WorldWideScience

Sample records for susceptibility contrast perfusion

  1. Assessment of cerebral perfusion with dynamic susceptibility contrast

    International Nuclear Information System (INIS)

    Takahashi, Kiyohiko; Naito, Isao; Nozokido, Takeshi; Sato, Takaaki; Takatama, Shin; Kimura, Tokunori

    2004-01-01

    Accurate measurements of arterial input function (AIF) are indispensable for the quantification of perfusion parameters such as mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF). Quantification trials of cerebral perfusion using the disconsolation method with dynamic susceptibility contrast MRI (DSC-MRI) have been reported on. Accurately measuring AIF with DSC-MRI is difficult due to non-linearity and the limited dynamic range between ΔR 2 * and the concentration of contrast media. In this study, we assessed simple methods while using various parameters calculated by the tissue time intensity curve without measuring AIF. The parameters used were appearance time of contrast media (AT), 1'st moment (MT1), the full width at half maximum (FWHM), and up slope at maximum gradient (US). Difference of the appearance time (delta AT) and the CBFratio between the regions in question and the contralateral regions obtained by MT1, FWHM and US were assessed in 38 stroke patients. The CBF calculated by the linear scaling method using the signal of the ASL (ASL, CBF) was used as the standard for a correlation study. The delta AT in patients with middle cerebral artery occlusions supplied by retrograde flow indicated a significantly greater value as compared to patients with other lesions with antegrade flow. US CBF indicated the best correlation among the three CBFs obtained by MT1, FWHM and US. Both the ASL CBFratio and the US CBFratio correlated with delta AT, with the ASL CBFratio being predominant. The CBVratio-CBFratio map showed that the CBVratio tended to decrease when the CBFratio decreased. The map is useful in clinical analysis of cerebral perfusion due to its simplicity and ability to alleviate AIF dependent errors. The validity of the proposed method still needs to be examined by comparing it to the deconvolution method with DSC-MRI, since DSC-MRI can correct the effect of AIF. It might also be compared to Xenon CT, which is less

  2. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    DEFF Research Database (Denmark)

    Falk, Anna; Fahlström, Markus; Rostrup, Egill

    2014-01-01

    INTRODUCTION: Perfusion magnetic resonance imaging (MRI) can be used in the pre-operative assessment of brain tumours. The aim of this prospective study was to identify the perfusion parameters from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) perfusion imaging...... written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n = 7) gliomas. Statistical analysis of differences between...

  3. Paradoxical perfusion metrics of high-grade gliomas with an oligodendroglioma component: quantitative analysis of dynamic susceptibility contrast perfusion MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sunwoo, Leonard; Park, Sun-Won [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Yoo, Roh-Eul; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-hoon; Sohn, Chul-Ho [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae Min; Lee, Se-Hoon [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University Hospital, Department of Neurosurgery, Seoul (Korea, Republic of); Won, Jae-Kyung; Park, Sung-Hye [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2015-11-15

    The aim of this study is to investigate perfusion characteristics of glioblastoma with an oligodendroglioma component (GBMO) compared with conventional glioblastoma (GBM) using dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) imaging and microvessel density (MVD). The study was approved by the institutional review board. Newly diagnosed high-grade glioma patients were enrolled (n = 72; 20 GBMs, 14 GBMOs, 19 anaplastic astrocytomas (AAs), 13 anaplastic oligodendrogliomas (AOs), and six anaplastic oligoastrocytomas (AOAs)). All participants underwent preoperative MR imaging including DSC perfusion MR imaging. Normalized cerebral blood volume (nCBV) values were analyzed using a histogram approach. Histogram parameters were subsequently compared across each tumor subtype and grade. MVD was quantified by immunohistochemistry staining and correlated with perfusion parameters. Progression-free survival (PFS) was assessed according to the tumor subtype. GBMO displayed significantly reduced nCBV values compared with GBM, whereas grade III tumors with oligodendroglial components (AO and AOA) exhibited significantly increased nCBV values compared with AA (p < 0.001). MVD analyses revealed the same pattern as nCBV results. In addition, a positive correlation between MVD and nCBV values was noted (r = 0.633, p < 0.001). Patients with oligodendroglial tumors exhibited significantly increased PFS compared with patients with pure astrocytomas in each grade. In contrast to grade III tumors, the presence of oligodendroglial components in grade IV tumors resulted in paradoxically reduced perfusion metrics and MVD. In addition, patients with GBMO exhibited a better clinical outcome compared with patients with GBM. (orig.)

  4. Perfusion imaging with magnetic-susceptibility contrast media

    International Nuclear Information System (INIS)

    Rosen, B.R.; Belliveau, J.W.; Betteridge, D.; Cohen, M.S.; Weisskoff, R.M.; Vevea, J.M.; Rzedzian, R.P.; Brady, T.J.

    1989-01-01

    In animal models, transient signal los on T2-weighted images has been well documented following intravenous injection of high-magnetic-susceptibility contrast agents that are compartmentalized within the brain intravascular space. These signal changes have been correlated with physiologic parameters, such as blood flow and volume. The advent of whole-body single-shot imaging capability, coupled with the approval of paramagnetic contrasts agents for human use, has enabled the authors to demonstrate susceptibility contrast in the human brain, allowing for generation of functional images. With use of a 1.5-T imaging system gradient-echo images (TE = 60 msec) were acquired in 75 msec. Sequential single-sections images were sampled every 1 second following bolus administration of 0.1 mmol/kg of Gd-DTPA

  5. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jaernum, Hanna; Steffensen, Elena G.; Simonsen, Carsten Wiberg; Jensen, Finn Taagehoej [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Knutsson, Linda [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Fruend, Ernst-Torben [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); GE Healthcare - Applied Science Lab Europe, Aalborg (Denmark); Lundbye-Christensen, Soeren [Aalborg Hospital/Aarhus University Hospital, Department of Cardiology, Center for Cardiovascular Research, Aalborg (Denmark); Shankaranarayanan, Ajit [Global Applied Science Lab, GE Healthcare, Menlo Park, CA (United States); Alsop, David C. [Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Larsson, Elna-Marie [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden)

    2010-04-15

    The purpose of this study was to compare the non-invasive 3D pseudo-continuous arterial spin labelling (PC ASL) technique with the clinically established dynamic susceptibility contrast perfusion magnetic resonance imaging (DSC-MRI) for evaluation of brain tumours. A prospective study of 28 patients with contrast-enhancing brain tumours was performed at 3 T using DSC-MRI and PC ASL with whole-brain coverage. The visual qualitative evaluation of signal enhancement in tumour was scored from 0 to 3 (0 = no signal enhancement compared with white matter, 3 = pronounced signal enhancement with equal or higher signal intensity than in grey matter/basal ganglia). The extent of susceptibility artefacts in the tumour was scored from 0 to 2 (0 = no susceptibility artefacts and 2 = extensive susceptibility artefacts (maximum diameter > 2 cm)). A quantitative analysis was performed with normalised tumour blood flow values (ASL nTBF, DSC nTBF): mean value for region of interest (ROI) in an area with maximum signal enhancement/the mean value for ROIs in cerebellum. There was no difference in total visual score for signal enhancement between PC ASL and DSC relative cerebral blood flow (p = 0.12). ASL had a lower susceptibility-artefact score than DSC-MRI (p = 0.03). There was good correlation between DSC nTBF and ASL nTBF values with a correlation coefficient of 0.82. PC ASL is an alternative to DSC-MRI for the evaluation of perfusion in brain tumours. The method has fewer susceptibility artefacts than DSC-MRI and can be used in patients with renal failure because no contrast injection is needed. (orig.)

  6. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  7. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Goetti, Robert [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); O' Gorman, Ruth [University Children' s Hospital Zurich, Center for MR Research, Zurich (Switzerland); Khan, Nadia [University Children' s Hospital Zurich, Moyamoya Center, Division of Neurosurgery, Department of Surgery, Zurich (Switzerland); Kellenberger, Christian J.; Scheer, Ianina [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland)

    2013-05-15

    This study seeks to evaluate the diagnostic accuracy of cerebral perfusion imaging with arterial spin labelling (ASL) MR imaging in children with moyamoya disease compared to dynamic susceptibility contrast (DSC) imaging. Ten children (7 females; age, 9.2 {+-} 5.4 years) with moyamoya disease underwent cerebral perfusion imaging with ASL and DSC on a 3-T MRI scanner in the same session. Cerebral perfusion images were acquired with ASL (pulsed continuous 3D ASL sequence, 32 axial slices, TR = 5.5 s, TE = 25 ms, FOV = 24 cm, matrix = 128 x 128) and DSC (gradient echo EPI sequence, 35 volumes of 28 axial slices, TR = 2,000 ms, TE = 36 ms, FOV = 24 cm, matrix = 96 x 96, 0.2 ml/kg Gd-DOTA). Cerebral blood flow maps were generated. ASL and DSC images were qualitatively assessed regarding perfusion of left and right ACA, MCA, and PCA territories by two independent readers using a 3-point-Likert scale and quantitative relative cerebral blood flow (rCBF) was calculated. Correlation between ASL and DSC for qualitative and quantitative assessment and the accuracy of ASL for the detection of reduced perfusion per territory with DSC serving as the standard of reference were calculated. With a good interreader agreement ({kappa} = 0.62) qualitative perfusion assessment with ASL and DSC showed a strong and significant correlation ({rho} = 0.77; p < 0.001), as did quantitative rCBF (r = 0.79; p < 0.001). ASL showed a sensitivity, specificity and accuracy of 94 %, 93 %, and 93 % for the detection of reduced perfusion per territory. In children with moyamoya disease, unenhanced ASL enables the detection of reduced perfusion per vascular territory with a good accuracy compared to contrast-enhanced DSC. (orig.)

  8. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  9. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    International Nuclear Information System (INIS)

    Salluzzi, M; Frayne, R; Smith, M R

    2006-01-01

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies

  10. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Wu; Wang, Xiaoyi; Xie, Fangfang; Liao, Weihua [Dept. of Radiology, Xiangya Hospital of Central South Univ., Changsha (China)], e-mail: doctoring@sina.com

    2013-02-15

    Background: Accurately locatithe epileptogenic focus in temporal lobe epilepsy (TLE) is important in clinical practice. Single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) have been widely used in the lateralization of TLE, but both have limitations. Magnetic resonance perfusion imaging can accurately and reliably reflect differences in cerebral blood flow and volume. Purpose: To investigate the diagnostic value of dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) in the lateralization of the epileptogenic focus in TLE. Material and Methods: Conventional MRI and DSC-MRI scanning was performed in 20 interictal cases of TLE and 20 healthy volunteers. The relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) of the bilateral mesial temporal lobes of the TLE cases and healthy control groups were calculated. The differences in the perfusion asymmetry indices (AIs), derived from the rCBV and rCBF of the bilateral mesial temporal lobes, were pared between the two groups. Results: In the control group, there were no statistically significant differences between the left and right sides in terms of rCBV (left 1.55 {+-} 0.32, right 1.57 {+-} 0.28) or rCBF (left 99.00 {+-} 24.61, right 100.38 {+-} 23.46) of the bilateral mesial temporal lobes. However, in the case group the ipsilateral rCBV and rCBF values (1.75 {+-} 0.64 and 96.35 {+-} 22.63, respectively) were markedly lower than those of the contralateral side (2.01 {+-} 0.79 and 108.56 {+-} 26.92; P < 0.05). Both the AI of the rCBV (AIrCBV; 13.03 {+-} 10.33) and the AI of the rCBF (AIrCBF; 11.24 {+-} 8.70) of the case group were significantly higher than that of the control group (AIrCBV 5.55 {+-} 3.74, AIrCBF 5.12 {+-} 3.48; P < 0.05). The epileptogenic foci of nine patients were correctly lateralized using the 95th percentile of the AIrCBV and AIrCBF of the control group as the normal upper limits. Conclusion: In

  11. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Xing, Wu; Wang, Xiaoyi; Xie, Fangfang; Liao, Weihua

    2013-01-01

    Background: Accurately locatithe epileptogenic focus in temporal lobe epilepsy (TLE) is important in clinical practice. Single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) have been widely used in the lateralization of TLE, but both have limitations. Magnetic resonance perfusion imaging can accurately and reliably reflect differences in cerebral blood flow and volume. Purpose: To investigate the diagnostic value of dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) in the lateralization of the epileptogenic focus in TLE. Material and Methods: Conventional MRI and DSC-MRI scanning was performed in 20 interictal cases of TLE and 20 healthy volunteers. The relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) of the bilateral mesial temporal lobes of the TLE cases and healthy control groups were calculated. The differences in the perfusion asymmetry indices (AIs), derived from the rCBV and rCBF of the bilateral mesial temporal lobes, were pared between the two groups. Results: In the control group, there were no statistically significant differences between the left and right sides in terms of rCBV (left 1.55 ± 0.32, right 1.57 ± 0.28) or rCBF (left 99.00 ± 24.61, right 100.38 ± 23.46) of the bilateral mesial temporal lobes. However, in the case group the ipsilateral rCBV and rCBF values (1.75 ± 0.64 and 96.35 ± 22.63, respectively) were markedly lower than those of the contralateral side (2.01 ± 0.79 and 108.56 ± 26.92; P < 0.05). Both the AI of the rCBV (AIrCBV; 13.03 ± 10.33) and the AI of the rCBF (AIrCBF; 11.24 ± 8.70) of the case group were significantly higher than that of the control group (AIrCBV 5.55 ± 3.74, AIrCBF 5.12 ± 3.48; P < 0.05). The epileptogenic foci of nine patients were correctly lateralized using the 95th percentile of the AIrCBV and AIrCBF of the control group as the normal upper limits. Conclusion: In patients with TLE interictal

  12. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  13. Non-contrast MRI perfusion angiosome in diabetic feet

    International Nuclear Information System (INIS)

    Zheng, Jie; Hastings, Mary K.; Mueller, Michael J.; Muccigross, David; Hildebolt, Charles F.; Fan, Zhaoyang; Gao, Fabao; Curci, John

    2015-01-01

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  14. Magnetic susceptibility imaging with a nonionic contrast agent

    International Nuclear Information System (INIS)

    Cacheris, W.; Rocklage, S.M.; Quay, S.; Dow, W.; Love, D.; Worah, D.; Lim, K.

    1988-01-01

    The magnetic susceptibility mechanism for MR imaging contrast enhancement has the advantage of providing useful information, such as cerebral blood flow, without crossing the blood-brain barrier. In this paper the authors report the use of a highly effective, relatively nontoxic chelate as a magnetic susceptibility agent. Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA) has an extremely low acute toxicity (LD-50, intravenous, mice ∼ 40 mmol/kg). Doses of 1 mmol/kg and 2 mmol/kg Dy-DTPA-BMA lowered the initial signal intensity 63% to 57%, respectively. The utility of this technique in detecting areas of reduced blood flow within the brain was demonstrated by imaging a rabbit with a cerebral perfusion deficit

  15. Dynamic contrast enhanced MRI for perfusion quantification

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke

    2002-01-01

    Magnetic resonance imaging, during bolus passage of a paramagnetic contrast agent, is used world-wide to obtain parameters that reflect the pathological state of tissue. Abnormal perfusion occurs in diseases such as stoke and tumour. Consequently, perfusion quantication could have signi cant...... clinical value both in diagnosis and treatment of such pathologies. One approach for perfusion quanti cation involves using the contrast mechanism that a ects the transverse relaxation rates of the magnetization, R2 or R 2 , since this provides the most pronounced effect. However, the linearity between...

  16. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers.

    Science.gov (United States)

    Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A

    2010-04-20

    Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.

  17. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  18. Pediatric hemiplegic migraine: susceptibility weighted and MR perfusion imaging abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Altinok, Deniz; Agarwal, Ajay [Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Ascadi, Gyula; Luat, Aimee; Tapos, Daniela [Children' s Hospital of Michigan, Department of Neurology, Detroit, MI (United States)

    2010-12-15

    We report on an 11-year-old girl suffering from a typical attack of hemiplegic migraine with characteristic abnormalities in perfusion MR and susceptibility-weighted MR imaging findings. The imaging abnormalities were resolved 48 h after the attack. Susceptibility-weighted MR imaging findings correlated well with the MR perfusion, thus it can be used along with conventional MRI for evaluation of children with complex migraine attacks. Susceptibility-weighted MR imaging might have a diagnostic role in assessing the vascular events in hemiplegic migraine. (orig.)

  19. Pediatric hemiplegic migraine: susceptibility weighted and MR perfusion imaging abnormality

    International Nuclear Information System (INIS)

    Altinok, Deniz; Agarwal, Ajay; Ascadi, Gyula; Luat, Aimee; Tapos, Daniela

    2010-01-01

    We report on an 11-year-old girl suffering from a typical attack of hemiplegic migraine with characteristic abnormalities in perfusion MR and susceptibility-weighted MR imaging findings. The imaging abnormalities were resolved 48 h after the attack. Susceptibility-weighted MR imaging findings correlated well with the MR perfusion, thus it can be used along with conventional MRI for evaluation of children with complex migraine attacks. Susceptibility-weighted MR imaging might have a diagnostic role in assessing the vascular events in hemiplegic migraine. (orig.)

  20. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    Science.gov (United States)

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image

  1. Combined value of susceptibility weighted imaging and dynamic susceptibility-weighted contrast-enhanced MR perfusion-weighted imaging in brain astrocytoma grading

    International Nuclear Information System (INIS)

    Wang Xiaochun; Zhang Hui; Qin Jiangbo; Wang Le; Wu Xiaofeng

    2012-01-01

    Objective: To assess the value of combination of susceptibility weighted imaging (SWI) and dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion-weighted magnetic resonance imaging in astrocytoma grading. Methods: SWI and DSC scans were performed in 82 patients with pathologically confirmed astrocytoma. The patient group consisted of grade Ⅱ (15), grade Ⅲ (10), and grade Ⅳ (57). The intratumoral susceptibility signal intensity (ITSS) and relative cerebral blood volume (rCBV) max were used to determine the grade of astrocytomas by Kruskal Wallis test, Welch test, Spearman correlation coefficients, Pearson correlation coefficients, and receiver operating characteristic curve (ROC)statistic methods. Results: There were no ITSS in 14 cases of low-grade astrocytomas, the degree of ITSS were grade 1 to 3 in anaplastic astrocytomas, the degree of ITSS were grade 3 in all of the glioblastomas, the degree of ITSS were significant difference in all grades (H=71.96, P<0.01). rCBV max in grade Ⅱ, grade Ⅲ and grade Ⅳ astrocytomas were 1.26 ± 0.42, 3.59 ± 2.09 and 8.34 ± 1.16 respectively, rCBV max were significant difference in all grades (F'=681.72, P<0.01). ITSS showed significant correlation with rCBV max (r=0.72, P<0.01) and tumor grades (r=0.89, P<0.01), and rCBV and tumor grades showed significant correlation (r=0.78, P<0.01). Area under the ROC curve application SWI, DSC, SWI and DSC in differentiation of the grade Ⅱ and grade Ⅲ astrocytomas were 0.99, 0.93, 1.00, differentiate grade Ⅲ from grade Ⅳ were 0.70, 0.94, 0.94, and differentiate high-grade from low-grade astrocytomas were 1.00, 0.99, 1.00. Conclusions: ITSS is helpful to determine the grade of astrocytomas. The use of SWI in combination with DSC may improve the diagnostic accuracy of astrocytoma grading. (authors)

  2. Facing Contrast-Enhancing Gliomas: Perfusion MRI in Grade III and Grade IV Gliomas according to Tumor Area

    Directory of Open Access Journals (Sweden)

    Anna Luisa Di Stefano

    2014-01-01

    Full Text Available Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV, calculated with Dynamic Susceptibility Contrast (DSC Perfusion-Weighted Imaging (PWI, allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI approach in three tumor areas—the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map—in patients affected by contrast-enhancing glioma (grades III and IV. Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp., the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P=0.036. In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading.

  3. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H. (Den Sundhedsfaglige Kandidatuddannelse, Aarhus Universitet Bygning 1264, Aarhus (Denmark); University College Nordjylland, Aalborg (Denmark)), Email: hnt@ucn.dk; Steffensen, E. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark)); Larsson, E. M. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden))

    2012-02-15

    Background. Perfusion magnetic resonance imaging (MRI) is increasingly used in the evaluation of brain tumors. Relative cerebral blood volume (rCBV) is usually obtained by dynamic susceptibility contrast (DSC) MRI using normal appearing white matter as reference region. The emerging perfusion technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose. To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC-MRI using two different regions for normalization and two different measurement approaches. Material and Methods. Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and rCBV maps, with contralateral normal appearing white matter and cerebellum as reference regions. Larger ROIs were drawn for histogram analyses. The type and grade of the gliomas were obtained by histopathology. Statistical comparison was made between diffuse astrocytomas, anaplastic astrocytomas, and glioblastomas. Results. rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r = 0.60) and to the cerebellum (r = 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated (0.61 < r < 0.93), whereas for kurtosis and peak height, the correlation coefficient was about 0.3 when comparing rCBF and rCBV values for the same reference region. Neither rCBF nor rCBV quantification provided a statistically significant difference between the three types of gliomas. However, both rCBF and rCBV tended to increase with tumor grade and to be lower in patients who had undergone resection/treatment. Conclusion. rCBF measurements normalized to white matter

  4. Cerebral perfusion MR imaging using FAIR-HASTE in chronic carotid occlusive disease. Comparison with dynamic susceptibility contrast-perfusion MR imaging

    International Nuclear Information System (INIS)

    Ida, Kentaro; Akaki, Shiro; Sei, Tetsuro; Kanazawa, Susumu; Tsunoda, Masatoshi

    2006-01-01

    To determine the efficacy of flow-sensitive alternating inversion recovery using half-Fourier single-shot turbo spin-echo (FAIR-HASTE) in detecting cerebral hypoperfusion in chronic carotid occlusive disease, we subjected 12 patients with various degrees of cervical internal carotid artery stenoses and/or occlusion (Stenosis group) and 24 volunteers (Normal group) to FAIR-HASTE. In addition, 10 out of 12 patients in the Stenosis group underwent dynamic susceptibility contrast-perfusion magnetic resonance imaging (DSC-pMRI) before and after revascularization in the dominantly affected side. The absolute asymmetry indexes (AIs) of both cerebral hemispheres in the Normal and Stenosis groups were compared in FAIR-HASTE. In addition, the AIs were compared with those in the Stenosis group before and after revascularization in both FAIR-HASTE and regional cerebral blood flow (rCBF), calculated with DSC-pMRI. A statistically significant difference was recognized between the AIs in the Normal and Stenosis groups (AI=2.25±1.92, 8.09±4.60, respectively; p<0.0001). Furthermore, in the Stenosis group the AIs on both FAIR-HASTE (8.88±4.93, 2.22±1.79, respectively; p=0.0003) and rCBF (7.13±3.57, 1.25±1.33, respectively; p=0.0003) significantly decreased after revascularization. In the Stenosis group, before revascularization, signal intensity on both FAIR-HASTE and rCBF had a tendency to be lower in the dominantly affected side. FAIR-HASTE imaging was useful in the detection and evaluation of cerebral hypoperfusion in chronic occlusive carotid disease. (author)

  5. Association of dynamic susceptibility contrast enhanced MR Perfusion parameters with prognosis in elderly patients with glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Jabehdar Maralani, Pejman [University of Toronto, Department of Medical Imaging, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Melhem, Elias R.; Herskovits, Edward H. [University of Maryland Medical Center, Department of Radiology, Baltimore, MD (United States); Wang, Sumei; Voluck, Matthew R.; Learned, Kim O.; Mohan, Suyash [Perelman School of Medicine at University of Pennsylvania, Department of Radiology, Division of Neuroradiology, Philadelphia, PA (United States); Kim, Sang Joon [University of Ulsan Asan Medical Center, Department of Radiology, Songpa-gu, Seoul (Korea, Republic of); O' Rourke, Donald M. [Perelman School of Medicine at University of Pennsylvania, Department of Surgery, Division of Neurosurgery, Philadelphia, PA (United States)

    2015-09-15

    We aimed to evaluate the prognostic value of dynamic susceptibility contrast (DSC) MR perfusion in elderly patients with glioblastomas (GBM). Thirty five patients aged ≥65 and 35 aged <65 years old, (referred to as elderly and younger, respectively) were included in this retrospective study. The median relative cerebral volume (rCBV) from the enhancing region (rCBV{sub ER-Med}) and immediate peritumoral region (rCBV{sub IPR-Med}) and maximum rCBV from the enhancing region of the tumor (rCBV{sub ER-Max}) were compared and correlated with survival data. Analysis was repeated after rCBVs were dichotomized into high and low values and after excluding elderly patients who did not receive postoperative chemoradiation (34.3 %). Kaplan-Meyer survival curves and parametric and semi-parametric regression tests were used for analysis. All rCBV parameters were higher in elderly compared to younger patients (p < 0.05). After adjustment for age, none were independently associated with shorter survival (p > 0.05). After rCBV dichotomization into high and low values, high rCBV in elderly was independently associated with shorter survival compared to low rCBV in elderly, or any rCBV in younger patients (p < 0.05). rCBV can be an imaging biomarker to identify a subgroup of GBM patients in the elderly with worse prognosis compared to others. (orig.)

  6. Renal perfusion image using harmonic ultrasound with microbble contrast agent: preliminary study

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Choi, Jae Ho; Han, Dong Chul; Lee, Hi Bahl; Choi, Deuk Lin; Eun, Hyo Won; Lee, Hun Jae

    2003-01-01

    To compare, in terms of their feasibility and normal range, 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic ultrasound (US) with a microbubble contrast agent for the evaluation of renal perfusion after renal transplantation. During a six-month period, thirty patients who had received a renal transplant underwent both 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic US with a microbubble contrast agent. Sonographic renal perfusion images were obtained before and after a bolus injection of the microbubble contrast agent Levovist TM (SH U 5084; Schering AG, Berlin, Germany) every 3 seconds for 3 minutes. Sonographic renal perfusion images were converted into a renal perfusion curve by a computer program and T peak of the curve thus obtained was compared with that of the 99m Tc-DTPA curve. Average T peak of the 99m Tc-DTPA renal perfusion curve was 16.2 seconds in the normal group and 39.6 seconds in the delayed perfusion group, while average T peak of the sonographic renal perfusion curve was 23.7 seconds and 46.2 seconds, respectively. T peak of the sonographic renal perfusion curve showed a good correlation with that of the 99m Tc-DTPA curve (correlation coefficient=0.8209; p=0.0001). The cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds (sensitivity=90%, specificity=95%). In patients who have received a renal transplant, the findings of renal perfusion imaging using harmonic US with a microbubble contrast agent show close correlation with those of 99m Tc-DTPA renal perfusion imaging. The optimal cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds

  7. Investigating tumor perfusion by hyperpolarized (13) C MRI with comparison to conventional gadolinium contrast-enhanced MRI and pathology in orthotopic human GBM xenografts

    DEFF Research Database (Denmark)

    Park, Ilwoo; von Morze, Cornelius; Lupo, Janine M

    2016-01-01

    glioblastoma (GBM) model for the characterization of tumor perfusion and compared with standard Gd-based dynamic susceptibility contrast (DSC) MRI data and immunohistochemical analysis from resected brains. Distinct HMCP perfusion characteristics were observed within the GBM tumors compared with contralateral...... for tumor that exhibited high levels of hyperpolarized HMCP signal. The results from this study have demonstrated that hyperpolarized HMCP data can be used as an indicator of tumor perfusion in an orthotopic xenograft model for GBM. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc....

  8. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... in cerebral hemodynamics than noncontrast-enhanced imaging. The results of the deconvolution analysis suggested that perfusion calculation by conventional tracer kinetic methods may be impracticable because of nonlinear effects in contrast-enhanced MR imaging....

  9. Comparison of first-pass and second-bolus dynamic susceptibility perfusion MRI in brain tumors

    International Nuclear Information System (INIS)

    Spampinato, M.V.; Besenski, Nada; Rumboldt, Zoran; Wooten, Caroline; Dorlon, Margaret

    2006-01-01

    Our goal was to evaluate whether the T1 shortening effect caused by contrast leakage into brain tumors, a well-known confounding effect in the quantification of relative cerebral blood volume (rCBV) measurements, may be corrected by the administration of a predose of gadolinium-DTPA. As part of their presurgical imaging protocol, 25 patients with primary brain tumors underwent two consecutive dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion MR studies. Intratumoral rCBV measurements and normalized rCBV values obtained during the first-pass and second-bolus studies were compared (Wilcoxon signed-ranks test). The frequency of relatively increased rCBV ratios on the second-bolus study was compared between enhancing and non-enhancing neoplasms (Fisher's exact test). Postprocessing perfusion studies were evaluated for image quality on a scale of 0-3 (Wilcoxon signed-ranks test). Four studies were excluded due to unacceptable image quality. Mean normalized rCBVs were 9.04 (SD 4.64) for the first-pass and 7.99 (SD 3.84) for the second-bolus study. There was no statistically significant difference between the two perfusion studies in either intratumoral rCBV (P=0.237) or rCBV ratio (P=0.181). Five enhancing and four non-enhancing tumors showed a relative increase in rCBV ratio on the second-bolus study, without a significant difference between the groups. Image quality was not significantly different between perfusion studies. Our results did not demonstrate a significant difference between first-pass and second-bolus rCBV measurements in DSC perfusion MR imaging. The administration of a predose of gadolinium-DTPA does not appear to be an efficient way of compensating for the underestimation of intratumoral rCBV values due to the T1 shortening effect. (orig.)

  10. Cerebral Hemodynamics in a Healthy Population Measured by Dynamic Susceptibility Contrast MR Imaging

    International Nuclear Information System (INIS)

    Helenius, J.; Soinne, L.; Tatlisumak, T.; Kaste, M.; Aronen, H.J.

    2003-01-01

    Purpose: To establish reference data and to study age-dependency for cerebral perfusion in various regions of the brain in a healthy population. Material and Methods: Eighty healthy subjects of both genders from 22 to 85 years of age were studied with spin echo echo-planar dynamic susceptibility contrast MR imaging (DSC MRI) at 1.5 T. Cerebral blood volume (CBV), cerebral blood flow (CBF), and contrast agent mean transit time (MTT) were calculated bilaterally for 20 distinct neuro anatomic structures. Results: In gray matter, the following values were found (mean ± SD): CBV (4.6 ± 1.0 ml/100 g), CBF (94.2 ± 23.0 ml/100 g/min), and MTT (3.0 ± 0.6 s), and in white matter: CBV (1.3 ± 0.4 ml/100 g), CBF (19.6 ± 5.8 ml/100 g/min), and MTT (4.3 ± 0.7 s). The perfusion parameters did not change with age, except for a tendency to an increase in gray matter MTT and CBV. Males exhibited higher MTT and CBV than females. No hemispheric difference was found in either gender. Conclusion: Cerebral hemodynamics can be assessed with DSC MRI. Age itself seems to have only a marginal effect on cerebral perfusion in healthy population

  11. Cerebral Hemodynamics in a Healthy Population Measured by Dynamic Susceptibility Contrast MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Helenius, J.; Soinne, L.; Tatlisumak, T.; Kaste, M. [Helsinki Univ. Central Hospital (Finland). Dept. of Neurology; Perkioe, J.; Salonen, O.; Savolainen, S. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Oestergaard, L. [Aarhus Univ. Hospital (Denmark). Dept. of Neuroradiology; Carano, R.A.D. [Synarc Inc., San Francisco, CA (United States); Aronen, H.J. [Helsinki Brain Research Center (Finland). Functional Brain Imaging Unit

    2003-09-01

    Purpose: To establish reference data and to study age-dependency for cerebral perfusion in various regions of the brain in a healthy population. Material and Methods: Eighty healthy subjects of both genders from 22 to 85 years of age were studied with spin echo echo-planar dynamic susceptibility contrast MR imaging (DSC MRI) at 1.5 T. Cerebral blood volume (CBV), cerebral blood flow (CBF), and contrast agent mean transit time (MTT) were calculated bilaterally for 20 distinct neuro anatomic structures. Results: In gray matter, the following values were found (mean {+-} SD): CBV (4.6 {+-} 1.0 ml/100 g), CBF (94.2 {+-} 23.0 ml/100 g/min), and MTT (3.0 {+-} 0.6 s), and in white matter: CBV (1.3 {+-} 0.4 ml/100 g), CBF (19.6 {+-} 5.8 ml/100 g/min), and MTT (4.3 {+-} 0.7 s). The perfusion parameters did not change with age, except for a tendency to an increase in gray matter MTT and CBV. Males exhibited higher MTT and CBV than females. No hemispheric difference was found in either gender. Conclusion: Cerebral hemodynamics can be assessed with DSC MRI. Age itself seems to have only a marginal effect on cerebral perfusion in healthy population.

  12. Investigation of contrast agent dosage for perfusion-weighted MRI

    International Nuclear Information System (INIS)

    Erb, G.; Benner, T.; Heiland, S.; Reith, W.; Sartor, K.; Forsting, M.

    1997-01-01

    Purpose: In this study we investigated, whether increasing the dosage of a paramagnetic contrast agent results in a stronger signal decrease in T 2 *-weighted perfusion sequences and therefore more meaningful parameter maps. Material and methods: In a prospective study bolus injection of gadolinium-DTPA was performed at dosages of 0.1, 0.2, and 0.3 mmol/kg body weight (BW) in 10 patients each. Before, during and after bolus injection 40 T 2 *-weighted images of a reference brain slice were acquired within 65.6 seconds on a 1.0 T clinical scanner and perfusion parameters were calculated. Results: Due to the limited signal decrease during bolus passage and the resulting low signal-difference-to-noise ratio (ΔS/N) no reliable differentiation of gray and white matter was possible at a contrast agent dosage of 0.1 mmol/kg BW. Only at higher dosages, both, signal decrease and ΔS/N were strong enough to allow differentiation of gray and white matter and to yield reliable parameter maps. Conclusion: For meaningful MR perfusion imaging at 1.0 T and with the given sequence a contrast agent dosage of at least 0.2 mmol/kg BW is necessary, if a 0.5-molar contrast agent is used. (orig.) [de

  13. Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2.

    Science.gov (United States)

    Muto, Mario; Frauenfelder, Giulia; Senese, Rossana; Zeccolini, Fabio; Schena, Emiliano; Giurazza, Francesco; Jäger, Hans Rolf

    2018-07-01

    Distinction between treatment-related changes and tumour recurrence in patients who have received radiation treatment for brain metastases can be difficult on conventional MRI. In this study, we investigated the ability of dynamic susceptibility contrast (DSC) perfusion in differentiating necrotic changes from pathological angiogenesis and compared measurements of relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF) and K2, using a dedicated software. Twenty-nine patients with secondary brain tumors were included in this retrospective study and underwent DSC perfusion MRI with a 3-month follow-up imaging after chemo- or radiation-therapy. Region-of-interests were drawn around the contrast enhancing lesions and measurements of rCBV, rCBF and K2 were performed in all patients. Based on subsequent histological examination or clinico-radiological follow-up, the cohort was divided in two groups: recurrent disease and stable disease. Differences between the two groups were analyzed using the Student's t test. Sensitivity, specificity and diagnostic accuracy of rCBV measurements were analyzed considering three different cut-off values. Between patients with and without disease, only rCBV and rCBF values were significant (p < 0.05). The only cut-off value giving the best diagnostic accuracy of 100% was rCBV = 2.1 (sensitivity = 100%; specificity = 100%). Patients with tumor recurrence showed a higher mean value of rCBV (mean = 4.28, standard deviation = 2.09) than patients with necrotic-related changes (mean = 0.77, standard deviation = 0.44). DSC-MRI appears a clinically useful method to differentiate between tumor recurrence, tumor necrosis and pseudoprogression in patients treated for cerebral metastases. Relative CBV using a cut-off value of 2.1 proved to be the most accurate and reliable parameter.

  14. The role of dynamic susceptibility contrast-enhanced perfusion MR imaging in differentiating between infectious and neoplastic focal brain lesions: results from a cohort of 100 consecutive patients.

    Directory of Open Access Journals (Sweden)

    Valdeci Hélio Floriano

    Full Text Available BACKGROUND AND PURPOSE: Differentiating between infectious and neoplastic focal brain lesions that are detected by conventional structural magnetic resonance imaging (MRI may be a challenge in routine practice. Brain perfusion-weighted MRI (PWI may be employed as a complementary non-invasive tool, providing relevant data on hemodynamic parameters, such as the degree of angiogenesis of lesions. We aimed to employ dynamic susceptibility contrast-enhanced perfusion MR imaging (DSC-MRI to differentiate between infectious and neoplastic brain lesions by investigating brain microcirculation changes. MATERIALS AND METHODS: DSC-MRI perfusion studies of one hundred consecutive patients with non-cortical neoplastic (n = 54 and infectious (n = 46 lesions were retrospectively assessed. MRI examinations were performed using a 1.5-T scanner. A preload of paramagnetic contrast agent (gadolinium was administered 30 seconds before acquisition of dynamic images, followed by a standard dose 10 seconds after starting imaging acquisitions. The relative cerebral blood volume (rCBV values were determined by calculating the regional cerebral blood volume in the solid areas of lesions, normalized to that of the contralateral normal-appearing white matter. Discriminant analyses were performed to determine the cutoff point of rCBV values that would allow the differentiation of neoplastic from infectious lesions and to assess the corresponding diagnostic performance of rCBV when using this cutoff value. RESULTS: Neoplastic lesions had higher rCBV values (4.28±2.11 than infectious lesions (0.63±0.49 (p<0.001. When using an rCBV value <1.3 as the parameter to define infectious lesions, the sensitivity of the method was 97.8% and the specificity was 92.6%, with a positive predictive value of 91.8%, a negative predictive value of 98.0%, and an accuracy of 95.0%. CONCLUSION: PWI is a useful complementary tool in distinguishing between infectious and neoplastic brain

  15. Arterio-venous anastomoses in mice affect perfusion measurements with dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Gabra, Peter; Lee, Ting-Yim; Shen, Gang; Xuan, Jim

    2010-01-01

    Accurate measurement of perfusion with dynamic contrast enhanced CT requires an arterial input curve (AIC) uncontaminated by venous sources. Arterio-venous anastomoses (AVAs) are sources of contamination if contrast is injected intravenously. We seek to identify AVAs in mice and associated errors in perfusion measurements. Six transgenic mice with spontaneous prostate tumor were scanned with a micro-CT scanner (GE Healthcare (GE)) using a high resolution anatomical and a lower resolution perfusion protocol. For the anatomical protocol, a CT scan was performed during injection of an iodinated contrast agent (Hypaque) into a tail vein. Images covering the thoracic, abdominal and pelvic regions at an isotropic resolution of 175 µm were reconstructed and rendered in 3D to show the arterial and venous tree (Advantage Window, GE). For the perfusion protocol, each mouse was continuously scanned for 40 s and the contrast agent (Hypaque) was injected via a tail vein 5 s into scanning. Tumor images were reconstructed every second. Tumor blood flow (BF) and volume (BV) maps were calculated with CT perfusion software (GE) using AIC measured either from abdominal aorta (AA) or tail (caudal) artery (TA). In all mice, there was an AVA from the bifurcation of the inferior vena cava to the tail artery shunting venous blood and portion of the contrast agent injected into the tail vein into the TA. Contrast arrival time at the TA preceded that at the AA by 3.3 ± 0.5 s (P < 0.05). Mean tumor BV and BF values calculated with AA versus TA were 10.0 ± 1.8 versus 4.8 ± 2.1 ml (100 g) −1 (P < 0.05) and 108.8 ± 26.5 versus 33.0 ± 8.5 ml min −1 100 g −1 (P < 0.05), respectively. AVA in the murine pelvic region can result in inaccurate and more variable measurements of pelvic organ/tissue perfusion when the tail artery is used as the AIC

  16. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs

    DEFF Research Database (Denmark)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Inger Susanne

    2012-01-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates.......The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates....

  17. Perfusion Quantification Using Gaussian Process Deconvolution

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke; Have, Anna Szynkowiak; Rasmussen, Carl Edward

    2002-01-01

    The quantification of perfusion using dynamic susceptibility contrast MRI (DSC-MRI) requires deconvolution to obtain the residual impulse response function (IRF). In this work, a method using the Gaussian process for deconvolution (GPD) is proposed. The fact that the IRF is smooth is incorporated...

  18. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents

    Directory of Open Access Journals (Sweden)

    Mirco Galiè

    2005-05-01

    Full Text Available Contrast-enhanced ultrasound (CEUS is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 μm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI. Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes.

  19. Comparison of increased venous contrast in ischemic stroke using phase-sensitive MR imaging with perfusion changes on flow-sensitive alternating inversion recovery at 3 Tesla

    International Nuclear Information System (INIS)

    Yamashita, Eijiro; Kanasaki, Yoshiko; Fujii, Shinya; Ogawa, Toshihide; Tanaka, Takuro; Hirata, Yoshiharu

    2011-01-01

    Background Increased venous contrast in ischemic stroke using susceptibility-weighted imaging has been widely reported, although few reports have compared increased venous contrast areas with perfusion change areas. Purpose To compare venous contrast on phase-sensitive MR images (PSI) with perfusion change on flow-sensitive alternating inversion recovery (FAIR) images, and to discuss the clinical use of PSI in ischemic stroke. Material and Methods Thirty patients with clinically suspected acute infarction of the middle cerebral artery (MCA) territory within 7 days of onset were evaluated. Phase-sensitive imaging (PSI), flow-sensitive alternating inversion recovery (FAIR), diffusion-weighted imaging (DWI) and magnetic resonance angiography (MRA) were obtained using 3 Tesla scanner. Two neuroradiologists independently reviewed the MR images, as well as the PSI, DWI, and FAIR images. They were blinded to the clinical data and to each other's findings. The abnormal area of each image was ultimately identified after both neuroradiologists reached consensus. We analyzed areas of increased venous contrast on PSI, perfusion changes on FAIR images and signal changes on DWI for each case. Results Venous contrast increased on PSI and hypoperfusion was evident on FAIR images from 22 of the 30 patients (73%). The distribution of the increased venous contrast was the same as that of the hypoperfused areas on FAIR images in 16 of these 22. The extent of these lesions was larger than that of lesions visualized by on DWI in 18 of the 22 patients. Hypointense signals reflecting hemorrhage and no increased venous contrast on PSI and hyperperfusion on FAIR images were found in six of the remaining eight patients (20%). Findings on PSI were normal and hypoperfusion areas were absent on FAIR images of two patients (7%). Conclusion Increased venous contrast on PSI might serve as an index of misery perfusion and provide useful information

  20. Differentiation of grade II/III and grade IV glioma by combining ''T1 contrast-enhanced brain perfusion imaging'' and susceptibility-weighted quantitative imaging

    International Nuclear Information System (INIS)

    Saini, Jitender; Gupta, Pradeep Kumar; Gupta, Rakesh Kumar; Sahoo, Prativa; Singh, Anup; Patir, Rana; Ahlawat, Suneeta; Beniwal, Manish; Thennarasu, K.; Santosh, Vani

    2018-01-01

    MRI is a useful method for discriminating low- and high-grade glioma using perfusion MRI and susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of T1-perfusion MRI and SWI in discriminating among grade II, III, and IV gliomas. T1-perfusion MRI was used to measure relative cerebral blood volume (rCBV) in 129 patients with glioma (70 grade IV, 33 grade III, and 26 grade II tumors). SWI was also used to measure the intratumoral susceptibility signal intensity (ITSS) scores for each tumor in these patients. rCBV and ITSS values were compared to seek differences between grade II vs. grade III, grade III vs. grade IV, and grade III+II vs. grade IV tumors. Significant differences in rCBV values of the three grades of the tumors were noted and pairwise comparisons showed significantly higher rCBV values in grade IV tumors as compared to grade III tumors, and similarly increased rCBV was seen in the grade III tumors as compared to grade II tumors (p < 0.001). Grade IV gliomas showed significantly higher ITSS scores on SWI as compared to grade III tumors (p < 0.001) whereas insignificant difference was seen on comparing ITSS scores of grade III with grade II tumors. Combining the rCBV and ITSS resulted in significant improvement in the discrimination of grade III from grade IV tumors. The combination of rCBV values derived from T1-perfusion MRI and SWI derived ITSS scores improves the diagnostic accuracy for discrimination of grade III from grade IV gliomas. (orig.)

  1. Differentiation of grade II/III and grade IV glioma by combining ''T1 contrast-enhanced brain perfusion imaging'' and susceptibility-weighted quantitative imaging

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Jitender [National Institute of Mental Health and Neurosciences, Neuroimaging and Interventional Radiology, Bangalore (India); Gupta, Pradeep Kumar; Gupta, Rakesh Kumar [Fortis Memorial Research Institute, Department of Radiology and Imaging, Gurugram (India); Sahoo, Prativa [Philips Health System, Philips India Limited, Bangalore (India); Beckman Research Institute, Mathematical Oncology, Duarte, CA (United States); Singh, Anup [Indian Institute of Technology Delhi, Center for Biomedical Engineering, Delhi (India); Patir, Rana [Fortis Memorial Research Institute, Department of Neurosurgery, Gurugram (India); Ahlawat, Suneeta [Fortis Memorial Research Institute, SRL Diagnostics, Gurugram (India); Beniwal, Manish [National Institute of Mental Health and Neurosciences, Department of Neurosurgery, Bangalore (India); Thennarasu, K. [National Institute of Mental Health and Neurosciences, Department of Biostatistics, Bangalore (India); Santosh, Vani [National Institute of Mental Health and Neurosciences, Department of Neuropathology, Bangalore (India)

    2018-01-15

    MRI is a useful method for discriminating low- and high-grade glioma using perfusion MRI and susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of T1-perfusion MRI and SWI in discriminating among grade II, III, and IV gliomas. T1-perfusion MRI was used to measure relative cerebral blood volume (rCBV) in 129 patients with glioma (70 grade IV, 33 grade III, and 26 grade II tumors). SWI was also used to measure the intratumoral susceptibility signal intensity (ITSS) scores for each tumor in these patients. rCBV and ITSS values were compared to seek differences between grade II vs. grade III, grade III vs. grade IV, and grade III+II vs. grade IV tumors. Significant differences in rCBV values of the three grades of the tumors were noted and pairwise comparisons showed significantly higher rCBV values in grade IV tumors as compared to grade III tumors, and similarly increased rCBV was seen in the grade III tumors as compared to grade II tumors (p < 0.001). Grade IV gliomas showed significantly higher ITSS scores on SWI as compared to grade III tumors (p < 0.001) whereas insignificant difference was seen on comparing ITSS scores of grade III with grade II tumors. Combining the rCBV and ITSS resulted in significant improvement in the discrimination of grade III from grade IV tumors. The combination of rCBV values derived from T1-perfusion MRI and SWI derived ITSS scores improves the diagnostic accuracy for discrimination of grade III from grade IV gliomas. (orig.)

  2. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1

    Science.gov (United States)

    Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea

    2005-01-01

    Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105

  3. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.

    Science.gov (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard

    2005-03-01

    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  4. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis - initial results

    International Nuclear Information System (INIS)

    Eichinger, Monika; Puderbach, Michael; Zuna, Ivan; Kauczor, Hans-Ulrich; Fink, Christian; Gahr, Julie; Mueller, Frank-Michael; Ley, Sebastian; Plathow, Christian; Tuengerthal, Siegfried

    2006-01-01

    This paper is a feasibility study of magnetic resonance imaging (MRI) of lung perfusion in children with cystic fibrosis (CF) using contrast-enhanced 3D MRI. Correlation assessment of perfusion changes with structural abnormalities. Eleven CF patients (9 f, 2 m; median age 16 years) were examined at 1.5 T. Morphology: HASTE coronal, transversal (TR/TE/α/ST: 600 ms/28 ms/180 /6 mm), breath-hold 18 s. Perfusion: Time-resolved 3D GRE pulse sequence (FLASH, TE/TR/α: 0.8/1.9 ms/40 ), parallel imaging (GRAPPA, PAT 2). Twenty-five data sets were acquired after intravenous injection of 0.1 mmol/kg body weight of gadodiamide, 3-5 ml/s. A total of 198 lung segments were analyzed by two radiologists in consensus and scored for morphological and perfusion changes. Statistical analysis was performed by Mantel-Haenszel chi-square test. Results showed that perfusion defects were observed in all patients and present in 80% of upper, and 39% of lower lobes. Normal lung parenchyma showed homogeneous perfusion (86%, P<0.0001). Severe morphological changes led to perfusion defects (97%, P<0.0001). Segments with moderate morphological changes showed normal (53%) or impaired perfusion (47%). In conclusion, pulmonary perfusion is easy to judge in segments with normal parenchyma or severe changes. In moderately damaged segments, MRI of lung perfusion may help to better assess actual functional impairment. Contrast-enhanced 3D MRI of lung perfusion has the potential for early vascular functional assessment and therapy control in CF patients. (orig.)

  5. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Xiao, Hua-Feng; Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin; Lou, Xin; Gui, Qiu-Ping; Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan

    2015-01-01

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10 -3 mm 2 /s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  6. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hua-Feng [302 Hospital of Chinese People' s Liberation Army, Department of Radiology, Beijing (China); Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); Lou, Xin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); University of California, Department of Neurology, Los Angeles, CA (United States); Gui, Qiu-Ping [People' s Liberation Army General Hospital, Department of Pathology, Beijing (China); Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan [General Electric Healthcare (China) Co., Ltd., Beijing; Wang, Danny J.J. [University of California, Department of Neurology, Los Angeles, CA (United States)

    2015-12-15

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10{sup -3} mm{sup 2}/s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  7. Perfusion quantification in contrast-enhanced ultrasound (CEUS)--ready for research projects and routine clinical use.

    Science.gov (United States)

    Tranquart, F; Mercier, L; Frinking, P; Gaud, E; Arditi, M

    2012-07-01

    With contrast-enhanced ultrasound (CEUS) now established as a valuable imaging modality for many applications, a more specific demand has recently emerged for quantifying perfusion and using measured parameters as objective indicators for various disease states. However, CEUS perfusion quantification remains challenging and is not well integrated in daily clinical practice. The development of VueBox™ alleviates existing limitations and enables quantification in a standardized way. VueBox™ operates as an off-line software application, after dynamic contrast-enhanced ultrasound (DCE-US) is performed. It enables linearization of DICOM clips, assessment of perfusion using patented curve-fitting models, and generation of parametric images by synthesizing perfusion information at the pixel level using color coding. VueBox™ is compatible with most of the available ultrasound platforms (nonlinear contrast-enabled), has the ability to process both bolus and disruption-replenishment kinetics loops, allows analysis results and their context to be saved, and generates analysis reports automatically. Specific features have been added to VueBox™, such as fully automatic in-plane motion compensation and an easy-to-use clip editor. Processing time has been reduced as a result of parallel programming optimized for multi-core processors. A long list of perfusion parameters is available for each of the two administration modes to address all possible demands currently reported in the literature for diagnosis or treatment monitoring. In conclusion, VueBox™ is a valid and robust quantification tool to be used for standardizing perfusion quantification and to improve the reproducibility of results across centers. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    Science.gov (United States)

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  9. Sporadic insulinomas on volume perfusion CT: dynamic enhancement patterns and timing of optimal tumour-parenchyma contrast

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang; Xue, Hua-dan; Liu, Wei; Wang, Xuan; Sun, Hao; Li, Ping; Jin, Zheng-yu [Peking Union Medical College Hospital, Department of Radiology, Beijing (China); Wu, Wen-ming; Zhao, Yu-pei [Peking Union Medical College Hospital, Department of General Surgery, Beijing (China)

    2017-08-15

    To assess enhancement patterns of sporadic insulinomas on volume perfusion CT (VPCT), and to identify timing of optimal tumour-parenchyma contrast. Consecutive patients who underwent VPCT for clinically suspected insulinomas were retrospectively identified. Patients with insulinomas confirmed by surgery were included, and patients with familial syndromes were excluded. Two radiologists evaluated VPCT images in consensus. Tumour-parenchyma contrast at each time point was measured, and timing of optimal contrast was determined. Time duration of hyperenhancement (tumour-parenchyma contrast >20 Hounsfield units, HU) was recorded. Perfusion parameters were evaluated. Three dynamic enhancement patterns were observed in 63 tumours: persistent hyperenhancement (hyperenhancement time window ≥10 s) in 39 (61.9%), transient hyperenhancement (hyperenhancement <10 s) in 19 (30.2%) and non-hyperenhancement in 5 (7.9%). Timing of optimal contrast was 9 s after abdominal aorta threshold (AAT) of 200 HU, with tumour-parenchyma contrast of 77.6 ± 57.2 HU. At 9 s after AAT, 14 (22.2%) tumours were non-hyperenhancing, nine of which had missed transient hyperenhancement. Insulinomas with transient and persistent hyperenhancement patterns had significantly increased perfusion. Insulinomas have variable enhancement patterns. Tumour-parenchyma contrast is time-dependent. Optimal timing of enhancement is 9 s after AAT. VPCT enables tumour detection even if the hyperenhancement is transient. (orig.)

  10. Dynamic susceptibility contrast magnetic resonance imaging in neuropsychiatry: present utility and future promise

    International Nuclear Information System (INIS)

    Renshaw, P.F.; Levin, J.M.; Kaufman, M.J.; Ross, M.H.; Lewis, R.F.; Harris, G.J.

    1997-01-01

    Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) provides a noninvasive means to create high resolution maps of the regional distribution of cerebral blood volume (CBV). Most DSC MRI studies conducted to date have focused on the evaluation of patients with cerebral neoplasms, ischemia or infarction, and epilepsy. However, preliminary work suggests that DSC MRI may also provide clinically important information for the evaluation of patients with neuropsychiatric disorders, especially dementia and schizophrenia. Additionally, with appropriate modification, DSC MRI may be used to reliably evaluate the effects of pharmacological challenges on cerebral hemodynamics. As pharmacotherapy is an important component in the treatment of a range of psychiatric disorders, the dynamic assessment of changes in cerebral perfusion associated with drug administration may ultimately lead to the development of ''brain function tests'' for a wide range of disorders. (orig.)

  11. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  12. Semi-automatic motion compensation of contrast-enhanced ultrasound images from abdominal organs for perfusion analysis

    Czech Academy of Sciences Publication Activity Database

    Schafer, S.; Nylund, K.; Saevik, F.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Dimcevski, G.; Gilja, O.H.; Tönnies, K.

    2015-01-01

    Roč. 63, AUG 1 (2015), s. 229-237 ISSN 0010-4825 R&D Projects: GA ČR GAP102/12/2380 Institutional support: RVO:68081731 Keywords : ultrasonography * motion analysis * motion compensation * registration * CEUS * contrast-enhanced ultrasound * perfusion * perfusion modeling Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.521, year: 2015

  13. A novel MR contrast agent for angiography and perfusion: Hyperpolarized water

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh

    , hyperpolarized by dissolution Dynamic Nuclear Polarization (d-DNP), can be applied as an MRI contrast agent for angiography and perfusion. The first part of the project focuses on development of a protocol for production of large samples of hyperpolarized protons in D2O. The samples are polarized and dissolved...

  14. Comparison of MR imaging after administration of dysprosium-based magnetic-susceptibility contrast media with diffusion-weighted MR imaging in evaluation of regional cerebral ischemia

    International Nuclear Information System (INIS)

    Moseley, M.E.; Kucharczyk, J.; Kurhanewicz, J.; Mintorovitch, J.; Cohen, Y.; Rocklage, S.; Quay, S.C.; Norman, D.

    1989-01-01

    This paper reports on a study to establish whether a nonionic T2-shortening contrast agent, Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA), would facilitate early detection of stroke-induced cerebral perfusion deficits. The sensitivity of susceptibility-enhanced MR imaging was compared with that of diffusion-weighted MR imaging in the same cats subjected to unilateral occlusion of the middle cerebral artery (MCA). A 2-T unit, equipped with self-shielded gradient coils (± 20 G/cm, 15-cm bore size), was used in conjunction with an 8.5-cm inner diameter low-pass bird cage proton imaging coil. Diffusion-weighted images displayed increased signal intensity in the ischemic MCA territory less than 1 hour after occlusion, whereas T2-weighted MR images without contrast enhancement usually failed to depict injury for 2--3 hours after toke. With contrast administration (0.5 mmoles/kg of Dy-DTPA-BMA), however, T2-weighted images revealed perfusion deficits (hyperintensity) within 1 hour after MCA occlusion, and these corresponded to the anatomic regions of ischemic injury shown on diffusion-weighted MR images

  15. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  16. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma.

    Science.gov (United States)

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-07-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review.

  17. Evaluation of contrast wash-in and peak enhancement in adenosine first pass perfusion CMR in patients post bypass surgery

    Directory of Open Access Journals (Sweden)

    Schnackenburg Bernhard

    2010-05-01

    Full Text Available Abstract Background Adenosine first pass perfusion cardiovascular magnetic resonance (CMR yields excellent results for the detection of significant coronary artery disease (CAD. In patients with coronary artery bypass grafts (CABG the kinetics of a contrast bolus may by altered only due to different distances through the bypass grafts compared to native vessels, thereby possibly imitating a perfusion defect. The aim of the study was to evaluate semiquantitative perfusion parameters in order to assess possible differences in epicardial contrast kinetics in areas supplied by native coronaries and CABG, both without significant stenosis. Methods Twenty patients with invasive exclusion of significant CAD (control group and 38 patients with CABG without angiographically significant (≥50% stenosis in unbypassed coronaries or grafts were retrospectively included in the study. They underwent adenosine first pass (0.05 mmol/kg Gd-DTPA perfusion (3 short axis views/heart beat and late gadolinium enhancement (LGE imaging 1 day before invasive coronary angiography. Areas perfused by native coronaries and/or the different bypasses were identified in X-ray angiography using the 16 segment model. In each of these areas upslope and maximal signal intensity (SImax relative to the left ventricular parameters, time to 50% maximal signal intensity (TSI50%max and time to maximal signal intensity (TSImax were calculated. Results In areas perfused by coronary arteries with bypasses compared to native coronaries relative upslope and relative SImax did not show a significant difference. TSI50%max and TSImax in native coronaries and bypasses were 7.2s ± 1.9s vs. 7.5s ± 1.9s (p max resulted in a significant (p Conclusion Adenosine perfusion CMR in patients post CABG may be associated with a short delay in contrast arrival. However, once the contrast is in the myocardium there is similar wash-in kinetics and peak enhancement. Therefore, since the delay is only short

  18. Possible origins of the susceptibility contrast in the brain. Presidential award proceedings

    International Nuclear Information System (INIS)

    Fukunaga, Masaki; Li, T.Q.; Lee, J.; Matsuura, Eiji; Gelderen, P.V.; Zwart, J.A. de; Merkle, H.; Duyn, J.H.

    2011-01-01

    The magnetic susceptibility contrast derived from high resolution T 2 *-weighted magnetic resonance (MR) imaging at ultra high field strength has been used to reveal laminar contrast in the gray matter (GM) and fiber bundle-like structure in the white matter (WM) of the human brain. This contrast has been attributed to subtle variations in the magnetic properties of brain tissue, which possibly reflect varying iron and myelin content and haemoglobin in the microvasculature. To investigate the origin of this contrast, MRI data from postmortem brain samples were compared with histological staining for iron and myelin. The laminar susceptibility variations in GM strongly correlate with local iron content, which generally co-localized with myelin. On the other hand, fiber bundles in white matter, shows strong susceptibility contrast in the absence of iron while myelin is high. The results suggest that iron contributes significantly to susceptibility contrast across the cortical GM, but myelin is the dominant source of susceptibility in WM bundles. (author)

  19. Post-operative monitoring of tissue transfers: advantages using contrast enhanced ultrasound (CEUS) and contrast enhanced MRI (ceMRI) with dynamic perfusion analysis?

    Science.gov (United States)

    Lamby, P; Prantl, L; Fellner, C; Geis, S; Jung, E M

    2011-01-01

    The immediate evaluation of microvascular tissue flaps with respect to microcirculation after transplantation is crucial for optimal monitoring and outcome. The purpose of our investigation was to evaluate the clinical value of contrast-enhanced ultrasound (CEUS) and contrast-enhanced MRI (ceMRI) for monitoring the integrity of tissue flaps in plastic surgery. To this end, we investigated 10 patients (47 ± 16 a) between postoperative day 7 and 14 who underwent flap surgery in order to cover tissue defects in various body regions. For CEUS we utilized the GE LOGIQ E9 equipped with a linear transducer (6-9 MHz). After application of 2.4 ml SonoVue, the tissue perfusion was detected in Low MI-Technique (MI present, both technologies provide an optimal assessment of perfusion in cutaneous, subcutaneous and muscle tissue layers, whereby the detection of fatty tissue perfusion is currently more easily detected using CEUS compared to ceMRI.

