WorldWideScience

Sample records for susceptibility contrast imaging

  1. Perfusion imaging with magnetic-susceptibility contrast media

    International Nuclear Information System (INIS)

    Rosen, B.R.; Belliveau, J.W.; Betteridge, D.; Cohen, M.S.; Weisskoff, R.M.; Vevea, J.M.; Rzedzian, R.P.; Brady, T.J.

    1989-01-01

    In animal models, transient signal los on T2-weighted images has been well documented following intravenous injection of high-magnetic-susceptibility contrast agents that are compartmentalized within the brain intravascular space. These signal changes have been correlated with physiologic parameters, such as blood flow and volume. The advent of whole-body single-shot imaging capability, coupled with the approval of paramagnetic contrasts agents for human use, has enabled the authors to demonstrate susceptibility contrast in the human brain, allowing for generation of functional images. With use of a 1.5-T imaging system gradient-echo images (TE = 60 msec) were acquired in 75 msec. Sequential single-sections images were sampled every 1 second following bolus administration of 0.1 mmol/kg of Gd-DTPA

  2. Magnetic susceptibility imaging with a nonionic contrast agent

    International Nuclear Information System (INIS)

    Cacheris, W.; Rocklage, S.M.; Quay, S.; Dow, W.; Love, D.; Worah, D.; Lim, K.

    1988-01-01

    The magnetic susceptibility mechanism for MR imaging contrast enhancement has the advantage of providing useful information, such as cerebral blood flow, without crossing the blood-brain barrier. In this paper the authors report the use of a highly effective, relatively nontoxic chelate as a magnetic susceptibility agent. Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA) has an extremely low acute toxicity (LD-50, intravenous, mice ∼ 40 mmol/kg). Doses of 1 mmol/kg and 2 mmol/kg Dy-DTPA-BMA lowered the initial signal intensity 63% to 57%, respectively. The utility of this technique in detecting areas of reduced blood flow within the brain was demonstrated by imaging a rabbit with a cerebral perfusion deficit

  3. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... in cerebral hemodynamics than noncontrast-enhanced imaging. The results of the deconvolution analysis suggested that perfusion calculation by conventional tracer kinetic methods may be impracticable because of nonlinear effects in contrast-enhanced MR imaging....

  4. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...

  5. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1996-01-01

    PURPOSE: To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS: Five healthy volunteers (aged...... to be in accordance with results obtained by other methods. Noncontrast functional MR (fMR) imaging showed signal increases in gray matter, but also inconsistent changes in some white matter regions. CONCLUSION: In this experiment, contrast-enhanced imaging seemed to show a somewhat higher sensitivity towards changes...

  6. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    Science.gov (United States)

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  7. Dynamic susceptibility contrast magnetic resonance imaging in neuropsychiatry: present utility and future promise

    International Nuclear Information System (INIS)

    Renshaw, P.F.; Levin, J.M.; Kaufman, M.J.; Ross, M.H.; Lewis, R.F.; Harris, G.J.

    1997-01-01

    Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) provides a noninvasive means to create high resolution maps of the regional distribution of cerebral blood volume (CBV). Most DSC MRI studies conducted to date have focused on the evaluation of patients with cerebral neoplasms, ischemia or infarction, and epilepsy. However, preliminary work suggests that DSC MRI may also provide clinically important information for the evaluation of patients with neuropsychiatric disorders, especially dementia and schizophrenia. Additionally, with appropriate modification, DSC MRI may be used to reliably evaluate the effects of pharmacological challenges on cerebral hemodynamics. As pharmacotherapy is an important component in the treatment of a range of psychiatric disorders, the dynamic assessment of changes in cerebral perfusion associated with drug administration may ultimately lead to the development of ''brain function tests'' for a wide range of disorders. (orig.)

  8. Cerebral Hemodynamics in a Healthy Population Measured by Dynamic Susceptibility Contrast MR Imaging

    International Nuclear Information System (INIS)

    Helenius, J.; Soinne, L.; Tatlisumak, T.; Kaste, M.; Aronen, H.J.

    2003-01-01

    Purpose: To establish reference data and to study age-dependency for cerebral perfusion in various regions of the brain in a healthy population. Material and Methods: Eighty healthy subjects of both genders from 22 to 85 years of age were studied with spin echo echo-planar dynamic susceptibility contrast MR imaging (DSC MRI) at 1.5 T. Cerebral blood volume (CBV), cerebral blood flow (CBF), and contrast agent mean transit time (MTT) were calculated bilaterally for 20 distinct neuro anatomic structures. Results: In gray matter, the following values were found (mean ± SD): CBV (4.6 ± 1.0 ml/100 g), CBF (94.2 ± 23.0 ml/100 g/min), and MTT (3.0 ± 0.6 s), and in white matter: CBV (1.3 ± 0.4 ml/100 g), CBF (19.6 ± 5.8 ml/100 g/min), and MTT (4.3 ± 0.7 s). The perfusion parameters did not change with age, except for a tendency to an increase in gray matter MTT and CBV. Males exhibited higher MTT and CBV than females. No hemispheric difference was found in either gender. Conclusion: Cerebral hemodynamics can be assessed with DSC MRI. Age itself seems to have only a marginal effect on cerebral perfusion in healthy population

  9. Cerebral Hemodynamics in a Healthy Population Measured by Dynamic Susceptibility Contrast MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Helenius, J.; Soinne, L.; Tatlisumak, T.; Kaste, M. [Helsinki Univ. Central Hospital (Finland). Dept. of Neurology; Perkioe, J.; Salonen, O.; Savolainen, S. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Oestergaard, L. [Aarhus Univ. Hospital (Denmark). Dept. of Neuroradiology; Carano, R.A.D. [Synarc Inc., San Francisco, CA (United States); Aronen, H.J. [Helsinki Brain Research Center (Finland). Functional Brain Imaging Unit

    2003-09-01

    Purpose: To establish reference data and to study age-dependency for cerebral perfusion in various regions of the brain in a healthy population. Material and Methods: Eighty healthy subjects of both genders from 22 to 85 years of age were studied with spin echo echo-planar dynamic susceptibility contrast MR imaging (DSC MRI) at 1.5 T. Cerebral blood volume (CBV), cerebral blood flow (CBF), and contrast agent mean transit time (MTT) were calculated bilaterally for 20 distinct neuro anatomic structures. Results: In gray matter, the following values were found (mean {+-} SD): CBV (4.6 {+-} 1.0 ml/100 g), CBF (94.2 {+-} 23.0 ml/100 g/min), and MTT (3.0 {+-} 0.6 s), and in white matter: CBV (1.3 {+-} 0.4 ml/100 g), CBF (19.6 {+-} 5.8 ml/100 g/min), and MTT (4.3 {+-} 0.7 s). The perfusion parameters did not change with age, except for a tendency to an increase in gray matter MTT and CBV. Males exhibited higher MTT and CBV than females. No hemispheric difference was found in either gender. Conclusion: Cerebral hemodynamics can be assessed with DSC MRI. Age itself seems to have only a marginal effect on cerebral perfusion in healthy population.

  10. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    DEFF Research Database (Denmark)

    Falk, Anna; Fahlström, Markus; Rostrup, Egill

    2014-01-01

    INTRODUCTION: Perfusion magnetic resonance imaging (MRI) can be used in the pre-operative assessment of brain tumours. The aim of this prospective study was to identify the perfusion parameters from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) perfusion imaging...... written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n = 7) gliomas. Statistical analysis of differences between...

  11. Magnetic Resonance Imaging Susceptibility-Weighted Imaging Lesion and Contrast Enhancement May Represent Infectious Intracranial Aneurysm in Infective Endocarditis.

