic susceptibility contrast MRI: comparison of different reproducible clustering algorithms

    International Nuclear Information System (INIS)

    Yin, Jiandong; Yang, Jiawen; Guo, Qiyong

    2015-01-01

    Arterial input function (AIF) plays an important role in the quantification of cerebral hemodynamics. The purpose of this study was to select the best reproducible clustering method for AIF detection by comparing three algorithms reported previously in terms of detection accuracy and computational complexity. First, three reproducible clustering methods, normalized cut (Ncut), hierarchy (HIER), and fast affine propagation (FastAP), were applied independently to simulated data which contained the true AIF. Next, a clinical verification was performed where 42 subjects participated in dynamic susceptibility contrast MRI (DSC-MRI) scanning. The manual AIF and AIFs based on the different algorithms were obtained. The performance of each algorithm was evaluated based on shape parameters of the estimated AIFs and the true or manual AIF. Moreover, the execution time of each algorithm was recorded to determine the algorithm that operated more rapidly in clinical practice. In terms of the detection accuracy, Ncut and HIER method produced similar AIF detection results, which were closer to the expected AIF and more accurate than those obtained using FastAP method; in terms of the computational efficiency, the Ncut method required the shortest execution time. Ncut clustering appears promising because it facilitates the automatic and robust determination of AIF with high accuracy and efficiency. (orig.)

  20. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  1. MRI of myocardial perfusion.

    Science.gov (United States)

    Jerosch-Herold, Michael; Muehling, Olaf; Wilke, Norbert

    2006-02-01

    An overwhelming number of myocardial perfusion studies are done by nuclear isotope imaging. Magnetic resonance imaging during the first pass of an injected, contrast bolus has some significant advantages for detection of blood flow deficits, namely higher spatial resolution, absence of ionizing radiation, and speed of the test. Previous clinical studies have demonstrated that excellent sensitivity and specificity can be achieved with MR myocardial perfusion imaging for detecting coronary artery disease, and assessment of patients with acute chest pain. Furthermore, an absolute quantification of myocardial blood flow is feasible, as was demonstrated by comparison of MR perfusion imaging, to measurements with isotope labeled microspheres in experimental models. An integrated assessment of perfusion, function, and viability, is thus feasible by MRI to answer important clinical challenges such as the identification of stunned or hibernating, but viable myocardium.

  2. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    Science.gov (United States)

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates. Copyright © 2015 Elsevier Inc. All rights

  3. Analysis of perfusion defects by causes other than acute pulmonary thromboembolism on contrast-enhanced dual-energy CT in consecutive 537 patients

    International Nuclear Information System (INIS)

    Kim, Bo Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Hyun Joo; Hwang, Hye Jeon; Lim, Chaehun

    2012-01-01

    Objective: To assess causes, incidence and patterns of perfusion defects (PDs) on dual-energy perfusion CT angiography (DECTA) in clinically suspected acute pulmonary thromboembolisms (PTE). Materials and methods: Consecutive 537 patients who underwent DECTA for suspicion of PTE were retrospectively reviewed. After excluding patients with possible PTE or unsatisfactory perfusion map quality, 299 patients with 1697 lobes were included. The DECTA (Somatom Definition, Siemens) was performed at 140 kV and 80 kV. Color-coded perfusion images were obtained with a lung PBV application of the workstation software (Syngo Dual Energy). The presence, incidence, three patterns of PDs (wedge-shaped, heterogeneous, and regionally homogeneous), pulmonary diseases, and the matchedness between the PD and the disease extent were studied. Results: 315 of 1697 lobes (18.6%) in 156 of 299 patients (81.3%) showed PDs. Among them, 51 (3%), 257 (15.1%), and 7 (0.4%) lobes had PDs due to vascular, nonvascular, and unidentifiable causes, respectively. Vascular causes include: pulmonary arterial (PA) hypertension (0.7%), extrinsic occlusion of PA by fibrosis (0.6%), PA hypoplasia (0.6%), vasculitis (0.5%), cancer mass compressing PA, venous occlusion, AVM, and pulmonary angiosarcoma. Most of PDs were wedge-shaped and well-matched. Nonvascular causes include: mosaic attenuation (4.1%), emphysema (3.2%), interstitial fibrosis (1.6%), bronchitis (1.4%), GGO (1.2%), cellular bronchiolitis (1%), bronchiectasis, airway obstruction, compensaroty lung hyperinflation, air trapping, cor-pulmonale, bronchopneumonia, physiologic decreased ventilation, and segmental bronchial atresia. Most of PDs showed heterogeneous pattern and were not matched. Conclusions: Various vascular and nonvascular diseases cause PDs on DECTA. Each disease shows different pattern of PD depending on pathophysiology and physiologic compensation.

  4. Evaluation of Texture Analysis Parameter for Response Prediction in Patients with Hepatocellular Carcinoma Undergoing Drug-eluting Bead Transarterial Chemoembolization (DEB-TACE) Using Biphasic Contrast-enhanced CT Image Data: Correlation with Liver Perfusion CT.

    Science.gov (United States)

    Kloth, Christopher; Thaiss, Wolfgang M; Kärgel, Rainer; Grimmer, Rainer; Fritz, Jan; Ioanoviciu, Sorin Dumitru; Ketelsen, Dominik; Nikolaou, Konstantin; Horger, Marius

    2017-11-01

    This study aimed to evaluate the potential role of computed tomography texture analysis (CTTA) of arterial and portal-venous enhancement phase image data for prediction and accurate assessment of response of hepatocellular carcinoma undergoing drug-eluting bead transarterial chemoembolization (TACE) by comparison to liver perfusion CT (PCT). Twenty-eight patients (27 male; mean age 67.2 ± 10.4) with 56 hepatocellular carcinoma-typical liver lesions were included. Arterial and portal-venous phase CT data obtained before and after TACE with a mean time of 39.93 ± 62.21 days between examinations were analyzed. TACE was performed within 48 hours after first contrast-enhanced CT. CTTA software was a prototype. CTTA analysis was performed blinded (for results) by two observers separately. Combined results of modified Response Evaluation Criteria In Solid Tumors (mRECIST) and PCT of the liver were used as the standard of reference. Time to progression was additionally assessed for all patients. CTTA parameters included heterogeneity, intensity, average, deviation, skewness, and entropy of co-occurrence. Each parameter was compared to those of PCT (blood flow [BF], blood volume, arterial liver perfusion [ALP], portal-venous perfusion, and hepatic perfusion index) measured before and after TACE. mRECIST + PCT yielded 28.6% complete response (CR), 42.8% partial response, and 28.6% stable disease. Significant correlations were registered in the arterial phase in CR between changes in mean heterogeneity and BF (P = .004, r = -0.815), blood volume (P = .002, r = -0.851), and ALP (P = .002, r = -0.851), respectively. In the partial response group, changes in mean heterogeneity correlated with changes in ALP (P = .003) and to a lesser degree with hepatic perfusion index (P = .027) in the arterial phase. In the stable disease group, BF correlated with entropy of nonuniformity (P = .010). In the portal-venous phase, no statistically

  5. Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival

    Directory of Open Access Journals (Sweden)

    Prativa Sahoo

    2018-01-01

    Full Text Available Background. The aim of this study was to correlate T1-weighted dynamic contrast-enhanced MRI- (DCE-MRI- derived perfusion parameters with overall survival of recurrent high-grade glioma patients who received neural stem cell- (NSC- mediated enzyme/prodrug gene therapy. Methods. A total of 12 patients were included in this retrospective study. All patients were enrolled in a first-in-human study (NCT01172964 of NSC-mediated therapy for recurrent high-grade glioma. DCE-MRI data from all patients were collected and analyzed at three time points: MRI#1—day 1 postsurgery/treatment, MRI#2— day 7 ± 3 posttreatment, and MRI#3—one-month follow-up. Plasma volume (Vp, permeability (Ktr, and leakage (λtr perfusion parameters were calculated by fitting a pharmacokinetic model to the DCE-MRI data. The contrast-enhancing (CE volume was measured from the last dynamic phase acquired in the DCE sequence. Perfusion parameters and CE at each MRI time point were recorded along with their relative change between MRI#2 and MRI#3 (Δ32. Cox regression was used to analyze patient survival. Results. At MRI#1 and at MRI#3, none of the parameters showed a significant correlation with overall survival (OS. However, at MRI#2, CE and λtr were significantly associated with OS (p<0.05. The relative λtr and Vp from timepoint 2 to timepoint 3 (Δ32λtr and Δ32Vp were each associated with a higher hazard ratio (p<0.05. All parameters were highly correlated, resulting in a multivariate model for OS including only CE at MRI#2 and Δ32Vp, with an R2 of 0.89. Conclusion. The change in perfusion parameter values from 1 week to 1 month following NSC-mediated therapy combined with contrast-enhancing volume may be a useful biomarker to predict overall survival in patients with recurrent high-grade glioma.

  6. : Myocardial Perfusion

    OpenAIRE

    Dacher, Jean-Nicolas; Lefebvre, V.; Dubourg, Bernard; Deux, Jean-François; Caudron, Jérôme

    2013-01-01

    International audience; The analysis of myocardial perfusion is a key step in the cardiac MRI examination. In routine work, this exploration carried out at rest is based on the qualitative first pass study of gadolinium with an ECG-triggered saturation recovery bFFE sequence. In view of recent knowledge, the analysis of the myocardial perfusion under vasodilator stress may be carried out by scintigraphy or MRI, the latter benefiting from the absence of exposure to ionizing rays and a lower co...

  7. Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns

    International Nuclear Information System (INIS)

    Tokuda, Osamu; Hayashi, Noriko; Taguchi, Koutarou; Matsunaga, Naofumi

    2005-01-01

    To assess the diagnostic value of perfusion MR imaging of diseased vertebrae by analysis of three parameters and the distribution of the time-intensity curve (TIC) patterns. Dynamic MR imaging was performed on 34 patients with 48 lesions. All lesions were assigned to one of four groups: osteoporotic compression fracture, benign lesion without compression fracture, pathologic compression fracture, or metastatic lesion without fracture. Peak enhancement, steepest slope, and slope value were calculated from the TIC of diseased vertebrae. TICs were classified into five types. Comparisons were made among groups by analysis of the three parameters and the distributions of the TICs pattern. All parameters of pathologic compression fracture were significantly higher than those of osteoporotic compression fracture (P<0.05). The steepest slopes of metastatic lesions with and without pathologic compression fracture were significantly higher than those of benign lesions without compression fracture (P<0.05). No characteristic distribution of the TIC pattern helpful for the differentiation of benign and metastatic lesions was found. In distinguishing osteoporotic from pathologic compression fractures, semiquantitative analysis of the perfusion MR imaging may be useful. However, the analysis of the TIC patterns can not significantly contribute to the differential diagnosis. (orig.)

  8. Technical aspects of MR perfusion

    International Nuclear Information System (INIS)

    Sourbron, Steven

    2010-01-01

    The most common methods for measuring perfusion with MRI are arterial spin labelling (ASL), dynamic susceptibility contrast (DSC-MRI), and T 1 -weighted dynamic contrast enhancement (DCE-MRI). This review focuses on the latter approach, which is by far the most common in the body and produces measures of capillary permeability as well. The aim is to present a concise but complete overview of the technical issues involved in DCE-MRI data acquisition and analysis. For details the reader is referred to the references. The presentation of the topic is essentially generic and focuses on technical aspects that are common to all DCE-MRI measurements. For organ-specific problems and illustrations, we refer to the other papers in this issue. In Section 1 'Theory' the basic quantities are defined, and the physical mechanisms are presented that provide a relation between the hemodynamic parameters and the DCE-MRI signal. Section 2 'Data acquisition' discusses the issues involved in the design of an optimal measurement protocol. Section 3 'Data analysis' summarizes the steps that need to be taken to determine the hemodynamic parameters from the measured data.

  9. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.

    Directory of Open Access Journals (Sweden)

    Astrid Velroyen

    Full Text Available The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.

  10. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients?

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Boram; Kang, Doo Kyoung; Kim, Tae Hee [Ajou University School of Medicine, Department of Radiology, Suwon, Gyeonggi-do (Korea, Republic of); Yoon, Dukyong [Ajou University School of Medicine, Department of Biomedical Informatics, Suwon (Korea, Republic of); Jung, Yong Sik; Kim, Ku Sang [Ajou University School of Medicine, Department of Surgery, Suwon (Korea, Republic of); Yim, Hyunee [Ajou University School of Medicine, Department of Pathology, Suwon (Korea, Republic of)

    2014-05-15

    To find out any correlation between dynamic contrast-enhanced (DCE) model-based parameters and model-free parameters, and evaluate correlations between perfusion parameters with histologic prognostic factors. Model-based parameters (Ktrans, Kep and Ve) of 102 invasive ductal carcinomas were obtained using DCE-MRI and post-processing software. Correlations between model-based and model-free parameters and between perfusion parameters and histologic prognostic factors were analysed. Mean Kep was significantly higher in cancers showing initial rapid enhancement (P = 0.002) and a delayed washout pattern (P = 0.001). Ve was significantly lower in cancers showing a delayed washout pattern (P = 0.015). Kep significantly correlated with time to peak enhancement (TTP) (ρ = -0.33, P < 0.001) and washout slope (ρ = 0.39, P = 0.002). Ve was significantly correlated with TTP (ρ = 0.33, P = 0.002). Mean Kep was higher in tumours with high nuclear grade (P = 0.017). Mean Ve was lower in tumours with high histologic grade (P = 0.005) and in tumours with negative oestrogen receptor status (P = 0.047). TTP was shorter in tumours with negative oestrogen receptor status (P = 0.037). We could acquire general information about the tumour vascular physiology, interstitial space volume and pathologic prognostic factors by analyzing time-signal intensity curve without a complicated acquisition process for the model-based parameters. (orig.)

  11. Inbreeding depression increases susceptibility to bovine tuberculosis in lions: an experimental test using an inbred-outbred contrast through translocation.

    Science.gov (United States)

    Trinkel, Martina; Cooper, Dave; Packer, Craig; Slotow, Rob

    2011-07-01

    Disease can dramatically influence the dynamics of endangered wildlife populations, especially when they are small and isolated, with increased risk of inbreeding. In Hluhluwe-iMfolozi Park (HiP), a small, enclosed reserve in South Africa, a large lion (Panthera leo) population arose from a small founder group in the 1960s and started showing conspicuous signs of inbreeding. To restore the health status of the HiP lion population, outbred lions were translocated into the existing population. In this study, we determined the susceptibility to bovine tuberculosis (bTB), and the prevalence of antibody to feline viruses of native lions, and compared the findings with those from translocated outbred lions and their offspring. Antibodies to feline herpesvirus, feline calicivirus, feline parvovirus, and feline coronavirus were present in the lion population, but there was no significant difference in antibody prevalence between native and translocated lions and their offspring, and these feline viruses did not appear to have an effect on the clinical health of HiP lions. However, feline immunodeficiency virus (FIV), which was previously absent from HiP, appears to have been introduced into the lion population through translocation. Within 7 yr, the prevalence of antibody to FIV increased up to 42%. Bovine tuberculosis posed a major threat to the inbred native lion population, but not to translocated lions and their offspring. More than 30% of the native lion population died from bTB or malnutrition compared with lions and their offspring. We have demonstrated that management of population genetics through supplementation can successfully combat a disease that threatens population persistence. However, great care must be taken not to introduce new diseases into populations through translocation.

  12. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Science.gov (United States)

    Löbel, Ulrike; Forkert, Nils Daniel; Schmitt, Peter; Dohrmann, Thorsten; Schroeder, Maria; Magnus, Tim; Kluge, Stefan; Weiler-Normann, Christina; Bi, Xiaoming; Fiehler, Jens; Sedlacik, Jan

    2016-01-01

    Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syndrome (HUS) and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI) revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a plausible cause. Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years) were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2. SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnormally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P effect of blood transfusions in patients with HUS and neurological symptoms.

  13. In vivo assessment of myocardial viability after acute myocardial infarction: A head-to-head comparison of the perfusable tissue index by PET and delayed contrast-enhanced CMR.

    Science.gov (United States)

    Timmer, Stefan A J; Teunissen, Paul F A; Danad, Ibrahim; Robbers, Lourens F H J; Raijmakers, Pieter G H M; Nijveldt, Robin; van Rossum, Albert C; Lammertsma, Adriaan A; van Royen, Niels; Knaapen, Paul

    2017-04-01

    Early recognition of viable myocardium after acute myocardial infarction (AMI) is of clinical relevance, since affected segments have the potential of functional recovery. Delayed contrast-enhanced magnetic resonance imaging (DCE-CMR) has been validated extensively for the detection of viable myocardium. An alternative parameter for detecting viability is the perfusable tissue index (PTI), derived using [ 15 O]H 2 O positron emission tomography (PET), which is inversely related to the extent of myocardial scar (non-perfusable tissue). The aim of the present study was to investigate the predictive value of PTI on recovery of LV function as compared to DCE-CMR in patients with AMI, after successful percutaneous coronary intervention (PCI). Thirty-eight patients with ST elevation myocardial infarction (STEMI) successfully treated by PCI were prospectively recruited. Subjects were examined 1 week and 3 months (mean follow-up time: 97 ± 10 days) after AMI using [ 15 O]H 2 O PET and DCE-CMR to assess PTI, regional function and scar. Viability was defined as recovery of systolic wall thickening ≥3.0 mm at follow-up by use of CMR. A total of 588 segments were available for serial analysis. At baseline, 180 segments were dysfunctional and exhibited DCE. Seventy-three (41%) of these dysfunctional segments showed full recovery during follow-up (viable), whereas 107 (59%) segments remained dysfunctional (nonviable). Baseline PTI of viable segments was 0.94 ± 0.09 and was significantly higher compared to nonviable segments (0.80 ± 0.13, P myocardial viability shortly after reperfused AMI is feasible using PET. PET-derived PTI yields a good predictive value for the recovery of LV function in PCI-treated STEMI patients, in excellent agreement with DCE-CMR.

  14. Host selection and probing behavior of the poplar aphid Chaitophorus leucomelas (Sternorrhyncha: Aphididae) on two poplar hybrids with contrasting susceptibility to aphids.

    Science.gov (United States)

    Barrios-San Martín, Joceline; Quiroz, Andrés; Verdugo, Jaime A; Parra, Leonardo; Hormazabal, Emilio; Astudillo, Luis A; Rojas-Herrera, Marcelo; Ramírez, Claudio C

    2014-02-01

    Poplars are frequently attacked by aphids. The differential susceptibility of poplar hybrids to the aphid Chaitophorus leucomelas Koch (Sternorrhyncha: Aphididae) has been described, but the mechanism underlying this pattern is unknown. This work tested the hypothesis that poplar resistance to this aphid is associated with the presence of volatiles and secondary plant compounds that affect host selection and feeding behavior. This hypothesis was tested by studying the host choice and feeding behavior of C. leucomelas on two poplar hybrids with contrasting susceptibilities to this aphid ([Populus trichocarpa Torrey & Gray x Populus deltoides Bartram ex Marshall] x P. deltoides [TD x D], and [P. trichocarpa x Populus maximowiczii Henry] x [P. trichocarpa x P. maximowiczii] [TM x TM]). The results showed that C. leucomelas rejected leaves of the TM x TM hybrid and did not prefer odors from either hybrid. Electronic monitoring of the probing behavior of C. leucomelas suggested the involvement of antifeedant factors in the TM x TM hybrid. In addition, the chemical characterization of volatiles, epicuticular waxes, and internal phenols of leaves from both poplar hybrids revealed that TM x TM had a higher abundance of monoterpenes, sesquiterpenes, n-alkanes, and phenols. These results are discussed in terms of their contribution to poplar breeding programs aimed at enhancing insect resistance.

  15. Automatic Detection of Myocardial Boundaries in MR Cardio Perfusion Images

    NARCIS (Netherlands)

    Spreeuwers, Luuk; Breeuwer, Marcel

    2001-01-01

    Cardiovascular diseases often result in reduced blood perfusion of the myocardium (MC). Recent advances in MR allow fast recordingof contrast enhanced myocardial perfusion scans. For perfusion analysis the myocardial boundaries must be traced. Currently this is done manually. In this paper a method

  16. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  17. Autoregressive moving average (ARMA) model applied to quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki

    2003-01-01

    The purpose of this study was to investigate the feasibility of the autoregressive moving average (ARMA) model for quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in comparison with deconvolution analysis based on singular value decomposition (DA-SVD). Using computer simulations, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) modeled as a gamma-variate function under various CBFs, cerebral blood volumes and signal-to-noise ratios (SNRs) for three different types of residue function (exponential, triangular, and box-shaped). We also considered the effects of delay and dispersion in AIF. The ARMA model and DA-SVD were used to estimate CBF values from the simulated concentration-time curves in the VOI and AIFs, and the estimated values were compared with the assumed values. We found that the CBF value estimated by the ARMA model was more sensitive to the SNR and the delay in AIF than that obtained by DA-SVD. Although the ARMA model considerably overestimated CBF at low SNRs, it estimated the CBF more accurately than did DA-SVD at high SNRs for the exponential or triangular residue function. We believe this study will contribute to an understanding of the usefulness and limitations of the ARMA model when applied to quantification of CBF with DSC-MRI. (author)

  18. Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in post-mortem MR angiography (PMMRA).

    Science.gov (United States)

    Webb, Bridgette; Widek, Thomas; Neumayer, Bernhard; Bruguier, Christine; Scheicher, Sylvia; Sprenger, Hanna; Grabherr, Silke; Schwark, Thorsten; Stollberger, Rudolf

    2017-05-01

    Developments in post-mortem imaging increasingly focus on addressing recognised diagnostic weaknesses, especially with regard to suspected natural deaths. Post-mortem MR angiography (PMMRA) may offer additional diagnostic information to help address such weaknesses, specifically in the context of sudden cardiac death. Complete filling of the coronary arteries and acceptable contrast with surrounding tissue are essential for a successful approach to PMMRA. In this work, the suitability of different liquids for inclusion in a targeted PMMRA protocol was evaluated. Factors influencing cooling of paraffinum liquidum + Angiofil® (6 %) in cadavers during routine multiphase post-mortem CT angiography were investigated. The temperature dependence of dynamic viscosity (8-20 °C), longitudinal (T 1 ) and transverse (T 2 ) relaxation (1-23 °C) of the proposed liquids was quadratically modelled. The relaxation behaviour of these liquids and MR scan parameters were further investigated by simulation of a radiofrequency (RF)-spoiled gradient echo (GRE) sequence to estimate potentially achievable contrast between liquids and post-mortem tissue at different temperatures across a forensically relevant temperature range. Analysis of the established models and simulations indicated that based on dynamic viscosity (27-33 mPa · s), short T 1 relaxation times (155-207 ms) and a minimal temperature dependence over the investigated range of these parameters, paraffin oil and a solution of paraffin oil + Angiofil® (6 %) would be most suitable for post-mortem reperfusion and examination in MRI.

  19. Diagnostic value of dynamic contrast-enhanced CT with perfusion imaging in the quantitative assessment of tumor response to sorafenib in patients with advanced hepatocellular carcinoma: A feasibility study.

    Science.gov (United States)

    Ippolito, Davide; Querques, Giulia; Okolicsanyi, Stefano; Franzesi, Cammillo Talei; Strazzabosco, Mario; Sironi, Sandro

    2017-05-01

    To investigate the feasibility of perfusion-CT (p-CT) measurements in quantitative assessment of hemodynamic changes related to sorafenib in patients with advanced hepatocellular carcinoma (HCC). Twenty-two patients with advanced HCC underwent p-CT study (256-MDCT scanner) before and 2 months after sorafenib administration. Dedicated perfusion software generated a quantitative map of arterial and portal perfusion and calculated the following perfusion parameters in target liver lesion: hepatic perfusion (HP), time-to-peak (TTP), blood volume (BV), arterial perfusion (AP), and hepatic perfusion index (HPI). After the follow-up scan, patients were categorized as responders and non-responders, according to mRECIST. Perfusion values were analyzed and compared in HCC lesions and in the cirrhotic parenchyma (n=22), such as between baseline and follow-up in progressors and non-progressors. Before treatment, all mean perfusion values were significantly higher in HCC lesions than in the cirrhotic parenchyma (HP 47.8±17.2 vs 13.3±6.3mL/s per 100g; AP 47.9±18.1 vs 12.9±10.7mL/s; pCT technique can be used for HCC quantitative assessment of changes related to anti-angiogenic therapy. Identification of response predictors might help clinicians in selection of patients who may benefit from targeted-therapy allowing for optimization of individualized treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Directory of Open Access Journals (Sweden)

    Ulrike Löbel

    Full Text Available Conventional magnetic resonance imaging (MRI of patients with hemolytic uremic syndrome (HUS and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF and aimed to identify a plausible cause.Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved magnetic resonance angiography (4D MRA assessed cerebral hemodynamics by global time-to-peak (TTP, as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2.SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4. Hemoglobin at the time of MRI (n = 35 was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4; hematocrit (n = 33 was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2. Creatinine was abnormally high in 30 of 36 patients (83% (range, 0.8 to 9.7; mean, 3.7 ± 2.2. SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015, hematocrit (r = 0.65, P < 0.001, and TTP (r = 0.35, P = 0.036. No correlation of SWI with blood pressure, heart rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss of venous contrast is related to an increase in CBF secondary to severe anemia related to HUS. SWI contrast of patients with pathological conventional MRI findings was significantly lower compared to patients with normal MRI (mean SWI score, 1

  1. Attempts to Improve Absolute Quantification of Cerebral Blood Flow in Dynamic Susceptibility Contrast Magnetic Resonance Imaging: A Simplified T1-Weighted Steady-State Cerebral Blood Volume Approach

    International Nuclear Information System (INIS)

    Wirestam, R.; Knutsson, L.; Risberg, J.; Boerjesson, S.; Larsson, E.M.; Gustafson, L.; Passant, U.; Staahlberg, F.

    2007-01-01

    Background: Attempts to retrieve absolute values of cerebral blood flow (CBF) by dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) have typically resulted in overestimations. Purpose: To improve DSC-MRI CBF estimates by calibrating the DSC-MRI-based cerebral blood volume (CBV) with a corresponding T1-weighted (T1W) steady-state (ss) CBV estimate. Material and Methods: 17 volunteers were investigated by DSC-MRI and 133Xe SPECT. Steady-state CBV calculation, assuming no water exchange, was accomplished using signal values from blood and tissue, before and after contrast agent, obtained by T1W spin-echo imaging. Using steady-state and DSC-MRI CBV estimates, a calibration factor K = CBV(ss)/CBV(DSC) was obtained for each individual. Average whole-brain CBF(DSC) was calculated, and the corrected MRI-based CBF estimate was given by CBF(ss) = KxCBF(DSC). Results: Average whole-brain SPECT CBF was 40.1±6.9 ml/min 100 g, while the corresponding uncorrected DSC-MRI-based value was 69.2±13.8 ml/mi 100 g. After correction with the calibration factor, a CBF(ss) of 42.7±14.0 ml/min 100 g was obtained. The linear fit to CBF(ss)-versus-CBF(SPECT) data was close to proportionality (R 0.52). Conclusion: Calibration by steady-state CBV reduced the population average CBF to a reasonable level, and a modest linear correlation with the reference 133Xe SPECT technique was observed. Possible explanations for the limited accuracy are, for example, large-vessel partial-volume effects, low post-contrast signal enhancement in T1W images, and water-exchange effects

  2. Voxelwise comparison of perfusion parameters estimated using dynamic contrast enhanced (DCE) computed tomography and DCE-magnetic resonance imaging in locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Kallehauge; Jesper; Nielsen, Thomas; Haack, Soeren

    2013-01-01

    Purpose: Dynamic contrast enhanced (DCE) imaging has gained interest as an imaging modality for assessment of tumor characteristics and response to cancer treatment. However, for DCE-magnetic resonance imaging (MRI) tissue contrast enhancement may vary depending on imaging sequence and temporal resolution. The aim of this study is to compare DCE-MRI to DCE-computed tomography (DCE-CT) as the gold standard. Material and methods: Thirteen patients with advanced cervical cancer were scanned once prior to chemo-radiation and during chemo-radiation with DCE-CT and -MRI in immediate succession. A total of 22 paired DCE-CT and -MRI scans were acquired for comparison. Kinetic modeling using the extended Tofts model was applied to both image series. Furthermore the similarity of the spatial distribution was evaluated using a G analysis. The correlation between the two imaging techniques was evaluated using Pe arson's correlation and the parameter means were compared using a Student's t-test (p trans (r = 0.9), flux rate constant k ep (r = 0.77), extracellular volume fraction v e (r = 0.58) and blood plasma volume fraction v p (r = 0.83). All quantitative parameters were found to be significantly different as estimated by DCE-CT and -MRI. The G analysis in normalized maps revealed that 45 % of the voxels failed to find a voxel with the corresponding value allowing for an uncertainty of 3 mm in position and 3 % in value (G 3,3 ). By reducing the criteria, the G-failure rates were: G 3,5 (37 % failure), G 3,10 (26% failure) and at G 3,15 (19 % failure). Conclusion: Good to excellent correlations but significant bias was found between DCE-CT and -MRI. Both the Pearson's correlation and the G analysis proved that the spatial information was similar when analyzing the two sets of DCE data using the extended Tofts model. Improvement of input function sampling is needed to improve kinetic quantification using DCE-MRI

  3. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Keupp, Jochen [Philips Research, Hamburg (Germany); Yoshimoto, Koji; Kuga, Daisuke; Iihara, Koji [Kyushu University, Department of Neurosurgery, Graduate School of Medical Sciences, Fukuoka (Japan); Yoneyama, Masami [Philips Electronics Japan, Tokyo (Japan); Suzuki, Satoshi O.; Iwaki, Toru [Kyushu University, Department of Neuropathology, Graduate School of Medical Sciences, Fukuoka (Japan); Takahashi, Masaya [Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX (United States)

    2017-02-15

    To investigate whether amide proton transfer (APT) MR imaging can differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) among gliomas without intense contrast enhancement (CE). This retrospective study evaluated 34 patients (22 males, 12 females; age 36.0 ± 11.3 years) including 20 with LGGs and 14 with HGGs, all scanned on a 3T MR scanner. Only tumours without intense CE were included. Two neuroradiologists independently performed histogram analyses to measure the 90th-percentile (APT{sub 90}) and mean (APT{sub mean}) of the tumours' APT signals. The apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) were also measured. The parameters were compared between the groups with Student's t-test. Diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis. The APT{sub 90} (2.80 ± 0.59 % in LGGs, 3.72 ± 0.89 in HGGs, P = 0.001) and APT{sub mean} (1.87 ± 0.49 % in LGGs, 2.70 ± 0.58 in HGGs, P = 0.0001) were significantly larger in the HGGs compared to the LGGs. The ADC and rCBV values were not significantly different between the groups. Both the APT{sub 90} and APT{sub mean} showed medium diagnostic performance in this discrimination. APT imaging is useful in discriminating HGGs from LGGs among diffuse gliomas without intense CE. (orig.)

  4. The optimal use of contrast agents at high field MRI

    International Nuclear Information System (INIS)

    Trattnig, Siegfried; Pinker, Kathia; Ba-Ssalamah, Ahmed; Noebauer-Huhmann, Iris-Melanie

    2006-01-01

    The intravenous administration of a standard dose of conventional gadolinium-based contrast agents produces higher contrast between the tumor and normal brain at 3.0 Tesla (T) than at 1.5 T, which allows reducing the dose to half of the standard one to produce similar contrast at 3.0 T compared to 1.5 T. The assessment of cumulative triple-dose 3.0 T images obtained the best results in the detection of brain metastases compared to other sequences. The contrast agent dose for dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging at 3.0 T can be reduced to 0.1 mmol compared to 0.2 mmol at 1.5 T due to the increased susceptibility effects at higher magnetic field strengths. Contrast agent application makes susceptibility-weighted imaging (SWI) at 3.0 T clinically attractive, with an increase in spatial resolution within the same scan time. Whereas a double dose of conventional gadolinium-based contrast agents was optimal in SWI with respect to sensitivity and image quality, a standard dose of gadobenate dimeglumine, which has a two-fold higher T1-relaxivity in blood, produced the same effect. For MR-arthrography, optimized concentrations of gadolinium-based contrast agents are similar at 3.0 and 1.5 T. In summary, high field MRI requires the optimization of the contrast agent dose in different clinical applications. (orig.)