  20. Acute cerebral stroke imaging and brain perfusion with the use of high-concentration contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K.A. [Wesley Research Inst., The Wesley Hospital, Brisbane (Australia); Brighton and Sussex Medical School, Univ. of Sussex, Falmer, Brighton (United Kingdom)

    2003-12-01

    Acute cerebral stroke remains a major cause of death among adults and the emergence of new therapies has created a need for early and rapid imaging at a time when conventional CT is either normal or demonstrates subtle abnormalities that are easy to misinterpret. Perfusion CT uses the temporal changes in cerebral and blood attenuation during a rapid series of images acquired without table movement following an intravenous bolus of contrast medium to generate images of mean transit time (MTT) cerebral blood volume (CBV) and perfusion. Reduced perfusion with preserved CBV is indicative of reversible ischaemia, whereas a matched reduction in perfusion and CBV implies infarction. The CT perfusion imaging can positively identify patients with non-haemorrhagic stroke in the presence of a normal conventional CT, provide an indication as to prognosis and potentially select those patients for whom thrombolysis is appropriate. Perfusion CT offers a powerful adjunct to MDCT based imaging of cerebrovascular disease, but further clinical validation is required. (orig.)

  1. Combined use of susceptibility weighted magnetic resonance imaging sequences and dynamic susceptibility contrast perfusion weighted imaging to improve the accuracy of the differential diagnosis of recurrence and radionecrosis in high-grade glioma patients.

    Science.gov (United States)

    Kim, Tae-Hyung; Yun, Tae Jin; Park, Chul-Kee; Kim, Tae Min; Kim, Ji-Hoon; Sohn, Chul-Ho; Won, Jae Kyung; Park, Sung-Hye; Kim, Il Han; Choi, Seung Hong

    2017-03-21

    Purpose was to assess predictive power for overall survival (OS) and diagnostic performance of combination of susceptibility-weighted MRI sequences (SWMRI) and dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) for differentiation of recurrence and radionecrosis in high-grade glioma (HGG). We enrolled 51 patients who underwent radiation therapy or gamma knife surgeryfollowed by resection for HGG and who developed new measurable enhancement more than six months after complete response. The lesions were confirmed as recurrence (n = 32) or radionecrosis (n = 19). The mean and each percentile value from cumulative histograms of normalized CBV (nCBV) and proportion of dark signal intensity on SWMRI (proSWMRI, %) within enhancement were compared. Multivariate regression was performed for the best differentiator. The cutoff value of best predictor from ROC analysis was evaluated. OS was determined with Kaplan-Meier method and log-rank test. Recurrence showed significantly lower proSWMRI and higher mean nCBV and 90th percentile nCBV (nCBV90) than radionecrosis. Regression analysis revealed both nCBV90 and proSWMRI were independent differentiators. Combination of nCBV90 and proSWMRI achieved 71.9% sensitivity (23/32), 100% specificity (19/19) and 82.3% accuracy (42/51) using best cut-off values (nCBV90 > 2.07 and proSWMRI≤15.76%) from ROC analysis. In subgroup analysis, radionecrosis with nCBV > 2.07 (n = 5) showed obvious hemorrhage (proSWMRI > 32.9%). Patients with nCBV90 > 2.07 and proSWMRI≤15.76% had significantly shorter OS. In conclusion, compared with DSC PWI alone, combination of SWMRI and DSC PWI have potential to be prognosticator for OS and lower false positive rate in differentiation of recurrence and radionecrosis in HGG who develop new measurable enhancement more than six months after complete response.

  2. Perfusion redistribution after a pulmonary-embolism-like event with contrast enhanced EIT.

    Science.gov (United States)

    Nguyen, D T; Bhaskaran, A; Chik, W; Barry, M A; Pouliopoulos, J; Kosobrodov, R; Jin, C; Oh, T I; Thiagalingam, A; McEwan, A L

    2015-06-01

    Recent studies showed that regional pulmonary perfusion can be reliably estimated using electrical impedance tomography (EIT) with the aid of hypertonic saline based contrast enhancement. Building on these successful studies, we studied contrast EIT for pulmonary perfusion defect caused by an artificially induced pulmonary embolism (PE) in a large ovine model (N = 8, 78 ± 7.8 kg). Furthermore, the efficacy of a less invasive contrast bolus of 0.77 ml kg(-1) of NaCl 3% was compared with a more concentrated bolus of 0.13 ml kg(-1) of NaCl 20%. Prior to the injection of each contrast bolus injection, ventilation was turned off to provide a total of 40 to 45 s of apnoea. Each bolus of impedance contrast was injected through a catheter into the right atrium. Pulmonary embolisation was performed by balloon occlusion of part of the right branch of the pulmonary trunk. Four parameters representing the kinetics of the contrast dilution in the lung were evaluated for statistical differences between baseline and PE, including peak value, maximum uptake, maximum washout and area under the curve of the averaged contrast dilution curve in each lung. Furthermore, the right lung to left lung (R2L) ratio of each the aforementioned parameters were assessed. While all of the R2L ratios yielded significantly different means between baseline and PE, it can be concluded that the R2L ratios of area under the curve and peak value of the averaged contrast dilution curve are the most promising and reliable in assessing PE. It was also found that the efficacy of the two types of impedance contrasts were not significantly different in distinguishing PE from baseline in our model.

  3. Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging

    Directory of Open Access Journals (Sweden)

    Justin J. Tse

    2017-01-01

    Full Text Available Micro-computed tomography (micro-CT facilitates the visualization and quantification of contrast-enhanced microvessels within intact tissue specimens, but conventional preclinical vascular contrast agents may be inadequate near dense tissue (such as bone. Typical lead-based contrast agents do not exhibit optimal X-ray absorption properties when used with X-ray tube potentials below 90 kilo-electron volts (keV. We have developed a high-atomic number lanthanide (erbium contrast agent, with a K-edge at 57.5 keV. This approach optimizes X-ray absorption in the output spectral band of conventional microfocal spot X-ray tubes. Erbium oxide nanoparticles (nominal diameter 4000 Hounsfield units, and perfusion of vessels < 10 μm in diameter was demonstrated in kidney glomeruli. The described new contrast agent facilitated the visualization and quantification of vessel density and microarchitecture, even adjacent to dense bone. Erbium’s K-edge makes this contrast agent ideally suited for both single- and dual-energy micro-CT, expanding potential preclinical research applications in models of musculoskeletal, oncological, cardiovascular, and neurovascular diseases.

  4. Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart

    DEFF Research Database (Denmark)

    Larsson, H B; Rosenbaum, S; Fritz-Hansen, T

    2001-01-01

    Measurement of myocardial and brain perfusion when using exogenous contrast agents (CAs) such as gadolinium-DTPA (Gd-DTPA) and MRI is affected by the diffusion of water between compartments. This water exchange may have an impact on signal enhancement, or, equivalently, on the longitudinal...... exchange can have a significant effect on perfusion estimation (F) in the brain when using Gd-DTPA, where it acts as an intravascular contrast agent....

  5. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Nielsen, Gitte; Fritz-Hansen, Thomas; Dirks, Christina G

    2004-01-01

    with acute transmural myocardial infarction were studied using a Turbo-fast low angle shot (FLASH) MRI sequence to monitor the first pass of an extravascular contrast agent (CA), gadolinium diethylene triamine pentaacetic acid (Gd-DTPA). Quantitation of perfusion, expressed as Ki (mL/100 g/minute), in five......PURPOSE: To investigate the diagnostic ability of quantitative magnetic resonance imaging (MRI) heart perfusion in acute heart patients, a fast, multislice dynamic contrast-enhanced MRI sequence was applied to patients with acute myocardial infarction. MATERIALS AND METHODS: Seven patients...

  6. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    International Nuclear Information System (INIS)

    Server, Andres; Nakstad, Per H.; Orheim, Tone E.D.; Graff, Bjoern A.; Josefsen, Roger; Kumar, Theresa

    2011-01-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  7. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Nakstad, Per H. [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Oslo (Norway); Orheim, Tone E.D. [Oslo University Hospital, Interventional Centre, Oslo (Norway); Graff, Bjoern A. [Oslo University Hospital-Ullevaal, Department of Radiology and Nuclear Medicine, Oslo (Norway); Josefsen, Roger [Oslo University Hospital-Ullevaal, Department of Neurosurgery, Oslo (Norway); Kumar, Theresa [Oslo University Hospital-Ullevaal, Department of Pathology, Oslo (Norway)

    2011-05-15

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  8. Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging Demonstrates Reduced Periventricular Cerebral Blood Flow in Dogs with Ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Martin J. Schmidt

    2017-08-01

    Full Text Available The nature of ventriculomegaly in dogs is still a matter of debate. Signs of increased intraventricular pressure and atrophy of the cerebral white matter have been found in dogs with ventriculomegaly, which would imply increased intraventricular pressure and, therefore, a pathological condition, i.e., to some extent. Reduced periventricular blood flow was found in people with high elevated intraventricular pressure. The aim of this study was to compare periventricular brain perfusion in dogs with and without ventriculomegaly using perfusion weighted-magnetic-resonance-imaging to clarify as to whether ventriculomegaly might be associated with an increase in intraventricular pressure. Perfusion was measured in 32 Cavalier King Charles spaniels (CKCS with ventriculomegaly, 10 CKCSs were examined as a control group. Cerebral blood flow (CBF was measured using free-hand regions of interest (ROI in five brain regions: periventricular white matter, caudate nucleus, parietal cortex, hippocampus, and thalamus. CBF was significantly lower in the periventricular white matter of the dogs with ventriculomegaly (p = 0.0029 but not in the other ROIs. Reduction of periventricular CBF might imply increase of intraventricular pressure in ventriculomegaly.

  9. Perfusion characteristics of late radiation injury of parotid glands: quantitative evaluation with dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Juan, Chun-Jung; Chen, Cheng-Yu.; Hsueh, Chun-Jen; Huang, Guo-Shu; Jen, Yee-Min; Liu, Hua-Shan; Wang, Chao-Ying; Chung, Hsiao-Wen; Liu, Yi-Jui; Chou, Yu-Ching; Chai, Yao-Te

    2009-01-01

    We aimed to quantitatively investigate the alteration of parotid perfusion after irradiation using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on a two-compartment tracer kinetic model. This study enrolled 19 patients (53.2±14.9 years) treated by head and neck radiotherapy and 19 age-relevant and sex-matched subjects as a control group. Perfusion parameters (K el , k 21 and A) of parotid glands were analyzed based on the Brix model from T1-weighted DCE-MRI. Suitability of the Brix model was evaluated via Monte Carlo simulation for the goodness-of-fit. Analysis of nonlinear goodness-of-fit showed that the Brix model is appropriate in evaluating the parotid perfusion (R 2 = 0.938±0.050). The irradiated parotid glands showed significantly lower K el (P 21 (P < 0.05) and consequently significantly higher value of peak enhancement (P<0.0005) and time-to-peak (P<0.0005) compared with non-irradiated ones, suggestive of gradual and prolonged accumulation and delayed wash-out of contrast agent due to increased extracellular extravascular space and decreased vascular permeability in the irradiated glands. Linear regression analysis showed dose-dependent perfusion changes of the irradiated parotid glands. We conclude that quantitative DCE-MRI is a potential tool in investigating parotid gland perfusion changes after radiotherapy. (orig.)

  10. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    Directory of Open Access Journals (Sweden)

    Stefan Hindel

    Full Text Available The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles

  11. Neural - levelset shape detection segmentation of brain tumors in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar

    2008-01-01

    A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)

  12. Accuracy and feasibility of dynamic contrast-enhanced 3D MR imaging in the assessment of lung perfusion: comparison with Tc-99 MAA perfusion scintigraphy

    International Nuclear Information System (INIS)

    Yilmaz, E.; Akkoclu, A.; Degirmenci, B.; Cooper, R.A.; Sengun, B.; Gulcu, A.; Osma, E.; Ucan, E.S.

    2005-01-01

    AIM: The aim of this study was to correlate findings of perfusion magnetic resonance imaging (MRI) and perfusion scintigraphy in cases where there was a suspicion of abnormal pulmonary vasculature, and to evaluate the usefulness of MRI in the detection of perfusion deficits of the lung. METHODS: In all, 17 patients with suspected abnormality of the pulmonary vasculature underwent dynamic contrast-enhanced MRI. T1-weighted 3D fast-field echo pulse sequences were obtained (TR/TE 3.3/1.58 ms; flip angle 30 deg ; slice thickness 12 to 15 mm). The dynamic study was acquired in the coronal plane following administration of 0.1 mmol/kg gadopentetate dimeglumine. A total of 8 to 10 sections repeated 20 to 25 times at intervals of 1 s were performed. Perfusion lung scintigraphy was carried out a maximum of 48 h before the MR examination in all cases. Two radiologists, who were blinded to the clinical data and results of other imaging methods, reviewed all coronal sections. MR perfusion images were independently assessed in terms of segmental or lobar perfusion defects in the 85 lobes of the 17 individuals, and the findings were compared with the results of scintigraphy. RESULTS: Of the 17 patients, 8 were found to have pulmonary emboli, 2 chronic obstructive pulmonary disease with emphysema, 2 bullous emphysema, 2 Takayasu arteritis and 1 had a hypoplastic pulmonary artery. Pulmonary perfusion was completely normal in 2 cases. In 35 lobes, perfusion defects were detected using both methods, in 4 with MR alone and in 9 only with scintigraphy. There was good agreement between MRI and scintigraphy findings (kappa=0.695). CONCLUSION: Pulmonary perfusion MRI is a new alternative to scintigraphy in the evaluation of pulmonary perfusion for various lung disorders. In addition, this technique allows measurement and quantification of pulmonary perfusion abnormalities

  13. Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Batra, A.; Tripathi, R.P.; Singh, A.K.

    2004-01-01

    The purpose of the present paper was to evaluate the utility of perfusion MRI in cerebral gliomas showing imperceptible contrast enhancement on conventional MRI, and to evaluate the relationships of perfusion MRI and magnetic resonance (MR) spectroscopic results in these tumours. Twenty-two patients with histopathologically proven cerebral gliomas and showing insignificant contrast enhancement on conventional MR were included in the present study. All patients underwent perfusion MRI and MR spectroscopy on a 1.5-T MR system. Significant differences of the relative cerebral blood volume (rCBV) values and the choline : creatine ratios were noted between low-grade and anaplastic gliomas (P < 0.01). Good correlation was found between the rCBV values and the choline : creatine values (y = 0. 532x + 1.5643; r = 0.67). Perfusion MRI can be a useful tool in assessing the histopathological grade of non-contrast-enhancing cerebral gliomas. Along with MR spectroscopic imaging it can serve as an important technique for preoperative characterization of such gliomas, so that accurate targeting by stereotactic biopsies is possible. Copyright (2004) Blackwell Science Pty Ltd

  14. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  15. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  16. Isoattenuating insulinomas at biphasic contrast-enhanced CT: frequency, clinicopathologic features and perfusion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang; Xue, Hua-dan; Sun, Hao; Wang, Xuan; He, Yong-lan; Jin, Zheng-yu [Peking Union Medical College Hospital, Department of Radiology, Beijing (China); Zhao, Yu-pei [Peking Union Medical College Hospital, Department of General Surgery, Beijing (China)

    2016-10-15

    We aimed to determine the frequency of isoattenuating insulinomas, to investigate their clinicopathological features and to assess their regional pancreatic perfusion characteristics. Institutional review board approval was obtained, and patient informed consent was waived. From July 2010 to June 2014, 170 patients (66 male, 104 female) with endogenous hyperinsulinemic hypoglycemia underwent biphasic contrast-enhanced CT before surgery, and 129 of those patients also received preoperative whole-pancreas CT perfusion. A total of 181 tumours were proved histopathologically after surgery. Enhancement pattern and regional pancreatic perfusion characteristics were analyzed. Clinical features, tumour size and pathological grading were investigated. The frequency of isoattenuating tumours was 24.9 %. Tumour size and WHO grading was not significantly different between isoattenuating and hyperattenuating tumours. Tumour-free regions had identical blood flow (BF) regardless of their location (p = 0.35). Isoattenuating tumour-harbouring regions had lower BF compared with hyperattenuating tumour-harbouring regions; both showed higher BF compared with tumour-free neighbourhood regions (all p < 0.01). For patients with isoattenuating tumours, the overall hospital stay was longer (p < 0.01). A substantial subset of insulinomas were isoattenuating on biphasic CT. CT perfusion showed higher BF in tumour-harbouring regions compared to tumour-free regions, providing a clue for tumour regionalization. (orig.)

  17. Assessment of the effects of different sample perfusion procedures on phase-contrast tomographic images of mouse spinal cord

    Science.gov (United States)

    Stefanutti, E.; Sierra, A.; Miocchi, P.; Massimi, L.; Brun, F.; Maugeri, L.; Bukreeva, I.; Nurmi, A.; Begani Provinciali, G.; Tromba, G.; Gröhn, O.; Giove, F.; Cedola, A.; Fratini, M.

    2018-03-01

    Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCμT) is a powerful tool in the investigation of biological tissues, including the central nervous system (CNS), and it allows to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive sample preparations. However, specific sample preparation procedures aimed to optimize the achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here we report and discuss the effects of perfusion with two different fixative agents (ethanol and paraformaldehyde) and with a widely used contrast medium (MICROFIL®) on mouse spinal cord. As a main result, we found that ethanol enhances contrast at the grey/white matter interface and increases the contrast in correspondence of vascular features and fibres, thus providing an adequate spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either perfused paraformaldehyde or MICROFIL® compound, as these latter media do not affect tissues with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast agent, like MICROFIL®, but it is less invasive than ethanol and permits to visualise well both cells and blood vessels. However, a quantitative estimation of the relative grey matter volume of each sample has led us to conclude that no significant alterations in the grey matter extension compared to the white matter occur as a consequence of the perfusion procedures tested in this study.

  18. CT hepatic perfusion measurement: Comparison of three analytic methods

    International Nuclear Information System (INIS)

    Kanda, Tomonori; Yoshikawa, Takeshi; Ohno, Yoshiharu; Kanata, Naoki; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro

    2012-01-01

    Objectives: To compare the efficacy of three analytic methods, maximum slope (MS), dual-input single-compartment model (CM) and deconvolution (DC), for CT measurements of hepatic perfusion and assess the effects of extra-hepatic systemic factors. Materials and methods: Eighty-eight patients who were suspected of having metastatic liver tumors underwent hepatic CT perfusion. The scans were performed at the hepatic hilum 7–77 s after administration of contrast material. Hepatic arterial and portal perfusions (HAP and HPP, ml/min/100 ml) and arterial perfusion fraction (APF, %) were calculated with the three methods, followed by correlation assessment. Partial correlation analysis was used to assess the effects on hepatic perfusion values by various factors such as age, sex, risk of cardiovascular diseases, arrival time of contrast material at abdominal aorta, transit time from abdominal aorta to hepatic parenchyma, and liver dysfunction. Results: Mean HAP of MS was significantly higher than DC. HPP of CM was significantly higher than MS and CM, and HPP of MS was significantly higher than DC. There was no significant difference in APF. HAP and APF showed significant and moderate correlations among the methods. HPP showed significant and moderate correlations between CM and DC, and poor correlation between MS and CM or DC. All methods showed weak correlations between HAP or APF and age or sex. Finally, MS showed weak correlations between HAP or HPP and arrival time or cardiovascular risks. Conclusions: Hepatic perfusion values arrived at with the three methods are not interchangeable. CM and DC are less susceptible to extra-hepatic systemic factors

  19. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas.

    Science.gov (United States)

    Hojjati, Mojgan; Badve, Chaitra; Garg, Vasant; Tatsuoka, Curtis; Rogers, Lisa; Sloan, Andrew; Faulhaber, Peter; Ros, Pablo R; Wolansky, Leo J

    2018-01-01

    To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). The study included 24 patients with GBM treated with surgery, radiotherapy, and temozolomide who presented with progression on imaging follow-up. All patients underwent PET/MRI and pMRI during a single examination. Additionally, 19 of 24 patients underwent PET/CT on the same day. Diagnosis was established by pathology in 17 of 24 and by clinical/radiologic consensus in 7 of 24. For the quantitative PET/MRI and PET/CT analysis, a region of interest (ROI) was drawn around each lesion and within the contralateral white matter. Lesion to contralateral white matter ratios for relative maximum, mean, and median were calculated. For pMRI, lesion ROI was drawn on the cerebral blood volume (CBV) maps and histogram metrics were calculated. Diagnostic performance for each metric was assessed using receiver operating characteristic curve analysis and area under curve (AUC) was calculated. In 24 patients, 28 lesions were identified. For PET/MRI, relative mean ≥ 1.31 resulted in AUC of .94 with both sensitivity and negative predictive values (NPVs) of 100%. For pMRI, CBV max ≥3.32 yielded an AUC of .94 with both sensitivity and NPV measuring 100%. The joint model utilizing r-mean (PET/MRI) and CBV mode (pMRI) resulted in AUC of 1.0. Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  20. Effect of intravenous contrast agent volume on colorectal cancer vascular parameters as measured by perfusion computed tomography

    International Nuclear Information System (INIS)

    Goh, V.; Bartram, C.; Halligan, S.

    2009-01-01

    Aim: To determine the effect of two different contrast agent volumes on quantitative and semi-quantitative vascular parameters as measured by perfusion computed tomography (CT) in colorectal cancer. Materials and methods: Following ethical approval and informed consent, eight prospectively recruited patients with proven colorectal adenocarcinoma underwent two separate perfusion CT studies on the same day after (a) 100 ml and (b) 50 ml of a 340 mg/ml iodinated contrast medium, respectively. Quantitative (blood volume, blood flow, permeability surface area product) and semi-quantitative (peak enhancement, time to peak enhancement) tumour vascular parameters were determined using commercial software based on distributed parameter analysis and compared using t-testing. Results: Tumour blood volume, blood flow, and permeability surface area product were not substantially different following the injection of 100 ml and 50 ml contrast medium: 6.12 versus 6.23 ml/100 g tissue; 73.4 versus 71.3 ml/min/100 g tissue; 15.6 versus 15.3 ml/min/100 g tissue for 100 and 50 ml, respectively; p > 0.05. Tumour peak enhancement and time to peak were significantly greater following the injection of 100 ml versus 50 ml contrast medium: 41.2 versus 28.5 HU; 16.1 versus 11.8 s for 100 ml and 50 ml, respectively; p = 0.002; p = 0.0003. Conclusion: Quantitative parameters do not appear to change substantially with a higher contrast agent volume suggesting a combined diagnostic staging-perfusion CT study following a single injection is feasible for colorectal cancer

  1. Diagnostic accuracy of unenhanced, contrast-enhanced perfusion and angiographic MRI sequences for pulmonary embolism diagnosis: results of independent sequence readings

    Energy Technology Data Exchange (ETDEWEB)

    Revel, Marie Pierre [Hopital Europeen Georges Pompidou, APHP, Departments of Radiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); Hotel-Dieu, Service de Radiologie, Paris (France); Sanchez, Olivier; Meyer, Guy [Hopital Europeen Georges Pompidou, APHP, Respiratory and intensive care and, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); INSERM Unite 765, Paris (France); Lefort, Catherine; Couchon, Sophie; Hernigou, Anne; Frija, Guy [Hopital Europeen Georges Pompidou, APHP, Departments of Radiology, Paris (France); Niarra, Ralph [Hopital Europeen Georges Pompidou, APHP, Clinical Epidemiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); Chatellier, Gilles [Hopital Europeen Georges Pompidou, APHP, Clinical Epidemiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); INSERM CIC-EC E4, Paris (France)

    2013-09-15

    To independently evaluate unenhanced, contrast-enhanced perfusion and angiographic MR sequences for pulmonary embolism (PE) diagnosis. Prospective investigation, including 274 patients who underwent perfusion, unenhanced 2D steady-state-free-precession (SSFP) and contrast-enhanced 3D angiographic MR sequences on a 1.5-T unit, in addition to CTA (CT angiography). Two independent readers evaluated each sequence independently in random order. Sensitivity, specificity, predictive values and inter-reader agreement were calculated for each sequence, excluding sequences judged inconclusive. Sensitivity was also calculated according to PE location. Contrast-enhanced angiographic sequences showed the highest sensitivity (82.9 and 89.7 %, reader 1 and reader 2, respectively), specificity (98.5 and 100 %) and agreement (kappa value 0.77). Unenhanced angiographic sequences, although less sensitive overall (68.7 and 76.4 %), were sensitive for the detection of proximal PE (92.7 and 100 %) and showed high specificity (96.1 and 99.1 %) and good agreement (kappa value 0.62). Perfusion sequences showed lower sensitivity (75.0 and 79.3 %), specificity (84.8 and 89.7 %) and agreement (kappa value 0.51), and a negative predictive value of 84.8 % at best. Compared with contrast-enhanced angiographic sequences, unenhanced sequences demonstrate lower sensitivity, except for proximal PE, but high specificity and agreement. The negative predictive value of perfusion sequences was insufficient to safely rule out PE. (orig.)

  2. Assessment of brain metastases by means of dynamic susceptibility contrast enhanced MRI

    International Nuclear Information System (INIS)

    Knopp, M.; Wenz, F.; Debus, J.; Hentrich, H.R.

    2002-01-01

    Full text: To assess if pre therapeutic measurements of regional cerebral blood flow (rCBF) and volume (rCVB) are able to predict the response of brain metastases to radiation therapy and to assess the influence of radiosurgery on rCBF and rCBV on brain metastases and normal surrounding tissue. We examined 25 patients with brain metastases prior to high dose radiosurgery with conventional T1 and T2 weighted MRI and dynamic susceptibility contrast enhanced MRI (DSC MRI). For DSC MRI 55 T2*w GE images of two sections were acquired after bolus administration of 0.1 mmol/kg gadoteridol (ProHance) for the simultaneous measurement of brain feeding arteries and brain tissue. This allowed an absolute quantification of rCBF and rCBV. Follow-up examinations were performed 6 weeks and 3 months after radiotherapy and the acquired perfusion data were related to a 3 point scale of treatment outcome. Radiosurgery was performed by a linear accelerator with a 80% isodose of 18-20 Gv. For treatment planning the heads of the patients were immobilized by a cask mask to avoid head movement. DSC MRI was able to assess perfusion data in all patients. Higher pre therapeutic rCBV seems to predict a poor treatment outcome. After radiosurgery patients with tumor remission and stable disease presented a decrease of rCBV over time regardless of temporary tumor volume increase. Patients with tumor progression at the 3 month followup presented an increase of rCBV. Effects on normal surrounding tissue could not be observed. DSC MRI using Gadoteridol allows the non-invasive assessment of rCBV and rCBF of brain metastases and its changes due to radiosurgery. The method may also be able to predict treatment outcome. Furthermore radiofrequency effects on surrounding unaffected tissue can be monitored. Copyright (2002) Blackwell Science Pty Ltd

  3. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio

    2010-02-01

    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  4. Relaxivity of blood pool contrast agent depends on the host tissue as suggested by semianalytical simulations

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij

    Concentration of magnetic resonance imaging (MRI) contrast agents (CA) cannot be measured directly and is commonly determined indirectly using their relaxation effect. This requires knowledge of the relaxivity of the used CA. Quantitative perfusion studies involve measurement of CA concentration...... studies (3,4) as demonstrated in (5). It was previously found (6) that the perfusion measurements using dynamic susceptibility contrast inherently overestimate cerebral blood flow and volume. In view of the present result, this is attributed to the significant difference in the relaxivity of the CA...

  5. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  6. Quantification de la perfusion rénale par échographie de contraste, une étude pilote

    OpenAIRE

    Schneider, A.

    2013-01-01

    Mise en perspective Le rein est un organe vital dont la fonction dépend en grande partie d'une perfusion tissulaire adéquate. Les techniques actuellement utilisées pour étudier la microcirculation rénale sont soit invasives soit très dispendieuses. L'échographie de contraste est une nouvelle technologie, non invasive, facile à réaliser au lit du malade et pour laquelle certaines techniques récemment présentées semblent permettre de quantifier la perfusion d'un organe. Une telle technique p...

  7. 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent

    International Nuclear Information System (INIS)

    Fink, Christian; Ley, Sebastian; Puderbach, Michael; Plathow, Christian; Kauczor, Hans-Ulrich; Bock, Michael

    2004-01-01

    The purpose of this study was to assess the feasibility of contrast-enhanced 3D perfusion MRI and MR angiography (MRA) of pulmonary embolism (PE) in pigs using a single injection of the blood pool contrast Gadomer. PE was induced in five domestic pigs by injection of autologous blood thrombi. Contrast-enhanced first-pass 3D perfusion MRI (TE/TR/FA: 1.0 ms/2.2 ms/40 ; voxel size: 1.3 x 2.5 x 4.0 mm 3 ; TA: 1.8 s per data set) and high-resolution 3D MRA (TE/TR/FA: 1.4 ms/3.4 ms/40 ; voxel size: 0.8 x 1.0 x 1.6 mm 3 ) was performed during and after a single injection of 0.1 mmol/kg body weight of Gadomer. Image data were compared to pre-embolism Gd-DTPA-enhanced MRI and post-embolism thin-section multislice CT (n=2). SNR measurements were performed in the pulmonary arteries and lung. One animal died after induction of PE. In all other animals, perfusion MRI and MRA could be acquired after a single injection of Gadomer. At perfusion MRI, PE could be detected by typical wedge-shaped perfusion defects. While the visualization of central PE at MRA correlated well with the CT, peripheral PE were only visualized by CT. Gadomer achieved a higher peak SNR of the lungs compared to Gd-DTPA (21±8 vs. 13±3). Contrast-enhanced 3D perfusion MRI and MRA of PE can be combined using a single injection of the blood pool contrast agent Gadomer. (orig.)

  8. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    Science.gov (United States)

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  9. Effect of radiographic contrast media on renal perfusion - First results.

    Science.gov (United States)

    Lamby, P; Jung, F; Falter, J; Mrowietz, C; Graf, S; Schellenberg, L; Platz Batista da Silva, N; Prantl, L; Franke, R P; Jung, E M

    2016-01-01

    Intra-arterial administration of radiographic contrast media (CM) is discussed to impair renal perfusion. The pathogenesis of contrast-induced Nephropathy (CIN) is still not clarified. This trial was performed to prove the effects of two CM with different molecular structure on renal perfusion. A prospective, randomized study on 16 pigs was designed to compare the outcome after application of a low-osmolar iodinated CM (770 mOsm/kg H2O - Group1) and an iso-osmolar iodinated CM (290 mOsm/kg H2o - Group2).Color Coded Doppler Sonography (LOGIQ E9, GE, Milwaukee, USA) was applied for measuring the Renal Resistive Index (RRI) before and after the first, fifth, and tenth bolus of CM. Statistics was performed using analysis of variance for repeated measurements with the Factor "CM". All flow spectra were documented free of artifacts and Peak Systolic Velocity (PSV), Enddiastolic Velocity (EDV) and RRI respectively could be calculated. Mean PSV in Group 1 led to a decrease while in Group 2 PSV showed a significant increase after CM (p = 0,042). The course of the mean EDV in both groups deferred accordingly (p = 0,033). Mean RRI over time significantly deferred in both groups (p = 0,001). It showed a biphasic course in Group 2 and a decrease over time in Group 2. While iso-osmolar CM induced an increase of PSV and EDV together with a decrease of RRI, low-osmolar CM could not show this effect or rather led to the opposite.

  10. Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)

    International Nuclear Information System (INIS)

    Savvopoulou, Vasiliki; Vlahos, Lampros; Moulopoulos, Lia Angela; Maris, Thomas G.

    2008-01-01

    To investigate the influence of age, sex and spinal level on perfusion parameters of normal lumbar bone marrow with dynamic contrast-enhanced MRI (DCE MRI). Sixty-seven subjects referred for evaluation of low back pain or sciatica underwent DCE MRI of the lumbar spine. After subtraction of dynamic images, a region of interest (ROI) was placed on each lumbar vertebral body of all subjects, and time intensity curves were generated. Consequently, perfusion parameters were calculated. Statistical analysis was performed to search for perfusion differences among lumbar vertebrae and in relation to age and sex. Upper (L1, L2) and lower (L3, L4, L5) vertebrae showed significant differences in perfusion parameters (p<0.05). Vertebrae of subjects younger than 50 years showed significantly higher perfusion compared to vertebrae of older ones (p<0.05). Vertebrae of females demonstrated significantly increased perfusion compared to those of males of corresponding age (p<0.05). All perfusion parameters, except for washout (WOUT), showed a mild linear correlation with age. Time to maximum slope (TMSP) and time to peak (TTPK) showed the same correlation with sex (0.22< r<0.32, p<0.05). Our results indicate increased perfusion of the upper compared to the lower lumbar spine, of younger compared to older subjects and of females compared to males. (orig.)

  11. Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Savvopoulou, Vasiliki; Vlahos, Lampros; Moulopoulos, Lia Angela [University of Athens, Areteion Hospital, Department of Radiology, Medical School, Athens (Greece); Maris, Thomas G. [University of Crete, Deparment of Medical Physics, Faculty of Medicine, Heraklion (Greece)

    2008-09-15

    To investigate the influence of age, sex and spinal level on perfusion parameters of normal lumbar bone marrow with dynamic contrast-enhanced MRI (DCE MRI). Sixty-seven subjects referred for evaluation of low back pain or sciatica underwent DCE MRI of the lumbar spine. After subtraction of dynamic images, a region of interest (ROI) was placed on each lumbar vertebral body of all subjects, and time intensity curves were generated. Consequently, perfusion parameters were calculated. Statistical analysis was performed to search for perfusion differences among lumbar vertebrae and in relation to age and sex. Upper (L1, L2) and lower (L3, L4, L5) vertebrae showed significant differences in perfusion parameters (p<0.05). Vertebrae of subjects younger than 50 years showed significantly higher perfusion compared to vertebrae of older ones (p<0.05). Vertebrae of females demonstrated significantly increased perfusion compared to those of males of corresponding age (p<0.05). All perfusion parameters, except for washout (WOUT), showed a mild linear correlation with age. Time to maximum slope (TMSP) and time to peak (TTPK) showed the same correlation with sex (0.22perfusion of the upper compared to the lower lumbar spine, of younger compared to older subjects and of females compared to males. (orig.)

  12. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.

    Science.gov (United States)

    Stenner, Philip; Schmidt, Bernhard; Allmendinger, Thomas; Flohr, Thomas; Kachelrie, Marc

    2010-06-01

    In cardiac perfusion examinations with computed tomography (CT) large concentrations of iodine in the ventricle and in the descending aorta cause beam hardening artifacts that can lead to incorrect perfusion parameters. The aim of this study is to reduce these artifacts by performing an iterative correction and by accounting for the 3 materials soft tissue, bone, and iodine. Beam hardening corrections are either implemented as simple precorrections which cannot account for higher order beam hardening effects, or as iterative approaches that are based on segmenting the original image into material distribution images. Conventional segmentation algorithms fail to clearly distinguish between iodine and bone. Our new algorithm, DIBHC, calculates the time-dependent iodine distribution by analyzing the voxel changes of a cardiac perfusion examination (typically N approximately 15 electrocardiogram-correlated scans distributed over a total scan time up to T approximately 30 s). These voxel dynamics are due to changes in contrast agent. This prior information allows to precisely distinguish between bone and iodine and is key to DIBHC where each iteration consists of a multimaterial (soft tissue, bone, iodine) polychromatic forward projection, a raw data comparison and a filtered backprojection. Simulations with a semi-anthropomorphic dynamic phantom and clinical scans using a dual source CT scanner with 2 x 128 slices, a tube voltage of 100 kV, a tube current of 180 mAs, and a rotation time of 0.28 seconds have been carried out. The uncorrected images suffer from beam hardening artifacts that appear as dark bands connecting large concentrations of iodine in the ventricle, aorta, and bony structures. The CT-values of the affected tissue are usually underestimated by roughly 20 HU although deviations of up to 61 HU have been observed. For a quantitative evaluation circular regions of interest have been analyzed. After application of DIBHC the mean values obtained deviate by

  13. Hepatic computed tomography perfusion. Comparison of maximum slope and dual-input single-compartment methods

    International Nuclear Information System (INIS)

    Kanda, Tomonori; Yoshikawa, Takeshi; Ohno, Yoshiharu; Kanata, Naoki; Koyama, Hisanobu; Nogami, Munenobu; Takenaka, Daisuke; Sugimura, Kazuro

    2010-01-01

    The aim of the study was to compare two analytical methods-maximum slope (MS) and the dualinput single-compartment model (CM)-in computed tomography (CT) measurements of hepatic perfusion and to assess the effects of extrahepatic systemic factors. A total of 109 patients underwent hepatic CT perfusion. The scans were conducted at the hepatic hilum 7-77 s after administration of contrast material. Hepatic arterial perfusion (HAP) and portal perfusion (HPP) (ml/min/100 ml) and the arterial perfusion fraction (APF, %) were calculated with the two methods, followed by correlation assessment. Partial correlation analysis was used to assess the effects on hepatic perfusion values by various factors, including age, sex, risk of cardiovascular disease, compensation for respiratory misregistration, arrival time of contrast material at the abdominal aorta, transit time from abdominal aorta to hepatic parenchyma, and liver dysfunction. The mean HAPs, HPPs, and APFs were, respectively, 31.4, 104.2, and 23.9 for MS and 27.1, 141.3, and 22.1 for CM. HAP and APF showed significant (P<0.0001) and moderate correlation (γ=0.417 and 0.548) and HPP showed poor correlation (γ=0.172) between the two methods. While MS showed weak correlations (γ=-0.39 to 0.34; P<0.001 to <0.02) between multiple extrahepatic factors and perfusion values, CM showed weak correlation only between the patients' sex and HAP (γ=0.31, P=0.001). Hepatic perfusion values estimated by the two methods are not interchangeable. CM is less susceptible to extrahepatic systemic factors. (author)

  14. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    Energy Technology Data Exchange (ETDEWEB)

    Slapa, Rafal Z., E-mail: rz.slapa@gmail.com [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Kasperlik–Zaluska, Anna A. [Endocrinology Department, Center for Postgraduate Medical Education, Bielanski Hospital, Warsaw (Poland); Migda, Bartosz [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Otto, Maciej [Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, First Faculty of Medicine, Warsaw (Poland); Jakubowski, Wiesław S. [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland)

    2015-08-15

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients.

  15. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    International Nuclear Information System (INIS)

    Slapa, Rafal Z.; Kasperlik–Zaluska, Anna A.; Migda, Bartosz; Otto, Maciej; Jakubowski, Wiesław S.

    2015-01-01

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients

  16. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    Science.gov (United States)

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Dynamic contrast-enhanced perfusion studies of the brain with snapshot FLASH

    International Nuclear Information System (INIS)

    Finelli, D.A.; Kiefer, B.; Deimling, M.; Loeffler, W.; Haase, A.; Schuierer, G.

    1989-01-01

    This paper discusses how MR imaging with Gd-DTPA can improve the diagnostic accuracy of brain examinations. Conventional T1-weighted spin-echo sequences have been most satisfactory for depicting lesion enhancement following Gd-DTPA administration, however, the ability to examine the blood pool and early biodistribution phases has been limited. A new ultrafast MR imaging technique called Snapshot FLASH allows one to acquire entire images in 125-900 msec, with strong T1- or T2-weighted contrast. With this imaging technique, one can observe differential perfusion to the gray matter, while matter, and brain lesions during the first seconds following Gd-DTPA administration

  18. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Cao, Dairong [First Affiliated Hospital of Fujian Medical University, Department of Radiology, Fuzhou, Fujian (China); Wang, Xingfu [First Affiliated Hospital of Fujian Medical University, Department of Pathology, Fuzhou (China)

    2017-06-15

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice. (orig.)

  19. Rest-Stress Limb Perfusion Imaging in Humans with Contrast Ultrasound Using Intermediate-Power Imaging and Microbubbles Resistant to Inertial Cavitation.

    Science.gov (United States)

    Davidson, Brian P; Hodovan, James; Belcik, J Todd; Moccetti, Federico; Xie, Aris; Ammi, Azzdine Y; Lindner, Jonathan R

    2017-05-01

    Contrast-enhanced ultrasound (CEU) limb perfusion imaging is a promising approach for evaluating peripheral artery disease (PAD). However, low signal enhancement in skeletal muscle has necessitated high-power intermittent imaging algorithms, which are not clinically feasible. We hypothesized that CEU using a combination of intermediate power and a contrast agent resistant to inertial cavitation would allow real-time limb stress perfusion imaging. In normal volunteers, CEU of the calf skeletal muscle was performed on separate days with Sonazoid, Optison, or Definity. Progressive reduction in the ultrasound pulsing interval was used to assess the balance between signal enhancement and agent destruction at escalating mechanical indices (MI, 0.1-0.4). Real-time perfusion imaging at MI 0.1-0.4 using postdestructive replenishment kinetics was performed at rest and during 25 W plantar flexion contractile exercise. For Optison, limb perfusion imaging was unreliable at rest due to very low signal enhancement generated at all MIs and was possible during exercise-induced hyperemia only at MI 0.1 due to agent destruction at higher MIs. For Definity, signal intensity progressively increased with MI but was offset by microbubble destruction, which resulted in modest signal enhancement during CEU perfusion imaging and distortion of replenishment curves at MI ≥ 0.2. For Sonazoid, there strong signal enhancement at MI ≥ 0.2, with little destruction detected only at MI 0.4. Accordingly, high signal intensity and nondistorted perfusion imaging was possible at MI 0.2-0.3 and detected an 8.0- ± 5.7-fold flow reserve. Rest-stress limb perfusion imaging in humans with real-time CEU, which requires only seconds to perform, is possible using microbubbles with viscoelastic properties that produce strong nonlinear signal generation without destruction at intermediate acoustic pressures. Copyright © 2016 American Society of Echocardiography. All rights reserved.

  20. Perfusion dyssynchrony analysis

    NARCIS (Netherlands)

    Chiribiri, A.; Villa, A.D.M.; Sammut, E.; Breeuwer, M.; Nagel, E.

    2015-01-01

    AIMS: We sought to describe perfusion dyssynchrony analysis specifically to exploit the high temporal resolution of stress perfusion CMR. This novel approach detects differences in the temporal distribution of the wash-in of contrast agent across the left ventricular wall. METHODS AND RESULTS:

  1. MRI for the assessment of organ perfusion in patients with chronic kidney disease.

    Science.gov (United States)

    Odudu, Aghogho; Francis, Susan T; McIntyre, Christopher W

    2012-11-01

    Recent data have highlighted the importance of quantitative measures of organ perfusion and functional reserve. Magnetic resonance imaging allows the assessment of markers of perfusion without the use of contrast media. Techniques such as arterial spin labelling (ASL) and blood oxygen level-dependent (BOLD) imaging have been available for some time, but advances in the technology and concerns over the safety of contrast media in renal disease have spurred renewed interest and development. ASL measures perfusion, whereas BOLD imaging provides a marker of blood oxygenation, arising from the compound effect of a number of measures including perfusion, blood volume and oxygen consumption; thus, the techniques are complementary rather than analogous. They were initially confined to brain imaging as inherently low signal, susceptibility effects and motion limited their use in thoracic and abdominal organs. Advances in technology have led to robust sequences that can quantify clinically relevant changes and correlate well with reference standards. Novel approaches are likely to accelerate translation into clinical practice. The noninvasive and repeatable nature of ASL and BOLD imaging makes it likely that they will be increasingly used in clinical research. Using a developmental framework, we suggest that the application of these techniques to thoracic and abdominal organs requires validation before they are suitable for generalized clinical use. The demand for these techniques is likely to be driven by the incentive to avoid the use of contrast media.

  2. Interobserver Variation of the Bolus-and-Burst Method for Pancreatic Perfusion with Dynamic – Contrast-Enhanced Ultrasound

    Czech Academy of Sciences Publication Activity Database

    Stangeland, M.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Gilja, O.H.; Dimcevski, G.; Nylund, K.

    2017-01-01

    Roč. 3, č. 3 (2017), E99-E106 E-ISSN 2199-7152 Institutional support: RVO:68081731 Keywords : interobserver * dynamic contrast-enhanced ultrasound * perfusion * pancreas Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Medical engineering https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0043-110475

  3. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Nielsen, Gitte; Hansen, Thomas Fritz; Dirks, Christina G

    2004-01-01

    with acute transmural myocardial infarction were studied using a Turbo-fast low angle shot (FLASH) MRI sequence to monitor the first pass of an extravascular contrast agent (CA), gadolinium diethylene triamine pentaacetic acid (Gd-DTPA). Quantitation of perfusion, expressed as Ki (mL/100 g/minute), in five...

  4. Multimodality functional imaging of spontaneous canine tumors using 64CU-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT

    DEFF Research Database (Denmark)

    Hansen, Anders E; Kristensen, Annemarie T; Law, Ian

    2012-01-01

    To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated.......To compare the distribution and uptake of the hypoxia tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition (64)Cu-ATSM distribution over time was evaluated....

  5. The optimal use of contrast agents at high field MRI

    International Nuclear Information System (INIS)

    Trattnig, Siegfried; Pinker, Kathia; Ba-Ssalamah, Ahmed; Noebauer-Huhmann, Iris-Melanie

    2006-01-01

    The intravenous administration of a standard dose of conventional gadolinium-based contrast agents produces higher contrast between the tumor and normal brain at 3.0 Tesla (T) than at 1.5 T, which allows reducing the dose to half of the standard one to produce similar contrast at 3.0 T compared to 1.5 T. The assessment of cumulative triple-dose 3.0 T images obtained the best results in the detection of brain metastases compared to other sequences. The contrast agent dose for dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging at 3.0 T can be reduced to 0.1 mmol compared to 0.2 mmol at 1.5 T due to the increased susceptibility effects at higher magnetic field strengths. Contrast agent application makes susceptibility-weighted imaging (SWI) at 3.0 T clinically attractive, with an increase in spatial resolution within the same scan time. Whereas a double dose of conventional gadolinium-based contrast agents was optimal in SWI with respect to sensitivity and image quality, a standard dose of gadobenate dimeglumine, which has a two-fold higher T1-relaxivity in blood, produced the same effect. For MR-arthrography, optimized concentrations of gadolinium-based contrast agents are similar at 3.0 and 1.5 T. In summary, high field MRI requires the optimization of the contrast agent dose in different clinical applications. (orig.)

  6. Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease

    International Nuclear Information System (INIS)

    Amarteifio, E.; Wormsbecher, S.; Krix, M.; Demirel, S.; Braun, S.; Delorme, S.; Böckler, D.; Kauczor, H.-U.; Weber, M.-A.

    2012-01-01

    Objective: To quantify muscular micro-perfusion and arterial perfusion reserve in peripheral arterial disease (PAD) with dynamic contrast-enhanced ultrasound (CEUS) and transient arterial occlusion. Materials and methods: This study had local institutional review board approval and written informed consent was obtained from all subjects. We examined the dominant lower leg of 40 PAD Fontaine stage IIb patients (mean age, 65 years) and 40 healthy volunteers (mean age, 54 years) with CEUS (7 MHz; MI, 0.28) during continuous intravenous infusion of 4.8 mL microbubbles. Transient arterial occlusion at mid-thigh level simulated physical exercise. With time–CEUS–intensity curves obtained from regions of interest within calf muscles, we derived the maximum CEUS signal after occlusion (max) and its time (t max ), slope to maximum (m), vascular response after occlusion (AUC post ), and analysed accuracy, receiver operating characteristic (ROC) curves, and correlations with ankle-brachial index (ABI) and walking distance. Results: All parameters differed in PAD and volunteers (p max was delayed (31.2 ± 13.6 vs. 16.7 ± 8.5 s, p post as optimal parameter combination for diagnosing PAD and therefore impaired arterial perfusion reserve. Conclusions: Dynamic CEUS with transient arterial occlusion quantifies muscular micro-perfusion and arterial perfusion reserve. The technique is accurate to diagnose PAD.

  7. No detectable nephrotoxic side effect using a dimer, non-ionic contrast media in cerebral perfusion computed tomography in case of suspected brain ischemia

    International Nuclear Information System (INIS)

    Petrik, M.; Weigel, C.; Kirsch, M.; Hosten, N.

    2005-01-01

    Purpose: In suspected brain ischemia, the perfusion cerebral computed tomography (cCT) should be performed with the lowest amount of contrast media to avoid a contrast media induced nephropathy (CIN) even if the patient already is in renal failure. We were interested to find the best parameters for this examination. Material and methods: From February 2000 to March 2003, 138 patients (58 females, 80 males, mean age 66.8 years) underwent cCT-perfusion immediately after the admission to our stroke unit. Of these patients, 62% (n=86) had normal renal function and 38% (n=52) renal failure (up to 381 μmol/l basic serum creatinine). We varied volume (20-80 ml), flow (5 vs. 7.2. ml/s) and concentration (270 vs. 320 ml/mg iodine) of a dimer, non-ionic contrast media (Visipaque registered ) to establish 5 groups. So we got patients receiving 6 g, 12 g, 16 g, 19 g and 25 g of iodine. After generating the perfusion maps, two radiologists reviewed the quality of the maps and scored it (1-5). We measured the serum creatinine before contrast application and at follow up cCt (days 3 and 7). Results: The quality of the maps increases with increasing amount of iodine. However, the diagnostic result was not significantly better using more than about 16 g of iodine (e.g., 60 ml-7.2 ml/s - 270 mg/ml) in cCT-perfusion studies. Only one patient had a pathologic increase in serum creatinine (day 1: 93; day 4: 146 μmol/l) but died at day 5 because of massive co-morbidity and septic pneumonia. No CIN occurred even in the patient group with pre-existent renal failure. Conclusions: About 60 ml contrast media and a moderate flow rate of about 7 ml/s ensure good results in perfusion-cCT, even if the patients have poor blood circulation or arteriosclerosis. The use of a dimer, non-ionic contrast media (range of 6-25 g iodine) seems to minimize the risk of CIN in the daily routine. (orig.)

  8. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging

    International Nuclear Information System (INIS)

    Boll, Daniel T.; Lewin, Jonathan S.; Young, Philip; Gilkeson, Robert C.; Siwik, Ernest S.

    2005-01-01

    The aim of this work was to assess magnetic resonance (MR) perfusion patterns of chronic, nonembolic pulmonary diseases of congenital and neoplastic origin and to compare the findings with results obtained with pulmonary, contrast-enhanced multislice computed tomography (CT) imaging to prove that congenital and neoplastic pulmonary conditions require MR imaging over the pulmonary perfusion cycle to successfully and directly detect changes in lung perfusion patterns. Twenty-five patients underwent concurrent CT and MR evaluation of chronic pulmonary diseases of congenital (n=15) or neoplastic (n=10) origin. Analysis of MR perfusion and contrast-enhanced CT datasets was realized by defining pulmonary and vascular regions of interest in corresponding positions. MR perfusion calculated time-to-peak enhancement, maximal enhancement and the area under the perfusion curve. CT datasets provided pulmonary signal-to-noise ratio measurements. Vessel centerlines of bronchial arteries were determined. Underlying perfusion type, such as pulmonary arterial or systemic arterial supply, as well as regions with significant variations in perfusion were determined statistically. Analysis of the pulmonary perfusion pattern detected pulmonary arterial supply in 19 patients; six patients showed systemic arterial supply. In pulmonary arterial perfusion, MR and multislice CT imaging consistently detected the perfusion type and regions with altered perfusion patterns. In bronchial arterial supply, MR perfusion and CT imaging showed significant perfusion differences. Patients with bronchial arterial supply had bronchial arteries ranging from 2.0 to 3.6 mm compared with submillimeter diameters in pulmonary arterial perfusion. Dynamic MR imaging of congenital and neoplastic pulmonary conditions allowed characterization of the pulmonary perfusion type. CT imaging suggested the presence of systemic arterial perfusion by visualizing hypertrophied bronchial arteries. (orig.)

  9. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Jiji Ronny S

    2013-01-01

    Full Text Available Abstract Background The purpose was to determine the reproducibility and utility of rest, exercise, and perfusion reserve (PR measures by contrast-enhanced (CE calf perfusion magnetic resonance imaging (MRI of the calf in normal subjects (NL and patients with peripheral arterial disease (PAD. Methods Eleven PAD patients with claudication (ankle-brachial index 0.67 ±0.14 and 16 age-matched NL underwent symptom-limited CE-MRI using a pedal ergometer. Tissue perfusion and arterial input were measured at rest and peak exercise after injection of 0.1 mM/kg of gadolinium-diethylnetriamine pentaacetic acid (Gd-DTPA. Tissue function (TF and arterial input function (AIF measurements were made from the slope of time-intensity curves in muscle and artery, respectively, and normalized to proton density signal to correct for coil inhomogeneity. Perfusion index (PI = TF/AIF. Perfusion reserve (PR = exercise TF/ rest TF. Intraclass correlation coefficient (ICC was calculated from 11 NL and 10 PAD with repeated MRI on a different day. Results Resting TF was low in NL and PAD (mean ± SD 0.25 ± 0.18 vs 0.35 ± 0.71, p = 0.59 but reproducible (ICC 0.76. Exercise TF was higher in NL than PAD (5.5 ± 3.2 vs. 3.4 ± 1.6, p = 0.04. Perfusion reserve was similar between groups and highly variable (28.6 ± 19.8 vs. 42.6 ± 41.0, p = 0.26. Exercise TF and PI were reproducible measures (ICC 0.63 and 0.60, respectively. Conclusion Although rest measures are reproducible, they are quite low, do not distinguish NL from PAD, and lead to variability in perfusion reserve measures. Exercise TF and PI are the most reproducible MRI perfusion measures in PAD for use in clinical trials.

  10. Contrast-enhanced MRI of the lung

    International Nuclear Information System (INIS)

    Kauczor, Hans-Ulrich; Kreitner, Karl-Friedrich

    2000-01-01

    The lung has long been neglected by MR imaging. This is due to unique intrinsic difficulties: (1) signal loss due to cardiac pulsation and respiration; (2) susceptibility artifacts caused by multiple air-tissue interfaces; (3) low proton density. There are many MR strategies to overcome these problems. They consist of breath-hold imaging, respiratory and cardiac gating procedures, use of short repetition and echo times, increase of the relaxivity of existing spins by administration of intravenous contrast agents, and enrichment of spin density by hyperpolarized noble gases or oxygen. Improvements in scanner performance and frequent use of contrast media have increased the interest in MR imaging and MR angiography of the lung. They can be used on a routine basis for the following indications: characterization of pulmonary nodules, staging of bronchogenic carcinoma, in particular assessment of chest wall invasion; evaluation of inflammatory activity in interstitial lung disease; acute pulmonary embolism, chronic thromboembolic pulmonary hypertension, vascular involvement in malignant disease; vascular abnormalities. Future perspectives include perfusion imaging using extracellular or intravascular (blood pool) contrast agents and ventilation imaging using inhalation of hyperpolarized noble gases, of paramagnetic oxygen or of aerosolized contrast agents. These techniques represent new approaches to functional lung imaging. The combination of visualization of morphology and functional assessment of ventilation and perfusion is unequalled by any other technique

  11. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors.

    Science.gov (United States)

    Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-06-01

    Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.

  12. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia.

    Science.gov (United States)

    Nardini, Giordano; Di Girolamo, Nicola; Leopardi, Stefania; Paganelli, Irene; Zaghini, Anna; Origgi, Francesco C; Vignoli, Massimo

    2014-05-13

    Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions.

  13. Measurement of perfusion using the first-pass dynamic susceptibility-weighted contrast-enhanced (DSC) MRI in neurooncology. Physical basics and clinical applications; Perfusionsmessung mit der T2*-Kontrastmitteldynamik in der Neuroonkologie. Physikalische Grundlagen und klinische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.-A.; Giesel, F.L.; Kauczor, H.-U.; Essig, M. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg (Germany). Abteilung Radiologie; Risse, F.; Schad, L.R. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg (Germany). Abteilung Medizinische Physik in der Radiologie

    2005-07-01

    Perfusion imaging in the central nervous system (CNS) is mostly performed using the first-pass dynamic susceptibility-weighted contrast-enhanced (DSC) MRI. The first-pass of a contrast bolus in brain tissue is monitored by a series of T2*-weighted MR images. The susceptibility effect of the paramagnetic contrast agent leads to a signal loss that can be converted, using the principles of the indicator dilution theory, into an increase of the contrast agent concentration. From these data, parameter maps of cerebral blood volume (CBV) and flow (CBF) can be derived. Regional CBF and CBV values can be obtained by region-of-interest analysis. This review article describes physical basics of DSC MRI and summarizes the literature of DSC MRI in neurooncological issues. Studies, all with relatively limited patient numbers, report that DSC MRI is useful in the preoperative diagnosis of gliomas, CNS-lymphomas, and solitary metastases, as well as in the differentiation of these neoplastic lesions from infections and tumor-like manifestations of demyelinating disease. Additionally, DSC MRI is suitable for determining glioma grade and regions of active tumor growth which should be the target of stereotactic biopsy. After therapy, DSC MRI helps better assessing the tumor response to therapy, residual tumor after therapy, and possible treatment failure and therapy-related complications, such as radiation necrosis. The preliminary results show that DSC MRI is a diagnostic tool depicting regional variations in microvasculature of normal and diseased brains. (orig.) [German] Die MRT-Perfusionsmessungen im Zentralnervensystem (ZNS) werden derzeit hauptsaechlich mit der kontrastmittelverstaerkten T2*-Dynamik durchgefuehrt, die die Passage eines schnellen Kontrastmittelbolus mit einer Serie von T2*-gewichteten MRT-Aufnahmen verfolgt und charakterisiert. Dabei wird der Signalabfall, bedingt durch den Suszeptibilitaetseffekt des paramagnetischen Kontrastmittels, mittels geeigneter

  14. Perfusion MRI in CNS disease: current concepts

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Le-Huu, M.; Stieltjes, B.; Tengg, H. von; Weber, M.-A.

    2004-01-01

    Today there are several indications for cerebral perfusion MRI. The major indications routinely used in increasing numbers of imaging centers include cerebrovascular disease, tumor imaging and recently psychiatric disorders. Perfusion MRI is based on the injection of a gadolinium chelate and the rapid acquisition of images as the bolus of contrast agent passes through the blood vessels in the brain. The contrast agent causes a signal change; this signal change over time can be analysed to measure cerebral hemodynamics. The quality of brain perfusion studies is very dependent on the contrast agent used: a robust and strong signal decrease with a compact bolus is needed. MultiHance (gadobenate dimeglumine, Gd-BOPTA) is the first of a new class of paramagnetic MR contrast agents with a weak affinity for serum proteins. Due to the interaction of Gd-BOPTA with serum albumin, MultiHance presents with significantly higher T1- and T2-relaxivities enabling a sharper bolus profile. This article reviews the indications of perfusion MRI and the performance of MultiHance in MR perfusion of different diseases. Previous studies using perfusion MRI for a variety of purposes required the use of double dose of contrast agent to achieve a sufficiently large signal drop to enable the acquisition of a clear input function and the calculation of perfusion rCBV and rCBF maps of adequate quality. Recent studies with Multi-Hance suggest that only a single dose of this agent is needed to cause a signal drop of about 30% which is sufficient to allow the calculation of high quality rCBV and rCBF maps. (orig.)