    Science.gov (United States)

    Cho, Sung-Min; Rice, Cory; Marquardt, Robert J; Zhang, Lucy Q; Khoury, Jean; Thatikunta, Prateek; Buletko, Andrew B; Hardman, Julian; Uchino, Ken; Wisco, Dolora

    2017-01-01

    Infectious intracranial aneurysm (IIA) can complicate infective endocarditis (IE). We aimed to describe the magnetic resonance imaging (MRI) characteristics of IIA. We reviewed IIAs among 116 consecutive patients with active IE by conducting a neurological evaluation at a single tertiary referral center from January 2015 to July 2016. MRIs and digital cerebral angiograms (DSA) were reviewed to identify MRI characteristics of IIAs. MRI susceptibility weighted imaging (SWI) was performed to collect data on cerebral microbleeds (CMBs) and sulcal SWI lesions. Out of 116 persons, 74 (63.8%) underwent DSA. IIAs were identified in 13 (17.6% of DSA, 11.2% of entire cohort) and 10 patients with aneurysms underwent MRI with SWI sequence. Nine (90%) out of 10 persons with IIAs had CMB >5 mm or sulcal lesions in SWI (9 in sulci, 6 in parenchyma, and 5 in both). Five out of 8 persons who underwent MRI brain with contrast had enhancement within the SWI lesions. In a multivariate logistic regression analysis, both sulcal SWI lesions (p < 0.001, OR 69, 95% CI 7.8-610) and contrast enhancement (p = 0.007, OR 16.5, 95% CI 2.3-121) were found to be significant predictors of the presence of IIAs. In the individuals with IE who underwent DSA and MRI, we found that neuroimaging characteristics, such as sulcal SWI lesion with or without contrast enhancement, are associated with the presence of IIA. © 2017 S. Karger AG, Basel.

  12. Contrast enhanced susceptibility weighted imaging (CE-SWI) of the mouse brain using ultrasmall superparamagnetic ironoxide particles (USPIO)

    International Nuclear Information System (INIS)

    Hamans, B.C.; Heerschap, A.; Barth, M.; Leenders, W.P.

    2006-01-01

    Susceptibility weighted imaging (SWI) has been introduced as a novel approach to visualize the venous vasculature in the human brain. With SWI, small veins in the brain are depicted based on the susceptibility difference between deoxyhaemoglobin in the veins and surrounding tissue, which is further enhanced by the use of MR phase information. In this study we applied SWI in the mouse brain using an exogenous iron-based blood-pool contrast agent, with the aims of further enhancing the susceptibility effect and allowing the visualization of individual veins and arteries. Contrast enhanced (CE-) SWI of the brain was performed on healthy mice and mice carrying intracerebral glioma xenografts. This study demonstrates that detailed vascular information in the mouse brain can be obtained by using CE-SWI and is substantially enhanced compared to native SWI (i.e. without contrast agent). CE-SWI images of tumour-bearing mice were directly compared to histology, confirming that CE-SWI depicts the vessels supplying and draining the tumour. We propose that CE-SWI is a very promising tool for the characterization of tumour vasculature. (orig.)

  13. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jaernum, Hanna; Steffensen, Elena G.; Simonsen, Carsten Wiberg; Jensen, Finn Taagehoej [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Knutsson, Linda [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Fruend, Ernst-Torben [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); GE Healthcare - Applied Science Lab Europe, Aalborg (Denmark); Lundbye-Christensen, Soeren [Aalborg Hospital/Aarhus University Hospital, Department of Cardiology, Center for Cardiovascular Research, Aalborg (Denmark); Shankaranarayanan, Ajit [Global Applied Science Lab, GE Healthcare, Menlo Park, CA (United States); Alsop, David C. [Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Larsson, Elna-Marie [Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden)

    2010-04-15

    The purpose of this study was to compare the non-invasive 3D pseudo-continuous arterial spin labelling (PC ASL) technique with the clinically established dynamic susceptibility contrast perfusion magnetic resonance imaging (DSC-MRI) for evaluation of brain tumours. A prospective study of 28 patients with contrast-enhancing brain tumours was performed at 3 T using DSC-MRI and PC ASL with whole-brain coverage. The visual qualitative evaluation of signal enhancement in tumour was scored from 0 to 3 (0 = no signal enhancement compared with white matter, 3 = pronounced signal enhancement with equal or higher signal intensity than in grey matter/basal ganglia). The extent of susceptibility artefacts in the tumour was scored from 0 to 2 (0 = no susceptibility artefacts and 2 = extensive susceptibility artefacts (maximum diameter > 2 cm)). A quantitative analysis was performed with normalised tumour blood flow values (ASL nTBF, DSC nTBF): mean value for region of interest (ROI) in an area with maximum signal enhancement/the mean value for ROIs in cerebellum. There was no difference in total visual score for signal enhancement between PC ASL and DSC relative cerebral blood flow (p = 0.12). ASL had a lower susceptibility-artefact score than DSC-MRI (p = 0.03). There was good correlation between DSC nTBF and ASL nTBF values with a correlation coefficient of 0.82. PC ASL is an alternative to DSC-MRI for the evaluation of perfusion in brain tumours. The method has fewer susceptibility artefacts than DSC-MRI and can be used in patients with renal failure because no contrast injection is needed. (orig.)

  14. Combined value of susceptibility weighted imaging and dynamic susceptibility-weighted contrast-enhanced MR perfusion-weighted imaging in brain astrocytoma grading

    International Nuclear Information System (INIS)

    Wang Xiaochun; Zhang Hui; Qin Jiangbo; Wang Le; Wu Xiaofeng

    2012-01-01

    Objective: To assess the value of combination of susceptibility weighted imaging (SWI) and dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion-weighted magnetic resonance imaging in astrocytoma grading. Methods: SWI and DSC scans were performed in 82 patients with pathologically confirmed astrocytoma. The patient group consisted of grade Ⅱ (15), grade Ⅲ (10), and grade Ⅳ (57). The intratumoral susceptibility signal intensity (ITSS) and relative cerebral blood volume (rCBV) max were used to determine the grade of astrocytomas by Kruskal Wallis test, Welch test, Spearman correlation coefficients, Pearson correlation coefficients, and receiver operating characteristic curve (ROC)statistic methods. Results: There were no ITSS in 14 cases of low-grade astrocytomas, the degree of ITSS were grade 1 to 3 in anaplastic astrocytomas, the degree of ITSS were grade 3 in all of the glioblastomas, the degree of ITSS were significant difference in all grades (H=71.96, P<0.01). rCBV max in grade Ⅱ, grade Ⅲ and grade Ⅳ astrocytomas were 1.26 ± 0.42, 3.59 ± 2.09 and 8.34 ± 1.16 respectively, rCBV max were significant difference in all grades (F'=681.72, P<0.01). ITSS showed significant correlation with rCBV max (r=0.72, P<0.01) and tumor grades (r=0.89, P<0.01), and rCBV and tumor grades showed significant correlation (r=0.78, P<0.01). Area under the ROC curve application SWI, DSC, SWI and DSC in differentiation of the grade Ⅱ and grade Ⅲ astrocytomas were 0.99, 0.93, 1.00, differentiate grade Ⅲ from grade Ⅳ were 0.70, 0.94, 0.94, and differentiate high-grade from low-grade astrocytomas were 1.00, 0.99, 1.00. Conclusions: ITSS is helpful to determine the grade of astrocytomas. The use of SWI in combination with DSC may improve the diagnostic accuracy of astrocytoma grading. (authors)

  15. Neural - levelset shape detection segmentation of brain tumors in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar

    2008-01-01

    A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)

  16. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging.

    Science.gov (United States)

    Rempp, K A; Brix, G; Wenz, F; Becker, C R; Gückel, F; Lorenz, W J

    1994-12-01

    Quantification of regional cerebral blood flow (rCBF) and volume (rCBV) with dynamic magnetic resonance (MR) imaging. After bolus administration of a paramagnetic contrast medium, rapid T2*-weighted gradient-echo images of two sections were acquired for the simultaneous creation of concentration-time curves in the brain-feeding arteries and in brain tissue. Absolute rCBF and rCBV values were determined for gray and white brain matter in 12 subjects with use of principles of the indicator dilution theory. The mean rCBF value in gray matter was 69.7 mL/min +/- 29.7 per 100 g tissue and in white matter, 33.6 mL/min +/- 11.5 per 100 g tissue; the average rCBV was 8.0 mL +/- 3.1 per 100 g tissue and 4.2 mL +/- 1.0 per 100 g tissue, respectively. An age-related decrease in rCBF and rCBV for gray and white matter was observed. Preliminary data demonstrate that the proposed technique allows the quantification of rCBF and rCBV. Although the results are in good agreement with data from positron emission tomography studies, further evaluation is needed to establish the validity of method.