  5. FAIR true-FISP perfusion imaging of the kidneys.

    Science.gov (United States)

    Martirosian, Petros; Klose, Uwe; Mader, Irina; Schick, Fritz

    2004-02-01

    Most arterial spin labeling (ASL) techniques apply echoplanar imaging (EPI) because this strategy provides relatively high SNR in short measuring times. Unfortunately, those techniques are very susceptible to static magnetic field inhomogeneities and perfusion signals from organs with fast transverse relaxation might decrease due to the exchange of water molecules in capillaries and organ tissue combined with relatively long echo times of EPI sequences. To overcome these problems a novel imaging technique, FAIR True-FISP, was developed. It combines a FAIR (flow-sensitive alternating inversion recovery) perfusion preparation and a true fast imaging with steady precession (True-FISP) data acquisition strategy. True-FISP was chosen since this sequence type does not show the mentioned disadvantages of EPI, but provides a similar SNR per measuring time. An important problem of this approach is that True-FISP sequences usually work in a steady state which is independent of a previous preparation of magnetization. For this reason a sequence structure had to be developed which keeps the advantages of True-FISP and makes the signal intensity sensitive to the FAIR preparation. Breathhold and nonbreathhold examinations of kidneys are presented and possible strategies to quantitative flow measurements are reported. It is shown that correction of spatially inhomogeneous receiver coil characteristics is easily feasible and leads to clinically valuable perfusion examinations of kidneys without application of potentially nephrotoxic contrast media. Copyright 2004 Wiley-Liss, Inc.

  6. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M. [Karolinska Univ. Hospital, Stockholm (Sweden). Div. of Radiology

    2006-11-15

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using {sup 99m}Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice.

  7. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    International Nuclear Information System (INIS)

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M.

    2006-01-01

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice

  8. Improved visualization of delayed perfusion in lung MRI

    International Nuclear Information System (INIS)

    Risse, Frank; Eichinger, Monika; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Puderbach, Michael

    2011-01-01

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S n,max normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement τ to visualize regions with delayed bolus onset; and (3) ratio R = S n,max /τ was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  9. Preoperative Grading of Glioma Using Dynamic Susceptibility Contrast MRI: Relative Cerebral Blood Volume Analysis of Intra-tumoural and Peri-tumoural Tissue.

    Science.gov (United States)

    Soliman, Radwa K; Gamal, Sara A; Essa, Abdel-Hakeem A; Othman, Mostafa H

    2018-04-01

    To assess the usefulness of intra-tumor and peri-tumoral relative cerebral blood volume (rCBV) in preoperative glioma grading. 21 patients with histopathologically confirmed glioma were included. Imaging was achieved on a 1.5T MRI scanner. Dynamic susceptibility contrast (DSC) MRI was performed using T2* weighted gradient echo-planner imaging (EPI). Multiple regions of interest (ROIs) have been drawn in the hotspots regions, the highest ROI has been selected to represent the rCBV of each intra-tumoral and peri-tumoral regions. Based on histopathology, tumors were subdivided into low grade and high grade. Receiver operating characteristic analysis (ROC) of rCBV, of both intra-tumoral and peri-tumoral regions, was performed to find cut-off values between high and low-grade tumors. The resulting sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated. Based on the histopathology, high-grade glioma (HGG) represented 76.2% whereas low-grade glioma (LGG) represented 23.8%. Both intra-tumoral and peri-tumoral rCBV of HGG were significantly higher than those of LGG. A cut-off value >2.9 for intra-tumoral rCBV provided sensitivity, specificity, and accuracy of 80%, 100%, and 85.7% respectively to differentiate between HGG and LGG. Additionally, the cut-off value >0.7 for peri-tumoral rCBV provided sensitivity, specificity, and accuracy of 100%, 66.6%, and 90.5% respectively to differentiate between HGG and LGG. rCBV of each of intra-tumoral and peri-tumoral rCBV are significantly reliable for the preoperative distinction between HGG and LGG. Combined intra-tumoral and peri-tumoral rCBV provides overall better diagnostic accuracy and helps to decrease the invasive intervention for non-surgical candidates. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Perfusion MR imaging for differentiation of benign and malignant meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China); Roediger, Lars A.; Oudkerk, Matthijs [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shen, Tianzhen [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Miao, Jingtao [Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China)

    2008-06-15

    Our purpose was to determine whether perfusion MR imaging can be used to differentiate benign and malignant meningiomas on the basis of the differences in perfusion of tumor parenchyma and/or peritumoral edema. A total of 33 patients with preoperative meningiomas (25 benign and 8 malignant) underwent conventional and dynamic susceptibility contrast perfusion MR imaging. Maximal relative cerebral blood volume (rCBV) and the corresponding relative mean time to enhance (rMTE) (relative to the contralateral normal white matter) in both tumor parenchyma and peritumoral edema were measured. The independent samples t-test was used to determine whether there was a statistically significant difference in the mean rCBV and rMTE ratios between benign and malignant meningiomas. The mean maximal rCBV values of benign and malignant meningiomas were 7.16{+-}4.08 (mean{+-}SD) and 5.89{+-}3.86, respectively, in the parenchyma, and 1.05{+-}0.96 and 3.82{+-}1.39, respectively, in the peritumoral edema. The mean rMTE values were 1.16{+-}0.24 and 1.30{+-}0.32, respectively, in the parenchyma, and 0.91{+-}0.25 and 1.24{+-}0.35, respectively, in the peritumoral edema. The differences in rCBV and rMTE values between benign and malignant meningiomas were not statistically significant (P>0.05) in the parenchyma, but both were statistically significant (P<0.05) in the peritumoral edema. Perfusion MR imaging can provide useful information on meningioma vascularity which is not available from conventional MRI. Measurement of maximal rCBV and corresponding rMTE values in the peritumoral edema is useful in the preoperative differentiation between benign and malignant meningiomas. (orig.)

  11. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko

    2015-06-01

    The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2

  12. Measurement of myocardial perfusion using magnetic resonance

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...... myocardial perfusion imaging with MR contrast agents: methods, validation and experiences from clinical studies. Unresolved issues still restrict the use of these techniques to research although clinical applications are within reach Udgivelsesdato: 2008/12/8...

  13. CT Perfusion of the Head

    Science.gov (United States)

    ... Site Index A-Z CT Perfusion of the Head Computed tomography (CT) perfusion of the head uses ... the Head? What is CT Perfusion of the Head? Computed tomography (CT) perfusion imaging shows which areas ...

  14. Effects of MRI Protocol Parameters, Preload Injection Dose, Fractionation Strategies, and Leakage Correction Algorithms on the Fidelity of Dynamic-Susceptibility Contrast MRI Estimates of Relative Cerebral Blood Volume in Gliomas.

    Science.gov (United States)

    Leu, K; Boxerman, J L; Ellingson, B M

    2017-03-01

    DSC perfusion MR imaging assumes that the contrast agent remains intravascular; thus, disruptions in the blood-brain barrier common in brain tumors can lead to errors in the estimation of relative CBV. Acquisition strategies, including the choice of flip angle, TE, TR, and preload dose and incubation time, along with post hoc leakage-correction algorithms, have been proposed as means for combating these leakage effects. In the current study, we used DSC-MR imaging simulations to examine the influence of these various acquisition parameters and leakage-correction strategies on the faithful estimation of CBV. DSC-MR imaging simulations were performed in 250 tumors with perfusion characteristics randomly generated from the distributions of real tumor population data, and comparison of leakage-corrected CBV was performed with a theoretic curve with no permeability. Optimal strategies were determined by protocol with the lowest mean error. The following acquisition strategies (flip angle/TE/TR and contrast dose allocation for preload and bolus) produced high CBV fidelity, as measured by the percentage difference from a hypothetic tumor with no leakage: 1) 35°/35 ms/1.5 seconds with no preload and full dose for DSC-MR imaging, 2) 35°/25 ms/1.5 seconds with ¼ dose preload and ¾ dose bolus, 3) 60°/35 ms/2.0 seconds with ½ dose preload and ½ dose bolus, and 4) 60°/35 ms/1.0 second with 1 dose preload and 1 dose bolus. Results suggest that a variety of strategies can yield similarly high fidelity in CBV estimation, namely those that balance T1- and T2*-relaxation effects due to contrast agent extravasation. © 2017 by American Journal of Neuroradiology.

  15. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Piotr [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Owren Nygaard, Gro [Oslo University Hospital, Department of Neurology, Oslo (Norway); Bjoernerud, Atle [Intervention Center, Oslo University Hospital, Oslo (Norway); University of Oslo, Department of Physics, Oslo (Norway); Gulowsen Celius, Elisabeth [Oslo University Hospital, Department of Neurology, Oslo (Norway); University of Oslo, Institute of Health and Society, Faculty of Medicine, Oslo (Norway); Flinstad Harbo, Hanne [University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Oslo University Hospital, Department of Neurology, Oslo (Norway); Kristiansen Beyer, Mona [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); Oslo and Akershus University College of Applied Sciences, Department of Life Sciences and Health, Oslo (Norway)

    2017-07-15

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  16. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    International Nuclear Information System (INIS)

    Sowa, Piotr; Owren Nygaard, Gro; Bjoernerud, Atle; Gulowsen Celius, Elisabeth; Flinstad Harbo, Hanne; Kristiansen Beyer, Mona

    2017-01-01

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  17. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Gersing, Alexandra S.; Schwaiger, Benedikt J. [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ankenbrank, Monika; Toth, Vivien; Bauer, Jan S.; Zimmer, Claus [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Janssen, Insa [Technical University Munich, Department of Neurosurgery, Munich (Germany); Kooijman, Hendrik [Philips Healthcare, Hamburg (Germany); Wunderlich, Silke [Technical University Munich, Department of Neurology, Munich (Germany); Preibisch, Christine [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Technical University Munich, Department of Neurology, Munich (Germany)

    2015-12-15

    MR-derived cerebral metabolic rate of oxygen utilization (CMRO{sub 2}) has been suggested to be analogous to PET-derived CMRO{sub 2} and therefore may be used for detection of viable tissue at risk for infarction. The purpose of this study was to evaluate MR-derived CMRO{sub 2} mapping in acute ischemic stroke in relation to established diffusion- and perfusion-weighted imaging. In 23 patients (mean age 63 ± 18.7 years, 11 women) with imaging findings for acute ischemic stroke, relative oxygen extraction fraction was calculated from quantitative transverse relaxation times (T2, T2*) and relative cerebral blood volume using a quantitative blood oxygenation level dependent (BOLD) approach in order to detect a local increase of deoxyhemoglobin. Relative CMRO{sub 2} (rCMRO{sub 2}) maps were calculated by multiplying relative oxygen extraction fraction (rOEF) by cerebral blood flow, derived from PWI. After co-registration, rCMRO{sub 2} maps were evaluated in comparison with apparent diffusion coefficient (ADC) and time-to-peak (TTP) maps. Mean rCMRO{sub 2} values in areas with diffusion-restriction or TTP/ADC mismatch were compared with rCMRO{sub 2} values in the contralateral tissue. In tissue with diffusion restriction, mean rCMRO{sub 2} values were significantly decreased compared to perfusion-impaired (17.9 [95 % confidence interval 10.3, 25.0] vs. 58.1 [95 % confidence interval 50.1, 70.3]; P < 0.001) and tissue in the contralateral hemisphere (68.2 [95 % confidence interval 61.4, 75.0]; P < 0.001). rCMRO{sub 2} in perfusion-impaired tissue showed no significant change compared to tissue in the contralateral hemisphere (58.1 [95 % confidence interval 50.1, 70.3] vs. 66.7 [95 % confidence interval 53.4, 73.4]; P = 0.34). MR-derived CMRO{sub 2} was decreased within diffusion-restricted tissue and stable within perfusion-impaired tissue, suggesting that this technique may be adequate to reveal different pathophysiological stages in acute stroke. (orig.)

  18. ABCD1 dysfunction alters white matter microvascular perfusion

    DEFF Research Database (Denmark)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo

    2017-01-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability...... of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic reson- ance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased...... capillary flow heterogeneity in asymptom- atic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow hetero...

  19. A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model

    NARCIS (Netherlands)

    Schuster, Andreas; Sinclair, Matthew; Zarinabad, Niloufar; Ishida, Masaki; van den Wijngaard, Jeroen P. H. M.; Paul, Matthias; van Horssen, Pepijn; Hussain, Shazia T.; Perera, Divaka; Schaeffter, Tobias; Spaan, Jos A. E.; Siebes, Maria; Nagel, Eike; Chiribiri, Amedeo

    2015-01-01

    To assess the feasibility of high-resolution quantitative cardiovascular magnetic resonance (CMR) voxel-wise perfusion imaging using clinical 1.5 and 3 T sequences and to validate it using fluorescently labelled microspheres in combination with a state of the art imaging cryomicrotome in a novel,

  20. A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model.

    Science.gov (United States)

    Schuster, Andreas; Sinclair, Matthew; Zarinabad, Niloufar; Ishida, Masaki; van den Wijngaard, Jeroen P H M; Paul, Matthias; van Horssen, Pepijn; Hussain, Shazia T; Perera, Divaka; Schaeffter, Tobias; Spaan, Jos A E; Siebes, Maria; Nagel, Eike; Chiribiri, Amedeo

    2015-10-01

    To assess the feasibility of high-resolution quantitative cardiovascular magnetic resonance (CMR) voxel-wise perfusion imaging using clinical 1.5 and 3 T sequences and to validate it using fluorescently labelled microspheres in combination with a state of the art imaging cryomicrotome in a novel, isolated blood-perfused MR-compatible free beating pig heart model without respiratory motion. MR perfusion imaging was performed in pig hearts at 1.5 (n = 4) and 3 T (n = 4). Images were acquired at physiological flow ('rest'), reduced flow ('ischaemia'), and during adenosine-induced hyperaemia ('stress') in control and coronary occlusion conditions. Fluorescently labelled microspheres and known coronary myocardial blood flow represented the reference standards for quantitative perfusion validation. For the comparison with microspheres, the LV was divided into 48 segments based on a subdivision of the 16 AHA segments into subendocardial, midmyocardial, and subepicardial subsegments. Perfusion quantification of the time-signal intensity curves was performed using a Fermi function deconvolution. High-resolution quantitative voxel-wise perfusion assessment was able to distinguish between occluded and remote myocardium (P < 0.001) and between rest, ischaemia, and stress perfusion conditions at 1.5 T (P < 0.001) and at 3 T (P < 0.001). CMR-MBF estimates correlated well with the microspheres at the AHA segmental level at 1.5 T (r = 0.94, P < 0.001) and at 3 T (r = 0.96, P < 0.001) and at the subendocardial, midmyocardial, and subepicardial level at 1.5 T (r = 0.93, r = 0.9, r = 0.88, P < 0.001, respectively) and at 3 T (r = 0.91, r = 0.95, r = 0.84, P < 0.001, respectively). CMR-derived voxel-wise quantitative blood flow assessment is feasible and very accurate compared with microspheres. This technique is suitable for both clinically used field strengths and may provide the tools to assess extent and severity of myocardial ischaemia. Published on behalf of the European Society

  1. Cardiovascular magnetic resonance: myocardial perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, E.; Al-Saadi, N.; Fleck, E. [Dept. of Internal Medicine/Cardiology, German Heart Inst. Berlin and Charite, Campus Virchow, Humboldt Univ. (Germany)

    2000-06-01

    There is growing evidence that the noninvasive assessment of myocardial perfusion with cardiovascular magnetic resonance is a valid and accurate tool for the assessment of ischemic heart disease and its introduction into routine clinical evaluation of patients is rapidly expected. Magnetic resonance measurements allow the evaluation of reversible and irreversible myocardial ischemia, the assessment of acute myocardial infarction, as well as the recognition and detection of viable myocardium. Magnetic resonance perfusion measurements are mainly performed with T1-shortening contrast agents such as gadolinium-DTPA either by visual analysis or based on the analyses of signal intensity time curves. For the detection of myocardial ischemia the first pass kinetics of a gadolinium-DTPA bolus and for the detection of myocardial necrosis and the definition of viable myocardium steady state distribution kinetics are assessed. Quantitative analysis of myocardial perfusion can be performed but requires complex modeling due to the characteristics of gadolinium-DTPA. Thus, semi-quantitative parameters are preferred. There is accumulating evidence in the literature that magnetic resonance imaging can be used for the detection of coronary artery stenosis with high diagnostic accuracy both with semi-quantitative or visual analysis. Myocardial infarction can be reliably detected and the infarcted area determined. Non-reperfused infarcted myocardium can be differentiated from reperfused myocardium by different enhancement patterns that correlates with viability. (orig.) [German] Die Magnetresonanztomographie (MR) erlangt bei der nichtinvasiven Diagnostik der koronaren Herzerkrankung eine zunehmende Bedeutung. Mit dieser Technik koennen sowohl die globale und regionale Myokardfunktion als auch die myokardiale Perfusion exakt beurteilt werden. Bisher liegen die meisten Daten fuer die Analyse von Wandbewegungsstoerun-gen unter Belastung vor, wobei sich eine deutliche diagnostische

  2. The effects of propofol on cerebral perfusion MRI in children

    International Nuclear Information System (INIS)

    Harreld, Julie H.; Helton, Kathleen J.; Reddick, Wilburn E.; Glass, John O.; Sansgiri, Rakhee; Ji, Qing; Patay, Zoltan; Kaddoum, Roland N.; Parish, Mary Edna; Li, Yimei; Feng, Tianshu; Gajjar, Amar

    2013-01-01

    The effects of anesthesia are infrequently considered when interpreting pediatric perfusion magnetic resonance imaging (MRI). The objectives of this study were to test for measurable differences in MR measures of cerebral blood flow (CBF) and cerebral blood volume (CBV) between non-sedated and propofol-sedated children, and to identify influential factors. Supratentorial cortical CBF and CBV measured by dynamic susceptibility contrast perfusion MRI in 37 children (1.8-18 years) treated for infratentorial brain tumors receiving propofol (IV, n = 19) or no sedation (NS, n = 18) were compared between groups and correlated with age, hematocrit (Hct), end-tidal CO 2 (ETCO 2 ), dose, weight, and history of radiation therapy (RT). The model most predictive of CBF and CBV was identified by multiple linear regression. Anterior cerebral artery (ACA) and middle cerebral artery (MCA) territory CBF were significantly lower, and MCA territory CBV greater (p = 0.03), in IV than NS patients (p = 0.01, 0.04). The usual trend of decreasing CBF with age was reversed with propofol in ACA and MCA territories (r = 0.53, r = 0.47; p 2 , hematocrit, or RT. In propofol-sedated children, usual age-related decreases in CBF were reversed, and increases in CBF and CBV were weight-dependent, not previously described. Weight-dependent increases in propofol clearance may diminish suppression of CBF and CBV. Prospective study is required to establish anesthetic-specific models of CBF and CBV in children. (orig.)

  3. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    Science.gov (United States)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Buxton, Richard Bruce (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  4. Tissue-specific sparse deconvolution for brain CT perfusion.

    Science.gov (United States)

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  6. Perfusion- and pattern-based quantitative CT indexes using contrast-enhanced dual-energy computed tomography in diffuse interstitial lung disease: relationships with physiologic impairment and prediction of prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jung Won [Sungkyunkwan University School of Medicine, Department of Radiology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of); Bae, Jang Pyo; Kim, Namkug; Chang, Yongjun; Seo, Joon Beom [University of Ulsan College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Ho Yun; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Chung, Man Pyo; Park, Hye Yun [Sungkyunkwan University School of Medicine, Department of Pulmonology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    To evaluate automated texture-based segmentation of dual-energy CT (DECT) images in diffuse interstitial lung disease (DILD) patients and prognostic stratification by overlapping morphologic and perfusion information of total lung. Suspected DILD patients scheduled for surgical biopsy were prospectively included. Texture patterns included ground-glass opacity (GGO), reticulation and consolidation. Pattern- and perfusion-based CT measurements were assessed to extract quantitative parameters. Accuracy of texture-based segmentation was analysed. Correlations between CT measurements and pulmonary function test or 6-minute walk test (6MWT) were calculated. Parameters of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP) and non-IPF/UIP were compared. Survival analysis was performed. Overall accuracy was 90.47 % for whole lung segmentation. Correlations between mean iodine values of total lung, 50-97.5th (%) attenuation and forced vital capacity or 6MWT were significant. Volume of GGO, reticulation and consolidation had significant correlation with DLco or SpO{sub 2} on 6MWT. Significant differences were noted between IPF/UIP and non-IPF/UIP in 6MWT distance, mean iodine value of total lung, 25-75th (%) attenuation and entropy. IPF/UIP diagnosis, GGO ratio, DILD extent, 25-75th (%) attenuation and SpO{sub 2} on 6MWT showed significant correlations with survival. DECT combined with pattern analysis is useful for analysing DILD and predicting survival by provision of morphology and enhancement. (orig.)

  7. GPU-accelerated voxelwise hepatic perfusion quantification.

    Science.gov (United States)

    Wang, H; Cao, Y

    2012-09-07

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using compute unified device architecture-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, nonlinear least-squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626 400 voxels in a patient's liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10(-6). The method will be useful for generating liver perfusion images in clinical settings.

  8. GPU-Accelerated Voxelwise Hepatic Perfusion Quantification

    Science.gov (United States)

    Wang, H; Cao, Y

    2012-01-01

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using CUDA-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, non-linear least squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626400 voxels in a patient’s liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10−6. The method will be useful for generating liver perfusion images in clinical settings. PMID:22892645

  9. Hyperpolarized Water Perfusion in the Porcine Brain – a Pilot Study

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Lipsø, Hans Kasper Wigh; Tougaard, Rasmus Stilling

    2017-01-01

    Dynamic Contrast-Enhanced MR (DCE-MR) perfusion assessment with gadolinium contrast agents is currently the most widely used cerebral perfusion MR method. Hyperpolarized water has recently been shown to succeed 13C probes as angiography probe. In this study, we demonstrate the feasibility...... of hyperpolarized water for visualizing the brain vasculature of a large animal in a clinically relevant setting. In detail, reference perfusion values were obtained and large to small arteries could be identified....

  10. Perfusion CT in childhood stroke—Initial observations and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Zebedin, D., E-mail: doris.zebedin@medunigraz.at [Division of Pediatric Radiology, Department of Radiology, University Hospital LKH Graz (Austria); Sorantin, E.; Riccabona, M. [Division of Pediatric Radiology, Department of Radiology, University Hospital LKH Graz (Austria)

    2013-07-15

    Introduction: To report the preliminary results of contrast-enhanced perfusion multi-detector CT for diagnoses of perfusion disturbances in children with clinical suspicion of stroke. Patients and methods: Within the last two years emergency perfusion CT was performed in ten children (age: 8–17 years, male:female = 3:7) for assessment of suspected childhood stroke. These intracranial perfusion CT, intracranial CT-digital subtraction angiography (CT-DSA) and extracranial CT-angiography (CTA) studies were retrospectively reviewed and compared with MRI, follow-up CT, catheter angiography and final clinical diagnosis. The total dose length product (DLP) for the entire examination was recorded. The image quality of perfusion CT-maps, CT-DSA and CTA were evaluated with a subjective three-point scale ranging from very good to non-diagnostic image quality rating perfusion disturbance, intracranial peripheral vessel depiction, and motion- or streak artifacts. Results: In nine of ten children perfusion CT showed no false positive or false negative results. In one of ten children suffering from migraine focal hypo-perfusion was read as perfusion impairment potentially indicating early stroke, but MRI and MRA follow-up were negative. Overall, perfusion-CT with CT-DSA was rated very good in 80% of cases for the detection of perfusion disturbances and vessel anatomy. Conclusions: In comparison to standard CT, contrast-enhanced perfusion CT improves CTs’ diagnostic capability in the emergency examination of children with a strong suspicion of ischemic cerebral infarction.

  11. Measuring myocardial perfusion

    DEFF Research Database (Denmark)

    Qayyum, A A; Kastrup, J

    2015-01-01

    Recently, focus has changed from anatomical assessment of coronary arteries towards functional testing to evaluate the effect of stenosis on the myocardium before intervention. Besides positron-emission tomography (PET), cardiac MRI (CMR), and cardiac CT are able to measure myocardial perfusion......-known and is used in routine clinical practice. However, PET uses radioactive tracers and has a lower spatial resolution compared to CMR and CT. CMR and CT are emerging techniques in the field of myocardial perfusion imaging. CMR uses magnetic resonance to obtain images, whereas CT uses x-rays during first....... Myocardial perfusion abnormalities are the first sign of the ischaemic cascade in the development of coronary artery disease (CAD). PET is considered the non-invasive clinical reference standard for absolute quantification of myocardial perfusion. The diagnostic and prognostic value of PET is well...

  12. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  13. Assessment of the relationship between morphological emphysema phenotype and corresponding pulmonary perfusion pattern on a segmental level

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Mark; Kauczor, Hans-Ulrich [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Member of German Lung Research Center DZL, Translational Lung Research Center TLRC-H, Heidelberg (Germany); Ley, Sebastian [Chirurgische Klinik Dr. Rinecker, Department of Diagnostic and Interventional Radiology, Munich (Germany); Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); Eberhardt, Ralf; Herth, Felix [Thoraxklinik University of Heidelberg, Department of Pneumology and Critical Care Medicine, Heidelberg (Germany); Member of German Lung Research Center DZL, Translational Lung Research Center TLRC-H, Heidelberg (Germany); Menezes, Ravi [University of Toronto, Medical Imaging, Toronto (Canada); Sedlaczek, Oliver [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Member of German Lung Research Center DZL, Translational Lung Research Center TLRC-H, Heidelberg (Germany); Ley-Zaporozhan, Julia [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany)

    2015-01-15

    Distinct morphological emphysema phenotypes were assessed by CT to show characteristic perfusion defect patterns. Forty-one patients with severe emphysema (GOLD III/IV) underwent three-dimensional high resolution computed tomography (3D-HRCT) and contrast-enhanced magnetic resonance (MR) perfusion. 3D-HRCT data was visually analyzed for emphysema phenotyping and quantification by consensus of three experts in chest-radiology. The predominant phenotype per segment was categorized as normal, centrilobular, panlobular or paraseptal. Segmental lung perfusion was visually analyzed using six patterns of pulmonary perfusion (1-normal; 2-mild homogeneous reduction in perfusion; 3-heterogeneous perfusion without focal defects; 4-heterogeneous perfusion with focal defects; 5-heterogeneous absence of perfusion; 6-homogeneous absence of perfusion), with the extent of the defect given as a percentage. 730 segments were evaluated. CT categorized 566 (78 %) as centrilobular, 159 (22 %) as panlobular and 5 (<1 %) as paraseptal with no normals. Scores with regards to MR perfusion patterns were: 1-0; 2-0; 3-28 (4 %); 4-425 (58 %); 5-169 (23 %); 6-108 (15 %). The predominant perfusion pattern matched as follows: 70 % centrilobular emphysema - heterogeneous perfusion with focal defects (score 4); 42 % panlobular - homogeneous absence of perfusion (score 5); and 43 % panlobular - heterogeneous absence of perfusion (score 6). MR pulmonary perfusion patterns correlate with the CT phenotype at a segmental level in patients with severe emphysema. (orig.)

  14. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    International Nuclear Information System (INIS)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C.; Ohno, Yoshiharu; Schiebler, Mark; Wild, Jim M.

    2017-01-01

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  15. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C. [University of Sheffield (United Kingdom); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, KobeUniversity Graduate School of Medicine, Kobe, Hyogo (Japan); Schiebler, Mark [UW-Madison School of Medicine and Public Health, Madison, WI (United States); Wild, Jim M., E-mail: j.m.wild@sheffield.ac.uk [University of Sheffield (United Kingdom)

    2017-01-15

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  16. Liver perfusion in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI): comparison of enhancement in Gd-BT-DO3A and Gd-EOB-DTPA in normal liver parenchyma

    Energy Technology Data Exchange (ETDEWEB)

    Schalkx, Hanke J.; Bosch, Maurice A.A.J. van den; Veldhuis, Wouter B.; Leeuwen, Maarten S. van [University Medical Center Utrecht, Department of Radiology, PO Box 58800, Utrecht (Netherlands); Stralen, Marijn van; Pluim, Josien P.W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Coenegrachts, Kenneth [Department of Radiology, Bruges (Belgium); Kessel, Charlotte S. van; Hillegersberg, Richard van [University Medical Center Utrecht, Department of Surgery, Utrecht (Netherlands); Erpecum, Karel J. van [University Medical Center Utrecht, Department of Gastroenterology, Utrecht (Netherlands); Verkooijen, Helena M. [University Medical Center Utrecht, Clinical epidemiologist, Department of Radiology, Utrecht (Netherlands)

    2014-09-15

    Within-patient comparison of the enhancement patterns of normal liver parenchyma after gadobutrol and gadoxetate disodium, with emphasis on the start of hepatocytic uptake of gadoxetate disodium. Twenty-one patients (12 female, 9 male) without chronic liver disease underwent 1.5-T contrast-enhanced MRI twice, once with an extracellular contrast agent (gadobutrol) and once with a hepatospecific agent (gadoxetate disodium), using a T1-weighted keyhole sequence. Fifteen whole-liver datasets were acquired up to 5 min for both contrast agents and two additional datasets, up to 20 min, for gadoxetate. Signal intensities (SI) of the parenchyma, aorta and portal vein were measured and analysed relative to pre-contrast parenchymal SI. After gadoxetate, in 29 % of the patients the parenchymal SI decreased by ≥5 % after the initial vascular-phase-induced peak, while in the other 71 % the parenchymal SI remained stable or gradually increased until up to 20 min after the initial peak. The hepatocytic gadoxetate uptake started at a mean of 37.8 s (SD 14.7 s) and not later than 76 s after left ventricle enhancement. Parenchymal enhancement due to hepatocytic uptake of gadoxetate can start as early as in the late arterial phase. This may confound the assessment of lesion appearance as compared to extracellular contrast such as gadobutrol. (orig.)

  17. The diagnosis of renal perfusion abnormalities by sequential CT

    International Nuclear Information System (INIS)

    Treugut, H.; Andersson, I.; Hildell, J.; Nyman, U.; Weibull, H.

    1981-01-01

    Abnormalities of renal perfusion can be recognised more readily by sequential CT than by plain CT scan or after static enhancement with contrast medium. Haemodynamically significant stenoses of the renal arteries and total, or partial, infarcts can be diagnosed in this way. Intrarenal and capsular collaterals can be recognised by slow contrast accumulation in the infarcted area, or by the development of contrast in the sub-capsular portion of the cortex. Renal cortical necrosis is very well demonstrated by the absence of cortical perfusion; this is seen, for instance, in the DIC syndrome or during rejection after renal transplant. (orig.) [de

  18. Methodological NMR imaging developments to measure cerebral perfusion

    International Nuclear Information System (INIS)

    Pannetier, N.

    2010-12-01

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  19. The effects of propofol on cerebral perfusion MRI in children

    Energy Technology Data Exchange (ETDEWEB)

    Harreld, Julie H.; Helton, Kathleen J.; Reddick, Wilburn E.; Glass, John O.; Sansgiri, Rakhee; Ji, Qing; Patay, Zoltan [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); Kaddoum, Roland N.; Parish, Mary Edna [St. Jude Children' s Research Hospital, Department of Anesthesiology, Memphis, TN (United States); Li, Yimei; Feng, Tianshu [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); Gajjar, Amar [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States)

    2013-08-15

    The effects of anesthesia are infrequently considered when interpreting pediatric perfusion magnetic resonance imaging (MRI). The objectives of this study were to test for measurable differences in MR measures of cerebral blood flow (CBF) and cerebral blood volume (CBV) between non-sedated and propofol-sedated children, and to identify influential factors. Supratentorial cortical CBF and CBV measured by dynamic susceptibility contrast perfusion MRI in 37 children (1.8-18 years) treated for infratentorial brain tumors receiving propofol (IV, n = 19) or no sedation (NS, n = 18) were compared between groups and correlated with age, hematocrit (Hct), end-tidal CO{sub 2} (ETCO{sub 2}), dose, weight, and history of radiation therapy (RT). The model most predictive of CBF and CBV was identified by multiple linear regression. Anterior cerebral artery (ACA) and middle cerebral artery (MCA) territory CBF were significantly lower, and MCA territory CBV greater (p = 0.03), in IV than NS patients (p = 0.01, 0.04). The usual trend of decreasing CBF with age was reversed with propofol in ACA and MCA territories (r = 0.53, r = 0.47; p < 0.05). ACA and MCA CBF (r = 0.59, 0.49; p < 0.05) and CBV in ACA, MCA, and posterior cerebral artery territories (r = 0.73, 0.80, 0.52; p < 0.05) increased with weight in propofol-sedated children, with no significant additional influence from age, ETCO{sub 2}, hematocrit, or RT. In propofol-sedated children, usual age-related decreases in CBF were reversed, and increases in CBF and CBV were weight-dependent, not previously described. Weight-dependent increases in propofol clearance may diminish suppression of CBF and CBV. Prospective study is required to establish anesthetic-specific models of CBF and CBV in children. (orig.)