  15. Perfusion magnetic resonance imaging provides additional information as compared to anatomical imaging for decision-making in vestibular schwannoma

    International Nuclear Information System (INIS)

    Kleijwegt, M.C.; Mey, A.G.L. van der; Wiggers-deBruine, F.T.; Malessy, M.J.A; Osch, M.J.P. van

    2016-01-01

    •DSC/ASL-MRI can be acquired in growing VS with sufficient image quality.•In most patients DSC and ASL techniques provide similar qualitative scores.•These techniques can be of importance in future decision-making. DSC/ASL-MRI can be acquired in growing VS with sufficient image quality. In most patients DSC and ASL techniques provide similar qualitative scores. These techniques can be of importance in future decision-making. The added value of perfusion MRI for decision-making in vestibular schwannoma (VS) patients is unknown. MRI offers two perfusion methods: the first employing contrast agent (dynamic susceptibility contrast (DSC)-MRI) that provides information on cerebral blood volume (CBV) and cerebral blood flow (CBF), the second by magnetic labeling of blood (arterial spin labeling (ASL)-MRI), providing CBF-images. The goal of the current study is to investigate whether DSC and ASL perfusion MRI provides complimentary information to current anatomical imaging in treatment selection process of VS. Nine patients with growing VS with extrameatal diameter >9 mm were included (>2 mm/year and 20% volume expansion/year) and one patient with 23 mm extrameatal VS without growth. DSC and ASL perfusion MRI were obtained on 3 T MRI. Perfusion in VS was scored as hyperintense, hypointense or isointense compared to the contralateral region. Seven patients showed hyperintense signal on DSC and ASL sequences. Three patients showed iso- or hypointense signal on at least one perfusion map (1 patient hypointense on both DSC-MRI and ASL; 1 patient isointense on DSC-CBF; 1 patient isointense on ASL). All patients showed enhancement on post-contrast T1 anatomical scan. Perfusion MR provides additional information compared to anatomical imaging for decision-making in VS

  16. Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Moran [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Liberman, Gilad; Vitinshtein, Faina; Aizenstein, Orna [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Nadav, Guy [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Faculty of Engineering, Tel Aviv (Israel); Blumenthal, Deborah T.; Bokstein, Felix [Tel Aviv Sourasky Medical Center, Neuro-Oncology Service, Tel Aviv (Israel); Bashat, Dafna Ben [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv (Israel)

    2015-07-15

    Cerebral blood volume (CBV) is an important parameter for the assessment of brain tumors, usually obtained using dynamic susceptibility contrast (DSC) MRI. However, this method often suffers from low spatial resolution and high sensitivity to susceptibility artifacts and usually does not take into account the effect of tissue permeability. The plasma volume (v{sub p}) can also be extracted from dynamic contrast enhancement (DCE) MRI. The aim of this study was to investigate whether DCE can be used for the measurement of cerebral blood volume in place of DSC for the assessment of patients with brain tumors. Twenty-eight subjects (17 healthy subjects and 11 patients with glioblastoma) were scanned using DCE and DSC. v{sub p} and CBV values were measured and compared in different brain components in healthy subjects and in the tumor area in patients. Significant high correlations were detected between v{sub p} and CBV in healthy subjects in the different brain components; white matter, gray matter, and arteries, correlating with the known increased tissue vascularity, and within the tumor area in patients. This work proposes the use of DCE as an alternative method to DSC for the assessment of blood volume, given the advantages of its higher spatial resolution, its lower sensitivity to susceptibility artifacts, and its ability to provide additional information regarding tissue permeability. (orig.)

  17. Quantitative perfusion imaging in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zoellner, F.G.; Gaa, T.; Zimmer, F.; Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M.

    2016-01-01

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [de

  18. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C. [University of Sheffield (United Kingdom); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, KobeUniversity Graduate School of Medicine, Kobe, Hyogo (Japan); Schiebler, Mark [UW-Madison School of Medicine and Public Health, Madison, WI (United States); Wild, Jim M., E-mail: j.m.wild@sheffield.ac.uk [University of Sheffield (United Kingdom)

    2017-01-15

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  19. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    International Nuclear Information System (INIS)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C.; Ohno, Yoshiharu; Schiebler, Mark; Wild, Jim M.

    2017-01-01

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  20. Assessment of local changes of cerebral perfusion and blood concentration by ultrasound harmonic B-mode contrast measurement in piglet.

    NARCIS (Netherlands)

    Wijk, M.C. van; Klaessens, J.H.G.M.; Hopman, J.C.W.; Liem, K.D.; Thijssen, J.M.

    2003-01-01

    This study tested the hypothesis that changes in the blood concentration, and possibly in the perfusion, of different areas in the brain can be assessed by the use of ultrasound contrast agent (CA) and (linear) echo densitometry. The experiments were performed with piglets (n=3) under general

  1. Hepatic perfusion during hepatic artery infusion chemotherapy: Evaluation with perfusion CT and perfusion scintigraphy

    International Nuclear Information System (INIS)

    Miller, D.L.; Carrasquillo, J.A.; Lutz, R.J.; Chang, A.E.

    1989-01-01

    The standard method for the evaluation of hepatic perfusion during hepatic artery infusion (HAI) chemotherapy is planar hepatic artery perfusion scintigraphy (HAPS). Planar HAPS was performed with 2 mCi of [99mTc] macroaggregated albumin infused at 1 ml/min and compared with single photon emission CT (SPECT) HAPS and with a new study, CT performed during the slow injection of contrast material through the HAI catheter (HAI-CT). Thirteen patients underwent 16 HAI-CT studies, 14 planar HAPS studies, and 9 SPECT HAPS studies. In 13 of 14 studies (93%) HAI-CT and planar HAPS were in complete agreement as to the perfusion pattern of intrahepatic metastases and normal liver. In nine studies where all modalities were performed, the findings identified by HAI-CT and planar HAPS agreed in all cases, whereas the results of two SPECT scans disagreed with the other studies. With respect to perfusion of individual metastases, 14 of 14 HAI-CT studies, 12 of 13 planar HAPS studies, and 9 of 9 SPECT HAPS studies correctly demonstrated the perfusion status of individual lesions as indicated by the pattern of changes in tumor size determined on CT obtained before and after the perfusion studies. Hepatic artery infusion CT was superior for delineation of individual metastases, particularly small lesions, and for the evaluation of nonperfused portions of the liver. Planar HAPS detected extrahepatic perfusion in four patients, and this was not detected by HAI-CT. We conclude that HAI-CT and scintigraphy are complementary techniques. Hepatic artery infusion CT has advantages for the evaluation of intrahepatic perfusion, and planar HAPS is superior to HAI-CT for the detection of extrahepatic perfusion

  2. Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients

    Energy Technology Data Exchange (ETDEWEB)

    Ulyte, Agne [Vilnius University, Faculty of Medicine, Vilnius (Lithuania); Katsaros, Vasileios K. [General Anticancer and Oncological Hospital ' ' St. Savvas' ' , Department of Advanced Imaging Modalities - CT and MRI, Athens (Greece); University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); Liouta, Evangelia; Stranjalis, Georgios [University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); Boskos, Christos [University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); General Anticancer and Oncological Hospital ' ' St. Savvas' ' , Department of Radiation Oncology, Athens (Greece); Papanikolaou, Nickolas [Champalimaud Foundation, Department of Radiology, Centre for the Unknown, Lisbon (Portugal); Usinskiene, Jurgita [National Cancer Institute, Vilnius (Lithuania); Affidea Lietuva, Vilnius (Lithuania); Bisdas, Sotirios [University College London Hospitals, Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2016-12-15

    The prognostic value of the dynamic contrast-enhanced (DCE) MRI perfusion and its histogram analysis-derived metrics is not well established for high-grade glioma (HGG) patients. The aim of this prospective study was to investigate DCE perfusion transfer coefficient (K{sup trans}), vascular plasma volume fraction (v{sub p}), extracellular volume fraction (v{sub e}), reverse transfer constant (k{sub ep}), and initial area under gadolinium concentration time curve (IAUGC) as predictors of progression-free (PFS) and overall survival (OS) in HGG patients. Sixty-nine patients with suspected anaplastic astrocytoma or glioblastoma underwent preoperative DCE-MRI scans. DCE perfusion whole tumor region histogram parameters, clinical details, and PFS and OS data were obtained. Univariate, multivariate, and Kaplan-Meier survival analyses were conducted. Receiver operating characteristic (ROC) curve analysis was employed to identify perfusion parameters with the best differentiation performance. On univariate analysis, v{sub e} and skewness of v{sub p} had significant negative impacts, while k{sub ep} had significant positive impact on OS (P < 0.05). v{sub e} was also a negative predictor of PFS (P < 0.05). Patients with lower v{sub e} and IAUGC had longer median PFS and OS on Kaplan-Meier analysis (P < 0.05). K{sup trans} and v{sub e} could also differentiate grade III from IV gliomas (area under the curve 0.819 and 0.791, respectively). High v{sub e} is a consistent predictor of worse PFS and OS in HGG glioma patients. v{sub p} skewness and k{sub ep} are also predictive for OS. K{sup trans} and v{sub e} demonstrated the best diagnostic performance for differentiating grade III from IV gliomas. (orig.)

  3. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tze Min Wah

    2018-01-01

    Full Text Available Aim: To investigate if the early treatment effects of radiofrequency ablation (RFA on renal cell carcinoma (RCC can be detected with dynamic contrast enhanced (DCE-MRI and to correlate RCC perfusion with RFA treatment time. Materials and methods: 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. Results: DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm. Perfusion of the RCCs decreased significantly (p < 0.0001 from a mean of 203 (±80 mL/min/100 mL before RFA to 8.1 (±3.1 mL/min/100 mL after RFA with low intra-observer variability (r ≥ 0.99, p < 0.0001. There was an excellent correlation (r = 0.95 between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. Conclusion: DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  4. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    Science.gov (United States)

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  5. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  6. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.

    Science.gov (United States)

    Guest, James R; Baird, Andrew H; Maynard, Jeffrey A; Muttaqin, Efin; Edwards, Alasdair J; Campbell, Stuart J; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pBleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died. The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.

  7. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Su-Chin [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan, Republic of China and Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Cheng, Cheng-Chieh [Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States); Chang, Hing-Chiu [Department of Diagnostic Radiology, The University of Hong Kong (Hong Kong); Chung, Hsiao-Wen [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan (China); Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan (China); Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China); Chiu, Hui-Chu [Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 300, Taiwan (China); Liu, Yi-Jui [Department of Automatic Control Engineering, Feng-Chia University, Taichung 407, Taiwan (China); Hsu, Hsian-He; Juan, Chun-Jung, E-mail: peterjuancj@yahoo.com.tw [Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan and Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan (China)

    2016-04-15

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  8. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu; Chung, Hsiao-Wen; Chiu, Hui-Chu; Liu, Yi-Jui; Hsu, Hsian-He; Juan, Chun-Jung

    2016-01-01

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s"−"1) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s"−"1, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  9. Blood Perfusion in Human Eyelid Skin Flaps Examined by Laser Speckle Contrast Imaging-Importance of Flap Length and the Use of Diathermy.

    Science.gov (United States)

    Nguyen, Cu Dinh; Hult, Jenny; Sheikh, Rafi; Tenland, Kajsa; Dahlstrand, Ulf; Lindstedt, Sandra; Malmsjö, Malin

    2017-10-11

    It is well known that blood perfusion is important for the survival of skin flaps. As no study has been conducted to investigate how the blood perfusion in human eyelid skin flaps is affected by the flap length and diathermy, the present study was carried out to investigate these in patients. Fifteen upper eyelids were dissected as part of a blepharoplastic procedure, releasing a 30-mm long piece of skin, while allowing the 5 mm wide distal part of the skin to remain attached, to mimic a skin flap (hereafter called a "skin flap"). Blood perfusion was measured before and after repeated diathermy, using laser speckle contrast imaging. Blood perfusion decreased from the base to the tip of the flap: 5 mm from the base, the perfusion was 69%, at 10 mm it was 40%, at 15 mm it was 20%, and at 20 mm it was only 13% of baseline values. Diathermy further decreased blood perfusion (measured 15 mm from the base) to 13% after applying diathermy for the first time, to 6% after the second and to 4% after the third applications of diathermy. Blood perfusion falls rapidly with distance from the base of skin flaps on the human eyelid, and diathermy reduces blood perfusion even further. Clinically, it may be advised that flaps with a width of 5 mm be no longer than 15 mm (i.e., a width:length ratio of 1:3), and that the use of diathermy should be carefully considered.

  10. Measurement of extracellular volume and transit time heterogeneity using contrast-enhanced myocardial perfusion MRI in patients after acute myocardial infarction.

    Science.gov (United States)

    Kunze, Karl P; Rischpler, Christoph; Hayes, Carmel; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Haase, Axel; Schwaiger, Markus; Nekolla, Stephan G

    2017-06-01

    To assess the ability of dynamic contrast-enhanced myocardial perfusion MRI to measure extracellular volume (ECV) and to investigate the possibility of estimating capillary transit time heterogeneity (CTH) in patients after myocardial infarction and successful revascularization. Twenty-four perfusion data sets were acquired on a 3 Tesla positron emission tomography (PET)/MRI scanner. Three perfusion models of different complexity were implemented in a hierarchical fashion with an Akaike information criterion being used to determine the number of fit parameters supported by the data. Results were compared sector-wise to ECV from an equilibrium T 1 mapping method (modified look-locker inversion recovery (MOLLI)). ECV derived from the perfusion analysis correlated well with equilibrium measurements (R² = 0.76). Estimation of CTH was supported in 16% of sectors (mostly remote). Inclusion of a nonzero CTH parameter usually led to lower estimates of first-pass extraction and slightly higher estimates of blood volume and flow. Estimation of the capillary permeability-surface area product was feasible in 81% of sectors. Transit time heterogeneity has a measurable effect on the kinetic analysis of myocardial perfusion MRI data, and Gd-DTPA extravasation in the myocardium is usually not flow-limited in infarct-related pathology. Measurement of myocardial ECV using perfusion imaging could provide a scan-time efficient alternative to methods based on T 1 mapping. Magn Reson Med 77:2320-2330, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  12. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  13. Differentiating between Central Nervous System Lymphoma and High-grade Glioma Using Dynamic Susceptibility Contrast and Dynamic Contrast-enhanced MR Imaging with Histogram Analysis.

    Science.gov (United States)

    Murayama, Kazuhiro; Nishiyama, Yuya; Hirose, Yuichi; Abe, Masato; Ohyu, Shigeharu; Ninomiya, Ayako; Fukuba, Takashi; Katada, Kazuhiro; Toyama, Hiroshi

    2018-01-10

    We evaluated the diagnostic performance of histogram analysis of data from a combination of dynamic susceptibility contrast (DSC)-MRI and dynamic contrast-enhanced (DCE)-MRI for quantitative differentiation between central nervous system lymphoma (CNSL) and high-grade glioma (HGG), with the aim of identifying useful perfusion parameters as objective radiological markers for differentiating between them. Eight lesions with CNSLs and 15 with HGGs who underwent MRI examination, including DCE and DSC-MRI, were enrolled in our retrospective study. DSC-MRI provides a corrected cerebral blood volume (cCBV), and DCE-MRI provides a volume transfer coefficient (K trans ) for transfer from plasma to the extravascular extracellular space. K trans and cCBV were measured from a round region-of-interest in the slice of maximum size on the contrast-enhanced lesion. The differences in t values between CNSL and HGG for determining the most appropriate percentile of K trans and cCBV were investigated. The differences in K trans , cCBV, and K trans /cCBV between CNSL and HGG were investigated using histogram analysis. Receiver operating characteristic (ROC) analysis of K trans , cCBV, and K trans /cCBV ratio was performed. The 30 th percentile (C30) in K trans and 80 th percentile (C80) in cCBV were the most appropriate percentiles for distinguishing between CNSL and HGG from the differences in t values. CNSL showed significantly lower C80 cCBV, significantly higher C30 K trans , and significantly higher C30 K trans /C80 cCBV than those of HGG. In ROC analysis, C30 K trans /C80 cCBV had the best discriminative value for differentiating between CNSL and HGG as compared to C30 K trans or C80 cCBV. The combination of K trans by DCE-MRI and cCBV by DSC-MRI was found to reveal the characteristics of vascularity and permeability of a lesion more precisely than either K trans or cCBV alone. Histogram analysis of these vascular microenvironments enabled quantitative differentiation between

  14. Brain perfusion CT in acute stroke: current status

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias E-mail: matthias.koenig@ruhr-uni-bochum.de

    2003-03-01

    Dynamic perfusion CT has become a widely accepted imaging modality for the diagnostic workup of acute stroke patients. Although compared with standard spiral CT the use of multislice CT has broadened the range from which perfusion data may be derived in a single scan run. The advent of multidetector row technology has not really overcome the limited 3D capability of this technique. Multidetector CT angiography (CTA) of the cerebral arteries may in part compensate for this by providing additional information about the cerebrovascular status. This article describes the basics of cerebral contrast bolus scanning with a special focus on optimization of contrast/noise in order to ensure high quality perfusion maps. Dedicated scan protocols including low tube voltage (80 kV) as well as the use of highly concentrated contrast media are amongst the requirements to achieve optimum contrast signal from the short bolus passage through the brain. Advanced pre and postprocessing algorithms may help reduce the noise level, which may become critical in unconscious stroke victims. Two theoretical concepts have been described for the calculation of tissue perfusion from contrast bolus studies, both of which can be equally employed for brain perfusion imaging. For each perfusion model there are some profound limitations regarding the validity of perfusion values derived from ischemic brain areas. This makes the use of absolute quantitative cerebral blood flow (CBF) values for the discrimination of the infarct core from periinfarct ischemia questionable. Multiparameter imaging using maps of CBF, cerebral blood volume (CBV), and a time parameter of the local bolus transit enables analyzing of the cerebral perfusion status in detail. Perfusion CT exceeds plain CT in depicting cerebral hypoperfusion at its earliest stage yielding a sensitivity of about 90% for the detection of embolic and hemodynamic lesions within cerebral hemispheres. Qualitative assessment of brain perfusion can be

  15. Evaluation of optimized magnetic resonance perfusion imaging scanning time window after contrast agent injection for differentiating benign and malignant breast lesions.

    Science.gov (United States)

    Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong

    2017-03-01

    The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (K trans ), rate constant (K ep ) and extravascular extracellular volume fraction (V e )] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of K trans and K ep at all phases were statistically significant in differentiating benign and malignant tumors (P0.05); ii) values of V e in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of V e values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the V e value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of V e is able to serve as a diagnostic reference.

  16. ABCD1 dysfunction alters white matter microvascular perfusion

    DEFF Research Database (Denmark)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo

    2017-01-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability...... of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic reson- ance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased...... capillary flow heterogeneity in asymptom- atic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow hetero...

  17. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    Science.gov (United States)

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates. Copyright © 2015 Elsevier Inc. All rights

  18. Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Science.gov (United States)

    Guest, James R.; Baird, Andrew H.; Maynard, Jeffrey A.; Muttaqin, Efin; Edwards, Alasdair J.; Campbell, Stuart J.; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Background Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Methodology/Principal Findings Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pSingapore, where only 5% and 12% of colonies died. Conclusions/Significance The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments. PMID:22428027

  19. Assessment of the zonal variation of perfusion parameters in the femoral head. A 3-T dynamic contrast-enhanced MRI pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Budzik, Jean-Francois [Lille Catholic University, Imaging Department, Lille Catholic Hospitals, Lille (France); Littoral Cote d' Opale University, Lille University, Lille (France); Lefebvre, Guillaume [University of Lille Nord de France, Musculoskeletal Imaging Department, Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHU Lille, Lille (France); Behal, Helene [University of Lille Nord de France, Biostatistics Department, Lille Regional University Hospital, Lille (France); Verclytte, Sebastien [Lille Catholic University, Imaging Department, Lille Catholic Hospitals, Lille (France); Hardouin, Pierre [Lille University, Littoral Cote d' Opale University, Lille (France); Teixeira, Pedro [Centre Hospitalier Universitaire de Nancy, Service d' Imagerie Guilloz, Hopital Central, Nancy (France); Cotten, Anne [Littoral Cote d' Opale University, Lille University, Lille (France); University of Lille Nord de France, Musculoskeletal Imaging Department, Centre de Consultation et d' Imagerie de l' Appareil Locomoteur, CHU Lille, Lille (France)

    2018-02-15

    The objective was to describe MR perfusion characteristics of the femoral head, with a focus on the subchondral bone. This prospective monocentric study was approved by our local Ethics Committee. Written informed consent was obtained from all subjects. Dynamic contrast-enhanced MRI of the right hip was performed in 59 adults with suspected spondyloarthritis (32 women, 28 men). Mean age was 37.5 (±12.5) years. Regions of interest were drawn in the femoral head epiphysis, in the subchondral areas the most exposed to mechanical load (superolateral, anterosuperior, and posterior zones) and in areas less exposed to mechanical load (inferior subchondral zone and center of the femoral head). Semi-quantitative and pharmacokinetic parameters were calculated using the Tofts model. Statistical analysis was performed with a linear mixed model to compare the perfusion parameters in the different femoral head zones. Extravascular extracellular volume and area under the curve were lower in the superolateral zone than in the inferior zone (p = 0.0135 and p < 0.0001 respectively) and the central zone (p = 0.007 and p = 0.0134 respectively). Extravascular extracellular volume and rate constant were lower in the anterosuperior zone than in the inferior zones (p = 0.011 and p = 0.029). In the anterosuperior zone, extravascular extracellular volume was lower, and time to peak was higher than in the central zones (p = 0.0056 and p = 0.0013 respectively). No significant differences were found for any values between other paired zones. The perfusion of femoral head subchondral bone assessed with dynamic contrast-enhanced magnetic resonance imaging is not homogeneous: the areas exposed to more mechanical loading are less perfused. (orig.)

  20. A pilot trial on pulmonary emphysema quantification and perfusion mapping in a single-step using contrast-enhanced dual-energy computed tomography.

    Science.gov (United States)

    Lee, Choong Wook; Seo, Joon Beom; Lee, Youngjoo; Chae, Eun Jin; Kim, Namkug; Lee, Hyun Joo; Hwang, Hye Jeon; Lim, Chae-Hun

    2012-01-01

    To know whether contrast-enhanced dual-energy computed tomography angiography (DECTA) can be used for simultaneous assessment of emphysema quantification and regional perfusion evaluation. We assessed 27 patients who had pulmonary emphysema and no pulmonary embolism on visual assessment of CT images, among 584 consecutive patients who underwent DECTA for the evaluation of pulmonary embolism. Virtual noncontrast (VNC) images were generated by modifying the "Liver VNC" application in a dedicated workstation. Using in-house software, the low-attenuation area below 950HU (LAA950), the 15th percentile attenuation (15pctlVNC) and the mean lung attenuation (MeanVNC) were calculated. The "Lung PBV" application was used to assess perfusion, and the low-iodine area below 5HU (LIA5), the 15th percentile iodine (15pctlIodine), and the mean iodine value (MeanIodine) were calculated from iodine map images. The correlation between VNC parameters and pulmonary function test data (available in 22 patients) and the correlation between VNC and iodine map parameters (all included 27 patients) were assessed. Color-coded map of VNC image were compared with iodine map images for the evaluation of regional heterogeneity. We observed moderate correlations between LAA950 and predicted %FEV1 (rs = -0.47, P VNC images. We observed moderate correlations between quantitative parameters on VNC images and pulmonary function test data, and also observed moderate correlations between the severity of parenchymal destruction, as determined from VNC images, and perfusion status, as determined from iodine maps. Therefore, the contrast-enhanced DECTA can be used for the emphysema quantification and regional perfusion evaluation by using the VNC images and iodine map, simultaneously.

  1. Assessment of the zonal variation of perfusion parameters in the femoral head. A 3-T dynamic contrast-enhanced MRI pilot study

    International Nuclear Information System (INIS)

    Budzik, Jean-Francois; Lefebvre, Guillaume; Behal, Helene; Verclytte, Sebastien; Hardouin, Pierre; Teixeira, Pedro; Cotten, Anne

    2018-01-01

    The objective was to describe MR perfusion characteristics of the femoral head, with a focus on the subchondral bone. This prospective monocentric study was approved by our local Ethics Committee. Written informed consent was obtained from all subjects. Dynamic contrast-enhanced MRI of the right hip was performed in 59 adults with suspected spondyloarthritis (32 women, 28 men). Mean age was 37.5 (±12.5) years. Regions of interest were drawn in the femoral head epiphysis, in the subchondral areas the most exposed to mechanical load (superolateral, anterosuperior, and posterior zones) and in areas less exposed to mechanical load (inferior subchondral zone and center of the femoral head). Semi-quantitative and pharmacokinetic parameters were calculated using the Tofts model. Statistical analysis was performed with a linear mixed model to compare the perfusion parameters in the different femoral head zones. Extravascular extracellular volume and area under the curve were lower in the superolateral zone than in the inferior zone (p = 0.0135 and p < 0.0001 respectively) and the central zone (p = 0.007 and p = 0.0134 respectively). Extravascular extracellular volume and rate constant were lower in the anterosuperior zone than in the inferior zones (p = 0.011 and p = 0.029). In the anterosuperior zone, extravascular extracellular volume was lower, and time to peak was higher than in the central zones (p = 0.0056 and p = 0.0013 respectively). No significant differences were found for any values between other paired zones. The perfusion of femoral head subchondral bone assessed with dynamic contrast-enhanced magnetic resonance imaging is not homogeneous: the areas exposed to more mechanical loading are less perfused. (orig.)

  2. Improved visualization of delayed perfusion in lung MRI

    International Nuclear Information System (INIS)

    Risse, Frank; Eichinger, Monika; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Puderbach, Michael

    2011-01-01

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S n,max normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement τ to visualize regions with delayed bolus onset; and (3) ratio R = S n,max /τ was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  3. Comparison of transient arterial occlusion and muscle exercise provocation for assessment of perfusion reserve in skeletal muscle with real-time contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Krix, Martin; Krakowski-Roosen, Holger; Armarteifio, Erick; Fuerstenberger, Susanne; Delorme, Stefan; Kauczor, Hans-Ulrich; Weber, Marc-Andre

    2011-01-01

    Objective: Contrast-enhanced ultrasound (CEUS) is able to quantify muscle perfusion and changes in perfusion due to muscle exercise in real-time. However, reliable measurement of standardized muscle exercise is difficult to perform in clinical examinations. We compared perfusion reserve assessed by CEUS after transient arterial occlusion and exercise to find the most suitable measurement for clinical application. Methods: Contrast pulse sequencing (7 MHz) during continuous IV infusion of SonoVue (4.8 mL/300 s) was used in 8 healthy volunteers to monitor muscle perfusion of the gastrocnemius muscle during transient (1 min) arterial occlusion produced by a thigh cuff of a venous occlusion plethysmograph. Isometric muscle exercise (50% of individual maximum strength for 20 s) was subsequently performed during the same examination, and several CEUS parameters obtained from ultrasound-signal-intensity-time curves and its calculation errors were compared. Results: The mean maximum local blood volume after occlusion was 13.9 [∼mL] (range, 4.5-28.8 [∼mL]), and similar values were measured after sub-maximum exercise 13.8 [∼mL], (range, 4.6-22.2 [∼mL]. The areas under the curve during reperfusion vs. recovery were also similar (515.2 ± 257.5 compared to 482.2 ± 187.5 [∼mL s]) with a strong correlation (r = 0.65), as were the times to maximum (15.3 s vs. 15.9 s), with a significantly smaller variation for the occlusion method (±2.1 s vs. ±9.0 s, p = 0.03). The mean errors for all calculated CEUS parameters were lower for the occlusion method than for the exercise test. Conclusions: CEUS muscle perfusion measurements can be easily performed after transient arterial occlusion. It delivers data which are comparable to CEUS measurements after muscle exercise but with a higher robustness. This method can be easily applied in clinical examination of patients with e.g. PAOD or diabetic microvessel diseases to assess perfusion reserve.

  4. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  5. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    Science.gov (United States)

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  6. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    Science.gov (United States)

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  7. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    Directory of Open Access Journals (Sweden)

    Kiuru Aaro

    2003-01-01

    Full Text Available The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT and nuclear medicine (NM studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  8. Automatic Detection of Myocardial Boundaries in MR Cardio Perfusion Images

    NARCIS (Netherlands)

    Spreeuwers, Luuk; Breeuwer, Marcel

    2001-01-01

    Cardiovascular diseases often result in reduced blood perfusion of the myocardium (MC). Recent advances in MR allow fast recordingof contrast enhanced myocardial perfusion scans. For perfusion analysis the myocardial boundaries must be traced. Currently this is done manually. In this paper a method

  9. Hyperpolarized Water Perfusion in the Porcine Brain – a Pilot Study

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Lipsø, Hans Kasper Wigh; Tougaard, Rasmus Stilling

    2017-01-01

    Dynamic Contrast-Enhanced MR (DCE-MR) perfusion assessment with gadolinium contrast agents is currently the most widely used cerebral perfusion MR method. Hyperpolarized water has recently been shown to succeed 13C probes as angiography probe. In this study, we demonstrate the feasibility...... of hyperpolarized water for visualizing the brain vasculature of a large animal in a clinically relevant setting. In detail, reference perfusion values were obtained and large to small arteries could be identified....

  10. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    International Nuclear Information System (INIS)

    Kim, Yeo Eun; Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong; Kim, Dae Hong; Myoung, Sung Min

    2013-01-01

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K trans ) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K trans , Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K trans ; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K trans ; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K trans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  11. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  12. Diagnosis of renal perfusion abnormalities by sequential CT

    Energy Technology Data Exchange (ETDEWEB)

    Treugut, H; Andersson, I; Hildell, J; Nyman, U; Weibull, H

    1981-10-01

    Abnormalities of renal perfusion can be recognised more readily by sequential CT than by plain CT scan or after static enhancement with contrast medium. Haemodynamically significant stenoses of the renal arteries and total, or partial, infarcts can be diagnosed in this way. Intrarenal and capsular collaterals can be recognised by slow contrast accumulation in the infarcted area, or by the development of contrast in the sub-capsular portion of the cortex. Renal cortical necrosis is very well demonstrated by the absence of cortical perfusion; this is seen, for instance, in the DIC syndrome or during rejection after renal transplant.

  13. Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO)

    International Nuclear Information System (INIS)

    Hamans, B.C.; Heerschap, A.; Barth, M.; Leenders, W.P.

    2006-01-01

    Susceptibility weighted imaging (SWI) has been introduced as a novel approach to visualize the venous vasculature in the human brain. With SWI, small veins in the brain are depicted based on the susceptibility difference between deoxyhaemoglobin in the veins and surrounding tissue, which is further enhanced by the use of MR phase information. In this study we applied SWI in the mouse brain using an exogenous iron-based blood-pool contrast agent, with the aims of further enhancing the susceptibility effect and allowing the visualization of individual veins and arteries. Contrast enhanced (CE-) SWI of the brain was performed on healthy mice and mice carrying intracerebral glioma xenografts. This study demonstrates that detailed vascular information in the mouse brain can be obtained by using CE-SWI and is substantially enhanced compared to native SWI (i.e. without contrast agent). CE-SWI images of tumour-bearing mice were directly compared to histology, confirming that CE-SWI depicts the vessels supplying and draining the tumour. We propose that CE-SWI is a very promising tool for the characterization of tumour vasculature. (orig.)

  14. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime [Diagnostic Radiology Department, Clinica Quiron, Zaragoza (Spain); Olmos, Salvador [Instituto de Investigacion en Ingenieria de Aragon, Zaragoza (Spain)], E-mail: olmos@unizar.es

    2008-09-15

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  15. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    International Nuclear Information System (INIS)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime; Olmos, Salvador

    2008-01-01

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  16. Myocardial perfusion imaging by digital subtraction angiography

    International Nuclear Information System (INIS)

    Kadowaki, Hiroyuki; Ishikawa, Kinji; Ogai, Toshihiro; Katori, Ryo

    1986-01-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; 1) at the R wave of the electrocardiogram, 2) 100 msec before the R wave, and 3) 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery. In all patients with anterior myocardial infarction, low perfusion was observed at the infarcted portion compared to the non-infarcted myocardium. In patients with inferior myocardial infarction, this low perfusion area was not observed because right coronary angiography was not subjected to DSA in this study. (J.P.N.)

  17. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  18. Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second-generation contrast agent.

    Science.gov (United States)

    Rubaltelli, Leopoldo; Khadivi, Yeganeh; Tregnaghi, Alberto; Stramare, Roberto; Ferro, Federica; Borsato, Simonetta; Fiocco, Ugo; Adami, Fausto; Rossi, Carlo Riccardo

    2004-06-01

    To evaluate the contribution of continuous mode contrast-enhanced harmonic ultrasonography (CE-HUS) with a second-generation contrast agent to the characterization of superficial lymphadenopathies with respect to conventional ultrasonographic techniques (B-mode and power Doppler). Fifty-six lymph nodes from 45 patients were studied both by conventional techniques and by CE-HUS. The dimensions, intranodal architecture, margins, and location of vessels were evaluated. Subsequently, all the lymph nodes were examined by CE-HUS, and enhancement of echogenicity was evaluated. The diagnoses obtained by means of fine-needle aspiration cytologic examination, surgical biopsy, or both were compared with those obtained by ultrasonography. Of the lymph nodes examined, 30 were benign and 26 were malignant (18 metastases and 8 non-Hodgkin lymphomas). The study using CE-HUS showed intense homogeneous enhancement in 28 of 30 reactive lymph nodes; perfusion defects in 17, of which 15 were neoplastic and 2 were inflammatory; intense but inhomogeneous speckled enhancement in the early arterial phase in 5 cases of lymphoma; and, last, scarce or absent intranodal enhancement in 4 metastases. The specificity, sensitivity, and accuracy of conventional techniques in differentiation between benign and malignant lymph nodes were 76%, 80%, and 78% versus 93%, 92%, and 92.8% for CE-HUS. The increase in correct diagnoses was significant (P = .05) when conventional ultrasonography was tested against CE-HUS. Superficial lymph nodes can be characterized as being neoplastic or benign with a high degree of diagnostic accuracy on the basis of the perfusion characteristics evaluated by CE-HUS. This technique has been shown to afford a higher degree of accuracy than currently obtainable by any other ultrasonographic technique.

  19. Quantitative contrast-enhanced first-pass cardiac perfusion MRI at 3 tesla with accurate arterial input function and myocardial wall enhancement.

    Science.gov (United States)

    Breton, Elodie; Kim, Daniel; Chung, Sohae; Axel, Leon

    2011-09-01

    To develop, and validate in vivo, a robust quantitative first-pass perfusion cardiovascular MR (CMR) method with accurate arterial input function (AIF) and myocardial wall enhancement. A saturation-recovery (SR) pulse sequence was modified to sequentially acquire multiple slices after a single nonselective saturation pulse at 3 Tesla. In each heartbeat, an AIF image is acquired in the aortic root with a short time delay (TD) (50 ms), followed by the acquisition of myocardial images with longer TD values (∼150-400 ms). Longitudinal relaxation rates (R(1) = 1/T(1)) were calculated using an ideal saturation recovery equation based on the Bloch equation, and corresponding gadolinium contrast concentrations were calculated assuming fast water exchange condition. The proposed method was validated against a reference multi-point SR method by comparing their respective R(1) measurements in the blood and left ventricular myocardium, before and at multiple time-points following contrast injections, in 7 volunteers. R(1) measurements with the proposed method and reference multi-point method were strongly correlated (r > 0.88, P < 10(-5)) and in good agreement (mean difference ±1.96 standard deviation 0.131 ± 0.317/0.018 ± 0.140 s(-1) for blood/myocardium, respectively). The proposed quantitative first-pass perfusion CMR method measured accurate R(1) values for quantification of AIF and myocardial wall contrast agent concentrations in 3 cardiac short-axis slices, in a total acquisition time of 523 ms per heartbeat. Copyright © 2011 Wiley-Liss, Inc.

  20. Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei

    2013-10-01

    Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.

  1. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Detre, John A. E-mail: detre@mail.med.upenn.edu; Alsop, David C

    1999-05-01

    Several methods are now available for measuring cerebral perfusion and related hemodynamic parameters using magnetic resonance imaging (MRI). One class of techniques utilizes electromagnetically labeled arterial blood water as a noninvasive diffusible tracer for blood flow measurements. The electromagnetically labeled tracer has a decay rate of T1, which is sufficiently long to allow perfusion of the tissue and microvasculature to be detected. Alternatively, electromagnetic arterial spin labeling (ASL) may be used to obtain qualitative perfusion contrast for detecting changes in blood flow, similar to the use of susceptibility contrast in blood oxygenation level dependent functional MRI (BOLD fMRI) to detect functional activation in the brain. The ability to obtain blood flow maps using a non-invasive and widely available modality such as MRI should greatly enhance the utility of blood flow measurement as a means of gaining further insight into the broad range of hemodynamically related physiology and pathophysiology. This article describes the biophysical considerations pertaining to the generation of quantitative blood flow maps using a particular form of ASL in which arterial blood water is continuously labeled, termed continuous arterial spin labeling (CASL). Technical advances permit multislice perfusion imaging using CASL with reduced sensitivity to motion and transit time effects. Interpretable cerebral perfusion images can now be reliably obtained in a variety of clinical settings including acute stroke, chronic cerebrovascular disease, degenerative diseases and epilepsy. Over the past several years, the technical and theoretical foundations of CASL perfusion MRI techniques have evolved from feasibility studies into practical usage. Currently existing methodologies are sufficient to make reliable and clinically relevant observations which complement structural assessment using MRI. Future technical improvements should further reduce the acquisition times

  2. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhong Zheng, E-mail: jzz2397@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Shi, Wei, E-mail: sw740104@hotmail.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shi, Jin Long, E-mail: shij_ns@163.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shen, Dan Dan, E-mail: 1021121084@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Gu, Hong Mei, E-mail: guhongmei71@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Zhou, Xue Jun, E-mail: 56516400@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China)

    2017-02-15

    Purpose: Perfusion computed tomography (PCT) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide independent measurements of biomarkers related to tumor perfusion. The aim of this study was to compare the two techniques in assessing glioblastoma microvasculature. Materials and methods: Twenty-five patients diagnosed with glioblastoma (14 males and 11 females; 51 ± 11 years old, ranging from 33 to 70 years) were includede in this prospective study. All patients underwent both PCT and DCE-MRI. Imaging was performed on a 256-slice CT scanner and a 3-T MRI system. PCT yielded permeability surface-area product (PS) using deconvolution physiological models; meanwhile, DCE-MRI determined volume transfer constant (K{sup trans}) using the Tofts-Kermode compartment model. All cases were submitted to surgical intervention, and CD105-microvascular density (CD105-MVD) was measured in each glioblastoma specimen. Then, Spearman’s correlation coefficients and Bland-Altman plots were obtained for PS, K{sup trans} and CD105-MVD. P < 0.05 was considered statistically significant. Results: Tumor PS and K{sup trans} values were correlated with CD105-MVD (r = 0.644, P < 0.001; r = 0.683, P < 0.001). In addition, PS was correlated with K{sup trans} in glioblastoma (r = 0.931, P < 0.001). Finally, Bland-Altman plots showed no significant differences between PS and K{sup trans} (P = 0.063). Conclusion: PCT and DCE-MRI measurements of glioblastoma perfusion biomarkers have similar results, suggesting that both techniques may have comparable utility. Therefore, PCT may serve as an alternative modality to DCE-MRI for the in vivo evaluation of glioblastoma microvasculature.

  3. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Piotr [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Owren Nygaard, Gro [Oslo University Hospital, Department of Neurology, Oslo (Norway); Bjoernerud, Atle [Intervention Center, Oslo University Hospital, Oslo (Norway); University of Oslo, Department of Physics, Oslo (Norway); Gulowsen Celius, Elisabeth [Oslo University Hospital, Department of Neurology, Oslo (Norway); University of Oslo, Institute of Health and Society, Faculty of Medicine, Oslo (Norway); Flinstad Harbo, Hanne [University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Oslo University Hospital, Department of Neurology, Oslo (Norway); Kristiansen Beyer, Mona [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); Oslo and Akershus University College of Applied Sciences, Department of Life Sciences and Health, Oslo (Norway)

    2017-07-15

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  4. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    International Nuclear Information System (INIS)

    Sowa, Piotr; Owren Nygaard, Gro; Bjoernerud, Atle; Gulowsen Celius, Elisabeth; Flinstad Harbo, Hanne; Kristiansen Beyer, Mona

    2017-01-01

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  5. Perfusion MR imaging for differentiation of benign and malignant meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China); Roediger, Lars A.; Oudkerk, Matthijs [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shen, Tianzhen [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Miao, Jingtao [Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China)

    2008-06-15

    Our purpose was to determine whether perfusion MR imaging can be used to differentiate benign and malignant meningiomas on the basis of the differences in perfusion of tumor parenchyma and/or peritumoral edema. A total of 33 patients with preoperative meningiomas (25 benign and 8 malignant) underwent conventional and dynamic susceptibility contrast perfusion MR imaging. Maximal relative cerebral blood volume (rCBV) and the corresponding relative mean time to enhance (rMTE) (relative to the contralateral normal white matter) in both tumor parenchyma and peritumoral edema were measured. The independent samples t-test was used to determine whether there was a statistically significant difference in the mean rCBV and rMTE ratios between benign and malignant meningiomas. The mean maximal rCBV values of benign and malignant meningiomas were 7.16{+-}4.08 (mean{+-}SD) and 5.89{+-}3.86, respectively, in the parenchyma, and 1.05{+-}0.96 and 3.82{+-}1.39, respectively, in the peritumoral edema. The mean rMTE values were 1.16{+-}0.24 and 1.30{+-}0.32, respectively, in the parenchyma, and 0.91{+-}0.25 and 1.24{+-}0.35, respectively, in the peritumoral edema. The differences in rCBV and rMTE values between benign and malignant meningiomas were not statistically significant (P>0.05) in the parenchyma, but both were statistically significant (P<0.05) in the peritumoral edema. Perfusion MR imaging can provide useful information on meningioma vascularity which is not available from conventional MRI. Measurement of maximal rCBV and corresponding rMTE values in the peritumoral edema is useful in the preoperative differentiation between benign and malignant meningiomas. (orig.)

  6. Dynamic Contrast-Enhanced Perfusion MRI of High Grade Brain Gliomas Obtained with Arterial or Venous Waveform Input Function.

    Science.gov (United States)

    Filice, Silvano; Crisi, Girolamo

    2016-01-01

    The aim of this study was to evaluate the differences in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) perfusion estimates of high-grade brain gliomas (HGG) due to the use of an input function (IF) obtained respectively from arterial (AIF) and venous (VIF) approaches by two different commercially available software applications. This prospective study includes 20 patients with pathologically confirmed diagnosis of high-grade gliomas. The data source was processed by using two DCE dedicated commercial packages, both based on the extended Toft model, but the first customized to obtain input function from arterial measurement and the second from sagittal sinus sampling. The quantitative parametric perfusion maps estimated from the two software packages were compared by means of a region of interest (ROI) analysis. The resulting input functions from venous and arterial data were also compared. No significant difference has been found between the perfusion parameters obtained with the two different software packages (P-value < .05). The comparison of the VIFs and AIFs obtained by the two packages showed no statistical differences. Direct comparison of DCE-MRI measurements with IF generated by means of arterial or venous waveform led to no statistical difference in quantitative metrics for evaluating HGG. However, additional research involving DCE-MRI acquisition protocols and post-processing would be beneficial to further substantiate the effectiveness of venous approach as the IF method compared with arterial-based IF measurement. Copyright © 2015 by the American Society of Neuroimaging.

  7. CT of malignant choroidal melanoma - morphology and perfusion characteristics

    International Nuclear Information System (INIS)

    Heller, M.; Hagemann, J.; Jend, H.H.; Guthoff, R.

    1982-01-01

    The computed tomographic morphology of malignant choroidal melanoma and its perfusion characteristics are described. Thirty-three static and serial CT examinations made on 29 patients with choroidal melanoma, three with pseudotumors of the macula and one with choroidal metastasis revealed the choroidal melanoma to be usually a hyperdense, markedly perfused tumor, while the non-contrast, diagnostically undifferentiable pseudotumors and the choroidal metastasis, revealed no significant change in density after the administration of contrast material. Density values or perfusion characteristics of choroidal melanoma that are outside of the normal range are a result of secondary changes within the immediate surroundings of the tumor, such as detachment of the retina, tumor-induced glaucoma, or tumor necrosis. (orig.)

  8. Functional and perfusion magnetic resonance imaging at 3 tesla

    International Nuclear Information System (INIS)

    Klarhoefer, M.

    2001-03-01

    This thesis deals with the development and optimization of fast magnetic resonance imaging (MRI) methods for non-invasive functional studies of the human brain and perfusion imaging on a 3 Tesla (T) whole body NMR system. The functional MRI (fMRI) experiments performed showed that single-shot multi-echo EPI and spiral imaging techniques provide fast tools to obtain information about T2* distributions during functional activation in the human brain. Both sequences were found to be useful in the separation of different sources contributing to the functional MR signal like inflow or susceptibility effects in the various vascular environments. An fMRI study dealing with the involvement of prefrontal brain regions in movement preparation lead to inconsistent results. It could not be clarified if these were caused by problems during a spatial normalization process of the individual brains or if the functional paradigm, using very short inter-stimulus intervals, was not suited for the problem investigated. Blood flow velocity measurements in the human finger showed that the use of a strong, small-bore gradient system permits short echo times that reduce flow artefacts and allows high spatial resolution in order to keep systematic errors due to partial volume effects small. With regard to the perfusion investigations an inversion recovery snapshot-FLASH sequence was implemented, which allowed the acquisition of T1 parameter maps of the human brain within a few seconds. The accuracy of this method was demonstrated in test objects. The perfusion investigations with FAIR showed good qualitative results, whereas the quantitative analysis did not yield reproducible findings. A reason for the poor results could be the low signal-to-noise ratio (SNR) of the FAIR images or an incomplete global inversion of the magnetization due to the transmission characteristics of the radio-frequency coil. The BASE sequence that did not require a global inversion yielded quantitative perfusion

  9. The diagnosis of renal perfusion abnormalities by sequential CT

    International Nuclear Information System (INIS)

    Treugut, H.; Andersson, I.; Hildell, J.; Nyman, U.; Weibull, H.

    1981-01-01

    Abnormalities of renal perfusion can be recognised more readily by sequential CT than by plain CT scan or after static enhancement with contrast medium. Haemodynamically significant stenoses of the renal arteries and total, or partial, infarcts can be diagnosed in this way. Intrarenal and capsular collaterals can be recognised by slow contrast accumulation in the infarcted area, or by the development of contrast in the sub-capsular portion of the cortex. Renal cortical necrosis is very well demonstrated by the absence of cortical perfusion; this is seen, for instance, in the DIC syndrome or during rejection after renal transplant. (orig.) [de

  10. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    Science.gov (United States)

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.

  11. Quantitative pulmonary perfusion imaging with 3-dimensional, contrast-enhanced MR: regional difference in the perfusion parameters of healthy volunteers

    International Nuclear Information System (INIS)

    Kim, Song Soo; Seo, Joon Beom; Kim, Nam Kuk; Do, Kyung Hyun; Lee, Young Kyung; Song, Jae Woo; Lee, Jin Seong; Kim, Jin Hwan

    2007-01-01

    We wanted to evaluate the regional differences in such perfusion parameters as pulmonary blood flow (PBF), mean transit time (MTT) and pulmonary blood volume (PBV) in the entire lung of healthy volunteers with using three-dimensional, contrast-enhanced MR imaging (3D CEMRI). Six healthy volunteers underwent dynamic 3D CEMRI (TR/TE 2.7/0.6 msec; flip angle 40 .deg. ; matrix 128 x 96; reconstructed matrix 256 x 192; rectangular field of view 450 x 315 mm; coronal 100-150mm-thick x 10 slabs; temporal resolution 1.0 sec; 35 dynamic phases) For all subjects, 2 mL of Gd-DTPA mixed with 3 ml of physiologic saline was administered as a bolus at a rate of 5 mL/sec, and this was followed by 20 mL of physiologic saline flush. From the signal intensity-time curves, the PBF, MTT and PBV maps were generated using indicator dilution theories and the central volume principle on a pixel-by-pixel basis. A total of 54 round, 1-cm sized ROIs were placed in the lung in each subject (6 ROIs per slab x 9 slices except for the most posterior slab). The regional differences of the measured parameters were statistically evaluated in the gravitational direction and in the upper-mid-lower direction by one-way ANOVA tests. The calculated PBF, MTT and PBV in the entire lung were 141.8 ± 53.4 mL/100 mL/min (mean ± SD), 5.35 ± 1.38 sec, and 13.4 ± 6.48 mL/100mL, respectively. In the gravitational direction, there was a significant increase in the PBF and PBV as it goes to the posterior direction (ρ < 0.05). No statistical difference was found in PBF or PBV between the upper, mid and lower lung zone areas. Regional difference in the various perfusion parameters of the lung in healthy volunteers can be quantitatively assessed with performing 3D CEMRI

  12. Assessment of renal perfusion with contrast-enhanced ultrasound: Preliminary results in early diabetic nephropathies.

    Science.gov (United States)

    Dong, Yi; Wang, Wen-Ping; Lin, Pan; Fan, Peili; Mao, Feng

    2016-01-01

    We performed a prospective study to evaluate the value of contrast-enhanced ultrasound (CEUS) in quantitative evaluation of renal cortex perfusion in patients suspected of early diabetic nephropathies (DN), with the estimated GFR (MDRD equation) as the gold standard. The study protocol was approved by the hospital review board; each patient gave written informed consent. Our study included 46 cases (21 males and 25 females, mean age 55.6 ± 4.14 years) of clinical confirmed early DN patients. After intravenous bolus injection of 1 ml sulfur hexafluoride microbubbles of ultrasound contrast agent, real time CEUS of renal cortex was performed successively using a 2-5 MHz convex probe. Time-intensity curves (TICs) and quantitative indexes were created with Qlab software. Receiver operating characteristic (ROC) curves were used to predict the diagnostic criteria of CEUS quantitative indexes, and their diagnostic efficiencies were compared with resistance index (RI) and peak systolic velocity (PSV) of renal segmental arteries by chi square test. Our control group included forty-five healthy volunteers. Difference was considered statistically significant with P  0.05). CEUS might be helpful to improve early diagnosis of DN by quantitative analyses. AUC and DPI might be valuable quantitative indexes.

  13. Diagnostic value of amplitude-phase analysis in myocardial infarct. Comparison with thallium perfusion scintigraphy and contrast ventrilography

    International Nuclear Information System (INIS)

    Garcheva, M.; Trindev, P.; Shejretova, E.; Stoyanova, N.; Kaloyanova, P.; Khadzhikostova, Kh.

    1990-01-01

    The evaluation is based on the results of investigation of 34 patients who have had myocardial infarct without rhythm disturbances. Compared to contrast ventrilography, the amplitude-phase analysis (APA) of 'rest' radionuclide ventrilography show 80% sensitivity and 100% specificity, as well as high accuracy in determination of the type and localization of the kinetic disturbances. The comparison with the thallium perfusion scintigraphy demonstrates the possibility of APA to vizualize abnormal kinetic area of the myocardial wall and shows its independent significance in the cases of doubtful findings. APA is a powerful tool for unambigious differentiating of hypokinetic from akinetic and diskinetic areas. 1 tab., 1 fig., 4 refs

  14. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, Kate [Royal Marsden Hospital, Sutton (United Kingdom); Castellano, Isabel [Institute of Cancer Research, London (United Kingdom); Charles-Edwards, Elizabeth [Institute of Cancer Research, Sutton, Surrey (United Kingdom); Mears, Dorothy; Sohaib, Aslam [Royal Marsden Hospital, Sutton (United Kingdom); Leach, Martin [Institute of Cancer Research, Sutton, Surrey (United Kingdom); Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril [Royal Marsden Hospital, London (United Kingdom); Harrington, Kevin [Institute of Cancer Research, London (United Kingdom); Royal Marsden Hospital, London (United Kingdom); Nutting, Christopher [Royal Marsden Hospital, London (United Kingdom)

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  15. Relationship Between Collateral Status, Contrast Transit, and Contrast Density in Acute Ischemic Stroke.

    Science.gov (United States)

    Kawano, Hiroyuki; Bivard, Andrew; Lin, Longting; Spratt, Neil J; Miteff, Ferdinand; Parsons, Mark W; Levi, Christopher R

    2016-03-01

    Collateral circulation is recognized to influence the life expectancy of the ischemic penumbra in acute ischemic stroke. The best method to quantify collateral status on acute imaging is uncertain. We aimed to determine the relationship between visual collateral status, quantitative collateral assessments, baseline computed tomographic perfusion measures, and tissue outcomes on follow-up imaging. Sixty-six consecutive patients with acute ischemic stroke clinically eligible for recanalization therapy and with M1 or M2 middle cerebral artery occlusion were evaluated. We compared the visual collateral scoring with measures of contrast peak time delay and contrast peak density. We also compared these measures for their ability to predict perfusion lesion and infarct core volumes, final infarct, and infarct growth. Shorter contrast peak time delay (P=0.041) and higher contrast peak density (P=0.002) were associated with good collateral status. Shorter contrast peak time delay correlated with higher contrast peak density (β=-4.413; P=0.037). In logistic regression analysis after adjustment for age, sex, onset-computed tomographic time, and occlusion site, higher contrast peak density was independently associated with good collateral status (P=0.009). Multiple regression analysis showed that higher contrast peak density was an independent predictor of smaller perfusion lesion volume (P=0.029), smaller ischemic core volume (P=0.044), smaller follow-up infarct volume (P=0.005), and smaller infarct growth volume (P=0.010). Visual collateral status, contrast peak density, and contrast peak time delay were inter-related, and good collateral status was strongly associated with contrast peak density. Contrast peak density in collateral vessel may be an important factor in tissue fate in acute ischemic stroke. © 2016 American Heart Association, Inc.

  16. Differentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging

    International Nuclear Information System (INIS)

    Kvistad, K.A.; Smenes, E.; Haraldseth, O.; Lundgren, S.; Fjoesne, H.E.; Smethurst, H.B.

    1999-01-01

    Purpose: Invasive breast carcinomas and fibroadenomas are often difficult to differentiate in dynamic contrast-enhanced T1-weighted MR imaging of the breast, because both tumors can enhance strongly after contrast injection. The purpose of this study was to evaluate whether the addition of T2*-weighted first pass perfusion imaging can increase the differentiation of malignant from benign lesions. Material and Methods: Nine patients with invasive carcinomas and 10 patients with contrast enhancing fibroadenomas were examined by a dynamic contrast-enhanced T1-weighted 3D sequence immediately followed by a single slice T2*-weighted first pass perfusion sequence positioned in the contrast-enhancing lesion. Results: The carcinomas and the fibroadenomas were impossible to differentiate based on the contrast enhancement characteristics in the T1-weighted sequence. The signal loss in the T2*-weighted perfusion sequence was significantly stronger in the carcinomas than in the fibroadenomas (p=0.0004). Conclusion: Addition of a T2*-weighted first pass perfusion sequence with a high temporal resolution can probably increase the differentiation of fibroadenomas from invasive carcinomas in contrast-enhanced MR imaging of the breast. (orig.)

  17. Perfusion MR imaging for differentiation of benign and malignant meningiomas

    International Nuclear Information System (INIS)

    Zhang, Hao; Roediger, Lars A.; Oudkerk, Matthijs; Shen, Tianzhen; Miao, Jingtao

    2008-01-01

    Our purpose was to determine whether perfusion MR imaging can be used to differentiate benign and malignant meningiomas on the basis of the differences in perfusion of tumor parenchyma and/or peritumoral edema. A total of 33 patients with preoperative meningiomas (25 benign and 8 malignant) underwent conventional and dynamic susceptibility contrast perfusion MR imaging. Maximal relative cerebral blood volume (rCBV) and the corresponding relative mean time to enhance (rMTE) (relative to the contralateral normal white matter) in both tumor parenchyma and peritumoral edema were measured. The independent samples t-test was used to determine whether there was a statistically significant difference in the mean rCBV and rMTE ratios between benign and malignant meningiomas. The mean maximal rCBV values of benign and malignant meningiomas were 7.16±4.08 (mean±SD) and 5.89±3.86, respectively, in the parenchyma, and 1.05±0.96 and 3.82±1.39, respectively, in the peritumoral edema. The mean rMTE values were 1.16±0.24 and 1.30±0.32, respectively, in the parenchyma, and 0.91±0.25 and 1.24±0.35, respectively, in the peritumoral edema. The differences in rCBV and rMTE values between benign and malignant meningiomas were not statistically significant (P>0.05) in the parenchyma, but both were statistically significant (P<0.05) in the peritumoral edema. Perfusion MR imaging can provide useful information on meningioma vascularity which is not available from conventional MRI. Measurement of maximal rCBV and corresponding rMTE values in the peritumoral edema is useful in the preoperative differentiation between benign and malignant meningiomas. (orig.)

  18. Perfusion CT in childhood stroke—Initial observations and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Zebedin, D., E-mail: doris.zebedin@medunigraz.at [Division of Pediatric Radiology, Department of Radiology, University Hospital LKH Graz (Austria); Sorantin, E.; Riccabona, M. [Division of Pediatric Radiology, Department of Radiology, University Hospital LKH Graz (Austria)

    2013-07-15

    Introduction: To report the preliminary results of contrast-enhanced perfusion multi-detector CT for diagnoses of perfusion disturbances in children with clinical suspicion of stroke. Patients and methods: Within the last two years emergency perfusion CT was performed in ten children (age: 8–17 years, male:female = 3:7) for assessment of suspected childhood stroke. These intracranial perfusion CT, intracranial CT-digital subtraction angiography (CT-DSA) and extracranial CT-angiography (CTA) studies were retrospectively reviewed and compared with MRI, follow-up CT, catheter angiography and final clinical diagnosis. The total dose length product (DLP) for the entire examination was recorded. The image quality of perfusion CT-maps, CT-DSA and CTA were evaluated with a subjective three-point scale ranging from very good to non-diagnostic image quality rating perfusion disturbance, intracranial peripheral vessel depiction, and motion- or streak artifacts. Results: In nine of ten children perfusion CT showed no false positive or false negative results. In one of ten children suffering from migraine focal hypo-perfusion was read as perfusion impairment potentially indicating early stroke, but MRI and MRA follow-up were negative. Overall, perfusion-CT with CT-DSA was rated very good in 80% of cases for the detection of perfusion disturbances and vessel anatomy. Conclusions: In comparison to standard CT, contrast-enhanced perfusion CT improves CTs’ diagnostic capability in the emergency examination of children with a strong suspicion of ischemic cerebral infarction.

  19. Hepatic arterial perfusion increases in the early stage of severe acute pancreatitis patients: Evaluation by perfusion computed tomography

    International Nuclear Information System (INIS)

    Koyasu, Sho; Isoda, Hiroyoshi; Tsuji, Yoshihisa; Yamamoto, Hiroshi; Matsueda, Kazuhiro; Watanabe, Yuji; Chiba, Tsutomu; Togashi, Kaori

    2012-01-01

    Purpose: Although hepatic perfusion abnormalities have been reported in patients with acute pancreatitis, hepatic perfusion with severe acute pancreatitis (SAP) has not been quantitatively evaluated in humans. Therefore, we investigated hepatic perfusion in patients with SAP using perfusion CT. Materials and methods: Hepatic perfusion CT was performed in 67 patients with SAP within 3 days after symptom onset. The patients were diagnosed as having SAP according to the Atlanta criteria. Fifteen cases were established as a control group. Perfusion CT was obtained for 54 s beginning with a bolus injection of 40 ml of contrast agent (600–630 mgI/kg) at a flow rate of 4 ml/s. Perfusion data were analyzed by the dual-input maximum slope method to obtain hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP). Finally, we compared HAP and HPP in SAP patients with those in the control group, respectively. Results: Average HAP was significantly higher in SAP patients than in the control group (75.1 ± 38.0 vs. 38.2 ± 9.0 ml/min/100 ml; p < 0.001). There was no significant difference in average HPP between SAP patients and the control group (206.7 ± 54.9 vs. 204.4 ± 38.5 ml/min/100 ml; p = 0.92). Conclusion: Using quantitative analysis on perfusion CT, we first demonstrated an increase of HAP in the right hepatic lobe in SAP patients.

  20. A Unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Ólafsdóttir, Hildur; Larsen, Rasmus

    2010-01-01

    The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion...... quantification. Hence, the need for tedious manual motion correction prior to perfusion quantification is avoided. In addition, we demonstrate that the proposed framework facilitates the process of reconstructing DCEMRI from sparsely sampled data in the presence of respiratory motion. The paper focuses primarily...... on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data....