  17. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    International Nuclear Information System (INIS)

    Yoshino, Ayako

    1998-01-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds (ΔRT2) was calculated by the following equation: ΔRT2 = (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  18. Efficacy of dynamic susceptibility contrast MRI using echo-planar imaging in differential diagnosis of breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Ayako [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    It has been shown that T1-weighted dynamic MR imaging is a useful method in differentiating malignant breast tumors from benign lesions. Invasive breast carcinomas enhance more rapidly than benign lesions such as fibroadenomas, papillomas, and proliferative fibrocystic diseases. However, significant overlap in the dynamic profile of benign and malignant lesions may occur, resulting in relatively low specificity, which is an inherent limitation of this technique. The author attempted to improve diagnostic accuracy by utilizing dynamic susceptibility contrast MR imaging (DSC-MRI) with a single-shot echo-planar imaging sequence. Twenty-two patients underwent DSC-MRI using a 1.5-T unit (Magnetom Vision, Siemens). Images were obtained before, during and after the bolus injection of 20 mL of gadopentetate dimeglumine. The signal reduction rate within the first 30 seconds ({Delta}RT2) was calculated by the following equation: {Delta}RT2 (postcontrast signal intensity-precontrast signal intensity) /precontrast signal intensity. A rapid, strong decrease in signal intensity was observed on the first pass of the contrast material in all cases of carcinoma, whereas no or only a minimal decrease in signal intensity was observed in all but one of the benign lesions. This method seems to be more accurate than T1-weighted dynamic MR imaging in the differentiation benign and malignant breast lesions. Since DSC-MRI can be performed quickly, subsequent conventional T1-weighted imaging can provide additional information about the morphologic features of lesions, to further support the diagnosis. In conclusion, DSC-MRI seems to be a promising method for the accurate preoperative assessment of breast lesions. (author)

  19. Comparison of MR imaging after administration of dysprosium-based magnetic-susceptibility contrast media with diffusion-weighted MR imaging in evaluation of regional cerebral ischemia

    International Nuclear Information System (INIS)

    Moseley, M.E.; Kucharczyk, J.; Kurhanewicz, J.; Mintorovitch, J.; Cohen, Y.; Rocklage, S.; Quay, S.C.; Norman, D.

    1989-01-01

    This paper reports on a study to establish whether a nonionic T2-shortening contrast agent, Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA), would facilitate early detection of stroke-induced cerebral perfusion deficits. The sensitivity of susceptibility-enhanced MR imaging was compared with that of diffusion-weighted MR imaging in the same cats subjected to unilateral occlusion of the middle cerebral artery (MCA). A 2-T unit, equipped with self-shielded gradient coils (± 20 G/cm, 15-cm bore size), was used in conjunction with an 8.5-cm inner diameter low-pass bird cage proton imaging coil. Diffusion-weighted images displayed increased signal intensity in the ischemic MCA territory less than 1 hour after occlusion, whereas T2-weighted MR images without contrast enhancement usually failed to depict injury for 2--3 hours after toke. With contrast administration (0.5 mmoles/kg of Dy-DTPA-BMA), however, T2-weighted images revealed perfusion deficits (hyperintensity) within 1 hour after MCA occlusion, and these corresponded to the anatomic regions of ischemic injury shown on diffusion-weighted MR images

  20. High-field, high-resolution, susceptibility-weighted magnetic resonance imaging: improved image quality by addition of contrast agent and higher field strength in patients with brain tumors

    International Nuclear Information System (INIS)

    Pinker, K.; Noebauer-Huhmann, I.M.; Szomolanyi, P.; Weber, M.; Grabner, G.; Trattnig, S.; Stavrou, I.; Knosp, E.; Hoeftberger, R.; Stadlbauer, A.

    2008-01-01

    To demonstrate intratumoral susceptibility effects in malignant brain tumors and to assess visualization of susceptibility effects before and after administration of the paramagnetic contrast agent MultiHance (gadobenate dimeglumine; Bracco Imaging), an agent known to have high relaxivity, with respect to susceptibility effects, image quality, and reduction of scan time. Included in the study were 19 patients with malignant brain tumors who underwent high-resolution, susceptibility-weighted (SW) MR imaging at 3 T before and after administration of contrast agent. In all patients, Multihance was administered intravenously as a bolus (0.1 mmol/kg body weight). MR images were individually evaluated by two radiologists with previous experience in the evaluation of pre- and postcontrast 3-T SW MR images with respect to susceptibility effects, image quality, and reduction of scan time. In the 19 patients 21 tumors were diagnosed, of which 18 demonstrated intralesional susceptibility effects both in pre- and postcontrast SW images, and 19 demonstrated contrast enhancement in both SW images and T1-weighted spin-echo MR images. Conspicuity of susceptibility effects and image quality were improved in postcontrast images compared with precontrast images and the scan time was also reduced due to decreased TE values from 9 min (precontrast) to 7 min (postcontrast). The intravenous administration of MultiHance, an agent with high relaxivity, allowed a reduction of scan time from 9 min to 7 min while preserving excellent susceptibility effects and image quality in SW images obtained at 3 T. Contrast enhancement and intralesional susceptibility effects can be assessed in one sequence. (orig.)

  1. Chronologic Evaluation of Cerebral Hemodynamics by Dynamic Susceptibility Contrast Magnetic Resonance Imaging After Indirect Bypass Surgery for Moyamoya Disease.

    Science.gov (United States)

    Ishii, Yosuke; Tanaka, Yoji; Momose, Toshiya; Yamashina, Motoshige; Sato, Akihito; Wakabayashi, Shinichi; Maehara, Taketoshi; Nariai, Tadashi

    2017-12-01

    Although indirect bypass surgery is an effective treatment option for patients with ischemic-onset moyamoya disease (MMD), the time point after surgery at which the patient's hemodynamic status starts to improve and the time point at which the improvement reaches a maximum have not been known. The objective of the present study is to evaluate the hemodynamic status time course after indirect bypass surgery for MMD, using dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). We retrospectively analyzed the cases of 25 patients with MMD (37 sides; mean age, 14.7 years; range, 3-36 years) who underwent indirect bypass surgery and repeated DSC-MRI measurement within 6 months after the operation. The difference in the mean transit time (MTT) between the target regions and the control region (cerebellum) was termed the MTT delay, and we measured the MTT delay's chronologic changes after surgery. The postoperative MTT delay was 1.81 ± 1.16 seconds within 1 week after surgery, 1.57 ± 1.01 at weeks 1-2, 1.55 ± 0.68 at weeks 2-4, 1.32 ± 0.68 at months 1-2, 0.95 ± 0.32 at months 2-3, and 0.77 ± 0.33 at months 3-6. Compared with the preoperative value (2.11 ± 0.98 seconds), the MTT delay decreased significantly from 2 to 4 weeks after surgery (P surgery began soon after surgery and gradually reached a maximum at 3 months after surgery. DSC-MRI detected small changes in hemodynamic improvement, which are suspected to be caused by the initiation of angiogenesis and arteriogenesis in the early postoperative period. Copyright © 2017. Published by Elsevier Inc.