  20. Glioma Grading and Determination of IDH Mutation Status and ATRX loss by DCE and ASL Perfusion.

    Science.gov (United States)

    Brendle, Cornelia; Hempel, Johann-Martin; Schittenhelm, Jens; Skardelly, Marco; Tabatabai, Ghazaleh; Bender, Benjamin; Ernemann, Ulrike; Klose, Uwe

    2017-05-09

    To evaluate arterial spin labeling (ASL) perfusion and dynamic contrast-enhanced (DCE) perfusion in glioma grading according to the previous WHO classification of 2007, as well as concerning isocitrate dehydrogenase (IDH) mutation status and ATRX expression as required by the new WHO 2016 brain tumor classification. The mean values of Ktrans, Kep, Ve, and Vp by DCE perfusion, and cerebral blood flow (CBF) by ASL perfusion were assessed retrospectively in 40 patients with initial glioma diagnosis. Perfusion parameters were correlated and compared concerning glioma grading, IDH mutation status and ATRX expression. The DCE and ASL perfusion parameters showed merely moderate correlation. The Ktrans, Ve, and CBF by DCE perfusion were different in low-grade and high-grade gliomas (p = 0.0018, p IDH mutation (p = 0.014, sensitivity = 0.75, specificity = 0.88) and showed a trend for the discrimination of astrocytomas with IDH mutation from oligodendrogliomas (p = 0.074). In conclusion, DCE and ASL perfusion are complementary in the differentiation of gliomas. The discrimination of low- and high-grade gliomas is possible by the DCE perfusion parameter Ve, while ASL perfusion shows potential for the differentiation of the IDH and ATRX mutation status of gliomas following the new WHO classification 2016. Both perfusion techniques might represent different aspects of brain tumor perfusion.

  1. Validation and absolute quantification of MR perfusion compared with CT perfusion in patients with unilateral cerebral arterial stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Fang-Ying, E-mail: fychiou@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Kao, Yi-Hsuan, E-mail: yhkao@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Teng, Michael Mu Huo, E-mail: mhteng@gmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chung, Hsiao-Wen, E-mail: chung@cc.ee.ntu.edu.tw [Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Feng-Chi, E-mail: fcchang374@gmail.com [School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Cho, I-Chieh, E-mail: jessie8030@yahoo.com.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Chen, Wen-Chun, E-mail: sky7408695@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China)

    2012-12-15

    Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis. Materials and methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values. For comparison between MRP and CTP, we manually deposited regions of interest in bilateral MCA territories at the level containing the body of the lateral ventricle. Results: The correlation between MRP and CTP was best for mean transit time (MTT) (r = 0.83), followed by cerebral blood flow (CBF) (r = 0.52) and cerebral blood volume (CBV) (r = 0.43). There was no significant difference between CTP and MRP for CBV, CBF, and MTT on the lesion side, the contralateral side, the lesion-contralateral differences, or the lesion-to-contralateral ratios (P > 0.05). The mean differences between MRP and CTP were as follows: CBV −0.57 mL/100 g, CBF 2.50 mL/100 g/min, and MTT −0.90 s. Conclusion: Absolute quantification of MRP is possible. Using the proposed method, measured values of MRP and CTP had acceptable linear correlation and quantitative agreement.

  2. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    Science.gov (United States)

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  3. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable

  4. Isolated limb perfusion.

    Science.gov (United States)

    Gillespie, Rosalyn; Chantier, Nariane

    1994-12-08

    Growing concern over the rising incidence of malignant melanoma has brought about a need for information on this disorder and the treatment available. Isolated limb perfusion is a relatively new technique used in only a few hospitals. An increased knowledge base will lead to a better understanding of the nursing care required and to a more in-depth care plan.

  5. Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei

    2013-10-01

    Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.

  6. Non-invasive MR perfusion study in patients with depression

    International Nuclear Information System (INIS)

    Lv Su; Huang Xiaoqi; Zou Ling; Li Dongming; Tang Hehan; Yang Hong; Zhang Tijiang; Li Xiuli; Gong Qiyong; Sun Xueli; Zou Ke

    2009-01-01

    Objective: To investigate the brain perfusion changes in patients with refractory depressive disorder (RDD) and non-refractory depressive disorder (NDD) using arterial spin labeling (ASL). Methods: Present study included 12 patients with RDD, 37 patients with NDD and 42 controls, and their age, sex and handedness were matched among the three groups. FAIR sequences were performed using a 3 T MR imaging system with an 8 channel phase array head coil. The labelled and controled images were subtracted and then averaged to obtain perfusion-weighted images. The first 2 images were excluded to avoid T 1 equilibrium effects and then voxel based analysis was performed using SPM2. One way ANOVA analysis using age as covariance (thresholded at P<0.01 uncorrected) was performed. Results: Patients with NDD showed regional alteration of the brain perfusion, mainly involved in two frontal- subcortical circuits, i.e. significantly decreased perfusion in the left frontal and thalamus (the limbic- thalamo-cortical circuit) whereas significantly increased perfusion in bilateral hippocampi, right lentiform and left anterior cingulated gyms (the limbic-striatal-pallidal-thalamic circuit). In contrast, patients with RDD presented significantly decreased perfusion involving bilateral frontal areas (the limbic-thalamo-cortical circuit) whereby no significantly increased perfusion areas were observed. Conclusion: In addition to the reported experimental evidences, our results suggest that the RDD is associated with inactivity of bilateral frontal areas, while the NDD is associated with inactivity of left frontal areas and overaetivity of bilateral limbic system. (authors)

  7. Dynamic (4D) CT perfusion offers simultaneous functional and anatomical insights into pulmonary embolism resolution

    Energy Technology Data Exchange (ETDEWEB)

    Mirsadraee, Saeed, E-mail: saeed.mirsadraee@ed.ac.uk [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Reid, John H.; Connell, Martin [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); MacNee, William; Hirani, Nikhil [The Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Murchison, John T. [Department of Radiology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA (United Kingdom); Beek, Edwin J. van [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom)

    2016-10-15

    Objective: Resolution and long-term functional effects of pulmonary emboli are unpredictable. This study was carried out to assess persisting vascular bed perfusion abnormalities and resolution of arterial thrombus in patients with recent pulmonary embolism (PE). Methods and materials: 26 Patients were prospectively evaluated by dynamic (4D) contrast enhanced CT perfusion dynamic pulmonary CT perfusion. Intermittent volume imaging was performed every 1.5–1.7 s during breath-hold and perfusion values were calculated by maximum-slope technique. Thrombus load (modified Miller score; MMS) and ventricular diameter were determined. Perfusion maps were visually scored and correlated with residual endoluminal filling defects. Results: The mean initial thrombus load was 13.1 ± 4.6 MMS (3–16), and 1.2 ± 2.1 MMS (0–8) at follow up. From the 24 CTPs with diagnostic quality perfusion studies, normal perfusion was observed in 7 (29%), and mildly-severely abnormal in 17 (71%). In 15 patients with no residual thrombus on follow up CTPA, normal perfusion was observed in 6, and abnormal perfusion in 9. Perfusion was abnormal in all patients with residual thrombus on follow up CTPA. Pulmonary perfusion changes were classified as reduced (n = 4), delayed (systemic circulation pattern; n = 5), and absent (no-flow; n = 5). The right ventricle was dilated in 12/25 (48%) at presentation, and normal in all 26 follow up scans. Weak correlation was found between initial ventricular dilatation and perfusion abnormality at follow up (r = 0.15). Conclusions: Most patients had substantial perfusion abnormality at 3–6 months post PE. Abnormal perfusion patterns were frequently observed in patients and in regions with no corresponding evidence of residual thrombus on CTPA. Some defects exhibit delayed, presumed systemic, enhancement (which we have termed ‘stunned’ lung). CT perfusion provides combined anatomical and functional information about PE resolution.

  8. ABCD1 dysfunction alters white matter microvascular perfusion.

    Science.gov (United States)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo; Boulouis, Gregoire; Ou, Yangming; Cai, Xuezhu; Liberato Celso Pedrotti, Afonso; Kalpathy-Cramer, Jayashree; Caruso, Paul; Hayden, Douglas L; Rost, Natalia; Mouridsen, Kim; Eichler, Florian S; Rosen, Bruce; Musolino, Patricia L

    2017-12-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability of the blood-brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic resonance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased capillary flow heterogeneity in asymptomatic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow heterogeneity followed by blood-brain barrier permeability changes in the perilesional white matter, which predicts lesion progression. These white matter microvascular alterations normalize within 1 year after treatment with haematopoietic stem cell transplantation. For the first time in vivo, our studies unveil a model to assess how ABCD1 alters white matter microvascular function and explores its potential as an earlier biomarker for monitoring disease progression and response to treatment. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    Directory of Open Access Journals (Sweden)

    Kiuru Aaro

    2003-01-01

    Full Text Available The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT and nuclear medicine (NM studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  10. Pancreas tumor model in rabbit imaged by perfusion CT scans

    Science.gov (United States)

    Gunn, Jason; Tichauer, Kenneth; Moodie, Karen; Kane, Susan; Hoopes, Jack; Stewart, Errol E.; Hadway, Jennifer; Lee, Ting-Yim; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to develop and validate a pancreas tumor animal model to investigate the relationship between photodynamic therapy (PDT) effectiveness and photosensitizer drug delivery. More specifically, this work lays the foundation for investigating the utility of dynamic contrast enhanced blood perfusion imaging to be used to inform subsequent PDT. A VX2 carcinoma rabbit cell line was grown in the tail of the pancreas of three New Zealand White rabbits and approximately 3-4 weeks after implantation the rabbits were imaged on a CT scanner using a contrast enhanced perfusion protocol, providing parametric maps of blood flow, blood volume, mean transit time, and vascular permeability surface area product.

  11. Tissue perfusion rate estimation with compression-based photoacoustic-ultrasound imaging

    Science.gov (United States)

    Choi, Min; James Shapiro, A. M.; Zemp, Roger

    2018-01-01

    Tissue perfusion is essential for transporting blood oxygen and nutrients. Measurement of tissue perfusion rate would have a significant impact in clinical and preclinical arenas. However, there are few techniques to image this important parameter and they typically require contrast agents. A label-free methodology based on tissue compression and imaging with a high-frequency photoacoustic-ultrasound system is introduced for estimating and visualizing tissue perfusion rates. Experiments demonstrate statistically significant differences in depth-resolved perfusion rates in a human subject with various temperature exposure conditions.

  12. Prognostic value of combined visualization of MR diffusion and perfusion maps in glioblastoma.

    Science.gov (United States)

    Deike, Katerina; Wiestler, Benedikt; Graf, Markus; Reimer, Caroline; Floca, Ralf O; Bäumer, Philipp; Kickingereder, Philipp; Heiland, Sabine; Schlemmer, Heinz-Peter; Wick, Wolfgang; Bendszus, Martin; Radbruch, Alexander

    2016-02-01

    We analyzed whether the combined visualization of decreased apparent diffusion coefficient (ADC) values and increased cerebral blood volume (CBV) in perfusion imaging can identify prognosis-related growth patterns in patients with newly diagnosed glioblastoma. Sixty-five consecutive patients were examined with diffusion and dynamic susceptibility-weighted contrast-enhanced perfusion weighted MRI. ADC and CBV maps were co-registered on the T1-w image and a region of interest (ROI) was manually delineated encompassing the enhancing lesion. Within this ROI pixels with ADC values the 70th percentile (CBVmax) and the intersection of pixels with ADCmin and CBVmax were automatically calculated and visualized. Initially, all tumors with a mean intersection greater than the upper quartile of the normally distributed mean intersection of all patients were subsumed to the first growth pattern termed big intersection (BI). Subsequently, the remaining tumors' growth patterns were categorized depending on the qualitative representation of ADCmin, CBVmax and their intersection. Log-rank test exposed a significantly longer overall survival of BI (n = 16) compared to non-BI group (n = 49) (p = 0.0057). Thirty-one, four and 14 patients of the non-BI group were classified as predominant ADC-, CBV- and mixed growth group, respectively. In a multivariate Cox regression model, the BI-, CBV- and mixed groups had significantly lower adjusted hazard ratios (p-value, α(Bonferroni) < 0.006) when compared to the reference group ADC: 0.29 (0.0027), 0.11 (0.038) and 0.33 (0.0059). Our study provides evidence that the combination of diffusion and perfusion imaging allows visualization of different glioblastoma growth patterns that are associated with prognosis. A possible biological hypothesis for this finding could be the interpretation of the ADCmin fraction as the invasion-front of tumor cells while the CBVmax fraction might represent the vascular rich tumor border that is "trailing behind

  13. Reverse ventilation--perfusion mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

  14. CT of malignant choroidal melanoma - morphology and perfusion characteristics

    International Nuclear Information System (INIS)

    Heller, M.; Hagemann, J.; Jend, H.H.; Guthoff, R.

    1982-01-01

    The computed tomographic morphology of malignant choroidal melanoma and its perfusion characteristics are described. Thirty-three static and serial CT examinations made on 29 patients with choroidal melanoma, three with pseudotumors of the macula and one with choroidal metastasis revealed the choroidal melanoma to be usually a hyperdense, markedly perfused tumor, while the non-contrast, diagnostically undifferentiable pseudotumors and the choroidal metastasis, revealed no significant change in density after the administration of contrast material. Density values or perfusion characteristics of choroidal melanoma that are outside of the normal range are a result of secondary changes within the immediate surroundings of the tumor, such as detachment of the retina, tumor-induced glaucoma, or tumor necrosis. (orig.)

  15. CT of malignant choroidal melanoma - morphology and perfusion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Heller, M.; Hagemann, J.; Jend, H.H.; Guthoff, R.

    1982-03-01

    The computed tomographic morphology of malignant choroidal melanoma and its perfusion characteristics are described. Thirty-three static and serial CT examinations made on 29 patients with choroidal melanoma, three with pseudotumors of the macula and one with choroidal metastasis revealed the choroidal melanoma to be usually a hyperdense, markedly perfused tumor, while the non-contrast, diagnostically undifferentiable pseudotumors and the choroidal metastasis, revealed no significant change in density after the administration of contrast material. Density values or perfusion characteristics of choroidal melanoma that are outside of the normal range are a result of secondary changes within the immediate surroundings of the tumor, such as detachment of the retina, tumor-induced glaucoma, or tumor necrosis.

  16. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  17. Possibilities of differentiation of solitary focal liver lesions by computed tomography perfusion

    Directory of Open Access Journals (Sweden)

    Irmina Sefić Pašić

    2015-08-01

    Full Text Available Aim To evaluate possibilities of computed tomography (CT perfusion in differentiation of solitary focal liver lesions based on their characteristic vascularization through perfusion parameters analysis. Methods Prospective study was conducted on 50 patients in the period 2009-2012. Patients were divided in two groups: benign and malignant lesions. The following CT perfusion parameters were analyzed: blood flow (BF, blood volume (BV, mean transit time (MTT, capillary permeability surface area product (PS, hepatic arterial fraction (HAF, and impulse residual function (IRF. During the study another perfusion parameter was analyzed: hepatic perfusion index (HPI. All patients were examined on Multidetector 64-slice CT machine (GE with application of perfusion protocol for liver with i.v. administration of contrast agent. Results In both groups an increase of vascularization and arterial blood flow was noticed, but there was no significant statistical difference between any of 6 analyzed parameters. Hepatic perfusion index values were increased in all lesions in comparison with normal liver parenchyma. Conclusion Computed tomography perfusion in our study did not allow differentiation of benign and malignant liver lesions based on analysis of functional perfusion parameters. Hepatic perfusion index should be investigated in further studies as a parameter for detection of possible presence of micro-metastases in visually homogeneous liver in cases with no lesions found during standard CT protocol

  18. Validation of CT brain perfusion methods using a realistic dynamic head phantom.

    Science.gov (United States)

    Riordan, Alan J; Prokop, Mathias; Viergever, Max A; Dankbaar, Jan Willem; Smit, Ewoud J; de Jong, Hugo W A M

    2011-06-01

    Development and evaluation of a realistic hybrid head phantom for the validation of quantitative CT brain perfusion methods. A combination, or hybrid, of CT images of an anthropomorphic head phantom together with clinically acquired MRI brain images was used to construct a dynamic hybrid head phantom. Essential CT imaging parameters such as spatially dependent noise, effects of resolution, tube settings, and reconstruction parameters were intrinsically included by scanning a skull phantom using CT perfusion (CTP) protocols with varying mAs. These data were combined with processed high resolution 7T clinical MRI images to include healthy and diseased brain parenchyma, as well as the cerebral vascular system. Time attenuation curves emulating contrast bolus passage based on perfusion as observed in clinical studies were added. Using the phantom, CTP images were generated using three brain perfusion calculation methods: bcSVD, sSVD, and fit-based deconvolution, and the linearity and accuracy of the three calculation methods was assessed. Dependency of perfusion outcome on calculation method was compared to clinical data. Furthermore, the potential of the phantom to optimize brain perfusion packages was investigated. All perfusion calculation methods showed overestimation of low perfusion values and underestimation of high perfusion values. Good correlation in behavior between phantom and clinical data was found (R2 = 0.84). A dynamic hybrid head phantom constructed from CT and MRI data was demonstrated to realistically represent clinical CTP studies, which is useful for assessing CT brain perfusion acquisition, reconstruction, and analysis.

  19. Simultaneous determination of arterial input function of the internal carotid and middle cerebral arteries for dynamic susceptibility contrast MRI; Simultane Bestimmung der Arteriellen Inputfunktion fuer die dynamische suszeptibilitaetsgewichtete Magnetresonanztomographie aus der A. carotis interna und der A. cerebri media

    Energy Technology Data Exchange (ETDEWEB)

    Scholdei, R.; Wenz, F.; Fuss, M. [Radiologische Universitaetsklinik Heidelberg, Abt. Klinische Radiologie und Poliklinik (Germany); Essig, M.; Knopp, M.V. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik und Therapie

    1999-07-01

    Purpose: The determination of the arterial input function (AIF) is necessary for absolute quantification of the regional cerebral blood volume and blood flow using dynamic susceptibility contrast MRI. The suitability of different vessels (ICA-internal carotid artery, MCA-middle cerebral artery) for AIF determination was compared in this study. Methods: A standard 1.5 T MR system and a simultaneous dual FLASH sequence (TR/TE1/TE2/{alpha}=32/15/25/10 ) were used to follow a bolus of contrast agent. Slice I was chosen to cut the ICA perpendicularly. Slice II included the MCA. Seventeen data sets from ten subjects were evaluated. Results: The number of AIF-relevant pixels, the area under the AIF and the maximum concentration were all lower when the AIF was determined from the MCA compared to the ICA. Additionally, the mean transit time (MTT) and the time to maximum concentration (TTM) were longer in the MCA, complicating the computerized identification of AIF-relevant pixels. Data from one subject, who was examined five times, demonstrated that the intraindividual variance of the measured parameters was markedly lower than the interpersonal variance. Conclusions: It appears to be advantageous to measure the AIF in the ICA rather than the MCA. (orig.) [Deutsch] Ziel: Die Bestimmung der arteriellen Inputfunktion (AIF) ist notwendig fuer die absolute Quantifizierung haemodynamischer Parameter mit der dynamischen suszeptibilitaetsgewichteten Magnetresonanztomographie (DSC-MRT). Es wurde untersucht, ob sich die Arteria cerebri media (ACM) ebenso zur Bestimmung der AIF eignet wie die dem Standardverfahren zugrundeliegende Arteria carotis interna (ACI). Methoden: Es wurden ein Standard-1,5 T-MR-Tomograph und eine simultaneous dual FLASH Sequenz (TR/TE1/TE2/{alpha}=32 ms/15 ms/25 ms/10 ) verwendet, welche die simultane Akquisition von zwei Schichten ermoeglicht. Die Positionierung der zwei Bildgebungsschichten wurde so gewaehlt, dass die ACI senkrecht geschnitten wurde und

  20. CT Perfusion Characteristics Identify Metastatic Sites in Liver

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF, blood volume (BV, mean transit time (MTT, permeability (PS, and hepatic arterial fraction (HAF, for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  1. CT Perfusion Characteristics Identify Metastatic Sites in Liver.

    Science.gov (United States)

    Wang, Yuan; Hobbs, Brian P; Ng, Chaan S

    2015-01-01

    Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT) perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and hepatic arterial fraction (HAF), for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  2. Dynamic contrast enhanced MRI in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alonzi, Roberto [Marie Curie Research Wing, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom)], E-mail: robertoalonzi@btinternet.com; Padhani, Anwar R. [Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom); Synarc Inc. 575 Market Street, San Francisco, CA 94105 (United States)], E-mail: anwar.padhani@paulstrickland-scannercentre.org.uk; Allen, Clare [Department of Imaging, University College Hospital, London, 235 Euston Road, NW1 2BU (United Kingdom)], E-mail: clare.allen@uclh.nhs.uk

    2007-09-15

    Angiogenesis is an integral part of benign prostatic hyperplasia (BPH), is associated with prostatic intraepithelial neoplasia (PIN) and is key to the growth and for metastasis of prostate cancer. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) using small molecular weight gadolinium chelates enables non-invasive imaging characterization of tissue vascularity. Depending on the technique used, data reflecting tissue perfusion, microvessel permeability surface area product, and extracellular leakage space can be obtained. Two dynamic MRI techniques (T{sub 2}*-weighted or susceptibility based and T{sub 1}-weighted or relaxivity enhanced methods) for prostate gland evaluations are discussed in this review with reference to biological basis of observations, data acquisition and analysis methods, technical limitations and validation. Established clinical roles of T{sub 1}-weighted imaging evaluations will be discussed including lesion detection and localisation, for tumour staging and for the detection of suspected tumour recurrence. Limitations include inadequate lesion characterisation particularly differentiating prostatitis from cancer, and in distinguishing between BPH and central gland tumours.

  3. Perfusion Bioreactor Module

    Science.gov (United States)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  4. Simultaneous Multiagent Hyperpolarized 13C Perfusion Imaging

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Bok, Robert A.; Reed, Galen D.

    2014-01-01

    Purpose: To demonstrate simultaneous hyperpolarization and imaging of three 13C-labeled perfusion MRI contrast agents with dissimilar molecular structures ([13C]urea, [13C]hydroxymethyl cyclopropane, and [13C]t-butanol) and correspondingly variable chemical shifts and physiological characteristic...

  5. CT perfusion of the liver during selective hepatic arteriography. Pure arterial blood perfusion of liver tumor and parenchyma

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kojima, Hiroyuki; Kariya, Shuji; Sawada, Satoshi

    2003-01-01

    The purpose of this study was to quantify pure arterial blood perfusion of liver tumor and parenchyma by using CT perfusion during selective hepatic arteriography. A total of 44 patients underwent liver CT perfusion study by injection of contrast medium via the hepatic artery. CT-perfusion parameters including arterial blood flow, arterial blood volume, and arterial mean transit time in the liver parenchyma and liver tumor were calculated using the deconvolution method. The CT-perfusion parameters and vascularity of the tumor were compared. A complete analysis could be performed in 36 of the 44 patients. For liver tumor and liver parenchyma, respectively, arterial blood flow was 184.6±132.7 and 41.0±27.0 ml/min/100 g, arterial blood volume was 19.4±14.6 and 4.8±4.2 ml/100 g, and arterial mean transit time was 8.9±4.2 and 10.2±5.3 sec. Arterial blood flow and arterial blood volume correlated significantly with the vascularity of the tumor; however no correlation was detected between arterial mean transit time and the vascularity of the tumor. This technique could be used to quantify pure hepatic arterial blood perfusion. (author)

  6. Clinical evaluation of non-invasive perfusion-weighted MRI

    International Nuclear Information System (INIS)

    Takasu, Miyuki

    2000-01-01

    A spin labeling method to measure cerebral blood flow without a contrast medium was developed and applied clinically to obtain a non-invasive perfusion-weighted image. The purpose of this study is to compare the non-invasive perfusion-weighted image using FAIR with the well-established PWI using a bolus injection of Gd-DTPA. Of 41 lesions which revealed decreased perfusion, 13 were shown to be low signal intensity areas on FAIR. Therefore, detection rate of FAIR for hypoperfusion was 32%. Of 8 lesions which revealed increased perfusion, 7 demonstrated high intensity on FAIR. Therefore, detection rate of FAIR for hyperperfusion was 88%. Seven lesions were found to have a mean pixel value of zero on PWI. Of these lesions, 5 lesions could be detected as high signal intensity area on FAIR. The rCBV- and rCBF index ratios of hypoperfused lesions detected on FAIR were significantly lower than those of lesions which were not detected on FAIR (p=0.007, p=0.01). As concerns the lesions detected of FAIR, there were positive correlation between rCBV- or rCBF index ratio and FAIR signal ratio (rCBV ratio: ρ=0.873, p=0.0002, rCBF index ratio: ρ=0.858, p=0.0003). FAIR is valuable clinical tool to detect perfusion abnormality semi-quantitatively without contrast medium, although it showed relatively low detection rate for hypoperfused lesions. (author)

  7. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Wang Hesheng [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Johnson, Timothy D. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Pan, Charlie [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hussain, Hero [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  8. Clinical evaluation of pulmonary perfusion MRI using FAIR (flow-sensitive alternating inversion recovery)-HASTE (Half-Fourier Single-Shot TurboSE) method

    International Nuclear Information System (INIS)

    Togami, Izumi; Sasai, Nobuya; Tsunoda, Masatoshi; Sei, Tetsurou; Sato, Shuhei; Yabuki, Takayuki; Hiraki, Yoshio

    2002-01-01

    The FAIR-HASTE method is a kind of noninvasive perfusion MR imaging obtained without the use of contrast media. By subtracting a flow-insensitive image from a flow-sensitive image, contrast enhancement of inflowing blood achieved. In the present study, we applied pulmonary perfusion FAIR-HASTE sequence for 23 patients with various pulmonary diseases, and compared the findings with those by pulmonary perfusion scintigraphy and Gadolinium perfusion MRI. Pulmonary perfusion imaging with the FAIR-HASTE method was possible in all clinical cases, and the findings corresponded well to those obtained by perfusion MRI using contrast media or pulmonary scintigraphy. The FAIR-HASTE method is a promising method for the evaluation of pulmonary perfusion. (author)

  9. Myocardial perfusion modeling using MRI

    DEFF Research Database (Denmark)

    Larsson, H B; Fritz-Hansen, T; Rostrup, Egill

    1996-01-01

    In the present study, it is shown that it is possible to quantify myocardial perfusion using magnetic resonance imaging in combination with gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Previously, a simple model and method for measuring myocardial perfusion using an inversion recovery...

  10. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    International Nuclear Information System (INIS)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel; Erly, William; Nael, Kambiz

    2015-01-01

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K trans , and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K trans , and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K trans were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  11. Perfusion computed tomography to assist decision making for stroke thrombolysis.

    Science.gov (United States)

    Bivard, Andrew; Levi, Christopher; Krishnamurthy, Venkatesh; McElduff, Patrick; Miteff, Ferdi; Spratt, Neil J; Bateman, Grant; Donnan, Geoffrey; Davis, Stephen; Parsons, Mark

    2015-07-01

    The use of perfusion imaging to guide selection of patients for stroke thrombolysis remains controversial because of lack of supportive phase three clinical trial evidence. We aimed to measure the outcomes for patients treated with intravenous recombinant tissue plasminogen activator (rtPA) at a comprehensive stroke care facility where perfusion computed tomography was routinely used for thrombolysis eligibility decision assistance. Our overall hypothesis was that patients with 'target' mismatch on perfusion computed tomography would have improved outcomes with rtPA. This was a prospective cohort study of consecutive ischaemic stroke patients who fulfilled standard clinical/non-contrast computed tomography eligibility criteria for treatment with intravenous rtPA, but for whom perfusion computed tomography was used to guide the final treatment decision. The 'real-time' perfusion computed tomography assessments were qualitative; a large perfusion computed tomography ischaemic core, or lack of significant perfusion lesion-core mismatch were considered relative exclusion criteria for thrombolysis. Specific volumetric perfusion computed tomography criteria were not used for the treatment decision. The primary analysis compared 3-month modified Rankin Scale in treated versus untreated patients after 'off-line' (post-treatment) quantitative volumetric perfusion computed tomography eligibility assessment based on presence or absence of 'target' perfusion lesion-core mismatch (mismatch ratio >1.8 and volume >15 ml, core computed tomography-selected rtPA-treated patients to an Australian historical cohort of non-contrast computed tomography-selected rtPA-treated patients. Of 635 patients with acute ischaemic stroke eligible for rtPA by standard criteria, thrombolysis was given to 366 patients, with 269 excluded based on visual real-time perfusion computed tomography assessment. After off-line quantitative perfusion computed tomography classification: 253 treated patients and

  12. Ventilation-perfusion lung imaging in diaphragmatic paralysis

    International Nuclear Information System (INIS)

    Chopra, S.K.; Taplin, G.V.

    1977-01-01

    Clinical, radiological, physiological, and lung imaging findings from a patient with paralysis of the diaphragm are described. Dyspnea, hypoxemia and hypercapnia increased when the patient changed from the upright to the supine positions. Ventilation (V) and perfusion (P) images of the right lung appeared to be relatively normal and remained nearly the same in the upright and supine positions. In contrast, V/P images of the left lung were smaller than those of the right lung in the upright position and decreased further in the supine position. In addition, the size of the ventilation image was much smaller than that of the perfusion

  13. Ultrasound imaging and contrast agents: a safe alternative to MRI?

    NARCIS (Netherlands)

    Wink, Margot H.; Wijkstra, Hessel; de La Rosette, Jean J. M. C. H.; Grimbergen, Cornelis A.

    2006-01-01

    Microbubble contrast media are used to enhance ultrasound images. Because ultrasound is a real-time investigation, contrast-enhanced ultrasound offers possibilities for perfusion imaging. This review is conducted to evaluate the safety of contrast-enhanced ultrasound and its possible role in medical

  14. Perfusion CT in acute stroke

    International Nuclear Information System (INIS)

    Eckert, Bernd; Roether, Joachim; Fiehler, Jens; Thomalla, Goetz

    2015-01-01

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  15. Differentiation of breast cancer from fibroadenoma with dual-echo dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Wang, Shiwei; Delproposto, Zachary; Wang, Haoyu; Ding, Xuewei; Ji, Conghua; Wang, Bei; Xu, Maosheng

    2013-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) of the breast is a routinely used imaging method which is highly sensitive for detecting breast malignancy. Specificity, though, remains suboptimal. Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI), an alternative dynamic contrast imaging technique, evaluates perfusion-related parameters unique from DCE MRI. Previous work has shown that the combination of DSC MRI with DCE MRI can improve diagnostic specificity, though an additional administration of intravenous contrast is required. Dual-echo MRI can measure both T1W DCE MRI and T2*W DSC MRI parameters with a single contrast bolus, but has not been previously implemented in breast imaging. We have developed a dual-echo gradient-echo sequence to perform such simultaneous measurements in the breast, and use it to calculate the semi-quantitative T1W and T2*W related parameters such as peak enhancement ratio, time of maximal enhancement, regional blood flow, and regional blood volume in 20 malignant lesions and 10 benign fibroadenomas in 38 patients. Imaging parameters were compared to surgical or biopsy obtained tissue samples. Receiver operating characteristic (ROC) curves and area under the ROC curves were calculated for each parameter and combination of parameters. The time of maximal enhancement derived from DCE MRI had a 90% sensitivity and 69% specificity for predicting malignancy. When combined with DSC MRI derived regional blood flow and volume parameters, sensitivity remained unchanged at 90% but specificity increased to 80%. In conclusion, we show that dual-echo MRI with a single administration of contrast agent can simultaneously measure both T1W and T2*W related perfusion and kinetic parameters in the breast and the combination of DCE MRI and DSC MRI parameters improves the diagnostic performance of breast MRI to differentiate breast cancer from benign fibroadenomas.