  1. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  2. Clinical evaluation of pulmonary perfusion MRI using FAIR (flow-sensitive alternating inversion recovery)-HASTE (Half-Fourier Single-Shot TurboSE) method

    International Nuclear Information System (INIS)

    Togami, Izumi; Sasai, Nobuya; Tsunoda, Masatoshi; Sei, Tetsurou; Sato, Shuhei; Yabuki, Takayuki; Hiraki, Yoshio

    2002-01-01

    The FAIR-HASTE method is a kind of noninvasive perfusion MR imaging obtained without the use of contrast media. By subtracting a flow-insensitive image from a flow-sensitive image, contrast enhancement of inflowing blood achieved. In the present study, we applied pulmonary perfusion FAIR-HASTE sequence for 23 patients with various pulmonary diseases, and compared the findings with those by pulmonary perfusion scintigraphy and Gadolinium perfusion MRI. Pulmonary perfusion imaging with the FAIR-HASTE method was possible in all clinical cases, and the findings corresponded well to those obtained by perfusion MRI using contrast media or pulmonary scintigraphy. The FAIR-HASTE method is a promising method for the evaluation of pulmonary perfusion. (author)

  3. Dynamic Contrast-Enhanced Perfusion Area-Detector CT: Preliminary Comparison of Diagnostic Performance for N Stage Assessment With FDG PET/CT in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi

    2017-11-01

    The objective of our study was to directly compare the capability of dynamic first-pass contrast-enhanced (CE) perfusion area-detector CT (ADCT) and FDG PET/CT for differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with non-small cell lung carcinoma (NSCLC). Seventy-seven consecutive patients, 45 men (mean age ± SD, 70.4 ± 5.9 years) and 32 women (71.2 ± 7.7 years), underwent dynamic first-pass CE-perfusion ADCT at two or three different positions for covering the entire thorax, FDG PET/CT, surgical treatment, and pathologic examination. From all ADCT data for each of the subjects, a whole-chest perfusion map was computationally generated using the dual- and single-input maximum slope and Patlak plot methods. For quantitative N stage assessment, perfusion parameters and the maximum standardized uptake value (SUV max ) for each lymph node were determined by measuring the relevant ROI. ROC curve analyses were performed for comparing the diagnostic capability of each of the methods on a per-node basis. N stages evaluated by each of the indexes were then statistically compared with the final pathologic diagnosis by means of chi-square and kappa statistics. The area under the ROC curve (A z ) values of systemic arterial perfusion (A z = 0.89), permeability surface (A z = 0.78), and SUV max (A z = 0.85) were significantly larger than the A z values of total perfusion (A z = 0.70, p Dynamic first-pass CE-perfusion ADCT is as useful as FDG PET/CT for the differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with NSCLC.

  4. Measurement of myocardial perfusion using magnetic resonance

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...... myocardial perfusion imaging with MR contrast agents: methods, validation and experiences from clinical studies. Unresolved issues still restrict the use of these techniques to research although clinical applications are within reach Udgivelsesdato: 2008/12/8...

  5. Dynamic Contrast-Enhanced Magnetic Resonance Enterography and Dynamic Contrast-Enhanced Ultrasonography in Crohn's Disease

    DEFF Research Database (Denmark)

    Wilkens, Rune; Peters, David A; Nielsen, Agnete Hedemann

    2017-01-01

    Purpose e Cross-sectional imaging methods are important for objective evaluationof small intestinal inflammationinCrohn'sdisease(CD).The primary aim was to compare relative parameters of intestinal perfusion between contrast-enhanced ultrasonography (CEUS) and dynamic contrast-enhanced magnetic...

  6. Contrast-enhanced 3T MR perfusion of musculoskeletal tumours. T1 value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Verbizier, Jacques de; Blum, Alain [Hopital Central, CHRU-Nancy, Service d' Imagerie Guilloz, Nancy (France); Chen, Bailiang; Beaumont, Marine [Universite de Lorraine, Laboratoire IADI, UMR S 947, Nancy (France); Badr, Sammy; Cotten, Anne [CHRU Lille Centre de Consultations et d' Imagerie de l' Appareil Locomoteur, Department of Radiology and Musculoskeletal Imaging, Lille (France)

    2017-12-15

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. (orig.)

  7. Contrast optimization in multiphase arterial spin labeling; Otimizacao do contraste em ASL multi-fase

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Fernando F.; Paschoal, Andre M., E-mail: paiva@ifsc.usp.br [Universidade de Sao Paulo (CIERMag/USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Foerster, Bernd U. [Philips Medical Systems LatAm, Sao Paulo, SP (Brazil); Tovar-Moll, Fernanda; Moll, Jorge [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2013-08-15

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  8. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...

  9. Methodological NMR imaging developments to measure cerebral perfusion; Developpements methodologiques en IRM pour la mesure de perfusion cerebrale

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier, N.

    2010-12-15

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  10. Validation and absolute quantification of MR perfusion compared with CT perfusion in patients with unilateral cerebral arterial stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Fang-Ying, E-mail: fychiou@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Kao, Yi-Hsuan, E-mail: yhkao@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Teng, Michael Mu Huo, E-mail: mhteng@gmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chung, Hsiao-Wen, E-mail: chung@cc.ee.ntu.edu.tw [Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Feng-Chi, E-mail: fcchang374@gmail.com [School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Cho, I-Chieh, E-mail: jessie8030@yahoo.com.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Chen, Wen-Chun, E-mail: sky7408695@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China)

    2012-12-15

    Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis. Materials and methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values. For comparison between MRP and CTP, we manually deposited regions of interest in bilateral MCA territories at the level containing the body of the lateral ventricle. Results: The correlation between MRP and CTP was best for mean transit time (MTT) (r = 0.83), followed by cerebral blood flow (CBF) (r = 0.52) and cerebral blood volume (CBV) (r = 0.43). There was no significant difference between CTP and MRP for CBV, CBF, and MTT on the lesion side, the contralateral side, the lesion-contralateral differences, or the lesion-to-contralateral ratios (P > 0.05). The mean differences between MRP and CTP were as follows: CBV −0.57 mL/100 g, CBF 2.50 mL/100 g/min, and MTT −0.90 s. Conclusion: Absolute quantification of MRP is possible. Using the proposed method, measured values of MRP and CTP had acceptable linear correlation and quantitative agreement.

  11. Validation and absolute quantification of MR perfusion compared with CT perfusion in patients with unilateral cerebral arterial stenosis

    International Nuclear Information System (INIS)

    Chiu, Fang-Ying; Kao, Yi-Hsuan; Teng, Michael Mu Huo; Chung, Hsiao-Wen; Chang, Feng-Chi; Cho, I-Chieh; Chen, Wen-Chun

    2012-01-01

    Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis. Materials and methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values. For comparison between MRP and CTP, we manually deposited regions of interest in bilateral MCA territories at the level containing the body of the lateral ventricle. Results: The correlation between MRP and CTP was best for mean transit time (MTT) (r = 0.83), followed by cerebral blood flow (CBF) (r = 0.52) and cerebral blood volume (CBV) (r = 0.43). There was no significant difference between CTP and MRP for CBV, CBF, and MTT on the lesion side, the contralateral side, the lesion-contralateral differences, or the lesion-to-contralateral ratios (P > 0.05). The mean differences between MRP and CTP were as follows: CBV −0.57 mL/100 g, CBF 2.50 mL/100 g/min, and MTT −0.90 s. Conclusion: Absolute quantification of MRP is possible. Using the proposed method, measured values of MRP and CTP had acceptable linear correlation and quantitative agreement.

  12. Multimodality functional imaging of spontaneous canine tumors using 64Cu-ATSM and 18FDG PET/CT and dynamic contrast enhanced perfusion CT

    International Nuclear Information System (INIS)

    Hansen, Anders E.; Kristensen, Annemarie T.; Law, Ian; McEvoy, Fintan J.; Kjær, Andreas; Engelholm, Svend A.

    2012-01-01

    Purpose: To compare the distribution and uptake of the hypoxia tracer 64 Cu-diacetyl-bis(N 4 -methylthiosemicarbazone) ( 64 Cu-ATSM) PET/CT, FDG PET/CT and dynamic contrast enhanced perfusion CT (DCE-pCT) in spontaneous canine tumors. In addition 64 Cu-ATSM distribution over time was evaluated. Methods and materials: Nine spontaneous cancer-bearing dogs were prospectively enrolled. FDG (1 h pi.) and 64 Cu-ATSM (3 and 24 h pi.) PET/CT were performed over three consecutive days. DCE-pCT was performed on day 2. Tumor uptake of FDG and 64 Cu-ATSM was assessed semi-quantitatively and the distribution of FDG, 64 Cu-ATSM and CT perfusion parameters correlated. Results: 64 Cu-ATSM distribution on scans performed 24 h apart displayed moderate to strong correlation; however, temporal changes were observed. The spatial distribution pattern of 64 Cu-ATSM between scans was moderately to strongly positively correlated to FDG, whereas the correlation of CT perfusion parameters to FDG and to 64 Cu-ATSM yielded more varying results. Conclusions: 64 Cu-ATSM uptake was positively correlated to FDG. 64 Cu-ATSM was found to be relatively stable between PET scans performed at different time points, important temporal changes were however observed in hypo-perfused regions. These findings potentially indicate that prolonged uptake periods for 64 Cu-ATSM imaging may be needed. Although a moderate to strong correlation between 64 Cu-ATSM and FDG PET/CT is observed, the two tracers provide different biological information with an overlapping spatial distribution.

  13. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    International Nuclear Information System (INIS)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J.; Higashigaito, Kai; Jung, Andreas

    2018-01-01

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  14. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J. [University Children' s Hospital Zuerich, Department of Diagnostic Imaging, Zuerich, CH (Switzerland); University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); Higashigaito, Kai [University Hospital Zuerich, Institute of Diagnostic and Interventional Radiology, Zuerich (Switzerland); Jung, Andreas [University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); University Children' s Hospital Zuerich, Division of Pneumology, Zuerich (Switzerland)

    2018-02-15

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  15. Contrast-enhanced 3T MR Perfusion of Musculoskeletal Tumours: T1 Value Heterogeneity Assessment and Evaluation of the Influence of T1 Estimation Methods on Quantitative Parameters.

    Science.gov (United States)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Chen, Bailiang; De Verbizier, Jacques; Beaumont, Marine; Badr, Sammy; Cotten, Anne; Blum, Alain

    2017-12-01

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. • T1 value variation in musculoskeletal tumours is considerable. • T1 values in muscle and tumours are significantly different. • Patient-specific T1 estimation is needed for comparison of inter-patient perfusion parameters. • Technical variation is higher in permeability than semiquantitative perfusion parameters.

  16. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  17. Clinical evaluation of non-invasive perfusion-weighted MRI

    International Nuclear Information System (INIS)

    Takasu, Miyuki

    2000-01-01

    A spin labeling method to measure cerebral blood flow without a contrast medium was developed and applied clinically to obtain a non-invasive perfusion-weighted image. The purpose of this study is to compare the non-invasive perfusion-weighted image using FAIR with the well-established PWI using a bolus injection of Gd-DTPA. Of 41 lesions which revealed decreased perfusion, 13 were shown to be low signal intensity areas on FAIR. Therefore, detection rate of FAIR for hypoperfusion was 32%. Of 8 lesions which revealed increased perfusion, 7 demonstrated high intensity on FAIR. Therefore, detection rate of FAIR for hyperperfusion was 88%. Seven lesions were found to have a mean pixel value of zero on PWI. Of these lesions, 5 lesions could be detected as high signal intensity area on FAIR. The rCBV- and rCBF index ratios of hypoperfused lesions detected on FAIR were significantly lower than those of lesions which were not detected on FAIR (p=0.007, p=0.01). As concerns the lesions detected of FAIR, there were positive correlation between rCBV- or rCBF index ratio and FAIR signal ratio (rCBV ratio: ρ=0.873, p=0.0002, rCBF index ratio: ρ=0.858, p=0.0003). FAIR is valuable clinical tool to detect perfusion abnormality semi-quantitatively without contrast medium, although it showed relatively low detection rate for hypoperfused lesions. (author)

  18. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    Science.gov (United States)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Buxton, Richard Bruce (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  19. CT perfusion of the liver during selective hepatic arteriography. Pure arterial blood perfusion of liver tumor and parenchyma

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kojima, Hiroyuki; Kariya, Shuji; Sawada, Satoshi

    2003-01-01

    The purpose of this study was to quantify pure arterial blood perfusion of liver tumor and parenchyma by using CT perfusion during selective hepatic arteriography. A total of 44 patients underwent liver CT perfusion study by injection of contrast medium via the hepatic artery. CT-perfusion parameters including arterial blood flow, arterial blood volume, and arterial mean transit time in the liver parenchyma and liver tumor were calculated using the deconvolution method. The CT-perfusion parameters and vascularity of the tumor were compared. A complete analysis could be performed in 36 of the 44 patients. For liver tumor and liver parenchyma, respectively, arterial blood flow was 184.6±132.7 and 41.0±27.0 ml/min/100 g, arterial blood volume was 19.4±14.6 and 4.8±4.2 ml/100 g, and arterial mean transit time was 8.9±4.2 and 10.2±5.3 sec. Arterial blood flow and arterial blood volume correlated significantly with the vascularity of the tumor; however no correlation was detected between arterial mean transit time and the vascularity of the tumor. This technique could be used to quantify pure hepatic arterial blood perfusion. (author)

  20. Dynamic MR cardiac perfusion studies in patients with acquired heart diseases

    International Nuclear Information System (INIS)

    Finelli, D.A.; Adler, L.P.; Paschal, C.B.; Haacke, E.M.

    1990-01-01

    The combination of ultrafast scanning techniques with contrast administration has opened new venues for MR imaging relating to the physiology of organ perfusion. Regional cardiac perfusion determinations lend important additional information to the morphologic and functional data provided by conventional cardiac MR imaging. The authors of this paper studied 10 patients with acquired heart diseases, including ischemic heart disease, cardiomyopathy, ventricular hypertrophy, and cardiac tumor, using conventional spin-echo imaging, cine gradient-echo imaging, and dynamic Gd-DTPA--enhanced perfusion imaging with an ultrafast, inversion-recovery, Turbo-fast low-angle shot sequence. This technique enables analysis of the first pass and early biodistribution phases following contrast administration, information that has been correlated with cardiac catheterization, single photo emission CT (SPECT), and administration emission tomographic (PET) data

  1. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    International Nuclear Information System (INIS)

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A.

    2008-01-01

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (SE)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease

  2. MRI and MRA of kidney transplants - evaluation of vessels and perfusion

    International Nuclear Information System (INIS)

    Wiesner, W.; Pfammatter, T.; Krestin, G.P.; Debatin, J.F.

    1998-01-01

    Purpose: To document the value of fast contrast enhanced-sequences in the assessment of the vascular supply and parenchymal perfusion in renal transplants. Patients: 18 recipients of a renal transplant were examined with a 1.5-Tesla-MR-system. The protocol included fast contrast enhanced 3D MR angiography and coronal 2D GRE sequences. The transplant artery and vein were assessed as well as regional parenchymal perfusion. Results: 3D MRA detected three transplant artery stenoses and one occlusion. In addition, two renal vein thromboses and one compression were identified. Perfusion deficits were documented in 8 renal transplants: Renal infarction (n=4), cortical necrosis (n=2), acute tubular necrosis (n=1) and venous ischemia (n=1). Fluid collections were documented as well as dilatation of the collecting system and abnormalities of the surrounding tissues. Conclusion: Contrast enhanced MRI and MRA permit a comprehensive assessment of renal transplants without inducing nephrotoxicity. (orig.) [de

  3. [Myocardial perfusion imaging by digital subtraction angiography].

    Science.gov (United States)

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. High-field, high-resolution, susceptibility-weighted magnetic resonance imaging: improved image quality by addition of contrast agent and higher field strength in patients with brain tumors

    International Nuclear Information System (INIS)

    Pinker, K.; Noebauer-Huhmann, I.M.; Szomolanyi, P.; Weber, M.; Grabner, G.; Trattnig, S.; Stavrou, I.; Knosp, E.; Hoeftberger, R.; Stadlbauer, A.

    2008-01-01

    To demonstrate intratumoral susceptibility effects in malignant brain tumors and to assess visualization of susceptibility effects before and after administration of the paramagnetic contrast agent MultiHance (gadobenate dimeglumine; Bracco Imaging), an agent known to have high relaxivity, with respect to susceptibility effects, image quality, and reduction of scan time. Included in the study were 19 patients with malignant brain tumors who underwent high-resolution, susceptibility-weighted (SW) MR imaging at 3 T before and after administration of contrast agent. In all patients, Multihance was administered intravenously as a bolus (0.1 mmol/kg body weight). MR images were individually evaluated by two radiologists with previous experience in the evaluation of pre- and postcontrast 3-T SW MR images with respect to susceptibility effects, image quality, and reduction of scan time. In the 19 patients 21 tumors were diagnosed, of which 18 demonstrated intralesional susceptibility effects both in pre- and postcontrast SW images, and 19 demonstrated contrast enhancement in both SW images and T1-weighted spin-echo MR images. Conspicuity of susceptibility effects and image quality were improved in postcontrast images compared with precontrast images and the scan time was also reduced due to decreased TE values from 9 min (precontrast) to 7 min (postcontrast). The intravenous administration of MultiHance, an agent with high relaxivity, allowed a reduction of scan time from 9 min to 7 min while preserving excellent susceptibility effects and image quality in SW images obtained at 3 T. Contrast enhancement and intralesional susceptibility effects can be assessed in one sequence. (orig.)

  5. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... to be in accordance with results obtained by other methods. Noncontrast functional MR (fMR) imaging showed signal increases in gray matter, but also inconsistent changes in some white matter regions. CONCLUSION: In this experiment, contrast-enhanced imaging seemed to show a somewhat higher sensitivity towards changes...

  6. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    Science.gov (United States)

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  7. Hemodynamic segmentation of brain perfusion images with delay and dispersion effects using an expectation-maximization algorithm.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Lu

    Full Text Available Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified.

  8. CT Perfusion Characteristics Identify Metastatic Sites in Liver

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF, blood volume (BV, mean transit time (MTT, permeability (PS, and hepatic arterial fraction (HAF, for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  9. Methodological NMR imaging developments to measure cerebral perfusion

    International Nuclear Information System (INIS)

    Pannetier, N.

    2010-12-01

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  10. Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes

    Energy Technology Data Exchange (ETDEWEB)

    Bouzerar, Roger; Chaarani, Bader; Baledent, Olivier [University Hospital, Image Processing Department, Amiens (France); Gondry-Jouet, Catherine [University Hospital, Radiology Department, Amiens (France); Zmudka, Jadwiga [University Hospital, Geriatric Unit, Amiens (France)

    2013-12-15

    The cerebrospinal fluid (CSF) plays a major role in the physiology of the central nervous system. The continuous turnover of CSF is mainly attributed to the highly vascularized choroid plexus (CP) located in the cerebral ventricles which represent a complex interface between blood and CSF. We propose a method for evaluating CP functionality in vivo using perfusion MR imaging and establish the age-related changes of associated parameters. Fifteen patients with small intracranial tumors were retrospectively studied. MR Imaging was performed on a 3T MR Scanner. Gradient-echo echo planar images were acquired after bolus injection of gadolinium-based contrast agent (CA). The software developed used the combined T1- and T2-effects. The decomposition of the relaxivity signals enables the calculation of the CP capillary permeability (K{sub 2}). The relative cerebral blood volume (rCBV), mean transit time (MTT), and signal slope decrease (SSD) were also calculated. The mean permeability K{sub 2} of the extracted CP was 0.033+/-0.18 s{sup -1}. K{sub 2} and SSD significantly decreased with subject's age whereas MTT significantly increased with subject's age. No significant correlation was found for age-related changes in rCBV and rCBF. The decrease in CP permeability is in line with the age-related changes in CSF secretion observed in animals. The MTT increase indicates significant structural changes corroborated by microscopy studies in animals or humans. Overall, DSC MR-perfusion enables an in vivo evaluation of the hemodynamic state of CP. Clinical applications such as neurodegenerative diseases could be considered thanks to specific functional studies of CP. (orig.)

  11. MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent

    Energy Technology Data Exchange (ETDEWEB)

    Anemone, Annasofia; Consolino, Lorena [Universita degli Studi di Torino, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Torino (Italy); Longo, Dario Livio [Universita degli Studi di Torino, Istituto di Biostrutture e Bioimmagini (CNR) c/o Centro di Biotecnologie Molecolari, Torino (Italy)

    2017-05-15

    X-ray iodinated contrast media have been shown to generate contrast in MR images when used with the chemical exchange saturation transfer (CEST) approach. The aim of this study is to compare contrast enhancement (CE) capabilities and perfusion estimates between radiographic molecules and a Gd-based contrast agent in two tumour murine models with different vascularization patterns. MRI-CEST and MRI-CE T{sub 1w} images were acquired in murine TS/A and 4 T1 breast tumours upon sequential i.v. injection of iodinated contrast media (iodixanol, iohexol, and iopamidol) and of gadoteridol. The signal enhancements observed in the two acquisition modalities were evaluated using Pearson's correlation, and the correspondence in the spatial distribution was assessed by a voxelwise comparison. A significant, positive correlation was observed between iodinated contrast media and gadoteridol for tumour contrast enhancement and perfusion values for both tumour models (r = 0.51-0.62). High spatial correlations were observed in perfusion maps between iodinated molecules and gadoteridol (r = 0.68-0.86). Tumour parametric maps derived by iodinated contrast media and gadoteridol showed high spatial similarities. A good to strong spatial correlation between tumour perfusion parameters derived from MRI-CEST and MRI-CE modalities indicates that the two procedures provide similar information. (orig.)

  12. Renal MR angiography and perfusion in the pig using hyperpolarized water.

    Science.gov (United States)

    Wigh Lipsø, Kasper; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling; Laustsen, Christoffer; Ardenkjaer-Larsen, Jan Henrik

    2017-09-01

    To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. Protons dissolved in deuterium oxide (D 2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T 1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients

    International Nuclear Information System (INIS)

    Bauman, Grzegorz; Puderbach, Michael; Heimann, Tobias; Kopp-Schneider, Annette; Fritzsching, Eva; Mall, Marcus A.; Eichinger, Monika

    2013-01-01

    Purpose: To validate Fourier decomposition (FD) magnetic resonance (MR) imaging in cystic fibrosis (CF) patients with dynamic contrast-enhanced (DCE) MR imaging. Materials and methods: Thirty-four CF patients (median age 4.08 years; range 0.16–30) were examined on a 1.5-T MR imager. For FD MR imaging, sets of lung images were acquired using an untriggered two-dimensional balanced steady-state free precession sequence. Perfusion-weighted images were obtained after correction of the breathing displacement and Fourier analysis of the cardiac frequency from the time-resolved data sets. DCE data sets were acquired with a three-dimensional gradient echo sequence. The FD and DCE images were visually assessed for perfusion defects by two readers independently (R1, R2) using a field based scoring system (0–12). Software was used for perfusion impairment evaluation (R3) of segmented lung images using an automated threshold. Both imaging and evaluation methods were compared for agreement and tested for concordance between FD and DCE imaging. Results: Good or acceptable intra-reader agreement was found between FD and DCE for visual and automated scoring: R1 upper and lower limits of agreement (ULA, LLA): 2.72, −2.5; R2: ULA, LLA: ±2.5; R3: ULA: 1.5, LLA: −2. A high concordance was found between visual and automated scoring (FD: 70–80%, DCE: 73–84%). Conclusions: FD MR imaging provides equivalent diagnostic information to DCE MR imaging in CF patients. Automated assessment of regional perfusion defects using FD and DCE MR imaging is comparable to visual scoring but allows for percentage-based analysis

  14. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, Grzegorz, E-mail: g.bauman@dkfz.de [German Cancer Research Center, Division of Medical Physics in Radiology, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Puderbach, Michael, E-mail: m.puderbach@dkfz.de [Chest Clinics at the University of Heidelberg, Clinics for Interventional and Diagnostic Radiology, Amalienstr. 5, 69126 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); Heimann, Tobias, E-mail: t.heimann@dkfz.de [German Cancer Research Center, Division of Medical and Biological Informatics, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Kopp-Schneider, Annette, E-mail: kopp@dkfz.de [German Cancer Research Center, Division of Biostatistics, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Fritzsching, Eva, E-mail: eva.fritzsching@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Translational Pulmonology and Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Im Neuenheimer Feld 430, Heidelberg (Germany); Mall, Marcus A., E-mail: marcus.mall@med.uni-heidelberg.de [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); University Hospital Heidelberg, Department of Translational Pulmonology and Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Im Neuenheimer Feld 430, Heidelberg (Germany); Eichinger, Monika, E-mail: m.eichinger@dkfz.de [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); German Cancer Research Center, Division of Radiology, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany)

    2013-12-01

    Purpose: To validate Fourier decomposition (FD) magnetic resonance (MR) imaging in cystic fibrosis (CF) patients with dynamic contrast-enhanced (DCE) MR imaging. Materials and methods: Thirty-four CF patients (median age 4.08 years; range 0.16–30) were examined on a 1.5-T MR imager. For FD MR imaging, sets of lung images were acquired using an untriggered two-dimensional balanced steady-state free precession sequence. Perfusion-weighted images were obtained after correction of the breathing displacement and Fourier analysis of the cardiac frequency from the time-resolved data sets. DCE data sets were acquired with a three-dimensional gradient echo sequence. The FD and DCE images were visually assessed for perfusion defects by two readers independently (R1, R2) using a field based scoring system (0–12). Software was used for perfusion impairment evaluation (R3) of segmented lung images using an automated threshold. Both imaging and evaluation methods were compared for agreement and tested for concordance between FD and DCE imaging. Results: Good or acceptable intra-reader agreement was found between FD and DCE for visual and automated scoring: R1 upper and lower limits of agreement (ULA, LLA): 2.72, −2.5; R2: ULA, LLA: ±2.5; R3: ULA: 1.5, LLA: −2. A high concordance was found between visual and automated scoring (FD: 70–80%, DCE: 73–84%). Conclusions: FD MR imaging provides equivalent diagnostic information to DCE MR imaging in CF patients. Automated assessment of regional perfusion defects using FD and DCE MR imaging is comparable to visual scoring but allows for percentage-based analysis.

  15. Evaluation of femoral perfusion in a rabbit model of steroid-induced osteonecrosis by dynamic contrast-enhanced MRI with a high magnetic field MRI system.

    Science.gov (United States)

    Hayashi, Shigeki; Fujioka, Mikihiro; Ikoma, Kazuya; Saito, Masazumi; Ueshima, Keiichiro; Ishida, Masashi; Kuribayashi, Masaaki; Ikegami, Akira; Mazda, Osam; Kubo, Toshikazu

    2015-04-01

    To evaluate perfusion during the early phase after steroid administration in vivo using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with a high magnetic field MRI system. The main pathogenesis of steroid-induced osteonecrosis is considered to be ischemia. A single dose of methylprednisolone (MPSL) was injected into nine rabbits. DCE-MRI was performed for these rabbits before MPSL administration and 1, 5, 10, and 14 days after administration. Time-signal intensity curves were created for each femur based on the signal intensity to evaluate perfusion. Enhancement ratio (ER), initial slope (IS), and area under the curve (AUC) were calculated and the value before MPSL administration and the minimal value after administration were compared statistically. ER, IS, and AUC values after MPSL administration significantly decreased (P < 0.05, P < 0.01, and P < 0.01, respectively). All of them decreased by the 5th day in 56% of the femora and by the 14th day in 83%, and some femora even showed a decrease from the 1st day. In this study, decreased perfusion in the femora after steroid administration was proven. Additionally, we could show that it occurred from the early days after steroid administration. © 2014 Wiley Periodicals, Inc.

  16. Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1.

    Science.gov (United States)

    Segarra, Amélie; Mauduit, Florian; Faury, Nicole; Trancart, Suzanne; Dégremont, Lionel; Tourbiez, Delphine; Haffner, Philippe; Barbosa-Solomieu, Valérie; Pépin, Jean-François; Travers, Marie-Agnès; Renault, Tristan

    2014-07-09

    Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.

  17. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    Science.gov (United States)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  18. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  19. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?

    Science.gov (United States)

    Gaberel, Thomas; Gakuba, Clement; Goulay, Romain; Martinez De Lizarrondo, Sara; Hanouz, Jean-Luc; Emery, Evelyne; Touze, Emmanuel; Vivien, Denis; Gauberti, Maxime

    2014-10-01

    The aim of the present study was to investigate the impact of different stroke subtypes on the glymphatic system using MRI. We first improved and characterized an in vivo protocol to measure the perfusion of the glymphatic system using MRI after minimally invasive injection of a gadolinium chelate within the cisterna magna. Then, the integrity of the glymphatic system was evaluated in 4 stroke models in mice including subarachnoid hemorrhage (SAH), intracerebral hemorrhage, carotid ligature, and embolic ischemic stroke. We were able to reliably evaluate the glymphatic system function using MRI. Moreover, we provided evidence that the glymphatic system was severely impaired after SAH and in the acute phase of ischemic stroke, but was not altered after carotid ligature or in case of intracerebral hemorrhage. Notably, this alteration in glymphatic perfusion reduced brain clearance rate of low-molecular-weight compounds. Interestingly, glymphatic perfusion after SAH can be improved by intracerebroventricular injection of tissue-type plasminogen activator. Moreover, spontaneous arterial recanalization was associated with restoration of the glymphatic function after embolic ischemic stroke. SAH and acute ischemic stroke significantly impair the glymphatic system perfusion. In these contexts, injection of tissue-type plasminogen activator either intracerebroventricularly to clear perivascular spaces (for SAH) or intravenously to restore arterial patency (for ischemic stroke) may improve glymphatic function. © 2014 American Heart Association, Inc.

  20. Use of Contrast-Enhanced Ultrasound to Study Relationship between Serum Uric Acid and Renal Microvascular Perfusion in Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-01-01

    Full Text Available Purpose. To investigate the relationship between uric acid and renal microvascular perfusion in diabetic kidney disease (DKD using contrast-enhanced ultrasound (CEUS method. Materials and Methods. 79 DKD patients and 26 healthy volunteers were enrolled. Renal function and urine protein markers were tested. DKD patients were subdivided into two groups including a normal serum uric acid (SUA group and a high SUA group. Contrast-enhanced ultrasound (CEUS was performed, and low acoustic power contrast-specific imaging was used for quantitative analysis. Results. Normal controls (NCs had the highest levels of AUC, AUC1, and AUC2. Compared to the normal SUA DKD group, high SUA DKD patients had significantly higher IMAX, AUC, and AUC1 (P<0.05. DKD patients with low urinary uric acid (UUA excretion had significantly higher AUC2 compared to DKD patients with normal UUA (P<0.05. Conclusion. Hyperuricemia in DKD patients was associated with a renal ultrasound image suggestive of microvascular hyperperfusion. The CEUS parameter AUC1 holds promise as an indicator for renal microvascular hyperperfusion, while AUC2 might be a useful indicator of declining glomerular filtration rate in DKD patients with decreased excretion of uric acid.

  1. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: a preliminary report

    International Nuclear Information System (INIS)

    Rumberger, J.A.; Feiring, A.J.; Lipton, M.J.; Higgins, C.B.; Ell, S.R.; Marcus, M.L.

    1987-01-01

    The purpose of this study was to assess the potential for rapid acquisition computed axial tomography (Imatron C-100) to quantify regional myocardial perfusion. Myocardial and left ventricular cavity contrast clearance curves were constructed after injecting nonionic contrast (1 ml/kg over 2 to 3 seconds) into the inferior vena cava of six anesthetized, closed chest dogs (n = 14). Independent myocardial perfusion measurements were obtained by coincident injection of radiolabeled microspheres into the left atrium during control, intermediate and maximal myocardial vasodilation with adenosine (0.5 to 1.0 mg/kg per min, intravenously, respectively). At each flow state, 40 serial short-axis scans of the left ventricle were taken near end-diastole at the midpapillary muscle level. Contrast clearance curves were generated and analyzed from the left ventricular cavity and posterior papillary muscle regions after excluding contrast recirculation and minimizing partial volume effects. The area under the curve (gamma variate function) was determined for a region of interest placed within the left ventricular cavity. Characteristics of contrast clearance data from the posterior papillary muscle region that were evaluated included the peak myocardial opacification, area under the contrast clearance curve and a contrast clearance time defined by the full width/half maximal extent of the clearance curve. Myocardial perfusion (microspheres) ranged from 35 to 450 ml/100 g per min (mean 167 +/- 125)

  2. Ventilation-perfusion lung imaging in diaphragmatic paralysis

    International Nuclear Information System (INIS)

    Chopra, S.K.; Taplin, G.V.

    1977-01-01

    Clinical, radiological, physiological, and lung imaging findings from a patient with paralysis of the diaphragm are described. Dyspnea, hypoxemia and hypercapnia increased when the patient changed from the upright to the supine positions. Ventilation (V) and perfusion (P) images of the right lung appeared to be relatively normal and remained nearly the same in the upright and supine positions. In contrast, V/P images of the left lung were smaller than those of the right lung in the upright position and decreased further in the supine position. In addition, the size of the ventilation image was much smaller than that of the perfusion

  3. Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Ji Eun Park

    Full Text Available To determine if perfusion in surgical cavity wall enhancement (SCWE obtained in early post-treatment MR imaging can stratify time-to-progression (TTP in glioblastoma.This study enrolled 60 glioblastoma patients with more than 5-mm-thick SCWEs as detected on contrast-enhanced MR imaging after concurrent chemoradiation therapy. Two independent readers categorized the shape and perfusion state of SCWEs as nodular or non-nodular and as having positive or negative perfusion compared with the contralateral grey matter on arterial spin labeling (ASL. The perfusion fraction on ASL within the contrast-enhancing lesion was calculated. The independent predictability of TTP was analyzed using the Kaplan-Meier method and Cox proportional hazards modelling.The perfusion fraction was higher in the non-progression group, significantly for reader 2 (P = 0.03 and borderline significantly for reader 1 (P = 0.08. A positive perfusion state and (P = 0.02 a higher perfusion fraction of the SCWE were found to become an independent predictor of longer TTP (P = 0.001 for reader 1 and P < 0.001 for reader 2. The contrast enhancement pattern did not become a TTP predictor.Assessment of perfusion in early post-treatment MR imaging can stratify TTP in patients with glioblastoma for adjuvant temozolomide therapy. Positive perfusion in SCWEs can become a predictor of a longer TTP.

  4. Parallel imaging for first-pass myocardial perfusion

    NARCIS (Netherlands)

    Irwan, Roy; Lubbers, Daniel D.; van der Vleuten, Pieter A.; Kappert, Peter; Gotte, Marco J. W.; Sijens, Paul E.

    Two parallel imaging methods used for first-pass myocardial perfusion imaging were compared in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image artifacts. One used adaptive Time-adaptive SENSitivity Encoding (TSENSE) and the other used GeneRalized Autocalibrating

  5. Contrast optimization in multiphase arterial spin labeling

    International Nuclear Information System (INIS)

    Paiva, Fernando F.; Paschoal, Andre M.; Tovar-Moll, Fernanda; Moll, Jorge

    2013-01-01

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  6. Comparison of MultiHance {sup trademark} and Gadovist {sup trademark} for cerebral MR perfusion imaging in healthy volunteers; Vergleich von MultiHance {sup trademark} und Gadovist {sup trademark} zur zerebralen MR-Perfusionsmessung bei gesunden Probanden

    Energy Technology Data Exchange (ETDEWEB)

    Essig, M.; LeHuu, M.; Huebener, M.; Kaick, G. van [Deutsches Krebsforschungszentrum, Abt. Radiologische Diagnostik und Therapie, Heidelberg (Germany); Lodemann, K.P. [Bracco-Byk, Gulden (Germany); Schoenberg, S.O. [Institut fuer Klinische Radiologie, Ludwig-Maximilians-Universitaet Muenchen, Grosshadern (Germany)

    2002-11-01

    To evaluate the weakly protein interacting MR contrast agent MultiHance {sup trademark} and the one-molar agent Gadovist {sup trademark} for cerebral perfusion MR imaging, a randomized intraindividual study was conducted in 12 healthy male volunteers. Perfusion-MRI was performed with single and double dose of each contrast agent on a 1.5T MR system using a gradient-echo EPI sequence. The imaging parameters, slice positioning and contrast media application were standardized. For the quantitative assessment rCBV and rCBF measurements of gray and white matter were performed. Additionally, the percentage of signal drop and the full width half maximum (FWHM) of ROI signal time curves were quantified. In a qualitative analysis the image quality of the rCBV and rCBF maps were assessed.Single dosage of the used new contrast agents was sufficient to achieve high quality perfusion maps. The susceptibility effect, described by percentage of signal loss (Gadovist {sup trademark} : 29.4% vs. MultiHance {sup trademark} : 28.3%) and the FWHM (Gadovist {sup trademark} : 6.4 s vs. Multihance {sup trademark} : 7.0 s) were not different between the agents for single dose.The one molar MR contrast agent Gadovist {sup trademark} has no advantages over MultiHance {sup trademark}, a MR contrast agent with a higher relaxivity in perfusion MRI. Both agents allow the calculation of high quality perfusion maps at a dosage of 0.1 mmol/kg bw with physiologic absolute values for regional CBV and CBF. The susceptibility effect is comparable for both agents and stronger than with conventional MR contrast media. (orig.) [German] Zur Evaluierung des gering proteinbindenden MR-Kontrastmittels MultiHance {sup trademark} und des einmolaren MR-Kontrastmittels Gadovist {sup trademark} fuer die MR-Perfusionsmessung im Gehirn wurden in einer randomisierten, intraindividuellen Vergleichsstudie 12 gesunde maennliche Probanden untersucht. Die Perfusionsmessung wurde an einem 1,5-T-MRT mit einer T2

  7. Magnetic resonance cardiac perfusion imaging-a clinical perspective

    International Nuclear Information System (INIS)

    Hunold, Peter; Schlosser, Thomas; Barkhausen, Joerg

    2006-01-01

    Coronary artery disease (CAD) with its clinical appearance of stable or unstable angina and acute myocardial infarction is the leading cause of death in developed countries. In view of increasing costs and the rising number of CAD patients, there has been a major interest in reliable non-invasive imaging techniques to identify CAD in an early (i.e. asymptomatic) stage. Since myocardial perfusion deficits appear very early in the ''ischemic cascade'', a major breakthrough would be the non-invasive quantification of myocardial perfusion before functional impairment might be detected. Therefore, there is growing interest in other, target-organ-specific parameters, such as relative and absolute myocardial perfusion imaging. Magnetic resonance (MR) imaging has been proven to offer attractive concepts in this respect. However, some important difficulties have not been resolved so far, which still causes uncertainty and prevents the broad application of MR perfusion imaging in a clinical setting. This review explores recent technical developments in MR hardware, software and contrast agents, as well as their impact on the current and future clinical status of MR imaging of first-pass myocardial perfusion imaging. (orig.)

  8. Magnetic resonance cardiac perfusion imaging-a clinical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Peter; Schlosser, Thomas; Barkhausen, Joerg [University Hospital, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2006-08-15

    Coronary artery disease (CAD) with its clinical appearance of stable or unstable angina and acute myocardial infarction is the leading cause of death in developed countries. In view of increasing costs and the rising number of CAD patients, there has been a major interest in reliable non-invasive imaging techniques to identify CAD in an early (i.e. asymptomatic) stage. Since myocardial perfusion deficits appear very early in the ''ischemic cascade'', a major breakthrough would be the non-invasive quantification of myocardial perfusion before functional impairment might be detected. Therefore, there is growing interest in other, target-organ-specific parameters, such as relative and absolute myocardial perfusion imaging. Magnetic resonance (MR) imaging has been proven to offer attractive concepts in this respect. However, some important difficulties have not been resolved so far, which still causes uncertainty and prevents the broad application of MR perfusion imaging in a clinical setting. This review explores recent technical developments in MR hardware, software and contrast agents, as well as their impact on the current and future clinical status of MR imaging of first-pass myocardial perfusion imaging. (orig.)

  9. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: fanli0930@163.com; Liu Shiyuan [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China); Sun Fei [GE Healthcare China (China)], E-mail: Fei.sun@med.ge.com; Xiao Xiangsheng [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: lizhaobin79@163.com

    2009-04-15

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  10. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    International Nuclear Information System (INIS)

    Fan Li; Liu Shiyuan; Sun Fei; Xiao Xiangsheng

    2009-01-01

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  11. Image quality in CT perfusion imaging of the brain. The role of iodine concentration

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias; Bueltmann, Eva; Bode-Schnurbus, Lucas; Koenen, Dirk; Mielke, Eckhart; Heuser, Lothar [Knappschaftskrankenhaus Langendreer, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Ruhr-University Bochum, Bochum (Germany)

    2007-01-15

    The purpose of this study was to evaluate the impact of various iodine contrast concentrations on image quality in computed tomography (CT) perfusion studies. Twenty-one patients with suspicion of cerebral ischemia underwent perfusion CT using two different iodine contrast concentrations: 11 patients received iomeprol 300 (iodine concentration: 300 mg/ml) while ten received the same volume of iomeprol 400 (iodine concentration: 400 mg/ml). Scan parameters were kept constant for both groups. Maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP) were calculated from two adjacent slices. Quantitative comparisons were based on measurements of the maximum enhancement [Hounsfield units (HU)] and signal-to-noise index (SNI) on CBF, CBV, and TTP images. Determinations of grey-to-white-matter delineation for each iodine concentration were performed by two blinded readers. Only data from the non-ischemic hemispheres were considered. Both maximum enhancement and SNI values were higher after iomeprol 400, resulting in significantly better image quality in areas of low perfusion. No noteworthy differences were found for normal values of CBF, CBV, and TTP. Qualitative assessment of grey/white matter contrast on CBF and CBV maps revealed better performance for iomeprol 400. For brain perfusion studies, highly concentrated contrast media such as iomeprol 400 is superior to iomeprol 300. (orig.)

  12. Dynamic contrast enhanced MRI in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alonzi, Roberto [Marie Curie Research Wing, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom)], E-mail: robertoalonzi@btinternet.com; Padhani, Anwar R. [Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN (United Kingdom); Synarc Inc. 575 Market Street, San Francisco, CA 94105 (United States)], E-mail: anwar.padhani@paulstrickland-scannercentre.org.uk; Allen, Clare [Department of Imaging, University College Hospital, London, 235 Euston Road, NW1 2BU (United Kingdom)], E-mail: clare.allen@uclh.nhs.uk

    2007-09-15

    Angiogenesis is an integral part of benign prostatic hyperplasia (BPH), is associated with prostatic intraepithelial neoplasia (PIN) and is key to the growth and for metastasis of prostate cancer. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) using small molecular weight gadolinium chelates enables non-invasive imaging characterization of tissue vascularity. Depending on the technique used, data reflecting tissue perfusion, microvessel permeability surface area product, and extracellular leakage space can be obtained. Two dynamic MRI techniques (T{sub 2}*-weighted or susceptibility based and T{sub 1}-weighted or relaxivity enhanced methods) for prostate gland evaluations are discussed in this review with reference to biological basis of observations, data acquisition and analysis methods, technical limitations and validation. Established clinical roles of T{sub 1}-weighted imaging evaluations will be discussed including lesion detection and localisation, for tumour staging and for the detection of suspected tumour recurrence. Limitations include inadequate lesion characterisation particularly differentiating prostatitis from cancer, and in distinguishing between BPH and central gland tumours.

  13. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    Directory of Open Access Journals (Sweden)

    G. J. Pelgrim

    2016-01-01

    Full Text Available Technological advances in magnetic resonance imaging (MRI and computed tomography (CT, including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET. This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD, as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings.

  14. Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies.

    Science.gov (United States)

    Lefranc, M; Monet, P; Desenclos, C; Peltier, J; Fichten, A; Toussaint, P; Sevestre, H; Deramond, H; Le Gars, D

    2012-01-01

    Stereotactic biopsies are subject to sampling errors (essentially due to target selection). The presence of contrast enhancement is not a reliable marker of malignancy. The goal of the present study was to determine whether perfusion-weighted imaging can improve target selection in stereotactic biopsies. We studied 21 consecutive stereotactic biopsies between June 2009 and March 2010. Perfusion-weighted magnetic resonance imaging (MRI) was integrated into our neuronavigator. Perfusion-weighted imaging was used as an adjunct to conventional MRI data for target determination. Conventional MRI alone was used to determine the trajectory. We found a linear correlation between regional cerebral blood volume (rCBV) and vessel density (number of vessels per mm(2); R = 0.64; p < 0.001). Perfusion-weighted imaging facilitated target determination in 11 cases (52.4%), all of which were histopathologically diagnosed as glial tumors. For glial tumors, which presented with contrast enhancement, perfusion-weighted imaging identified a more precisely delimited target in 9 cases, a different target in 1 case, and exactly the same target in 1 other case. In all cases, perfusion-selected sampling provided information on cellular features and tumor grading. rCBV was significantly associated with grading (p < 0.01), endothelial proliferation (p < 0.01), and vessel density (p < 0.01). For lesions with rCBV values ≤1, perfusion-weighted MRI did not help to determine the target but was useful for surgical management. For stereotactic biopsies, targeting based on perfusion-weighted imaging is a feasible method for reducing the sampling error and improving target selection in the histopathological diagnosis of tumors with high rCBVs. Copyright © 2012 S. Karger AG, Basel.

  15. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe (Japan); Fujisawa, Yasuko [Toshiba Medical Systems Corporation, Otawara (Japan); Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Sugihara, Naoki [Toshiba Medical Systems Corporation, Otawara (Japan); Yoshikawa, Takeshi [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe (Japan)

    2017-01-15

    Purpose: To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Materials and methods: Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR + PR) and 2) stable or progressive disease (SD + PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV{sub max}, and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. Results: The step-wise regression test showed that therapeutic effect (r{sup 2} = 0.63, p = 0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV{sub max}. Mean overall survival showed a significant difference for total perfusion (p = 0.003) and systemic arterial perfusion (p = 0.04). Conclusion: Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy.

  16. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2017-01-01

    Purpose: To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Materials and methods: Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR + PR) and 2) stable or progressive disease (SD + PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV max , and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. Results: The step-wise regression test showed that therapeutic effect (r 2 = 0.63, p = 0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV max . Mean overall survival showed a significant difference for total perfusion (p = 0.003) and systemic arterial perfusion (p = 0.04). Conclusion: Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy.

  17. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2017-01-01

    To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR+PR) and 2) stable or progressive disease (SD+PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV max , and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. The step-wise regression test showed that therapeutic effect (r 2 =0.63, p=0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV max . Mean overall survival showed a significant difference for total perfusion (p=0.003) and systemic arterial perfusion (p=0.04). Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel [Cedars-Sinai Medical Center, Department of Medical Imaging, Los Angeles, CA (United States); Erly, William; Nael, Kambiz [University of Arizona Medical Center, Department of Medical Imaging, Tucson, AZ (United States)

    2015-07-15

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K{sup trans}, and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K{sup trans}, and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K{sup trans} were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  19. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    International Nuclear Information System (INIS)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel; Erly, William; Nael, Kambiz

    2015-01-01

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K trans , and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K trans , and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K trans were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  20. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  1. SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R; Iacobucci, G; Khobragade, P; Ying, L; Snyder, K; Wack, D; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-15

    Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with cone beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  2. SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems

    International Nuclear Information System (INIS)

    Wood, R; Iacobucci, G; Khobragade, P; Ying, L; Snyder, K; Wack, D; Rudin, S; Ionita, C

    2014-01-01

    Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with cone beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation

  3. Comparison between CT perfusion and Tc-99m ECD SPECT in the assessment of cerebrovascular reserve: a case study

    International Nuclear Information System (INIS)

    Crouch, J.; Wood, C.; Campbell, A.; McCarthy, M.; Dunne, M.; Bynevelt, M.; Lenzo, N.

    2003-01-01

    Full text: Brain perfusion is sensitively assessed by cerebral SPECT imaging utilising perfusion agents such as Tc-99m HMPAO and Tc-99m ethyl cysteinate dimer (ECD). Positron emission tomography can accurately assess and quantify brain perfusion and MRI can also be used for perfusion assessment. Both MRI and PET however are currently limited by cost and availability. A new technique utilising CT with contrast has been developed to assess and quantitate cerebral perfusion. The technique utilises arterial input information and deconvolution analysis to develop quantifiable measures of perfusion and contrast transit. The technique has been validated for acute stroke assessment and is being assessed for other possible applications. We present a case study comparison of this technique with cerebral SPECT perfusion using Tc-99m ECD in the assessment of cerebrovasular reserve. In each case, the CT and SPECT studies were performed pre- and post-acetazolamide and the SPECT study was statistically compared with a normal database utilising an automated brain perfusion statistical analysis package (NeurostatT). We discuss the correlation found between techniques, their strengths, weaknesses and possible future roles. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  4. Quantitative Analysis of First-Pass Contrast-Enhanced Myocardial Perfusion Multidetector CT Using a Patlak Plot Method and Extraction Fraction Correction During Adenosine Stress

    Science.gov (United States)

    Ichihara, Takashi; George, Richard T.; Silva, Caterina; Lima, Joao A. C.; Lardo, Albert C.

    2011-02-01

    The purpose of this study was to develop a quantitative method for myocardial blood flow (MBF) measurement that can be used to derive accurate myocardial perfusion measurements from dynamic multidetector computed tomography (MDCT) images by using a compartment model for calculating the first-order transfer constant (K1) with correction for the capillary transit extraction fraction (E). Six canine models of left anterior descending (LAD) artery stenosis were prepared and underwent first-pass contrast-enhanced MDCT perfusion imaging during adenosine infusion (0.14-0.21 mg/kg/min). K1 , which is the first-order transfer constant from left ventricular (LV) blood to myocardium, was measured using the Patlak plot method applied to time-attenuation curve data of the LV blood pool and myocardium. The results were compared against microsphere MBF measurements, and the extraction fraction of contrast agent was calculated. K1 is related to the regional MBF as K1=EF, E=(1-exp(-PS/F)), where PS is the permeability-surface area product and F is myocardial flow. Based on the above relationship, a look-up table from K1 to MBF can be generated and Patlak plot-derived K1 values can be converted to the calculated MBF. The calculated MBF and microsphere MBF showed a strong linear association. The extraction fraction in dogs as a function of flow (F) was E=(1-exp(-(0.2532F+0.7871)/F)) . Regional MBF can be measured accurately using the Patlak plot method based on a compartment model and look-up table with extraction fraction correction from K1 to MBF.

  5. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    International Nuclear Information System (INIS)

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.; Mewissen, M.W.; Almagro, U.A.; Hellman, R.S.; Isitman, A.T.

    1990-01-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is often needed for accurate differential diagnosis

  6. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.; Mewissen, M.W.; Almagro, U.A.; Hellman, R.S.; Isitman, A.T. (Medical College of Wisconsin, Milwaukee (USA))

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is often needed for accurate differential diagnosis.

  7. CT perfusion scanning of the brain in stroke and beyond

    International Nuclear Information System (INIS)

    Riedel, Christian

    2011-01-01

    CT perfusion scanning (CTP) allows for quantitative analysis of cerebral blood flow (CBF) and cerebral blood volume (CBV). Until recently, it was only possible to study brain perfusion parameters in a small stack of CT-slices close to the skull base. With the introduction of multidetector CT scanners with 64 and more detector rows it has become possible to assess perfusion of the entire brain. An optimal choice of scanning parameters like the new 'shuttle'-technique combined with a well adapted regimen for contrast administration is required to guarantee reliable perfusion measurements while still keeping the X-ray dose absorbed by the patient at a minimum. With these techniques, CTP is not only an important modality in the work-up of patients suffering from acute ischemic stroke but can also be valuable in other emergency situations such as in prolonged epileptic seizures or to monitor patients with subacute subarachnoid hemorrhage. (orig.)

  8. Use of contrast agents for liver MRI

    International Nuclear Information System (INIS)

    Ward, Janice

    2007-01-01

    Contrast-enhanced MRI is recognised as one of the most accurate imaging methods for investigating diseases of the liver. Uniquely several different types of contrast agents are available for liver MRI. They can be divided into non-specific extracellular fluid space (ECF), hepatocyte specific and reticulo-endothelial system (RES) specific agents. They are used to improve the detection of focal liver lesions by increasing normal-abnormal tissue contrast and to assist in lesion characterisation by demonstrating tissue perfusion and cellular function. ECF-gadolinium (Gd) chelates have been widely used in abdominal MRI for many years. They provide valuable information regarding the vascularisation and perfusion characteristics of lesions and assist in lesion detection, particularly of hypervascular lesions. The hepatocyte and RES-specific agents further improve lesion detection, provide important functional information and allow the distinction between hepatocellular and non-hepatocellular tumours. This article describes the different MR contrast agents and discusses their current status for diagnosing focal liver lesions. The importance of optimised technique and appropriate selection of contrast agent is emphasised

  9. Possibilities of differentiation of solitary focal liver lesions by computed tomography perfusion

    Directory of Open Access Journals (Sweden)

    Irmina Sefić Pašić

    2015-08-01

    Full Text Available Aim To evaluate possibilities of computed tomography (CT perfusion in differentiation of solitary focal liver lesions based on their characteristic vascularization through perfusion parameters analysis. Methods Prospective study was conducted on 50 patients in the period 2009-2012. Patients were divided in two groups: benign and malignant lesions. The following CT perfusion parameters were analyzed: blood flow (BF, blood volume (BV, mean transit time (MTT, capillary permeability surface area product (PS, hepatic arterial fraction (HAF, and impulse residual function (IRF. During the study another perfusion parameter was analyzed: hepatic perfusion index (HPI. All patients were examined on Multidetector 64-slice CT machine (GE with application of perfusion protocol for liver with i.v. administration of contrast agent. Results In both groups an increase of vascularization and arterial blood flow was noticed, but there was no significant statistical difference between any of 6 analyzed parameters. Hepatic perfusion index values were increased in all lesions in comparison with normal liver parenchyma. Conclusion Computed tomography perfusion in our study did not allow differentiation of benign and malignant liver lesions based on analysis of functional perfusion parameters. Hepatic perfusion index should be investigated in further studies as a parameter for detection of possible presence of micro-metastases in visually homogeneous liver in cases with no lesions found during standard CT protocol

  10. PET imaging of cerebral perfusion and oxygen metabolism in stroke

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, O.; Yasaka, M.; Berlangieri, S.U.; Newton, M.R.; Thomas, D.L.; Chan, C.G.; Egan, G.F.; Tochon-Danguy, H.J.; O``Keefe, G.; Donnan, G.A.; McKay, W.J. [Austin Hospital, Melbourne, VIC (Australia). Centre for PET and Depts of Nuclear Medicine and Neurology

    1998-03-01

    Full text: Stroke remains a devastating clinical event with few therapeutic options. In patients with acute stroke, we studied the cerebral perfusion and metabolic patterns with {sup 15}O-CO{sub 2} or H{sub 2}O and {sup 15}O-O{sub 2} positron emission tomography and correlated these findings to the clinical background. Forty three patients underwent 45 studies 0-23 days post-stroke (mean 7 days). Fifteen patients showed luxury perfusion (Group A), 10 had matched low perfusion and metabolism (B) and 3 showed mixed pattern including an area of misery perfusion (C). Seventeen showed no relevant abnormality (D) and there were no examples of isolated misery perfusion. Twelve of the 15 in Group A had either haemorrhagic transformation on CT, re-opening on angiography, or a cardioembolic mechanism. In contrast only 5/10 in Group B, 0/3 in Group C and 2/17 in Group D had these features. Although 7/10 in group B had moderate or large size infarcts on CT the incidence of haemorrhagic transformation was low (2/10) and significant carotid stenoses were more common in those studied (5/8) compared with the other groups. Misery perfusion was not seen beyond five days. Thus, luxury perfusion seems to be related to a cardio-embolic mechanism or reperfusion. Matched low perfusion and metabolism was associated with a low rate of haemorrhagic transformation despite a high incidence of moderate to large size infarcts. Misery perfusion is an early phenomenon in the evolution of ischaemic stroke.

  11. Perfusion maps of the whole liver based on high temporal and spatial resolution contrast-enhanced MRI (4D THRIVE): Feasibility and initial results in focal liver lesions

    International Nuclear Information System (INIS)

    Coenegrachts, Kenneth; Ghekiere, Johan; Denolin, Vincent; Gabriele, Beck; Herigault, Gwen; Haspeslagh, Marc; Daled, Peter; Bipat, Shandra; Stoker, Jaap; Rigauts, Hans

    2010-01-01

    Purpose: To prospectively evaluate a new imaging sequence (4D THRIVE) for whole liver perfusion in high temporal and spatial resolution. Feasibility of parametric mapping and its potential for characterizing focal liver lesions (FLLs) are investigated. Materials and methods: Fifteen patients suspected for colorectal liver metastases (LMs) were included. Parametric maps were evaluated qualitatively (ring-enhancement and lesion heterogeneity) and compared to three-phased contrast-enhanced MRI. Quantitative analysis was based on average perfusion values of entire FLLs. Reference standard comprised surgery with histopathology or follow-up imaging. Fisher's exact test was used for qualitative and Kruskal-Wallis test for quantitative analysis. Results: In total 29 LMs, 17 hemangiomas and 4 focal nodular hyperplasias were evaluated. FLLs could be differentiated by qualitative assessment of parametric maps respectively three-phased contrast-enhanced MRI (Fisher's p < 0.001 for comparisons between LMs and hemangiomas and LMs and FNHs for both ring-enhancement and lesion heterogeneity) rather than by quantitative analysis of parametric maps (Chi-square for Kep = 0.33 (p = 0.847) and Chi-square for Kel = 1.35 (p = 0.509)). Conclusion: This preliminary study shows potential of 4D THRIVE for whole liver imaging enabling calculation of parametric maps. Qualitative rather than quantitative analysis was accurate for differentiating malignant and benign FLLs.

  12. MR-based assessment of pulmonary ventilation-perfusion in animal models

    International Nuclear Information System (INIS)

    Yang Jian; Wan Mingxi; Guo Youmin

    2003-01-01

    Objective: To show the feasibility and value in the diagnosis of airway obstruction and pulmonary embolism with MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging. Methods: Eight canines were implemented for peripheral pulmonary embolism by intravenous injection of gelfoam granules at pulmonary segmental arterial level, and five of them were formed airway obstruction models by inserting self-made balloon catheter at second-bronchia. The oxygen-enhanced MR ventilation imaging was introduced by subtracting the images of pre- and post- inhaled pure oxygen. The MR pulmonary perfusion imaging was achieved by the first-pass contrast agent method. Moreover, the manifestation of MR ventilation and perfusion imaging was observed and contradistinguished with that of general pathologic anatomy, ventilation-perfusion scintigraphy, and pulmonary angiography. Results: The manifestations of airway obstruction regions in MR ventilation and perfusion imaging were matched, but those of pulmonary embolism regions were dismatched. The defect range of airway obstruction in MR ventilation image was smaller than that in ventilation scintigraphy. The abnormal perfusion regions of pulmonary embolism were divided into defect regions and reduce regions based on the time courses of signal intensity changes. The sensitivity and specificity of diagnosis on pulmonary embolism by MR ventilation combined with perfusion technique were 75.0% and 98.1%. The diagnostic results were in good coherence with ventilation-perfusion scintigraphy and pulmonary angiography (K=0.743, 0.899). Conclusion: The MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging can be used to diagnose the airway and vascular abnormity in lung. This technique resembles the ventilation-perfusion scintigraphy. It can provide quantitative functional information and better spatial and temporal resolution, and possesses the value of clinical application

  13. Pulmonary Perfusion Changes as Assessed by Contrast-Enhanced Dual-Energy Computed Tomography after Endoscopic Lung Volume Reduction by Coils.