  2. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Xiao, Hua-Feng; Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin; Lou, Xin; Gui, Qiu-Ping; Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan

    2015-01-01

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10 -3 mm 2 /s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  3. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hua-Feng [302 Hospital of Chinese People' s Liberation Army, Department of Radiology, Beijing (China); Chen, Zhi-Ye; Wang, Yu-Lin; Wang, Yan; Ma, Lin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); Lou, Xin [People' s Liberation Army General Hospital, Department of Radiology, Beijing (China); University of California, Department of Neurology, Los Angeles, CA (United States); Gui, Qiu-Ping [People' s Liberation Army General Hospital, Department of Pathology, Beijing (China); Shi, Kai-Ning; Zhou, Zhen-Yu; Zheng, Dan-Dan [General Electric Healthcare (China) Co., Ltd., Beijing; Wang, Danny J.J. [University of California, Department of Neurology, Los Angeles, CA (United States)

    2015-12-15

    We hypothesized that three-dimensional pseudocontinuous arterial spin labelling (pCASL) may have similar efficacy in astrocytic tumour grading as dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI), and the grading accuracy may be further improved when combined with apparent diffusion coefficient (ADC) values. Forty-three patients with astrocytic tumours were studied using diffusion weighted imaging (DWI), pCASL, and DSC-PWI. Histograms of ADC and normalized tumour cerebral blood flow values (nCBF on pCASL and nrCBF on DSC-PWI) were measured and analyzed. The mean 10 % ADC value was the DWI parameter that provided the best differentiation between low-grade astrocytoma (LGA) and high-grade astrocytoma (HGA). The nCBF and nrCBF (1.810 ± 0.979 and 2.070 ± 1.048) in LGA were significantly lower than those (4.505 ± 2.270 and 5.922 ± 2.630) in HGA. For differentiation between LGA and HGA, the cutoff values of 0.764 x 10{sup -3} mm{sup 2}/s for mean 10 % ADC, 2.374 for nCBF, and 3.464 for nrCBF provided the optimal accuracy (74.4 %, 86.1 %, and 88.6 %, respectively). Combining the ADC values with nCBF or nrCBF could further improve the grading accuracy to 97.7 % or 95.3 %, respectively. pCASL is an alternative to DSC-PWI for astrocytic tumour grading. The combination of DWI and contrast-free pCASL offers a valuable choice in patients with risk factors. (orig.)

  4. Differentiating between Central Nervous System Lymphoma and High-grade Glioma Using Dynamic Susceptibility Contrast and Dynamic Contrast-enhanced MR Imaging with Histogram Analysis.

    Science.gov (United States)

    Murayama, Kazuhiro; Nishiyama, Yuya; Hirose, Yuichi; Abe, Masato; Ohyu, Shigeharu; Ninomiya, Ayako; Fukuba, Takashi; Katada, Kazuhiro; Toyama, Hiroshi

    2018-01-10

    We evaluated the diagnostic performance of histogram analysis of data from a combination of dynamic susceptibility contrast (DSC)-MRI and dynamic contrast-enhanced (DCE)-MRI for quantitative differentiation between central nervous system lymphoma (CNSL) and high-grade glioma (HGG), with the aim of identifying useful perfusion parameters as objective radiological markers for differentiating between them. Eight lesions with CNSLs and 15 with HGGs who underwent MRI examination, including DCE and DSC-MRI, were enrolled in our retrospective study. DSC-MRI provides a corrected cerebral blood volume (cCBV), and DCE-MRI provides a volume transfer coefficient (K trans ) for transfer from plasma to the extravascular extracellular space. K trans and cCBV were measured from a round region-of-interest in the slice of maximum size on the contrast-enhanced lesion. The differences in t values between CNSL and HGG for determining the most appropriate percentile of K trans and cCBV were investigated. The differences in K trans , cCBV, and K trans /cCBV between CNSL and HGG were investigated using histogram analysis. Receiver operating characteristic (ROC) analysis of K trans , cCBV, and K trans /cCBV ratio was performed. The 30 th percentile (C30) in K trans and 80 th percentile (C80) in cCBV were the most appropriate percentiles for distinguishing between CNSL and HGG from the differences in t values. CNSL showed significantly lower C80 cCBV, significantly higher C30 K trans , and significantly higher C30 K trans /C80 cCBV than those of HGG. In ROC analysis, C30 K trans /C80 cCBV had the best discriminative value for differentiating between CNSL and HGG as compared to C30 K trans or C80 cCBV. The combination of K trans by DCE-MRI and cCBV by DSC-MRI was found to reveal the characteristics of vascularity and permeability of a lesion more precisely than either K trans or cCBV alone. Histogram analysis of these vascular microenvironments enabled quantitative differentiation between

  5. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  6. Cerebral perfusion MR imaging using FAIR-HASTE in chronic carotid occlusive disease. Comparison with dynamic susceptibility contrast-perfusion MR imaging

    International Nuclear Information System (INIS)

    Ida, Kentaro; Akaki, Shiro; Sei, Tetsuro; Kanazawa, Susumu; Tsunoda, Masatoshi

    2006-01-01

    To determine the efficacy of flow-sensitive alternating inversion recovery using half-Fourier single-shot turbo spin-echo (FAIR-HASTE) in detecting cerebral hypoperfusion in chronic carotid occlusive disease, we subjected 12 patients with various degrees of cervical internal carotid artery stenoses and/or occlusion (Stenosis group) and 24 volunteers (Normal group) to FAIR-HASTE. In addition, 10 out of 12 patients in the Stenosis group underwent dynamic susceptibility contrast-perfusion magnetic resonance imaging (DSC-pMRI) before and after revascularization in the dominantly affected side. The absolute asymmetry indexes (AIs) of both cerebral hemispheres in the Normal and Stenosis groups were compared in FAIR-HASTE. In addition, the AIs were compared with those in the Stenosis group before and after revascularization in both FAIR-HASTE and regional cerebral blood flow (rCBF), calculated with DSC-pMRI. A statistically significant difference was recognized between the AIs in the Normal and Stenosis groups (AI=2.25±1.92, 8.09±4.60, respectively; p<0.0001). Furthermore, in the Stenosis group the AIs on both FAIR-HASTE (8.88±4.93, 2.22±1.79, respectively; p=0.0003) and rCBF (7.13±3.57, 1.25±1.33, respectively; p=0.0003) significantly decreased after revascularization. In the Stenosis group, before revascularization, signal intensity on both FAIR-HASTE and rCBF had a tendency to be lower in the dominantly affected side. FAIR-HASTE imaging was useful in the detection and evaluation of cerebral hypoperfusion in chronic occlusive carotid disease. (author)

  7. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors.

    Science.gov (United States)

    Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-06-01

    Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.

  8. Paradoxical perfusion metrics of high-grade gliomas with an oligodendroglioma component: quantitative analysis of dynamic susceptibility contrast perfusion MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sunwoo, Leonard; Park, Sun-Won [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Yoo, Roh-Eul; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-hoon; Sohn, Chul-Ho [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae Min; Lee, Se-Hoon [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University Hospital, Department of Neurosurgery, Seoul (Korea, Republic of); Won, Jae-Kyung; Park, Sung-Hye [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2015-11-15

    The aim of this study is to investigate perfusion characteristics of glioblastoma with an oligodendroglioma component (GBMO) compared with conventional glioblastoma (GBM) using dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) imaging and microvessel density (MVD). The study was approved by the institutional review board. Newly diagnosed high-grade glioma patients were enrolled (n = 72; 20 GBMs, 14 GBMOs, 19 anaplastic astrocytomas (AAs), 13 anaplastic oligodendrogliomas (AOs), and six anaplastic oligoastrocytomas (AOAs)). All participants underwent preoperative MR imaging including DSC perfusion MR imaging. Normalized cerebral blood volume (nCBV) values were analyzed using a histogram approach. Histogram parameters were subsequently compared across each tumor subtype and grade. MVD was quantified by immunohistochemistry staining and correlated with perfusion parameters. Progression-free survival (PFS) was assessed according to the tumor subtype. GBMO displayed significantly reduced nCBV values compared with GBM, whereas grade III tumors with oligodendroglial components (AO and AOA) exhibited significantly increased nCBV values compared with AA (p < 0.001). MVD analyses revealed the same pattern as nCBV results. In addition, a positive correlation between MVD and nCBV values was noted (r = 0.633, p < 0.001). Patients with oligodendroglial tumors exhibited significantly increased PFS compared with patients with pure astrocytomas in each grade. In contrast to grade III tumors, the presence of oligodendroglial components in grade IV tumors resulted in paradoxically reduced perfusion metrics and MVD. In addition, patients with GBMO exhibited a better clinical outcome compared with patients with GBM. (orig.)

  9. Combined use of susceptibility weighted magnetic resonance imaging sequences and dynamic susceptibility contrast perfusion weighted imaging to improve the accuracy of the differential diagnosis of recurrence and radionecrosis in high-grade glioma patients.