  16. Differentiation of breast cancer from fibroadenoma with dual-echo dynamic contrast-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Shiwei Wang

    Full Text Available Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI of the breast is a routinely used imaging method which is highly sensitive for detecting breast malignancy. Specificity, though, remains suboptimal. Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI, an alternative dynamic contrast imaging technique, evaluates perfusion-related parameters unique from DCE MRI. Previous work has shown that the combination of DSC MRI with DCE MRI can improve diagnostic specificity, though an additional administration of intravenous contrast is required. Dual-echo MRI can measure both T1W DCE MRI and T2*W DSC MRI parameters with a single contrast bolus, but has not been previously implemented in breast imaging. We have developed a dual-echo gradient-echo sequence to perform such simultaneous measurements in the breast, and use it to calculate the semi-quantitative T1W and T2*W related parameters such as peak enhancement ratio, time of maximal enhancement, regional blood flow, and regional blood volume in 20 malignant lesions and 10 benign fibroadenomas in 38 patients. Imaging parameters were compared to surgical or biopsy obtained tissue samples. Receiver operating characteristic (ROC curves and area under the ROC curves were calculated for each parameter and combination of parameters. The time of maximal enhancement derived from DCE MRI had a 90% sensitivity and 69% specificity for predicting malignancy. When combined with DSC MRI derived regional blood flow and volume parameters, sensitivity remained unchanged at 90% but specificity increased to 80%. In conclusion, we show that dual-echo MRI with a single administration of contrast agent can simultaneously measure both T1W and T2*W related perfusion and kinetic parameters in the breast and the combination of DCE MRI and DSC MRI parameters improves the diagnostic performance of breast MRI to differentiate breast cancer from benign fibroadenomas.

  17. A Simplified Whole-Organ CT Perfusion Technique with Biphasic Acquisition: Preliminary Investigation of Accuracy and Protocol Feasibility in Kidneys.

    Science.gov (United States)

    Yuan, XiaoDong; Zhang, Jing; Quan, ChangBin; Tian, Yuan; Li, Hong; Ao, GuoKun

    2016-04-01

    To determine the feasibility and accuracy of a protocol for calculating whole-organ renal perfusion (renal blood flow [RBF]) and regional perfusion on the basis of biphasic computed tomography (CT), with concurrent dynamic contrast material-enhanced (DCE) CT perfusion serving as the reference standard. This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Biphasic CT of the kidneys, including precontrast and arterial phase imaging, was integrated with a first-pass dynamic volume CT protocol and performed and analyzed in 23 patients suspected of having renal artery stenosis. The perfusion value derived from biphasic CT was calculated as CT number enhancement divided by the area under the arterial input function and compared with the DCE CT perfusion data by using the paired t test, correlation analysis, and Bland-Altman plots. Correlation analysis was made between the RBF and the extent of renal artery stenosis. All postprocessing was independently performed by two observers and then averaged as the final result. Mean ± standard deviation biphasic and DCE CT perfusion data for RBF were 425.62 mL/min ± 124.74 and 419.81 mL/min ± 121.13, respectively (P = .53), and for regional perfusion they were 271.15 mL/min per 100 mL ± 82.21 and 266.33 mL/min per 100 mL ± 74.40, respectively (P = .31). Good correlation and agreement were shown between biphasic and DCE CT perfusion for RBF (r = 0.93; ±10% variation from mean perfusion data [P perfusion (r = 0.90; ±13% variation from mean perfusion data [P CT perfusion (r = -0.81, P = .012). Biphasic CT perfusion is clinically feasible and provides perfusion data comparable to DCE CT perfusion data at both global and regional levels in the kidney. Online supplemental material is available for this article.

  18. Perfusion measurement in acute pancreatitis using dynamic perfusion MDCT.

    Science.gov (United States)

    Bize, Pierre E; Platon, Alexandra; Becker, Christoph D; Poletti, Pierre-Alexandre

    2006-01-01

    Our objective was to determine whether MDCT with perfusion imaging could help in assessing the severity of acute pancreatitis in the initial phase of the disease. One hundred six patients with abdominal pain were prospectively enrolled in this study. Patients were separated into two groups: P1 (severe) and P2 (mild) acute pancreatitis. Mean perfusion value was 24.8 mL/100 mL/min in the P1 group and 50.5 mL/100 mL/min in the P2 group (p = 0.0016, significant). Our preliminary data suggest that pancreatic perfusion measurement using MDCT with perfusion imaging could help in assessing the severity of acute pancreatitis.

  19. Perfusion defects in pulmonary perfusion iodine maps: causes and semiology.

    Science.gov (United States)

    Bustos Fiore, A; González Vázquez, M; Trinidad López, C; Mera Fernández, D; Costas Álvarez, M

    2017-12-14

    to describe the usefulness of dual-energy CT for obtaining pulmonary perfusion maps to provide morphological and functional information in patients with pulmonary embolisms. To review the semiology of perfusion defects due to pulmonary embolism so they can be differentiated from perfusion defects due to other causes: alterations outside the range used in the iodine map caused by other diseases of the lung parenchyma or artifacts. CT angiography of the pulmonary arteries is the technique of choice for the diagnosis of pulmonary embolisms. New dual-energy CT scanners are useful for detecting perfusion defects secondary to complete or partial obstruction of pulmonary arteries and is most useful for detecting pulmonary embolisms in subsegmental branches. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Associations between muscle perfusion and symptoms in knee osteoarthritis

    DEFF Research Database (Denmark)

    Bandak, E; Boesen, M; Bliddal, H

    2015-01-01

    a relatively rapid decline (washout pattern) relative to the total number of voxels within the muscle VOI. CONCLUSIONS: More widespread perfusion in the peri-articular knee muscles was associated with less pain in patients with KOA. These results give rise to investigations of the effects of exercise on muscle......OBJECTIVE: To investigate the association between muscle perfusion in the peri-articular knee muscles assessed by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and symptoms in patients with knee osteoarthritis (KOA). DESIGN: In a cross-sectional setting, muscle perfusion...... was quantified by DCE-MRI in KOA. Regions of interest (ROI) were drawn around the peri-articular muscles, summed and averaged into one single "Total Muscle Volume" volume of interest (VOI). Symptoms were assessed via the Knee injury and Osteoarthritis Outcome Score (KOOS) (0: worst; 100: best). RESULTS: DCE...

  1. Perfusion Angiography of the Foot in Patients with Critical Limb Ischemia: Description of the Technique

    Energy Technology Data Exchange (ETDEWEB)

    Jens, Sjoerd, E-mail: s.jens@amc.uva.nl; Marquering, Henk A., E-mail: h.a.marquering@amc.uva.nl [Academic Medical Center, Department of Radiology (Netherlands); Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.uva.nl [Academic Medical Center, Department of Surgery (Netherlands); Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl [Academic Medical Center, Department of Radiology (Netherlands)

    2015-02-15

    ObjectiveTo study the feasibility of 2D perfusion imaging in critical limb ischemia (CLI).Methods/ResultsPerfusion angiography is a new technology which was tested in 18 patients with CLI of the foot. A standardized protocol was used with a catheter placed at the mid-part of the popliteal artery, and a total of 9 cc of non-ionic iodinated contrast material was injected at a rate of 3 cc/sec. The technology is based on early cardiology research where iodinated contrast agents were used for imaging of cardiac perfusion. During the first pass of the contrast, there is a significant diffusion of the contrast agents into the interstitial space, particularly for non-ionic and low-molecular-weight compounds.DiscussionThe original angiography data can be used to make a time–density curve, which represents the actual perfusion of the foot in time. Angiographic perfusion imaging is a post-processing modality for which no extra contrast or radiation is needed. With this technique, it is possible to get more information about the perfusion status and microcirculation of the foot. This is a step toward functional imaging in CLI patients.

  2. Perfusion angiography of the foot in patients with critical limb ischemia: description of the technique.

    Science.gov (United States)

    Jens, Sjoerd; Marquering, Henk A; Koelemay, Mark J W; Reekers, Jim A

    2015-02-01

    To study the feasibility of 2D perfusion imaging in critical limb ischemia (CLI). Perfusion angiography is a new technology which was tested in 18 patients with CLI of the foot. A standardized protocol was used with a catheter placed at the mid-part of the popliteal artery, and a total of 9 cc of non-ionic iodinated contrast material was injected at a rate of 3 cc/sec. The technology is based on early cardiology research where iodinated contrast agents were used for imaging of cardiac perfusion. During the first pass of the contrast, there is a significant diffusion of the contrast agents into the interstitial space, particularly for non-ionic and low-molecular-weight compounds. The original angiography data can be used to make a time-density curve, which represents the actual perfusion of the foot in time. Angiographic perfusion imaging is a post-processing modality for which no extra contrast or radiation is needed. With this technique, it is possible to get more information about the perfusion status and microcirculation of the foot. This is a step toward functional imaging in CLI patients.

  3. Magnetic resonance cardiac perfusion imaging-a clinical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Peter; Schlosser, Thomas; Barkhausen, Joerg [University Hospital, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2006-08-15

    Coronary artery disease (CAD) with its clinical appearance of stable or unstable angina and acute myocardial infarction is the leading cause of death in developed countries. In view of increasing costs and the rising number of CAD patients, there has been a major interest in reliable non-invasive imaging techniques to identify CAD in an early (i.e. asymptomatic) stage. Since myocardial perfusion deficits appear very early in the ''ischemic cascade'', a major breakthrough would be the non-invasive quantification of myocardial perfusion before functional impairment might be detected. Therefore, there is growing interest in other, target-organ-specific parameters, such as relative and absolute myocardial perfusion imaging. Magnetic resonance (MR) imaging has been proven to offer attractive concepts in this respect. However, some important difficulties have not been resolved so far, which still causes uncertainty and prevents the broad application of MR perfusion imaging in a clinical setting. This review explores recent technical developments in MR hardware, software and contrast agents, as well as their impact on the current and future clinical status of MR imaging of first-pass myocardial perfusion imaging. (orig.)

  4. Multi-detector CT perfusion

    Directory of Open Access Journals (Sweden)

    Ashraf M. Enite

    2016-09-01

    Conclusion: CTP is a promising non-invasive technique assessing the efficacy, predicting early response to local treatment therapies and monitoring tumor recurrence. It assesses the degree of post therapy tumor perfusion especially the degree of arterialization.

  5. Contrast optimization in multiphase arterial spin labeling; Otimizacao do contraste em ASL multi-fase

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Fernando F.; Paschoal, Andre M., E-mail: paiva@ifsc.usp.br [Universidade de Sao Paulo (CIERMag/USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Foerster, Bernd U. [Philips Medical Systems LatAm, Sao Paulo, SP (Brazil); Tovar-Moll, Fernanda; Moll, Jorge [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2013-08-15

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  6. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper

    2014-01-01

    skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after...... blood perfusion recording and grouped according to needle type, skin blood perfusion response relates to needle diameter. The response was significantly higher after insertions with 28G and hooked 32G needles than with 30G (P ..., but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  7. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... (ICC) and limits of agreement. RESULTS: Fifteen minutes of hyperoxia was accompanied by mean reductions in arterial and venous perfusion velocities of 14% and 16%, respectively (p = 0.0080; p = 0.0019), constriction of major arteries and veins by 5.5% and 8.2%, respectively (p ...). For perfusion velocities, short-term ICCs were 0.79-0.82 and long-term ICCs were 0.06-0.11. Intersession increases in blood glucose were associated with reductions in perfusion velocities (arterial p = 0.0067; venous p = 0.018). CONCLUSION: Oxygen reactivity testing supported that motion-contrast velocimetry...

  8. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    International Nuclear Information System (INIS)

    Fan Li; Liu Shiyuan; Sun Fei; Xiao Xiangsheng

    2009-01-01

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  9. Steady-state first-pass perfusion (SSFPP): a new approach to 3D first-pass myocardial perfusion imaging.

    Science.gov (United States)

    Giri, Shivraman; Xue, Hui; Maiseyeu, Andrei; Kroeker, Randall; Rajagopalan, Sanjay; White, Richard D; Zuehlsdorff, Sven; Raman, Subha V; Simonetti, Orlando P

    2014-01-01

    To describe and characterize a new approach to first-pass myocardial perfusion utilizing balanced steady-state free precession acquisition without the use of saturation recovery or other magnetization preparation. The balanced steady-state free precession sequence is inherently sensitive to contrast agent enhancement of the myocardium. This sensitivity can be used to advantage in first-pass myocardial perfusion imaging by eliminating the need for magnetization preparation. Bloch equation simulations, phantom experiments, and in vivo 2D imaging studies were run comparing the proposed technique with three other methods: saturation recovery spoiled gradient echo, saturation recovery steady-state free precession, and steady-state spoiled gradient echo without magnetization preparation. Additionally, an acquisition-reconstruction strategy for 3D perfusion imaging is proposed and initial experience with this approach is demonstrated in healthy subjects and one patient. Phantom experiments verified simulation results showing the sensitivity of the balanced steady-state free precession sequence to contrast agent enhancement in solid tissue is similar to that of magnetization-prepared acquisitions. Images acquired in normal volunteers showed the proposed technique provided superior signal and signal-to-noise ratio compared with all other sequences at baseline as well as postcontrast. A new approach to first-pass myocardial perfusion is presented that obviates the need for magnetization preparation and provides high signal-to-noise ratio. Copyright © 2013 Wiley Periodicals, Inc.

  10. Contrast Materials

    Science.gov (United States)

    ... a red blood cell— and have a high degree of "echogenicity", or ability to reflect ultrasound waves. ... and radiologist to understand the potential risks and benefits of the contrast-enhanced scan. For MR imaging, ...

  11. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Directory of Open Access Journals (Sweden)

    Monika Huhndorf

    Full Text Available Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization.We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections.In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology.Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  12. Value of multidetector computed tomography evaluation of myocardial perfusion in the assessment of ischemic heart disease: comparison with nuclear perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kachenoura, Nadjia; Lodato, Joseph A.; Bardo, Dianna M.E.; Newby, Barbara; Lang, Roberto M.; Mor-Avi, Victor [University of Chicago Medical Center, Chicago, IL (United States); Gaspar, Tamar; Gips, Sarah; Peled, Nathan [Lady Davis Carmel Medical Center, Haifa (Israel)

    2009-08-15

    MDCT-derived myocardial perfusion has not yet been validated against accepted standards. We developed a technique for quantification of myocardial perfusion from MDCT images and studied its diagnostic value against SPECT myocardial perfusion imaging (MPI). Ninety-eight patients were studied. Abnormal perfusion was detected by comparing normalized segmental x-ray attenuation against values obtained in 20 control subjects. Disagreement with resting MPI was investigated in relationship to MDCT image quality, severity of MPI abnormalities, and stress MPI findings. Resting MPI detected mild or worse abnormalities in 20/78 patients. MDCT detected abnormalities in 15/20 patients (sensitivity of 0.75). Most abnormalities missed by MDCT analysis were graded as mild on MPI. Additional abnormalities found in 16/78 patients were not confirmed on resting MPI (specificity of 0.72). However, 8 of these 16 apparently false positive MDCT perfusion tests had abnormal stress MPI; of these 8 patients, 7 had optimal MDCT image quality, while in 6/8 remaining patients, image quality was suboptimal. When compared with resting MPI, MDCT detected perfusion abnormalities with high accuracy. Moreover, half of MDCT perfusion abnormalities not confirmed by resting MPI were associated with abnormal stress MPI. Importantly, this information can be obtained without additional radiation dose or contrast agent. (orig.)

  13. Magnetic resonance imaging of luxury perfusion of the optic nerve head in anterior ischemic optic neuropathy.

    Science.gov (United States)

    Yovel, Oren S; Katz, Miriam; Leiba, Hana

    2012-09-01

    A 49-year-old woman with painless reduction in visual acuity in her left eye was found to have nonarteritic anterior ischemic optic neuropathy (NAION). Fluorescein angiography revealed optic disc capillary leakage consistent with "luxury perfusion." Contrast-enhanced FLAIR magnetic resonance imaging (MRI) showed marked enhancement of the left optic disc. Resolution of the optic disc edema and the MRI abnormalities followed a similar time course. This report appears unique in documenting the MRI findings of luxury perfusion in NAION.

  14. Method for performing cerebral perfusion-weighted MRI in neonates

    Energy Technology Data Exchange (ETDEWEB)

    Laswad, Tarek; Alamo, Leonor; Meuli, Reto; Gudinchet, Francois [University of Lausanne (CH). Radiology Department, Lausanne (Switzerland)]|[Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland); Wintermark, Pia; Moessinger, Adrien [University of Lausanne, Division of Neonatology, Lausanne (Switzerland)]|[Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland)

    2009-03-15

    Cerebral perfusion-weighted imaging (PWI) in neonates is known to be technically difficult and there are very few published studies on its use in preterm infants. In this paper, we describe one convenient method to perform PWI in neonates, a method only recently used in newborns. A device was used to manually inject gadolinium contrast material intravenously in an easy, quick and reproducible way. We studied 28 newborn infants, with various gestational ages and weights, including both normal infants and those suffering from different brain pathologies. A signal intensity-time curve was obtained for each infant, allowing us to build perfusion maps. This technique offered a fast and easy method to manually inject a bolus gadolinium contrast material, which is essential in performing PWI in neonates. Cerebral PWI is technically feasible and reproducible in neonates of various gestational age and with various pathologies. (orig.)

  15. Lung perfusion scintigraphy by SPECT

    International Nuclear Information System (INIS)

    Hirayama, Takanobu

    1990-01-01

    The initial study reports the characteristic performance using lung segmental phantom filled in Tc-99m pertechnetate. To evaluate the segmental defect in lung perfusion scintigraphy, we applied Bull's-eye analysis in addition to planar image set. Bull's-eye analysis especially facilitated the interpretation in both middle and lower lobes. Subsequently, to evolute the clinical application of Bull's-eye analysis, pulmonary scintigraphy was performed on 10 normal subjects and 60 patients with several pulmonary diseases. Of interest, Bull's-eye analysis, however, encouraged the interpretation in both lower lobes. To calculate the extention and severity of perfusion defect, the present study describes Bull's-eye analysis. Quantitative scoring showed higher in patients with lung cancer than those with pulmonary tuberculosis. The present study focus that Bull's-eye analysis can be useful for evaluating perfusion in patients with a couple of pulmonary diseases. (author)

  16. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  17. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension : Insights from a multicenter registry

    NARCIS (Netherlands)

    Vliegenthart, Rozemarijn; De Cecco, Carlo N.; Wichmann, Julian L.; Meinel, Felix G.; Pelgrim, Gert Jan; Tesche, Christian; Ebersberger, Ullrich; Pugliese, Francesca; Bamberg, Fabian; Choe, Yeon Hyeon; Wang, Yining; Schoepf, U. Joseph

    2016-01-01

    Background: To identify patients with early signs of myocardial perfusion reduction, a reference base for perfusion measures is needed. Objective: To analyze perfusion parameters derived from dynamic computed tomography perfusion imaging (CTPI) in patients with suspected coronary artery disease

  18. Placental perfusion - a human alternative

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E

    2006-01-01

    between the mother and foetus. Dual perfusion of a single cotyledon in the human placenta can contribute to a better understanding of the placental barrier, transport rate and mechanisms of different substances and placental metabolism. The perfusion system has recently been established in Copenhagen...... and represents a supplement and alternative to animal testing, bypassing the animal to human extrapolation. Placentas are readily obtainable from most births upon informed consent from the mothers and are considered a promising tissue alternative/supplement to animal experiments. The system is validated...... as a part of work package 2 of the integrated project ReProTect....

  19. Perfusion measurements by micro-CT using prior image constrained compressed sensing (PICCS): initial phantom results.

    Science.gov (United States)

    Nett, Brian E; Brauweiler, Robert; Kalender, Willi; Rowley, Howard; Chen, Guang-Hong

    2010-04-21

    Micro-CT scanning has become an accepted standard for anatomical imaging in small animal disease and genome mutation models. Concurrently, perfusion imaging via tracking contrast dynamics after injection of an iodinated contrast agent is a well-established tool for clinical CT scanners. However, perfusion imaging is not yet commercially available on the micro-CT platform due to limitations in both radiation dose and temporal resolution. Recent hardware developments in micro-CT scanners enable continuous imaging of a given volume through the use of a slip-ring gantry. Now that dynamic CT imaging is feasible, data may be acquired to measure tissue perfusion using a micro-CT scanner (CT Imaging, Erlangen, Germany). However, rapid imaging using micro-CT scanners leads to high image noise in individual time frames. Using the standard filtered backprojection (FBP) image reconstruction, images are prohibitively noisy for calculation of voxel-by-voxel perfusion maps. In this study, we apply prior image constrained compressed sensing (PICCS) to reconstruct images with significantly lower noise variance. In perfusion phantom experiments performed on a micro-CT scanner, the PICCS reconstruction enabled a reduction to 1/16 of the noise variance of standard FBP reconstruction, without compromising the spatial or temporal resolution. This enables a significant increase in dose efficiency, and thus, significantly less exposure time is needed to acquire images amenable to perfusion processing. This reduction in required irradiation time enables voxel-by-voxel perfusion maps to be generated on micro-CT scanners. Sample perfusion maps using a deconvolution-based perfusion analysis are included to demonstrate the improvement in image quality using the PICCS algorithm.

  20. Perfusion measurements by micro-CT using prior image constrained compressed sensing (PICCS): initial phantom results

    International Nuclear Information System (INIS)

    Nett, Brian E; Chen, G-H; Brauweiler, Robert; Kalender, Willi; Rowley, Howard

    2010-01-01

    Micro-CT scanning has become an accepted standard for anatomical imaging in small animal disease and genome mutation models. Concurrently, perfusion imaging via tracking contrast dynamics after injection of an iodinated contrast agent is a well-established tool for clinical CT scanners. However, perfusion imaging is not yet commercially available on the micro-CT platform due to limitations in both radiation dose and temporal resolution. Recent hardware developments in micro-CT scanners enable continuous imaging of a given volume through the use of a slip-ring gantry. Now that dynamic CT imaging is feasible, data may be acquired to measure tissue perfusion using a micro-CT scanner (CT Imaging, Erlangen, Germany). However, rapid imaging using micro-CT scanners leads to high image noise in individual time frames. Using the standard filtered backprojection (FBP) image reconstruction, images are prohibitively noisy for calculation of voxel-by-voxel perfusion maps. In this study, we apply prior image constrained compressed sensing (PICCS) to reconstruct images with significantly lower noise variance. In perfusion phantom experiments performed on a micro-CT scanner, the PICCS reconstruction enabled a reduction to 1/16 of the noise variance of standard FBP reconstruction, without compromising the spatial or temporal resolution. This enables a significant increase in dose efficiency, and thus, significantly less exposure time is needed to acquire images amenable to perfusion processing. This reduction in required irradiation time enables voxel-by-voxel perfusion maps to be generated on micro-CT scanners. Sample perfusion maps using a deconvolution-based perfusion analysis are included to demonstrate the improvement in image quality using the PICCS algorithm.

  1. Susceptibility tensor imaging (STI) of the brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu

    2017-04-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. MR-based assessment of pulmonary ventilation-perfusion in animal models

    International Nuclear Information System (INIS)

    Yang Jian; Wan Mingxi; Guo Youmin

    2003-01-01

    Objective: To show the feasibility and value in the diagnosis of airway obstruction and pulmonary embolism with MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging. Methods: Eight canines were implemented for peripheral pulmonary embolism by intravenous injection of gelfoam granules at pulmonary segmental arterial level, and five of them were formed airway obstruction models by inserting self-made balloon catheter at second-bronchia. The oxygen-enhanced MR ventilation imaging was introduced by subtracting the images of pre- and post- inhaled pure oxygen. The MR pulmonary perfusion imaging was achieved by the first-pass contrast agent method. Moreover, the manifestation of MR ventilation and perfusion imaging was observed and contradistinguished with that of general pathologic anatomy, ventilation-perfusion scintigraphy, and pulmonary angiography. Results: The manifestations of airway obstruction regions in MR ventilation and perfusion imaging were matched, but those of pulmonary embolism regions were dismatched. The defect range of airway obstruction in MR ventilation image was smaller than that in ventilation scintigraphy. The abnormal perfusion regions of pulmonary embolism were divided into defect regions and reduce regions based on the time courses of signal intensity changes. The sensitivity and specificity of diagnosis on pulmonary embolism by MR ventilation combined with perfusion technique were 75.0% and 98.1%. The diagnostic results were in good coherence with ventilation-perfusion scintigraphy and pulmonary angiography (K=0.743, 0.899). Conclusion: The MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging can be used to diagnose the airway and vascular abnormity in lung. This technique resembles the ventilation-perfusion scintigraphy. It can provide quantitative functional information and better spatial and temporal resolution, and possesses the value of clinical application

  3. Automatic assessment of cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Larsson, Henrik B.W.

    2004-01-01

    In this paper, a method based on Active Appearance Models (AAM) is applied for automatic registration of myocardial perfusion MRI. A semi-quantitative perfusion assessment of the registered image sequences is presented. This includes the formation of perfusion maps for three parameters; maximum up...

  4. Relationship Between Collateral Status, Contrast Transit, and Contrast Density in Acute Ischemic Stroke.

    Science.gov (United States)

    Kawano, Hiroyuki; Bivard, Andrew; Lin, Longting; Spratt, Neil J; Miteff, Ferdinand; Parsons, Mark W; Levi, Christopher R

    2016-03-01

    Collateral circulation is recognized to influence the life expectancy of the ischemic penumbra in acute ischemic stroke. The best method to quantify collateral status on acute imaging is uncertain. We aimed to determine the relationship between visual collateral status, quantitative collateral assessments, baseline computed tomographic perfusion measures, and tissue outcomes on follow-up imaging. Sixty-six consecutive patients with acute ischemic stroke clinically eligible for recanalization therapy and with M1 or M2 middle cerebral artery occlusion were evaluated. We compared the visual collateral scoring with measures of contrast peak time delay and contrast peak density. We also compared these measures for their ability to predict perfusion lesion and infarct core volumes, final infarct, and infarct growth. Shorter contrast peak time delay (P=0.041) and higher contrast peak density (P=0.002) were associated with good collateral status. Shorter contrast peak time delay correlated with higher contrast peak density (β=-4.413; P=0.037). In logistic regression analysis after adjustment for age, sex, onset-computed tomographic time, and occlusion site, higher contrast peak density was independently associated with good collateral status (P=0.009). Multiple regression analysis showed that higher contrast peak density was an independent predictor of smaller perfusion lesion volume (P=0.029), smaller ischemic core volume (P=0.044), smaller follow-up infarct volume (P=0.005), and smaller infarct growth volume (P=0.010). Visual collateral status, contrast peak density, and contrast peak time delay were inter-related, and good collateral status was strongly associated with contrast peak density. Contrast peak density in collateral vessel may be an important factor in tissue fate in acute ischemic stroke. © 2016 American Heart Association, Inc.

  5. Differentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging

    International Nuclear Information System (INIS)

    Kvistad, K.A.; Smenes, E.; Haraldseth, O.; Lundgren, S.; Fjoesne, H.E.; Smethurst, H.B.

    1999-01-01

    Purpose: Invasive breast carcinomas and fibroadenomas are often difficult to differentiate in dynamic contrast-enhanced T1-weighted MR imaging of the breast, because both tumors can enhance strongly after contrast injection. The purpose of this study was to evaluate whether the addition of T2*-weighted first pass perfusion imaging can increase the differentiation of malignant from benign lesions. Material and Methods: Nine patients with invasive carcinomas and 10 patients with contrast enhancing fibroadenomas were examined by a dynamic contrast-enhanced T1-weighted 3D sequence immediately followed by a single slice T2*-weighted first pass perfusion sequence positioned in the contrast-enhancing lesion. Results: The carcinomas and the fibroadenomas were impossible to differentiate based on the contrast enhancement characteristics in the T1-weighted sequence. The signal loss in the T2*-weighted perfusion sequence was significantly stronger in the carcinomas than in the fibroadenomas (p=0.0004). Conclusion: Addition of a T2*-weighted first pass perfusion sequence with a high temporal resolution can probably increase the differentiation of fibroadenomas from invasive carcinomas in contrast-enhanced MR imaging of the breast. (orig.)

  6. [IV drug perfusions: safety principles].

    Science.gov (United States)

    Lelieur, Florence; Cabelguenne, Delphine; Marcel, Marie; Favier, Claudine; Piriou, Vincent

    2017-05-01

    An intravenous perfusion is a procedure which comprises infection and medication risks. To manage these risks, caregivers must respect, in addition to the usual hygiene rules, a series of best practices, ensuring the proper use and management of the medical devices and administered drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Pulmonary ventilation/perfusion scan

    Science.gov (United States)

    ... to stop eating (fast), be on a special diet, or take any medicines before the test. A chest x-ray is usually done before or after a ventilation and perfusion scan. You wear a hospital gown or comfortable clothing that does not have ...

  8. Comparison and evaluation of indicator dilution models for bolus of ultrasound contrast agents

    Czech Academy of Sciences Publication Activity Database

    Harabis, V.; Kolář, R.; Mézl, M.; Jiřík, Radovan

    2013-01-01

    Roč. 34, č. 2 (2013), s. 151-162 ISSN 0967-3334 R&D Projects: GA ČR GAP102/12/2380 Institutional support: RVO:68081731 Keywords : perfusion model * ultrasound * contrast agent * intravascular perfusion * tissue phantom Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.617, year: 2013

  9. Comparison between CT perfusion and Tc-99m ECD SPECT in the assessment of cerebrovascular reserve: a case study

    International Nuclear Information System (INIS)

    Crouch, J.; Wood, C.; Campbell, A.; McCarthy, M.; Dunne, M.; Bynevelt, M.; Lenzo, N.

    2003-01-01

    Full text: Brain perfusion is sensitively assessed by cerebral SPECT imaging utilising perfusion agents such as Tc-99m HMPAO and Tc-99m ethyl cysteinate dimer (ECD). Positron emission tomography can accurately assess and quantify brain perfusion and MRI can also be used for perfusion assessment. Both MRI and PET however are currently limited by cost and availability. A new technique utilising CT with contrast has been developed to assess and quantitate cerebral perfusion. The technique utilises arterial input information and deconvolution analysis to develop quantifiable measures of perfusion and contrast transit. The technique has been validated for acute stroke assessment and is being assessed for other possible applications. We present a case study comparison of this technique with cerebral SPECT perfusion using Tc-99m ECD in the assessment of cerebrovasular reserve. In each case, the CT and SPECT studies were performed pre- and post-acetazolamide and the SPECT study was statistically compared with a normal database utilising an automated brain perfusion statistical analysis package (NeurostatT). We discuss the correlation found between techniques, their strengths, weaknesses and possible future roles. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  10. [Susceptibility to infections and behavior of stainless steel : Comparison with titanium implants in traumatology].

    Science.gov (United States)

    Haubruck, Patrick; Schmidmaier, Gerhard

    2017-02-01

    Despite modern treatment options, implant-associated infections (IAI) remain a severe and challenging complication in the treatment of trauma patients. Almost 30 years after the introduction of implants made of titanium alloy into the treatment of trauma patients, there is still no uniform consensus regarding the clinical benefit of titanium alloy in the context of patients with IAI. We sought to determine if implants made of titanium alloy have been proven to be less susceptible regarding IAI in contrast to implants made of stainless steel. A review of the current literature on IAI in association with the utilized implant material was conducted. Relevant articles from the years 1995 to 2016 were searched in the PubMed database. A total of 183 articles were identified and all abstracts were reviewed for relevance. A total of 14 articles met the inclusion criteria and were stratified according to the level of evidence and furthermore evaluated regarding the influence of the implant material on IAI. Considerable debate remains concerning the influence of the implant material on the susceptibility to IAI; however, the available literature shows that despite slight tendencies, there is no proof of titanium alloy being favorable in the susceptibility to IAI. Furthermore, the literature shows that the design of plates for osteosynthesis might influence IAI. In particular, plates that cause less soft tissue damage and preserve perfusion of the periosteum proved to be beneficial regarding IAI.

  11. Monitoring Disease Activity in Patients with Aortitis and Chronic Periaortitis Undergoing Immunosuppressive Therapy by Perfusion CT.

    Science.gov (United States)

    Bier, Georg; Kurucay, Mustafa; Henes, Jörg; Xenitidis, Theodoros; Preibsch, Heike; Nikolaou, Konstantin; Horger, Marius

    2017-04-01

    To evaluate the role of perfusion CT for monitoring inflammatory activity in patients with aortitis and chronic periaortitis undergoing immunosuppressive therapy. Seventeen symptomatic patients (median age 68.5 years) who underwent perfusion-based computed tomography (CT) monitoring after diagnostic contrast-enhanced CT were retrospectively included in this study. Blood flow (BF), blood volume (BV), volume transfer constant (k-trans), time to peak, and mean transit time were determined by setting circular regions of interest in prominently thickened parts of the vessel wall or perfused surrounding tissue at sites where the perfusion CT color maps showed a maximum BF value. Differences in CT perfusion and, morphological parameters, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were tested for significance during therapy. In all patients BF and BV dropped at second perfusion CT (P perfusion CT parameters in aortitis and chronic periaortitis undergoing immunosuppressive therapy dropped at different extent after therapy. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion.