    Science.gov (United States)

    Lador, Frédéric; Hachulla, Anne-Lise; Hohn, Olivia; Plojoux, Jérôme; Ronot, Maxime; Montet, Xavier; Soccal, Paola M

    2016-01-01

    Endoscopic lung volume reduction by coils (LVRC) is a recent treatment approach for severe emphysema. Furthermore, dual-energy computed tomography (DECT) now offers a combined assessment of lung morphology and pulmonary perfusion. The aim of our study was to assess the impact of LVRC on pulmonary perfusion with DECT. Seventeen patients (64.8 ± 6.7 years) underwent LVRC. DECT was performed prior to and after LVRC. For each patient, lung volumes and emphysema quantification were automatically calculated. Then, 6 regions of interest (ROIs) on the iodine perfusion map were drawn in the anterior, mid, and posterior right and left lungs at 4 defined levels. The ROI values were averaged to obtain lung perfusion as assessed by the lung's iodine concentration (CLung, μg·cm-3). The CLung values were normalized using the left atrial iodine concentration (CLA) to take into account differences between successive DECT scans. The 6-min walk distance (6MWD) improved significantly after the procedure (p = 0.0002). No lung volume changes were observed between successive DECT scans for any of the patients (p = 0.32), attesting the same suspended inspiration. After LVRC, the emphysema index was significantly reduced in the treated lung (p = 0.0014). Lung perfusion increased significantly adjacent to the treated areas (CLung/CLA from 3.4 ± 1.7 to 5.6 ± 2.2, p < 0.001) and in the ipsilateral untreated areas (from 4.1 ± 1.4 to 6.6 ± 1.7, p < 0.001), corresponding to a mean 65 and 61% increase in perfusion, respectively. No significant difference was observed in the contralateral upper and lower areas (from 4.4 ± 1.9 to 4.8 ± 2.1, p = 0.273, and from 4.9 ± 2.0 to 5.2 ± 1.7, p = 0.412, respectively). A significant correlation between increased 6MWD and increased perfusion was found (p = 0.0027, R2 = 0.3850). Quantitative analysis based on DECT acquisition revealed that LVRC results in a significant increase in perfusion in the coil-free areas adjacent to the treated ones, as

  14. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  15. Time-resolved MR angiography of the renal artery: morphology and perfusion

    International Nuclear Information System (INIS)

    Krause, U.J.; Pabst, T.; Koestler, H.; Helbig, C.; Kenn, W.; Hahn, D.

    2002-01-01

    Purpose: To prove the hypothesis that renal artery stenosis and changes in renal perfusion can be detected with contrast-enhanced time-resolved MR angiography in a single examination. Material and Methods: In 71 patients, 137 renal arteries and 14 accessory renal arteries were studied. The examinations were performed on a 1.5 T system. A T 1 -weighted gradient echo sequence with a temporal resolution of 7 s was used. Single dose of contrast material (0.1 mmol/kg Gd-DTPA) was injected with a power injector with a flow rate of 2 ml/s. Criterion for the assessment of renal perfusion was the slope ratio of the signal intensity time curve in both kidneys. Results: Forty renal artery stenoses and one occlusion of a renal artery were detected. In 48 kidneys (35%) segmental arteries were evaluated. The accuracy of the slope ratio (limit value 0.75) concerning the detection of unilateral renal artery stenosis was 92.6% (sensitivity 75%, specificity 95.7%). Conclusion: Time-resolved MR angiography can detect changes in renal perfusion in patients with unilateral renal artery stenosis. (orig.) [de

  16. Assessment of smoking-induced impairment of pulmonary perfusion using three-dimensional SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Takashi [Toho Univ., Tokyo (Japan). School of Medicine

    1997-09-01

    The effects of smoking on ventilation-perfusion lung scintigrams were investigated. The subjects comprised 40 healthy males (28 smokers and 12 nonsmokers) without a history of cardiopulmonary disease and with normal chest radiographs. After acquisition of planar images of ventilation lung scintigrams with 370 MBq of {sup 133}Xe gas, planar images and SPECT images of pulmonary perfusion flow were obtained using 185 MBq of {sup 99m}Tc-MAA. Planar imaging showed perfusion defects in only 5 smokers. In contrast, 16 subjects were found to have perfusion defects on SPECT images (p<0.05), indicating the usefulness of SPECT images in detecting minor vascular damage of the lung. Although perfusion defects were common in the smokers (p<0.05), their relationship to the BRINKMAN index was uncertain. The perfusion defects found in the smokers were nonsegmental and commonly involved the right upper lobe. Ventilation scans revealed only delayed washout of {sup 133}Xe in 4 smokers, suggesting that smoking-induced abnormal perfusion on SPECT appears earlier than impaired ventilation on scintigrams. (author)

  17. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis

    DEFF Research Database (Denmark)

    Larsen, Anne Vibeke Andrée; Simonsen, Helle J; Law, Ian

    2013-01-01

    INTRODUCTION: To investigate if perfusion measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to differentiate radiation necrosis from tumor recurrence in patients with high-grade glioma. METHODS: The study was approved by the institutional review board...... to measure cerebral blood volume (CBV), blood-brain barrier (BBB) permeability and cerebral blood flow (CBF). Subjects also underwent FDG-PET and lesions were classified as either metabolically active or inactive. Follow-up clinical MRI and lesion histology in case of additional tissue resection was used...... to determine whether lesions were regressing or progressing. RESULTS: Fourteen enhancing lesions could be classified as progressing (11) or regressing (three). An empirical threshold of 2.0 ml/100 g for CBV allowed detection of regressing lesions with a sensitivity of 100 % and specificity of 100 %. FDG-PET...

  18. Solitary pulmonary nodules: Comparison of dynamic first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Seki, Shinichiro; Tsubakimoto, Maho; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2015-02-01

    To prospectively compare the capabilities of dynamic perfusion area-detector computed tomography (CT), dynamic magnetic resonance (MR) imaging, and positron emission tomography (PET) combined with CT (PET/CT) with use of fluorine 18 fluorodeoxyglucose (FDG) for the diagnosis of solitary pulmonary nodules. The institutional review board approved this study, and written informed consent was obtained from each subject. A total of 198 consecutive patients with 218 nodules prospectively underwent dynamic perfusion area-detector CT, dynamic MR imaging, FDG PET/CT, and microbacterial and/or pathologic examinations. Nodules were classified into three groups: malignant nodules (n = 133) and benign nodules with low (n = 53) or high (n = 32) biologic activity. Total perfusion was determined with dual-input maximum slope models at area-detector CT, maximum and slope of enhancement ratio at MR imaging, and maximum standardized uptake value (SUVmax) at PET/CT. Next, all indexes for malignant and benign nodules were compared with the Tukey honest significant difference test. Then, receiver operating characteristic analysis was performed for each index. Finally, sensitivity, specificity, and accuracy were compared with the McNemar test. All indexes showed significant differences between malignant nodules and benign nodules with low biologic activity (P Dynamic perfusion area-detector CT is more specific and accurate than dynamic MR imaging and FDG PET/CT in the diagnosis of solitary pulmonary nodules in routine clinical practice. © RSNA, 2014.

  19. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    International Nuclear Information System (INIS)

    Read, L.C.; Wallace, P.G.; Berry, M.N.

    1987-01-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na 131 I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. In the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses

  20. Ultrasound Contrast Agent Microbubble Dynamics

    NARCIS (Netherlands)

    Overvelde, M.L.J.; Vos, Henk; de Jong, N.; Versluis, Michel; Paradossi, Gaio; Pellegretti, Paolo; Trucco, Andrea

    2010-01-01

    Ultrasound contrast agents are traditionally used in ultrasound-assisted organ perfusion imaging. Recently the use of coated microbubbles has been proposed for molecular imaging applications where the bubbles are covered with a layer of targeting ligands to bind specifically to their target cells.

  1. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  2. EFFECT OF SEDATION ON CONTRAST-ENHANCED ULTRASONOGRAPHY OF THE SPLEEN IN HEALTHY DOGS.

    Science.gov (United States)

    Rossi, Federica; Fina, Caroline; Stock, Emmelie; Vanderperren, Katrien; Duchateau, Luc; Saunders, Jimmy H

    2016-05-01

    Contrast-enhanced ultrasound of the spleen enables the dynamic assessment of the perfusion of this organ, however, both subjective and quantitative evaluation can be strongly influenced by sedative agent administration. The purpose of this prospective, experimental study was to test effects of two sedative agents on splenic perfusion during contrast-enhanced ultrasound of the spleen in a sample of healthy dogs. Contrast-enhanced ultrasound of the spleen was repeated in six healthy Beagles following a cross-over study design comparing three protocols: awake, butorphanol 0.2 mg/Kg intramuscular (IM), and dexmedetomidine 500 μg/m(2) IM. After intravenous injection of a phospholipid stabilized sulfur hexafluoride microbubble solution (SonoVue®, Bracco Imaging, Milano, Italy), the enhancement intensity and perfusion pattern of the splenic parenchyma were assessed and perfusion parameters were calculated. Normal spleen was slightly heterogeneous in the early phase, but the parenchyma was homogeneous at a later phase. Sedation with butorphanol did not modify perfusion of the spleen. Dexmedetomidine significantly reduced splenic enhancement, providing diffuse parenchymal hypoechogenicity during the entire examination. Measured parameters were significantly modified, with increased arrival time (AT; (dogs. Short-term and diffuse heterogeneity of the spleen in the early venous phase was determined to be a normal finding. © 2016 American College of Veterinary Radiology.

  3. Quantitative Renal Cortical Perfusion in Human Subjects with Magnetic Resonance Imaging Using Iron-Oxide Nanoparticles: Influence of T1 Shortening

    Energy Technology Data Exchange (ETDEWEB)

    Morell, A.; Ahlstrom, H.; Schoenberg, S.O.; Abildgaard, A.; Bock, M.; Bjoernerud, A. (Dept. of Diagnostic Radiology, Uppsala Univ. Hospital, Uppsala (Sweden))

    2008-10-15

    Background: Using conventional contrast agents, the technique of quantitative perfusion by observing the transport of a bolus with magnetic resonance imaging (MRI) is limited to the brain due to extravascular leakage. Purpose: To perform quantitative perfusion measurements in humans with an intravascular contrast agent, and to estimate the influence of the T1 relaxivity of the contrast agent on the first-pass response. Material and Methods: Renal cortical perfusion was measured quantitatively in six patients with unilateral renal artery stenosis using a rapid gradient double-echo sequence in combination with an intravenous bolus injection of NC100150 Injection, an intravascular contrast agent based on iron-oxide nanoparticles. The influence of T1 relaxivity was measured by comparing perfusion results based on single- and double-echo data. Results: The mean values of cortical blood flow, cortical blood volume, and mean transit time in the normal kidneys were measured to 339+-60 ml/min/100 g, 41+-8 ml/100 g, and 7.3+-1.0 s, respectively, based on double-echo data. The corresponding results based on single-echo data, which are not compensated for the T1 relaxivity, were 254+-47 ml/min/100 g, 27+-3 ml/100 g, and 6+-1.2 s, respectively. Conclusion: The use of a double-echo sequence enabled elimination of confounding T1 effects and consequent systematic underestimation of the perfusion.

  4. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  5. Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent.

    Science.gov (United States)

    Lüdemann, Lutz; Nafz, Benno; Elsner, Franz; Grosse-Siestrup, Christian; Meissler, Michael; Kaufels, Nicola; Rehbein, Hagen; Persson, Pontus B; Michaely, Henrik J; Lengsfeld, Philipp; Voth, Matthias; Gutberlet, Matthias

    2009-03-01

    To evaluate for the first time in an animal model the possibility of absolute regional quantification of renal medullary and cortical perfusion by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a blood pool contrast agent. A total of 18 adult female pigs (age, 16-22 weeks; body weight, 45-65 kg; no dietary restrictions) were investigated by DCE-MRI. Absolute renal blood flow (RBF) measured by an ultrasound transit time flow probe around the renal vein was used as the standard of reference. An inflatable stainless cuff placed around the renal artery near its origin from the abdominal aorta was used to reduce RBF to 60%, 40%, and 20% of the baseline flow. The last measurement was performed with the cuff fully reopened. Absolute RBF values during these 4 perfusion states were compared with the results of DCE-MRI performed on a 1.5-T scanner with an 8-channel phased-array surface coil. All scans were acquired in breath-hold technique in the coronal plane using a field of view of 460 mm.Each dynamic scan commenced with a set of five 3D T1-weighted gradient echo sequences with different flip angles (alpha = 2 degrees, 5 degrees, 10 degrees, 20 degrees, 30 degrees): TE, 0.88 milliseconds; TR, 2.65 milliseconds; slice thickness, 8.8 mm for 4 slices; acquisition matrix, 128 x 128; and acquisitions, 4. These data served to calculate 3D intrinsic longitudinal relaxation rate maps (R10) and magnetization (M0). Immediately after these images, the dynamic 3D T1-weighted gradient echo images were acquired with the same parameters and a constant alpha = 30 degrees, half Fourier, 1 acquisition, 64 frames, a time interval of 1.65 seconds between each frame, and a total duration of 105.6. Three milliliters of an albumin-binding blood pool contrast agent (0.25 mmol/mL gadofosveset trisodium, Vasovist, Bayer Schering Pharma AG, Berlin, Germany) was injected at a rate of 3 mL/s. Perfusion was calculated using the arterial input function from the aorta, which was

  6. Contrast enhanced ultrasound in the assessment of urogenital pathology

    Directory of Open Access Journals (Sweden)

    Libero Barozzi

    2014-12-01

    Full Text Available Contrast enhanced ultrasound (CEUS is an innovative technique that employs microbubble contrast agents to demonstrate parenchymal perfusion. Although initial clinical application was focused on the liver pathology, a wide variety of clinical conditions can be assessed now with CEUS. CEUS is a well-tolerated technique and is acquiring an increasing role in the assessment of renal pathology because contrast agents are not excreted by the kidney and do not affect the renal function. CEUS demonstrated an accuracy similar to contrast enhanced multi-detector computed tomography (CEMDCT in detecting focal lesions, with the advantage of the real-time assessment of microvascular perfusion by using time-intensity curves. The aim of this paper is to review the main indications of CEUS in the assessment of renal and urogenital pathology. Imaging examples are presented and described. Advantages and limitations of CEUS with reference to conventional US and CE-MDCT are discussed.

  7. Detection of Local Tumor Recurrence After Definitive Treatment of Head and Neck Squamous Cell Carcinoma: Histogram Analysis of Dynamic Contrast-Enhanced T1-Weighted Perfusion MRI.

    Science.gov (United States)

    Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan

    2017-01-01

    This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.

  8. Contrast-enhanced harmonic endoscopic ultrasound

    DEFF Research Database (Denmark)

    Săftoiu, A; Dietrich, C F; Vilmann, P

    2012-01-01

    Second-generation intravenous blood-pool ultrasound contrast agents are increasingly used in endoscopic ultrasound (EUS) for characterization of microvascularization, differential diagnosis of benign and malignant focal lesions, and improving staging and guidance of therapeutic procedures. Although...... initially used as Doppler signal enhancers, second-generation microbubble contrast agents are now used with specific contrast harmonic imaging techniques, which benefit from the highly nonlinear behavior of the microbubbles. Contrast-specific modes based on multi-pulse technology are used to perform...... contrast-enhanced harmonic EUS based on a very low mechanical index (0.08 - 0.12). Quantification techniques based on dynamic contrast-enhanced ultrasound have been recommended for perfusion imaging and monitoring of anti-angiogenic treatment, mainly based on time-intensity curve analysis. Most...

  9. The role of contrast-enhanced endoscopic ultrasound in pancreatic adenocarcinoma

    DEFF Research Database (Denmark)

    Saftoiu, Adrian; Vilmann, Peter; Bhutani, Manoop S

    2016-01-01

    contrast agents for early detection, tridimensional and fusion techniques for enhanced staging and resectability assessment but also novel applications of perfusion imaging for monitoring ablative therapy, improved local detection through EUS-guided sampling of portal vein flow or enhanced drug delivery......Contrast-enhanced endoscopic ultrasound (CE-EUS) allows characterization, differentiation, and staging of focal pancreatic masses. The method has a high sensitivity and specificity for the diagnosis of pancreatic adenocarcinoma which is visualized as hypo-enhanced as compared to the rest...... of the parenchyma while chronic pancreatitis and neuroendocrine tumors are generally either iso-enhanced or hyper-enhanced. The development of contrast-enhanced low mechanical index harmonic imaging techniques used in real time during endoscopic ultrasound (EUS) allowed perfusion imaging and the quantification...

  10. Functional and morphological effects of diazepam and midazolam on tumor vasculature in the 9L gliosarcoma brain tumor model using dynamic susceptibility contrast MRI: a comparative study

    Directory of Open Access Journals (Sweden)

    Yan N

    2017-10-01

    Full Text Available Nuo Yan,1 Yuzhen Zheng,2 Cheng Yang1 1Second Department of Anesthesiology, The Affiliated Hospital to Logistics University of PAP, Tianjin, 2Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin, China Abstract: Antiangiogenic therapy attenuates tumor growth by reducing vascularization. Diazepam (DZP and midazolam (MZL have antiangiogenic properties in human umbilical vein endothelial cells. Thus, we investigated the antiangiogenic activity of DZP and MZL in the rat 9L gliosarcoma brain tumor model. The effect on tumor vasculature was evaluated using dynamic susceptibility contrast magnetic resonance imaging with gradient-echo (GE and spin-echo (SE to assess perfusion parameters, including cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT, and mean vessel diameter. The GE-normalized CBF (nCBF in the tumors of untreated controls was significantly lower than that in normal brain tissue, whereas the CBV and MTT were higher. DZP- and MZL-treated rats had higher CBF and lower CBV and MTT values than did untreated controls. The tumor size decreased significantly to 33.5% in DZP-treated rats (P<0.001 and 22.5% in MZL-treated rats (P<0.01 relative to controls. The SE-normalized CBV was lower in DZP-treated (32.9% and MZL-treated (10.6% rats compared with controls. The mean vessel diameter decreased significantly by 32.5% in DPZ-treated and by 24.9% in MZL-treated rats compared with controls (P<0.01. The GE and SE nCBF values were higher in DZP-treated (49.9% and 40.1%, respectively and MZL-treated (41.2% and 32.1%, respectively rats than in controls. The GE- and SE-normalized MTTs were lower in DZP-treated (48.2% and 59.8%, respectively and MZL-treated (40.5% and 51.2%, respectively rats than in controls. Both DZP and MZL had antiangiogenic effects on tumor perfusion and vasculature; however, the antiangiogenic activity of DZP is more promising than that of MZL. Keywords: diazepam, midazolam, 9L gliosarcoma

  11. Whole-organ perfusion of the pancreas using dynamic volume CT in patients with primary pancreas carcinoma: acquisition technique, post-processing and initial results

    International Nuclear Information System (INIS)

    Kandel, Sonja; Kloeters, Christian; Meyer, Henning; Hein, Patrick; Rogalla, Patrik; Hilbig, Andreas

    2009-01-01

    The purpose of this study was to evaluate a whole-organ perfusion protocol of the pancreas in patients with primary pancreas carcinoma and to analyse perfusion differences between normal and diseased pancreatic tissue. Thirty patients with primary pancreatic malignancy were imaged on a 320-slice CT unit. Twenty-nine cancers were histologically proven. CT data acquisition was started manually after contrast-material injection (8 ml/s, 350 mg iodine/ml) and dynamic density measurements in the right ventricle. After image registration, perfusion was determined with the gradient-relationship technique and volume regions-of-interest were defined for perfusion measurements. Contrast time-density curves and perfusion maps were generated. Statistical analysis was performed using the Kolmogorov-Smirnov test for analysis of normal distribution and Kruskal-Wallis test (nonparametric ANOVA) with Bonferroni correction for multiple stacked comparisons. In all 30 patients the entire pancreas was imaged, and registration could be completed in all cases. Perfusion of pancreatic carcinomas was significantly lower than of normal pancreatic tissue (P < 0.001) and could be visualized on colored perfusion maps. The 320-slice CT allows complete dynamic visualization of the pancreas and enables calculation of whole-organ perfusion maps. Perfusion imaging carries the potential to improve detection of pancreatic cancers due to the perfusion differences. (orig.)

  12. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  13. TU-CD-BRA-08: Single-Energy Computed Tomography-Based Pulmonary Perfusion Imaging: Proof-Of-Principle in a Canine Model

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T; Boone, J [University of California Davis School of Medicine, Sacramento, CA (United States); Kent, M; Wisner, E [University of California Davis School of Veterinary Medicine, Davis, CA (United States); Fujita, Y [Tokai University, Isehara (Japan)

    2015-06-15

    Purpose: Pulmonary perfusion imaging has provided significant insights into pulmonary diseases, and can be useful in radiotherapy. The purpose of this study was to prospectively establish proof-of-principle in a canine model for single-energy CT-based perfusion imaging, which has the potential for widespread clinical implementation. Methods: Single-energy CT perfusion imaging is based on: (1) acquisition of inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast medium, (2) deformable image registration (DIR) of the two CT image data sets, and (3) subtraction of the pre-contrast image from post-contrast image, yielding a map of Hounsfield unit (HU) enhancement. These subtraction image data sets hypothetically represent perfused blood volume, a surrogate for perfusion. In an IACUC-approved clinical trial, we acquired pre- and post-contrast CT scans in the prone posture for six anesthetized, mechanically-ventilated dogs. The elastix algorithm was used for DIR. The registration accuracy was quantified using the target registration errors (TREs) for 50 pulmonary landmarks in each dog. The gradient of HU enhancement between gravity-dependent (ventral) and non-dependent (dorsal) regions was evaluated to quantify the known effect of gravity, i.e., greater perfusion in ventral regions. Results: The lung volume difference between the two scans was 4.3±3.5% on average (range 0.3%–10.1%). DIR demonstrated an average TRE of 0.7±1.0 mm. HU enhancement in lung parenchyma was 34±10 HU on average and varied considerably between individual dogs, indicating the need for improvement of the contrast injection protocol. HU enhancement in ventral (gravity-dependent) regions was found to be greater than in dorsal regions. A population average ventral-to-dorsal gradient of HU enhancement was strong (R{sup 2}=0.94) and statistically significant (p<0.01). Conclusion: This canine study demonstrated relatively accurate DIR and a strong ventral

  14. TU-CD-BRA-08: Single-Energy Computed Tomography-Based Pulmonary Perfusion Imaging: Proof-Of-Principle in a Canine Model

    International Nuclear Information System (INIS)

    Yamamoto, T; Boone, J; Kent, M; Wisner, E; Fujita, Y

    2015-01-01

    Purpose: Pulmonary perfusion imaging has provided significant insights into pulmonary diseases, and can be useful in radiotherapy. The purpose of this study was to prospectively establish proof-of-principle in a canine model for single-energy CT-based perfusion imaging, which has the potential for widespread clinical implementation. Methods: Single-energy CT perfusion imaging is based on: (1) acquisition of inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast medium, (2) deformable image registration (DIR) of the two CT image data sets, and (3) subtraction of the pre-contrast image from post-contrast image, yielding a map of Hounsfield unit (HU) enhancement. These subtraction image data sets hypothetically represent perfused blood volume, a surrogate for perfusion. In an IACUC-approved clinical trial, we acquired pre- and post-contrast CT scans in the prone posture for six anesthetized, mechanically-ventilated dogs. The elastix algorithm was used for DIR. The registration accuracy was quantified using the target registration errors (TREs) for 50 pulmonary landmarks in each dog. The gradient of HU enhancement between gravity-dependent (ventral) and non-dependent (dorsal) regions was evaluated to quantify the known effect of gravity, i.e., greater perfusion in ventral regions. Results: The lung volume difference between the two scans was 4.3±3.5% on average (range 0.3%–10.1%). DIR demonstrated an average TRE of 0.7±1.0 mm. HU enhancement in lung parenchyma was 34±10 HU on average and varied considerably between individual dogs, indicating the need for improvement of the contrast injection protocol. HU enhancement in ventral (gravity-dependent) regions was found to be greater than in dorsal regions. A population average ventral-to-dorsal gradient of HU enhancement was strong (R"2=0.94) and statistically significant (p<0.01). Conclusion: This canine study demonstrated relatively accurate DIR and a strong ventral

  15. A comparison of perfusion computed tomography and contrast enhanced computed tomography on radiation target volume delineation using rabbit VX2 brain tumor model

    International Nuclear Information System (INIS)

    Sun Changjin; Luo Yunxiu; Yu Jinming; Lu Haibo; Li Chao; Zhang Dekang; Huang Jianming; Wang Jie; Lang Jinyi

    2010-01-01

    Objective: To compare the accuracy of blood volume perfusion imaging (perfusion CT)with contrast enhanced 64-slice spiral computed tomography (CECT) in the evaluation of gross tumor volume (GTV) and clinical target volume (CTV) using rabbits with VX2 brain tumor. Methods: Perfusion CT and CECT were performed in 20 rabbits with VX2 brain tumor. The GTV and CTV calculated with the maximal and minimal diameter of each tumor in the blood volume (BV) maps and CECT were measured and compared to those in pathological specimens. Results: The mean value of the maximal and minimal diameter of GTV was (8.19 ± 2.29) mm and (4.83 ± 1.31) mm in pathological specimens, (11.98 ±3.29) mm and (7.03±1.82) mm in BV maps, while (6.36±3.85) mm and (3.17±1.93) mm in CECT images, which were significantly different (pathological specimen vs. BV map, t = 7.17, P =0.000;pathological specimen vs. CECT, t = 8.37, P = 0.000, respectively). The mean value of the maximal and minimal diameter of CTV in pathologic specimens was (12.87 ± 3.74) mm and (7.71 ± 2.15) mm, which was significantly different from that of GTV and CTV in CECT (t = - 3. 18, P = 0. 005 and t = - 4.24, P =0.000; t= -11.59,P=0.000 and t= -9.39, P=0.000), while similar with that of GTV in BV maps (t = - 1.95,P = 0. 067; t = - 2. 06, P = 0. 054). For CECT, the margin from GTV to CTV was 81.83% ±40.33% for the maximal diameter and 276.73% ± 131.46% for the minimal. While for BV maps, the margin was 7.93% ± 17. 84% and 12.52% ± 27. 83%, which was significant different from that for CECT images (t=7.36, P=0. 000 and t= -8.78, P=0.000). Conclusions: Compared with CECT, the BV map from 64-slice spiral CT perfusion imaging might have higher accuracy in target volume delineation for brain tumor. (authors)

  16. Local cortical hypoperfusion imaged with CT perfusion during postictal Todd's paresis

    International Nuclear Information System (INIS)

    Mathews, Marlon S.; Binder, Devin K.; Smith, Wade S.; Wintermark, Max; Dillon, William P.

    2008-01-01

    Postictal (''Todd's'') paralysis, or ''epileptic hemiplegia,'' is a well-known complication of focal or generalized epileptic seizures. However, it is unclear whether the pathophysiology of Todd's paralysis is related to alterations in cerebral perfusion. We report CT perfusion findings in a patient presenting with postictal aphasia and right hemiparesis. A 62-year-old woman with a history of alcohol abuse, closed head injury and posttraumatic epilepsy, presented with acute onset aphasia and right hemiparesis. A non-contrast head CT scan demonstrated no acute hemorrhage. Left hemispheric ischemia was suspected, and the patient was considered for acute thrombolytic therapy. MRI revealed a subtle increase in signal intensity involving the left medial temporal, hippocampal and parahippocampal regions on both T2-weighted FLAIR and diffusion-weighted sequences. CT angiography and CT perfusion study were performed. The CT perfusion study and CT angiography demonstrated a dramatic reduction in cerebral blood flow and blood volume involving the entire left hemisphere, but with relative symmetry of mean transit time, ruling out a large vessel occlusion. Clinical resolution of the aphasia and hemiparesis occurred within a few hours, and correlated with normalization of perfusion to the left hemisphere (detected by MR perfusion). This unique case is the first in which clinical evidence of Todd's paralysis has been correlated with reversible postictal hemispheric changes on CT and MR perfusion studies. This is important because CT perfusion study is being used more and more in the diagnosis of acute stroke, and one needs to be careful to not misinterpret the data. (orig.)

  17. Enhanced magnetic resonance pulmonary perfusion imaging in diagnosing pulmonary embolism: preliminary investigation

    International Nuclear Information System (INIS)

    Huang Xiaoyong; Du Jing; Zhang Zhaoqi; Guo Xi; Yan Zixu; Jiang Hong; Wang Wei

    2005-01-01

    Objective: This study was designed to investigate the sensitivity and specificity of magnetic resonance pulmonary perfusion imaging (MRPP) in diagnosing pulmonary embolism (PE) compared with enhanced magnetic resonance pulmonary angiography (MRPA) and pulmonary radionuclide perfusion imaging. Methods: Fourteen patients were definitely diagnosed as PE, whose ages were from 19 to 71 years old and mean 45.5 ± 19.8 years old. All patients under went MRPA and MRPP and 3 patients were examined again after thrombolytic treatment. Five patients underwent pulmonary radionuclide perfusion imaging. Setting ROI in top, middle, bottom of lung area and abnormal area respectively, we detected signal intensity and time-signal curve to obtain the transformation rate of signal (TROS) during perfusion peak value. Results: In 14 pulmonary embolism patients, MRPA found 62 branches of pulmonary artery obstruction. Fifty-five abnormal pulmonary perfusion zones were found by MRPP, and the above results were very alike. The coincidence was 88.71%. In 14 cases, MRPP could show 25 subsegments lesion below segments. In 5 patients who had both results Of MRPP and ECT at the same time. MRPP shows 33 perfusion defect zones and 37 segments were found by ECT, the sensitivity was 89.19%. After thrombolytic treatment, both the status of the affected pulmonary artery improved markedly and perfusion defect zones reduced obviously in 3 cases by MRPP and MRPA. TROS in normal perfusion zones perfusion defect zones and low perfusion zones had significant difference (t=22.882, P<0.01). Conclusion: Contrast enhanced MR pulmonary perfusion can show both perfusion defect zones and low perfusion zones in pulmonary embolism. Time-signal curve can show the period of maximum no perfusion zones in pulmonary artery embolism zones. And the amplitude of fluctuation is small with miminum TROS. MRPP has significant values especially in showing pulmonary artery embolism in segments and subsegments. Using both MRPP and

  18. Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma.

    Science.gov (United States)

    LaViolette, Peter S; Daun, Mitchell K; Paulson, Eric S; Schmainda, Kathleen M

    2014-02-01

    Abnormal brain tumor vasculature has recently been highlighted by a dynamic susceptibility contrast (DSC) MRI processing technique. The technique uses independent component analysis (ICA) to separate arterial and venous perfusion. The overlap of the two, i.e. arterio-venous overlap or AVOL, preferentially occurs in brain tumors and predicts response to anti-angiogenic therapy. The effects of contrast agent leakage on the AVOL biomarker have yet to be established. DSC was acquired during two separate contrast boluses in ten patients undergoing clinical imaging for brain tumor diagnosis. Three components were modeled with ICA, which included the arterial and venous components. The percentage of each component as well as a third component were determined within contrast enhancing tumor and compared. AVOL within enhancing tumor was also compared between doses. The percentage of enhancing tumor classified as not arterial or venous and instead into a third component with contrast agent leakage apparent in the time-series was significantly greater for the first contrast dose compared to the second. The amount of AVOL detected within enhancing tumor was also significantly greater with the second dose compared to the first. Contrast leakage results in large signal variance classified as a separate component by the ICA algorithm. The use of a second dose mitigates the effect and allows measurement of AVOL within enhancement.

  19. Assessment of perfusion by dynamic contrast-enhanced imaging using a deconvolution approach based on regression and singular value decomposition.

    Science.gov (United States)

    Koh, T S; Wu, X Y; Cheong, L H; Lim, C C T

    2004-12-01

    The assessment of tissue perfusion by dynamic contrast-enhanced (DCE) imaging involves a deconvolution process. For analysis of DCE imaging data, we implemented a regression approach to select appropriate regularization parameters for deconvolution using the standard and generalized singular value decomposition methods. Monte Carlo simulation experiments were carried out to study the performance and to compare with other existing methods used for deconvolution analysis of DCE imaging data. The present approach is found to be robust and reliable at the levels of noise commonly encountered in DCE imaging, and for different models of the underlying tissue vasculature. The advantages of the present method, as compared with previous methods, include its efficiency of computation, ability to achieve adequate regularization to reproduce less noisy solutions, and that it does not require prior knowledge of the noise condition. The proposed method is applied on actual patient study cases with brain tumors and ischemic stroke, to illustrate its applicability as a clinical tool for diagnosis and assessment of treatment response.

  20. Assessment of the relationship between morphological emphysema phenotype and corresponding pulmonary perfusion pattern on a segmental level

    International Nuclear Information System (INIS)

    Bryant, Mark; Kauczor, Hans-Ulrich; Ley, Sebastian; Eberhardt, Ralf; Herth, Felix; Menezes, Ravi; Sedlaczek, Oliver; Ley-Zaporozhan, Julia

    2015-01-01

    Distinct morphological emphysema phenotypes were assessed by CT to show characteristic perfusion defect patterns. Forty-one patients with severe emphysema (GOLD III/IV) underwent three-dimensional high resolution computed tomography (3D-HRCT) and contrast-enhanced magnetic resonance (MR) perfusion. 3D-HRCT data was visually analyzed for emphysema phenotyping and quantification by consensus of three experts in chest-radiology. The predominant phenotype per segment was categorized as normal, centrilobular, panlobular or paraseptal. Segmental lung perfusion was visually analyzed using six patterns of pulmonary perfusion (1-normal; 2-mild homogeneous reduction in perfusion; 3-heterogeneous perfusion without focal defects; 4-heterogeneous perfusion with focal defects; 5-heterogeneous absence of perfusion; 6-homogeneous absence of perfusion), with the extent of the defect given as a percentage. 730 segments were evaluated. CT categorized 566 (78 %) as centrilobular, 159 (22 %) as panlobular and 5 (<1 %) as paraseptal with no normals. Scores with regards to MR perfusion patterns were: 1-0; 2-0; 3-28 (4 %); 4-425 (58 %); 5-169 (23 %); 6-108 (15 %). The predominant perfusion pattern matched as follows: 70 % centrilobular emphysema - heterogeneous perfusion with focal defects (score 4); 42 % panlobular - homogeneous absence of perfusion (score 5); and 43 % panlobular - heterogeneous absence of perfusion (score 6). MR pulmonary perfusion patterns correlate with the CT phenotype at a segmental level in patients with severe emphysema. (orig.)

  1. Assessment of the relationship between morphological emphysema phenotype and corresponding pulmonary perfusion pattern on a segmental level

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Mark; Kauczor, Hans-Ulrich [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Member of German Lung Research Center DZL, Translational Lung Research Center TLRC-H, Heidelberg (Germany); Ley, Sebastian [Chirurgische Klinik Dr. Rinecker, Department of Diagnostic and Interventional Radiology, Munich (Germany); Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); Eberhardt, Ralf; Herth, Felix [Thoraxklinik University of Heidelberg, Department of Pneumology and Critical Care Medicine, Heidelberg (Germany); Member of German Lung Research Center DZL, Translational Lung Research Center TLRC-H, Heidelberg (Germany); Menezes, Ravi [University of Toronto, Medical Imaging, Toronto (Canada); Sedlaczek, Oliver [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Member of German Lung Research Center DZL, Translational Lung Research Center TLRC-H, Heidelberg (Germany); Ley-Zaporozhan, Julia [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany)

    2015-01-15

    Distinct morphological emphysema phenotypes were assessed by CT to show characteristic perfusion defect patterns. Forty-one patients with severe emphysema (GOLD III/IV) underwent three-dimensional high resolution computed tomography (3D-HRCT) and contrast-enhanced magnetic resonance (MR) perfusion. 3D-HRCT data was visually analyzed for emphysema phenotyping and quantification by consensus of three experts in chest-radiology. The predominant phenotype per segment was categorized as normal, centrilobular, panlobular or paraseptal. Segmental lung perfusion was visually analyzed using six patterns of pulmonary perfusion (1-normal; 2-mild homogeneous reduction in perfusion; 3-heterogeneous perfusion without focal defects; 4-heterogeneous perfusion with focal defects; 5-heterogeneous absence of perfusion; 6-homogeneous absence of perfusion), with the extent of the defect given as a percentage. 730 segments were evaluated. CT categorized 566 (78 %) as centrilobular, 159 (22 %) as panlobular and 5 (<1 %) as paraseptal with no normals. Scores with regards to MR perfusion patterns were: 1-0; 2-0; 3-28 (4 %); 4-425 (58 %); 5-169 (23 %); 6-108 (15 %). The predominant perfusion pattern matched as follows: 70 % centrilobular emphysema - heterogeneous perfusion with focal defects (score 4); 42 % panlobular - homogeneous absence of perfusion (score 5); and 43 % panlobular - heterogeneous absence of perfusion (score 6). MR pulmonary perfusion patterns correlate with the CT phenotype at a segmental level in patients with severe emphysema. (orig.)

  2. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper

    2014-01-01

    skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after...... blood perfusion recording and grouped according to needle type, skin blood perfusion response relates to needle diameter. The response was significantly higher after insertions with 28G and hooked 32G needles than with 30G (P ..., but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  3. Intra-voxel incoherent motion perfusion MR Imaging: a wake-up call

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, D. [CEA Saclay, DSV, I2BM, F-91191 Gif Sur Yvette (France)

    2008-07-01

    This work gives the results of several studies made by different authors on IVIM MR Imaging. It appears that there are genuine potential applications for IVIM MR imaging. Perfusion is a very important surrogate marker of many physiologic or pathologic processes. MR imaging perfusion parameters can be obtained by using gadolinium-based contrast agents, either injected as a bolus (to determine blood flow, transit times, etc) or in a steady-state mode (to address blood volume, vessel permeability, etc). With the rising concern of nephrogenic systemic fibrosis, some patients cannot be examined with such an approach. IVIM MR imaging may then appear as an interesting alternative to provide crucial clues on perfusion in tissues, such as the kidneys, the liver, or even the placenta during pregnancy. (O.M.)

  4. Intra-voxel incoherent motion perfusion MR Imaging: a wake-up call

    International Nuclear Information System (INIS)

    Le Bihan, D.

    2008-01-01

    This work gives the results of several studies made by different authors on IVIM MR Imaging. It appears that there are genuine potential applications for IVIM MR imaging. Perfusion is a very important surrogate marker of many physiologic or pathologic processes. MR imaging perfusion parameters can be obtained by using gadolinium-based contrast agents, either injected as a bolus (to determine blood flow, transit times, etc) or in a steady-state mode (to address blood volume, vessel permeability, etc). With the rising concern of nephrogenic systemic fibrosis, some patients cannot be examined with such an approach. IVIM MR imaging may then appear as an interesting alternative to provide crucial clues on perfusion in tissues, such as the kidneys, the liver, or even the placenta during pregnancy. (O.M.)

  5. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Science.gov (United States)

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  6. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.

    Science.gov (United States)

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-03-28

    To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

  7. Assessment of brain perfusion with MRI: methodology and application to acute stroke

    International Nuclear Information System (INIS)

    Grandin, C.B.

    2003-01-01

    We review the methodology of brain perfusion measurements with MRI and their application to acute stroke, with particular emphasis on the work awarded by the 6th Lucien Appel Prize for Neuroradiology. The application of the indicator dilution theory to the dynamic susceptibility-weighted bolus-tracking method is explained, as is the approach to obtaining quantitative measurements of cerebral blood flow (CBF) and volume (CBV). Our contribution to methodological developments, such as CBV measurement with the frequency-shifted burst sequence, development of the PRESTO sequence, comparison of different deconvolution methods and of spin- and gradient-echo sequences, and the validation of MRI measurements against positron emission tomography is summarised. The pathophysiology of brain ischaemia and the role of neuroimaging in the setting of acute stroke are reviewed, with an introduction to the concepts of ischaemic penumbra and diffusion/perfusion mismatch. Our work on the determination of absolute CBF and CBV thresholds for predicting the area of infarct growth, identification of the best perfusion parameters (relative or absolute) for predicting the area of infarct growth and the role of MR angiography is also summarised. We conclude that MRI is a very powerful way to assess brain perfusion and that its use might help in selecting patients who will benefit most from treatment such as thrombolysis. (orig.)

  8. Quantitative Assessment of Free Flap Viability with CEUS Using an Integrated Perfusion Software.

    Science.gov (United States)

    Geis, S; Klein, S; Prantl, L; Dolderer, J; Lamby, P; Jung, E-M

    2015-12-01

    New treatment strategies in oncology and trauma surgery lead to an increasing demand for soft tissue reconstruction with free tissue transfer. In previous studies, CEUS was proven to detect early flap failure. The aim of this study was to detect and quantify vascular disturbances after free flap transplantation using a fast integrated perfusion software tool. From 2011 to 2013, 33 patients were examined by one experienced radiologist using CEUS after a bolus injection of 1-2.4 ml of SonoVue(®). Flap perfusion was analysed qualitatively regarding contrast defects or delayed wash-in. Additionally, an integrated semi-quantitative analysis using time-intensity curve analysis (TIC) was performed. TIC analysis of the transplant was conducted on a centimetre-by-centimetre basis up to a penetration depth of 4 cm. The 2 perfusion parameters "Time to PEAK" and "Area under the Curve" were compared in patients without complications vs. patients with minor complications or complete flap loss to figure out significant differences. TtoPk is given in seconds (s) and Area is given in relative units (rU) Results: A regular postoperative process was observed in 26 (79%) patients. In contrast, 5 (15%) patients with partial superficial flap necrosis, 1 patient (3%) with complete flap loss and 1 patient (3%) with haematoma were observed. TtoPk revealed no significant differences, whereas Area revealed significantly lower perfusion values in the corresponding areas in patients with complications. The critical threshold for sufficient flap perfusion was set below 150 rU. In conclusion, CEUS is a mobile and cost-effective opportunity to quantify tissue perfusion and can even be used almost without any restrictions in multi-morbid patients with renal and hepatic failure. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Contrast-enhanced ultrasonography depicts small tumor vessels for the evaluation of pancreatic tumors

    International Nuclear Information System (INIS)

    Okamoto, Yuko; Kawamoto, Hirofumi; Takaki, Akinobu; Ishida, Etsuji; Ogawa, Tsuneyoshi; Kuwaki, Kenji; Kobayashi, Yoshiyuki; Sakaguchi, Kohsaku; Shiratori, Yasushi

    2007-01-01

    Objective: The aim of this study is to evaluate the efficacy of contrast-enhanced ultrasonography for the diagnosis of pancreatic tumors. Materials and methods: Contrast-enhanced ultrasonography with Levovist was performed on 62 consecutive patients (53 with pancreatic cancer, 4 with islet cell tumor, 3 with inflammatory pancreatic tumor, and 2 with metastatic tumor). The vascular and perfusion image phases of the tumors were evaluated and compared with the findings of contrast-enhanced computed tomography. Results: Contrast-enhanced ultrasonography showed tumor vessels around and/or in the tumor at the vascular image phase in 79% of pancreatic cancer patients (42/53). At the perfusion image phase, 96% of pancreatic cancers (51/53) were classified as hypo-enhancement type. However, tiny spotty or irregular heterogeneous enhanced lesions were found in 84% of hypo-enhanced pancreatic cancer patients (43/51). The presence of small vessels at the vascular image phase was closely correlated with the presence of these intratumor regional enhanced lesions at the perfusion image phase (κ coefficient = 0.42). The sensitivity of contrast-enhanced ultrasonography (100%) for pancreatic cancer was superior to that of contrast-enhanced computed tomography (91%), but no significant difference was observed between the two (McNemar test: p = 0.063). Conclusion: Contrast-enhanced ultrasonography with Levovist successfully visualizes fine vessels and enhancement in pancreatic tumors, and is useful for evaluating pancreatic tumors

  10. Mean transit time image - a new method of analyzing brain perfusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Z.; Ritzl, F.

    1983-05-01

    Point-by-point calculation of the mean transit time based on gamma fit was used to analyze brain perfusion studies in a vertex view. The algorithm and preliminary results in normal brain and in different stages of cerebral perfusion abnormality (ischemia, stroke, migraine, tumor, abscess) are demonstrated. In contrast to the traditional methods using fixed, a priori defined regions of interest this type of mapping of the relative regions cerebral perfusion shows more clearly the irregular outlines of the disturbance. Right to left activity ratios in the arterial part of the time-activity curves showed significant correlation with the mean transit time ratios (Q/sub 1/=1.185-0.192 Qsub(a), n=38, r=0.716, P<0.001).

  11. Incremental value of contrast myocardial perfusion to detect intermediate versus severe coronary artery stenosis during stress-echocardiography

    Directory of Open Access Journals (Sweden)

    Ugo Fabrizio

    2010-05-01

    Full Text Available Abstract Background We aimed to compare the incremental value of contrast myocardial perfusion imaging (MPI for the detection of intermediate versus severe coronary artery stenosis during dipyridamole-atropine echocardiography (DASE. Wall motion (WM assessment during stress-echocardiography demonstrates suboptimal sensitivity to detect coronary artery disease (CAD, particularly in patients with isolated intermediate (50%-70% coronary stenosis. Methods We performed DASE with MPI in 150 patients with a suspected chest pain syndrome who were given clinical indication to coronary angiography. Results and discussion When CAD was defined as the presence of a ≥50% stenosis, the addition of MPI increased sensitivity (+30% and decreased specificity (-14%, with a final increase in total diagnostic accuracy (+16%, p Conclusions The addition of MPI on top of WM analysis during DASE increases the diagnostic sensitivity to detect obstructive CAD, whatever its definition (≥50% or > 70% stenosis, but it is mainly driven by the sensitivity increase in the intermediate group (50%-70% stenosis. The total diagnostic accuracy increased only when defining CAD as ≥50% stenosis, since in patients with severe stenosis (> 70% the decrease in specificity is not counterbalanced by the minor sensitivity increase.

  12. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  13. Comparison and evaluation of indicator dilution models for bolus of ultrasound contrast agents

    Czech Academy of Sciences Publication Activity Database

    Harabis, V.; Kolář, R.; Mézl, M.; Jiřík, Radovan

    2013-01-01

    Roč. 34, č. 2 (2013), s. 151-162 ISSN 0967-3334 R&D Projects: GA ČR GAP102/12/2380 Institutional support: RVO:68081731 Keywords : perfusion model * ultrasound * contrast agent * intravascular perfusion * tissue phantom Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.617, year: 2013

  14. Ultrasound Perfusion Analysis Combining Bolus-Tracking and Burst-Replenishment

    Czech Academy of Sciences Publication Activity Database

    Jiřík, Radovan; Nylund, K.; Gilja, O.H.; Mézl, M.; Harabis, V.; Kolář, R.; Standara, M.; Taxt, T.

    2013-01-01

    Roč. 60, č. 2 (2013), s. 310-319 ISSN 0885-3010 R&D Projects: GA ČR GAP102/12/2380; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : contrast-enhaced ultrasound * myocardial blood-flow * cerebral perfusion Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.503, year: 2013

  15. The preliminary study of CT cerebral perfusion imaging in transient ischemic attacks

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Du Xiangying

    2002-01-01

    Objective: To probe the application of CT cerebral perfusion imaging on transient ischemic attacks (TIA). Methods: Conventional CT and CT cerebral perfusion imaging were performed on 5 normal adults and 20 patients with clinically diagnosed TIA. After regular CT examination, dynamic scans of 40 seconds were performed on selected slice (usually on the basal ganglia slice), while 40 ml non-ionic contrast material were bolus injected through antecubital vein with. These dynamic images were processed with the 'Perfusion CT' software package on a PC based workstation. Cerebral blood flow (CBF) and time to peak (TP) enhancement were measured within specific regions of the brain on CT perfusion images. Quantitative analysis was performed for these images. Results: A gradient of perfusion between gray matter and white matter was showed on cT perfusion images in normal adults and TIA patients. CBF and TP for normal cortical and white matter were 378.2 ml·min -1 ·L -1 , 7.8 s and 112.5 ml·min -1 ·L -1 , 9.9 s, respectively. In 20 cases with TIA, persisting abnormal perfusion changes corresponding to clinical symptoms were found in 15 cases with prolonged TP. Other 5 cases showed normal results. TP of affected side (11.8 +- 4.4) s compared with that of the contralateral side (9.1 +- 3.1) s was significantly prolonged (t = 5.277, P -1 · -1 ] and contralateral side [(229.1 +- 41.4) ml·min -1 ·L -1 ]. Conclusion: Perfusion CT provides valuable hemodynamic information and shows the extent of perfusion disturbances for patients with TIA

  16. Measurement of single-kidney glomerular filtration function from magnetic resonance perfusion renography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Meiying; Cheng, Yingsheng [Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhao, Binghui, E-mail: binghuizhao@163.com [Department of Radiology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai 200072 (China)

    2015-08-15

    Highlights: • MRPR monitors the transit of contrast material through nephron. • MRPR could reveal renal physiological characteristics in quality and quantity. • This review outlines the basics and future challenges of DCE MRPR. - Abstract: Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney, and is considered to be the reference standard in the evaluation of renal function. There are many ways to test the GFR clinically, such as serum creatinine concentration, blood urea nitrogen and SPECT renography, however, they’re all not a good standard to evaluate the early damage of renal function. In recent years, the improvement of MRI hardware and software makes it possible to reveal physiological characteristics such as renal blood flow or GFR by dynamic contrast enhancement magnetic resonance perfusion renography (DEC MRPR). MRPR is a method used to monitor the transit of contrast material, typically a gadolinium chelate, through the renal cortex, the medulla, and the collecting system. This review outlines the basics of DCE MRPR included acquisition of dynamic MR perfusion imaging, calculation of the contrast concentration from signal intensity and compartment models, and some challenges of MRPR method faced in prospective clinical application.

  17. Myocardial perfusion assessed by contrast echocardiography and single photon emission computed tomography in the evaluation of patients with acute chest pain and normal electrocardiogram

    International Nuclear Information System (INIS)

    Soares, J. Jr.; Ferreira, S.M.A.; Matias, W. Jr.; Giorgi, M.C.P.; Izaki, M.; Luz, P.L.; Ramires, J.A.F.; Meneghetti, J.C.

    2002-01-01

    Aim : Evaluation of diagnostic accuracy of myocardial contrast echocardiography (MCE) in comparison with single-photon emission computed tomography (SPECT) for the detection of myocardial ischemia in patients with acute chest pain. Material and Methods : Eighteen patients (pts) with chest pain lasting ≥30 minutes, occurring within 6 hours of emergency room presentation and a normal or no diagnostic electrocardiogram were studied. Pts underwent rest MCE and SPECT. For both exams myocardial perfusion was assessed in the same 7 segments (apical, anterior, inferior, anteroseptal, inferoseptal, lateral and posterior) of left ventricle. A total of 126 segments were analyzed. Images were classified as positive for ischemia if they had a perfusion defect. Coronary angiography was performed if MCE or SPECT images were classified as positive for ischemia or by clinical indication. Otherwise the patients underwent stress SPECT. Significant coronary artery disease (CAD) was defined as ≥70% stenosis in a major coronary artery or its branches. Final diagnosis of an acute coronary event (ACE) was established in the presence of positive findings in MCE or SPECT in addition to significant CAD in the corresponding territory. Kappa statistics were calculated to evaluate the concordance between MCE and SPECT. κ values of ≤0.4, >0.4 and >0.7 indicate fair, good and excellent agreement, respectively. Results: Thirteen out of 18 pts underwent coronary angiography (seven pts had positive findings on SPECT, 2 on MCE, 2 on both exams and 1 had clinical indication). Significant CAD was detected on six. Five pts underwent stress SPECT and no perfusion defect was detected. Therefore, six pts (33.3%) had an ACE and 12 (66.6%) had not. There were no statistical differences between groups according to age, gender, duration of pain, free pain interval, presence of risk factors and antecedents. Concordance between MCE and SPECT for evaluation of perfusion defects showed a ? coefficient of 0

  18. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    Science.gov (United States)

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (pquantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

  19. Dynamic (4D) CT perfusion offers simultaneous functional and anatomical insights into pulmonary embolism resolution

    Energy Technology Data Exchange (ETDEWEB)

    Mirsadraee, Saeed, E-mail: saeed.mirsadraee@ed.ac.uk [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Reid, John H.; Connell, Martin [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); MacNee, William; Hirani, Nikhil [The Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Murchison, John T. [Department of Radiology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA (United Kingdom); Beek, Edwin J. van [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom)

    2016-10-15

    Objective: Resolution and long-term functional effects of pulmonary emboli are unpredictable. This study was carried out to assess persisting vascular bed perfusion abnormalities and resolution of arterial thrombus in patients with recent pulmonary embolism (PE). Methods and materials: 26 Patients were prospectively evaluated by dynamic (4D) contrast enhanced CT perfusion dynamic pulmonary CT perfusion. Intermittent volume imaging was performed every 1.5–1.7 s during breath-hold and perfusion values were calculated by maximum-slope technique. Thrombus load (modified Miller score; MMS) and ventricular diameter were determined. Perfusion maps were visually scored and correlated with residual endoluminal filling defects. Results: The mean initial thrombus load was 13.1 ± 4.6 MMS (3–16), and 1.2 ± 2.1 MMS (0–8) at follow up. From the 24 CTPs with diagnostic quality perfusion studies, normal perfusion was observed in 7 (29%), and mildly-severely abnormal in 17 (71%). In 15 patients with no residual thrombus on follow up CTPA, normal perfusion was observed in 6, and abnormal perfusion in 9. Perfusion was abnormal in all patients with residual thrombus on follow up CTPA. Pulmonary perfusion changes were classified as reduced (n = 4), delayed (systemic circulation pattern; n = 5), and absent (no-flow; n = 5). The right ventricle was dilated in 12/25 (48%) at presentation, and normal in all 26 follow up scans. Weak correlation was found between initial ventricular dilatation and perfusion abnormality at follow up (r = 0.15). Conclusions: Most patients had substantial perfusion abnormality at 3–6 months post PE. Abnormal perfusion patterns were frequently observed in patients and in regions with no corresponding evidence of residual thrombus on CTPA. Some defects exhibit delayed, presumed systemic, enhancement (which we have termed ‘stunned’ lung). CT perfusion provides combined anatomical and functional information about PE resolution.

  20. Differentiation of malignant and benign pulmonary nodules with first-pass dual-input perfusion CT

    International Nuclear Information System (INIS)

    Yuan, Xiaodong; Quan, Changbin; Cao, Jianxia; Ao, Guokun; Tian, Yuan; Li, Hong; Zhang, Jing

    2013-01-01

    To assess diagnostic performance of dual-input CT perfusion for distinguishing malignant from benign solitary pulmonary nodules (SPNs). Fifty-six consecutive subjects with SPNs underwent contrast-enhanced 320-row multidetector dynamic volume CT. The dual-input maximum slope CT perfusion analysis was employed to calculate the pulmonary flow (PF), bronchial flow (BF), and perfusion index (PI,=PF/(PF+BF)). Differences in perfusion parameters between malignant and benign tumours were assessed with histopathological diagnosis as the gold standard. Diagnostic value of the perfusion parameters was calculated using the receiver-operating characteristic (ROC) curve analysis. Amongst 56 SPNs, statistically significant differences in all three perfusion parameters were revealed between malignant and benign tumours. The PI demonstrated the biggest difference between malignancy and benignancy: 0.30 ± 0.07 vs. 0.51 ± 0.13, P < 0.001. The area under the PI ROC curve was 0.92, the largest of the three perfusion parameters, producing a sensitivity of 0.95, specificity of 0.83, positive likelihood ratio (+LR) of 5.59, and negative likelihood ratio (-LR) of 0.06 in identifying malignancy. The PI derived from the dual-input maximum slope CT perfusion analysis is a valuable biomarker for identifying malignancy in SPNs. PI may be potentially useful for lung cancer treatment planning and forecasting the therapeutic effect of radiotherapy treatment. (orig.)

  1. Analysis of microvascular perfusion with multi-dimensional complete ensemble empirical mode decomposition with adaptive noise algorithm: Processing of laser speckle contrast images recorded in healthy subjects, at rest and during acetylcholine stimulation.

    Science.gov (United States)

    Humeau-Heurtier, Anne; Marche, Pauline; Dubois, Severine; Mahe, Guillaume

    2015-01-01

    Laser speckle contrast imaging (LSCI) is a full-field imaging modality to monitor microvascular blood flow. It is able to give images with high temporal and spatial resolutions. However, when the skin is studied, the interpretation of the bidimensional data may be difficult. This is why an averaging of the perfusion values in regions of interest is often performed and the result is followed in time, reducing the data to monodimensional time series. In order to avoid such a procedure (that leads to a loss of the spatial resolution), we propose to extract patterns from LSCI data and to compare these patterns for two physiological states in healthy subjects: at rest and at the peak of acetylcholine-induced perfusion peak. For this purpose, the recent multi-dimensional complete ensemble empirical mode decomposition with adaptive noise (MCEEMDAN) algorithm is applied to LSCI data. The results show that the intrinsic mode functions and residue given by MCEEMDAN show different patterns for the two physiological states. The images, as bidimensional data, can therefore be processed to reveal microvascular perfusion patterns, hidden in the images themselves. This work is therefore a feasibility study before analyzing data in patients with microvascular dysfunctions.

  2. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Wang Hesheng [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Johnson, Timothy D. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Pan, Charlie [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hussain, Hero [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  3. Quantitative evaluation of muscle perfusion with CEUS and with MR

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Delorme, Stefan; Krix, Martin

    2007-01-01

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  4. Quantitative evaluation of muscle perfusion with CEUS and with MR

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre; Delorme, Stefan [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Krix, Martin [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Bracco ALTANA Pharma GmbH, Konstanz (Germany)

    2007-10-15

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  5. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    Science.gov (United States)

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-04-26

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although

  6. Dipyridamole-thallium-201 tomography documenting improved myocardial perfusion with therapy in Kawasaki disease

    International Nuclear Information System (INIS)

    Nienaber, C.A.; Spielmann, R.P.; Hausdorf, G.

    1988-01-01

    Thallium-201 tomographic perfusion studies after pharmacologic vasodilation were performed in seven children (aged 2 years 8 months to 8 years 7 months), 3 to 20 months after the acute stage of the disease. In all patients coronary aneurysms were seen on cross-sectional echocardiograms. The scintigrams of six children showed no significant regional reduction of myocardial thallium-201 uptake. These children had remained asymptomatic in the follow-up period after the acute inflammatory stage of Kawasaki disease. Persistent and transient thallium defects were present in one child with acute posterolateral myocardial infarction; obstruction of two coronary vessels supplying the defect zones was confirmed by contrast angiography. After 8 months of treatment a follow-up nuclear scan showed marked reduction in the size of the defect and almost complete abolishment of the ischemic reaction. Thus tomographic thallium-201 perfusion scintigraphy in conjunction with vasodilation stress is useful to assess myocardial perfusion in children with Kawasaki disease and demonstrates marked improvement in regional perfusion after adequate medical therapy

  7. Characterisation of focal liver lesions with contrast enhanced ultrasonography

    International Nuclear Information System (INIS)

    Dietrich, Christoph F.

    2004-01-01

    Ultrasound contrast agents (USCA) have improved the detection rate of liver tumours in recent years. Conventional ultrasound has been reported to be relatively unreliable in the characterisation of liver tumours. SonoVue [reg] (Bracco Imaging Spa) has been shown to be particularly advantageous in the differentiation of benign and malignant liver tumours and, therefore, possibly represents a new cost-effective competitive alternative to other liver imaging modalities (e.g. computed tomography and magnetic resonance imaging), thus allowing these important technologies to be available for other indications (e.g. brain, thorax). More detailed and specific liver tumour characterisation is possible in about 80% of liver tumours due to typical vascularity and perfusion patterns. The role of USCA for better characterisation, which is possible through the analysis of flow characteristics in real time, places a particular emphasis on agent use. Contrast enhanced real-time imaging techniques with SonoVue [reg] allow real-time analysis of tumour perfusion in patients with liver lesions. Liver tumours known to be hyperperfused in the arterial phase (e.g. focal nodular hyperplasia, hepatocellular adenoma and carcinoma, and hyperperfused metastases) can be better detected and characterised. Hypoperfused tumours (e.g. liver metastases of the gastrointestinal tract) can be recognised in the portal venous phase as less perfused 'black spots'. In this article we discuss liver tumour characterisation by contrast enhanced ultrasonography

  8. Arterial spin-labeling perfusion imaging of childhood meningitis: a case series.

    Science.gov (United States)

    Wong, Alex Mun-Ching; Yeh, Chih-Hua; Liu, Ho-Ling; Lin, Kuang-Lin; Wang, Huei-Shyong; Toh, Cheng-Hong

    2016-03-01

    Conventional magnetic resonance imaging (MRI), which is mainly used to detect complications, is ineffective in determining the neurological status of patients with meningitis. Hemodynamic change in the brain may be more indicative of the neurological status but few imaging studies have verified this. Arterial spin-labeling (ASL) perfusion, a noninvasive MR method requiring no contrast agent injection, can be used to measure cerebral blood flow (CBF). We describe three pediatric patients with meningitis, who all showed regions of increased CBF on perfusion imaging. One patient, presenting with headache and conscious disturbance, had CBF changes in the frontal, temporal, and occipital regions. The other two patients, presenting with hallucinations, memory deficits, and seizures, had CBF changes in the frontal and temporal regions. ASL perfusion imaging may be helpful in assessing patients with meningitis, demonstrating CBF changes more strongly correlating with the neurological status, and detecting active brain abnormalities.