    Science.gov (United States)

    Kim, Tae-Hyung; Yun, Tae Jin; Park, Chul-Kee; Kim, Tae Min; Kim, Ji-Hoon; Sohn, Chul-Ho; Won, Jae Kyung; Park, Sung-Hye; Kim, Il Han; Choi, Seung Hong

    2017-03-21

    Purpose was to assess predictive power for overall survival (OS) and diagnostic performance of combination of susceptibility-weighted MRI sequences (SWMRI) and dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) for differentiation of recurrence and radionecrosis in high-grade glioma (HGG). We enrolled 51 patients who underwent radiation therapy or gamma knife surgeryfollowed by resection for HGG and who developed new measurable enhancement more than six months after complete response. The lesions were confirmed as recurrence (n = 32) or radionecrosis (n = 19). The mean and each percentile value from cumulative histograms of normalized CBV (nCBV) and proportion of dark signal intensity on SWMRI (proSWMRI, %) within enhancement were compared. Multivariate regression was performed for the best differentiator. The cutoff value of best predictor from ROC analysis was evaluated. OS was determined with Kaplan-Meier method and log-rank test. Recurrence showed significantly lower proSWMRI and higher mean nCBV and 90th percentile nCBV (nCBV90) than radionecrosis. Regression analysis revealed both nCBV90 and proSWMRI were independent differentiators. Combination of nCBV90 and proSWMRI achieved 71.9% sensitivity (23/32), 100% specificity (19/19) and 82.3% accuracy (42/51) using best cut-off values (nCBV90 > 2.07 and proSWMRI≤15.76%) from ROC analysis. In subgroup analysis, radionecrosis with nCBV > 2.07 (n = 5) showed obvious hemorrhage (proSWMRI > 32.9%). Patients with nCBV90 > 2.07 and proSWMRI≤15.76% had significantly shorter OS. In conclusion, compared with DSC PWI alone, combination of SWMRI and DSC PWI have potential to be prognosticator for OS and lower false positive rate in differentiation of recurrence and radionecrosis in HGG who develop new measurable enhancement more than six months after complete response.

  10. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Science.gov (United States)

    Löbel, Ulrike; Forkert, Nils Daniel; Schmitt, Peter; Dohrmann, Thorsten; Schroeder, Maria; Magnus, Tim; Kluge, Stefan; Weiler-Normann, Christina; Bi, Xiaoming; Fiehler, Jens; Sedlacik, Jan

    2016-01-01

    Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syndrome (HUS) and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI) revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a plausible cause. Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years) were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2. SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnormally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P effect of blood transfusions in patients with HUS and neurological symptoms.

  11. Susceptibility tensor imaging (STI) of the brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu

    2017-04-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Susceptibility Tensor Imaging (STI) of the Brain

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu

    2016-01-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169

  13. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    International Nuclear Information System (INIS)

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M.

    2006-01-01

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice

  14. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M. [Karolinska Univ. Hospital, Stockholm (Sweden). Div. of Radiology

    2006-11-15

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using {sup 99m}Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice.

  15. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    Science.gov (United States)

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  16. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    Science.gov (United States)

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from

  17. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    International Nuclear Information System (INIS)

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A.

    2008-01-01

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (SE)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease

  18. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...... phasors attain predetermined values for predetermined spatial frequencies, and the phasor value of the specific resolution element of the spatial phase mask corresponds to a distinct intensity level of the image of the resolution element in the intensity pattern, and a spatial phase filter for phase...... shifting of a part of the electromagntic radiation, in combination with an imaging system for generation of the intensity pattern by interference in the image plane of the imaging system between the part of the electromagnetic raidation that has been phase shifted by the phase filter and the remaining part...

  19. Autoregressive moving average (ARMA) model applied to quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki

    2003-01-01

    The purpose of this study was to investigate the feasibility of the autoregressive moving average (ARMA) model for quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in comparison with deconvolution analysis based on singular value decomposition (DA-SVD). Using computer simulations, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) modeled as a gamma-variate function under various CBFs, cerebral blood volumes and signal-to-noise ratios (SNRs) for three different types of residue function (exponential, triangular, and box-shaped). We also considered the effects of delay and dispersion in AIF. The ARMA model and DA-SVD were used to estimate CBF values from the simulated concentration-time curves in the VOI and AIFs, and the estimated values were compared with the assumed values. We found that the CBF value estimated by the ARMA model was more sensitive to the SNR and the delay in AIF than that obtained by DA-SVD. Although the ARMA model considerably overestimated CBF at low SNRs, it estimated the CBF more accurately than did DA-SVD at high SNRs for the exponential or triangular residue function. We believe this study will contribute to an understanding of the usefulness and limitations of the ARMA model when applied to quantification of CBF with DSC-MRI. (author)

  20. Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging Demonstrates Reduced Periventricular Cerebral Blood Flow in Dogs with Ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Martin J. Schmidt

    2017-08-01

    Full Text Available The nature of ventriculomegaly in dogs is still a matter of debate. Signs of increased intraventricular pressure and atrophy of the cerebral white matter have been found in dogs with ventriculomegaly, which would imply increased intraventricular pressure and, therefore, a pathological condition, i.e., to some extent. Reduced periventricular blood flow was found in people with high elevated intraventricular pressure. The aim of this study was to compare periventricular brain perfusion in dogs with and without ventriculomegaly using perfusion weighted-magnetic-resonance-imaging to clarify as to whether ventriculomegaly might be associated with an increase in intraventricular pressure. Perfusion was measured in 32 Cavalier King Charles spaniels (CKCS with ventriculomegaly, 10 CKCSs were examined as a control group. Cerebral blood flow (CBF was measured using free-hand regions of interest (ROI in five brain regions: periventricular white matter, caudate nucleus, parietal cortex, hippocampus, and thalamus. CBF was significantly lower in the periventricular white matter of the dogs with ventriculomegaly (p = 0.0029 but not in the other ROIs. Reduction of periventricular CBF might imply increase of intraventricular pressure in ventriculomegaly.

  1. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Directory of Open Access Journals (Sweden)

    Ulrike Löbel

    Full Text Available Conventional magnetic resonance imaging (MRI of patients with hemolytic uremic syndrome (HUS and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF and aimed to identify a plausible cause.Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved magnetic resonance angiography (4D MRA assessed cerebral hemodynamics by global time-to-peak (TTP, as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2.SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4. Hemoglobin at the time of MRI (n = 35 was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4; hematocrit (n = 33 was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2. Creatinine was abnormally high in 30 of 36 patients (83% (range, 0.8 to 9.7; mean, 3.7 ± 2.2. SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015, hematocrit (r = 0.65, P < 0.001, and TTP (r = 0.35, P = 0.036. No correlation of SWI with blood pressure, heart rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss of venous contrast is related to an increase in CBF secondary to severe anemia related to HUS. SWI contrast of patients with pathological conventional MRI findings was significantly lower compared to patients with normal MRI (mean SWI score, 1

  2. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  3. The role of dynamic susceptibility contrast-enhanced perfusion MR imaging in differentiating between infectious and neoplastic focal brain lesions: results from a cohort of 100 consecutive patients.

    Directory of Open Access Journals (Sweden)

    Valdeci Hélio Floriano

    Full Text Available BACKGROUND AND PURPOSE: Differentiating between infectious and neoplastic focal brain lesions that are detected by conventional structural magnetic resonance imaging (MRI may be a challenge in routine practice. Brain perfusion-weighted MRI (PWI may be employed as a complementary non-invasive tool, providing relevant data on hemodynamic parameters, such as the degree of angiogenesis of lesions. We aimed to employ dynamic susceptibility contrast-enhanced perfusion MR imaging (DSC-MRI to differentiate between infectious and neoplastic brain lesions by investigating brain microcirculation changes. MATERIALS AND METHODS: DSC-MRI perfusion studies of one hundred consecutive patients with non-cortical neoplastic (n = 54 and infectious (n = 46 lesions were retrospectively assessed. MRI examinations were performed using a 1.5-T scanner. A preload of paramagnetic contrast agent (gadolinium was administered 30 seconds before acquisition of dynamic images, followed by a standard dose 10 seconds after starting imaging acquisitions. The relative cerebral blood volume (rCBV values were determined by calculating the regional cerebral blood volume in the solid areas of lesions, normalized to that of the contralateral normal-appearing white matter. Discriminant analyses were performed to determine the cutoff point of rCBV values that would allow the differentiation of neoplastic from infectious lesions and to assess the corresponding diagnostic performance of rCBV when using this cutoff value. RESULTS: Neoplastic lesions had higher rCBV values (4.28±2.11 than infectious lesions (0.63±0.49 (p<0.001. When using an rCBV value <1.3 as the parameter to define infectious lesions, the sensitivity of the method was 97.8% and the specificity was 92.6%, with a positive predictive value of 91.8%, a negative predictive value of 98.0%, and an accuracy of 95.0%. CONCLUSION: PWI is a useful complementary tool in distinguishing between infectious and neoplastic brain