    Directory of Open Access Journals (Sweden)

    Dae Hyun Lee

    Full Text Available Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals. Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion and perfused boundary region (PBR, a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43-2.86 µm, was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: -0.034; 95% confidence interval: -0.037 to -0.031. We conclude that microvascular beds with a thick ("healthy" glycocalyx (low PBR, reflects efficient perfusion of the microvascular bed. In contrast, a thin ("risk" glycocalyx (high PBR is associated with a less efficient and defective microvascular perfusion.

  13. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  14. Contrast-enhanced harmonic endoscopic ultrasound

    DEFF Research Database (Denmark)

    Săftoiu, A; Dietrich, C F; Vilmann, P

    2012-01-01

    Second-generation intravenous blood-pool ultrasound contrast agents are increasingly used in endoscopic ultrasound (EUS) for characterization of microvascularization, differential diagnosis of benign and malignant focal lesions, and improving staging and guidance of therapeutic procedures. Although...... initially used as Doppler signal enhancers, second-generation microbubble contrast agents are now used with specific contrast harmonic imaging techniques, which benefit from the highly nonlinear behavior of the microbubbles. Contrast-specific modes based on multi-pulse technology are used to perform...... contrast-enhanced harmonic EUS based on a very low mechanical index (0.08 - 0.12). Quantification techniques based on dynamic contrast-enhanced ultrasound have been recommended for perfusion imaging and monitoring of anti-angiogenic treatment, mainly based on time-intensity curve analysis. Most...

  15. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment.

    Science.gov (United States)

    Mordini, Federico E; Haddad, Tariq; Hsu, Li-Yueh; Kellman, Peter; Lowrey, Tracy B; Aletras, Anthony H; Bandettini, W Patricia; Arai, Andrew E

    2014-01-01

    This study's primary objective was to determine the sensitivity, specificity, and accuracy of fully quantitative stress perfusion cardiac magnetic resonance (CMR) versus a reference standard of quantitative coronary angiography. We hypothesized that fully quantitative analysis of stress perfusion CMR would have high diagnostic accuracy for identifying significant coronary artery stenosis and exceed the accuracy of semiquantitative measures of perfusion and qualitative interpretation. Relatively few studies apply fully quantitative CMR perfusion measures to patients with coronary disease and comparisons to semiquantitative and qualitative methods are limited. Dual bolus dipyridamole stress perfusion CMR exams were performed in 67 patients with clinical indications for assessment of myocardial ischemia. Stress perfusion images alone were analyzed with a fully quantitative perfusion (QP) method and 3 semiquantitative methods including contrast enhancement ratio, upslope index, and upslope integral. Comprehensive exams (cine imaging, stress/rest perfusion, late gadolinium enhancement) were analyzed qualitatively with 2 methods including the Duke algorithm and standard clinical interpretation. A 70% or greater stenosis by quantitative coronary angiography was considered abnormal. The optimum diagnostic threshold for QP determined by receiver-operating characteristic curve occurred when endocardial flow decreased to qualitative methods: Duke algorithm: 70%; and clinical interpretation: 78% (p quantitative stress perfusion CMR has high diagnostic accuracy for detecting obstructive coronary artery disease. QP outperforms semiquantitative measures of perfusion and qualitative methods that incorporate a combination of cine, perfusion, and late gadolinium enhancement imaging. These findings suggest a potential clinical role for quantitative stress perfusion CMR. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Ji Eun Park

    Full Text Available To determine if perfusion in surgical cavity wall enhancement (SCWE obtained in early post-treatment MR imaging can stratify time-to-progression (TTP in glioblastoma.This study enrolled 60 glioblastoma patients with more than 5-mm-thick SCWEs as detected on contrast-enhanced MR imaging after concurrent chemoradiation therapy. Two independent readers categorized the shape and perfusion state of SCWEs as nodular or non-nodular and as having positive or negative perfusion compared with the contralateral grey matter on arterial spin labeling (ASL. The perfusion fraction on ASL within the contrast-enhancing lesion was calculated. The independent predictability of TTP was analyzed using the Kaplan-Meier method and Cox proportional hazards modelling.The perfusion fraction was higher in the non-progression group, significantly for reader 2 (P = 0.03 and borderline significantly for reader 1 (P = 0.08. A positive perfusion state and (P = 0.02 a higher perfusion fraction of the SCWE were found to become an independent predictor of longer TTP (P = 0.001 for reader 1 and P < 0.001 for reader 2. The contrast enhancement pattern did not become a TTP predictor.Assessment of perfusion in early post-treatment MR imaging can stratify TTP in patients with glioblastoma for adjuvant temozolomide therapy. Positive perfusion in SCWEs can become a predictor of a longer TTP.

  17. First pass dual input volume CT-perfusion of lung lesions: The influence of the CT- value range settings on the perfusion values of benign and malignant entities.

    Science.gov (United States)

    Bohlsen, Dennis; Talakic, Emina; Fritz, Gerald A; Quehenberger, Franz; Tillich, Manfred; Schoellnast, Helmut

    2016-06-01

    To assess the influence of the lower threshold for segmentation of the volume of interest on the perfusion values in first-pass dual input volume CT-perfusion of lung lesions. Dual input maximum slope volume CT-perfusion was performed in 48 patients (mean age±standard deviation [SD], 68±10years; range, 46-87 years) who underwent subsequent CT-guided biopsy to evaluate a lung lesion. Using commercial perfusion software, a lower and upper threshold was set for determination of the CT-value range, which again determined the volume of interest for perfusion calculation. The pulmonary arterial flow (PAF), bronchial arterial flow (BAF), and perfusion index (PI; PAF/(PAF+BAF)) were calculated at following pre contrast CT value range settings: -80 to 150HU (setting 1), -200 to 150HU (setting 2), -300 to 150HU (setting 3), and -500 to 150HU (setting 4). Perfusion parameters were compared between benign (n, 15) and malignant (n, 33) lesions for each setting. Intraobserver- and interobserver reliability were calculated for setting 4. Median PAF was significantly higher in malignant lesions than in benign lesions for all settings (53-96 versus 29-62mL/min/100mL, PCT value range setting (PCT perfusion is statistically significantly higher in malignant than in benign lesion, whereas the measurements are influenced by the lower threshold of the CT value range setting. This has to be considered when using cutoff values provided in the literature for differentiation between benign and malignant lung lesions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    Science.gov (United States)

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  19. Differentiation of malignant and benign pulmonary nodules with first-pass dual-input perfusion CT.

    Science.gov (United States)

    Yuan, Xiaodong; Zhang, Jing; Quan, Changbin; Cao, Jianxia; Ao, Guokun; Tian, Yuan; Li, Hong

    2013-09-01

    To assess diagnostic performance of dual-input CT perfusion for distinguishing malignant from benign solitary pulmonary nodules (SPNs). Fifty-six consecutive subjects with SPNs underwent contrast-enhanced 320-row multidetector dynamic volume CT. The dual-input maximum slope CT perfusion analysis was employed to calculate the pulmonary flow (PF), bronchial flow (BF), and perfusion index [Formula: see text]. Differences in perfusion parameters between malignant and benign tumours were assessed with histopathological diagnosis as the gold standard. Diagnostic value of the perfusion parameters was calculated using the receiver-operating characteristic (ROC) curve analysis. Amongst 56 SPNs, statistically significant differences in all three perfusion parameters were revealed between malignant and benign tumours. The PI demonstrated the biggest difference between malignancy and benignancy: 0.30 ± 0.07 vs. 0.51 ± 0.13 , P perfusion parameters, producing a sensitivity of 0.95, specificity of 0.83, positive likelihood ratio (+LR) of 5.59, and negative likelihood ratio (-LR) of 0.06 in identifying malignancy. The PI derived from the dual-input maximum slope CT perfusion analysis is a valuable biomarker for identifying malignancy in SPNs. PI may be potentially useful for lung cancer treatment planning and forecasting the therapeutic effect of radiotherapy treatment. • Modern CT equipment offers assessment of vascular parameters of solitary pulmonary nodules (SPNs) • Dual vascular supply was investigated to differentiate malignant from benign SPNs. • Different dual vascular supply patterns were found in malignant and benign SPNs. • The perfusion index is a useful biomarker for differentiate malignancy from benignancy.

  20. [CT perfusion in patients after EICMA in the postoperative period].

    Science.gov (United States)

    Grigor'eva, E V; Luk'ianchikov, V A; Tokarev, A S; Krylov, V V

    2014-01-01

    To evaluate the influence of the EICMA on the circulation of the brain in patients with unilateral occlusion of the internal carotid artery (ICA) in the late postoperative period using CT perfusion. Ten patients with unilateral internal carotid artery occlusion and stenosis of the opposite ICA 50-60%, with a history of a single ischemic stroke were examined. All patients underwent pre-and postoperative CT angiography of the brachiocephalic and intracranial arteries and CT perfusion. We also compared the results of neurological examinations preoperatively and during the year after the intervention. The neurological data during the first year after surgery demonstrated an improvement of neurological status and quality of life in all patients. Preoperative CT perfusion showed the patchy decrease in the cerebral blood flow (CBF) to 18 ml/100 g/min (average of 44-56 ml/100 g/min) and increase in the mean transit time (MTT) to 7.2 s (normally less 6c) in all cases on the side of occlusion. The most susceptible to chronic ischemic changes was the frontal region, temporal and parietooccipital regions were affected to a lesser extent. Due to stenosis of the opposite ICA, minimum CBF of the cortex in the opposite hemisphere was 24 ml/100 g/min and MTT was increased to 5.6 s. Six months after the applying of EICMA, the significant improvement of CT perfusion was noted on the side of the anastomosis in all patients: an increase in CBF (at least 44 ml/100 g/min) and MTT reduction (up to 6.1s in the frontal region), as well as the "synchronization" of CBF and CBV in similar areas of the cerebral cortex of the right and left hemisphere. CT perfusion in the late postoperative period after applying EICMA in patients with unilateral ICA occlusion demonstrates not only changes of the cerebral perfusion on the side of the occlusion, but also the increased collateral blood flow of the cortex in both hemispheres, which significantly improves brain blood flow generally within 6-12 months

  1. Myocardial perfusion modeling using MRI

    DEFF Research Database (Denmark)

    Larsson, H B; Fritz-Hansen, T; Rostrup, Egill

    1996-01-01

    In the present study, it is shown that it is possible to quantify myocardial perfusion using magnetic resonance imaging in combination with gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Previously, a simple model and method for measuring myocardial perfusion using an inversion recovery...... of Gd-DTPA (lambda), the vascular blood volume (Vb), and the time delay through the coronary arteries (delta T). The model was evaluated by computer simulation and used on experimental results from seven healthy subjects. The results in the healthy volunteers for a region of interest placed...... in the anterior myocardial wall were (mean +/- SD) Ki = 54 +/- 10 ml/100 g/min, lambda = 30 +/- 3 ml/100 g, Vb = 9 +/- 2 ml/100 g, delta T = 3.2 +/- 1.1 s. These results are in good agreement with similar results obtained by other methods....

  2. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  3. Dosimetry in myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C.

    2011-01-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  4. Dosimetry in myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2011-07-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  5. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values.

    Science.gov (United States)

    Djuric-Stefanovic, A; Saranovic, Dj; Sobic-Saranovic, D; Masulovic, D; Artiko, V

    2015-03-01

    Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (rS). Median SPV of the esophageal carcinoma (7.1; range: 2.8-13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4-2.4), (Z=-5.511, pCT perfusion measurements and statistically significant correlation was proved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

    Science.gov (United States)

    Abrigo, Jill M; Fountain, Daniel M; Provenzale, James M; Law, Eric K; Kwong, Joey Sw; Hart, Michael G; Tam, Wilson Wai San

    2018-01-22

    (Ovid SP), Embase (Ovid SP), and Web of Science Core Collection (Science Citation Index Expanded and Conference Proceedings Citation Index). The most recent search for this review was run on 9 November 2016.We also identified 'grey literature' from online records of conference proceedings from the American College of Radiology, European Society of Radiology, American Society of Neuroradiology and European Society of Neuroradiology in the last 20 years. The titles and abstracts from the search results were screened to obtain full-text articles for inclusion or exclusion. We contacted authors to clarify or obtain missing/unpublished data.We included cross-sectional studies that performed dynamic susceptibility (DSC) or dynamic contrast-enhanced (DCE) MR perfusion or both of untreated LGGs and HGGs, and where rCBV and/or K trans values were reported. We selected participants with solid and non-enhancing gliomas who underwent MR perfusion within two months prior to histological confirmation. We excluded studies on participants who received radiation or chemotherapy before MR perfusion, or those without histologic confirmation. Two review authors extracted information on study characteristics and data, and assessed the methodological quality using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We present a summary of the study characteristics and QUADAS-2 results, and rate studies as good quality when they have low risk of bias in the domains of reference standard of tissue diagnosis and flow and timing between MR perfusion and tissue diagnosis.In the quantitative analysis, LGGs were considered disease positive, while HGGs were disease negative. The sensitivity refers to the proportion of LGGs detected by MR perfusion, and specificity as the proportion of detected HGGs. We constructed two-by-two tables with true positives and false negatives as the number of correctly and incorrectly diagnosed LGG, respectively, while true negatives and false

  7. Correlation analysis of dual-energy CT iodine maps with quantitative pulmonary perfusion MRI.

    Science.gov (United States)

    Hansmann, Jan; Apfaltrer, Paul; Zoellner, Frank G; Henzler, Thomas; Meyer, Mathias; Weisser, Gerald; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-05-28

    To correlate dual-energy computed tomography (DECT) pulmonary angiography derived iodine maps with parameter maps of quantitative pulmonary perfusion magnetic resonance imaging (MRI). Eighteen patients with pulmonary perfusion defects detected on DECT derived iodine maps were included in this prospective study and additionally underwent time-resolved contrast-enhanced pulmonary MRI [dynamic contrast enhanced (DCE)-MRI]. DCE-MRI data were quantitatively analyzed using a pixel-by-pixel deconvolution analysis calculating regional pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) in visually normal lung parenchyma and perfusion defects. Perfusion parameters were correlated to mean attenuation values of normal lung and perfusion defects on DECT iodine maps. Two readers rated the concordance of perfusion defects in a visual analysis using a 5-point Likert-scale (1 = no correlation, 5 = excellent correlation). In visually normal pulmonary tissue mean DECT and MRI values were: 22.6 ± 8.3 Hounsfield units (HU); PBF: 58.8 ± 36.0 mL/100 mL per minute; PBV: 16.6 ± 8.5 mL; MTT: 17.1 ± 10.3 s. In areas with restricted perfusion mean DECT and MRI values were: 4.0 ± 3.9 HU; PBF: 10.3 ± 5.5 mL/100 mL per minute, PBV: 5 ± 4 mL, MTT: 21.6 ± 14.0 s. The differences between visually normal parenchyma and areas of restricted perfusion were statistically significant for PBF, PBV and DECT (P < 0.0001). No linear correlation was found between MRI perfusion parameters and attenuation values of DECT iodine maps (PBF: r = 0.35, P = 0.15; PBV: r = 0.34, P = 0.16; MTT: r = 0.41, P = 0.08). Visual analysis revealed a moderate correlation between perfusion defects on DECT iodine maps and the parameter maps of DCE-MRI (mean score 3.6, κ 0.45). There is a moderate visual but not statistically significant correlation between DECT iodine maps and perfusion parameter maps of DCE-MRI.

  8. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging.

    Science.gov (United States)

    Wujcicki, Artur; Corteville, Dominique; Materka, Andrzej; Schad, Lothar R

    2015-03-01

    MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach. Copyright © 2014. Published by Elsevier GmbH.

  9. Basic considerations in organ perfusion physiology.

    Science.gov (United States)

    Zimmerman, Michael A; Martin, Alicia; Hong, Johnny C

    2016-06-01

    Owing to a severe shortage of organs for patients with end-stage diseases, novel techniques in organ preservation and perfusion need to be studied and reviewed to increase the number of available organs for transplant. Many patients will die while waiting for an organ. To make organs from extended-criteria donors feasible, optimal conditions for pulsatile perfusion and the potential for organ reconditioning at implantation need to be addressed. Many techniques in organ preservation and perfusion are being studied. Several laboratories are studying the effects of temperature for organ perfusion. Two areas being studied are hypothermic and normothermic machine perfusion. In the area of organ preservation, new solutions are being studied such as a substrate-enriched, oxygen-saturated, and leukocyte-depleted perfusate to help with organ quality. Even with the strides being made in organ preservation and perfusion, there are still many unanswered questions. More studies will need to be done to find the optimal conditions for duration of perfusion in the cold phase, optimal perfusion solution, degree of oxygenation, and the addition of pharmacologic agents, to improve organ function and expand the organ pool.

  10. Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema

    International Nuclear Information System (INIS)

    Ley-Zaporozhan, Julia; Ley, Sebastian; Eberhardt, Ralf; Weinheimer, Oliver; Fink, Christian; Puderbach, Michael; Eichinger, Monika; Herth, Felix; Kauczor, Hans-Ulrich

    2007-01-01

    Purpose: To assess the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level using CT and MRI in patients with emphysema. Material and methods: Forty-five patients with severe emphysema (GOLD III and IV) underwent inspiratory 3D-HRCT and contrast-enhanced MR-perfusion (1.5T; 3.5 mm x 1.9 mm x 4 mm). 3D-HRCT data was analyzed using a software for detection and visualization of emphysema. Emphysema was categorized in four clusters with different volumes and presented as overlay on the CT. CT and lung perfusion were visually analyzed for three lobes on each side using a four-point-score to grade the abnormalities on CT (1: predominantly small emphysema-clusters to 4: >75% large emphysema-clusters) and MRI (1: normal perfusion to 4: no perfusion). Results: A total of 270 lobes were evaluated. At CT, the score was 1 for 9 lobes, 2 for 43, 3 for 77, and 4 for 141 lobes. At MRI, the score was 1 for 13 lobes, 2 for 45, 3 for 92, and 4 for 120 lobes. Matching of lung parenchymal destruction and reduced perfusion was found in 213 lobes (weighted kappa = 0.8). The score was higher on CT in 44, and higher on MRI in 13 lobes. Conclusion: 3D-HRCT and 3D MR-perfusion show a high lobar agreement between parenchymal destruction and reduction of perfusion in patients with severe emphysema

  11. Comparison of MultiHance {sup trademark} and Gadovist {sup trademark} for cerebral MR perfusion imaging in healthy volunteers; Vergleich von MultiHance {sup trademark} und Gadovist {sup trademark} zur zerebralen MR-Perfusionsmessung bei gesunden Probanden

    Energy Technology Data Exchange (ETDEWEB)

    Essig, M.; LeHuu, M.; Huebener, M.; Kaick, G. van [Deutsches Krebsforschungszentrum, Abt. Radiologische Diagnostik und Therapie, Heidelberg (Germany); Lodemann, K.P. [Bracco-Byk, Gulden (Germany); Schoenberg, S.O. [Institut fuer Klinische Radiologie, Ludwig-Maximilians-Universitaet Muenchen, Grosshadern (Germany)

    2002-11-01

    To evaluate the weakly protein interacting MR contrast agent MultiHance {sup trademark} and the one-molar agent Gadovist {sup trademark} for cerebral perfusion MR imaging, a randomized intraindividual study was conducted in 12 healthy male volunteers. Perfusion-MRI was performed with single and double dose of each contrast agent on a 1.5T MR system using a gradient-echo EPI sequence. The imaging parameters, slice positioning and contrast media application were standardized. For the quantitative assessment rCBV and rCBF measurements of gray and white matter were performed. Additionally, the percentage of signal drop and the full width half maximum (FWHM) of ROI signal time curves were quantified. In a qualitative analysis the image quality of the rCBV and rCBF maps were assessed.Single dosage of the used new contrast agents was sufficient to achieve high quality perfusion maps. The susceptibility effect, described by percentage of signal loss (Gadovist {sup trademark} : 29.4% vs. MultiHance {sup trademark} : 28.3%) and the FWHM (Gadovist {sup trademark} : 6.4 s vs. Multihance {sup trademark} : 7.0 s) were not different between the agents for single dose.The one molar MR contrast agent Gadovist {sup trademark} has no advantages over MultiHance {sup trademark}, a MR contrast agent with a higher relaxivity in perfusion MRI. Both agents allow the calculation of high quality perfusion maps at a dosage of 0.1 mmol/kg bw with physiologic absolute values for regional CBV and CBF. The susceptibility effect is comparable for both agents and stronger than with conventional MR contrast media. (orig.) [German] Zur Evaluierung des gering proteinbindenden MR-Kontrastmittels MultiHance {sup trademark} und des einmolaren MR-Kontrastmittels Gadovist {sup trademark} fuer die MR-Perfusionsmessung im Gehirn wurden in einer randomisierten, intraindividuellen Vergleichsstudie 12 gesunde maennliche Probanden untersucht. Die Perfusionsmessung wurde an einem 1,5-T-MRT mit einer T2

  12. Functional Assessment of Coronary Artery Disease Using Whole-Heart Dynamic Computed Tomographic Perfusion.

    Science.gov (United States)

    Hubbard, Logan; Ziemer, Benjamin; Lipinski, Jerry; Sadeghi, Bahman; Javan, Hanna; Groves, Elliott M; Malkasian, Shant; Molloi, Sabee

    2016-12-01

    Computed tomographic (CT) angiography is an important tool for the evaluation of coronary artery disease but often correlates poorly with myocardial ischemia. Current dynamic CT perfusion techniques can assess ischemia but have limited accuracy and deliver high radiation dose. Therefore, an accurate, low-dose, dynamic CT perfusion technique is needed. A total of 20 contrast-enhanced CT volume scans were acquired in 5 swine (40±10 kg) to generate CT angiography and perfusion images. Varying degrees of stenosis were induced using a balloon catheter in the proximal left anterior descending coronary artery, and a pressure wire was used for reference fractional flow reserve (FFR) measurement. Perfusion measurements were made with only 2 volume scans using a new first-pass analysis (FPA) technique and with 20 volume scans using an existing maximum slope model (MSM) technique. Perfusion (P) and FFR measurements were related by P FPA =1.01 FFR-0.03 (R 2 =0.85) and P MSM =1.03 FFR-0.03 (R 2 =0.80) for FPA and MSM techniques, respectively. Additionally, the effective radiation doses were calculated to be 2.64 and 26.4 mSv for FPA and MSM techniques, respectively. A new FPA-based dynamic CT perfusion technique was validated in a swine animal model. The results indicate that the FPA technique can potentially be used for improved anatomical and functional assessment of coronary artery disease at a relatively low radiation dose. © 2016 American Heart Association, Inc.

  13. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    Directory of Open Access Journals (Sweden)

    Daniela Muenzel

    Full Text Available OBJECTIVE: To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI by using motion compensation and a spatio-temporal filter. METHODS: Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT. Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved. Three datasets for each patient were generated: (i original data (ii motion compensated data and (iii motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. RESULTS: The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. CONCLUSION: The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  14. Dynamic CT Perfusion Imaging of the Myocardium: A Technical Note on Improvement of Image Quality

    Science.gov (United States)

    Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A.; Rummeny, Ernst J.; Huber, Armin; Noël, Peter B.

    2013-01-01

    Objective To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Methods Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients–with and without myocardial perfusion defects–were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. Results The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. Conclusion The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner. PMID:24130697

  15. MEDECINE NUCLEAIRE ET MALADIE CORONARIENNE : EVALUATION DE TRACEURS DE LA PERFUSION MYOCARDIQUE ET DE LA PLAQUE D'ATHEROME VULNERABLE

    OpenAIRE

    Broisat, Alexis

    2005-01-01

    CORONARY ARTERY DISEASE IS ONE OF THE PRIMARY CAUSE OF MORTALITY WORLDWIDE. NUCLEAR MEDICINE IS THE MAJOR IMAGING TECHNIQUE FOR DIAGNOSIS AND FOLLOWING OF THIS DISEASE. PERFUSION : NOWADAYS, MAJOR RADIOACTIVE AGENTS USED IN CLINICAL PRACTICE ARE MYOCARDIAL PERFUSION TRACERS. THE REFERENCE TRACER IS THALLIUM-201. HOWEVER, 201TL PRESENTS SOME DRAWBACKS. 99MTCN-NOET HAS BEEN PROPOSED FOR ITS REPLACEMENT. THIS STUDY SHOWS THAT IN CONTRAST WITH PREVIOUS STUDIES REALIZED IN VITRO ON CARDIOMYOCYTES,...

  16. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    Science.gov (United States)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  17. Magnetic resonance first-pass perfusion imaging: overview and perspectives.

    Science.gov (United States)

    Zenovich, A; Muehling, O M; Panse, P M; Jerosch-Herold, M; Wilke, N

    2001-01-01

    The data from clinical studies with quantitative MR first-pass perfusion imaging suggests that this technique outperforms SPECT--widely available clinical imaging tool--in sensitivity and specificity. Moreover, MRFP imaging may be combined with the assessment of global and segmental function of the heart and regional wall thickening, and in addition, performed with pharmacological stress agents. The inter- and intra-observer reproducibility of quantitative MRFP is comparable with clinically used nuclear medicine techniques. MRFP measurements can discern collateral myocardium and are able to identify small changes in myocardial blood flow and myocardial perfusion reserve (the ratio of stress blood flow over resting). MRFP imaging has been mainly used in context of coronary artery disease but many other exciting areas in clinical cardiology are awaiting of new insights that can be accomplished with this technique. Trials are needed to obtain the approval of the contrast agent (Gd-DTPA) and perfusion sequences by the Food and Drug Administration and to establish reimbursement procedures with the third-party insurance companies and health maintenance organizations.

  18. Subendocardial steal effect seen with real-time perfusion imaging at low emission power during adenosine stress: replenishment M-mode processing allows visualization of vertical steal.

    Science.gov (United States)

    Tiemann, K; Ghanem, A; Schlosser, T; Ehlgen, A; Kuntz-Hehner, S; Haushofer, M; Bimmel, D; Borovac, M; Nanda, N C; Omran, H; Becher, H

    2001-11-01

    We present a patient in whom power pulse inversion imaging clearly demonstrated a subendocardial myocardial perfusion defect during contrast vasodilator stress using adenosine. The defect was best appreciated with M-mode postprocessing of power pulse inversion imaging data.

  19. Hyperventilation, cerebral perfusion, and syncope

    DEFF Research Database (Denmark)

    Immink, R V; Pott, F C; Secher, N H

    2014-01-01

    the contribution of a low PaCO2 to the early postural reduction in middle cerebral artery blood velocity is transient. HV together with postural stress does not reduce cerebral perfusion to such an extent that TLOC develops. However when HV is combined with cardiovascular stressors like cold immersion or reduced...... dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2...

  20. Local cortical hypoperfusion imaged with CT perfusion during postictal Todd's paresis

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Marlon S.; Binder, Devin K. [University of California, Department of Neurological Surgery, Irvine, CA (United States); Smith, Wade S. [University of California, Department of Neurology, San Francisco, CA (United States); Wintermark, Max; Dillon, William P. [University of California, Department of Radiology, San Francisco, CA (United States)

    2008-05-15

    Postictal ('Todd's') paralysis, or 'epileptic hemiplegia,' is a well-known complication of focal or generalized epileptic seizures. However, it is unclear whether the pathophysiology of Todd's paralysis is related to alterations in cerebral perfusion. We report CT perfusion findings in a patient presenting with postictal aphasia and right hemiparesis. A 62-year-old woman with a history of alcohol abuse, closed head injury and posttraumatic epilepsy, presented with acute onset aphasia and right hemiparesis. A non-contrast head CT scan demonstrated no acute hemorrhage. Left hemispheric ischemia was suspected, and the patient was considered for acute thrombolytic therapy. MRI revealed a subtle increase in signal intensity involving the left medial temporal, hippocampal and parahippocampal regions on both T2-weighted FLAIR and diffusion-weighted sequences. CT angiography and CT perfusion study were performed. The CT perfusion study and CT angiography demonstrated a dramatic reduction in cerebral blood flow and blood volume involving the entire left hemisphere, but with relative symmetry of mean transit time, ruling out a large vessel occlusion. Clinical resolution of the aphasia and hemiparesis occurred within a few hours, and correlated with normalization of perfusion to the left hemisphere (detected by MR perfusion). This unique case is the first in which clinical evidence of Todd's paralysis has been correlated with reversible postictal hemispheric changes on CT and MR perfusion studies. This is important because CT perfusion study is being used more and more in the diagnosis of acute stroke, and one needs to be careful to not misinterpret the data. (orig.)

  1. Local cortical hypoperfusion imaged with CT perfusion during postictal Todd's paresis

    International Nuclear Information System (INIS)

    Mathews, Marlon S.; Binder, Devin K.; Smith, Wade S.; Wintermark, Max; Dillon, William P.

    2008-01-01

    Postictal (''Todd's'') paralysis, or ''epileptic hemiplegia,'' is a well-known complication of focal or generalized epileptic seizures. However, it is unclear whether the pathophysiology of Todd's paralysis is related to alterations in cerebral perfusion. We report CT perfusion findings in a patient presenting with postictal aphasia and right hemiparesis. A 62-year-old woman with a history of alcohol abuse, closed head injury and posttraumatic epilepsy, presented with acute onset aphasia and right hemiparesis. A non-contrast head CT scan demonstrated no acute hemorrhage. Left hemispheric ischemia was suspected, and the patient was considered for acute thrombolytic therapy. MRI revealed a subtle increase in signal intensity involving the left medial temporal, hippocampal and parahippocampal regions on both T2-weighted FLAIR and diffusion-weighted sequences. CT angiography and CT perfusion study were performed. The CT perfusion study and CT angiography demonstrated a dramatic reduction in cerebral blood flow and blood volume involving the entire left hemisphere, but with relative symmetry of mean transit time, ruling out a large vessel occlusion. Clinical resolution of the aphasia and hemiparesis occurred within a few hours, and correlated with normalization of perfusion to the left hemisphere (detected by MR perfusion). This unique case is the first in which clinical evidence of Todd's paralysis has been correlated with reversible postictal hemispheric changes on CT and MR perfusion studies. This is important because CT perfusion study is being used more and more in the diagnosis of acute stroke, and one needs to be careful to not misinterpret the data. (orig.)

  2. The future of the perfusion record: automated data collection vs. manual recording.

    Science.gov (United States)

    Ottens, Jane; Baker, Robert A; Newland, Richard F; Mazzone, Annette

    2005-12-01

    The perfusion record, whether manually recorded or computer generated, is a legal representation of the procedure. The handwritten perfusion record has been the most common method of recording events that occur during cardiopulmonary bypass. This record is of significant contrast to the integrated data management systems available that provide continuous collection of data automatically or by means of a few keystrokes. Additionally, an increasing number of monitoring devices are available to assist in the management of patients on bypass. These devices are becoming more complex and provide more data for the perfusionist to monitor and record. Most of the data from these can be downloaded automatically into online data management systems, allowing more time for the perfusionist to concentrate on the patient while simultaneously producing a more accurate record. In this prospective report, we compared 17 cases that were recorded using both manual and electronic data collection techniques. The perfusionist in charge of the case recorded the perfusion using the manual technique while a second perfusionist entered relevant events on the electronic record generated by the Stockert S3 Data Management System/Data Bahn (Munich, Germany). Analysis of the two types of perfusion records showed significant variations in the recorded information. Areas that showed the most inconsistency included measurement of the perfusion pressures, flow, blood temperatures, cardioplegia delivery details, and the recording of events, with the electronic record superior in the integrity of the data. In addition, the limitations of the electronic system were also shown by the lack of electronic gas flow data in our hardware. Our results confirm the importance of accurate methods of recording of perfusion events. The use of an automated system provides the opportunity to minimize transcription error and bias. This study highlights the limitation of spot recording of perfusion events in the

  3. Kombineret ventilations/perfusions-SPECT/CT er bedst til diagnostik af lungeemboli

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Mortensen, Jann; Kristoffersen, Ulrik Sloth

    2012-01-01

    and very limited data comparing these modalities are available. With the use of hybrid scanners, ventilation/perfusion-single-photon-emission-tomography (V/Q-SPECT) in combination with low-dose CT without contrast enhancement is feasible and should probably be considered first-line imaging in diagnosing PE....

  4. Identification of highly susceptible individuals in complex networks

    Science.gov (United States)

    Tang, Shaoting; Teng, Xian; Pei, Sen; Yan, Shu; Zheng, Zhiming

    2015-08-01

    Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We first study the impact of community structure on people's susceptibility. Although the community structure can reduce the number of infected people for same infection rate, it will not significantly affect nodes' susceptibility. We find the susceptibility of individuals is sensitive to the choice of spreading dynamics. For SIR spreading, since the susceptibility is highly correlated to nodes' influence, the topological indicator k-shell can better identify highly susceptible individuals, outperforming degree, betweenness centrality and PageRank. In contrast, in rumor spreading model, where nodes' susceptibility and influence have no clear correlation, degree performs the best among considered topological measures. Our finding highlights the significance of both topological features and spreading mechanisms in identifying highly susceptible population.