  9. Correlation between CT perfusion and vascular endothelial growth factor in neoplasm of head and neck

    International Nuclear Information System (INIS)

    Yang Zhiyun; Meng Quanfei; Xu Qiaolan; Li Shurong; Yan Chaogui; Xie Hongbo; Yang Xufeng; Peng Qian; Lai Yingrong

    2007-01-01

    Objective: To investigate the correlation between the CT perfusion and microvessel density (MVD), expression of vascular endothelial growth factor (VEGF) in neoplasm of head and neck. Methods: Eighty-eight lesions of head and neck were scanned by spiral CT. The largest axial surface of the mass was searched on unenhanced imaging, and at this level the dynamic contrast enhanced scan series was acquired. Time-density curves (TDC) were created from circular or oval regions of the interest drawn over the mass, target artery by Toshiba Xpress/SX spiral CT with perfusion functional software. The parameters were measured including: peak height (PH), peak time (PT), mean transit time (MTT), contrast enhancement ratio (RPH), and perfusion flow (PF). Histopathological slides of 35 masses were carefully prepared for the anti-CD34 and VEGF immunohistochemical staining and tumor microvessel density and calculation of VEGF expression scores. The parameters of CT perfusion were correlatively study with MVD and VEGF. Results: (1) The TDC of CT perfusion imaging could be classified into 3 types. The TDC of 53/77 (68.9%) malignant tumors presented the type with rapid ascending and rapid descending after injecting contrast. The TDC of 6/9 malignant lymphomas showed low platform curve o (2)The PF median of thyroid carcinoma was 82. 2(41.0,183.4)ml·min -1 ·100 g -1 . There was significantly difference in the parameters of CT perfusion among thyroid carcinoma and squamous cell cancer (Median 23.8 (7.0, 108.4) ml·min -1 ·100 g -1 ) and lymphomas (Median 24.5 (13.2, 78.6) ml·min -1 ·100 g -1 ). (3) MVD in benign tumors was (44.7±3.4), and in malignant tumors, it is (49.6±14.8). There was no significantly difference in MVD between benign and malignant tumors. High VEGF expression was found in 15 malignant tumors and 1 benign tumors, low VEGF expression was found in 9 malignant tumors and 10 benign tumors. (4)There were no significantly difference in VEGF expression and MVD. There

  10. Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time.

    Science.gov (United States)

    Xing, Dong; Zha, Yunfei; Yan, Liyong; Wang, Kejun; Gong, Wei; Lin, Hui

    2015-11-01

    To assess the correlation between flow-sensitive alternating inversion recovery (FAIR) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the measurement of spinal bone marrow (SBM) perfusion; in addition, to assess for an optimized inversion time (TI) as well as the reproducibility of SBM FAIR perfusion. The optimized TI of a FAIR SBM perfusion experiment was carried out on 14 volunteers; two adjacent vertebral bodies were selected from each volunteer to measure the change of signal intensity (ΔM) and the signal-to-noise ratio (SNR) of FAIR perfusion MRI with five different TIs. Then, reproducibility of FAIR data from 10 volunteers was assessed by the reposition SBM FAIR experiments. Finally, FAIR and DCE-MRI were performed on 27 subjects. The correlation between the blood flow on FAIR (BFASL ) and perfusion-related parameters on DCE-MRI was evaluated. The maximum value of ΔM and SNR were 36.39 ± 12.53 and 2.38 ± 0.97, respectively; both were obtained when TI was near 1200 msec. There were no significant difference between the two successive measurements of SBM BFASL perfusion (P = 0.879), and the within-subject coefficients of variation (wCV) of the measurements was 3.28%. The BFASL showed a close correlation with K(trans) (P FAIR perfusion scan protocol has good reproducibility, and as blood flow measurement on FAIR is reliable and closely related with the parameters on DCE-MRI, FAIR is feasible for measuring SBM blood flow. © 2015 Wiley Periodicals, Inc.

  11. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  12. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    International Nuclear Information System (INIS)

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D

    2015-01-01

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  13. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  14. Diffusion and perfusion imaging of bone marrow

    International Nuclear Information System (INIS)

    Biffar, Andreas; Dietrich, Olaf; Sourbron, Steven; Duerr, Hans-Roland; Reiser, Maximilian F.; Baur-Melnyk, Andrea

    2010-01-01

    In diffusion-weighted magnetic resonance imaging (DWI), the observed MRI signal intensity is attenuated by the self-diffusion of water molecules. DWI provides information about the microscopic structure and organization of a biological tissue, since the extent and orientation of molecular motion is influenced by these tissue properties. The most common method to measure perfusion in the body using MRI is T1-weighted dynamic contrast enhancement (DCE-MRI). The analysis of DCE-MRI data allows determining the perfusion and permeability of a biological tissue. DWI as well as DCE-MRI are established techniques in MRI of the brain, while significantly fewer studies have been published in body imaging. In recent years, both techniques have been applied successfully in healthy bone marrow as well as for the characterization of bone marrow alterations or lesions; e.g., DWI has been used in particular for the differentiation of benign and malignant vertebral compression fractures. In this review article, firstly a short introduction to diffusion-weighted and dynamic contrast-enhanced MRI is given. Non-quantitative and quantitative approaches for the analysis of DWI and semiquantitative and quantitative approaches for the analysis of DCE-MRI are introduced. Afterwards a detailed overview of the results of both techniques in healthy bone marrow and their applications for the diagnosis of various bone-marrow pathologies, like osteoporosis, bone tumors, and vertebral compression fractures are described.

  15. Computed tomography perfusion imaging denoising using Gaussian process regression

    International Nuclear Information System (INIS)

    Zhu Fan; Gonzalez, David Rodriguez; Atkinson, Malcolm; Carpenter, Trevor; Wardlaw, Joanna

    2012-01-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. (note)

  16. Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial).

    Science.gov (United States)

    Bolognese, Leonardo; Falsini, Giovanni; Schwenke, Carsten; Grotti, Simone; Limbruno, Ugo; Liistro, Francesco; Carrera, Arcangelo; Angioli, Paolo; Picchi, Andrea; Ducci, Kenneth; Pierli, Carlo

    2012-01-01

    Conflicting data have been reported on the effects of low-osmolar and iso-osmolar contrast media on contrast-induced acute kidney injury (CI-AKI). In particular, no clinical trial has yet focused on the effect of contemporary contrast media on CI-AKI, epicardial flow, and microcirculatory function in patients with ST-segment elevation acute myocardial infarction who undergo primary percutaneous coronary intervention. The Contrast Media and Nephrotoxicity Following Coronary Revascularization by Angioplasty for Acute Myocardial Infarction (CONTRAST-AMI) trial is a prospective, randomized, single-blind, parallel-group, noninferiority study aiming to evaluate the effects of the low-osmolar contrast medium iopromide compared to the iso-osmolar agent iodixanol on CI-AKI and tissue-level perfusion in patients with ST-segment elevation acute myocardial infarction. Four hundred seventy-five consecutive, unselected patients who underwent primary percutaneous coronary intervention were randomized to iopromide (n = 239) or iodixanol (n = 236). All patients received high-dose N-acetylcysteine and hydration. The primary end point was the proportion of patients with serum creatinine (sCr) increases ≥25% from baseline to 72 hours. Secondary end points were Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grade, increase in sCr ≥50%, increase in sCr ≥0.5 or ≥1 mg/dl, and 1-month major adverse cardiac events. The primary end point occurred in 10% of the iopromide group and in 13% of the iodixanol group (95% confidence interval -9% to 3%, p for noninferiority = 0.0002). A TIMI myocardial perfusion grade of 0 or 1 was present in 14% of patients in the 2 groups. No differences between the 2 groups were found in any of the secondary analyses of sCr increase. No significant difference in 1-month major adverse cardiac events was found (8% vs 6%, p = 0.37). In conclusion, in a population of unselected patients with ST-segment elevation acute myocardial infarction

  17. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    Science.gov (United States)

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  18. [Susceptibility to infections and behavior of stainless steel : Comparison with titanium implants in traumatology].

    Science.gov (United States)

    Haubruck, Patrick; Schmidmaier, Gerhard

    2017-02-01

    Despite modern treatment options, implant-associated infections (IAI) remain a severe and challenging complication in the treatment of trauma patients. Almost 30 years after the introduction of implants made of titanium alloy into the treatment of trauma patients, there is still no uniform consensus regarding the clinical benefit of titanium alloy in the context of patients with IAI. We sought to determine if implants made of titanium alloy have been proven to be less susceptible regarding IAI in contrast to implants made of stainless steel. A review of the current literature on IAI in association with the utilized implant material was conducted. Relevant articles from the years 1995 to 2016 were searched in the PubMed database. A total of 183 articles were identified and all abstracts were reviewed for relevance. A total of 14 articles met the inclusion criteria and were stratified according to the level of evidence and furthermore evaluated regarding the influence of the implant material on IAI. Considerable debate remains concerning the influence of the implant material on the susceptibility to IAI; however, the available literature shows that despite slight tendencies, there is no proof of titanium alloy being favorable in the susceptibility to IAI. Furthermore, the literature shows that the design of plates for osteosynthesis might influence IAI. In particular, plates that cause less soft tissue damage and preserve perfusion of the periosteum proved to be beneficial regarding IAI.

  19. Triphasic contrast injection improves evaluation of dual energy lung perfusion in pulmonary CT angiography

    International Nuclear Information System (INIS)

    Kerl, J. Matthias; Bauer, Ralf W.; Renker, Matthias; Weber, Eva; Weisser, Philipp; Korkusuz, Huedayi; Schell, Boris; Larson, Maya Christina; Kromen, Wolfgang; Jacobi, Volkmar

    2011-01-01

    Purpose: Lung perfusion analysis at dual energy CT (DECT) is sensitive to beam hardening artifacts from dense contrast material (CM). We compared two scan and four CM injection protocols in terms of severity of artifacts and attenuation levels in the thoracic vessels. Methods and materials: Data of 120 patients who had undergone dual source dual energy CT pulmonary angiography for suspected acute pulmonary embolism were evaluated. Group 1 (n = 30) was scanned in craniocaudal direction using 64 × 0.6 mm collimation; groups 2–4 (n = 30 each) were scanned in caudocranial direction using 14 × 1.2 mm collimation. In groups 1–3 biphasic injection protocols with different amounts of CM and NaCl were investigated. In group 4 a split-bolus protocol with an initial CM bolus of 50 ml followed by 30 ml of a 70%:30% NaCl/CM mixture and a 50 ml NaCl chaser bolus was used. CT density values in the subclavian vein (SV), superior vena cava (SVC), pulmonary artery tree (PA), and the descending aorta (DA) were measured. Artifacts arising from the SV and SVC on DE pulmonary iodine distribution map were rated on a scale from 1 to 5 (1 = fully diagnostic; 5 = non-diagnostic) by two blinded readers. Results: In protocol 4 mean attenuation in the SV (645 ± 158 HU) and SVC (389 ± 114 HU) were significantly lower compared to groups 1–3 (p < 0.002). Artifacts in group 4 (1.1 ± 0.4 and 1.5 ± 0.7 for the SV and SVC, respectively) were rated significantly less severe compared to group 1 (3.2 ± 1.0 and 3.0 ± 1.1), 2 (2.6 ± 1.1 and 2.3 ± 1.0) and 3 (1.9 ± 0.9 and 1.9 ± 0.7) (p < 0.01 for all), whereas no significant difference was found between groups 1 and 2 for the subclavian vein (p = 0.07). Attenuation in the PA was also significantly lower in group 4 (282 ± 116 HU) compared to group 1 (397 ± 137 HU), group 2 (376 ± 115 HU) and group 3 (311 ± 104 HU), but still on a diagnostic level. Conclusion: Split-bolus injection provides sufficient attenuation for pulmonary DECT

  20. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dirk, E-mail: d.mueller@uk-koeln.de [Department of Radiology, University of Cologne (Germany); Department of Radiology, Technische Universität München (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Baum, Thomas, E-mail: thomas-baum@gmx.de [Department of Radiology, Technische Universität München (Germany); Walter, Flavia, E-mail: flavia_walter2000@yahoo.de [Department of Radiology, Technische Universität München (Germany); Rechl, Hans, E-mail: rechl@tum.de [Department of Orthopaedics, Technische Universität München (Germany); Rummeny, Ernst J., E-mail: rummeny@tum.de [Department of Radiology, Technische Universität München (Germany); Woertler, Klaus, E-mail: klaus.woertler@tum.de [Department of Radiology, Technische Universität München (Germany)

    2014-10-15

    Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E{sub max}), slope (E{sub slope}) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology

  1. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur

    International Nuclear Information System (INIS)

    Mueller, Dirk; Schaeffeler, Christoph; Baum, Thomas; Walter, Flavia; Rechl, Hans; Rummeny, Ernst J.; Woertler, Klaus

    2014-01-01

    Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E max ), slope (E slope ) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology of

  2. Susceptibility Tensor Imaging (STI) of the Brain

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu

    2016-01-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169

  3. Local cortical hypoperfusion imaged with CT perfusion during postictal Todd's paresis

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Marlon S.; Binder, Devin K. [University of California, Department of Neurological Surgery, Irvine, CA (United States); Smith, Wade S. [University of California, Department of Neurology, San Francisco, CA (United States); Wintermark, Max; Dillon, William P. [University of California, Department of Radiology, San Francisco, CA (United States)

    2008-05-15

    Postictal ('Todd's') paralysis, or 'epileptic hemiplegia,' is a well-known complication of focal or generalized epileptic seizures. However, it is unclear whether the pathophysiology of Todd's paralysis is related to alterations in cerebral perfusion. We report CT perfusion findings in a patient presenting with postictal aphasia and right hemiparesis. A 62-year-old woman with a history of alcohol abuse, closed head injury and posttraumatic epilepsy, presented with acute onset aphasia and right hemiparesis. A non-contrast head CT scan demonstrated no acute hemorrhage. Left hemispheric ischemia was suspected, and the patient was considered for acute thrombolytic therapy. MRI revealed a subtle increase in signal intensity involving the left medial temporal, hippocampal and parahippocampal regions on both T2-weighted FLAIR and diffusion-weighted sequences. CT angiography and CT perfusion study were performed. The CT perfusion study and CT angiography demonstrated a dramatic reduction in cerebral blood flow and blood volume involving the entire left hemisphere, but with relative symmetry of mean transit time, ruling out a large vessel occlusion. Clinical resolution of the aphasia and hemiparesis occurred within a few hours, and correlated with normalization of perfusion to the left hemisphere (detected by MR perfusion). This unique case is the first in which clinical evidence of Todd's paralysis has been correlated with reversible postictal hemispheric changes on CT and MR perfusion studies. This is important because CT perfusion study is being used more and more in the diagnosis of acute stroke, and one needs to be careful to not misinterpret the data. (orig.)

  4. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae

    2005-01-01

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 ± 8.5%, range:3 ∼ 35%) and mild to moderate severity (-71 ± 42.7%, range:-217 ∼ -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome

  5. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae [Donga University College of Medicine, Busan (Korea, Republic of)

    2005-02-15

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 {+-} 8.5%, range:3 {approx} 35%) and mild to moderate severity (-71 {+-} 42.7%, range:-217 {approx} -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome.

  6. Dual-energy perfusion-CT in recurrent pancreatic cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, F.; Skornitzke, S.; Kauczor, H.U.; Stiller, W.; Klauss, M. [Heidelberg Univ. (Germany). Clinic of Diagnostic and Interventional Radiology; Hackert, T. [Heidelberg Univ. (Germany). Clinic of Surgery; Grenacher, L. [Diagnostik Muenchen (Germany). Diagnostic Imaging Center

    2016-06-15

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120 kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n=4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120 kVp-equivalent image data, which was not significant (n.s.) (p=0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation.

  7. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors

    International Nuclear Information System (INIS)

    Calli, Cem; Kitis, Omer; Yunten, Nilgun; Yurtseven, Taskin; Islekel, Sertac; Akalin, Taner

    2006-01-01

    Objective: Common contrast-enhancing malignant tumors of the brain are glioblastoma multiforme (GBMs), anaplastic astrocytomas (AAs), metastases, and lymphomas, all of which have sometimes similar conventional MRI findings. Our aim was to evaluate the role of perfusion MR imaging (PWI) and diffusion-weighted imaging (DWI) in the differentiation of these contrast-enhancing malignant cerebral tumors. Materials and methods: Forty-eight patients with contrast-enhancing and histologically proven brain tumors, 14 AAs, 17 GBMs, nine metastases, and eight lymphomas, were included in the study. All patients have undergone routine MR examination where DWI and PWI were performed in the same session. DWI was performed with b values of 0, 500, and 1000 mm 2 /s. Minimum ADC values (ADC min ) of each tumor was later calculated from ADC map images. PWI was applied using dynamic susceptibility contrast technique and maximum relative cerebral blood volume (rCBV max ) was calculated from each tumor, given in ratio with contralateral normal white matter. Comparisons of ADC min and rCBV max values with the histological types of the enhancing tumors were made with a one-way analysis of variance and Bonferroni test. A P value less than 0.05 indicated a statistically significant difference. Results: The ADC min values (mean ± S.D.) in GBMs, AAs, lymphomas, and metastases were 0.79 ± 0.21 (x10 -3 mm 2 /s), 0.75 ± 0.21 (x10 -3 mm 2 /s), 0.51 ± 0.09 (x10 -3 mm 2 /s), and 0.68 ± 0.11 (x10 -3 mm 2 /s), respectively. The difference in ADC min values were statistically significant between lymphomas and GBMs (P max ratio (mean ± S.D.) in GBMs were 6.33 ± 2.03, whereas it was 3.66 ± 1.79 in AAs, 2.33 ± 0.68 in lymphomas, and 4.45 ± 1.87 in metastases. These values were statistically different between GBMs and AAs (P min and rCBV max calculations, may aid routine MR imaging in the differentiation of common cerebral contrast-enhancing malignant tumors

  8. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  9. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. © 2014 Wiley Periodicals, Inc.

  10. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas

    2016-01-01

    INTRODUCTION: Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. METHODS: 90...... perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing cardiac surgery. Pulmonary artery perfusion with hypothermic HTK solution does not seem to improve postoperative oxygenation. TRIAL REGISTRATION NUMBER...

  11. Reverse ventilation--perfusion mismatch

    International Nuclear Information System (INIS)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients

  12. CT perfusion technique for assessment of early kidney allograft dysfunction: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Helck, A.; Notohamiprodjo, M.; Schoen, F.; Nikolaou, K.; Clevert, D.A.; Reiser, M.; Becker, C. [Ludwig-Maximilians-University of Munich, Department of Clinical Radiology, University Hospitals Grosshadern, Munich (Germany); Wessely, M.; Schoenermarck, U.; Fischereder, M. [Ludwig-Maximilians-University of Munich, Department of Internal Medicine IV, Nephrology, University Hospitals Grosshadern, Munich (Germany); Klotz, E. [Siemens Healthcare, Computed Tomography, Forchheim (Germany)

    2013-09-15

    To assess the benefit of quantitative computed tomography (CT) perfusion for differentiating acute tubular necrosis (ATN) and acute rejection (AR) in kidney allografts. Twenty-two patients with acute kidney allograft dysfunction caused by either AR (n = 6) or ATN (n = 16) were retrospectively included in the study. All patients initially underwent a multiphase CT angiography (CTA) protocol (12 phases, one phase every 3.5 s) covering the whole graft to exclude acute postoperative complications. Multiphase CT dataset and dedicated software were used to calculate renal blood flow. Renal biopsy or clinical course of disease served as the standard of reference. Mean effective radiation dose and mean amount of contrast media were calculated. Renal blood flow values were significantly lower (P = 0.001) in allografts undergoing AR (48.3 {+-} 21 ml/100 ml/min) compared with those with ATN (77.5 {+-} 21 ml/100 ml/min). No significant difference (P = 0.71) was observed regarding creatinine level with 5.65 {+-} 3.1 mg/dl in AR and 5.3 {+-} 1.9 mg/dl in ATN. The mean effective radiation dose of the CT perfusion protocol was 13.6 {+-} 5.2 mSv; the mean amount of contrast media applied was 34.5 {+-} 5.1 ml. All examinations were performed without complications. CT perfusion of kidney allografts may help to differentiate between ATN and rejection. (orig.)

  13. Characterization of Enhancing MS Lesions by Dynamic Texture Parameter Analysis of Dynamic Susceptibility Perfusion Imaging

    Directory of Open Access Journals (Sweden)

    Rajeev K. Verma

    2016-01-01

    Full Text Available Purpose. The purpose of this study was to investigate statistical differences with MR perfusion imaging features that reflect the dynamics of Gadolinium-uptake in MS lesions using dynamic texture parameter analysis (DTPA. Methods. We investigated 51 MS lesions (25 enhancing, 26 nonenhancing lesions of 12 patients. Enhancing lesions (n=25 were prestratified into enhancing lesions with increased permeability (EL+; n=11 and enhancing lesions with subtle permeability (EL−; n=14. Histogram-based feature maps were computed from the raw DSC-image time series and the corresponding texture parameters were analyzed during the inflow, outflow, and reperfusion time intervals. Results. Significant differences (p<0.05 were found between EL+ and EL− and between EL+ and nonenhancing inactive lesions (NEL. Main effects between EL+ versus EL− and EL+ versus NEL were observed during reperfusion (mainly in mean and standard deviation (SD: EL+ versus EL− and EL+ versus NEL, while EL− and NEL differed only in their SD during outflow. Conclusion. DTPA allows grading enhancing MS lesions according to their perfusion characteristics. Texture parameters of EL− were similar to NEL, while EL+ differed significantly from EL− and NEL. Dynamic texture analysis may thus be further investigated as noninvasive endogenous marker of lesion formation and restoration.

  14. Magnetic resonance angiography with blood-pool contrast agents: future applications

    International Nuclear Information System (INIS)

    Fink, C.; Goyen, M.; Lotz, J.

    2007-01-01

    Blood pool agents remain in the intravascular space for a longer time period. Therefore the optimal imaging window for vascular structures is widened to about 30 minutes. Gadofosveset trisodium (Vasovist, Bayer Schering Pharma AG, Berlin, Germany) is the first blood-pool contrast agent approved in Europe for contrast-enhanced magnetic resonance angiography (MRA) of vessels in the abdomen, pelvis and lower extremity in adults. Other possible applications of blood-pool agents are now being considered, such as assessment of venous thromboembolism, coronary artery disease or sinus venous thrombosis. Perfusion MR imaging holds promise for detecting lung perfusion defects with higher spatial resolution and reduced scan time compared with radionuclide scintigraphy. In coronary artery disease, blood-pool agents enable a substantial increase in the quality of coronary artery imaging. Quantitative myocardial perfusion and myocardial viability seem to be possible, although modifications in protocols and sequence design are necessary for optimal results. Other novel applications of blood-pool agents include monitoring of inflammatory changes in systemic lupus erythematosus and evaluation of tumour invasion into lymph nodes and more reliable assessment of cerebral venous and sinus thrombosis. (orig.)

  15. Magnetic resonance angiography with blood-pool contrast agents: future applications

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C. [Univ. Hospitals, Grosshadern, Munich (Germany); Goyen, M. [Univ. Medical Center, Hamburg-Eppendorf, Hamburg (Germany); Lotz, J. [Hannover Medical School, Hannover (Germany)

    2007-03-15

    Blood pool agents remain in the intravascular space for a longer time period. Therefore the optimal imaging window for vascular structures is widened to about 30 minutes. Gadofosveset trisodium (Vasovist, Bayer Schering Pharma AG, Berlin, Germany) is the first blood-pool contrast agent approved in Europe for contrast-enhanced magnetic resonance angiography (MRA) of vessels in the abdomen, pelvis and lower extremity in adults. Other possible applications of blood-pool agents are now being considered, such as assessment of venous thromboembolism, coronary artery disease or sinus venous thrombosis. Perfusion MR imaging holds promise for detecting lung perfusion defects with higher spatial resolution and reduced scan time compared with radionuclide scintigraphy. In coronary artery disease, blood-pool agents enable a substantial increase in the quality of coronary artery imaging. Quantitative myocardial perfusion and myocardial viability seem to be possible, although modifications in protocols and sequence design are necessary for optimal results. Other novel applications of blood-pool agents include monitoring of inflammatory changes in systemic lupus erythematosus and evaluation of tumour invasion into lymph nodes and more reliable assessment of cerebral venous and sinus thrombosis. (orig.)

  16. Susceptibility tensor imaging (STI) of the brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu

    2017-04-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Hepatic Arterial Perfusion Scintigraphy with '99mTc-Macroaggregated Albumin in Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Kim, Gang Deuk; Sohn, Kwang Joon; Min, Kyung Yoon; Kwon, Young Mi; Kim, Chang Guhn; Noh, Byung Suk; Won, Jong Jin

    1994-01-01

    Hepatic arterial perfusion scintigraphy with '9 9m Tc macroggregated albumin (HAPS) study was carried out in 16 patients with hepatocellular carcinoma (HCC) and in six patients without liver tumor to evaluate HAPS findings of hepatocellular carcinoma and use fullness of HAPS. HAPS with planar and SPECT study were performed in 22 patients after conventional hepatic or celiac arteriography. For HAPS study, 4 5 mCi of MAA mixed with 2 ml of saline was injected into proper hepatic artery or its distal branches at the rate of approximately 1 ml/sec. We analysed 21 HCCs over 2 cm in diameter(average diameter: 6.4 cm) and 17 of 21 HCCs were over 4 cm in diameter. CT, sonography and angiography were performed within two week in all 16 patients and liver scan was performed in 12 patients. Three different pattern of tumor perfusion were observed in 16 patients with HCC. 1) diffuse increased perfusion in 16 of 21(76%) 2) increased peripheral perfusion in 4 of 21(19%) 3) diffuse decreased perfusion in 1 of 21 (5%) Arteriovenous shunt indicated by lung uptake of MAA were observed in 9 of 16 (56% ). In contrast, angiography demonstrates arteriovenous shunt in 2 of 16 (13%). There was no accumulation of radioactivity on RRC blood pool scan in all six patients with HCC examined. HAPS is useful study in evaluation of perfusion pattern or vascularity of HCC and in detection of arteriovenous shunt.

  18. Visceral Perfusion Scintigraphy with {sup 131}I-Labelled Albumin Macroaggregates

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, H.; Yamada, H.; Kitani, K.; Nagatani, M.; Takeda, T.; Migita, T.; Iio, M; Kameda, H. [University of Tokyo, Tokyo (Japan)

    1969-05-15

    The blood supply through the hepatic artery, superior mesenteric artery and portal vein to the visceral organs was studied in 60 cases of various hepatic disorders by scintigraphy after the selective introduction of {sup 131}I MAA by means of visceral arterial catheterization or percutaneous splenic puncture. A comparison of the radioactivities of the liver and the spleen after celiac arterial infusion (celiac perfusion scanning) indicated how much blood in the celiac artery was distributed to the two major arterial branches - the hepatic and splenic. Dominant perfusion was found through the hepatic branch in liver cirrhosis, whereas significantly dominant splenic blood perfusion was found in idiopathic non-cirrhotic portal hypertension. This remarkable contrast of the mode of celiac perfusion in two disorders indicated the etiological difference of these diseases. In malignant neoplasm of the liver, the dominant or exclusive celiac arterial perfusion was found in the tumour region. In these cases, liver scanning by the splenic injection of MAA (portal perfusion scanning) delineated the tumour region as a negative defect similar to the conventional {sup 198}Au colloid scanning. Consequently, from these two perfusion scintigrams the 'key and key-hole' pattern was demonstrated. It was concluded that a neoplastic lesion, primary or metastatic, has the predominant blood supply through the hepatic artery rather than through the portal vein. Celiac perfusion scanning of liver cystosis revealed multiple negative defects. This information was useful for differentiating a malignant tumour, which is usually impossible by conventional liver scanning. Celiac perfusion scanning was also useful for the diagnosis of arterial venous communication. In one case of liver .cancer with cirrhosis and another case with stomach varices, the arterial-v.enous communication was indicated by the appearance of the lung contour in the celiac perfusion scan. In both cases, the combined presence

  19. Safety of contrast media. Focus on contrast-induced nephropathy (CIN)

    International Nuclear Information System (INIS)

    Kuwatsuru, Ryohei

    2011-01-01

    Despite advances in imaging diagnosis, contrast media still play an important role in diagnosing the existence of the disease, demonstrating the extent of disease, and determining the perfusion of the disease, which is important to make a differential diagnosis. However, the administration of contrast media may cause contrast-induced nephropathy (CIN), especially in patients with renal impairment. It is estimated that 20-30% of patients with renal impairment who received contrast media develop CIN. Though the precise cause of CIN currently remains unknown, almost all injected contrast media are excreted through the kidney and the effects of contrast media on the kidney are easily understood. As CIN is the most common cause of death due to complications after receiving contrast media, prevention of CIN is important. There are several known risk factors for CIN. Patients with renal impairment, diabetes mellitus, and dehydration are at high risk for CIN. Furthermore, a high osmolar contrast media, excessive amount of contrast media, and ionic contrast media are also risk factors for CIN. CIN can be prevented in several ways. Certain drugs seem to be useful to prevent CIN, while others are harmful. Hydration is useful to prevent CIN, although there is no widely acceptable hydration method to prevent CIN. Both sodium bicarbonate and N-acetylcysteine are promising candidates for prevention of CIN. There are few reports to study CIN after intravenous administration, although reports of CIN after percutaneous cardiac intervention (PCI) and angiography are well recognized. In clinical situations, intravenous administration of contrast media is common. Therefore, a study of CIN after intravenous administration of contrast media should be performed. (author)

  20. Brain perfusion: computed tomography applications

    International Nuclear Information System (INIS)

    Miles, K.A.

    2004-01-01

    Within recent years, the broad introduction of fast multi-detector computed tomography (CT) systems and the availability of commercial software for perfusion analysis have made cerebral perfusion imaging with CT a practical technique for the clinical environment. The technique is widely available at low cost, accurate and easy to perform. Perfusion CT is particularly applicable to those clinical circumstances where patients already undergo CT for other reasons, including stroke, head injury, subarachnoid haemorrhage and radiotherapy planning. Future technical developments in multi-slice CT systems may diminish the current limitations of limited spatial coverage and radiation burden. CT perfusion imaging on combined PET-CT systems offers new opportunities to improve the evaluation of patients with cerebral ischaemia or tumours by demonstrating the relationship between cerebral blood flow and metabolism. Yet CT is often not perceived as a technique for imaging cerebral perfusion. This article reviews the use of CT for imaging cerebral perfusion, highlighting its advantages and disadvantages and draws comparisons between perfusion CT and magnetic resonance imaging. (orig.)

  1. Quantitative assessment of angiographic perfusion reduction using color-coded digital subtraction angiography during transarterial chemoembolization.

    Science.gov (United States)

    Wang, Ji; Cheng, Jie-Jun; Huang, Kai-Yi; Zhuang, Zhi-Guo; Zhang, Xue-Bin; Chi, Jia-Chang; Hua, Xiao-Lan; Xu, Jian-Rong

    2016-03-01

    The aim of this study was to develop a quantitative measurement of perfusion reduction using color-coded digital subtraction angiography (ccDSA) to monitor intra-procedural arterial stasis during TACE. A total number of 35 patients with hepatocellular carcinoma who had undergone TACE were enrolled into the study. Pre- and post-two-dimensional digital subtraction angiography scans were conducted with same protocol and post-processed with ccDSA prototype software. Time-contrast-intensity (CI[t]) curve was obtained by region-of-interest (ROI) measurement on the generated ccDSA image. Quantitative 2D perfusion parameters time to peak, area under the curve (AUC), maximum upslope, and contrast intensity peak (CI-Peak) derived from the ROI-based CI[t] curve for pre- and post-TACE were evaluated to assess the reduction of antegrade blood flow and tumor blush. Relationships between 2D perfusion parameters, subjective angiographic chemoembolization endpoint (SACE) scale, and clinical outcomes were analyzed. Area normalized AUC and CI-Peak revealed significant reduction after the TACE (P SACE level III and a reduction ranging from 60% to 70% was equivalent to SACE level IV. For intermediate reduction (SACE level III), better tumor response was found after TACE rather than a higher reduction (SACE level IV). ccDSA application provides an objective approach to quantify the perfusion reduction and subjectively evaluate the arterial stasis of antegrade blood flow and tumor blush caused by TACE.

  2. Perfusion MR imaging of the heart with TrueFISP

    International Nuclear Information System (INIS)

    Schreiber, W.G.; Schmitt, M.; Kalden, P.; Mohrs, O.; Kreitner, K.F.; Thelen, M.; Horstick, G.; Gumbrich, T.; Petersen, S.; Voigtlaender, T.

    2001-01-01

    Objective: Development and test of a saturation-recovery TrueFISP (SR-Trufi) pulse sequence for myocardial perfusion MR imaging (MRI) using improved gradient hardware. Material and methods: Measurements were performed on a 1.5 T scanner with prototype gradients (50 mT/m, minimum rise time 300 μs). T 1 -weighted first-pass MRI of Gd-DTPA (0.025 μmol/kg) kinetics in the myocardium was performed using an SR-Trufi pulse sequence (T R /T E /α=2.6 ms/1.4 ms/55 ) with a saturation preparation of TD-30 ms before the TrueFISP readout. Measurements were performed in volunteers (n=4) and in a pig model of chronic ischemia (n=1). Results: In phantoms, the signal intensity was linear with contrast concentration up to 0.9 mmol/kg Gd-DTPA. MR images obtained with SR-Trufi had a good image quality and high spatial resolution of 2.1 mmx2.1 mm. Differences of the contrast agent's kinetics between a subendocardial perfusion deficit and neighboring myocardium were well visible on both MR images and signal-time curves derived from the region-of-interest analysis. Conclusion: SR-Trufi appears to be an interesting new technique for the assessment of myocardial microcirculation using dedicated cardiovascular MR systems. (orig.) [de

  3. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    McLaughlin, A.C.; Takeda, H.; Chance, B.

    1978-01-01

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31 P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31 P-NMR was used to investigate ATP levels in perfused liver of mice

  4. Analysis of blood flow in a third ventricular ependymoma and an olfactory bulb meningioma by usisng perfusion computed tomography

    International Nuclear Information System (INIS)

    Kishimoto, M.; Yamada, K.; Seok, J.S.; Shimizu, J.; Kobayashi, Y.; Akiba, Y.; Morishita, Y.; Iwasa, A.; Iwasaki, T.; Miyake, Y.

    2008-01-01

    Brain perfusion computed tomography (CT) scanning was performed in a mongrel dog and a golden retriever that were diagnosed with third ventricular tumor and olfactory bulb tumor, respectively, by contrast-enhanced CT. The tumors were pathologically diagnosed as ependymoma and meningioma, respectively. Perfusion CT results revealed that the ependymoma in this study had a lower blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Further, the meningioma in this study had a higher blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Perfusion CT can potentially be used for the grading of brain tumors and narrowing differential diagnosis, provided the perfusion CT data of animals are accumulated

  5. Multiphasic perfusion CT in acute middle cerebral artery ischemic stroke: prediction of final infarct volume and correlation with clinical outcome

    International Nuclear Information System (INIS)

    Yi, Chin A; Na, Dong Gyu; Ryoo, Jae Wook; Moon, Chan Hong; Byun, Hong Sik; Roh, Hong Gee; Moon, Won Jin; Lee, Kwang Ho; Lee, Soo Joo

    2002-01-01

    To assess the utility of multiphasic perfusion CT in the prediction of final infarct volume, and the relationship between lesion volume revealed by CT imaging and clinical outcome in acute ischemic stroke patients who have not undergone thrombolytic therapy. Thirty-five patients underwent multiphasic perfusion CT within six hours of stroke onset. After baseline unenhanced helical CT scanning, contrast-enhanced CT scans were obtained 20, 34, 48, and 62 secs after the injection of 90 mL contrast medium at a rate of 3 mL/sec. CT peak and total perfusion maps were obtained from serial CT images, and the initial lesion volumes revealed by CT were compared with final infarct volumes and clinical scores. Overall, the lesion volumes seen on CT peak perfusion maps correlated most strongly with final infarct volumes (R2=0.819, p<0.001, slope of regression line=1.016), but individual data showed that they were less than final infarct volume in 31.4% of patients. In those who showed early clinical improvement (n=6), final infarct volume tended to be overestimated by CT peak perfusion mapping and only on total perfusion maps was there significant correlation between lesion volume and final infarct volume (R2=0.854, p=0.008). The lesion volumes depicted by CT maps showed moderate correlation with baseline clinical scores and clinical outcomes (R=0.445-0.706, p≤0.007). CT peak perfusion maps demonstrate strong correlation between lesion volume and final infarct volume, and accurately predict final infarct volume in about two-thirds of the 35 patients. The lesion volume seen on CT maps shows moderate correlation with clinical outcome

  6. Sodium addition and/or oxygen saturation of iohexol during normal and reduced perfusion pressure

    International Nuclear Information System (INIS)

    Baath, L.

    1990-01-01

    The influence on contractile force (CF) and the propensity for ventricular fibrillation (VF) from infusing the non-ionic contrast medium iohexol during normal (75 cm H 2 O) and reduced perfusion pressure (35 cm H 2 O) were investigated in the isolated rabbit heart. Both during normal and reduced perfusion pressure iohexol (150 mg I/ml) with oxygen saturation caused a smaller reduction of CF than iohexol without oxygen. During reduced pressure iohexol with sodium addition (28 mM NaCl) caused less depression of CF than iohexol without sodium. The combination of sodium addition and oxygen saturation had the least influence on CF. Iohexol (350 mg I/ml) without sodium had a similar fibrillatory propensity during both normal and reduced pressure. Enriching iohexol with 28 mM NaCl decreased the risk of VF. The decrease was similar during both normal and reduced pressure. The risk of VF from oxygen saturation of iohexol (350 mg I/ml, without sodium) was similar during both normal and reduced pressure. It is concluded that a small addition of sodium and/or oxygen saturation of a non-ionic monomeric contrast medium have beneficial effects on the heart both during normal perfusion pressure and during ischemia. (orig.)

  7. The inhomogeneous perfusion of the solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Li Shenjiang; Xiao Xiangsheng; Liu Shiyuan; Li Chengzhou; Zhang Chenshi

    2008-01-01

    Objective: To investigate whether the perfusion of the solitary pulmonary nodules (SPNs) is homogeneous derived with 16-slice spiral CT and 64-slice spiral CT. Methods: Eight-five patients with. SPNs (diameter≤4 cm; 57 maliagnant; 15 active inflammatory; 13 benign) underwent multi- location dynamic contrast material-enhanced serial CT. One scan was obtained every 1 seconds during 11-- 41 seconds without scanning interval after injection, one scan was obtained at 90 seconds. TOSHIBA AquilionMarconi 16: The section thickness was 8.0 mm for lesions 3.0-4.0 cm, 6.0 mm for 2.0- 3.0 cm, 4.0 mm for 1.5-2.0 cm, 3.0 mm for 1.0-1.5 cm and 2.0 mm for lesions -1 ·100 g -1 , the ratios of peak height of the SPN to that of the aorta (13.58±6.41)%, (10.95±5.76)%, (13.64± 6.20)% and the mean transit times (11.61±5.74), (11.97±3.55), (13.44±3.74) s. Statistically significant differences were found among three sections in the peak height (F=5.913, P=0.003), perfusion (F=6.464,P=0.002), ratio of peak height of the SPN to that of the aorta(F=5.333,P=0.005) and mean transit time (F=3.837, P=0.023). No statistically significant differences were found among three sections in precontrast attenuation (F=0.032, P=0.968). Conclusion: The volume perfusion of the SPNs is inhomogeneous, it is suggested to evaluate blood flow patterns of the solitary pulmonary nodules with CT volume perfusion imaging. (authors)

  8. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  9. Perfusion CT in acute stroke

    International Nuclear Information System (INIS)

    Eckert, Bernd; Roether, Joachim; Fiehler, Jens; Thomalla, Goetz

    2015-01-01

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  10. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    OpenAIRE

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast...

  11. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  12. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  13. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    Science.gov (United States)

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  14. Effects of high-fat diet and losartan on renal cortical blood flow using contrast ultrasound imaging.

    Science.gov (United States)

    Declèves, Anne-Emilie; Rychak, Joshua J; Smith, Dan J; Sharma, Kumar

    2013-11-01

    Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.

  15. Usefulness of perfusion MR imaging in hyperacute ischemic stroke

    International Nuclear Information System (INIS)

    Park, Ji Hoon; Kim, Jae Hyoung; Shin, Tae Min; Lee, Eun Ja; Chung, Sung Hoon; Choi, Nack Cheon; Lim, Byeong Hoon; Kim, In One

    1998-01-01

    Perfusion MR imaging is a new technique for the assessment of acute ischemic stroke. The aim of this study was to evaluate the usefulness of this imaging in hyperacute ischemic stroke in comparison with conventional CT and MR imaging. Eight patients presenting the symptoms of acute ischemic stroke due to middle cerebral artery occlusion were included in this study. Within 2 hours of initial CT scan and 6 hours after the onset of stroke, perfusion MR imaging was performed in all patients using a single-section dynamic contrast-enhanced T2*-weighted imager in conjunction with conventional routine MR imaging and MR angiography. Cerebral blood volume (CBV) maps were then obtained from dynamic MR imaging data by using numerical integration techniques. The findings of CBV maps were compared with those of initial and follow-up CT or MR images. The findings of CBV maps were obviously abnormal in all patients, as compared with normal or focal subtle abnormal findings seen on initial CT and MR images. CBV in the occluded arterial territory was lower in all eight patients;two had focal regions of increased CBV within the affected territory, indicating reperfusion hyperemia. In all patients, regions of abnormal CBV were eventually converted to infarctions on follow-up images. Perfusion MR imaging was useful for the evaluation of hemodynamic change occurring during cerebral perfusion in hyperacute ischemic stroke, and prediction of the final extent of infarction. These results suggest that pertusion MR imaging can play an important role in the diagnosis and management of hyperacute ischemic stroke.=20

  16. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    Energy Technology Data Exchange (ETDEWEB)

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  17. A Prospective Evaluation of T2-Weighted First-Pass Perfusion MR Imaging In Diagnosing Breast Neoplasms

    Institute of Scientific and Technical Information of China (English)

    XiaoJuanUu; RenyouZhai; TaoJiang; LiWang

    2004-01-01

    OBJECTIVE To compare the results from breast cancer patients who undergo T2-weighted first-pass perfusion imaging after dynamic contrast-enhanced T1-weighted imaging during the same examination,and to evaluate if T2-weighted imaging can provide additional diagnostic information over that obtained with Tl-weiahted imaaina.METHODS Twenty-nine patients with breast lesions verified by pathology (benign 12, malignant 17) underwent MR imaging with dynamic contrast-enhanced Tl-weighted imaging of the entire breasts,immediately followed by 6-sections of T2-weighted first-pass perfusion imaging of the lesions. The diagnostic indices were acquired by individual 3D Tl-weighted enhancement rate criterion and the T2 signalintensity loss rate criterion. The sensitivity and specificity were calculated and the 2 methods were compared.RESULTS With the dynamic contrast-enhanced T1-weighted imaging there was a significant differences breast lesions (t=2.563, P=0.016)overlap between the signal intensitybetween the benign and malignant However we found a considerable increase in the carcinomas and thatin the benign lesions, for a sensitivity of 94% and a specificity of 25%.With T2-weighted first-pass perfusion imaging, there was a very significant difference between the benign and malignant breast lesions(t=4.777,P<0.001), and the overlap between the signal intensity decrease in the carcinomas and that of the benign lesions on the T2-weighted images was less pronounced than the overlap in the T1-weighted images, for a sensitivity of 88% and a specificity of 75%.CONCLUSION T2-weighted first-pass perfusion imaging may help differentiate between benign and malignant breast lesions with a higher level of specificity. The combination of T1-weighted and T2-weighted imaging is feasible in a single patient examination and may improve breast MR imaging.

  18. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  19. Hepatic parenchymal perfusion abnormalities after pancreaticobiliary surgery. Evaluation with dynamic helical CT

    International Nuclear Information System (INIS)

    Mitsuzaki, K.; Yamashita, Y.; Ogata, I.; Nishiharu, T.; Urata, J.; Takahashi, M.

    1998-01-01

    Purpose: To evaluate perfusion abnormalities of the liver after pancreaticobiliary surgery. Material and Methods: We retrospectively evaluated 128 patients with pancreaticobiliary malignant tumors who had been examined both before and after surgery by means of helical CT of the liver. An infusion of 3 ml/s of 60% nonionic contrast material was followed by helical CT of the liver in a sequential arterial phase, portal venous phase, and equilibrium phase. Results: Of 128 patients, we followed 97. In 21 patients (22%) we found 47 lesions with perfusion abnormalities that were detected 1-33 months (mean 6.6 months) after the operation. All patients were asymptomatic. The shape of each perfusion abnormality was characterized as geographic (n=23, 47%), wedge-shaped (n=21, 45%), or round (n=3, 8%). The abnormalities were seen in the arterial phase in 46 lesions (98%), in the portal venous phase in 18 lesions (38%), and in the equilibrium phase in 1 lesion (0.2%). In all lesions, the size either decreased spontaneously, or it remained unchanged for more than one year. Conclusion: Perfusion abnormalities of the liver may occur in patients who undergo pancreaticobiliary surgery. These findings should not be confused with hypervascular metastases. (orig.)

  20. Hepatic parenchymal perfusion abnormalities after pancreaticobiliary surgery. Evaluation with dynamic helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuzaki, K.; Yamashita, Y.; Ogata, I.; Nishiharu, T.; Urata, J.; Takahashi, M. [Kumamoto Univ., School of Medicine, Dept. of Radiology (Japan)

    1998-05-01

    Purpose: To evaluate perfusion abnormalities of the liver after pancreaticobiliary surgery. Material and Methods: We retrospectively evaluated 128 patients with pancreaticobiliary malignant tumors who had been examined both before and after surgery by means of helical CT of the liver. An infusion of 3 ml/s of 60% nonionic contrast material was followed by helical CT of the liver in a sequential arterial phase, portal venous phase, and equilibrium phase. Results: Of 128 patients, we followed 97. In 21 patients (22%) we found 47 lesions with perfusion abnormalities that were detected 1-33 months (mean 6.6 months) after the operation. All patients were asymptomatic. The shape of each perfusion abnormality was characterized as geographic (n=23, 47%), wedge-shaped (n=21, 45%), or round (n=3, 8%). The abnormalities were seen in the arterial phase in 46 lesions (98%), in the portal venous phase in 18 lesions (38%), and in the equilibrium phase in 1 lesion (0.2%). In all lesions, the size either decreased spontaneously, or it remained unchanged for more than one year. Conclusion: Perfusion abnormalities of the liver may occur in patients who undergo pancreaticobiliary surgery. These findings should not be confused with hypervascular metastases. (orig.).

  1. [Relevance of contrast ultrasound with microbubbles in vascular medecine].

    Science.gov (United States)

    Erdmann, Andreas; Ney, Barbara; Alatri, Adriano; Calanca, Luca; Mazzolai, Lucia

    2016-12-07

    Application of ultrasound contrast media has become a standard in diagnostic imaging in cardiology and in the characterization of focal lesions in multiple organs, especially of the liver. In the past years there was a growing body of evidence for their usefulness in vascular medicine. The development of contrast media, microbubbles with a stabilizing envelope and filled with gaz, small enough to pass through pulmonary capillaries made real-time imaging of organ perfusion possible. Ultrasound contrast media are rapidly eliminated by exhalation and can safely be administered to patients with renal failure. The objective of this review is to describe the basic principles of ultrasound contrast imaging and to inform about vascular applications of contrast ultrasound.

  2. Nuclear magnetic resonance of perfused tissue

    International Nuclear Information System (INIS)

    Harpen, M.D.; Allison, R.C.

    1986-01-01

    The effect of perfusion on the NMR signal observed in NMR imaging is studied in a phantom and in two isolated perfused canine lungs. It is observed that perfusion in tissue has little effect on longitudinal relaxation times. Transverse relaxation rates are observed to correlate linearly with rates of perfusion, in accordance with a model presented. (author)

  3. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension : Insights from a multicenter registry

    NARCIS (Netherlands)

    Vliegenthart, Rozemarijn; De Cecco, Carlo N.; Wichmann, Julian L.; Meinel, Felix G.; Pelgrim, Gert Jan; Tesche, Christian; Ebersberger, Ullrich; Pugliese, Francesca; Bamberg, Fabian; Choe, Yeon Hyeon; Wang, Yining; Schoepf, U. Joseph

    2016-01-01

    Background: To identify patients with early signs of myocardial perfusion reduction, a reference base for perfusion measures is needed. Objective: To analyze perfusion parameters derived from dynamic computed tomography perfusion imaging (CTPI) in patients with suspected coronary artery disease

  4. Contrast-enhanced CMR in patients after percutaneous closure of the left atrial appendage: A pilot study

    Directory of Open Access Journals (Sweden)

    Petersen Steffen E

    2011-07-01

    Full Text Available Abstract Background To evaluate the feasibility and value of first-pass contrast-enhanced dynamic and post-contrast 3D CMR in patients after transcatheter occlusion of left atrial appendage (LAA to identify incorrect placement and persistent leaks. Methods 7 patients with different occluder systems (n = 4 PLAATO; n = 2 Watchman; n = 1 ACP underwent 2 contrast-enhanced (Gd-DOTA CMR sequences (2D TrueFISP first-pass perfusion and 3D-TurboFLASH to assess localization, artifact size and potential leaks of the devices. Perfusion CMR was analyzed visually and semi-quantitatively to identify potential leaks. Results All occluders were positioned within the LAA. The ACP occluder presented the most extensive artifact size. Visual assessment revealed a residual perfusion of the LAA apex in 4 cases using first-pass perfusion and 3D-TurboFLASH indicating a suboptimal LAA occlusion. By assessing signal-to-time-curves the cases with a visually detected leak showed a 9-fold higher signal-peak in the LAA apex (567 ± 120% increase from baseline signal than those without a leak (61 ± 22%; p Conclusion This CMR pilot study provides valuable non-invasive information in patients after transcatheter occlusion of the LAA to identify correct placement and potential leaks. We recommend incorporating CMR in future clinical studies to evaluate new device types.

  5. Feasibility of perfusion CT technique integrated into conventional {sup 18}FDG/PET-CT studies in lung cancer patients: clinical staging and functional information in a single study

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, Davide; Capraro, Cristina; Sironi, Sandro [University of Milano-Bicocca, School of Medicine, Milan (Italy); University of Milano-Bicocca, Department of Diagnostic Radiology, H.S. Gerardo Monza, Via Pergolesi 11, Monza, Milan (Italy); Guerra, Luca [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Nuclear Medicine and PET Unit - Molecular Bioimaging Centre, Monza (Italy); De Ponti, Elena [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Medical Physics, Monza (Italy); Messa, Cristina [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Nuclear Medicine and PET Unit - Molecular Bioimaging Centre, Monza (Italy); Tecnomed Foundation, University of Milano-Bicocca, Institute for Bioimaging and Molecular Physiology, National Research Council, Milan (Italy)

    2013-02-15

    To assess the additional functional vascular information and the relationship between perfusion measurements and glucose metabolism (SUVmax) obtained by including a perfusion CT study in a whole-body contrast-enhanced PET/CT protocol in primary lung cancer lesions. Enrolled in this prospective study were 34 consecutive patients with a biopsy-proven diagnosis of lung cancer who were referred for contrast-enhanced PET/CT staging. This prospective study was approved by our institutional review board, and informed consent was obtained from all patients. Perfusion CT was performed with the following parameters: 80 kV, 200 mAs, 30 scans during intravenous injection of 50 ml contrast agent, flow rate 5 ml/s. Another bolus of contrast medium (3.5 ml/s, 80 ml, 60-s delay) was administered to ensure a full diagnostic contrast-enhanced CT scan for clinical staging. The perfusion CT data were used to calculate a range of tumour vascularity parameters (blood flow, blood volume and mean transit time), and tumour FDG uptake (SUVmax) was used as a metabolic indicator. Quantitative and functional parameters were compared and in relation to location, histology and tumour size. The nonparametric Kruskal-Wallis rank sum test was used for statistical analysis. A cut-off value of 3 cm was used according to the TNM classification to discriminate between T1 and T2 tumours (i.e. T1b vs. T2a). There were significant perfusion differences (lower blood volumes and higher mean transit time) between tumours with diameter >30 mm and tumours with diameter <30 mm (p < 0.05; blood volume 5.6 vs. 7.1 ml/100 g, mean transit time 8.6 vs. 3.9 s, respectively). Also there was a trend for blood flow to be lower in larger lesions (p < 0.053; blood flow 153.1 vs. 98.3 ml/100 g tissue/min). Significant inverse correlations (linear regression) were found between blood volume and SUVmax in tumours with diameter >30 mm in diameter. Perfusion CT combined with PET/CT is feasible technique that may provide

  6. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  7. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    Science.gov (United States)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative

  8. A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Meyzer, Candice; Dhermain, Frédéric; Ducreux, Denis; Habrand, Jean-Louis; Varlet, Pascale; Sainte-Rose, Christian; Dufour, Christelle; Grill, Jacques

    2010-01-01

    A fourteen years-old boy was treated post-operatively with proton therapy for a recurrent low-grade oligodendroglioma located in the tectal region. Six months after the end of irradiation (RT), a new enhancing lesion appeared within the radiation fields. To differentiate disease progression from radiation-induced changes, dynamic susceptibility contrast-enhanced (DSCE) MRI was used with a T2* sequence to study perfusion and permeability characteristics simultaneously. Typically, the lesion showed hypoperfusion and hyperpermeability compared to the controlateral normal brain. Without additional treatment but a short course of steroids, the image disappeared over a six months period allowing us to conclude for a pseudo-progression. The patient is alive in complete remission more than 2 years post-RT

  9. Hydrostatic determinants of cerebral perfusion

    International Nuclear Information System (INIS)

    Wagner, E.M.; Traystman, R.J.

    1986-01-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure

  10. Prevalence of first-pass myocardial perfusion defects detected by contrast-enhanced dual-source CT in patients with non-ST segment elevation acute coronary syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Schepis, Tiziano; Achenbach, Stephan; Marwan, Mohamed; Muschiol, Gerd; Ropers, Dieter; Daniel, Werner G.; Pflederer, Tobias [University of Erlangen, Department of Internal Medicine 2 (Cardiology), Erlangen (Germany)

    2010-07-15

    To investigate the prevalence and diagnostic value of first-pass myocardial perfusion defects (PD) visualised by contrast-enhanced multidetector computed tomography (MDCT) in patients admitted for a first acute coronary syndrome (ACS). Thirty-eight patients with non-ST segment elevation myocardial infarction (NSTEMI) or unstable angina (UA) and scheduled for percutaneous coronary intervention underwent dual-source CT immediately before catheterisation. CT images were analysed for the presence of any PD by using a 17-segment model. Results were compared with peak cardiac troponin-I (cTnI) and angiography findings. PD were seen in 21 of the 24 patients with NSTEMI (median peak cTnI level 7.07 ng/mL; range 0.72-37.07 ng/mL) and in 2 of 14 patients with UA. PD corresponded with the territory of the infarct-related artery in 20 out of 22 patients. In a patient-based analysis, sensitivity, specificity, negative and positive predictive values of any PD for predicting NSTEMI were 88%, 86%, 80% and 91%. Per culprit artery, the respective values were 86%, 75%, 80% and 83%. In patients with non-ST segment elevation ACS, first-pass myocardial PD in contrast-enhanced MDCT correlate closely with the presence of myocardial necrosis, as determined by increases in cTnI levels. (orig.)

  11. MRI-based assessment of liver perfusion and hepatocyte injury in the murine model of acute hepatitis.

    Science.gov (United States)

    Byk, Katarzyna; Jasinski, Krzysztof; Bartel, Zaneta; Jasztal, Agnieszka; Sitek, Barbara; Tomanek, Boguslaw; Chlopicki, Stefan; Skorka, Tomasz

    2016-12-01

    To assess alterations in perfusion and liver function in the concanavalin A (ConA)-induced mouse model of acute liver failure (ALF) using two magnetic resonance imaging (MRI)-based methods: dynamic contrast-enhanced MRI (DCE-MRI) with Gd-EOB-DTPA contrast agent and arterial spin labelling (ASL). BALB/c mice were studied using a 9.4 T MRI system. The IntraGateFLASH TM and FAIR-EPI pulse sequences were used for optimum mouse abdomen imaging. The average perfusion values for the liver of the control and ConA group were equal to 245 ± 20 and 200 ± 32 ml/min/100 g (p = 0.008, respectively). DCE-MRI showed that the time to the peak of the image enhancement was 6.14 ± 1.07 min and 9.72 ± 1.69 min in the control and ConA group (p < 0.001, respectively), while the rate of the contrast wash-out in the control and ConA group was 0.037 ± 0.008 and 0.021 ± 0.008 min -1 (p = 0.004, respectively). These results were consistent with hepatocyte injury in the ConA-treated mice as confirmed by histopathological staining. Both the ASL and DCE-MRI techniques represent a reliable methodology to assess alterations in liver perfusion and hepatocyte integrity in murine hepatitis.

  12. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: Initial results

    International Nuclear Information System (INIS)

    Buchbender, S.; Obenauer, S.; Mohrmann, S.; Martirosian, P.; Buchbender, C.; Miese, F.R.; Wittsack, H.J.; Miekley, M.; Antoch, G.; Lanzman, R.S.

    2013-01-01

    Aim: To assess the feasibility of an unenhanced, flow-sensitive, alternating inversion recovery-balanced steady-state free precession (FAIR TrueFISP) arterial spin labelling (ASL) magnetic resonance imaging (MRI) technique for quantification of breast cancer perfusion. Materials and methods: Eighteen untreated breast tumour patients (mean age 53 ± 17 years, range 30–68 years) and four healthy controls (mean age 51 ± 14 years, range 33–68 years) were enrolled in this study and were imaged using a clinical 1.5 T MRI machine. Perfusion measurements were performed using a coronal single-section ASL FAIR TrueFISP technique in addition to a routine breast MRI examination. T1 relaxation time of normal breast parenchyma was determined in four healthy volunteers using the variable flip angle approach. The definitive diagnosis was obtained at histology after biopsy or surgery and was available for all patients. Results: ASL perfusion was successfully acquired in 13 of 18 tumour patients and in all healthy controls. The mean ASL perfusion of invasive ductal carcinoma tissue was significantly higher (88.2 ± 39.5 ml/100 g/min) compared to ASL perfusion of normal breast parenchyma (24.9 ± 12.7 ml/100 g/min; p < 0.05) and invasive lobular carcinoma (30.5 ± 4.3 ml/100 g/min; p < 0.05). No significant difference was found between the mean ASL perfusion of normal breast parenchyma and invasive lobular carcinoma tissue (p = 0.97). Conclusion: ASL MRI enables quantification of breast cancer perfusion without the use of contrast material. However, its impact on diagnosis and therapy management of breast tumours has to be evaluated in larger patient studies

  13. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients?

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Boram; Kang, Doo Kyoung; Kim, Tae Hee [Ajou University School of Medicine, Department of Radiology, Suwon, Gyeonggi-do (Korea, Republic of); Yoon, Dukyong [Ajou University School of Medicine, Department of Biomedical Informatics, Suwon (Korea, Republic of); Jung, Yong Sik; Kim, Ku Sang [Ajou University School of Medicine, Department of Surgery, Suwon (Korea, Republic of); Yim, Hyunee [Ajou University School of Medicine, Department of Pathology, Suwon (Korea, Republic of)

    2014-05-15

    To find out any correlation between dynamic contrast-enhanced (DCE) model-based parameters and model-free parameters, and evaluate correlations between perfusion parameters with histologic prognostic factors. Model-based parameters (Ktrans, Kep and Ve) of 102 invasive ductal carcinomas were obtained using DCE-MRI and post-processing software. Correlations between model-based and model-free parameters and between perfusion parameters and histologic prognostic factors were analysed. Mean Kep was significantly higher in cancers showing initial rapid enhancement (P = 0.002) and a delayed washout pattern (P = 0.001). Ve was significantly lower in cancers showing a delayed washout pattern (P = 0.015). Kep significantly correlated with time to peak enhancement (TTP) (ρ = -0.33, P < 0.001) and washout slope (ρ = 0.39, P = 0.002). Ve was significantly correlated with TTP (ρ = 0.33, P = 0.002). Mean Kep was higher in tumours with high nuclear grade (P = 0.017). Mean Ve was lower in tumours with high histologic grade (P = 0.005) and in tumours with negative oestrogen receptor status (P = 0.047). TTP was shorter in tumours with negative oestrogen receptor status (P = 0.037). We could acquire general information about the tumour vascular physiology, interstitial space volume and pathologic prognostic factors by analyzing time-signal intensity curve without a complicated acquisition process for the model-based parameters. (orig.)