  4. Detection of bridging veins draining into superior sagittal sinus by using susceptibility weighted imaging and three dimensional contrast enhancement MR venography

    International Nuclear Information System (INIS)

    Xia Chunhua; Chen Dan; Chen Bing; Wang Yajun; Xia Shiyong; Liu Wenli; Zhang Zhenhua; Wang Hui; Wu Lingqiao

    2011-01-01

    Objective: To use the superior sagittal sinus (SSS) as an example to identify anatomical features of the bridging veins (BVs) draining into the SSS in both susceptibility weighted imaging (SWI) and three dimensional contrast enhancement MR venography (3D-CEMRV) images. Methods: A total of 20 healthy volunteers (40 sides) were examined in this study. The venograms of each patient was obtained from SWI (40 sides out of 20 volunteers) and 3D-CE MRV (40 sides out of 20 volunteers). The data were analyzed by t test. Results: According to their draining location with respect to the SSS, bridging veins were divided into two groups. Between the anterior group and the posterior group were two segments of the SSS into which few bridging veins drained. Observed by 3D-CE MRV and SWI, the average numbers of the anterior group were 1.9±0.6 and 3.2±0.8, respectively, and the average diameters of the anterior group were (3.4±1.1) and (2.1±0.5) mm, respectively. These differences between 3D-CE MRV and SWI images were significant (t=11.23, 9.76, P<0.01). Observed by 3D-CE MRV and SWI, the average numbers of the posterior group were 3.5±1.2 and 5.9±1.1, respectively, and the average diameters of the posterior group were (3.7±0.9) and (2.9±0.7) mm, respectively. The differences between the two technique were significant as well (t=11.51, 8.47, P<0.01). Conclusion: The dural entrance of BVs into the SSS can be identified in both SWI and 3D-CE MRV images. The preoperative venogram by using 3D-CE MRV and SWI is useful to design a individual-tailored surgical approach for the preservation of BVs draining into SSS. SWI outweighs 3D-CE MRV in identifying anatomical features of the dural entrance of BVs into the SSS. (authors)

  5. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko

    2015-06-01

    The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2

  6. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H. (Den Sundhedsfaglige Kandidatuddannelse, Aarhus Universitet Bygning 1264, Aarhus (Denmark); University College Nordjylland, Aalborg (Denmark)), Email: hnt@ucn.dk; Steffensen, E. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark)); Larsson, E. M. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden))

    2012-02-15

    Background. Perfusion magnetic resonance imaging (MRI) is increasingly used in the evaluation of brain tumors. Relative cerebral blood volume (rCBV) is usually obtained by dynamic susceptibility contrast (DSC) MRI using normal appearing white matter as reference region. The emerging perfusion technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose. To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC-MRI using two different regions for normalization and two different measurement approaches. Material and Methods. Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and rCBV maps, with contralateral normal appearing white matter and cerebellum as reference regions. Larger ROIs were drawn for histogram analyses. The type and grade of the gliomas were obtained by histopathology. Statistical comparison was made between diffuse astrocytomas, anaplastic astrocytomas, and glioblastomas. Results. rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r = 0.60) and to the cerebellum (r = 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated (0.61 < r < 0.93), whereas for kurtosis and peak height, the correlation coefficient was about 0.3 when comparing rCBF and rCBV values for the same reference region. Neither rCBF nor rCBV quantification provided a statistically significant difference between the three types of gliomas. However, both rCBF and rCBV tended to increase with tumor grade and to be lower in patients who had undergone resection/treatment. Conclusion. rCBF measurements normalized to white matter

  7. Multiscale image contrast amplification (MUSICA)

    Science.gov (United States)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  8. Contrast-guided image interpolation.

    Science.gov (United States)

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  9. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. © 2014 Wiley Periodicals, Inc.

  10. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  11. Pulse sequences for contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Graves, Martin J.

    2007-01-01

    The theory and application of magnetic resonance imaging (MRI) pulse sequences following the administration of an exogenous contrast agent are discussed. Pulse sequences are categorised according to the contrast agent mechanism: changes in proton density, relaxivity, magnetic susceptibility and resonant frequency shift. Applications in morphological imaging, magnetic resonance angiography, dynamic imaging and cell labelling are described. The importance of optimising the pulse sequence for each application is emphasised

  12. Possible origins of the susceptibility contrast in the brain. Presidential award proceedings

    International Nuclear Information System (INIS)

    Fukunaga, Masaki; Li, T.Q.; Lee, J.; Matsuura, Eiji; Gelderen, P.V.; Zwart, J.A. de; Merkle, H.; Duyn, J.H.

    2011-01-01

    The magnetic susceptibility contrast derived from high resolution T 2 *-weighted magnetic resonance (MR) imaging at ultra high field strength has been used to reveal laminar contrast in the gray matter (GM) and fiber bundle-like structure in the white matter (WM) of the human brain. This contrast has been attributed to subtle variations in the magnetic properties of brain tissue, which possibly reflect varying iron and myelin content and haemoglobin in the microvasculature. To investigate the origin of this contrast, MRI data from postmortem brain samples were compared with histological staining for iron and myelin. The laminar susceptibility variations in GM strongly correlate with local iron content, which generally co-localized with myelin. On the other hand, fiber bundles in white matter, shows strong susceptibility contrast in the absence of iron while myelin is high. The results suggest that iron contributes significantly to susceptibility contrast across the cortical GM, but myelin is the dominant source of susceptibility in WM bundles. (author)

  13. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  14. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Gersing, Alexandra S.; Schwaiger, Benedikt J. [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ankenbrank, Monika; Toth, Vivien; Bauer, Jan S.; Zimmer, Claus [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Janssen, Insa [Technical University Munich, Department of Neurosurgery, Munich (Germany); Kooijman, Hendrik [Philips Healthcare, Hamburg (Germany); Wunderlich, Silke [Technical University Munich, Department of Neurology, Munich (Germany); Preibisch, Christine [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Technical University Munich, Department of Neurology, Munich (Germany)

    2015-12-15

    MR-derived cerebral metabolic rate of oxygen utilization (CMRO{sub 2}) has been suggested to be analogous to PET-derived CMRO{sub 2} and therefore may be used for detection of viable tissue at risk for infarction. The purpose of this study was to evaluate MR-derived CMRO{sub 2} mapping in acute ischemic stroke in relation to established diffusion- and perfusion-weighted imaging. In 23 patients (mean age 63 ± 18.7 years, 11 women) with imaging findings for acute ischemic stroke, relative oxygen extraction fraction was calculated from quantitative transverse relaxation times (T2, T2*) and relative cerebral blood volume using a quantitative blood oxygenation level dependent (BOLD) approach in order to detect a local increase of deoxyhemoglobin. Relative CMRO{sub 2} (rCMRO{sub 2}) maps were calculated by multiplying relative oxygen extraction fraction (rOEF) by cerebral blood flow, derived from PWI. After co-registration, rCMRO{sub 2} maps were evaluated in comparison with apparent diffusion coefficient (ADC) and time-to-peak (TTP) maps. Mean rCMRO{sub 2} values in areas with diffusion-restriction or TTP/ADC mismatch were compared with rCMRO{sub 2} values in the contralateral tissue. In tissue with diffusion restriction, mean rCMRO{sub 2} values were significantly decreased compared to perfusion-impaired (17.9 [95 % confidence interval 10.3, 25.0] vs. 58.1 [95 % confidence interval 50.1, 70.3]; P < 0.001) and tissue in the contralateral hemisphere (68.2 [95 % confidence interval 61.4, 75.0]; P < 0.001). rCMRO{sub 2} in perfusion-impaired tissue showed no significant change compared to tissue in the contralateral hemisphere (58.1 [95 % confidence interval 50.1, 70.3] vs. 66.7 [95 % confidence interval 53.4, 73.4]; P = 0.34). MR-derived CMRO{sub 2} was decreased within diffusion-restricted tissue and stable within perfusion-impaired tissue, suggesting that this technique may be adequate to reveal different pathophysiological stages in acute stroke. (orig.)