  5. Cerebral perfusion gammagraphy in neurology and neurosurgery

    International Nuclear Information System (INIS)

    Cardenas, Rene; Duran de Cardenas, Rosalia

    1998-01-01

    This paper describes six methods for measuring rCBF: 1) PET through 77 Kr, 15 O-water, 18 F-antipirine, 18 F-methane and 11 C-alcohols, 2) Wash measure of 133 Xe through SPECT or multidetectors, 3) CT contrasted through xenon, 4) planar gammagraphy or SPECT through 123 I-IMP or 123 I-HIPDM, 5) planar gammagraphy or radioisotopic tomography (SPECT) through 201 Tl-dietiltiocarbamate, and 6) planar gammagraphy or SPECT through 99m Tc lipofilics complex, 99m Tc-HMPAO and 99m Tc-ECD. They have been used for rCBF, , 133 Xe, 123 I-IMP 99m Tc-HMPAO studies, the two last ones are been used at the moment, the film performance is around 0.7 to 1.1 cm. The most useful radioisotopic techniques for gammagraphic study of cerebral perfusion have used HMPAO and 131 I-IMP labelled with 99m Tc

  6. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  7. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    Science.gov (United States)

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-04-26

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although

  8. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  9. Contrast enhanced ultrasound in the assessment of urogenital pathology

    Directory of Open Access Journals (Sweden)

    Libero Barozzi

    2014-12-01

    Full Text Available Contrast enhanced ultrasound (CEUS is an innovative technique that employs microbubble contrast agents to demonstrate parenchymal perfusion. Although initial clinical application was focused on the liver pathology, a wide variety of clinical conditions can be assessed now with CEUS. CEUS is a well-tolerated technique and is acquiring an increasing role in the assessment of renal pathology because contrast agents are not excreted by the kidney and do not affect the renal function. CEUS demonstrated an accuracy similar to contrast enhanced multi-detector computed tomography (CEMDCT in detecting focal lesions, with the advantage of the real-time assessment of microvascular perfusion by using time-intensity curves. The aim of this paper is to review the main indications of CEUS in the assessment of renal and urogenital pathology. Imaging examples are presented and described. Advantages and limitations of CEUS with reference to conventional US and CE-MDCT are discussed.

  10. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  11. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    International Nuclear Information System (INIS)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J.; Higashigaito, Kai; Jung, Andreas

    2018-01-01

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  12. A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT.

    Science.gov (United States)

    Ghanavati, Sahar; Yu, Lisa X; Lerch, Jason P; Sled, John G

    2014-01-15

    Micro-CT is a novel X-ray imaging modality which can provide 3D high resolution images of the vascular network filled with contrast agent. The cerebrovascular system is a complex anatomical structure that can be imaged with contrast enhanced micro-CT. However, the morphology of the cerebrovasculature and many circulatory anastomosis in the brain result in high variations in the extent of contrast agent filling in the blood vessels and as a result, the vasculature of different subjects appear differently in the acquired images. Specifically, the posterior circulation is not consistently perfused with the contrast agent in many brain specimens and thus, many major vessels that perfuse blood to the midbrain and hindbrain are not visible in the micro-CT images acquired from these samples. In this paper, we present a modified surgical procedure of cerebral vasculature perfusion through the left ventricle with Microfil contrast agent, in order to achieve a more uniform perfusion of blood vessels throughout the brain and as a result, more consistent images of the cerebrovasculature. Our method consists of filling the posterior cerebral circulation with contrast agent, followed by the perfusion of the whole cerebrovasculature. Our histological results show that over 90% of the vessels in the entire brain, including the cerebellum, were filled with contrast agent. Our results show that the new technique of sample perfusion decreases the variability of the posterior circulation in the cerebellum in micro-CT images by 6.9%. This new technique of sample preparation improves the quality of cerebrovascular images. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Diagnostic accuracy of lung subtraction iodine mapping CT for the evaluation of pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: Correlation with perfusion SPECT/CT.

    Science.gov (United States)

    Tamura, Masashi; Yamada, Yoshitake; Kawakami, Takashi; Kataoka, Masaharu; Iwabuchi, Yu; Sugiura, Hiroaki; Hashimoto, Masahiro; Nakahara, Tadaki; Okuda, Shigeo; Nakatsuka, Seishi; Sano, Fumiya; Abe, Takayuki; Maekawa, Yuichiro; Fukuda, Keiichi; Jinzaki, Masahiro

    2017-09-15

    For treatment of chronic thromboembolic pulmonary hypertension (CTEPH), the evaluation of segmental pulmonary perfusion is important. There are no previous reports about lung subtraction iodine mapping (LSIM) computed tomography (CT) for evaluation of segmental pulmonary perfusion in patients with CTEPH, using lung perfusion SPECT/CT (LPS) as the reference. 50 patients (age, 60.7±16.7years) with known or suspected CTEPH were enrolled in this study. Non-contrast chest CT and CT pulmonary angiography (CTPA) were performed on a 320-detector row CT system. Then, based on a non-rigid registration followed by subtraction of non-contrast images from contrast-enhanced images, color-coded LSIM images were generated. LPS was performed using a SPECT/CT system within a period of 2months, and served as the reference standard. LSIM and CTPA images were evaluated in a blinded manner for the detection of pulmonary perfusion defects on a segment-by-segment basis. The sensitivity, specificity, accuracy, and positive and negative predictive values of LSIM for the detection of segmental perfusion defects were 95% (734/773), 84% (107/127), 93% (841/900), 97% (734/754) and 73% (107/146), respectively, while the corresponding values for CTPA were 65% (505/773), 61% (78/127), 65% (583/900), 91% (505/554) and 23% (78/346). Generalized estimating equations analyses revealed a significantly better performance of LSIM than that of CTPA regarding the sensitivity, accuracy, and positive and negative predictive values (all Pperfusion in patients with CTEPH, and it provides a significantly higher diagnostic accuracy compared with CTPA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. CT perfusion in acute stroke calls: a pictorial review and differential diagnoses

    International Nuclear Information System (INIS)

    Chiu, Albert H; Phillips, Timothy J.; Phatouros, Constantine C.; Singh, Tejinder P.; McAuliffe, William; Hankey, Graeme; Blacker, David J.

    2016-01-01

    CT perfusion is increasingly utilised in hyperacute stroke to facilitate diagnosis and patient selection for reperfusion therapies. This review article demonstrates eight examples of how CT perfusion can be used to diagnose stroke mimics and small volume infarcts, which can be easily missed on non-contrast CT, and to suggest the presence of an ischaemic penumbra. Radiologists involved in stroke management must understand the importance of rapid imaging acquisition and be confident in the prospective interpretation of this powerful diagnostic tool as we move into a new era of hyperacute stroke care.

  15. Multimodality imaging of abnormal vascular perfusion and morphology in preclinical 9L gliosarcoma model.

    Directory of Open Access Journals (Sweden)

    Moses M Darpolor

    2011-01-01

    Full Text Available This study demonstrates that a dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI perfusion parameter may indicate vascular abnormality in a brain tumor model and reflects an effect of dexamethasone treatment. In addition, X-ray computed tomography (CT measurements of vascular tortuosity and tissue markers of vascular morphology were performed to investigate the underpinnings of tumor response to dexamethasone.One cohort of Fisher 344 rats (N = 13, inoculated intracerebrally with 9L gliosarcoma cells, was treated with dexamethasone (i.p. 3 mg/kg/day for five consecutive days, and another cohort (N = 11 was treated with equal volume of saline. Longitudinal DSC-MRI studies were performed at the first (baseline, third and fifth day of treatments. Relative cerebral blood volume (rCBV was significantly reduced on the third day of dexamethasone treatment (0.65 ± .13 as compared to the fifth day during treatment (1.26 ±.19, p 0.05. In separate serial studies, microfocal X-ray CT of ex vivo brain specimens (N = 9 and immunohistochemistry for endothelial cell marker anti-CD31 (N = 8 were performed. Vascular morphology of ex vivo rat brains from micro-CT analysis showed hypervascular characteristics in tumors, and both vessel density (41.32 ± 2.34 branches/mm(3, p<0.001 and vessel tortuosity (p<0.05 were significantly reduced in tumors of rats treated with dexamethasone compared to saline (74.29 ± 3.51 branches/mm(3. The vascular architecture of rat brain tissue was examined with anti-CD31 antibody, and dexamethasone treated tumor regions showed reduced vessel area (16.45 ± 1.36 µm(2 as compared to saline treated tumor regions (30.83 ± 4.31 µm(2, p<0.001 and non-tumor regions (22.80 ± 1.11 µm(2, p<0.01.Increased vascular density and tortuosity are culprit to abnormal perfusion, which is transiently reduced during dexamethasone treatment.

  16. MRI methods for pulmonary ventilation and perfusion imaging

    International Nuclear Information System (INIS)

    Sommer, G.; Bauman, G.

    2016-01-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O 2 -enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [de

  17. Stress perfusion magnetic resonance imaging of the heart.

    Science.gov (United States)

    Jerosch-Herold, Michael; Muehling, Olaf

    2008-02-01

    Extensive research has documented that rapid imaging during the first pass of a magnetic resonance imaging (MRI) contrast agent provides good sensitivity to detect myocardial blood flow deficits caused by coronary disease, cardiomyopathies, or microvascular dysfunction in patients without obstructive lesions in the coronary arteries. The autoregulatory mechanisms of the coronary circulation serve the purpose of maintaining sufficient blood flow at baseline in the presence of flow-obstructing coronary lesions. Stress testing is most commonly used in this setting to determine the hemodynamic effect of coronary lesions in the epicardial arteries when the small-vessel resistance has been minimized by vasodilation. The protocols for perfusion MRI combined with vasodilation have been successfully tested in large patient studies. Besides the absence of any ionizing radiation, MRI offers the advantages of relatively high spatial resolution to detect perfusion defects limited to the inner layer of the heart muscle. Furthermore, MRI can be used for noninvasive quantitative measurements of myocardial blood flow that compare well with invasive measurements with labeled microspheres. Additional useful markers, such as the dynamic distribution volume, the delay in the arrival of the contrast agent in a myocardial region relative to the enhancement in the arterial input, and the capillary permeability-surface area product, may, in the future, further enhance the capabilities to characterize with MRI coronary atherosclerosis, coronary vascular dysfunction, and adaptive mechanisms in the coronary circulation, such as arteriogenesis, that reduce ischemia.

  18. Computed tomography perfusion imaging denoising using Gaussian process regression

    International Nuclear Information System (INIS)

    Zhu Fan; Gonzalez, David Rodriguez; Atkinson, Malcolm; Carpenter, Trevor; Wardlaw, Joanna

    2012-01-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. (note)

  19. Thallium-201 exercise myocardial imaging to evaluate myocardial perfusion after coronary artery bypass surgery

    International Nuclear Information System (INIS)

    Hirzel, H.O.; Nuesch, K.; Sialer, G.; Horst, W.; Krayenbuehl, H.P.

    1980-01-01

    To assess the usefulness of thallium-201 exercise scintigraphy in evaluating myocardial perfusion after coronary artery bypass surgery, imaging was performed after submaximal bicycle ergometry and at rest in 54 patients before and within 24 +- 10 (SD) weeks after operation. Scintigraphy identified 8 out of 20 patients who were symptom free after operation and showed normal exercise electrocardiograms as still having exercise-induced ischaemia and thus as having not truly benefited from the surgical intervention. In contrast, improvement in perfusion was documented in 17 out of 31 patients despite further complaints of chest pain and persistence of a pathological exercise electrocardiogram in 6 of them. Bypass graft patency rate paralleled the scintigraphic findings in the 35 patients who were restudied arteriographically. It was concluded that thallium-201 exercise scintigraphy is a useful technique to document changes in regional perfusion after surgery and is definitely superior to the clinical evaluation of patients including the exercise electrocardiogram. (author)

  20. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  1. Arterial spin-labeling perfusion imaging of childhood meningitis: a case series.

    Science.gov (United States)

    Wong, Alex Mun-Ching; Yeh, Chih-Hua; Liu, Ho-Ling; Lin, Kuang-Lin; Wang, Huei-Shyong; Toh, Cheng-Hong

    2016-03-01

    Conventional magnetic resonance imaging (MRI), which is mainly used to detect complications, is ineffective in determining the neurological status of patients with meningitis. Hemodynamic change in the brain may be more indicative of the neurological status but few imaging studies have verified this. Arterial spin-labeling (ASL) perfusion, a noninvasive MR method requiring no contrast agent injection, can be used to measure cerebral blood flow (CBF). We describe three pediatric patients with meningitis, who all showed regions of increased CBF on perfusion imaging. One patient, presenting with headache and conscious disturbance, had CBF changes in the frontal, temporal, and occipital regions. The other two patients, presenting with hallucinations, memory deficits, and seizures, had CBF changes in the frontal and temporal regions. ASL perfusion imaging may be helpful in assessing patients with meningitis, demonstrating CBF changes more strongly correlating with the neurological status, and detecting active brain abnormalities.

  2. Hyperpolarized13C urea myocardial first-pass perfusion imaging using velocity-selective excitation.

    Science.gov (United States)

    Fuetterer, Maximilian; Busch, Julia; Peereboom, Sophie M; von Deuster, Constantin; Wissmann, Lukas; Lipiski, Miriam; Fleischmann, Thea; Cesarovic, Nikola; Stoeck, Christian T; Kozerke, Sebastian

    2017-06-21

    A velocity-selective binomial excitation scheme for myocardial first-pass perfusion measurements with hyperpolarized 13 C substrates, which preserves bolus magnetization inside the blood pool, is presented. The proposed method is evaluated against gadolinium-enhanced 1 H measurements in-vivo. The proposed excitation with an echo-planar imaging readout was implemented on a clinical CMR system. Dynamic myocardial stress perfusion images were acquired in six healthy pigs after bolus injection of hyperpolarized 13 C urea with the velocity-selective vs. conventional excitation, as well as standard 1 H gadolinium-enhanced images. Signal-to-noise, contrast-to-noise (CNR) and homogeneity of semi-quantitative perfusion measures were compared between methods based on first-pass signal-intensity time curves extracted from a mid-ventricular slice. Diagnostic feasibility is demonstrated in a case of septal infarction. Velocity-selective excitation provides over three-fold reduction in blood pool signal with a two-fold increase in myocardial CNR. Extracted first-pass perfusion curves reveal a significantly reduced variability of semi-quantitative first-pass perfusion measures (12-20%) for velocity-selective excitation compared to conventional excitation (28-93%), comparable to that of reference 1 H gadolinium data (9-15%). Overall image quality appears comparable between the velocity-selective hyperpolarized and gadolinium-enhanced imaging. The feasibility of hyperpolarized 13 C first-pass perfusion CMR has been demonstrated in swine. Comparison with reference 1 H gadolinium data revealed sufficient data quality and indicates the potential of hyperpolarized perfusion imaging for human applications.

  3. Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time.

    Science.gov (United States)

    Xing, Dong; Zha, Yunfei; Yan, Liyong; Wang, Kejun; Gong, Wei; Lin, Hui

    2015-11-01

    To assess the correlation between flow-sensitive alternating inversion recovery (FAIR) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the measurement of spinal bone marrow (SBM) perfusion; in addition, to assess for an optimized inversion time (TI) as well as the reproducibility of SBM FAIR perfusion. The optimized TI of a FAIR SBM perfusion experiment was carried out on 14 volunteers; two adjacent vertebral bodies were selected from each volunteer to measure the change of signal intensity (ΔM) and the signal-to-noise ratio (SNR) of FAIR perfusion MRI with five different TIs. Then, reproducibility of FAIR data from 10 volunteers was assessed by the reposition SBM FAIR experiments. Finally, FAIR and DCE-MRI were performed on 27 subjects. The correlation between the blood flow on FAIR (BFASL ) and perfusion-related parameters on DCE-MRI was evaluated. The maximum value of ΔM and SNR were 36.39 ± 12.53 and 2.38 ± 0.97, respectively; both were obtained when TI was near 1200 msec. There were no significant difference between the two successive measurements of SBM BFASL perfusion (P = 0.879), and the within-subject coefficients of variation (wCV) of the measurements was 3.28%. The BFASL showed a close correlation with K(trans) (P FAIR perfusion scan protocol has good reproducibility, and as blood flow measurement on FAIR is reliable and closely related with the parameters on DCE-MRI, FAIR is feasible for measuring SBM blood flow. © 2015 Wiley Periodicals, Inc.

  4. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: Initial results

    International Nuclear Information System (INIS)

    Buchbender, S.; Obenauer, S.; Mohrmann, S.; Martirosian, P.; Buchbender, C.; Miese, F.R.; Wittsack, H.J.; Miekley, M.; Antoch, G.; Lanzman, R.S.

    2013-01-01

    Aim: To assess the feasibility of an unenhanced, flow-sensitive, alternating inversion recovery-balanced steady-state free precession (FAIR TrueFISP) arterial spin labelling (ASL) magnetic resonance imaging (MRI) technique for quantification of breast cancer perfusion. Materials and methods: Eighteen untreated breast tumour patients (mean age 53 ± 17 years, range 30–68 years) and four healthy controls (mean age 51 ± 14 years, range 33–68 years) were enrolled in this study and were imaged using a clinical 1.5 T MRI machine. Perfusion measurements were performed using a coronal single-section ASL FAIR TrueFISP technique in addition to a routine breast MRI examination. T1 relaxation time of normal breast parenchyma was determined in four healthy volunteers using the variable flip angle approach. The definitive diagnosis was obtained at histology after biopsy or surgery and was available for all patients. Results: ASL perfusion was successfully acquired in 13 of 18 tumour patients and in all healthy controls. The mean ASL perfusion of invasive ductal carcinoma tissue was significantly higher (88.2 ± 39.5 ml/100 g/min) compared to ASL perfusion of normal breast parenchyma (24.9 ± 12.7 ml/100 g/min; p < 0.05) and invasive lobular carcinoma (30.5 ± 4.3 ml/100 g/min; p < 0.05). No significant difference was found between the mean ASL perfusion of normal breast parenchyma and invasive lobular carcinoma tissue (p = 0.97). Conclusion: ASL MRI enables quantification of breast cancer perfusion without the use of contrast material. However, its impact on diagnosis and therapy management of breast tumours has to be evaluated in larger patient studies

  5. Whole-Organ CT Perfusion of the Pancreas: Impact of Iterative Reconstruction on Image Quality, Perfusion Parameters and Radiation Dose in 256-Slice CT-Preliminary Findings

    Science.gov (United States)

    Xie, Qian; Wu, Juan; Tang, Ying; Dou, Yafang; Hao, Sijie; Xu, Feijia; Feng, Xiaoyuan; Liang, Zonghui

    2013-01-01

    Background This study was performed to assess whether iterative reconstruction can reduce radiation dose while maintaining acceptable image quality, and to investigate whether perfusion parameters vary from conventional filtered back projection (FBP) at the low-tube-voltage (80-kVp) during whole-pancreas perfusion examination using a 256-slice CT. Methods 76 patients with known or suspected pancreatic mass underwent whole-pancreas perfusion by a 256-slice CT. High- and low-tube-voltage CT images were acquired. 120-kVp image data (protocol A) and 80-kVp image data (protocol B) were reconstructed with conventional FBP, and 80-kVp image data were reconstructed with iDose4 (protocol C) iterative reconstruction. The image noise; contrast-to-noise ratio (CNR) relative to muscle for the pancreas, liver, and aorta; and radiation dose of each protocol were assessed quantitatively. Overall image quality was assessed qualitatively. Among 76 patients, 23 were eventually proven to have a normal pancreas. Perfusion parameters of normal pancreas in each protocol including blood volume, blood flow, and permeability-surface area product were measured. Results In the quantitative study, protocol C reduced image noise by 36.8% compared to protocol B (Pperfusion values among three different protocols. Conclusion Low-tube-voltage and iDose4 iterative reconstruction can dramatically decrease the radiation dose with acceptable image quality during whole-pancreas CT perfusion and have no significant impact on the perfusion parameters of normal pancreas compared to the conventional FBP reconstruction using a 256-slice CT scanner. PMID:24303017

  6. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art

    Directory of Open Access Journals (Sweden)

    Axel Leon

    2008-04-01

    Full Text Available Abstract In less than two decades, first-pass perfusion cardiovascular magnetic resonance (CMR has undergone a wide range of changes with the development and availability of improved hardware, software, and contrast agents, in concert with a better understanding of the mechanisms of contrast enhancement. The following review provides a perspective of the historical development of first-pass CMR, the developments in pulse sequence design and contrast agents, the relevant animal models used in early preclinical studies, the mechanism of artifacts, the differences between 1.5T and 3T scanning, and the relevant clinical applications and protocols. This comprehensive overview includes a summary of the past clinical performance of first-pass perfusion CMR and current clinical applications using state-of-the-art methodologies.

  7. Analysis of blood flow in a third ventricular ependymoma and an olfactory bulb meningioma by usisng perfusion computed tomography

    International Nuclear Information System (INIS)

    Kishimoto, M.; Yamada, K.; Seok, J.S.; Shimizu, J.; Kobayashi, Y.; Akiba, Y.; Morishita, Y.; Iwasa, A.; Iwasaki, T.; Miyake, Y.

    2008-01-01

    Brain perfusion computed tomography (CT) scanning was performed in a mongrel dog and a golden retriever that were diagnosed with third ventricular tumor and olfactory bulb tumor, respectively, by contrast-enhanced CT. The tumors were pathologically diagnosed as ependymoma and meningioma, respectively. Perfusion CT results revealed that the ependymoma in this study had a lower blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Further, the meningioma in this study had a higher blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Perfusion CT can potentially be used for the grading of brain tumors and narrowing differential diagnosis, provided the perfusion CT data of animals are accumulated

  8. Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI.

    Science.gov (United States)

    Martirosian, Petros; Boss, Andreas; Fenchel, Michael; Deimling, Michael; Schäfer, Jürgen; Claussen, Claus D; Schick, Fritz

    2006-05-01

    Perfusion measurements in lung tissue using arterial spin labeling (ASL) techniques are hampered by strong microscopic field gradients induced by susceptibility differences between the alveolar air and the lung parenchyma. A true fast imaging with steady precession (True-FISP) sequence was adapted for applications in flow-sensitive alternating inversion recovery (FAIR) lung perfusion imaging at 0.2 Tesla and 1.5 Tesla. Conditions of microscopic static field distribution were assessed in four healthy volunteers at both field strengths using multiecho gradient-echo sequences. The full width at half maximum (FWHM) values of the frequency distribution for 180-277 Hz at 1.5 Tesla were more than threefold higher compared to 39-109 Hz at 0.2 Tesla. The influence of microscopic field inhomogeneities on the True-FISP signal yield was simulated numerically. Conditions allowed for the development of a FAIR True-FISP sequence for lung perfusion measurement at 0.2 Tesla, whereas at 1.5 Tesla microscopic field inhomogeneities appeared too distinct. Perfusion measurements of lung tissue were performed on eight healthy volunteers and two patients at 0.2 Tesla using the optimized FAIR True-FISP sequence. The average perfusion rates in peripheral lung regions in transverse, sagittal, and coronal slices of the left/right lung were 418/400, 398/416, and 370/368 ml/100 g/min, respectively. This work suggests that FAIR True-FISP sequences can be considered appropriate for noninvasive lung perfusion examinations at low field strength. Copyright (c) 2006 Wiley-Liss, Inc.

  9. CT perfusion technique for assessment of early kidney allograft dysfunction: preliminary results.

    Science.gov (United States)

    Helck, A; Wessely, M; Notohamiprodjo, M; Schönermarck, U; Klotz, E; Fischereder, M; Schön, F; Nikolaou, K; Clevert, D A; Reiser, M; Becker, C

    2013-09-01

    To assess the benefit of quantitative computed tomography (CT) perfusion for differentiating acute tubular necrosis (ATN) and acute rejection (AR) in kidney allografts. Twenty-two patients with acute kidney allograft dysfunction caused by either AR (n = 6) or ATN (n = 16) were retrospectively included in the study. All patients initially underwent a multiphase CT angiography (CTA) protocol (12 phases, one phase every 3.5 s) covering the whole graft to exclude acute postoperative complications. Multiphase CT dataset and dedicated software were used to calculate renal blood flow. Renal biopsy or clinical course of disease served as the standard of reference. Mean effective radiation dose and mean amount of contrast media were calculated. Renal blood flow values were significantly lower (P = 0.001) in allografts undergoing AR (48.3 ± 21 ml/100 ml/min) compared with those with ATN (77.5 ± 21 ml/100 ml/min). No significant difference (P = 0.71) was observed regarding creatinine level with 5.65 ± 3.1 mg/dl in AR and 5.3 ± 1.9 mg/dl in ATN. The mean effective radiation dose of the CT perfusion protocol was 13.6 ± 5.2 mSv; the mean amount of contrast media applied was 34.5 ± 5.1 ml. All examinations were performed without complications. CT perfusion of kidney allografts may help to differentiate between ATN and rejection. • Quantitative CT perfusion of renal transplants is feasible. • CT perfusion could help to non-invasively differentiate AR from ATN. • CT perfusion might make some renal biopsies unnecessary.

  10. Quantitative Assessment of Free Flap Viability with CEUS Using an Integrated Perfusion Software.

    Science.gov (United States)

    Geis, S; Klein, S; Prantl, L; Dolderer, J; Lamby, P; Jung, E-M

    2015-12-01

    New treatment strategies in oncology and trauma surgery lead to an increasing demand for soft tissue reconstruction with free tissue transfer. In previous studies, CEUS was proven to detect early flap failure. The aim of this study was to detect and quantify vascular disturbances after free flap transplantation using a fast integrated perfusion software tool. From 2011 to 2013, 33 patients were examined by one experienced radiologist using CEUS after a bolus injection of 1-2.4 ml of SonoVue(®). Flap perfusion was analysed qualitatively regarding contrast defects or delayed wash-in. Additionally, an integrated semi-quantitative analysis using time-intensity curve analysis (TIC) was performed. TIC analysis of the transplant was conducted on a centimetre-by-centimetre basis up to a penetration depth of 4 cm. The 2 perfusion parameters "Time to PEAK" and "Area under the Curve" were compared in patients without complications vs. patients with minor complications or complete flap loss to figure out significant differences. TtoPk is given in seconds (s) and Area is given in relative units (rU) Results: A regular postoperative process was observed in 26 (79%) patients. In contrast, 5 (15%) patients with partial superficial flap necrosis, 1 patient (3%) with complete flap loss and 1 patient (3%) with haematoma were observed. TtoPk revealed no significant differences, whereas Area revealed significantly lower perfusion values in the corresponding areas in patients with complications. The critical threshold for sufficient flap perfusion was set below 150 rU. In conclusion, CEUS is a mobile and cost-effective opportunity to quantify tissue perfusion and can even be used almost without any restrictions in multi-morbid patients with renal and hepatic failure. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment with magnetic resonance perfusion imaging.

    Science.gov (United States)

    Muehling, Olaf M; Jerosch-Herold, Michael; Panse, Prasad; Zenovich, Andrey; Wilson, Betsy V; Wilson, Robert F; Wilke, Norbert

    2004-01-01

    The knowledge of myocardial perfusion in healthy volunteers is fundamental for evaluation of patients with ischemic heart disease. The study was conducted to determine range, regional variability, and transmural gradient of myocardial perfusion in normal volunteers with Magnetic Resonance Perfusion Imaging (MRPI). Perfusion was assessed in 17 healthy volunteers (age: 20-47 yr, 11 males) at rest and adenosine-induced hyperemia using a 1.5 T MR scanner. Perfusion was quantified (mL/g/min) for the transmural myocardium and separately for the endo- and epimyocardium in the anterior, lateral, posterior, and septal left ventricular wall using the Fermi model for constrained deconvolution. Regional variabilities for resting, hyperemic perfusion, and perfusion reserve were 22 +/- 8%, 21 +/- 10%, and 35 +/- 18%. Mean resting, hyperemic perfusion, and perfusion reserve were 1.1 +/- 0.4 mL/g/min, 4.2 +/- 1.1 mL/g/min, and 4.1 +/- 1.4. Perfusion in the septum was higher at rest (1.3 +/- 0.3 mL/g/min vs. 1.0 +/- 0.3 mL/g/min, p < 0.05) and lower during hyperemia (3.6 +/- 0.8 mL/g/min vs. 4.5 +/- 1.1 mL/g/min, p < 0.03), resulting in a reduced perfusion reserve (PR) (3.2 +/- 0.9 vs. 4.5 +/- 1.4, p < 0.01) in the septum vs. the combined anterior, lateral, and posterior segments. Resting (0.9 +/- 0.3 mL/g/min vs. 1.4 +/- 0.5 mL/g/min, p < 0.01), but not hyperemic perfusion, was lower in the epi- vs. endomyocardium, resulting in a higher epimyocardial PR (4.8 +/- 1.8 vs. 3.5 +/- 1.4, p < 0.01) in all regions but the septum, where endo- and epimyocardial perfusion and perfusion reserve were not different. A considerable regional variability of myocardial perfusion was confirmed with MRPI. The exceptional anatomical position of the septum is reflected by the lack of a perfusion gradient, which was demonstrated in all other regions but the septum.

  12. Optimized saturation pulse train for human first-pass myocardial perfusion imaging at 7T.

    Science.gov (United States)

    Tao, Yuehui; Hess, Aaron T; Keith, Graeme A; Rodgers, Christopher T; Liu, Alexander; Francis, Jane M; Neubauer, Stefan; Robson, Matthew D

    2015-04-01

    To investigate whether saturation using existing methods developed for 3T imaging is feasible for clinical perfusion imaging at 7T, and to propose a new design of saturation pulse train for first-pass myocardial perfusion imaging at 7T. The new design of saturation pulse train consists of four hyperbolic-secant (HS8) radiofrequency pulses, whose peak amplitudes are optimized for a target range of static and transmit field variations and radiofrequency power deposition restrictions measured in the myocardium at 7T. The proposed method and existing methods were compared in simulation, phantom, and in vivo experiments. In healthy volunteer experiments without contrast agent, average saturation efficiency with the proposed method was 97.8%. This is superior to results from the three previously published methods at 86/95/90.8%. The first series of human first-pass myocardial perfusion images at 7T have been successfully acquired with the proposed method. Existing saturation methods developed for 3T imaging are not optimal for perfusion imaging at 7T. The proposed new design of saturation pulse train can saturate effectively, and with this method first-pass myocardial perfusion imaging is feasible in humans at 7T. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.