  14. [MRI methods for pulmonary ventilation and perfusion imaging].

    Science.gov (United States)

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  15. MRI methods for pulmonary ventilation and perfusion imaging

    International Nuclear Information System (INIS)

    Sommer, G.; Bauman, G.

    2016-01-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O 2 -enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [de

  16. The study of cardiovascular changes by intravascular injection of contrast media

    International Nuclear Information System (INIS)

    Kim, Yang Sook; Park, Chang Yoon

    1986-01-01

    This investigation was aimed to study the effect of contrast media on the cardiovascular system. So in this study, pithed rats were used whether alteration in cardiovascular system by contrast media were controlled centrally. Furthermore, several hypertonic solutions were also used to clarify the effect of contrast media. The results are as follows: 1. Intravenous injection of contrast media in rats (2.5 ml/kg) caused hypotension and bradycardia. The effects were neither blocked by pretreatment of atropine nor pyribenzamine+atropine. 2. NaCI 4.7%, dextrose 24.8%, urea 9.0% and glycerol 10.1% (v/v) which were equiosmolar with contrast media, caused hypotension, but did not affect the heart rate. 3. In pithed rats, intravenous injection of Angiografin increased blood pressure in a dose-dependant manner, and caused decrease in heart rate compared with those of control rats. 4. In pithed rats, bradycardia by intravascular injection with Angiografin was partially blocked by atropine. 5. Metrizamide of which iodine content was adjusted to 280 mg/ml caused increased in blood pressure when was injected intravenously in pithed rats with little effect on heart rate. 6. When perfused with contrast media in rat hindlimb at 15 ml/min./kg speed both perfusion pressure and flow effluent increased, simultaneously. These results suggest that hypotension might be caused by the central effect due to hyperosmolarity of contrast media and bradycardia caused by both parasympathetic stimulation and direct inhibitory action on the cardiac conductive system.

  17. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  18. Functional renal perfusion imaging with colour mapping: is it a useful adjunct to spiral CT of in the assessment of abdominal aortic aneurysm (AAA)?

    International Nuclear Information System (INIS)

    Blomley, Martin J.K.; McBride, Alan; Mohammedtagi, Sima; Albrecht, Thomas; Harvey, Christopher J.; Jaeger, Rolf; Standfield, Nigel J.; Dawson, Peter

    1999-01-01

    Aim: To ensure optimal timing with pre-operative spiral CT for abdominal aortic aneurysms (AAA), an initial 'timing' single level CT is commonly performed with a small bolus of contrast. This can be exploited to obtain adjunct functional information on renal perfusion. We have investigated the potential of this to measure renal perfusion, to produce colour renal perfusion maps and to predict surgical outcome in infrarenal aortic aneurysm assessment. Methods: We studied 21 patients being assessed for repair of infrarenal AAA. Prior to the spiral CT, a single level through the renal hili and aorta was scanned after the intravenous injection of 25 ml of contrast given at 10 ml/s. Ten 1 s duration scans were performed from 8 to 30 s after injection. Optimal timing for CT angiography can then be determined. Time-density curves were then drawn for both kidneys and aorta using regions of interest (ROIs) or pixel-by-pixel analysis. Renal cortical perfusion was measured using both ROI analysis and pseudocolour perfusion images. Following previous work, perfusion was calculated as the peak upslope of the tissue time density curve divided by peak aortic enhancement. Results: Cortical mean perfusion averaged 2.48 ml/min per ml (range 0.8-3.7 ml/min per ml n=34) and the values obtained agreed with literature expectations. Follow up in the 10 patients proceeding to AAA repair suggest low mean perfusion values and predict a raised postoperative creatinine (P<0.05) Conclusions: Additional functional data and imaging can be obtained from the initial timing scan of a CT study, without requiring a dedicated study

  19. MR tomography in myocardial ischaemia: present state of the art

    International Nuclear Information System (INIS)

    Szolar, D.H.; Saeed, M.; Higgins, C.B.

    1996-01-01

    Recent developments in MR imaging have opened up new avenues in the investigation of ischaemic heart disease. Conventional unenhanced spin-echo sequences have been used to detect and quantify myocardial infarction. Along with the technical advances aimed at reducing motion artifacts and imaging time, the advent of contrast media for MR imaging has further strengthened its diagnostic capacities. The applications of MR contrast media are increasing, and they are becoming more specific, to enable differentiation of occlusive and reperfused myocardial infarctions and to discriminate between reversible and irreversible myocardial injury. Previous studies have also indicated that dual administration of both relaxivity-based and susceptibility-based contrast media can be used to determine whether viable myocardium is present in the reperfused ischaemic area. Magnetic susceptibility MR contrast media have the potential to demonstrate a region of the ischaemically injured myocardium in which myocardial necrosis is present. A cornestone in the MR assessment of ischaemic heart disease has been achieved with the advent of fast MR imaging techniques. Ultrafast gradient-recalled-echo sequences or echoplanar imaging allow to monitor the first passage of the contrast medium through the heart. With the aid of MR contrast media, these techniques may be useful in estimating regional myocardial perfusion and blood volume. Experimental and clinical perfusion studies indicate that perfusion-sensitive MR imaging, particularly in concert with coronary vasodilators, can detect compromised myocardium. Combining myocardial perfusion imaging with the anatomic and functional information provided by other MR imaging techniques such as cine and velocity-encoded sequences could make MR imaging a comprehensive noninvasive diagnostic tool for the assessment of ischaemic heart disease. (orig.) [de

  20. Response Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Tensaouti, Fatima [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); Khalifa, Jonathan [Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Radiation Oncology, Toulouse (France); Lusque, Amelie [Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Biostatistics, Toulouse (France); Plas, Benjamin [CHU Toulouse, Department of Neurosurgery, Toulouse (France); Lotterie, Jean Albert; Berry, Isabelle [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); CHU Toulouse, Department of Nuclear Medicine, Toulouse (France); Laprie, Anne [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Radiation Oncology, Toulouse (France); Cohen-Jonathan Moyal, Elizabeth [Claudius Regaud Institute / Toulouse University Cancer Institute - Oncopole, Department of Radiation Oncology, Toulouse (France); Toulouse Center for Cancer Research (U1037), Inserm, Toulouse (France); Lubrano, Vincent [Universite de Toulouse, Inserm, UPS, ToNIC, Toulouse NeuroImaging Center, Toulouse (France); CHU Toulouse, Department of Neurosurgery, Toulouse (France)

    2017-10-15

    The purpose of the study was to evaluate Response Assessment in Neuro-Oncology (RANO) criteria in glioblastoma multiforme (GBM), with respect to the Macdonald criteria and changes in contrast-enhancement (CE) volume. Related variations in relative cerebral blood volume (rCBV) were investigated. Forty-three patients diagnosed between 2006 and 2010 were included. All underwent surgical resection, followed by temozolomide-based chemoradiation. MR images were retrospectively reviewed. Times to progression (TTPs) according to RANO criteria, Macdonald criteria and increased CE volume (CE-3D) were compared, and the percentage change in the 75th percentile of rCBV (rCBV75) was evaluated. After a median follow-up of 22.7 months, a total of 39 patients had progressed according to RANO criteria, 32 according to CE-3D, and 42 according to Macdonald. Median TTPs were 6.4, 9.3, and 6.6 months, respectively. Overall agreement was 79.07% between RANO and CE-3D and 93.02% between RANO and Macdonald. The mean percentage change in rCBV75 at RANO progression onset was over 73% in 87.5% of patients. In conclusion, our findings suggest that CE-3D criterion is not yet suitable to assess progression in routine clinical practice. Indeed, the accurate threshold is still not well defined. To date, in our opinion, early detection of disease progression by RANO combined with advanced MRI imaging techniques like MRI perfusion and diffusion remains the best way to assess disease progression. Further investigations that would examine the impact of treatment modifications after progression determined by different criteria on overall survival would be of great value. (orig.)

  1. Response Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastoma

    International Nuclear Information System (INIS)

    Tensaouti, Fatima; Khalifa, Jonathan; Lusque, Amelie; Plas, Benjamin; Lotterie, Jean Albert; Berry, Isabelle; Laprie, Anne; Cohen-Jonathan Moyal, Elizabeth; Lubrano, Vincent

    2017-01-01

    The purpose of the study was to evaluate Response Assessment in Neuro-Oncology (RANO) criteria in glioblastoma multiforme (GBM), with respect to the Macdonald criteria and changes in contrast-enhancement (CE) volume. Related variations in relative cerebral blood volume (rCBV) were investigated. Forty-three patients diagnosed between 2006 and 2010 were included. All underwent surgical resection, followed by temozolomide-based chemoradiation. MR images were retrospectively reviewed. Times to progression (TTPs) according to RANO criteria, Macdonald criteria and increased CE volume (CE-3D) were compared, and the percentage change in the 75th percentile of rCBV (rCBV75) was evaluated. After a median follow-up of 22.7 months, a total of 39 patients had progressed according to RANO criteria, 32 according to CE-3D, and 42 according to Macdonald. Median TTPs were 6.4, 9.3, and 6.6 months, respectively. Overall agreement was 79.07% between RANO and CE-3D and 93.02% between RANO and Macdonald. The mean percentage change in rCBV75 at RANO progression onset was over 73% in 87.5% of patients. In conclusion, our findings suggest that CE-3D criterion is not yet suitable to assess progression in routine clinical practice. Indeed, the accurate threshold is still not well defined. To date, in our opinion, early detection of disease progression by RANO combined with advanced MRI imaging techniques like MRI perfusion and diffusion remains the best way to assess disease progression. Further investigations that would examine the impact of treatment modifications after progression determined by different criteria on overall survival would be of great value. (orig.)

  2. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    International Nuclear Information System (INIS)

    Tutcu, Semra; Serter, Selim; Kaya, Yavuz; Kara, Eray; Nese, Nalan; Pekindil, Goekhan; Coskun, Teoman

    2010-01-01

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  3. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tutcu, Semra [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Serter, Selim, E-mail: serterselim@gmail.co [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Kaya, Yavuz; Kara, Eray [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Nese, Nalan [Department of Pathology, Celal Bayar University, School of Medicine, Manisa (Turkey); Pekindil, Goekhan [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Coskun, Teoman [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey)

    2010-08-15

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  4. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling.

    Directory of Open Access Journals (Sweden)

    Patrick W Hales

    Full Text Available The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of 'biphasic' behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.

  5. Study of Coronary Flow Reserve with Intravenous Use of Microbubbles (Contrast Echocardiography and Adenosine: Protocol for Clinical Application in Patients Suspected of Having Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Morcerf Fernando

    2002-01-01

    Full Text Available OBJECTIVE: To test the feasibility, safety and accuracy of the adenosine protocol in the study of myocardial perfusion with microbubbles contrast echocardiography. METHODS: 81 pts (64 male, 60+11 years were submitted to contrast echocardiography with PESDA (sonicated solution of albumin 20%-1ml, dextrose 5%-12ml and deca-fluorobutane gas-8ml to study the myocardial perfusion at rest and after bolus injection of adenosine (6 to 18mg and to coronary angiography within 1 month each other. For each patient 3 left ventricle perfusion beds were considered (total of 243 territories. 208 territories were analyzed and 35 territories were excluded. PESDA was continuously infused (1-2ml/min, titrated for best myocardial contrast. Triggered (1:1 second harmonic imaging was used. RESULTS: Coronary angiography showed 70 flow limiting (> 75% lesions and 138 no flow limiting lesions. At rest an obvious myocardium contrast enhancement was seen in at least 1 segment of a territory in all patients. After adenosine injection an unquestionable further increase in myocardial contrast was observed in 136 territories (99% related to no flow limiting lesions, lasting < 10 s, and a myocardial perfusion defect was detected in 68 territories (97% related to flow limiting lesions. It was observed only 4 false results. There were no serious complications. CONCLUSION: Myocardial perfusion study with PESDA and adenosine protocol is a practical, safe and accurate method to analyze the coronary flow reserve.

  6. Quantitative imaging by pixel-based contrast-enhanced ultrasound reveals a linear relationship between synovial vascular perfusion and the recruitment of pathogenic IL-17A-F+IL-23+ CD161+ CD4+ T helper cells in psoriatic arthritis joints.

    Science.gov (United States)

    Fiocco, Ugo; Stramare, Roberto; Martini, Veronica; Coran, Alessandro; Caso, Francesco; Costa, Luisa; Felicetti, Mara; Rizzo, Gaia; Tonietto, Matteo; Scanu, Anna; Oliviero, Francesca; Raffeiner, Bernd; Vezzù, Maristella; Lunardi, Francesca; Scarpa, Raffaele; Sacerdoti, David; Rubaltelli, Leopoldo; Punzi, Leonardo; Doria, Andrea; Grisan, Enrico

    2017-02-01

    To develop quantitative imaging biomarkers of synovial tissue perfusion by pixel-based contrast-enhanced ultrasound (CEUS), we studied the relationship between CEUS synovial vascular perfusion and the frequencies of pathogenic T helper (Th)-17 cells in psoriatic arthritis (PsA) joints. Eight consecutive patients with PsA were enrolled in this study. Gray scale CEUS evaluation was performed on the same joint immediately after joint aspiration, by automatic assessment perfusion data, using a new quantification approach of pixel-based analysis and the gamma-variate model. The set of perfusional parameters considered by the time intensity curve includes the maximum value (peak) of the signal intensity curve, the blood volume index or area under the curve, (BVI, AUC) and the contrast mean transit time (MTT). The direct ex vivo analysis of the frequencies of SF IL17A-F + CD161 + IL23 + CD4 + T cells subsets were quantified by fluorescence-activated cell sorter (FACS). In cross-sectional analyses, when tested for multiple comparison setting, a false discovery rate at 10%, a common pattern of correlations between CEUS Peak, AUC (BVI) and MTT parameters with the IL17A-F + IL23 + - IL17A-F + CD161 + - and IL17A-F + CD161 + IL23 + CD4 + T cells subsets, as well as lack of correlation between both peak and AUC values and both CD4 + T and CD4 + IL23 + T cells, was observed. The pixel-based CEUS assessment is a truly measure synovial inflammation, as a useful tool to develop quantitative imaging biomarker for monitoring target therapeutics in PsA.

  7. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    Directory of Open Access Journals (Sweden)

    Daniela Muenzel

    Full Text Available OBJECTIVE: To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI by using motion compensation and a spatio-temporal filter. METHODS: Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT. Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved. Three datasets for each patient were generated: (i original data (ii motion compensated data and (iii motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. RESULTS: The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. CONCLUSION: The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  8. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  9. A Simplified Whole-Organ CT Perfusion Technique with Biphasic Acquisition: Preliminary Investigation of Accuracy and Protocol Feasibility in Kidneys.

    Science.gov (United States)

    Yuan, XiaoDong; Zhang, Jing; Quan, ChangBin; Tian, Yuan; Li, Hong; Ao, GuoKun

    2016-04-01

    To determine the feasibility and accuracy of a protocol for calculating whole-organ renal perfusion (renal blood flow [RBF]) and regional perfusion on the basis of biphasic computed tomography (CT), with concurrent dynamic contrast material-enhanced (DCE) CT perfusion serving as the reference standard. This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Biphasic CT of the kidneys, including precontrast and arterial phase imaging, was integrated with a first-pass dynamic volume CT protocol and performed and analyzed in 23 patients suspected of having renal artery stenosis. The perfusion value derived from biphasic CT was calculated as CT number enhancement divided by the area under the arterial input function and compared with the DCE CT perfusion data by using the paired t test, correlation analysis, and Bland-Altman plots. Correlation analysis was made between the RBF and the extent of renal artery stenosis. All postprocessing was independently performed by two observers and then averaged as the final result. Mean ± standard deviation biphasic and DCE CT perfusion data for RBF were 425.62 mL/min ± 124.74 and 419.81 mL/min ± 121.13, respectively (P = .53), and for regional perfusion they were 271.15 mL/min per 100 mL ± 82.21 and 266.33 mL/min per 100 mL ± 74.40, respectively (P = .31). Good correlation and agreement were shown between biphasic and DCE CT perfusion for RBF (r = 0.93; ±10% variation from mean perfusion data [P < .001]) and for regional perfusion (r = 0.90; ±13% variation from mean perfusion data [P < .001]). The extent of renal artery stenosis was negatively correlated with RBF with biphasic CT perfusion (r = -0.81, P = .012). Biphasic CT perfusion is clinically feasible and provides perfusion data comparable to DCE CT perfusion data at both global and regional levels in the kidney. Online supplemental material is available for this article.

  10. Thallium-201 exercise myocardial imaging to evaluate myocardial perfusion after coronary artery bypass surgery

    International Nuclear Information System (INIS)

    Hirzel, H.O.; Nuesch, K.; Sialer, G.; Horst, W.; Krayenbuehl, H.P.

    1980-01-01

    To assess the usefulness of thallium-201 exercise scintigraphy in evaluating myocardial perfusion after coronary artery bypass surgery, imaging was performed after submaximal bicycle ergometry and at rest in 54 patients before and within 24 +- 10 (SD) weeks after operation. Scintigraphy identified 8 out of 20 patients who were symptom free after operation and showed normal exercise electrocardiograms as still having exercise-induced ischaemia and thus as having not truly benefited from the surgical intervention. In contrast, improvement in perfusion was documented in 17 out of 31 patients despite further complaints of chest pain and persistence of a pathological exercise electrocardiogram in 6 of them. Bypass graft patency rate paralleled the scintigraphic findings in the 35 patients who were restudied arteriographically. It was concluded that thallium-201 exercise scintigraphy is a useful technique to document changes in regional perfusion after surgery and is definitely superior to the clinical evaluation of patients including the exercise electrocardiogram. (author)

  11. Assmentment of myocardial perfusion by magnetic resonance imaging: on the way to clinical application

    International Nuclear Information System (INIS)

    Fischer, S.E.; Lorenz, C.H.

    1997-01-01

    Magnetic resonance imaging detects the flow of contrast - enhanced blood and even allows the quantitative assessment of myocardial perfusion. The clinical application of this method is being held back by the difficulties in image evaluation and the limitation of standard techniques to the acquisition of a single slice per heart beat cycle. Recent developments in scanner hardware as well as in image acquisition techniques open up the possibility of assessing myocardial perfusion over the entire heart with a spatial resolution in the range of 2 mm. As an example of such a new scanning strategy, a segmented gradient-echo recalled echo planar imaging sequence with preceding saturation is discussed and results in a patient with an infarction are presented. The clinical use of perfusion assessment covering the entire heart for the diagnosis of coronary artery disease is enhanced by the flexibility of magnetic resonance imaging for the assessment of functional cardiac parameters. (orig.) [de

  12. Compartmented pyruvate in perfused working heart

    International Nuclear Information System (INIS)

    Buenger, R.

    1985-01-01

    Pyruvate compartmentation and lactate dehydrogenase (LDH) were studied in isolated perfused working guinea pig hearts. The mean intracellular pyruvate (Pyr) contents increased with perfusate Pyr (0-2 mM) but varied only slightly with glucose (0-10 mM) and additional insulin (0.04-5 U/l), respectively. With 5-10 mM glucose plus 5 U/l insulin, but not with Pyr or lactate (Lac) as substrates, a near equilibrium between the LDH and the glycerol-3-phosphate dehydrogenase seemed to exist. Evidence for an inhibitory effect of Pyr on the activity of the LDH system of the perfused hearts was not obtained. With [U- 14 C]glucose as sole substrate, the specific activity of coronary venous Lac was near half that of precursor glucose. 14 CO 2 production was thus in quantitative agreement with rates of pyruvate oxidation that were determined as glucose uptake minus (Pyr + Lac) release. In contrast, with 0.2 mM [1- 14 C]Pyr plus 5 mM glucose, the ratio of 14 CO 2 production to specific activity of Lac overestimated Pyr oxidation judged from myocardial substrate balances and O 2 uptake, respectively; here, at least three pools of [ 14 C]HCO-3 and [ 14 C]lac, respectively, were kinetically demonstrable during washout of trace amounts of 14 C-labeled Pyr. Evidently, the specific activity of Lac was equivalent to that of mitochondrial oxidized Pyr provided [ 14 C]glucose was the sole or major precursor of cellular pyruvate. However, exogenously applied [1- 14 C]Pyr of high specific activity seemed to induce intracellular formation of both a highly and lowly labeled Pyr; the latter Pyr compartment did not seem in ready equilibrium with the cell physiologically prevailing highly labeled Pyr pool

  13. Timing-Invariant CT Angiography Derived from CT Perfusion Imaging in Acute Stroke : A Diagnostic Performance Study

    NARCIS (Netherlands)

    Smith, E. J.; Vonken, E. -J.; Meijer, F. J. A.; Dankbaar, J. W.; Horsch, A. D.; van Ginneken, B.; Velthuis, B.; van der Schaaf, I.; Prokop, M.

    2015-01-01

    BACKGROUND AND PURPOSE: Timing-invariant (or delay-insensitive) CT angiography derived from CT perfusion data may obviate a separate cranial CTA in acute stroke, thus enhancing patient safety by reducing total examination time, radiation dose, and volume of contrast material. We assessed the

  14. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  15. Automatic assessment of cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Larsson, Henrik B.W.

    2004-01-01

    In this paper, a method based on Active Appearance Models (AAM) is applied for automatic registration of myocardial perfusion MRI. A semi-quantitative perfusion assessment of the registered image sequences is presented. This includes the formation of perfusion maps for three parameters; maximum up...

  16. Instrumentation for contrast echocardiography: technology and techniques.

    Science.gov (United States)

    Kaul, Sanjiv

    2002-11-18

    Contrast echocardiography is the only clinical imaging technique in which the imaging modality (ultrasound) can cause a change in the contrast agent (microbubbles). The change in the contrast agent can range from small oscillations of the microbubbles at a low mechanical index to their disruption at a high mechanical index. The specific mechanical index required to produce these various effects may be different for each contrast agent, depending on the bubble dimension as well as shell and gas characteristics. These alterations in bubbles result in changes in ultrasound backscatter that are specific for the bubbles themselves, rather than for tissue, and are therefore exploited for imaging their presence in tissue. These signal-processing techniques have resulted in an increased signal-to-noise ratio from bubbles vis-à-vis the tissue and have made online assessment of myocardial perfusion possible.

  17. Can preoperative myocardial perfusion scintigraphy predict changes in left ventricular perfusion and function after coronary artery bypass graft surgery?

    DEFF Research Database (Denmark)

    Eckardt, Rozy; Kjeldsen, Bo Juel; Johansen, Allan

    2012-01-01

    OBJECTIVESWe wanted to evaluate whether preoperative myocardial perfusion scintigraphy (MPS) could predict changes in cardiac symptoms and postoperative myocardial perfusion and left ventricular function after coronary artery bypass grafting (CABG).METHODSNinety-two patients with stable angina...... in 26%. Left ventricular ejection fraction (LVEF), which was normal before operation in 45%, improved in 40% of all patients. The increase in LVEF was not related to the preoperative pattern of perfusion defects. Of 30 patients with normalized perfusion after CABG, 29 (97%) had reversible defects...... that reversible or partly reversible perfusion defects at a preoperative MPS have a high chance of normalized myocardial perfusion assessed by MPS 6 months after operation. Normal perfusion is obtained almost exclusively in territories with reversible ischaemia. Symptoms improved in nearly all patients and LVEF...

  18. Intraoperative contrast-enhanced ultrasonography for microcirculatory evaluation in rhesus monkey with spinal cord injury.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Chen, Fu-Chao; Shen, Hui-Yong; Ye, Ji-Chao; Cai, Zhao-Peng; Lin, Xi

    2017-06-20

    This study tried to quantify spinal cord perfusion by using contrast-enhanced ultrasound (CEUS) in rhesus monkey models with acute spinal cord injury. Acute spinal cord perfusion after injury was detected by CEUS, coupling with conventional ultrasound (US) and Color Doppler US (CDFI). Time-intensity curves and perfusion parameters were obtained by autotracking contrast quantification (ACQ) software in the epicenter and adjacent regions of injury, respectively. Neurological and histological examinations were performed to confirm the severity of injury. US revealed spinal cords were hypoechoic and homogeneous, whereas dura maters, pia maters, and cerebral aqueducts were hyperechoic. After spinal cord contusion, the injured spinal cord was hyperechoic on US, and intramedullary vessels of adjacent region of injury were increased and dilated on CDFI. On CEUS hypoperfusion were found in the epicenter of injury, while hyperperfusion in its adjacent region. Quantitative analysis showed that peak intensity (PI) decreased in epicenters of injury but significantly increased in adjacent regions at all time points (p spinal cord injury in overall views and real-time.

  19. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Alfakih Khaled

    2011-05-01

    Full Text Available Abstract Background The dual-bolus protocol enables accurate quantification of myocardial blood flow (MBF by first-pass perfusion cardiovascular magnetic resonance (CMR. However, despite the advantages and increasing demand for the dual-bolus method for accurate quantification of MBF, thus far, it has not been widely used in the field of quantitative perfusion CMR. The main reasons for this are that the setup for the dual-bolus method is complex and requires a state-of-the-art injector and there is also a lack of post processing software. As a solution to one of these problems, we have devised a universal dual-bolus injection scheme for use in a clinical setting. The purpose of this study is to show the setup and feasibility of the universal dual-bolus injection scheme. Methods The universal dual-bolus injection scheme was tested using multiple combinations of different contrast agents, contrast agent dose, power injectors, perfusion sequences, and CMR scanners. This included 3 different contrast agents (Gd-DO3A-butrol, Gd-DTPA and Gd-DOTA, 4 different doses (0.025 mmol/kg, 0.05 mmol/kg, 0.075 mmol/kg and 0.1 mmol/kg, 2 different types of injectors (with and without "pause" function, 5 different sequences (turbo field echo (TFE, balanced TFE, k-space and time (k-t accelerated TFE, k-t accelerated balanced TFE, turbo fast low-angle shot and 3 different CMR scanners from 2 different manufacturers. The relation between the time width of dilute contrast agent bolus curve and cardiac output was obtained to determine the optimal predefined pause duration between dilute and neat contrast agent injection. Results 161 dual-bolus perfusion scans were performed. Three non-injector-related technical errors were observed (1.9%. No injector-related errors were observed. The dual-bolus scheme worked well in all the combinations of parameters if the optimal predefined pause was used. Linear regression analysis showed that the optimal duration for the predefined

  20. Ex-vivo machine perfusion for kidney preservation.

    Science.gov (United States)

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  1. Myocardial perfusion quantification using simultaneously acquired 13 NH3 -ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress.

    Science.gov (United States)

    Kunze, Karl P; Nekolla, Stephan G; Rischpler, Christoph; Zhang, Shelley HuaLei; Hayes, Carmel; Langwieser, Nicolas; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Schwaiger, Markus

    2018-04-19

    Systematic differences with respect to myocardial perfusion quantification exist between DCE-MRI and PET. Using the potential of integrated PET/MRI, this study was conceived to compare perfusion quantification on the basis of simultaneously acquired 13 NH 3 -ammonia PET and DCE-MRI data in patients at rest and stress. Twenty-nine patients were examined on a 3T PET/MRI scanner. DCE-MRI was implemented in dual-sequence design and additional T 1 mapping for signal normalization. Four different deconvolution methods including a modified version of the Fermi technique were compared against 13 NH 3 -ammonia results. Cohort-average flow comparison yielded higher resting flows for DCE-MRI than for PET and, therefore, significantly lower DCE-MRI perfusion ratios under the common assumption of equal arterial and tissue hematocrit. Absolute flow values were strongly correlated in both slice-average (R 2  = 0.82) and regional (R 2  = 0.7) evaluations. Different DCE-MRI deconvolution methods yielded similar flow result with exception of an unconstrained Fermi method exhibiting outliers at high flows when compared with PET. Thresholds for Ischemia classification may not be directly tradable between PET and MRI flow values. Differences in perfusion ratios between PET and DCE-MRI may be lifted by using stress/rest-specific hematocrit conversion. Proper physiological constraints are advised in model-constrained deconvolution. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Myocardial first pass perfusion imaging with gadobutrol: impact of parallel imaging algorithms on image quality and signal behavior.

    Science.gov (United States)

    Theisen, Daniel; Wintersperger, Bernd J; Huber, Armin; Dietrich, Olaf; Reiser, Maximilian F; Schönberg, Stefan O

    2007-07-01

    To implement parallel imaging algorithms in fast gradient recalled echo sequences for myocardial perfusion imaging and evaluate image quality, signal-to-noise ratio (SNR), contrast-enhancement ratio (CER), and semiquantitative perfusion parameters. In 20 volunteers, myocardial perfusion imaging with gadobutrol was performed at rest using an accelerated TurboFLASH sequence (TR 2.3 milliseconds, TE 0.93 milliseconds, flip angle [FA] 15 degrees) with GRAPPA, R=2. A nonaccelerated TurboFLASH sequence with similar scan parameters served as standard of reference. Artifacts were assessed qualitatively. SNR, CER, and CNR were calculated and semiquantitative perfusion parameters were determined from fitted SI-time curves. Phantom measurements yielded significant higher SNR for nonaccelerated images (Pimages (Pimages for artifacts by 2 board-certified radiologists yielded a significant reduction in dark rim artifacts with GRAPPA, R=2 (P<0.001). The application of GRAPPA with an acceleration factor of R=2 leads to a significant reduction of dark rim artifacts in fast gradient recalled echo sequences.

  3. Effects of MRI Protocol Parameters, Preload Injection Dose, Fractionation Strategies, and Leakage Correction Algorithms on the Fidelity of Dynamic-Susceptibility Contrast MRI Estimates of Relative Cerebral Blood Volume in Gliomas.

    Science.gov (United States)

    Leu, K; Boxerman, J L; Ellingson, B M

    2017-03-01

    DSC perfusion MR imaging assumes that the contrast agent remains intravascular; thus, disruptions in the blood-brain barrier common in brain tumors can lead to errors in the estimation of relative CBV. Acquisition strategies, including the choice of flip angle, TE, TR, and preload dose and incubation time, along with post hoc leakage-correction algorithms, have been proposed as means for combating these leakage effects. In the current study, we used DSC-MR imaging simulations to examine the influence of these various acquisition parameters and leakage-correction strategies on the faithful estimation of CBV. DSC-MR imaging simulations were performed in 250 tumors with perfusion characteristics randomly generated from the distributions of real tumor population data, and comparison of leakage-corrected CBV was performed with a theoretic curve with no permeability. Optimal strategies were determined by protocol with the lowest mean error. The following acquisition strategies (flip angle/TE/TR and contrast dose allocation for preload and bolus) produced high CBV fidelity, as measured by the percentage difference from a hypothetic tumor with no leakage: 1) 35°/35 ms/1.5 seconds with no preload and full dose for DSC-MR imaging, 2) 35°/25 ms/1.5 seconds with ¼ dose preload and ¾ dose bolus, 3) 60°/35 ms/2.0 seconds with ½ dose preload and ½ dose bolus, and 4) 60°/35 ms/1.0 second with 1 dose preload and 1 dose bolus. Results suggest that a variety of strategies can yield similarly high fidelity in CBV estimation, namely those that balance T1- and T2*-relaxation effects due to contrast agent extravasation. © 2017 by American Journal of Neuroradiology.

  4. Analysis of perfusion defects by causes other than acute pulmonary thromboembolism on contrast-enhanced dual-energy CT in consecutive 537 patients

    International Nuclear Information System (INIS)

    Kim, Bo Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Hyun Joo; Hwang, Hye Jeon; Lim, Chaehun

    2012-01-01

    Objective: To assess causes, incidence and patterns of perfusion defects (PDs) on dual-energy perfusion CT angiography (DECTA) in clinically suspected acute pulmonary thromboembolisms (PTE). Materials and methods: Consecutive 537 patients who underwent DECTA for suspicion of PTE were retrospectively reviewed. After excluding patients with possible PTE or unsatisfactory perfusion map quality, 299 patients with 1697 lobes were included. The DECTA (Somatom Definition, Siemens) was performed at 140 kV and 80 kV. Color-coded perfusion images were obtained with a lung PBV application of the workstation software (Syngo Dual Energy). The presence, incidence, three patterns of PDs (wedge-shaped, heterogeneous, and regionally homogeneous), pulmonary diseases, and the matchedness between the PD and the disease extent were studied. Results: 315 of 1697 lobes (18.6%) in 156 of 299 patients (81.3%) showed PDs. Among them, 51 (3%), 257 (15.1%), and 7 (0.4%) lobes had PDs due to vascular, nonvascular, and unidentifiable causes, respectively. Vascular causes include: pulmonary arterial (PA) hypertension (0.7%), extrinsic occlusion of PA by fibrosis (0.6%), PA hypoplasia (0.6%), vasculitis (0.5%), cancer mass compressing PA, venous occlusion, AVM, and pulmonary angiosarcoma. Most of PDs were wedge-shaped and well-matched. Nonvascular causes include: mosaic attenuation (4.1%), emphysema (3.2%), interstitial fibrosis (1.6%), bronchitis (1.4%), GGO (1.2%), cellular bronchiolitis (1%), bronchiectasis, airway obstruction, compensaroty lung hyperinflation, air trapping, cor-pulmonale, bronchopneumonia, physiologic decreased ventilation, and segmental bronchial atresia. Most of PDs showed heterogeneous pattern and were not matched. Conclusions: Various vascular and nonvascular diseases cause PDs on DECTA. Each disease shows different pattern of PD depending on pathophysiology and physiologic compensation.

  5. Quantitative perfusion modeling in cardiac in-vivo nuclear magnetic resonance (NMR) imaging

    International Nuclear Information System (INIS)

    Carme, Sabin Charles

    2004-01-01

    A parametrical analysis of contrast agent distribution is proposed to interpret first pass MR images and to quantify the myocardial perfusion. We are concerned with the correction of spatial intensity variations in images. Furthermore, we are interested in the application of a robust NMR signal processing technique and deconvolution techniques adapted to low signal-to-noise ratio. Data sets were provided, close to clinical conditions, using in-vivo experiments applying several pharmacological stresses on ischemic pigs presenting a stenosis of the left circumflex coronary artery. The agreement and accuracy measurements between observers are respectively 57.1% and 53.1% for visual analysis, and 81.2% and 81.1% for parametric map analysis. A linear relationship between perfusion parameters and radioactive microspheres is established for low blood flows [fr

  6. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  7. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    Science.gov (United States)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  8. Confluence of depression and acute psychological stress among patients with stable coronary heart disease: effects on myocardial perfusion.

    Science.gov (United States)

    Burg, Matthew M; Meadows, Judith; Shimbo, Daichi; Davidson, Karina W; Schwartz, Joseph E; Soufer, Robert

    2014-10-30

    Depression is prevalent in coronary heart disease (CHD) patients and increases risk for acute coronary syndrome (ACS) recurrence and mortality despite optimal medical care. The pathways underlying this risk remain elusive. Psychological stress (PS) can provoke impairment in myocardial perfusion and trigger ACS. A confluence of acute PS with depression might reveal coronary vascular mechanisms of risk. We tested whether depression increased risk for impaired myocardial perfusion during acute PS among patients with stable CHD. Patients (N=146) completed the Beck Depression Inventory-I (BDI-I), a measure of depression linked to recurrent ACS and post-ACS mortality, and underwent single-photon emission computed tomography myocardial perfusion imaging at rest and during acute PS. The likelihood of new/worsening impairment in myocardial perfusion from baseline to PS as a function of depression severity was tested. On the BDI-I, 41 patients scored in the normal range, 48 in the high normal range, and 57 in the depressed range previously linked to CHD prognosis. A BDI-I score in the depressed range was associated with a significantly greater likelihood of new/worsening impairment in myocardial perfusion from baseline to PS (odds ratio =2.89, 95% CI: 1.26 to 6.63, P=0.012). This remained significant in models controlling ACS recurrence/mortality risk factors and medications. There was no effect for selective serotonin reuptake inhibitor medications. Depressed patients with CHD are particularly susceptible to impairment in myocardial perfusion during PS. The confluence of PS with depression may contribute to a better understanding of the depression-associated risk for ACS recurrence and mortality. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  10. High fat diet-induced glucose intolerance impairs myocardial function, but not myocardial perfusion during hyperaemia: a pilot study

    Directory of Open Access Journals (Sweden)

    van den Brom Charissa E

    2012-06-01

    Full Text Available Abstract Background Glucose intolerance is a major health problem and is associated with increased risk of progression to type 2 diabetes mellitus and cardiovascular disease. However, whether glucose intolerance is related to impaired myocardial perfusion is not known. The purpose of the present study was to study the effect of diet-induced glucose intolerance on myocardial function and perfusion during baseline and pharmacological induced hyperaemia. Methods Male Wistar rats were randomly exposed to a high fat diet (HFD or control diet (CD (n = 8 per group. After 4 weeks, rats underwent an oral glucose tolerance test. Subsequently, rats underwent (contrast echocardiography to determine myocardial function and perfusion during baseline and dipyridamole-induced hyperaemia (20 mg/kg for 10 min. Results Four weeks of HFD feeding resulted in glucose intolerance compared to CD-feeding. Contractile function as represented by fractional shortening was not altered in HFD-fed rats compared to CD-fed rats under baseline conditions. However, dipyridamole increased fractional shortening in CD-fed rats, but not in HFD-fed rats. Basal myocardial perfusion, as measured by estimate of perfusion, was similar in CD- and HFD-fed rats, whereas dipyridamole increased estimate of perfusion in CD-fed rats, but not in HFD-fed rats. However, flow reserve was not different between CD- and HFD-fed rats. Conclusions Diet-induced glucose intolerance is associated with impaired myocardial function during conditions of hyperaemia, but myocardial perfusion is maintained. These findings may result in new insights into the effect of glucose intolerance on myocardial function and perfusion during hyperaemia.

  11. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty.

    Science.gov (United States)

    Pollock, James; Ho, Sa V; Farid, Suzanne S

    2013-01-01

    This article evaluates the current and future potential of batch and continuous cell culture technologies via a case study based on the commercial manufacture of monoclonal antibodies. The case study compares fed-batch culture to two perfusion technologies: spin-filter perfusion and an emerging perfusion technology utilizing alternating tangential flow (ATF) perfusion. The operational, economic, and environmental feasibility of whole bioprocesses based on these systems was evaluated using a prototype dynamic decision-support tool built at UCL encompassing process economics, discrete-event simulation and uncertainty analysis, and combined with a multi-attribute decision-making technique so as to enable a holistic assessment. The strategies were compared across a range of scales and titres so as to visualize how their ranking changes in different industry scenarios. The deterministic analysis indicated that the ATF perfusion strategy has the potential to offer cost of goods savings of 20% when compared to conventional fed-batch manufacturing processes when a fivefold increase in maximum viable cell densities was assumed. Savings were also seen when the ATF cell density dropped to a threefold increase over the fed-batch strategy for most combinations of titres and production scales. In contrast, the fed-batch strategy performed better in terms of environmental sustainability with a lower water and consumable usage profile. The impact of uncertainty and failure rates on the feasibility of the strategies was explored using Monte Carlo simulation. The risk analysis results demonstrated the enhanced robustness of the fed-batch process but also highlighted that the ATF process was still the most cost-effective option even under uncertainty. The multi-attribute decision-making analysis provided insight into the limited use of spin-filter perfusion strategies in industry. The resulting sensitivity spider plots enabled identification of the critical ratio of weightings of

  12. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    Science.gov (United States)

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  13. Application of a Simplified Method for Estimating Perfusion Derived from Diffusion-Weighted MR Imaging in Glioma Grading.

    Science.gov (United States)

    Cao, Mengqiu; Suo, Shiteng; Han, Xu; Jin, Ke; Sun, Yawen; Wang, Yao; Ding, Weina; Qu, Jianxun; Zhang, Xiaohua; Zhou, Yan

    2017-01-01

    Purpose : To evaluate the feasibility of a simplified method based on diffusion-weighted imaging (DWI) acquired with three b -values to measure tissue perfusion linked to microcirculation, to validate it against from perfusion-related parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging, and to investigate its utility to differentiate low- from high-grade gliomas. Materials and Methods : The prospective study was approved by the local institutional review board and written informed consent was obtained from all patients. From May 2016 and May 2017, 50 patients confirmed with glioma were assessed with multi- b -value DWI and DCE MR imaging at 3.0 T. Besides conventional apparent diffusion coefficient (ADC 0,1000 ) map, perfusion-related parametric maps for IVIM-derived perfusion fraction ( f ) and pseudodiffusion coefficient (D*), DCE MR imaging-derived pharmacokinetic metrics, including K trans , v e and v p , as well as a metric named simplified perfusion fraction (SPF), were generated. Correlation between perfusion-related parameters was analyzed by using the Spearman rank correlation. All imaging parameters were compared between the low-grade ( n = 19) and high-grade ( n = 31) groups by using the Mann-Whitney U test. The diagnostic performance for tumor grading was evaluated with receiver operating characteristic (ROC) analysis. Results : SPF showed strong correlation with IVIM-derived f and D* ( ρ = 0.732 and 0.716, respectively; both P simplified method to measure tissue perfusion based on DWI by using three b -values may be helpful to differentiate low- from high-grade gliomas. SPF may serve as a valuable alternative to measure tumor perfusion in gliomas in a noninvasive, convenient and efficient way.

  14. Dynamic contrast enhanced ultrasound for therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, John M. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Williams, Ross [Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Tremblay-Darveau, Charles; Sheeran, Paul S. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Milot, Laurent [Department of Medical Imaging, University of Toronto, Toronto, ON (Canada); Bjarnason, Georg A. [Department of Medical Oncology, University of Toronto, and Sunnybrook Odette Cancer Centre, Toronto, ON (Canada); Burns, Peter N., E-mail: burns@sri.utoronto.ca [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON (Canada)

    2015-09-15

    Quantitative imaging is a crucial component of the assessment of therapies that target the vasculature of angiogenic or inflamed tissue. Dynamic contrast-enhanced ultrasound (DCE-US) using microbubble contrast offers the advantages of being sensitive to perfusion, non-invasive, cost effective and well suited to repeated use at the bedside. Uniquely, it employs an agent that is truly intravascular. This papers reviews the principles and methodology of DCE-US, especially as applied to anti-angiogenic cancer therapies. Reproducibility is an important attribute of such a monitoring method: results are discussed. More recent technical advances in parametric and 3D DCE-US imaging are also summarised and illustrated.

  15. Possibilities of contrast-free magnetic resonance perfusion imaging for the detection of early brain damage in essential hypertension

    Directory of Open Access Journals (Sweden)

    T. M. Ostroumova

    2018-01-01

    Full Text Available Arterial spin labeling (ASL is a promising non-invasive method to assess cerebral perfusion, which identifies a decrease in cerebral blood flow (CBF.Objective: to assess cerebral perfusion in middle-aged untreated patients with uncomplicated grade 1–2 hypertension compared to same-age healthy controls.Patients and methods. 33 patients with essential hypertension and 40 healthy individuals (a control group at the age of 40–59 years were examined. 24-hour blood pressure (BP monitoring and brain magnetic resonance imaging were performed in different modes (T1 MPRAGE, T2 TSE, T2 FLAIR, DTI, and ASL.Results. White matter hyperintensive changes were found in 7.5% of the healthy individuals and in 51.5% of the hypertensive patients (p = 0.0002. In hypertensive patients, CBF in the cortical plate of anterior frontal regions was significantly (p < 0.001 lower than that in the controls: right CBF, 39.1±5.6 and 45.8±3.2 ml/100 g/min, respectively; left CBF, 39.2±6.2 and 45.2±3.6 ml/100 g/min, respectively. In hypertensive patients with white matter hyperintensive changes, CBF was significantly lower than that in the controls: right CBF, 38.5±5.9 ml/100 g/min (p = 0.0001; left CBF, 39.2±6.7 ml/100 g/min (p = 0.002, and in those without these changes, right CBF was 39.5±5.1 ml/100 g/min (p = 0.0002; left CBF was 38.9±4.3 ml/100 g/min (p = 0.00002. Correlation analysis revealed significant inverse correlations of CBF with BP and systolic BP variability.Conclusion. Lower cerebral perfusion occurs in middle-aged untreated patients with uncomplicated grade 1–2 hypertension even in the absence of white matter hyperintensity foci. 

  16. Magnetic Resonance Imaging Susceptibility-Weighted Imaging Lesion and Contrast Enhancement May Represent Infectious Intracranial Aneurysm in Infective Endocarditis.

    Science.gov (United States)

    Cho, Sung-Min; Rice, Cory; Marquardt, Robert J; Zhang, Lucy Q; Khoury, Jean; Thatikunta, Prateek; Buletko, Andrew B; Hardman, Julian; Uchino, Ken; Wisco, Dolora

    2017-01-01

    Infectious intracranial aneurysm (IIA) can complicate infective endocarditis (IE). We aimed to describe the magnetic resonance imaging (MRI) characteristics of IIA. We reviewed IIAs among 116 consecutive patients with active IE by conducting a neurological evaluation at a single tertiary referral center from January 2015 to July 2016. MRIs and digital cerebral angiograms (DSA) were reviewed to identify MRI characteristics of IIAs. MRI susceptibility weighted imaging (SWI) was performed to collect data on cerebral microbleeds (CMBs) and sulcal SWI lesions. Out of 116 persons, 74 (63.8%) underwent DSA. IIAs were identified in 13 (17.6% of DSA, 11.2% of entire cohort) and 10 patients with aneurysms underwent MRI with SWI sequence. Nine (90%) out of 10 persons with IIAs had CMB >5 mm or sulcal lesions in SWI (9 in sulci, 6 in parenchyma, and 5 in both). Five out of 8 persons who underwent MRI brain with contrast had enhancement within the SWI lesions. In a multivariate logistic regression analysis, both sulcal SWI lesions (p < 0.001, OR 69, 95% CI 7.8-610) and contrast enhancement (p = 0.007, OR 16.5, 95% CI 2.3-121) were found to be significant predictors of the presence of IIAs. In the individuals with IE who underwent DSA and MRI, we found that neuroimaging characteristics, such as sulcal SWI lesion with or without contrast enhancement, are associated with the presence of IIA. © 2017 S. Karger AG, Basel.

  17. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu [Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California 95817 (United States); Kent, Michael S.; Wisner, Erik R. [Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Johnson, Lynelle R.; Stern, Joshua A. [Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Qi, Lihong [Department of Public Health Sciences, University of California Davis, Davis, California 95616 (United States); Fujita, Yukio [Department of Radiation Oncology, Tokai University, Isehara, Kanagawa 259-1193 (Japan); Boone, John M. [Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817 (United States)

    2016-07-15

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  18. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model.

    Science.gov (United States)

    Yamamoto, Tokihiro; Kent, Michael S; Wisner, Erik R; Johnson, Lynelle R; Stern, Joshua A; Qi, Lihong; Fujita, Yukio; Boone, John M

    2016-07-01

    Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t-test. The mean TRE

  19. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    International Nuclear Information System (INIS)

    Yamamoto, Tokihiro; Kent, Michael S.; Wisner, Erik R.; Johnson, Lynelle R.; Stern, Joshua A.; Qi, Lihong; Fujita, Yukio; Boone, John M.

    2016-01-01

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  20. In-vivo quantitative evaluation of perfusion zones and perfusion gradient in the deep inferior epigastric artery perforator flap

    Science.gov (United States)

    Saint-Cyr, Michel; Lakhiani, Chrisovalantis; Cheng, Angela; Mangum, Michael; Liang, Jinyang; Teotia, Sumeet; Livingston, Edward H.; Zuzak, Karel J.

    2013-03-01

    The selection of well-vascularized tissue during DIEP flap harvest remains controversial. While several studies have elucidated cross-midline perfusion, further characterization of perfusion to the ipsilateral hemiabdomen is necessary for minimizing rates of fat necrosis or partial fat necrosis in bilateral DIEP flaps. Eighteen patients (29 flaps) underwent DIEP flap harvest using a prospectively designed protocol. Perforators were marked and imaged with a novel system for quantitatively measuring tissue oxygenation, the Digital Light Hyperspectral Imager. Images were then analyzed to determine if perforator selection influenced ipsilateral flap perfusion. Flaps based on a single lateral row perforator (SLRP) were found to have a higher level of hemoglobin oxygenation in Zone I (mean %HbO2 = 76.1) compared to single medial row perforator (SMRP) flaps (%HbO2 = 71.6). Perfusion of Zone III relative to Zone I was similar between SLRP and SMRP flaps (97.4% vs. 97.9%, respectively). These differences were not statistically significant (p>0.05). Perfusion to the lateral edge of the flap was slightly greater for SLRP flaps compared SMRP flaps (92.1% vs. 89.5%, respectively). SMRP flaps had superior perfusion travelling inferiorly compared to SLRP flaps (88.8% vs. 83.9%, respectively). Overall, it was observed that flaps were better perfused in the lateral direction than inferiorly. Significant differences in perfusion gradients directed inferiorly or laterally were observed, and perforator selection influenced perfusion in the most distal or inferior aspects of the flap. This suggests broader clinical implications for flap design that merit further investigation.

  1. Perfusion vector - a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients

    DEFF Research Database (Denmark)

    Minarik, David; Senneby, Martin; Wollmer, Per

    2015-01-01

    Background The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method...

  2. Placental perfusion - a human alternative

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E

    2006-01-01

    Foetal exposures to environmental and medicinal products have impact on the growth of the foetus (e.g. cigarette smoke) and development of organs (e.g. methylmercury and Thalidomide). Perfusion studies of the human term placenta enable investigation of placental transport of chemical substances...... between the mother and foetus. Dual perfusion of a single cotyledon in the human placenta can contribute to a better understanding of the placental barrier, transport rate and mechanisms of different substances and placental metabolism. The perfusion system has recently been established in Copenhagen...

  3. Identification of highly susceptible individuals in complex networks

    Science.gov (United States)

    Tang, Shaoting; Teng, Xian; Pei, Sen; Yan, Shu; Zheng, Zhiming

    2015-08-01

    Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We first study the impact of community structure on people's susceptibility. Although the community structure can reduce the number of infected people for same infection rate, it will not significantly affect nodes' susceptibility. We find the susceptibility of individuals is sensitive to the choice of spreading dynamics. For SIR spreading, since the susceptibility is highly correlated to nodes' influence, the topological indicator k-shell can better identify highly susceptible individuals, outperforming degree, betweenness centrality and PageRank. In contrast, in rumor spreading model, where nodes' susceptibility and influence have no clear correlation, degree performs the best among considered topological measures. Our finding highlights the significance of both topological features and spreading mechanisms in identifying highly susceptible population.

  4. The Groningen hypothermic liver perfusion pump : Functional evaluation of a new machine perfusion system

    NARCIS (Netherlands)

    van der Plaats, A.; Maathuis, M. H. J.; Hart, N. A. 't; Bellekom, A. A.; Hofker, H. S.; van der Houwen, E. B.; Verkerke, G. J.; Leuvenink, H. G. D.; Verdonck, P.; Ploeg, R. J.; Rakhorst, G.

    2006-01-01

    To improve preservation of donor livers, we have developed a portable hypothermic machine perfusion (HMP) system as an alternative for static cold storage. A prototype of the system was built and evaluated on functionality. Evaluation criteria included 24 h of adequate pressure controlled perfusion,

  5. Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema

    International Nuclear Information System (INIS)

    Ley-Zaporozhan, Julia; Ley, Sebastian; Eberhardt, Ralf; Weinheimer, Oliver; Fink, Christian; Puderbach, Michael; Eichinger, Monika; Herth, Felix; Kauczor, Hans-Ulrich

    2007-01-01

    Purpose: To assess the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level using CT and MRI in patients with emphysema. Material and methods: Forty-five patients with severe emphysema (GOLD III and IV) underwent inspiratory 3D-HRCT and contrast-enhanced MR-perfusion (1.5T; 3.5 mm x 1.9 mm x 4 mm). 3D-HRCT data was analyzed using a software for detection and visualization of emphysema. Emphysema was categorized in four clusters with different volumes and presented as overlay on the CT. CT and lung perfusion were visually analyzed for three lobes on each side using a four-point-score to grade the abnormalities on CT (1: predominantly small emphysema-clusters to 4: >75% large emphysema-clusters) and MRI (1: normal perfusion to 4: no perfusion). Results: A total of 270 lobes were evaluated. At CT, the score was 1 for 9 lobes, 2 for 43, 3 for 77, and 4 for 141 lobes. At MRI, the score was 1 for 13 lobes, 2 for 45, 3 for 92, and 4 for 120 lobes. Matching of lung parenchymal destruction and reduced perfusion was found in 213 lobes (weighted kappa = 0.8). The score was higher on CT in 44, and higher on MRI in 13 lobes. Conclusion: 3D-HRCT and 3D MR-perfusion show a high lobar agreement between parenchymal destruction and reduction of perfusion in patients with severe emphysema

  6. Vicarious audiovisual learning in perfusion education.

    Science.gov (United States)

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we teach perfusion in the future, as simulation technology becomes more prevalent.

  7. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K. [Department of Radiological Sciences, Guy' s, King' s and St. Thomas' School of Medicine, London (United Kingdom)

    1999-10-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  8. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    International Nuclear Information System (INIS)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K.

    1999-01-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  9. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Dowdle, S.C.; Human, D.G.; Mann, M.D. (Univ. of Cape Town (South Africa))

    1990-08-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis.

  10. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    International Nuclear Information System (INIS)

    Dowdle, S.C.; Human, D.G.; Mann, M.D.

    1990-01-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis

  11. Effects of age and brightness contrast on perception of the Wundt-Hering illusion.

    Science.gov (United States)

    Astor-Stetson, E; Purnell, T G

    1990-10-01

    Susceptibility to the Wundt-Hering illusion was studied as a function of age and contrast. Preschoolers, third-graders and college students were shown light-grey, medium-grey, and black Wundt-Hering figures on white ground. Pre-schoolers were most susceptible to the illusion, differing from third graders in the medium and high contrast conditions and from college students in all contrast conditions. Low contrast figures resulted in significantly less distortion than did high contrast figures for the preschoolers. The significant interaction of age and contrast effects highlights the importance of a developmental approach to the study of illusions.

  12. Correlation of CT perfusion and CT volumetry in patients with Alzheimers disease

    International Nuclear Information System (INIS)

    Czarnecka, A.; Zimny, A.; Sasiadek, M.

    2010-01-01

    Background: Both brain atrophy and decrease of perfusion are observed in dementive diseases. The aim of the study was to correlate the results of brain perfusion CT (pCT) and CT volumetry in patients with Alzheimers disease (AD). Material/Methods: Forty-eight patients with AD (mean age of 71.3 years) underwent brain pCT and CT volumetry. The pCT was performed at the level of basal ganglia after the injection of contrast medium (50 ml, 4 ml/sec.) with serial scanning (delay 7 sec, 50 scans, 1 scan/sec). Volumetric measurements were carried out on the basis of source images, with the use of a dedicated CT software combined with manual outlining of the regions of interest in extracerebral and intraventricular CSF spaces. Perfusion parameters of the cerebral blood flow (CBF) and cerebral blood volume (CBV) from the grey matter of frontal and temporal as well as basal ganglia were compared statistically with the volumetric measurements of frontal and temporal cortical atrophy as well as subcortical atrophy. Results: A statistically significant positive correlation was found between the values of CBF and CBV in the basal ganglia and the volumes of the lateral and third ventricles. The comparison of CBF and CBV results with the volumetric measurements in the areas of the frontal and temporal lobes showed mostly negative correlations, but none of them was of statistical significance. Conclusions: In patients with AD, the degree of cortical atrophy is not correlated with the decrease of perfusion in the grey matter and subcortical atrophy is not correlated with the decrease of perfusion in the basal ganglia region. It suggests that functional and structural changes in AD are not related to each other. (authors)

  13. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, T.; Vanninen, E.; Kuikka, J.T. [Kuopio Central Hospital (Finland). Dept. of Clinical Physiology; Koskinen, M.O. [Dept. of Clinical Physiology and Nuclear Medicine, Tampere Univ. Hospital, Tampere (Finland); Alenius, S. [Signal Processing Lab., Tampere Univ. of Technology, Tampere (Finland)

    2000-09-01

    Filtered back-projection (FBP) is generally used as the reconstruction method for single-photon emission tomography although it produces noisy images with apparent streak artefacts. It is possible to improve the image quality by using an algorithm with iterative correction steps. The iterative reconstruction technique also has an additional benefit in that computation of attenuation correction can be included in the process. A commonly used iterative method, maximum-likelihood expectation maximisation (ML-EM), can be accelerated using ordered subsets (OS-EM). We have applied to the OS-EM algorithm a Bayesian one-step late correction method utilising median root prior (MRP). Methodological comparison was performed by means of measurements obtained with a brain perfusion phantom and using patient data. The aim of this work was to quantitate the accuracy of iterative reconstruction with scatter and non-uniform attenuation corrections and post-filtering in SPET brain perfusion imaging. SPET imaging was performed using a triple-head gamma camera with fan-beam collimators. Transmission and emission scans were acquired simultaneously. The brain phantom used was a high-resolution three-dimensional anthropomorphic JB003 phantom. Patient studies were performed in ten chronic pain syndrome patients. The images were reconstructed using conventional FBP and iterative OS-EM and MRP techniques including scatter and nonuniform attenuation corrections. Iterative reconstructions were individually post-filtered. The quantitative results obtained with the brain perfusion phantom were compared with the known actual contrast ratios. The calculated difference from the true values was largest with the FBP method; iteratively reconstructed images proved closer to the reality. Similar findings were obtained in the patient studies. The plain OS-EM method improved the contrast whereas in the case of the MRP technique the improvement in contrast was not so evident with post-filtering. (orig.)

  14. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction

    International Nuclear Information System (INIS)

    Kauppinen, T.; Vanninen, E.; Kuikka, J.T.; Alenius, S.

    2000-01-01

    Filtered back-projection (FBP) is generally used as the reconstruction method for single-photon emission tomography although it produces noisy images with apparent streak artefacts. It is possible to improve the image quality by using an algorithm with iterative correction steps. The iterative reconstruction technique also has an additional benefit in that computation of attenuation correction can be included in the process. A commonly used iterative method, maximum-likelihood expectation maximisation (ML-EM), can be accelerated using ordered subsets (OS-EM). We have applied to the OS-EM algorithm a Bayesian one-step late correction method utilising median root prior (MRP). Methodological comparison was performed by means of measurements obtained with a brain perfusion phantom and using patient data. The aim of this work was to quantitate the accuracy of iterative reconstruction with scatter and non-uniform attenuation corrections and post-filtering in SPET brain perfusion imaging. SPET imaging was performed using a triple-head gamma camera with fan-beam collimators. Transmission and emission scans were acquired simultaneously. The brain phantom used was a high-resolution three-dimensional anthropomorphic JB003 phantom. Patient studies were performed in ten chronic pain syndrome patients. The images were reconstructed using conventional FBP and iterative OS-EM and MRP techniques including scatter and nonuniform attenuation corrections. Iterative reconstructions were individually post-filtered. The quantitative results obtained with the brain perfusion phantom were compared with the known actual contrast ratios. The calculated difference from the true values was largest with the FBP method; iteratively reconstructed images proved closer to the reality. Similar findings were obtained in the patient studies. The plain OS-EM method improved the contrast whereas in the case of the MRP technique the improvement in contrast was not so evident with post-filtering. (orig.)

  15. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    Science.gov (United States)

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (Pultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; Pultrasound and microbubbles by 70% (Pultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  16. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  17. Quantitative assessment of local perfusion change in acute intracerebral hemorrhage areas with and without "dynamic spot sign" using CT perfusion imaging.