  15. Evaluation of potential gastrointestinal contrast agents for echoplanar MR imaging

    International Nuclear Information System (INIS)

    Reimer, P.; Schmitt, F.; Ladebeck, R.; Graessner, J.; Schaffer, B.

    1993-01-01

    The purpose of this study was to investigate approved aqueous gastrointestinal contrast agents for use in abdominal EPI. Conventional and echoplanar MR imaging experiments were performed with 1.0 Tesla whole body systems. Phantom measurements of Gastrografin, barium sulfate suspension, oral gadopentetate dimeglumine, water, and saline were performed. Signal intensity (SI) of aqueous oral barium sulfate and iodine based CT contrast agents was lower on conventional spin-echo (SE), Flash, and Turbo-Flush images than on EP images. The contrast agents exhibited higher SI on T2-weighted SE PE images and TI-time dependence on inversion recovery EP-images. The barium sulfate suspension was administered in volunteers to obtain information about bowel lumen enhancement and susceptibility artifacts. Oral administration of the aqueous barium sulfate suspension increased bowel lumen signal and reduced susceptibility artifacts. (orig.)

  16. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    International Nuclear Information System (INIS)

    Server, Andres; Nakstad, Per H.; Orheim, Tone E.D.; Graff, Bjoern A.; Josefsen, Roger; Kumar, Theresa

    2011-01-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  17. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Nakstad, Per H. [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Oslo (Norway); Orheim, Tone E.D. [Oslo University Hospital, Interventional Centre, Oslo (Norway); Graff, Bjoern A. [Oslo University Hospital-Ullevaal, Department of Radiology and Nuclear Medicine, Oslo (Norway); Josefsen, Roger [Oslo University Hospital-Ullevaal, Department of Neurosurgery, Oslo (Norway); Kumar, Theresa [Oslo University Hospital-Ullevaal, Department of Pathology, Oslo (Norway)

    2011-05-15

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  18. Application of phase contrast imaging to mammography

    International Nuclear Information System (INIS)

    Tohyama, Keiko; Yamada, Katsuhiko; Katafuchi, Tetsuro; Matsuo, Satoru; Morishita, Junji

    2005-01-01

    Phase contrast images were obtained experimentally by using a customized mammography unit with a nominal focal spot size of 100 μm and variable source-to-image distances of up to 1.5 m. The purpose of this study was to examine the applicability and potential usefulness of phase contrast imaging for mammography. A mammography phantom (ACR156 RMI phantom) was imaged, and its visibility was examined. The optical density of the phantom images was adjusted to approximately 1.3 for both the contact and phase contrast images. Forty-one observers (18 medical doctors and 23 radiological technologists) participated in visual evaluation of the images. Results showed that, in comparison with the images of contact mammography, the phantom images of phase contrast imaging demonstrated statistically significantly superior visibility for fibers, clustered micro-calcifications, and masses. Therefore, phase contrast imaging obtained by using the customized mammography unit would be useful for improving diagnostic accuracy in mammography. (author)

  19. Differentiation of grade II/III and grade IV glioma by combining ''T1 contrast-enhanced brain perfusion imaging'' and susceptibility-weighted quantitative imaging

    International Nuclear Information System (INIS)

    Saini, Jitender; Gupta, Pradeep Kumar; Gupta, Rakesh Kumar; Sahoo, Prativa; Singh, Anup; Patir, Rana; Ahlawat, Suneeta; Beniwal, Manish; Thennarasu, K.; Santosh, Vani

    2018-01-01

    MRI is a useful method for discriminating low- and high-grade glioma using perfusion MRI and susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of T1-perfusion MRI and SWI in discriminating among grade II, III, and IV gliomas. T1-perfusion MRI was used to measure relative cerebral blood volume (rCBV) in 129 patients with glioma (70 grade IV, 33 grade III, and 26 grade II tumors). SWI was also used to measure the intratumoral susceptibility signal intensity (ITSS) scores for each tumor in these patients. rCBV and ITSS values were compared to seek differences between grade II vs. grade III, grade III vs. grade IV, and grade III+II vs. grade IV tumors. Significant differences in rCBV values of the three grades of the tumors were noted and pairwise comparisons showed significantly higher rCBV values in grade IV tumors as compared to grade III tumors, and similarly increased rCBV was seen in the grade III tumors as compared to grade II tumors (p < 0.001). Grade IV gliomas showed significantly higher ITSS scores on SWI as compared to grade III tumors (p < 0.001) whereas insignificant difference was seen on comparing ITSS scores of grade III with grade II tumors. Combining the rCBV and ITSS resulted in significant improvement in the discrimination of grade III from grade IV tumors. The combination of rCBV values derived from T1-perfusion MRI and SWI derived ITSS scores improves the diagnostic accuracy for discrimination of grade III from grade IV gliomas. (orig.)

  20. Differentiation of grade II/III and grade IV glioma by combining ''T1 contrast-enhanced brain perfusion imaging'' and susceptibility-weighted quantitative imaging

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Jitender [National Institute of Mental Health and Neurosciences, Neuroimaging and Interventional Radiology, Bangalore (India); Gupta, Pradeep Kumar; Gupta, Rakesh Kumar [Fortis Memorial Research Institute, Department of Radiology and Imaging, Gurugram (India); Sahoo, Prativa [Philips Health System, Philips India Limited, Bangalore (India); Beckman Research Institute, Mathematical Oncology, Duarte, CA (United States); Singh, Anup [Indian Institute of Technology Delhi, Center for Biomedical Engineering, Delhi (India); Patir, Rana [Fortis Memorial Research Institute, Department of Neurosurgery, Gurugram (India); Ahlawat, Suneeta [Fortis Memorial Research Institute, SRL Diagnostics, Gurugram (India); Beniwal, Manish [National Institute of Mental Health and Neurosciences, Department of Neurosurgery, Bangalore (India); Thennarasu, K. [National Institute of Mental Health and Neurosciences, Department of Biostatistics, Bangalore (India); Santosh, Vani [National Institute of Mental Health and Neurosciences, Department of Neuropathology, Bangalore (India)

    2018-01-15

    MRI is a useful method for discriminating low- and high-grade glioma using perfusion MRI and susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of T1-perfusion MRI and SWI in discriminating among grade II, III, and IV gliomas. T1-perfusion MRI was used to measure relative cerebral blood volume (rCBV) in 129 patients with glioma (70 grade IV, 33 grade III, and 26 grade II tumors). SWI was also used to measure the intratumoral susceptibility signal intensity (ITSS) scores for each tumor in these patients. rCBV and ITSS values were compared to seek differences between grade II vs. grade III, grade III vs. grade IV, and grade III+II vs. grade IV tumors. Significant differences in rCBV values of the three grades of the tumors were noted and pairwise comparisons showed significantly higher rCBV values in grade IV tumors as compared to grade III tumors, and similarly increased rCBV was seen in the grade III tumors as compared to grade II tumors (p < 0.001). Grade IV gliomas showed significantly higher ITSS scores on SWI as compared to grade III tumors (p < 0.001) whereas insignificant difference was seen on comparing ITSS scores of grade III with grade II tumors. Combining the rCBV and ITSS resulted in significant improvement in the discrimination of grade III from grade IV tumors. The combination of rCBV values derived from T1-perfusion MRI and SWI derived ITSS scores improves the diagnostic accuracy for discrimination of grade III from grade IV gliomas. (orig.)