  13. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    Science.gov (United States)

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  14. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    Energy Technology Data Exchange (ETDEWEB)

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  15. Optimized Saturation Pulse Train for Human First-Pass Myocardial Perfusion Imaging at 7T

    Science.gov (United States)

    Tao, Yuehui; Hess, Aaron T; Keith, Graeme A; Rodgers, Christopher T; Liu, Alexander; Francis, Jane M; Neubauer, Stefan; Robson, Matthew D

    2015-01-01

    Purpose To investigate whether saturation using existing methods developed for 3T imaging is feasible for clinical perfusion imaging at 7T, and to propose a new design of saturation pulse train for first-pass myocardial perfusion imaging at 7T. Methods The new design of saturation pulse train consists of four hyperbolic-secant (HS8) radiofrequency pulses, whose peak amplitudes are optimized for a target range of static and transmit field variations and radiofrequency power deposition restrictions measured in the myocardium at 7T. The proposed method and existing methods were compared in simulation, phantom, and in vivo experiments. Results In healthy volunteer experiments without contrast agent, average saturation efficiency with the proposed method was 97.8%. This is superior to results from the three previously published methods at 86/95/90.8%. The first series of human first-pass myocardial perfusion images at 7T have been successfully acquired with the proposed method. Conclusion Existing saturation methods developed for 3T imaging are not optimal for perfusion imaging at 7T. The proposed new design of saturation pulse train can saturate effectively, and with this method first-pass myocardial perfusion imaging is feasible in humans at 7T. Magn Reson Med 73:1450–1456, 2015. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:24753130

  16. Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, J. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Tensaouti, F. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Chaltiel, L. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Biostatistics, Toulouse (France); Lotterie, J.A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Catalaa, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Radiology, Toulouse (France); Sunyach, M.P. [Centre Leon Berard, Department of Radiation Oncology, Lyon (France); Ibarrola, D. [CERMEP - Imagerie du Vivant, Lyon (France); Noel, G. [EA 3430, University of Strasbourg, Department of Radiation Oncology, Centre Paul Strauss, Strasbourg (France); Truc, G. [Centre Georges-Francois Leclerc, Department of Radiation Oncology, Dijon (France); Walker, P. [University of Burgundy, Laboratory of Electronics, Computer Science and Imaging (Le2I), UMR 6306 CNRS, Dijon (France); Magne, N. [Institut de cancerologie Lucien-Neuwirth, Department of Radiation Oncology, Saint-Priest-en-Jarez (France); Charissoux, M. [Department of Radiation Oncology, Institut du Cancer de Montpellier, Montpellier (France); Ken, S. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Medical Physics, Toulouse (France); Peran, P. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Berry, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Moyal, E.C. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Universite Toulouse III Paul Sabatier, Toulouse (France); INSERM U1037, Centre de Recherches contre le Cancer de Toulouse, Toulouse (FR); Laprie, A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (FR); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (FR); Universite Toulouse III Paul Sabatier, Toulouse (FR)

    2016-11-15

    To identify relevant relative cerebral blood volume biomarkers from T2* dynamic-susceptibility contrast magnetic resonance imaging to anticipate glioblastoma progression after chemoradiation. Twenty-five patients from a prospective study with glioblastoma, primarily treated by chemoradiation, were included. According to the last follow-up MRI confirmed status, patients were divided into: relapse group (n = 13) and control group (n = 12). The time of last MR acquisition was t{sub end}; MR acquisitions performed at t{sub end-2M}, t{sub end-4M} and t{sub end-6M} (respectively 2, 4 and 6 months before t{sub end}) were analyzed to extract relevant variations among eleven perfusion biomarkers (B). These variations were assessed through R(B), as the absolute value of the ratio between ∇B from t{sub end-4M} to t{sub end-2M} and ∇B from t{sub end-6M} to t{sub end-4M}. The optimal cut-off for R(B) was determined using receiver-operating-characteristic curve analysis. The fraction of hypoperfused tumor volume (F{sub h}P{sub g}) was a relevant biomarker. A ratio R(F{sub h}P{sub g}) ≥ 0.61 would have been able to anticipate relapse at the next follow-up with a sensitivity/specificity/accuracy of 92.3 %/63.6 %/79.2 %. High R(F{sub h}Pg) (≥0.61) was associated with more relapse at t{sub end} compared to low R(F{sub h}Pg) (75 % vs 12.5 %, p = 0.008). Iterative analysis of F{sub h}P{sub g} from consecutive examinations could provide surrogate markers to predict progression at the next follow-up. (orig.)

  17. MRI of pulmonary perfusion; MRT der Lungenperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C. [Klinikum Grosshadern der Ludwig-Maximilians-Universitaet Muenchen (Germany). Institut fuer Klinische Radiologie; Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany); Risse, F.; Semmler, W. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Medizinische Physik in der Radiologie, Heidelberg (Germany); Schoenberg, S.O.; Reiser, M.F. [Klinikum Grosshadern der Ludwig-Maximilians-Universitaet Muenchen (Germany). Institut fuer Klinische Radiologie; Kauczor, H.-U. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany)

    2006-04-15

    Lung perfusion is a crucial prerequisite for effective gas exchange. Quantification of pulmonary perfusion is important for diagnostic considerations and treatment planning in various diseases of the lungs. Besides disorders of pulmonary vessels such as acute pulmonary embolism and pulmonary hypertension, these also include diseases of the respiratory tract and lung tissue as well as pulmonary tumors. This contribution presents the possibilities and technical requirements of MRI for diagnostic work-up of pulmonary perfusion. (orig.) [German] Die Perfusion der Lunge ist eine entscheidende Voraussetzung fuer einen effektiven Gasaustausch. Die Bestimmung der Lungenperfusion ist bei verschiedenen Erkrankungen der Lunge fuer Diagnostik und Therapieplanung bedeutsam. Hierzu zaehlen neben Erkrankungen der Lungengefaesse wie akute Lungenembolie und pulmonale Hypertension ebenso Erkrankungen der Atemwege, des Lungengeruests und Lungentumoren. In diesem Beitrag werden die Moeglichkeiten und technischen Voraussetzungen der MRT zur Diagnostik der Lungenperfusion dargestellt. (orig.)

  18. Comprehensive Assessment of Coronary Artery Disease by Using First-Pass Analysis Dynamic CT Perfusion: Validation in a Swine Model.

    Science.gov (United States)

    Hubbard, Logan; Lipinski, Jerry; Ziemer, Benjamin; Malkasian, Shant; Sadeghi, Bahman; Javan, Hanna; Groves, Elliott M; Dertli, Brian; Molloi, Sabee

    2018-01-01

    Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (P FPA and P MSM ) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (P MICRO ), as follows: P FPA_COMBINED = 1.02 P MICRO_COMBINED + 0.11 (r = 0.96) and P MSM_COMBINED = 0.28 P MICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.

  19. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  20. Vicarious audiovisual learning in perfusion education.

    Science.gov (United States)

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p learning module than text learners. Vicarious audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we teach perfusion in the future, as simulation technology becomes more prevalent.

  1. CT perfusion study of neck lymph nodes

    International Nuclear Information System (INIS)

    Zhong Jin; Liu Jun; Hua Rui; Qiao Hui; Gong Yi

    2011-01-01

    Objective: To study the CT perfusion features of various lymph nodes in the neck. Methods: Dynamic perfusion CT scanning was performed in 83 neck lymph nodes proved by pathology, including tuberculosis lymph nodes, lymphoma and metastatic lymph nodes. The shapes, blood flow modes, and perfusion parameters of these lymph nodes were compared among 3 groups. Statistical analysis of L/T and CT perfusion parameters was performed by one-way ANOVA and LSD test. Results: The values of MTT of tuberculosis lymph nodes, lymphoma and metastatic lymph nodes were (28.13±5.08), (31.08±5.82), and (11.24±5.31) s, respectively. The MTT of metastatic lymph nodes was statistically lower than that of tuberculosis lymph nodes and lymphoma (P -1 · 100 g -1 , respectively. The values of BV were (24.68±2.84), (25.30±3.16), and (25.15± 8.81) ml·100 g -1 respectively. The values of TTP were (40.90±8.85), (40.67±6.45), and (40.98±6.62) s, respectively. There were no significant differences in L/T, BF, BV and TTP among tuberculosis lymph nodes, lymphoma and metastatic lymph nodes (P>0.05). Conclusion: CT perfusion, especially combination functional imaging with perfusion images may be helpful in judging the nature of neck lymph nodes. (authors)

  2. Fully Automatic Myocardial Segmentation of Contrast Echocardiography Sequence Using Random Forests Guided by Shape Model.

    Science.gov (United States)

    Li, Yuanwei; Ho, Chin Pang; Toulemonde, Matthieu; Chahal, Navtej; Senior, Roxy; Tang, Meng-Xing

    2017-09-26

    Myocardial contrast echocardiography (MCE) is an imaging technique that assesses left ventricle function and myocardial perfusion for the detection of coronary artery diseases. Automatic MCE perfusion quantification is challenging and requires accurate segmentation of the myocardium from noisy and time-varying images. Random forests (RF) have been successfully applied to many medical image segmentation tasks. However, the pixel-wise RF classifier ignores contextual relationships between label outputs of individual pixels. RF which only utilizes local appearance features is also susceptible to data suffering from large intensity variations. In this paper, we demonstrate how to overcome the above limitations of classic RF by presenting a fully automatic segmentation pipeline for myocardial segmentation in full-cycle 2D MCE data. Specifically, a statistical shape model is used to provide shape prior information that guide the RF segmentation in two ways. First, a novel shape model (SM) feature is incorporated into the RF framework to generate a more accurate RF probability map. Second, the shape model is fitted to the RF probability map to refine and constrain the final segmentation to plausible myocardial shapes. We further improve the performance by introducing a bounding box detection algorithm as a preprocessing step in the segmentation pipeline. Our approach on 2D image is further extended to 2D+t sequences which ensures temporal consistency in the final sequence segmentations. When evaluated on clinical MCE datasets, our proposed method achieves notable improvement in segmentation accuracy and outperforms other state-of-the-art methods including the classic RF and its variants, active shape model and image registration.

  3. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  4. Assessment of brain perfusion with MRI: methodology and application to acute stroke

    International Nuclear Information System (INIS)

    Grandin, C.B.

    2003-01-01

    We review the methodology of brain perfusion measurements with MRI and their application to acute stroke, with particular emphasis on the work awarded by the 6th Lucien Appel Prize for Neuroradiology. The application of the indicator dilution theory to the dynamic susceptibility-weighted bolus-tracking method is explained, as is the approach to obtaining quantitative measurements of cerebral blood flow (CBF) and volume (CBV). Our contribution to methodological developments, such as CBV measurement with the frequency-shifted burst sequence, development of the PRESTO sequence, comparison of different deconvolution methods and of spin- and gradient-echo sequences, and the validation of MRI measurements against positron emission tomography is summarised. The pathophysiology of brain ischaemia and the role of neuroimaging in the setting of acute stroke are reviewed, with an introduction to the concepts of ischaemic penumbra and diffusion/perfusion mismatch. Our work on the determination of absolute CBF and CBV thresholds for predicting the area of infarct growth, identification of the best perfusion parameters (relative or absolute) for predicting the area of infarct growth and the role of MR angiography is also summarised. We conclude that MRI is a very powerful way to assess brain perfusion and that its use might help in selecting patients who will benefit most from treatment such as thrombolysis. (orig.)

  5. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    Energy Technology Data Exchange (ETDEWEB)

    Read, L.C.; Wallace, P.G.; Berry, M.N. (Flinders Univ. School of Medicine, Bedford Park (Australia))

    1987-09-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na{sup 131}I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. In the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses.

  6. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    International Nuclear Information System (INIS)

    Read, L.C.; Wallace, P.G.; Berry, M.N.

    1987-01-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na 131 I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. In the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses

  7. Abnormal perfusion on myocardial perfusion SPECT in patients with WPW syndrome: clinical implications

    International Nuclear Information System (INIS)

    Kang, Do Young; Cha, Kwang Soo; Kim, Moo Hyun; Kim, Young Dae; Kim, Duk Kyu

    2001-01-01

    Myocardial perfusion is altered significantly in patients with rhythm disturbances such as CLBBB and right ventricular pacing rhythm. Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on SPECT in patients with WPW syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial SPECT with or without coronary angiography were performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECG or electrophysiologic study. Small to large extent (11.0 8.5%, range: 0 35%) and mild to moderate severity (-71.8 42.7%, range: -217 0%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patient with right free wall AP showed normal. Other defect locations were as follows. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. It was not specifically correlated with location of accessory pathway, but most of all patients were abnormal perfusion pattern. Therefore myocardial perfusion SPECT was interpreted carefully in patients with WPW syndrome

  8. A study of whole brain perfusion CT and CT angiography in hyperacute and acute cerebral infarction

    International Nuclear Information System (INIS)

    Zhang Yonghai; Bai Junhu; Zhang Ming; Yang Guocai; Tang Guibo; Fang Jun; Shi Wei; Li Xinghua; Liu Suping; Lu Qing; Tang Jun

    2005-01-01

    Objective: To evaluate the diagnostic value of whole-brain perfusion blood volume-weighted CT imaging (PWCT) and simultaneous CT angiography (CTA) on early stage of cerebral ischemic infarction. Methods: Non-contrast CT (NCCT), CT perfusion-weighted imaging (PWCT) and delayed CT (DCT) were conducted on 20 cases of early ischemic infarction of whose onset time ranged from 2 to 24 hours. All cases were reexamined with CT or MRI one week to one month later. CT values and perfusion blood volume (PBV) of central and peripheral low perfusion areas as well as those of collateral side were measured. CTA was reconstructed with PWCT as source images to evaluate occlusion or stenosis of blood vessel, and DCT was used to detect the collateral circulation. Results: Of the 20 cases, NCCT, PWCT and CTA were negative in 10 cases in which 6 were confirmed as Transient Ischemic Attack (TIA) on reexamined CT and clinical features, and the other 4 were confirmed as lacunar infarction. For the remaining 10 cases, a comparison was made with ANOVA between low perfusion area (central, peripheral inside and outside) and collateral side. The difference was significant (P<0.01). However, no significant difference was revealed in the central, peripheral inside and outside areas. PBV values were significant in low perfusion area and collateral side (P<0.05). The area of the final infarction was larger than that of the low perfusion area, and the percentage of enlargement exhibited medium negative correlation to the time of ischemia. CTA indicated that 2 cases suffered from left middle cerebral artery occlusion, meanwhile anterior and middle branches of MCA in the other 3 cases were not identified. The sensitivity of NCCT, PWCT and CTA were 28.5%, 71.4% and 35.7% respectively. DCT indicated that 5 cases had asymmetrical blood vessels. Conclusion: The whole-brain perfusion-weighted CT imaging and simultaneous CT angiography (CTA) is p roved to be a simple, timesaving and effective method for the

  9. Dual-Energy Perfusion-CT in Recurrent Pancreatic Cancer - Preliminary Results.

    Science.gov (United States)

    Fritz, F; Skornitzke, S; Hackert, T; Kauczor, H U; Stiller, W; Grenacher, L; Klauss, M

    2016-06-01

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (see above) for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n = 4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120kVp-equivalent image data, which was not significant (n.s.) (p = 0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation. • DE Perfusion CT is feasible in patients

  10. Measurement of myocardial perfusion with electron beam tomography: comparison with {sup 99m}Tc-MIBI scan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Koo; Choi, Jin Young; Yoo, Seok Jong [Research Institute of Radiological Science, Seoul (Korea, Republic of); And Others

    2000-07-01

    To compare the accuracy with which electron beam tomography (EBT) and {sup 99m}Tc-MIBI scanning measure myocardial perfusion valve. Twenty-two subjects (normal volunteers (n=3D6), patients in whom ischemic heart disease was diagnosed (n=3D5), and those in whom ischemic heart disease was suspected but who were found to be normal (n=3D11)) were involved in this study. EBT was performed after bolus injection of contrast media (50 ml of Iopamiro 370 or Optiray 350, 3 ml/sec). The myocardium was divided into 16 segments according to the classification devised by the American Society of Echocardiography, and each myocardial perfusion value was calculated by post-image processing. A pharmacologic stress test was performed in all subjects except four patients with acute myocardial infarction, and myocardial perfusion reserve ratios were assessed. Single photon emission computed tomography (SPECT) was performed after the injection of 20 mCi of {sup 99m}Tc-MIBI. Any segment with moderate to severe photon defect on visual analysis of SPECT were identified and perfusion values determined by EBT in normal and ischemic segments were compared. No difference in myocardial perfusion was found between volunteers and the suspected group. Their perfusion values were 0.71{+-}0.14 ml/g/min in the resting state and 1.16{+-}0.24 ml/g/min on the stress test and the myocardial perfusion reserve ratio was, therefore, 1:1.68{+-}0.38. In ischemic patients, {sup 99m}Tc-MIBI scanning revealed a perfusion defect in 28 segments, and on EBT the measurement obtained was 0.54{+-}0.19 ml/g/min. The remaining 324 perfusion segments shown by SPECT to be normal showed a perfusion value of 0.79{+-}0.22 ml/g/min on EBT. Compared with {sup 99m}Tc-MIBI scanning, the measurement of myocardial perfusion by EBT provides absolute quantification of perfusion value and more detailed anatomic information. (author)

  11. The Relation Between Perfusion Pattern of Hepatic Artery Perfusion Scintigraphy and Response to Y-90 Microsphere Therapy

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salancı

    2013-12-01

    Full Text Available Objective: Hepatic artery perfusion scintigraphy is a routine procedure for patient evaluation before Y-90 radiomicrosphere therapy and mostly used for prediction of extrahepatic leakage. Moreover, it also displays perfusion pattern of tumours, which is an important parameter on success of the therapy. The aim of this study is to assess the relation between the perfusion pattern on hepatic artery perfusion scintigraphy and radiomicrosphere therapy response. Methods: A total of 99 radiomicrosphere therapy applications were carried out in 80 patients (M/F: 55/25. Results: Heterogeneous and diffuse perfusion patterns were observed in 47 patients and 52 patients, respectively. The patients with diffuse perfusion pattern had better therapy response both on FDG PET/CT (p= 0.04 and CT (p=0.008 when compared to those with heterogenous perfusion pattern. Conclusion: Perfusion pattern observed on hepatic artery perfusion scintigraphy may be a successful predictor of early response to radiomicrosphere therapy

  12. Development of contrast media

    International Nuclear Information System (INIS)

    Krause, W.

    1993-01-01

    Description of all contrast media (ionic and nonionic monomers, ionic and nonionic dimers) was presented. Chemotoxicity, osmolality and viscosity of some contrast agents were analyzed. The main adverse reactions to ionic and nonionic contrast media were described

  13. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    McLaughlin, A.C.; Takeda, H.; Chance, B.

    1978-01-01

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31 P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31 P-NMR was used to investigate ATP levels in perfused liver of mice

  14. Beam hardening correction in CT myocardial perfusion measurement

    Science.gov (United States)

    So, Aaron; Hsieh, Jiang; Li, Jian-Ying; Lee, Ting-Yim

    2009-05-01

    This paper presents a method for correcting beam hardening (BH) in cardiac CT perfusion imaging. The proposed algorithm works with reconstructed images instead of projection data. It applies thresholds to separate low (soft tissue) and high (bone and contrast) attenuating material in a CT image. The BH error in each projection is estimated by a polynomial function of the forward projection of the segmented image. The error image is reconstructed by back-projection of the estimated errors. A BH-corrected image is then obtained by subtracting a scaled error image from the original image. Phantoms were designed to simulate the BH artifacts encountered in cardiac CT perfusion studies of humans and animals that are most commonly used in cardiac research. These phantoms were used to investigate whether BH artifacts can be reduced with our approach and to determine the optimal settings, which depend upon the anatomy of the scanned subject, of the correction algorithm for patient and animal studies. The correction algorithm was also applied to correct BH in a clinical study to further demonstrate the effectiveness of our technique.

  15. Magnetic resonance imaging of pulmonary perfusion. Technical requirements and diagnostic impact; MRT der Lungenperfusion. Technische Voraussetzungen und diagnostischer Stellenwert

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, U.I.; Buesing, K.; Schoenberg, S.O.; Fink, C. [Klinikum Mannheim der Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Mannheim (Germany); Ingrisch, M.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Campus Grosshadern, Muenchen (Germany)

    2009-08-15

    With technical improvements in gradient hardware and the implementation of innovative k-space sampling techniques, such as parallel imaging, the feasibility of pulmonary perfusion MRI could be demonstrated in several studies. Dynamic contrast-enhanced 3D gradient echo sequences as used for time-resolved MR angiography have been established as the preferred pulse sequences for lung perfusion MRI. With these techniques perfusion of the entire lung can be visualized with a sufficiently high temporal and spatial resolution. In several trials in patients with acute pulmonary embolism, pulmonary hypertension and airway diseases, the clinical benefit and good correlation with perfusion scintigraphy have been demonstrated. The following review article describes the technical prerequisites, current post-processing techniques and the clinical indications for MR pulmonary perfusion imaging using MRI. (orig.) [German] Mit der Verfuegbarkeit leistungsfaehiger Gradientensysteme und schneller k-Raum-Akquisitionstechniken wie der parallelen Bildgebung konnten verschiedene Studien die Machbarkeit der Lungenperfusionsbildgebung in der MRT zeigen. In der Praxis haben sich dynamische kontrastverstaerkte 3D-Gradientenechosequenzen, wie sie fuer zeitaufgeloeste MR-Angiographien verwendet werden, fuer die Bildgebung der Lungenperfusion etabliert. Hiermit ist es moeglich, die Perfusion der gesamten Lunge mit ausreichend hoher zeitlicher und raeumlicher Aufloesung zu visualisieren. In mehren klinischen Studien konnte bei Patienten mit Lungenembolie, pulmonaler Hypertonie sowie Erkrankungen der Atemwege und des Lungenparenchyms der klinische Nutzen der Lungenperfusions-MRT und die gute Uebereinstimmung mit der Lungenperfusionsszintigraphie nachgewiesen werden. Der folgende Uebersichtsartikel beschreibt die technische Durchfuehrung, Bildnachverarbeitung und die klinischen Anwendungsgebiete der MRT zur Untersuchung der Lungenperfusion. (orig.)

  16. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  17. Secretion of fluid and amylase in the perfused rat pancreas.

    Science.gov (United States)

    Petersen, O H; Ueda, N

    1977-01-01

    1. The isolated rat pancreas was perfused with physiological salt solutions of varying composition. Flow of pancreatic juice and output of amylase during rest and after stimulation with pure secretin, pure cholecystokinin-pancreozymin (CCK-PZ), caerulein or acetylcholine (ACh) were measured. 2. Basal fluid secretion was abolished replacing perfusion fluid NA+ or Cl- by Tris+ or SO42- respectively. Readmission of Na+ or Cl- caused a transient increase above the normal control level of both fluid and amylase output. Exposure to K+-free solution severely reduced fluid output and K+ readmission resulted in a transient increase in secretory rate. 3. Maximal stimulation with ACh (10(-7) M), CCK-PZ (1-5 X 10(-10) M) or caerulein (10(-10) M) caused marked sustained fluid and amylase secretion. Maximal secretin stimulation (5-7 X 10(-9) M) caused marked sustained fluid but only a small sustained amylase secretion following an initial transient. 4. Under continuous secretin stimulation, replacement of the CO2/HCO3-buffered control fluid by a CO2/HCO3-free Tris buffered solution caused a sharp decrease in pancreatic juice flow. In the absence of extracellular CO2/HCO3-secretin did not evoke fluid or enzyme secretion. In contrast the effects of ACh, CCK-PZ or caerulein were independent on CO2/HCO3-. Monobutyryl cyclic AMP (10(-3) M) caused marked sustained fluid secretion and transient enzyme secretion. The effect was entirely dependent on the presence of CO2/HCO3-in the perfusion fluid. 5. Ouabain (10(-4)-10(-3) M) markedly inhibited both secretin- and caerulein-evoked fluid secretion while caerulein-evoked amylase secretion was hardly affected. Similar findings were made with K+-free solution. 6. The effect of maximal secretin stimulation on amylase secretion was greatly augmented in the presence of a maximally stimulating concentration of caerulein. The effects on fluid secretion of secretin and caerulein were simply additive. The effects of secretin on both amylase and

  18. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  19. Selective renal blood perfusion induces renal tubules injury in a porcine model.

    Science.gov (United States)

    Kalder, Johannes; Kokozidou, Maria; Keschenau, Paula; Tamm, Miriam; Greiner, Andreas; Koeppel, Thomas A; Tolba, Rene; Jacobs, Michael J

    2016-03-01

    Extracorporeal circulation is routinely used in thoracoabdominal aortic aneurysm repair to preserve blood perfusion. Despite this protective measure, acute and chronic kidney disorders can develop. Therefore, the aim of this study was to establish a new large-animal model to assess the efficacy of selective renal perfusion (SRP) with extracorporeal circulation in a setting of thoracoabdominal aortic aneurysm repair. Eighteen pigs underwent a thoracolaparotomy, during with the aorta and renal arteries were exposed. The animals were divided into three cohorts of six pigs each: cohort I--control; cohort II--thoracic aortic clamping with distal aortic perfusion (DAP) using a roller pump; and cohort III--thoracic aortic clamping with DAP plus SRP. Kidney metabolism, kidney injury, and red blood cell damage were measured by oxygen extraction ratio (O2ER), neutrophil gelatinase-associated lipocalin, a marker for acute kidney damage, and serum free hemoglobin. With normal mean arterial blood pressures, flow rates in the renal arteries during perfusion decreased to 75% (group II) with DAP and to 50% (group III) with SRP compared with the control animals (group I; P = .0279 for I vs II; P = .0002 for I vs III). Microcirculation, measured by microspheres, did not differ significantly among the groups. In contrast, O2ER (P = .0021 for I vs III) and neutrophil gelatinase-associated lipocalin (P = .0083 for I vs III) levels were significantly increased in group III, whereas free hemoglobin was increased in groups II and III (P = .0406 for I vs II; P = .0018 for I vs III). SRP with a roller pump induces kidney tubule injury. Thus, distal aortic and SRP in our model does not provide adequate kidney protection. Furthermore, the perfusion system provokes red blood cell damage with increased free hemoglobin. Hence, the SRP perfusion technique should be revised and tested. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. Dual-energy perfusion-CT in recurrent pancreatic cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, F.; Skornitzke, S.; Kauczor, H.U.; Stiller, W.; Klauss, M. [Heidelberg Univ. (Germany). Clinic of Diagnostic and Interventional Radiology; Hackert, T. [Heidelberg Univ. (Germany). Clinic of Surgery; Grenacher, L. [Diagnostik Muenchen (Germany). Diagnostic Imaging Center

    2016-06-15

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120 kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n=4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120 kVp-equivalent image data, which was not significant (n.s.) (p=0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation.

  1. Changes in myocardial perfusion due to physical exercise in patients with stable coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Kendziorra, Kai; Foerster, Marcus; Sabri, Osama; Kluge, Regine [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Walther, Claudia; Moebius-Winkler, Sven; Conradi, Katrin; Schuler, Gerhard; Hambrecht, Rainer [University of Leipzig, Heart Center, Leipzig (Germany)

    2005-07-01

    Percutaneous transluminal coronary angioplasty (PTCA) is one of the main therapy options for patients with coronary artery disease (CAD), resulting in an improvement in myocardial perfusion and exercise capacity. Nevertheless, studies have also demonstrated a positive effect of regular exercise training on myocardial perfusion and maximum exercise capacity. The aim of this study was to evaluate changes in myocardial stress perfusion after 1 year of exercise training in comparison with the effects of PTCA in patients with CAD. In 66 male patients with angiographically confirmed significant coronary artery stenosis in one target vessel, myocardial perfusion scintigraphy was performed at baseline and 12 months after randomisation into either a physical exercise group or a PTCA group. Circumferential count rate profiles in 16 wall segments were classified according to their relative count rate and localisation within or outside the area supplied by the stenosed vessel. Ischaemic segments showed a significant improvement in myocardial count rate within the target area after 12 months in both the PTCA and the training group (PTCA group: from 76.8{+-}4.9% to 86.6{+-}10.9%, p=0.03; training group: from 74.0{+-}7.3% to 83.7{+-}10.8%, p<0.01). Outside the target area only the training group showed a significant improvement (from 77.7{+-}4.4% to 91.7{+-}4.8%, p<0.01). Our data indicate a significant improvement in stress myocardial perfusion in the training group after 12 months. The ischaemia is reduced not only in the target region of the leading stenosis but also in other ischaemic myocardial areas. In contrast, after PTCA stress perfusion improves only in the initially ischaemic parts of the target area. (orig.)

  2. Radiographic contrast media

    International Nuclear Information System (INIS)

    Golman, K.; Holtz, E.; Almen, T.

    1987-01-01

    Contrast media are used in diagnostic radiology to enhance the X-ray attenuation between a body structure of interest and the surrounding tissue. A detail becomes perceptible on a roentgenogram only when its contrast exceeds a minimum value in relation to the background. Small areas of interest must have higher contrast than the background. The contrast effect depends on concentration of the contrast media with the body. A high contrast media concentration difference thus gives rise to more morphological details in the radiographs. Contrast media can be divided into negative contrast media such as air and gas which attenuate X-rays less than the body tissues, and positive contrast materials which attenuate X-rays more than the body tissues. The positive contrast media all contain either iodine (atomic number 53) or barium (atomic number 56) and can be divided into water-insoluble and water-soluble contrast media

  3. High fat diet-induced glucose intolerance impairs myocardial function, but not myocardial perfusion during hyperaemia: a pilot study

    Directory of Open Access Journals (Sweden)

    van den Brom Charissa E

    2012-06-01

    Full Text Available Abstract Background Glucose intolerance is a major health problem and is associated with increased risk of progression to type 2 diabetes mellitus and cardiovascular disease. However, whether glucose intolerance is related to impaired myocardial perfusion is not known. The purpose of the present study was to study the effect of diet-induced glucose intolerance on myocardial function and perfusion during baseline and pharmacological induced hyperaemia. Methods Male Wistar rats were randomly exposed to a high fat diet (HFD or control diet (CD (n = 8 per group. After 4 weeks, rats underwent an oral glucose tolerance test. Subsequently, rats underwent (contrast echocardiography to determine myocardial function and perfusion during baseline and dipyridamole-induced hyperaemia (20 mg/kg for 10 min. Results Four weeks of HFD feeding resulted in glucose intolerance compared to CD-feeding. Contractile function as represented by fractional shortening was not altered in HFD-fed rats compared to CD-fed rats under baseline conditions. However, dipyridamole increased fractional shortening in CD-fed rats, but not in HFD-fed rats. Basal myocardial perfusion, as measured by estimate of perfusion, was similar in CD- and HFD-fed rats, whereas dipyridamole increased estimate of perfusion in CD-fed rats, but not in HFD-fed rats. However, flow reserve was not different between CD- and HFD-fed rats. Conclusions Diet-induced glucose intolerance is associated with impaired myocardial function during conditions of hyperaemia, but myocardial perfusion is maintained. These findings may result in new insights into the effect of glucose intolerance on myocardial function and perfusion during hyperaemia.

  4. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Wu, Shengyong; Wang, Mei; Lu, Li; Chen, Bo; Jin, Lixin; Wang, Jiandong; Larson, Andrew C.; Lu, Guang Ming

    2012-01-01

    Purpose: To evaluate the correlation between quantitative dual energy CT and perfusion CT measurements in rabbit VX2 liver tumors. Materials and methods: This study was approved by the institutional animal care and use committee at our institution. Nine rabbits with VX2 liver tumors underwent contrast-enhanced dual energy CT and perfusion CT. CT attenuation for the tumors and normal liver parenchyma and tumor-to-liver ratio were obtained at the 140 kVp, 80 kVp, average weighted images and dual energy CT iodine maps. Quantitative parameters for the viable tumor and adjacent liver were measured with perfusion CT. The correlation between the enhancement values of the tumor in iodine maps and perfusion CT parameters of each tumor was analyzed. Radiation dose from dual energy CT and perfusion CT was measured. Results: Enhancement values for the tumor were higher than that for normal liver parenchyma at the hepatic arterial phase (P < 0.05). The highest tumor-to-liver ratio was obtained in hepatic arterial phase iodine map. Hepatic blood flow of the tumor was higher than that for adjacent liver (P < 0.05). Enhancement values of hepatic tumors in the iodine maps positively correlated with permeability of capillary vessel surface (r = 0.913, P < 0.001), hepatic blood flow (r = 0.512, P = 0.010), and hepatic blood volume (r = 0.464, P = 0.022) at the hepatic arterial phases. The effective radiation dose from perfusion CT was higher than that from DECT (P < 0.001). Conclusions: The enhancement values for viable tumor tissues measured in iodine maps were well correlated to perfusion CT measurements in rabbit VX2 liver tumors. Compared with perfusion CT, dual energy CT of the liver required a lower radiation dose.

  5. Timing-Invariant CT Angiography Derived from CT Perfusion Imaging in Acute Stroke : A Diagnostic Performance Study

    NARCIS (Netherlands)

    Smith, E. J.; Vonken, E. -J.; Meijer, F. J. A.; Dankbaar, J. W.; Horsch, A. D.; van Ginneken, B.; Velthuis, B.; van der Schaaf, I.; Prokop, M.

    2015-01-01

    BACKGROUND AND PURPOSE: Timing-invariant (or delay-insensitive) CT angiography derived from CT perfusion data may obviate a separate cranial CTA in acute stroke, thus enhancing patient safety by reducing total examination time, radiation dose, and volume of contrast material. We assessed the

  6. MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent

    Energy Technology Data Exchange (ETDEWEB)

    Anemone, Annasofia; Consolino, Lorena [Universita degli Studi di Torino, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Torino (Italy); Longo, Dario Livio [Universita degli Studi di Torino, Istituto di Biostrutture e Bioimmagini (CNR) c/o Centro di Biotecnologie Molecolari, Torino (Italy)

    2017-05-15

    X-ray iodinated contrast media have been shown to generate contrast in MR images when used with the chemical exchange saturation transfer (CEST) approach. The aim of this study is to compare contrast enhancement (CE) capabilities and perfusion estimates between radiographic molecules and a Gd-based contrast agent in two tumour murine models with different vascularization patterns. MRI-CEST and MRI-CE T{sub 1w} images were acquired in murine TS/A and 4 T1 breast tumours upon sequential i.v. injection of iodinated contrast media (iodixanol, iohexol, and iopamidol) and of gadoteridol. The signal enhancements observed in the two acquisition modalities were evaluated using Pearson's correlation, and the correspondence in the spatial distribution was assessed by a voxelwise comparison. A significant, positive correlation was observed between iodinated contrast media and gadoteridol for tumour contrast enhancement and perfusion values for both tumour models (r = 0.51-0.62). High spatial correlations were observed in perfusion maps between iodinated molecules and gadoteridol (r = 0.68-0.86). Tumour parametric maps derived by iodinated contrast media and gadoteridol showed high spatial similarities. A good to strong spatial correlation between tumour perfusion parameters derived from MRI-CEST and MRI-CE modalities indicates that the two procedures provide similar information. (orig.)