    Science.gov (United States)

    Fu, Fan; Sui, Binbin; Liu, Liping; Su, Yaping; Sun, Shengjun; Li, Yingying

    2018-01-01

    Background Positive "dynamic spot sign" has been proven to be a potential risk factor for acute intracerebral hemorrhage (ICH) expansion, but local perfusion change has not been quantitatively investigated. Purpose To quantitatively evaluate perfusion changes at the ICH area using computed tomography perfusion (CTP) imaging. Material and Methods Fifty-three patients with spontaneous ICH were recruited. Unenhanced computed tomography (NCCT), CTP within 6 h, and follow-up NCCT were performed for 21 patients in the "spot sign"-positive group and 32 patients in the control group. Cerebral perfusion change was quantitatively measured on regional cerebral blood flow/regional cerebral blood volume (rCBF/rCBV) maps. Regions of interest (ROIs) were set at the "spot-sign" region and the whole hematoma area for "spot-sign"-positive cases, and at one of the highest values of three interested areas and the whole hematoma area for the control group. Hematoma expansion was determined by follow-up NCCT. Results For the "spot-sign"-positive group, the average rCBF (rCBV) values at the "spot-sign" region and the whole hematoma area were 21.34 ± 15.24 mL/min/100 g (21.64 ± 21.48 mL/100g) and 5.78 ± 6.32 mL/min/100 g (6.07 ± 5.45 mL/100g); for the control group, the average rCBF (rCBV) values at the interested area and whole hematoma area were 2.50 ± 1.83 mL/min/100 g (3.13 ± 1.96 mL/100g) and 3.02 ± 1.80 mL/min/100 g (3.40 ± 1.44 mL/100g), respectively. Average rCBF and rCBV values of the "spot-sign" region were significantly different from other regions ( P spot-sign"-positive and control groups were 25.24 ± 19.38 mL and -0.41 ± 1.34 mL, respectively. Conclusion The higher perfusion change at ICH on CTP images may reflect the contrast extravasation and be associated with the hematoma expansion.

  18. Use of high flip angle in T1-prepared FAST sequences for myocardial perfusion quantification

    International Nuclear Information System (INIS)

    Vallee, Jean-Paul; Ivancevic, Marko; Lazeyras, Francois; Didier, Dominique; Kasuboski, Larry; Chatelain, Pascal; Righetti, Alberto

    2003-01-01

    This study reports on the first use of high flip angle and radio-frequency (RF) spoiling in T1-prepared fast acquisition in steady state (FAST) sequence for myocardial perfusion in patients. T1 dynamic range was measured in vitro with a FAST, an RF FAST and a snapshot fast low-angle shot (FLASH) sequences with a 90 flip angle. Myocardial perfusion was then measured twice in 6 patients during the same MR session. The RF FAST and FLASH, but not the FAST sequence, demonstrated an extended T1 dynamic range; however, the FLASH images were degraded by artifacts not present on the RF FAST images. The myocardial perfusion indices K1 (first-order transfer constant from the blood to the myocardium for the Gd-DTPA) and Vd (distribution volume of Gd-DTPA in myocardium) did not differ significantly between the two injections. K1 was 0.48±0.12 ml/min g -1 and Vd was 12.5±2.9%. With an extended T1 dynamic range and the sensitivity required for myocardial perfusion quantification, the RF FAST sequence with a 90 flip angle outperformed the snapshot FLASH sequence in terms of image quality and the FAST sequence in terms of contrast dynamic range. (orig.)

  19. Evaluation of myocardial perfusion reserve in patients with CAD using Contrast-Enhanced MRI: A comparison between semiquantitative and quantitative methods

    International Nuclear Information System (INIS)

    Schmitt, M.; Mohrs, O.K.; Petersen, S.E.; Kreitner, K.F.

    2002-01-01

    Objective: Comparison between two semiquantitative methods and a quantitative evaluation of myocardial blood flow (MBF) for assessment of myocardial perfusion reserve (MPR) in patients with CAD. Material and Methods: 9 patients with coronary stenoses>50% were examined with an ECG-gated Saturation Recovery Turbo FLASH sequence by using Gd-DTPA as contrast agent (CA). The entive measurements were performed both during rest and hyperemia induced by adenosine. The up-slopes of the signal-time S(t) curves in the myocardium and left ventricular (LV) cavity were evaluated by a linear fit. MPR was calculated from the original up-slopes of the myocardial S(t) curves and from the up-slopes, which were normalized to the up-slopes of the LV S(t) curves, respectively. For quantification of MBF values, the mathematical model MMID 4 was used and MPR was evaluated from the MBF values. Results: With all tested methods, MPR was reduced in myocardial regions subtended by arteries with stenoses≥70% compared with remote regions. With MMID 4 and the normalized up-slope method, differences between severe ischemic and remote regions were statistically significant. Conclusion: The up-slope method with normalization and quantification with MMID 4 are more sensitive methods to differentiate between remote and ischemic myocardium than the up-slope method without normalization. (orig.) [de

  20. High temporal versus high spatial resolution in MR quantitative pulmonary perfusion imaging of two-year old children after congenital diaphragmatic hernia repair

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, M.; Hagelstein, C.; Schoenberg, S.O.; Neff, K.W. [University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Zoellner, F.G.; Schad, L.R. [Heidelberg University, Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim (Germany); Zahn, K. [University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Pediatric Surgery, Mannheim (Germany); Schaible, T. [University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Department of Pediatrics, Mannheim (Germany)

    2014-10-15

    Congenital diaphragmatic hernia (CDH) leads to lung hypoplasia. Using dynamic contrast-enhanced (DCE) MR imaging, lung perfusion can be quantified. As MR perfusion values depend on temporal resolution, we compared two protocols to investigate whether ipsilateral lung perfusion is impaired after CDH, whether there are protocol-dependent differences, and which protocol is preferred. DCE-MRI was performed in 36 2-year old children after CDH on a 3 T MRI system; protocol A (n = 18) based on a high spatial (3.0 s; voxel: 1.25 mm{sup 3}) and protocol B (n = 18) on a high temporal resolution (1.5 s; voxel: 2 mm{sup 3}). Pulmonary blood flow (PBF), pulmonary blood volume (PBV), mean transit time (MTT), and peak-contrast-to-noise-ratio (PCNR) were quantified. PBF was reduced ipsilaterally, with ipsilateral PBF of 45 ± 26 ml/100 ml/min to contralateral PBF of 63 ± 28 ml/100 ml/min (p = 0.0016) for protocol A; and for protocol B, side differences were equivalent (ipsilateral PBF = 62 ± 24 vs. contralateral PBF = 85 ± 30 ml/100 ml/min; p = 0.0034). PCNR was higher for protocol B (30 ± 18 vs. 20 ± 9; p = 0.0294). Protocol B showed higher values of PBF in comparison to protocol A (p always <0.05). Ipsilateral lung perfusion is reduced in 2-year old children following CDH repair. Higher temporal resolution and increased voxel size show a gain in PCNR and lead to higher perfusion values. Protocol B is therefore preferred. (orig.)

  1. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  2. The added value of advanced neuro-imaging (MR diffusion ...

    African Journals Online (AJOL)

    Introduction: Primary CNS lymphoma is difficult to diagnose with conventional imaging modalities. Magnetic resonance proton spectroscopy, dynamic susceptibility contrast DSC perfusion and diffusion weighted images have been recently investigated as a problem-solving tool for evaluation of primary CNS lymphoma with ...

  3. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  4. A method for the investigation of cholegraphic contrast media

    International Nuclear Information System (INIS)

    Otto, H.

    1982-01-01

    Isolated perfused rat livers were used for investigating possible interactions between two simultaneously injected contrast media, and which technique, using parenteral application of cholegraphic media, is optimal. The results show that excretion of a parenteral contrast medium is reduced by giving an oral contrast medium at the same time. Simultaneous administration of two different contrast media therefore does not result in improved diagnostic information. The effect depends on the dose, and a sufficiently long interval should be observed between giving an oral and a parenteral contrast medium. A comparison of excretion values following injection of a bolus and prolonged infusion shows higher biliary contrast concentration and increased excretion after a single injection. Comparing only the period after the infusion, no difference was found between these two methods of administration. The single injection offers pharmacokinetic advantages, but an infusion is better tolerated and has fewer side effects. A rapid infusion of 10 to 15 minutes is therefore recommended as the optimal means of administration. (orig.) [de

  5. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  6. Comprehensive Assessment of Coronary Artery Disease by Using First-Pass Analysis Dynamic CT Perfusion: Validation in a Swine Model.

    Science.gov (United States)

    Hubbard, Logan; Lipinski, Jerry; Ziemer, Benjamin; Malkasian, Shant; Sadeghi, Bahman; Javan, Hanna; Groves, Elliott M; Dertli, Brian; Molloi, Sabee

    2018-01-01

    Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (P FPA and P MSM ) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (P MICRO ), as follows: P FPA_COMBINED = 1.02 P MICRO_COMBINED + 0.11 (r = 0.96) and P MSM_COMBINED = 0.28 P MICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.

  7. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B. [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Leidner, Bertil; Svensson, Anders [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden)

    2014-01-15

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. (orig.)

  8. Cerebral Perfusion and the Risk of Dementia: A Population-Based Study.

    Science.gov (United States)

    Wolters, Frank J; Zonneveld, Hazel I; Hofman, Albert; van der Lugt, Aad; Koudstaal, Peter J; Vernooij, Meike W; Ikram, M Arfan

    2017-08-22

    Cerebral hypoperfusion has previously been associated with mild cognitive impairment and dementia in various cross-sectional studies, but whether hypoperfusion precedes neurodegeneration is unknown. We prospectively determined the association of cerebral perfusion with subsequent cognitive decline and development of dementia. Between 2005 and 2012, we measured cerebral blood flow by 2-dimensional phase-contrast magnetic resonance imaging in participants of the population-based Rotterdam Study without dementia. We determined the association of cerebral perfusion (mL/100mL/min) with risk of dementia (until 2015) using a Cox model, adjusting for age, sex, demographics, cardiovascular risk factors, and apolipoprotein E genotype. We repeated analyses for Alzheimer disease and accounting for stroke. We used linear regression to determine change in cognitive performance during 2 consecutive examination rounds in relation to perfusion. Finally, we investigated whether associations were modified by baseline severity of white matter hyperintensities. Of 4759 participants (median age 61.3 years, 55.2% women) with a median follow-up of 6.9 years, 123 participants developed dementia (97 Alzheimer disease). Lower cerebral perfusion was associated with higher risk of dementia (adjusted hazard ratio, 1.31; 95% confidence interval per standard deviation decrease, 1.07-1.61), similar for Alzheimer disease only, and unaltered by accounting for stroke. Risk of dementia with hypoperfusion was higher with increasing severity of white matter hyperintensities (with severe white matter hyperintensities; hazard ratio, 1.54; 95% confidence interval, 1.11-2.14). At cognitive reexamination after on average 5.7 years, lower baseline perfusion was associated with accelerated decline in cognition (global cognition: β=-0.029, P =0.003), which was similar after excluding those with incident dementia, and again most profound in individuals with higher volume of white matter hyperintensities ( P

  9. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    International Nuclear Information System (INIS)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S.; Lee, Kyung Han; Lee, Myung Chul

    1996-01-01

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p 0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  10. Computerized analysis of brain perfusion parameter images

    International Nuclear Information System (INIS)

    Turowski, B.; Haenggi, D.; Wittsack, H.J.; Beck, A.; Aurich, V.

    2007-01-01

    Purpose: The development of a computerized method which allows a direct quantitative comparison of perfusion parameters. The display should allow a clear direct comparison of brain perfusion parameters in different vascular territories and over the course of time. The analysis is intended to be the basis for further evaluation of cerebral vasospasm after subarachnoid hemorrhage (SAH). The method should permit early diagnosis of cerebral vasospasm. Materials and Methods: The Angiotux 2D-ECCET software was developed with a close cooperation between computer scientists and clinicians. Starting from parameter images of brain perfusion, the cortex was marked, segmented and assigned to definite vascular territories. The underlying values were averages for each segment and were displayed in a graph. If a follow-up was available, the mean values of the perfusion parameters were displayed in relation to time. The method was developed under consideration of CT perfusion values but is applicable for other methods of perfusion imaging. Results: Computerized analysis of brain perfusion parameter images allows an immediate comparison of these parameters and follow-up of mean values in a clear and concise manner. Values are related to definite vascular territories. The tabular output facilitates further statistic evaluations. The computerized analysis is precisely reproducible, i. e., repetitions result in exactly the same output. (orig.)

  11. Stress Perfusion Coronary Flow Reserve Versus Cardiac Magnetic Resonance for Known or Suspected CAD.

    Science.gov (United States)

    Kato, Shingo; Saito, Naka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Taguri, Masataka; Kosuge, Masami; Kimura, Kazuo

    2017-08-15

    Phase-contrast (PC) cine magnetic resonance imaging (MRI) of the coronary sinus is a noninvasive method to quantify coronary flow reserve (CFR). This study sought to compare the prognostic value of CFR by cardiac magnetic resonance (CMR) and stress perfusion CMR to predict major adverse cardiac events (MACE). Participants included 276 patients with known coronary artery disease (CAD) and 400 with suspected CAD. CFR was calculated as myocardial blood flow during adenosine triphosphate infusion divided by myocardial blood flow at rest using PC cine MRI of the coronary sinus. During a median follow-up of 2.3 years, 47 patients (7%) experienced MACE. Impaired CFR (10% ischemia on stress perfusion CMR were significantly associated with MACE in patients with known CAD (hazard ratio [HR]: 5.17 and HR: 5.10, respectively) and suspected CAD (HR: 14.16 and HR: 6.50, respectively). The area under the curve for predicting MACE was 0.773 for CFR and 0.731 for stress perfusion CMR (p = 0.58) for patients with known CAD, and 0.885 for CFR and 0.776 for stress perfusion CMR (p = 0.059) in the group with suspected CAD. In patients with known CAD, sensitivity, specificity, and positive and negative predictive values to predict MACE were 64%, 91%, 38%, and 97%, respectively, for CFR, and 82%, 59%, 15%, and 97%, respectively, for stress perfusion CMR. In the suspected CAD group, these values were 65%, 99%, 80%, and 97%, respectively, for CFR, and 72%, 83%, 22%, and 98%, respectively, for stress perfusion CMR. The predictive values of CFR and stress perfusion CMR for MACE were comparable in patients with known CAD. In patients with suspected CAD, CFR showed higher HRs and areas under the curve than stress perfusion CMR, suggesting that CFR assessment by PC cine MRI might provide better risk stratification for patients with suspected CAD. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy.

    Science.gov (United States)

    Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P

    2016-06-01

    Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements

  13. The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets

    DEFF Research Database (Denmark)

    Mikkelsen, Mai Louise Grandsgaard; Ambrus, Rikard; Rasmussen, Rune

    2018-01-01

    of dexmedetomidine. Cerebral perfusion measured by laser speckle contrast imaging was related to cerebral oxygenation as measured by an intracerebral Licox probe (partial pressure of oxygen) and transcranial near infrared spectroscopy technology (NIRS) (cerebral oxygen saturation). Results During propofol......–remifentanil anaesthesia, increases in blood pressure by norepinephrine and phenylephrine did not change cerebral perfusion significantly, but cerebral partial pressure of oxygen (Licox) increased following vasopressors in both groups and increases following norepinephrine were significant (NBP: P = 0.04, LBP: P = 0......–remifentanil–dexmedetomidine anaesthesia was not followed by significant changes in cerebral perfusion. Licox measures increased significantly following both vasopressors in both groups, whereas the decreases in NIRS measures were only significant in the NBP group. Conclusions Cerebral partial pressure of oxygen measured by Licox...

  14. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI.

    Science.gov (United States)

    Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E

    2017-06-01

    Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.

  15. Assessment of tumor vascularization with functional computed tomography perfusion imaging in patients with cirrhotic liver disease.

    Science.gov (United States)

    Li, Jin-Ping; Zhao, De-Li; Jiang, Hui-Jie; Huang, Ya-Hua; Li, Da-Qing; Wan, Yong; Liu, Xin-Ding; Wang, Jin-E

    2011-02-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor in China, and early diagnosis is critical for patient outcome. In patients with HCC, it is mostly based on liver cirrhosis, developing from benign regenerative nodules and dysplastic nodules to HCC lesions, and a better understanding of its vascular supply and the hemodynamic changes may lead to early tumor detection. Angiogenesis is essential for the growth of primary and metastatic tumors due to changes in vascular perfusion, blood volume and permeability. These hemodynamic and physiological properties can be measured serially using functional computed tomography perfusion (CTP) imaging and can be used to assess the growth of HCC. This study aimed to clarify the physiological characteristics of tumor angiogenesis in cirrhotic liver disease by this fast imaging method. CTP was performed in 30 volunteers without liver disease (control subjects) and 49 patients with liver disease (experimental subjects: 27 with HCC and 22 with cirrhosis). All subjects were also evaluated by physical examination, laboratory screening and Doppler ultrasonography of the liver. The diagnosis of HCC was made according to the EASL criteria. All patients underwent contrast-enhanced ultrasonography, pre- and post-contrast triple-phase CT and CTP study. A mathematical deconvolution model was applied to provide hepatic blood flow (HBF), hepatic blood volume (HBV), mean transit time (MTT), permeability of capillary vessel surface (PS), hepatic arterial index (HAI), hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP) data. The Mann-Whitney U test was used to determine differences in perfusion parameters between the background cirrhotic liver parenchyma and HCC and between the cirrhotic liver parenchyma with HCC and that without HCC. In normal liver, the HAP/HVP ratio was about 1/4. HCC had significantly higher HAP and HAI and lower HPP than background liver parenchyma adjacent to the HCC. The value of HBF at the tumor

  16. MRI before and after external beam intensity-modulated radiotherapy of patients with prostate cancer: The feasibility of monitoring of radiation-induced tissue changes using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence

    International Nuclear Information System (INIS)

    Franiel, Tobias; Luedemann, Lutz; Taupitz, Matthias; Boehmer, Dirk; Beyersdorff, Dirk

    2009-01-01

    Purpose: To identify and quantify suitable pharmacokinetic MRI parameters for monitoring tissue changes after external beam intensity-modulated radiotherapy of prostate cancer. Material and methods: Six patients with biopsy-proven prostate cancer (initial PSA, 6.0-81.4 ng/ml) underwent MRI at 1.5 T using a combined endorectal/body phased-array coil and a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence (T1/T2*w; 1.65 s temporal resolution). MRI was performed before and immediately after radiotherapy, at 3 months and at 1 year. Perfusion, blood volume, mean transit time, delay, dispersion, interstitial volume, and extraction coefficient were calculated in prostate cancer and normal prostate for all four time points using a sequential 3-compartment model. Results: Prostate cancer and normal prostate tissue showed a statistically significant decrease in perfusion (p = 0.006, p = 0.001) and increase in extraction coefficient (p = 0.004, p 3 min, p = 0.028) and a smaller extraction coefficient (0.42 vs. 0.64, p = 0.028). Conclusions: Two pharmacokinetic parameters, perfusion and extraction coefficient, appear to be suitable candidates for monitoring the response to percutaneous intensity-modulated radiotherapy of prostate cancer.

  17. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Science.gov (United States)

    Löbel, Ulrike; Forkert, Nils Daniel; Schmitt, Peter; Dohrmann, Thorsten; Schroeder, Maria; Magnus, Tim; Kluge, Stefan; Weiler-Normann, Christina; Bi, Xiaoming; Fiehler, Jens; Sedlacik, Jan

    2016-01-01

    Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syndrome (HUS) and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI) revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a plausible cause. Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years) were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2. SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnormally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P effect of blood transfusions in patients with HUS and neurological symptoms.

  18. Value and limitation of digital subtraction angiography for assessment of myocardial perfusion with varying coronary stenosis

    International Nuclear Information System (INIS)

    Ohtani, Nozomu

    1988-01-01

    We examined the value of digital subtraction angiography (DSA) for the assessment of regional myocardial perfusion by comparing with regional myocardial function in 10 anesthetized dogs. With varying degrees of reduction in left circumflex coronary artery (LCX) blood flow (CBF:categories of stenosis (S1-S5)), myocardial perfusion was assessed by injecting the contrast medium(1ml by power injector) selectively into LCX, and the regional myocardium with contrast was imaged with DSA. We recorded aortic pressure (AOP) and systolic wall thickening (%WTh: sonomicrometry) in the left ventricular posterior wall simultaneously with cine pulse. On the time-density curve obtained from the myocardial regin of interest, we calculated a time interval from the contrast injection to peak concentration (TPC) and exponential washout rate (T). Under varying LCX stenosis, there were no significant change of heart rate and mean AOP and a significant linear correlations were found between %WTh and both 1/TPC(r=0.51)and 1/T(r=0.55). At S1(CBF:100-90% of control), neither %WTh nor 1/TPC differed from control, but 1/T was significantly decreased (80% of contral p<0.01). At S3(CRF:79-60%) to S5(CBF:39-0%), all%WTh, 1/TPC and 1/T were significantly decreased from control (all p<0.01), however, at S5(CBF:39-0%) the value of 1/TPC(71% of control) and 1/T(33%) were not different from that at S4, whereas %WTh was markedly reduced and took place to systolic thinning.. Therefore, in critical coronary stenosis, 1/T was more sensitive than 1/TPC or wall dynamics for assessing myocardial perfusion, however, these indices from DSA had a considerable limitation for evaluating the severity of myocardial ischemia when CBF was markedly reduced. (author)

  19. Comparison with myocardial perfusion MRI and myocardial perfusion SPECT in the diagnostic performance of coronary artery disease. A meta-analysis

    International Nuclear Information System (INIS)

    Iwata, Kunihiro; Kubota, Makoto; Ogasawara, Katsuhiko

    2008-01-01

    We compared the diagnostic abilities of stress myocardial perfusion MRI (myocardial perfusion MRI) and myocardial perfusion single photon emission computed tomography (SPECT), using a meta-analysis method. We investigated the diagnostic abilities of MRI and SPECT in similar subject groups in reports written in English or Japanese. The reports to be used for analysis were selected according to a ''screening standard,'' which was established in advance. After consolidating the data from the selected reports, we compared the integrated odds ratio, the point estimation values of sensibility/specificity, and the summary receiver operating characteristic (ROC) curve. For the analysis, six reports were selected (subjects: 153, coronary-artery target sites: 447). Meta-analysis revealed that the diagnostic ability of myocardial perfusion MRI was superior to that of myocardial perfusion SPECT regarding each of the parameters. This is considered to be supportive evidence of the usefulness of myocardial perfusion MRI. (author)

  20. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil.

    Science.gov (United States)

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21. In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.

  1. Effects of changes in analytic variables and contrast medium on estimation of glomerular filtration rates by computed tomography in healthy dogs.

    Science.gov (United States)

    Matsuda, Yuri; Kishimoto, Miori; Kushida, Kazuya; Yamada, Kazutaka; Shimizu, Miki; Itoh, Hiroshi

    2017-09-01

    OBJECTIVE To investigate effects of changes in analytic variables and contrast medium osmolality on glomerular filtration rate estimated by CT (CT-GFR) in dogs. ANIMALS 4 healthy anesthetized Beagles. PROCEDURES GFR was estimated by inulin clearance, and dogs underwent CT-GFR with iodinated contrast medium (iohexol or iodixanol) in a crossover-design study. Dynamic renal CT scanning was performed. Patlak plot analysis was used to calculate GFR with the renal cortex or whole kidney selected as the region of interest. The renal cortex was analyzed just prior to time of the second cortical attenuation peak. The whole kidney was analyzed 60, 80, 100, and 120 seconds after the appearance of contrast medium. Automated GFR calculations were performed with preinstalled perfusion software including 2 noise reduction levels (medium and strong). The CT-GFRs were compared with GFR estimated by inulin clearance. RESULTS There was no significant difference in CT-GFR with iohexol versus iodixanol in any analyses. The CT-GFR at the renal cortex, CT-GFR for the whole kidney 60 seconds after appearance of contrast medium, and CT-GFR calculated by perfusion software with medium noise reduction did not differ significantly from GFR estimated by inulin clearance. The CT-GFR was underestimated at ≥ 80 seconds after contrast medium appearance (whole kidney) and when strong noise reduction was used with perfusion CT software. CONCLUSIONS AND CLINICAL RELEVANCE Selection of the renal cortex as region of interest or use of the 60-second time point for whole-kidney evaluation yielded the best CT-GFR results. The perfusion software used produced good results with appropriate noise reduction. IMPACT FOR HUMAN MEDICINE The finding that excessive noise reduction caused underestimation of CT-GFR suggests that this factor should also be considered in CT-GFR examination of human patients.

  2. Changes in myocardial perfusion due to physical exercise in patients with stable coronary artery disease

    International Nuclear Information System (INIS)

    Kendziorra, Kai; Foerster, Marcus; Sabri, Osama; Kluge, Regine; Walther, Claudia; Moebius-Winkler, Sven; Conradi, Katrin; Schuler, Gerhard; Hambrecht, Rainer

    2005-01-01

    Percutaneous transluminal coronary angioplasty (PTCA) is one of the main therapy options for patients with coronary artery disease (CAD), resulting in an improvement in myocardial perfusion and exercise capacity. Nevertheless, studies have also demonstrated a positive effect of regular exercise training on myocardial perfusion and maximum exercise capacity. The aim of this study was to evaluate changes in myocardial stress perfusion after 1 year of exercise training in comparison with the effects of PTCA in patients with CAD. In 66 male patients with angiographically confirmed significant coronary artery stenosis in one target vessel, myocardial perfusion scintigraphy was performed at baseline and 12 months after randomisation into either a physical exercise group or a PTCA group. Circumferential count rate profiles in 16 wall segments were classified according to their relative count rate and localisation within or outside the area supplied by the stenosed vessel. Ischaemic segments showed a significant improvement in myocardial count rate within the target area after 12 months in both the PTCA and the training group (PTCA group: from 76.8±4.9% to 86.6±10.9%, p=0.03; training group: from 74.0±7.3% to 83.7±10.8%, p<0.01). Outside the target area only the training group showed a significant improvement (from 77.7±4.4% to 91.7±4.8%, p<0.01). Our data indicate a significant improvement in stress myocardial perfusion in the training group after 12 months. The ischaemia is reduced not only in the target region of the leading stenosis but also in other ischaemic myocardial areas. In contrast, after PTCA stress perfusion improves only in the initially ischaemic parts of the target area. (orig.)

  3. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    International Nuclear Information System (INIS)

    Bair, H.J.; Platsch, G.; Wolf, F.; Guenter, E.; Becker, D.; Rupprecht, H.; Neumayer, H.H.

    1997-01-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [de

  4. A study of whole brain perfusion CT and CT angiography in hyperacute and acute cerebral infarction

    International Nuclear Information System (INIS)

    Zhang Yonghai; Bai Junhu; Zhang Ming; Yang Guocai; Tang Guibo; Fang Jun; Shi Wei; Li Xinghua; Liu Suping; Lu Qing; Tang Jun

    2005-01-01

    Objective: To evaluate the diagnostic value of whole-brain perfusion blood volume-weighted CT imaging (PWCT) and simultaneous CT angiography (CTA) on early stage of cerebral ischemic infarction. Methods: Non-contrast CT (NCCT), CT perfusion-weighted imaging (PWCT) and delayed CT (DCT) were conducted on 20 cases of early ischemic infarction of whose onset time ranged from 2 to 24 hours. All cases were reexamined with CT or MRI one week to one month later. CT values and perfusion blood volume (PBV) of central and peripheral low perfusion areas as well as those of collateral side were measured. CTA was reconstructed with PWCT as source images to evaluate occlusion or stenosis of blood vessel, and DCT was used to detect the collateral circulation. Results: Of the 20 cases, NCCT, PWCT and CTA were negative in 10 cases in which 6 were confirmed as Transient Ischemic Attack (TIA) on reexamined CT and clinical features, and the other 4 were confirmed as lacunar infarction. For the remaining 10 cases, a comparison was made with ANOVA between low perfusion area (central, peripheral inside and outside) and collateral side. The difference was significant (P<0.01). However, no significant difference was revealed in the central, peripheral inside and outside areas. PBV values were significant in low perfusion area and collateral side (P<0.05). The area of the final infarction was larger than that of the low perfusion area, and the percentage of enlargement exhibited medium negative correlation to the time of ischemia. CTA indicated that 2 cases suffered from left middle cerebral artery occlusion, meanwhile anterior and middle branches of MCA in the other 3 cases were not identified. The sensitivity of NCCT, PWCT and CTA were 28.5%, 71.4% and 35.7% respectively. DCT indicated that 5 cases had asymmetrical blood vessels. Conclusion: The whole-brain perfusion-weighted CT imaging and simultaneous CT angiography (CTA) is p roved to be a simple, timesaving and effective method for the

  5. Myocardial enhancement pattern in patients with acute myocardial infarction on two-phase contrast-enhanced Ecg-gated multidetector-row computed tomography

    International Nuclear Information System (INIS)

    Ko, S.M.; Seo, J.B.; Hong, M.K.; Do, K.H.; Lee, S.H.; Lee, J.S.; Song, J.W.; Park, S.J.; Park, S.W.; Lim, T.H.

    2006-01-01

    Aim: To evaluate the myocardial enhancement pattern of the left ventricle on two-phase contrast-enhanced electrocardiogram (ECG)-gated multidetector computed tomography (MDCT) images in patients with acute myocardial infarction (AMI). METHODS: Two-phase contrast-enhanced ECG-gated MDCT examinations were performed in 16 patients with AMI. The presence, location and pattern of myocardial enhancement were evaluated. MDCT findings were compared with the catheter angiographic results. RESULTS: Subendocardial (n=9) or transmural (n=6) area of early perfusion defects of the myocardium was detected in 15 of 16 patients (94%) on early-phase CT images. Variable delayed myocardial enhancement patterns on late-phase CT images were observed in 12 patients (75%): (1) subendocardial residual perfusion defect and subepicardial late enhancement (n=6); (2) transmural late enhancement (n=1); (3) isolated subendocardial late enhancement (n=1); and (4) isolated subendocardial residual perfusion defect (n=2). On catheter angiography, 14 of 15 corresponding coronary arteries showed significant stenosis. CONCLUSION: Variable abnormal myocardial enhancement pattern was seen on two-phase, contrast-enhanced ECG-gated MDCT in patients with AMI. Assessment of myocardial attenuation on CT angiography gives additional information of the location and extent of infarction

  6. Normal anatomy of lung perfusion SPECT scintigraphy

    International Nuclear Information System (INIS)

    Moskowitz, G.W.; Levy, L.M.

    1987-01-01

    Ten patients studies for possible pulmonary embolic disease had normal lung perfusion planar and SPECT scintigraphy. A computer program was developed to superimpose the CT scans on corresponding SPECT images. Superimposition of CT scans on corresponding SPECT transaxial cross-sectional images, when available, provides the needed definition and relationships of adjacent organs. SPECT transaxial sections provide clear anatomic definition of perfusion defects without foreground and background lung tissue superimposed. The location, shape, and size of the perfusion defects can be readily assessed by SPECT. An algorithm was developed for the differentiation of abnormal pulmonary perfusion patterns from normal structures on variation

  7. All-phase MR angiography using independent component analysis of dynamic contrast enhanced MRI time series. φ-MRA

    International Nuclear Information System (INIS)

    Suzuki, Kiyotaka; Matsuzawa, Hitoshi; Watanabe, Masaki; Nakada, Tsutomu; Nakayama, Naoki; Kwee, I.L.

    2003-01-01

    Dynamic contrast enhanced magnetic resonance imaging (dynamic MRI) represents a MRI version of non-diffusible tracer methods, the main clinical use of which is the physiological construction of what is conventionally referred to as perfusion images. The raw data utilized for constructing MRI perfusion images are time series of pixel signal alterations associated with the passage of a gadolinium containing contrast agent. Such time series are highly compatible with independent component analysis (ICA), a novel statistical signal processing technique capable of effectively separating a single mixture of multiple signals into their original independent source signals (blind separation). Accordingly, we applied ICA to dynamic MRI time series. The technique was found to be powerful, allowing for hitherto unobtainable assessment of regional cerebral hemodynamics in vivo. (author)

  8. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults

    Science.gov (United States)

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909

  9. Regional cortical hyper perfusion on perfusion CT during postical motor deficit: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-08-15

    Postictal neurologic deficit is a well-known complication mimicking the manifestation of a stroke. We present a case of a patient with clinical evidence of Todd's paralysis correlating with reversible postictal parenchymal changes on perfusion CT and magnetic resonance (MR) imaging. In this case, perfusion CT and MR imaging were helpful in the differential diagnosis of stroke-mimicking conditions.

  10. Ventilation and perfusion display in a single image

    International Nuclear Information System (INIS)

    Lima, J.J.P. de; Botelho, M.F.R.; Pereira, A.M.S.; Rafael, J.A.S.; Pinto, A.J.; Marques, M.A.T.; Pereira, M.C.; Baganha, M.F.; Godinho, F.

    1991-01-01

    A new method of ventilation and perfusion display onto a single image is presented. From the data on regions of interest of the lungs, three-dimensional histograms are created, containing as parameters X and Y for the position of the pixels, Z for the perfusion and colour for local ventilation. The perfusion value is supplied by sets of curves having Z proportional to the local perfusion count rate. Ventilation modulates colour. Four perspective views of the histogram are simultaneously displayed to allow visualization of the entire organ. Information about the normal ranges for both ventilation and perfusion is also provided in the histograms. (orig.)

  11. Prevalence and predictors of an abnormal stress myocardial perfusion study in asymptomatic patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Scholte, Arthur J.H.A.; Schuijf, Joanne D.; Wall, Ernst E. van der; Bax, Jeroen J.; Kharagjitsingh, Antje V.; Dibbets-Schneider, Petra; Stokkel, Marcel P.

    2009-01-01

    a high prevalence of abnormal stress myocardial perfusion studies in patients with type 2 diabetes mellitus despite the absence of symptoms. In contrast to earlier studies, current smoking, duration of diabetes and the cholesterol/HDL ratio were identified as independent predictors of an abnormal study. (orig.)

  12. Prevalence and predictors of an abnormal stress myocardial perfusion study in asymptomatic patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Scholte, Arthur J.H.A.; Schuijf, Joanne D.; Wall, Ernst E. van der; Bax, Jeroen J. [Leiden University Medical Center, Department of Cardiology, Albinusdreef 2, PO Box 9600, Leiden (Netherlands); Kharagjitsingh, Antje V. [Medisch Centrum Haaglanden, Department of Internal Medicine, The Hague (Netherlands); Dibbets-Schneider, Petra; Stokkel, Marcel P. [Leiden University Medical Center, Department of Nuclear Medicine, Leiden (Netherlands)

    2009-04-15

    revealed a high prevalence of abnormal stress myocardial perfusion studies in patients with type 2 diabetes mellitus despite the absence of symptoms. In contrast to earlier studies, current smoking, duration of diabetes and the cholesterol/HDL ratio were identified as independent predictors of an abnormal study. (orig.)

  13. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  14. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    Directory of Open Access Journals (Sweden)

    Carmen Ghisleni

    Full Text Available Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women. Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  15. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Perfusion-weighted MR imaging of uterine leiomyoma

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Hiroyasu; Munechika, Hirotsugu [Showa Univ., Tokyo (Japan). School of Medicine

    2001-06-01

    Serial images of uterine leiomyoma in gradient-echo, echo-planar, magnetic resonance imaging were taken to draw a {delta}R2{sup *} curve after intravenous bolus injection of Gd-DTPA. The {delta}R2{sup *} integral was calculated from a {delta}R2{sup *} curve to have relative perfusion of uterine leiomyoma. We then, evaluated the amount of perfusion correlated with MR findings, size and number of leiomyoma or the clinical symptoms and established that perfusion was correlated positively with the findings of T2 weighted images and clinical symptoms but not with other MR findings or size and number of leiomyoma. In conclusion, we presumed that the clinical symptoms could be reduced by decreasing of an amount of perfusion of uterine leiomyoma in some means. However, it remained uncertain why severe clinical symptoms were associated with a high amount of perfusion in uterine leiomyomas. (author)

  17. Magnetic resonance imaging of pulmonary perfusion. Technical requirements and diagnostic impact; MRT der Lungenperfusion. Technische Voraussetzungen und diagnostischer Stellenwert

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, U.I.; Buesing, K.; Schoenberg, S.O.; Fink, C. [Klinikum Mannheim der Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Mannheim (Germany); Ingrisch, M.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Campus Grosshadern, Muenchen (Germany)

    2009-08-15

    With technical improvements in gradient hardware and the implementation of innovative k-space sampling techniques, such as parallel imaging, the feasibility of pulmonary perfusion MRI could be demonstrated in several studies. Dynamic contrast-enhanced 3D gradient echo sequences as used for time-resolved MR angiography have been established as the preferred pulse sequences for lung perfusion MRI. With these techniques perfusion of the entire lung can be visualized with a sufficiently high temporal and spatial resolution. In several trials in patients with acute pulmonary embolism, pulmonary hypertension and airway diseases, the clinical benefit and good correlation with perfusion scintigraphy have been demonstrated. The following review article describes the technical prerequisites, current post-processing techniques and the clinical indications for MR pulmonary perfusion imaging using MRI. (orig.) [German] Mit der Verfuegbarkeit leistungsfaehiger Gradientensysteme und schneller k-Raum-Akquisitionstechniken wie der parallelen Bildgebung konnten verschiedene Studien die Machbarkeit der Lungenperfusionsbildgebung in der MRT zeigen. In der Praxis haben sich dynamische kontrastverstaerkte 3D-Gradientenechosequenzen, wie sie fuer zeitaufgeloeste MR-Angiographien verwendet werden, fuer die Bildgebung der Lungenperfusion etabliert. Hiermit ist es moeglich, die Perfusion der gesamten Lunge mit ausreichend hoher zeitlicher und raeumlicher Aufloesung zu visualisieren. In mehren klinischen Studien konnte bei Patienten mit Lungenembolie, pulmonaler Hypertonie sowie Erkrankungen der Atemwege und des Lungenparenchyms der klinische Nutzen der Lungenperfusions-MRT und die gute Uebereinstimmung mit der Lungenperfusionsszintigraphie nachgewiesen werden. Der folgende Uebersichtsartikel beschreibt die technische Durchfuehrung, Bildnachverarbeitung und die klinischen Anwendungsgebiete der MRT zur Untersuchung der Lungenperfusion. (orig.)

  18. Regional myocardial perfusion of cardioplegic solutions

    International Nuclear Information System (INIS)

    Eugene, J.; Lyons, K.P.; Ott, R.A.; Gelezunas, V.L.; Chang, C.W.; Kowall, M.G.; Haiduc, N.J.

    1987-01-01

    We compared the regional myocardial perfusion of blood cardioplegic solution (BCP) and crystalloid cardioplegic solution (CCP) in 14 mongrel dogs. Cardiopulmonary bypass was established at 28 degrees C, and a hydraulic occluder was placed around the proximal left anterior descending (LAD) coronary artery. In group 1 (N = 7) collateral coronary arteries were ligated; in group 2 (N = 7) collateral coronary arteries were left in situ. After the aorta was clamped, BCP and CCP were alternately perfused at 200 ml/min. The occluder was inflated to produce moderate, severe, and critical LAD stenosis, and regional perfusion was measured by xenon-133 washout with the Silicon Avalanche Radiation Detector. BCP infusion produced a consistently higher aortic pressure, but CCP flow was better than BCP flow under all conditions, particularly without coronary collaterals. Regional myocardial perfusion of CCP is superior to BCP

  19. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Wu, Shengyong; Wang, Mei; Lu, Li; Chen, Bo; Jin, Lixin; Wang, Jiandong; Larson, Andrew C.; Lu, Guang Ming

    2012-01-01

    Purpose: To evaluate the correlation between quantitative dual energy CT and perfusion CT measurements in rabbit VX2 liver tumors. Materials and methods: This study was approved by the institutional animal care and use committee at our institution. Nine rabbits with VX2 liver tumors underwent contrast-enhanced dual energy CT and perfusion CT. CT attenuation for the tumors and normal liver parenchyma and tumor-to-liver ratio were obtained at the 140 kVp, 80 kVp, average weighted images and dual energy CT iodine maps. Quantitative parameters for the viable tumor and adjacent liver were measured with perfusion CT. The correlation between the enhancement values of the tumor in iodine maps and perfusion CT parameters of each tumor was analyzed. Radiation dose from dual energy CT and perfusion CT was measured. Results: Enhancement values for the tumor were higher than that for normal liver parenchyma at the hepatic arterial phase (P < 0.05). The highest tumor-to-liver ratio was obtained in hepatic arterial phase iodine map. Hepatic blood flow of the tumor was higher than that for adjacent liver (P < 0.05). Enhancement values of hepatic tumors in the iodine maps positively correlated with permeability of capillary vessel surface (r = 0.913, P < 0.001), hepatic blood flow (r = 0.512, P = 0.010), and hepatic blood volume (r = 0.464, P = 0.022) at the hepatic arterial phases. The effective radiation dose from perfusion CT was higher than that from DECT (P < 0.001). Conclusions: The enhancement values for viable tumor tissues measured in iodine maps were well correlated to perfusion CT measurements in rabbit VX2 liver tumors. Compared with perfusion CT, dual energy CT of the liver required a lower radiation dose.

  20. Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lim, Il Han; Kim, Ki Bong; Lee, Dong Soo

    2008-01-01

    Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F=28:27) of low-likelihood for coronary artery disease were enrolled and 201 Tl rest / 99m Tc-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. 201 Tl rest / 99m Tc-MIBI stress / 201 Tl 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, Q delay (perfusion measurement), Δ delay (Q delay .m) and Z delay ((Q delay .m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was 51.8±6.5 and the highest segmental perfusion was 87.0±5.9, and they are 58.7±8.1 and 87.3±6.0, respectively in women. In the viability assessment, Q delay showed AUC of 0.633, while those for Δ delay and Z delay were 0.735 and 0.716, respectively. The AUCs of Δ delay and Z delay were significantly higher than that of Q delay (p=0.001 and 0.018, respectively). The diagnostic performance of Δ delay , which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. On automatic

  1. Multi-slice spiral CT perfusion imaging of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Shao Yanhui; Qian Nong; Xue Yuejun; Dao Yinhong

    2008-01-01

    Objective: To evaluate the diagnostic value of multi-slice spiral CT (MSCT) perfusion imaging in chronic obstructive pulmonary disease (COPD). Methods: Twenty COPD patients and 20 volunteers underwent 8-row detector spiral CT (MSCT) perfusion imaging using cine scan mode with 5 mm slice thickness, 0.5 s rotation time and a total scan time of 45 s with 5 s intervals. 60 ml contrast agent (300 nag I/ml) were administered at a rate of 4 ml/s from the forearm superficial vein. The imaging data were transferred to a workstation. A time-density curve and pseudo-color map were generated automatically with GE CT perfusion 3 software, the blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface (PS) were measured. Results: Time-density curve was flatter and the peak of the curve was obviously lower in COPD patients than the volunteers. The BF, BV, PS in COPD patients was (24.77±11.49) ml·min -1 ·100 g -1 , (2.48±1.02) ml/100 g and (2.75±1.13) ml· min -1 ·100 g -1 respectively. In volunteers was (290.14±107.59) ml·min -1 ·100 g -1 , (16.51 ± 5.98) ml/100 g, (8.80±3.03) ml·min -1 ·100 g -1 respectively. The MTT in COPD patients and volunteers was (10.58±4.85) s and (4.50±1.71)s respectively. The BF, BV and PS in COPD patients was lower than the volunteers, the MTY was higher (P<0.01). Conclusion: MSCT perfusion imaging is helpful for the diagnosis of COPD. (authors)

  2. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  3. Hepatic artery perfusion imaging

    International Nuclear Information System (INIS)

    Thrall, J.H.; Gyves, J.W.; Ziessman, H.A.; Ensminger, W.D.

    1985-01-01

    Organ and region-selective intra-arterial chemotherapy have been used for more than two decades to treat malignant neoplasms in the extremities, head and neck region, pelvis, liver, and other areas. Substantial evidence of improved response to regional chemotherapy now exists, but there are stringent requirements for successful application of the regional technique. First, the chemotherapeutic agent employed must have appropriate pharmacokinetic and pharmacodynamic properties. Second, the drug must be reliably delivered to the tumor-bearing area. This typically requires an arteriographic assessment of the vascular supply of the tumor, followed by placement of a therapeutic catheter and confirmation that the ''watershed'' perfusion distribution from the catheter truly encompasses the tumor. Optimal catheter placement also minimizes perfusion of nontarget organs. Radionuclide perfusion imaging with technetium 99m-labeled particles, either microspheres or macroaggregates of albumin, has become the method of choice for making these assessments. Catheter placement itself is considered by many to represent a type of ''therapeutic'' intervention. However, once the catheter is in the hepatic artery the radionuclide perfusion technique can be used to assess adjunctive pharmacologic maneuvers designed to further exploit the regional approach to chemotherapy. This chapter presents the technetium Tc 99m macroaggregated albumin method for assessing catheter placement and the pharmacokinetic rationale for regional chemotherapy, and discusses two promising avenues for further intervention

  4. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    Science.gov (United States)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  5. Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients.

    Directory of Open Access Journals (Sweden)

    Alexander Ciritsis

    Full Text Available In MRI, implants and devices can be delineated via susceptibility artefacts. To discriminate susceptibility voids from proton-free structures, different positive contrast techniques were implemented. The purpose of this study was to evaluate a pulse sequence-based positive contrast technique (PCSI and a post-processing susceptibility gradient mapping algorithm (SGM for visualization of iron loaded mesh implants in patients.Five patients with iron-loaded MR-visible inguinal hernia mesh implants were examined at 1.5 Tesla. A gradient echo sequence (GRE; parameters: TR: 8.3ms; TE: 4.3ms; NSA:2; FA:20°; FOV:350mm² and a PCSI sequence (parameters: TR: 25ms; TE: 4.6ms; NSA:4; FA:20°; FOV:350mm² with on-resonant proton suppression were performed. SGM maps were calculated using two algorithms. Image quality and mesh delineation were independently evaluated by three radiologists.On GRE, the iron-loaded meshes generated distinct susceptibility-induced signal voids. PCSI exhibited susceptibility differences including the meshes as hyperintense signals. SGM exhibited susceptibility differences with positive contrast. Visually, the different algorithms presented no significant differences. Overall, the diagnostic value was rated best in GRE whereas PCSI and SGM were barely "sufficient".Both "positive contrast" techniques depicted implanted meshes with hyperintense signal. SGM comes without additional acquisition time and can therefore be utilized in every patient.

  6. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    Science.gov (United States)

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory

  7. Pretest clinical diagnosis of coronary artery disease and stress myocardial perfusion scintigram

    International Nuclear Information System (INIS)

    Kasalicky, J.; Kovac, I.; Lanska, V.

    2001-01-01

    To assess the probability of perfusion defects at exercise stress myocardial perfusion SPECT scintigraphy from pretest clinical diagnosis (medical personal history, previous ergometric investigation). To determine the value of clinical factors for probability of scintigraphic defects with respect to avoiding unnecessary investigation in subjects with low probability of abnormal scintigrams. 2143 subjects (1235 men, 908 women) were investigated by SPECT perfusion scintigraphy at stepwise increasing exercise stress. They were divided into three groups with regard to their medical history and exercise test at scintigraphy: subjects without any signs of coronary artery disease (CAD), patients with high likelihood of CAD (i.e., typical anginal pain, in particular at stress, positive stress ECG changes, angiographically documented important CAD) and patients after myocardial infarction (MI). Important risk factors (hypertension, diabetes, age and sex), as well as the role of revascularisation procedures, were taken into account for multiple logistic regression in order to express their importance for the odds of scintigraphic defect visualisation. Perfusion scintigraphic defects (PSD) were found in 5.2% of subjects without signs of CAD, in contrast to patients with manifest CAD (68.8% with PSD) and in those after MI (90.2% with PSD). There were other important factors corroborating the likelihood of PSD (in decreasing order of importance): diabetes, male, ECG changes at stress, increasing age. Successful revascularisation improved scintigraphic images. The examination of CAD symptom-free subjects, in particular with atypical chest discomfort, is useless. SMPS in patients after documented MI is to be carried out for other intended purposes, not for CAD diagnosis only. SMPS is highly recommended in patients with CAD symptoms and high CAD probability in order to decide further treatment and prognosis. (author)

  8. Kidney in potassium depletion. II. K+ handling by the isolated perfused rat kidney

    International Nuclear Information System (INIS)

    Hayashi, M.; Katz, A.I.

    1987-01-01

    In a companion paper the authors reported a large increment in Na + -K + -ATPase activity and [ 3 H]ouabain binding the inner stripe of outer medullary collecting tubules from K-depleted rats. To test the hypothesis that the increased number of Na + -K + pumps in these animals may be involved in potassium reabsorption they examined the effect of ouabain on K excretion by isolated, perfused kidneys from rats fed a K-free diet for 3 wk. Kidneys from K-depleted rats retain potassium avidly, both the fractional (FE/sub K/) and absolute K excretion being approximately fivefold lower than in control kidneys. Ouabain (5 mM) increased FE/sub K/ in kidneys from each K-depleted rat; similar results were obtained when kidneys were perfused with low and high potassium concentrations. In contrast, ouabain produced a variable effect in control kidneys, that depended on the perfusate potassium concentration. In K-depleted rats amiloride did not significantly alter K excretion and did not block the ouabain-induced kaliuresis, suggesting that the latter is not due to enhanced secretion secondary to increased distal fluid delivery. These results provide evidence for ouabain-sensitive potassium reabsorption in kidneys of chronically K-depleted rats, and suggest an explanation for the increased Na + -K + -ATPase observed in such animals

  9. Simultaneous determination of arterial input function of the internal carotid and middle cerebral arteries for dynamic susceptibility contrast MRI

    International Nuclear Information System (INIS)

    Scholdei, R.; Wenz, F.; Fuss, M.; Essig, M.; Knopp, M.V.

    1999-01-01

    Purpose: The determination of the arterial input function (AIF) is necessary for absolute quantification of the regional cerebral blood volume and blood flow using dynamic susceptibility contrast MRI. The suitability of different vessels (ICA-internal carotid artery, MCA-middle cerebral artery) for AIF determination was compared in this study. Methods: A standard 1.5 T MR system and a simultaneous dual FLASH sequence (TR/TE1/TE2/α=32/15/25/10 ) were used to follow a bolus of contrast agent. Slice I was chosen to cut the ICA perpendicularly. Slice II included the MCA. Seventeen data sets from ten subjects were evaluated. Results: The number of AIF-relevant pixels, the area under the AIF and the maximum concentration were all lower when the AIF was determined from the MCA compared to the ICA. Additionally, the mean transit time (MTT) and the time to maximum concentration (TTM) were longer in the MCA, complicating the computerized identification of AIF-relevant pixels. Data from one subject, who was examined five times, demonstrated that the intraindividual variance of the measured parameters was markedly lower than the interpersonal variance. Conclusions: It appears to be advantageous to measure the AIF in the ICA rather than the MCA. (orig.) [de

  10. [An automatic system controlled by microcontroller for carotid sinus perfusion].

    Science.gov (United States)

    Yi, X L; Wang, M Y; Fan, Z Z; He, R R

    2001-08-01

    To establish a new method for controlling automatically the carotid perfusion pressure. A cheap practical automatic perfusion unit based on AT89C2051 micro controller was designed. The unit, LDB-M perfusion pump and the carotid sinus of an animal constituted an automatic perfusion system. This system was able to provide ramp and stepwise updown perfusion pattern and has been used in the research of baroreflex. It can insure the precision and reproducibility of perfusion pressure curve, and improve the technical level in corresponding medical field.

  11. Quantitative Differences Between the First and Second Injection of Contrast Agent in Contrast-Enhanced Ultrasonography of Feline Kidneys and Spleen.

    Science.gov (United States)

    Stock, Emmelie; Vanderperren, Katrien; Haers, Hendrik; Duchateau, Luc; Hesta, Myriam; Saunders, Jimmy H

    2017-02-01

    Contrast-enhanced ultrasound is a valuable and safe technique for the evaluation of organ perfusion. Repeated injections of ultrasound contrast agent are often administered during the same imaging session. However, it remains unclear if quantitative differences are present between the consecutive microbubble injections. Therefore, the first and second injection of contrast agent for the left renal cortex, renal medulla and the splenic parenchyma in healthy cats were compared. A lower peak intensity and area under the curve were observed for the first injection of contrast agent in the feline kidney, both for the renal cortex and medulla, and spleen. Moreover, for the renal cortex, the time-intensity curve was steeper after the second injection. Findings from the present study demonstrate that a second injection of contrast agent provides stronger enhancement. The exact mechanism behind our findings remains unclear; however, saturation of the lung macrophages is believed to play an important role. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  13. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  14. The impact of injector-based contrast agent administration in time-resolved MRA.

    Science.gov (United States)

    Budjan, Johannes; Attenberger, Ulrike I; Schoenberg, Stefan O; Pietsch, Hubertus; Jost, Gregor

    2018-05-01

    Time-resolved contrast-enhanced MR angiography (4D-MRA), which allows the simultaneous visualization of the vasculature and blood-flow dynamics, is widely used in clinical routine. In this study, the impact of two different contrast agent injection methods on 4D-MRA was examined in a controlled, standardized setting in an animal model. Six anesthetized Goettingen minipigs underwent two identical 4D-MRA examinations at 1.5 T in a single session. The contrast agent (0.1 mmol/kg body weight gadobutrol, followed by 20 ml saline) was injected using either manual injection or an automated injection system. A quantitative comparison of vascular signal enhancement and quantitative renal perfusion analyses were performed. Analysis of signal enhancement revealed higher peak enhancements and shorter time to peak intervals for the automated injection. Significantly different bolus shapes were found: automated injection resulted in a compact first-pass bolus shape clearly separated from the recirculation while manual injection resulted in a disrupted first-pass bolus with two peaks. In the quantitative perfusion analyses, statistically significant differences in plasma flow values were found between the injection methods. The results of both qualitative and quantitative 4D-MRA depend on the contrast agent injection method, with automated injection providing more defined bolus shapes and more standardized examination protocols. • Automated and manual contrast agent injection result in different bolus shapes in 4D-MRA. • Manual injection results in an undefined and interrupted bolus with two peaks. • Automated injection provides more defined bolus shapes. • Automated injection can lead to more standardized examination protocols.

  15. Dissociation of brain edema induced by cold injury in rat model. MR imaging and perfusion studies with 14C-iodo-antipyrine

    International Nuclear Information System (INIS)

    Itabashi, Yoko; Prado, G.L.M.; Abo, Mitsuru; Miura, Hiroyuki; Abe, Yoshinao

    2001-01-01

    The purpose of this study is to confirm whether T2-weighted imaging and perfusion imaging, i.e. autoradiogram of 14 C-iodoantipyrine, on the course of brain edema correspond to each other or not. Cold injured rat brains were used as a model and were sequentially examined by both methods and compared with each other and with histological specimens. Special focus relies on the time changes in the lesions. High SI of T2-weighted images were observed and the percentages in the high SI area to the total brain area in the same slice were 4.7±0.31, 5.6±0.46 and 3.4±0.42 for 6, 24 and 48 hours, respectively. By contrast, low perfusion areas were indicated in the perfusion study and their percentages were 4.6±0.55, 5.6±0.86 and 2.4±0.35 for 6, 24 and 48 hours, respectively. At 48 hours after cold injury, low perfusion areas were smaller than high SI areas. Moreover, high accumulation areas consisting of macrophages were observed surrounding necrosis. It is concluded that there is dissociation between perfusion and T2-weighted MR imaging, where the collection of macrophages surrounding edema lesions and necrosis had the same appearance on MRI and different accumulations on perfusion studies. (author)

  16. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    Science.gov (United States)

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  17. Kombineret ventilations/perfusions-SPECT/CT er bedst til diagnostik af lungeemboli

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Mortensen, Jann; Kristoffersen, Ulrik Sloth

    2012-01-01

    The diagnosis of pulmonary embolism (PE) is usually established by a combination of clinical assessment, D-dimer test and imaging with either lung scintigraphy or pulmonary multidetector computed tomography angiography (CTA). Which of the two methods to use in PE diagnostic has not been determined...... and very limited data comparing these modalities are available. With the use of hybrid scanners, ventilation/perfusion-single-photon-emission-tomography (V/Q-SPECT) in combination with low-dose CT without contrast enhancement is feasible and should probably be considered first-line imaging in diagnosing PE....

  18. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  19. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: initial experiences

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Zaki, Mohammed; Yamashita, Tomio; Seto, Aska; Matsumoto, Tsuneo; Matsunaga, Naofumi

    2004-01-01

    In this study, respiratory-gated ventilation and perfusion single-photon emission tomography (SPET) were used to define regional functional impairment and to obtain reliable co-registration with computed tomography (CT) images in various lung diseases. Using a triple-headed SPET unit and a physiological synchroniser, gated perfusion SPET was performed in a total of 78 patients with different pulmonary diseases, including metastatic nodules (n=15); in 34 of these patients, it was performed in combination with gated technetium-99m Technegas SPET. Projection data were acquired using 60 stops over 120 for each detector. Gated end-inspiration and ungated images were reconstructed from 1/8 data centered at peak inspiration for each regular respiratory cycle and full respiratory cycle data, respectively. Gated images were registered with tidal inspiration CT images using automated three-dimensional (3D) registration software. Registration mismatch was assessed by measuring 3D distance of the centroid of the nine selected round perfusion-defective nodules. Gated SPET images were completed within 29 min, and increased the number of visible ventilation and perfusion defects by 9.7% and 17.2%, respectively, as compared with ungated images; furthermore, lesion-to-normal lung contrast was significantly higher on gated SPET images. In the nine round perfusion-defective nodules, gated images yielded a significantly better SPET-CT match compared with ungated images (4.9±3.1 mm vs 19.0±9.1 mm, P<0.001). The co-registered SPET-CT images allowed accurate perception of the location and extent of each ventilation/perfusion defect on the underlying CT anatomy, and characterised the pathophysiology of the various diseases. By reducing respiratory motion effects and enhancing perfusion/ventilation defect clarity, gated SPET can provide reliable co-registered images with CT images to accurately characterise regional functional impairment in various lung diseases. (orig.)

  20. Evaluation of mosaic pattern areas in HRCT with Min-IP reconstructions in patients with pulmonary hypertension: Could this evaluation replace lung perfusion scintigraphy?

    International Nuclear Information System (INIS)

    Rossi, A.; Attinà, D.; Borgonovi, A.; Buia, F.; De Luca, F.; Guidalotti, P.L.; Fughelli, P.; Galiè, N.; Zompatori, M.

    2012-01-01

    Purpose: The aim of this study is to evaluate a possible correlation between areas of lung attenuation, found in minimum intensity projection (Min-IP) reconstruction images performed with high resolution computed tomography without contrast medium (HRCT), and areas of lung perfusion alteration, found in lung perfusion scintigraphy (LPS). Materials and methods: Two independent radiologists, unaware of LPS results, evaluated retrospectively a group of 113 patients affected by pulmonary hypertension (HP) of different aetiology. These have been examined in a period of two years in our centre both by spiral computed tomography (CT) with and without contrast-medium and by LPS. The final diagnosis was determined on clinical data, right heart catheterisation and contrast enhanced CT in angiographic phase (CTPA). We reconstructed the Min-IP images of lung parenchyma in all the cases both in HRCT without contrast-medium, and in contrast enhanced CT in angiographic phase (CTPA) in axial, sagittal and coronal planes. The obtained images were qualitatively graded into three categories of pulmonary attenuation: homogeneous, inhomogeneous with non-segmental patchy defects, inhomogeneous with segmental defects. The same criteria of classification were used also for LPS images. In the group of patients with chronic thromboembolic pulmonary hypertension (CTEPH) we also compared the number of areas of lung attenuation found in Min-IP images in HRCT without contrast-medium, and their exact localization, with not perfused areas in LPS. Gold standard for the diagnosis of pulmonary embolism was spiral contrast enhanced CT in angiographic phase (CTPA). Results: In all cases we found exact correspondence between the Min-IP images in HRCT with and without contras agent. The attenuation pattern seen on Min-IP images was concordant with those of LPS in 96 out of 113 patients (85%). In the remaining 17 cases (15%) it was discordant: in 12 cases inhomogeneous in Min-IP images (7 with non