  7. Ultrasound Perfusion Analysis Combining Bolus-Tracking and Burst-Replenishment

    Czech Academy of Sciences Publication Activity Database

    Jiřík, Radovan; Nylund, K.; Gilja, O.H.; Mézl, M.; Harabis, V.; Kolář, R.; Standara, M.; Taxt, T.

    2013-01-01

    Roč. 60, č. 2 (2013), s. 310-319 ISSN 0885-3010 R&D Projects: GA ČR GAP102/12/2380; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : contrast-enhaced ultrasound * myocardial blood-flow * cerebral perfusion Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.503, year: 2013

  8. Increasing heel skin perfusion by elevation.

    Science.gov (United States)

    Huber, Jacqueline; Reddy, Raj; Pitham, Tom; Huber, David

    2008-01-01

    To determine the efficacy of elevation in the primary prevention and treatment of pressure ulcers by studying the blood flow in tissue at risk of ulceration. A prospective study was used to compare different preventative devices with an elevating prosthesis. : Wollongong Hospital Wollongong, New South Wales, Australia. Normal subjects and subjects with vasculopathy were tested with their heel resting on a hospital bed, medical-grade lamb's wool, or a viscoelastic gel overlay, with or without the test prosthesis. Skin perfusion was measured throughout using a laser Doppler monitor. A device designed to elevate the heel off the bed and distribute the weight of the leg and foot on the calf. Heel capillary blood perfusion. Perfusion in the heel was significantly greater when elevated than when using the other devices tested. The differences in mean red blood cell flux were significant, with P pressure ulcer prevention and treatment and should be incorporated into health care practice.

  9. Dynamic perfusion patterns in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Patrick; Paesschen, Wim van [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); Zaknun, John J. [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Maes, Alex [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); AZ Groeninge, Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn; Locharernkul, Chaichon [Chulalongkorn University, Nuclear Medicine and Neurology, Bangkok (Thailand); Vasquez, Silvia; Carpintiero, Silvina [Fleni Instituto de Investigaciones Neurologicas, Nuclear Medicine, Buenos Aires (Argentina); Bal, C.S. [All India Institute of Medical Sciences, Nuclear Medicine, New Delhi (India); Dondi, Maurizio [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); Ospedale Maggiore, Nuclear Medicine, Bologna (Italy)

    2009-05-15

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  10. Pulmonary perfusion patterns and pulmonary arterial pressure.

    Science.gov (United States)

    Scott, James A

    2002-08-01

    To use artificial intelligence methods to determine whether quantitative parameters describing the perfusion image can be synthesized to make a reasonable estimate of the pulmonary arterial (PA) pressure measured at angiography. Radionuclide perfusion images were obtained in 120 patients with normal chest radiographs who also underwent angiographic PA pressure measurement within 3 days of the radionuclide study. An artificial neural network (ANN) was constructed from several image parameters describing statistical and boundary characteristics of the perfusion images. With use of a leave-one-out cross-validation technique, this method was used to predict the PA systolic pressure in cases on which the ANN had not been trained. A Pearson correlation coefficient was determined between the predicted and measured PA systolic pressures. ANN predictions correlated with measured pulmonary systolic pressures (r = 0.846, P artificial intelligence methods helps to reveal physiologic information not readily apparent at visual image inspection. Copyright RSNA, 2002

  11. CT-based Techniques for Brain Perfusion.

    Science.gov (United States)

    Krishnan, Pradeep; Murphy, Amanda; Aviv, Richard I

    2017-06-01

    Recent rapid advances in endovascular treatment for acute ischemic stroke highlight the crucial role of neuroimaging especially multimodal computed tomography (CT) including CT perfusion in stroke triage and management decisions. With an increasing focus on changes in cerebral physiology along with time-based matrices in clinical decisions for acute ischemic stroke, CT perfusion provides a rapid and practical modality for assessment and identification of salvageable tissue at risk and infarct core and provides a better understanding of the changes in cerebral physiology. Although there are challenges with the lack of standardization and accuracy of quantitative assessment, CT perfusion is evolving as a cornerstone for imaging-based strategies in the rapid management of acute ischemic stroke.

  12. Ultrasound contrast agents: An overview

    International Nuclear Information System (INIS)

    Cosgrove, David

    2006-01-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI < 0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  13. Ultrasound contrast agents: an overview.

    Science.gov (United States)

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI<0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  14. Safety of contrast media. Focus on contrast-induced nephropathy (CIN)

    International Nuclear Information System (INIS)

    Kuwatsuru, Ryohei

    2011-01-01

    Despite advances in imaging diagnosis, contrast media still play an important role in diagnosing the existence of the disease, demonstrating the extent of disease, and determining the perfusion of the disease, which is important to make a differential diagnosis. However, the administration of contrast media may cause contrast-induced nephropathy (CIN), especially in patients with renal impairment. It is estimated that 20-30% of patients with renal impairment who received contrast media develop CIN. Though the precise cause of CIN currently remains unknown, almost all injected contrast media are excreted through the kidney and the effects of contrast media on the kidney are easily understood. As CIN is the most common cause of death due to complications after receiving contrast media, prevention of CIN is important. There are several known risk factors for CIN. Patients with renal impairment, diabetes mellitus, and dehydration are at high risk for CIN. Furthermore, a high osmolar contrast media, excessive amount of contrast media, and ionic contrast media are also risk factors for CIN. CIN can be prevented in several ways. Certain drugs seem to be useful to prevent CIN, while others are harmful. Hydration is useful to prevent CIN, although there is no widely acceptable hydration method to prevent CIN. Both sodium bicarbonate and N-acetylcysteine are promising candidates for prevention of CIN. There are few reports to study CIN after intravenous administration, although reports of CIN after percutaneous cardiac intervention (PCI) and angiography are well recognized. In clinical situations, intravenous administration of contrast media is common. Therefore, a study of CIN after intravenous administration of contrast media should be performed. (author)

  15. An experimental study on the acute myocardial infarction with CT perfusion scans

    International Nuclear Information System (INIS)

    Liu Yuanjian; Yan Weiqiang; Wang Chenglin; Liu Pengcheng; Feng Xiaoyuan; Shen Tianzhen; Chen Xingrong

    2004-01-01

    Objective: To determine the reliability of CT perfusion scans and its parameters of γ-variate curve in evaluating the acute myocardial infarction for clinical reference of diagnosis on coronary artery disease and myocardial infarction. Methods: Imatron C-150 electron beam CT (EBCT) were used to scan a hydrodynamic model which could mimic a change of contrast medium by intravenous injection in vivo. Then 6 adult canines were employed in the experiment with thoracic operation, and branches of the anterior descending and circumflex of left coronary arteries (LCA) were ligated so that myocardial infarction was made out. After intravenous administration of contrast medium, the hearts were scanned with perfusion EBCT and γ-variate curves were manifested. Some heterogeneities and differentiations between the normality and the infarctions were put forward when the parameters of all these curves were analyzed and statistically processed. Two myocardial infarctions were also verified by SPECT, and all the samples stained with TTC method were compared with those on the perfusion images. The pathological study with optical microscope and electron microscope were further carried on. Results: The ascending slopes of γ-variate curves were different in the perfusion quantity. The normal curve of canine myocardium showed a somewhat quick ascending pattern first, and then a gradual descending pattern successively, with the ascending time of about 10-13 s, ascending CT value of about 34-37 HU, and peak CT value of about 70-81 HU. Whereas the curve on myocardial infarction demonstrated a prolonged ascending time of about 19.9 s, diminished ascending CT value of only about 20 HU, and peak CT value of about 53.8 HU, which were significantly different from the normality (P<0.05). Conclusion: There are some differences in γ-variate curves between normal myocardium and myocardial infarction, which can be detected by CT perfusion scan. (authors)

  16. Tetrastarch sustains pulmonary microvascular perfusion and gas exchange during systemic inflammation.

    Science.gov (United States)

    Heckel, Kai; Winkelmann, Bjoern; Strunden, Mike S; Basedow, Annika; Schuster, Anke; Schumacher, Udo; Kiefmann, Rainer; Reuter, Daniel A; Goetz, Alwin E

    2012-02-01

    According to Fick's law of diffusion, gas exchange depends on the size and thickness of the blood perfused alveolocapillary membrane. Impairment of either one is tenuous. No data are available concerning the impact of hydroxyethyl starches and saline on pulmonary microperfusion and gas exchange during systemic inflammation. Prospective, randomized, controlled experimental study. University research laboratory. Thirty-two anesthetized rabbits assigned to four groups (n = 8). Except for the control group, systemic inflammation was induced by lipopolysaccharide. Fluid resuscitation was performed with saline alone or in conjunction with tetrastarch or pentastarch. Pulmonary microcirculation was analyzed at 0 hr and 2 hrs using intravital microscopy. Thickness of the alveolocapillary membrane was measured using electron microscopy. Macrohemodynamics were stable in all groups. In pulmonary arterioles, lipopolysaccharide reduced the erythrocyte velocity and impeded the microvascular decrease of the hematocrit in the saline and pentastarch group. In contrast, infusion of tetrastarch normalized these perfusion parameters. In capillaries, lipopolysaccharide decreased the functional capillary segment density and the capillary perfusion index, which was prevented by both starches. However, compared with saline and pentastarch, treatment with tetrastarch prevented the lipopolysaccharide-induced reduction of the capillary erythrocyte flux and inversely reduced the erythrocyte capillary transit time. Thickening of alveolocapillary septae after lipopolysaccharide application was solely observed in the saline and pentastarch group. In contrast to pentastarch and saline, the application of tetrastarch prevented the lipopolysaccharide-induced increase of the alveoloarterial oxygen difference. Tetrastarch sustains pulmonary gas exchange during experimental systemic inflammation more effectively than saline and pentastarch by protecting the diffusion distance and the size of the

  17. Tomographic myocardial perfusion scintigraphy in children with Kawasaki disease

    International Nuclear Information System (INIS)

    Spielmann, R.P.; Nienaber, C.A.; Hausdorf, G.; Montz, R.

    1987-01-01

    Myocardial infarction and stenotic coronary lesions are serious late complications in children with Kawasaki disease. For the noninvasive assessment of myocardial perfusion, dipyridamole-redistribution 201 Tl emission computed tomography (ECT) was performed in seven children (age 2 8/12-8 7/12 yr) 3-20 mo after the acute stage of the disease. In all patients, coronary aneurysms had been demonstrated by cross-sectional echocardiography. The scintigrams of six children showed no significant regional reduction of myocardial thallium uptake. These children had remained asymptomatic since the acute stage of Kawasaki disease. Persistent and transient thallium defects were present in one child with documented myocardial infarction. For this patient, obstruction of corresponding coronary vessels was confirmed by contrast angiography. It is suggested, that 201 Tl ECT after dipyridamole-induced vasodilation may be used as a safe alternative to invasive coronary angiography for follow-up investigations in patients with Kawasaki disease

  18. Clinical Brain Death with False Positive Radionuclide Cerebral Perfusion Scans

    Directory of Open Access Journals (Sweden)

    Sindhaghatta Venkatram

    2015-01-01

    Full Text Available Practice guidelines from the American Academy of Neurology for the determination of brain death in adults define brain death as “the irreversible loss of function of the brain, including the brainstem.” Neurological determination of brain death is primarily based on clinical examination; if clinical criteria are met, a definitive confirmatory test is indicated. The apnea test remains the gold standard for confirmation. In patients with factors that confound the clinical determination or when apnea tests cannot safely be performed, an ancillary test is required to confirm brain death. Confirmatory ancillary tests for brain death include (a tests of electrical activity (electroencephalography (EEG and somatosensory evoked potentials and (b radiologic examinations of blood flow (contrast angiography, transcranial Doppler ultrasound (TCD, and radionuclide methods. Of these, however, radionuclide studies are used most commonly. Here we present data from two patients with a false positive Radionuclide Cerebral Perfusion Scan (RCPS.

  19. Optimization of perfusion studies using Atropine

    International Nuclear Information System (INIS)

    Alvarado, A.N.; Valle, V.M.; Montoya, M.J.; Eskenazi, E.S.; Montiel, M.L.; Cueto, C.C.

    2002-01-01

    The studies of myocardial perfusion require an adequate stress; exercise or pharmacological. Every day, more pharmacological studies are performed, specially in some group of patients (women, AMI, etc). There some drugs that are used for this purpose, as adenosine and dobutamine. However, their cost and the lack of availability and infrastructure in our country do not allow there routinely use. We performed dipyridamol as a pharmacological stress, however in some patients there is a doubt regarding if the pharmacological effect was adequate. Atropine is a drug that is frequently used for different purpose and it is well know its tachycardic response. We present and alternative technique, using dipyridamol-atropine as a protocol of stress perfusion study. Our goal was to correlate the standard dipyridamol -thallium perfusion study and the dipyridamol -atropine-perfusion in patients with chronic coronary disease. We evaluated 6 patients (5 males) with stable angina and chronic coronary disease. A standard dipyridamol-thallium study was performed in all of them. Dipyridamole was administered intravenously at a rate of 0.14 mg/kg/min over 6 min for a total of 0.84 mg/kg body weight. Blood pressure, heart rate, EKG and symptoms were monitored before, during and after the pharmacological infusion. Two minutes after the infusion was completed, the radiotracer was injected intravenously. In the next 6 months, without any modification of the clinical situation (symptoms and therapy) a new dipyridamol study was performed, using 1 mg of atropine after the administration of dipyridamol. There were no differences in the collateral effects and we observed and average increase of 30% in the heart rate in relation with the study using dipyridamol alone. The addition of atropine to the standard dipyridamol perfusion study is safe, cheaper and improved the detection of perfusion defects in patients with coronary artery disease

  20. Cerebral perfusion imaging in HIV positive patients

    International Nuclear Information System (INIS)

    Kundley, Kshama; Chowdhury, D.; Lele, V.R.; Lele, R.D.

    1998-01-01

    Full text: Twelve human immunodeficiency virus (HIV) positive patients were studied by SPECT cerebral perfusion imaging 1 hour post injection of 15 mCi of 99m Tc-ECD under ideal conditions with a triple head gamma camera (Prism 3000 X P LEUHR), fanbeam collimators followed by Folstein Mini Mental Status Examination (FMMSE) and AIDS dementia complex (ADC) staging on the same day. All 12 patients were male, in the age range of 23-45 y (mean 31 y). The infected status was diagnosed by ELISA (10 patients) or Western blot (5 patients). The interval between diagnosis and imaging ranged from 1 month - 35 months (mean 15.3 months). Two patients were alcoholic and 2 were smokers. None of them had CNS disorder clinically. ADC staging and FMMSE could be performed in 4 patients. Two patients were normal (stage 0) and 2 were subclinical (stage 0.5) on ADC staging. FMMSE revealed normal or near normal status (mean score 35; maximum score 36). Cerebral perfusion images were interpreted simultaneously by 3 observers blind towards history and examination using semi-quantitative and quantitative methods by consensus. It revealed multiple areas of hypoperfusion, viz. temporal (11 patients (91 %), parietal 10 patients (83%), frontal 9 patients (75%, pre and post central gyrus 7 patients (58%), occipital 6 patients (50%) cingulate gyrus and cerebellum 5 patients (41%) and thalamic in 2 patients (16%). Hyper perfusion in caudate nuclei was noted in 10 patients (83%). The study reveals presence of multiple perfusion abnormalities on cerebral perfusion imaging in HIV positive patients who have normal/near normal mental status suggesting precedence of perfusion abnormality over clinically apparent mental deficit

  1. Meta-Analysis of Stress Myocardial Perfusion Imaging

    Science.gov (United States)

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  2. A novel microthermal probe for the measurement of perfusion

    Science.gov (United States)

    Yi, Ming; Kausik, Aditya; Podhajsky, Ronald J.; Mahajan, Roop L.

    2009-02-01

    Using micro-fabrication techniques a micro thermal probe has been developed in our laboratory to measure the thermal conductivity of biological tissues. This paper presents our latest experimental results which demonstrate the usefulness of the micro thermal probe in mapping the complicated perfusion field inside biological tissues. A perfused pig liver model has been constructed to simulate in vivo conditions. The portal vein and hepatic artery of a porcine liver were intubated and connected to a perfusion circuit. Saline water was perfused through the liver driven by a peristaltic pump. By varying the pumping rate of the perfused model, we measured the effective thermal conductivity at different perfusion rates in different locations. The results show that the effective thermal conductivity varies with the square root of the perfusion rate. Also, by rotating the micro probes, we observed a strong directional dependence of the effective thermal conductivity, revealing that perfusion is not a scalar but a vector field.

  3. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  4. Quantitative contrast-enhanced ultrasonographic assessment of naturally occurring pancreatitis in dogs.

    Science.gov (United States)

    Lim, S Y; Nakamura, K; Morishita, K; Sasaki, N; Murakami, M; Osuga, T; Yokoyama, N; Ohta, H; Yamasaki, M; Takiguchi, M

    2015-01-01

    Quantitative contrast-enhanced ultrasonography (CEUS) can detect pancreatic perfusion changes in experimentally induced canine pancreatitis. However, its usefulness in detecting perfusion changes in naturally occurring pancreatitis is unclear. To determine the feasibility of using CEUS to detect pancreatic and duodenal perfusion changes in naturally occurring canine pancreatitis. Twenty-three client-owned dogs with pancreatitis, 12 healthy control dogs. Dogs diagnosed with pancreatitis were prospectively included. CEUS of the pancreas and duodenum were performed. Time-intensity curves were created from regions of interest in the pancreas and duodenum. Five perfusion parameters were obtained for statistical analyses: time to initial up-slope, peak time (Tp), time to wash-out (TTW), peak intensity (PI), and area under the curve (AUC). For the pancreas, Tp of the pancreatitis group was prolonged when compared to controls (62 ± 11 seconds versus 39 ± 13 seconds; P pancreatitis group when compared to controls. Contrast-enhanced ultrasonography can detect pancreatic perfusion changes in naturally occurring canine pancreatitis characterized by delayed peak with prolonged hyperechoic enhancement of the pancreas on CEUS. Additionally, duodenal perfusion changes secondary to pancreatitis were observed. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  5. Feasibility of perfusion CT technique integrated into conventional 18FDG/PET-CT studies in lung cancer patients: clinical staging and functional information in a single study.

    Science.gov (United States)

    Ippolito, Davide; Capraro, Cristina; Guerra, Luca; De Ponti, Elena; Messa, Cristina; Sironi, Sandro

    2013-01-01

    To assess the additional functional vascular information and the relationship between perfusion measurements and glucose metabolism (SUVmax) obtained by including a perfusion CT study in a whole-body contrast-enhanced PET/CT protocol in primary lung cancer lesions. Enrolled in this prospective study were 34 consecutive patients with a biopsy-proven diagnosis of lung cancer who were referred for contrast-enhanced PET/CT staging. This prospective study was approved by our institutional review board, and informed consent was obtained from all patients. Perfusion CT was performed with the following parameters: 80 kV, 200 mAs, 30 scans during intravenous injection of 50 ml contrast agent, flow rate 5 ml/s. Another bolus of contrast medium (3.5 ml/s, 80 ml, 60-s delay) was administered to ensure a full diagnostic contrast-enhanced CT scan for clinical staging. The perfusion CT data were used to calculate a range of tumour vascularity parameters (blood flow, blood volume and mean transit time), and tumour FDG uptake (SUVmax) was used as a metabolic indicator. Quantitative and functional parameters were compared and in relation to location, histology and tumour size. The nonparametric Kruskal-Wallis rank sum test was used for statistical analysis. A cut-off value of 3 cm was used according to the TNM classification to discriminate between T1 and T2 tumours (i.e. T1b vs. T2a). There were significant perfusion differences (lower blood volumes and higher mean transit time) between tumours with diameter >30 mm and tumours with diameter 30 mm in diameter. Perfusion CT combined with PET/CT is feasible technique that may provide additional functional information about vascularity and tumour aggressiveness as a result of lower perfusion and higher metabolism shown by larger lesions.

  6. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    Science.gov (United States)

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory

  7. Characteristics of CT Perfusion Parameters of Focal Pancreatic Lesions and Data Comparison of Different Algorithms.

    Science.gov (United States)

    Li, Ping; Zhu, Liang; Xue, Huadan; Liu, Changyi; Xu, Kai; Li, Juan; Sun, Ting; Jin, Zhengyu

    2017-02-20

    Objective To characterize the CT perfusion parameters of focal pancreatic lesions including pancreatic cancers (PACs) and pancreatic neuroendocrine tumors (pNETs),estimate the confirmity and fungibility of parameters obtained from Deconvolution and Maximum slope+Patlak.Methods From December 2015 to November 2016,22 patients with PACs and 22 patients with pNETs(37 lesions confirmed by surgery and biopsy)underwent preoperative whole-pancreas CT perfusion in our center. The volume perfusion CT of the entire pancreas was performed at 80 kV and 100 mA,using 28 consecutive volume measurements and intravenous injection of 45 ml of iodinated contrast and saline at a flow rate of 5 ml/s. One experienced radiologists measured and recorded the CT perfusion parameters on Siemens post-processing workstation using two mathematical methods:Maximum slope+Patlak analysis versus Deconvolution method.ResultsWilcoxon matched-pairs test revealed significant difference between both pairs of the perfusion measurements by the two methods,PACs(BFM vs. BFD,Z=-3.263,P=0.001;BVD vs. BVP,Z=-3.978,P=0.000); pNETs(BFM vs. BFD,Z=-5.212,P=0.000;BVD vs. BVP,Z=-2.633,P=0.008). Spearman's correlation coefficient showed both pairs of perfusion measurements significantly correlated with each other in PACs (BFM vs. BFD,r=0.845,P=0.000;BVD vs. BVP,r=0.964,P=0.000) and pNETs(BFM vs. BFD,r=0.759,P=0.000),BVD vs. BVP,r=0.683,P=0.000). Geometric mean BFM/BFD ratio in PACs was 0.77 (range:0.61-0.99),while geometric mean BVD/BVP ratio was 1.42 (range:1.13-1.79),within 95% limits of agreement. Geometric mean BFM/BFD ratio in pNETs was 0.66 (range:0.51-0.86),while geometric mean BVD/BVP ratio was 1.15 (range:0.88-1.50),within 95% limits of agreement. Conclusion sSignificantly different CT perfusion values of blood flow and blood volume were obtained by Deconvolution-based and Maximum slope+Patlak-based algorithms in the pNETs and PACs. They correlated significantly with each other. Two perfusion

  8. CT angiography and CT perfusion in acute ischemic stroke

    NARCIS (Netherlands)

    Seeters, T. van

    2016-01-01

    CT angiography and CT perfusion are used in patients with acute ischemic stroke for diagnostic purposes and to select patients for treatment. In this thesis, the reproducibility of CT angiography and CT perfusion is examined, the additional value of CT angiography and CT perfusion for stroke outcome

  9. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  10. An alternative method for neonatal cerebro-myocardial perfusion

    Science.gov (United States)

    Luciani, Giovanni Battista; De Rita, Fabrizio; Faggian, Giuseppe; Mazzucco, Alessandro

    2012-01-01

    Several techniques have already been described for selective cerebral perfusion during repair of aortic arch pathology in children. One method combining cerebral with myocardial perfusion has also been proposed. A novel technique is reported here for selective and independent cerebro-myocardial perfusion for neonatal and infant arch surgery. Technical aspects and potential advantages are discussed. PMID:22307393

  11. Characterisation of focal liver lesions with contrast enhanced ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Christoph F. E-mail: christoph.dietrich@ckbm.de

    2004-06-01

    Ultrasound contrast agents (USCA) have improved the detection rate of liver tumours in recent years. Conventional ultrasound has been reported to be relatively unreliable in the characterisation of liver tumours. SonoVue{sup [reg]} (Bracco Imaging Spa) has been shown to be particularly advantageous in the differentiation of benign and malignant liver tumours and, therefore, possibly represents a new cost-effective competitive alternative to other liver imaging modalities (e.g. computed tomography and magnetic resonance imaging), thus allowing these important technologies to be available for other indications (e.g. brain, thorax). More detailed and specific liver tumour characterisation is possible in about 80% of liver tumours due to typical vascularity and perfusion patterns. The role of USCA for better characterisation, which is possible through the analysis of flow characteristics in real time, places a particular emphasis on agent use. Contrast enhanced real-time imaging techniques with SonoVue{sup [reg]} allow real-time analysis of tumour perfusion in patients with liver lesions. Liver tumours known to be hyperperfused in the arterial phase (e.g. focal nodular hyperplasia, hepatocellular adenoma and carcinoma, and hyperperfused metastases) can be better detected and characterised. Hypoperfused tumours (e.g. liver metastases of the gastrointestinal tract) can be recognised in the portal venous phase as less perfused 'black spots'. In this article we discuss liver tumour characterisation by contrast enhanced ultrasonography.

  12. Dipyridamole-thallium-201 tomography documenting improved myocardial perfusion with therapy in Kawasaki disease

    International Nuclear Information System (INIS)

    Nienaber, C.A.; Spielmann, R.P.; Hausdorf, G.

    1988-01-01

    Thallium-201 tomographic perfusion studies after pharmacologic vasodilation were performed in seven children (aged 2 years 8 months to 8 years 7 months), 3 to 20 months after the acute stage of the disease. In all patients coronary aneurysms were seen on cross-sectional echocardiograms. The scintigrams of six children showed no significant regional reduction of myocardial thallium-201 uptake. These children had remained asymptomatic in the follow-up period after the acute inflammatory stage of Kawasaki disease. Persistent and transient thallium defects were present in one child with acute posterolateral myocardial infarction; obstruction of two coronary vessels supplying the defect zones was confirmed by contrast angiography. After 8 months of treatment a follow-up nuclear scan showed marked reduction in the size of the defect and almost complete abolishment of the ischemic reaction. Thus tomographic thallium-201 perfusion scintigraphy in conjunction with vasodilation stress is useful to assess myocardial perfusion in children with Kawasaki disease and demonstrates marked improvement in regional perfusion after adequate medical therapy

  13. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    Science.gov (United States)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  14. Intelligence quotient-adjusted memory impairment is associated with abnormal single photon emission computed tomography perfusion.

    Science.gov (United States)

    Rentz, Dorene M; Huh, Terri J; Sardinha, Lisa M; Moran, Erin K; Becker, John A; Daffner, Kirk R; Sperling, Reisa A; Johnson, Keith A

    2007-09-01

    Cognitive reserve among highly intelligent older individuals makes detection of early Alzheimer's disease (AD) difficult. We tested the hypothesis that mild memory impairment determined by IQ-adjusted norms is associated with single photon emission computed tomography (SPECT) perfusion abnormality at baseline and predictive of future decline. Twenty-three subjects with a Clinical Dementia Rating (CDR) score of 0, were reclassified after scores were adjusted for IQ into two groups, 10 as having mild memory impairments for ability (IQ-MI) and 13 as memory-normal (IQ-MN). Subjects underwent cognitive and functional assessments at baseline and annual follow-up for 3 years. Perfusion SPECT was acquired at baseline. At follow-up, the IQ-MI subjects demonstrated decline in memory, visuospatial processing, and phonemic fluency, and 6 of 10 had progressed to a CDR of 0.5, while the IQ-MN subjects did not show decline. The IQ-MI group had significantly lower perfusion than the IQ-MN group in parietal/precuneus, temporal, and opercular frontal regions. In contrast, higher perfusion was observed in IQ-MI compared with IQ-MN in the left medial frontal and rostral anterior cingulate regions. IQ-adjusted memory impairment in individuals with high cognitive reserve is associated with baseline SPECT abnormality in a pattern consistent with prodromal AD and predicts subsequent cognitive and functional decline.

  15. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT

    Science.gov (United States)

    Isola, A. A.; Schmitt, H.; van Stevendaal, U.; Begemann, P. G.; Coulon, P.; Boussel, L.; Grass, M.

    2011-09-01

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  16. Myocardial first-pass perfusion imaging with hybrid-EPI: frequency-offsets and potential artefacts

    Directory of Open Access Journals (Sweden)

    Ferreira Pedro F

    2012-06-01

    Full Text Available Abstract Background First-pass myocardial perfusion is often imaged with a tailored hybrid centric interleaved echo-planar-imaging sequence, providing rapid image acquisition with good contrast enhancement. The centric interleaved phase-encode order minimises the effective time-of-echo but it is sensitive to frequency-offsets. This short article aims to show possible artefacts that might originate with this sequence, in the context of first-pass perfusion imaging, when frequency-offsets are present. Non-uniform magnitude modulation effects were also analysed. Methods Numerical and phantom simulations were used to illustrate the effects of frequency-offsets and non-uniform magnitude modulation with this sequence in a typical perfusion protocol. In vivo data was post-processed to analyse the h-EPI’s sensitivity to the frequency-offsets. Results The centric phase-order was shown to be highly sensitive to frequency-offsets due to its symmetrical phase slope. Resulting artefacts include blurring, and splitting of the image into two identical copies along the phase-encode direction. It was also shown that frequency-offsets can introduce signal loss and ghosting of the right ventricle signal into the myocardium. The in vivo results were confirmed by numerical and phantom simulations. Magnitude modulation effects were found to be small. Conclusions Imaging first-pass myocardial perfusion with an hybrid centric echo-planar-imaging sequence can be corrupted with ghosting and splitting of the image due to frequency-offsets.

  17. A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom.

    OpenAIRE

    Otton, James; Morton, Geraint; Schuster, Andreas; Bigalke, Boris; Marano, Riccardo; Olivotti, Luca; Nagel, Eike; Chiribiri, Amedeo

    2013-01-01

    BACKGROUND: Direct comparison of CT and magnetic resonance (MR) perfusion techniques has been limited and in vivo assessment is affected by physiological variability, timing of image acquisition, and parameter selection. OBJECTIVE: We precisely compared high-resolution k-t SENSE MR cardiac perfusion at 3 T with single-phase CT perfusion (CTP) under identical imaging conditions. METHODS: We used a customized MR imaging and CT compatible dynamic myocardial perfusion phantom to represe...

  18. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  19. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. © 2014 Wiley Periodicals, Inc.

  20. Study of lung perfusion in colagenosis

    International Nuclear Information System (INIS)

    Macedo de Carvalho, A.C.; Calegaro, J.U.M.

    1982-01-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized. (author) [es

  1. Hypothermic machine perfusion in kidney transplantation

    NARCIS (Netherlands)

    De Deken, Julie; Kocabayoglu, Peri; Moers, Cyril

    Purpose of reviewThis article summarizes novel developments in hypothermic machine perfusion (HMP) as an organ preservation modality for kidneys recovered from deceased donors.Recent findingsHMP has undergone a renaissance in recent years. This renewed interest has arisen parallel to a shift in

  2. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    in all projections as well as in rotating volume images based upon maximum intensity projections. Probabilistic interpretation of V/Q SPECT should be replaced by a holistic interpretation strategy on the basis of all relevant information about the patient and all ventilation/perfusion patterns. PE...

  3. Nonrigid registration of myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur

    2005-01-01

    This paper describes a fully automatic registration of 10 multi-slice myocardial perfusion magnetic resonance image sequences. The registration of these sequences is crucial for the clinical interpretation, which currently is subjected to manual labour. The approach used in this study is a nonrig...

  4. Quality assessment of a placental perfusion protocol

    DEFF Research Database (Denmark)

    Mathiesen, Line; Mose, Tina; Mørck, Thit Juul

    2010-01-01

    Validation of in vitro test systems using the modular approach with steps addressing reliability and relevance is an important aim when developing in vitro tests in e.g. reproductive toxicology. The ex vivo human placental perfusion system may be used for such validation, here presenting...

  5. Computed Tomography (CT) Perfusion in Abdominal Cancer

    DEFF Research Database (Denmark)

    Hansen, Martin Lundsgaard; Norling, Rikke; Lauridsen, Carsten

    2013-01-01

    for assessment of vascularity. CT perfusion has also been used for tumor characterization, staging of disease, response evaluation of newer drugs targeted towards angiogenesis and as a method for early detection of recurrence after radiation and embolization. There are several software solutions available...

  6. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  7. Study of lung perfusion in colagenosis

    Energy Technology Data Exchange (ETDEWEB)

    Macedo de Ca