  1. Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Moran [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Liberman, Gilad; Vitinshtein, Faina; Aizenstein, Orna [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Nadav, Guy [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Faculty of Engineering, Tel Aviv (Israel); Blumenthal, Deborah T.; Bokstein, Felix [Tel Aviv Sourasky Medical Center, Neuro-Oncology Service, Tel Aviv (Israel); Bashat, Dafna Ben [Tel Aviv Sourasky Medical Center, Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv (Israel); Tel Aviv University, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv (Israel)

    2015-07-15

    Cerebral blood volume (CBV) is an important parameter for the assessment of brain tumors, usually obtained using dynamic susceptibility contrast (DSC) MRI. However, this method often suffers from low spatial resolution and high sensitivity to susceptibility artifacts and usually does not take into account the effect of tissue permeability. The plasma volume (v{sub p}) can also be extracted from dynamic contrast enhancement (DCE) MRI. The aim of this study was to investigate whether DCE can be used for the measurement of cerebral blood volume in place of DSC for the assessment of patients with brain tumors. Twenty-eight subjects (17 healthy subjects and 11 patients with glioblastoma) were scanned using DCE and DSC. v{sub p} and CBV values were measured and compared in different brain components in healthy subjects and in the tumor area in patients. Significant high correlations were detected between v{sub p} and CBV in healthy subjects in the different brain components; white matter, gray matter, and arteries, correlating with the known increased tissue vascularity, and within the tumor area in patients. This work proposes the use of DCE as an alternative method to DSC for the assessment of blood volume, given the advantages of its higher spatial resolution, its lower sensitivity to susceptibility artifacts, and its ability to provide additional information regarding tissue permeability. (orig.)

  2. An Improved Image Contrast Assessment Method

    Directory of Open Access Journals (Sweden)

    Yuanyuan Fan

    2013-07-01

    Full Text Available Contrast is an important factor affecting the image quality. In order to overcome the problems of local band-limited contrast, a novel image contrast assessment method based on the property of HVS is proposed. Firstly, the image by low-pass filter is performed fast wavelet decomposition. Secondly, all levels of band-pass filtered image and its corresponding low-pass filtered image are obtained by processing wavelet coefficients. Thirdly, local band-limited contrast is calculated, and the local band-limited contrast entropy is calculated according to the definition of entropy, Finally, the contrast entropy of image is obtained by averaging the local band-limited contrast entropy weighed using CSF coefficient. The experiment results show that the best contrast image can be accurately identified in the sequence images obtained by adjusting the exposure time and stretching gray respectively, the assessment results accord with human visual characteristics and make up the lack of local band-limited contrast.

  3. Assessment of cerebral perfusion with dynamic susceptibility contrast

    International Nuclear Information System (INIS)

    Takahashi, Kiyohiko; Naito, Isao; Nozokido, Takeshi; Sato, Takaaki; Takatama, Shin; Kimura, Tokunori

    2004-01-01

    Accurate measurements of arterial input function (AIF) are indispensable for the quantification of perfusion parameters such as mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF). Quantification trials of cerebral perfusion using the disconsolation method with dynamic susceptibility contrast MRI (DSC-MRI) have been reported on. Accurately measuring AIF with DSC-MRI is difficult due to non-linearity and the limited dynamic range between ΔR 2 * and the concentration of contrast media. In this study, we assessed simple methods while using various parameters calculated by the tissue time intensity curve without measuring AIF. The parameters used were appearance time of contrast media (AT), 1'st moment (MT1), the full width at half maximum (FWHM), and up slope at maximum gradient (US). Difference of the appearance time (delta AT) and the CBFratio between the regions in question and the contralateral regions obtained by MT1, FWHM and US were assessed in 38 stroke patients. The CBF calculated by the linear scaling method using the signal of the ASL (ASL, CBF) was used as the standard for a correlation study. The delta AT in patients with middle cerebral artery occlusions supplied by retrograde flow indicated a significantly greater value as compared to patients with other lesions with antegrade flow. US CBF indicated the best correlation among the three CBFs obtained by MT1, FWHM and US. Both the ASL CBFratio and the US CBFratio correlated with delta AT, with the ASL CBFratio being predominant. The CBVratio-CBFratio map showed that the CBVratio tended to decrease when the CBFratio decreased. The map is useful in clinical analysis of cerebral perfusion due to its simplicity and ability to alleviate AIF dependent errors. The validity of the proposed method still needs to be examined by comparing it to the deconvolution method with DSC-MRI, since DSC-MRI can correct the effect of AIF. It might also be compared to Xenon CT, which is less

  4. Susceptibility weighted imaging: differentiating between calcification and hemosiderin

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jeam Haroldo Oliveira; Salmon, Carlos Ernesto Garrido, E-mail: jeamharoldo@hotmail.com [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Santos, Antonio Carlos [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2015-03-15

    Objective: to present a detailed explanation on the processing of magnetic susceptibility weighted imaging (SWI), demonstrating the effects of echo time and sensitive mask on the differentiation between calcification and hemosiderin. Materials and methods: computed tomography and magnetic resonance (magnitude and phase) images of six patients (age range 41-54 years; four men) were retrospectively selected. The SWI images processing was performed using the Matlab's own routine. Results: four out of the six patients showed calcifications at computed tomography images and their SWI images demonstrated hyperintense signal at the calcification regions. The other patients did not show any calcifications at computed tomography, and SWI revealed the presence of hemosiderin deposits with hypointense signal. Conclusion: the selection of echo time and of the mask may change all the information on SWI images, and compromise the diagnostic reliability. Amongst the possible masks, the authors highlight that the sigmoid mask allows for contrasting calcifications and hemosiderin on a single SWI image. (author)

  5. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  6. Contrasts agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bonnet, P.A.; Fernandez, J.P.; Milhavet, J.C.; Chapat, J.P.; Almes, C.; Bruel, J.M.; Rouanet, J.P.; Lamarque, J.L.

    1984-01-01

    Changing different parameters involved in imaging procedures, paramagnetic substances provide contrast enhancement in MRI. Contrast agents presently studied in animals and clinical trials, are either salts or complexes of mineral ions either nitroxide stable free radicals. Their development should extend the possibilities of tissular characterization and fonctional or metabolic evaluation of the MRI [fr

  7. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  8. Susceptibility effects in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ziener, Christian Herbert

    2008-01-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  9. Contrast enhanced ultrasound in liver imaging

    International Nuclear Information System (INIS)

    Nielsen, Michael Bachmann; Bang, Nanna

    2004-01-01

    Ultrasound contrast agents were originally introduced to enhance the Doppler signals when detecting vessels with low velocity flow or when imaging conditions were sub-optimal. Contrast agents showed additional properties, it was discovered that a parenchymal enhancement phase in the liver followed the enhancement of the blood pool. Contrast agents have made ultrasound scanning more accurate in detection and characterization of focal hepatic lesions and the sensitivity is now comparable with CT and MRI scanning. Further, analysis of the transit time of contrast agent through the liver seems to give information on possible hepatic involvement, not only from focal lesions but also from diffuse benign parenchymal disease. The first ultrasound contrast agents were easily destroyed by the energy from the sound waves but newer agents have proved to last for longer time and hereby enable real-time scanning and make contrast enhancement suitable for interventional procedures such as biopsies and tissue ablation. Also, in monitoring the effect of tumour treatment contrast agents have been useful. A brief overview is given on some possible applications and on different techniques using ultrasound contrast agents in liver imaging. At present, the use of an ultrasound contrast agent that allows real-time scanning with low mechanical index is to be preferred

  10. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  11. Contrast enhancement of mail piece images

    Science.gov (United States)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  12. Contrast-based sensorless adaptive optics for retinal imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  13. Enhancement of image contrast in linacgram through image processing

    International Nuclear Information System (INIS)

    Suh, Hyun Suk; Shin, Hyun Kyo; Lee, Re Na

    2000-01-01

    Conventional radiation therapy portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low--cost image processing method. Chest linacgram was obtained by irradiating humanoid phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30% of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment performed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for

  14. Susceptibility weighted imaging of the neonatal brain

    International Nuclear Information System (INIS)

    Meoded, A.; Poretti, A.; Northington, F.J.; Tekes, A.; Intrapiromkul, J.; Huisman, T.A.G.M.

    2012-01-01

    Susceptibility weighted imaging (SWI) is a well-established magnetic resonance technique, which is highly sensitive for blood, iron, and calcium depositions in the brain and has been implemented in the routine clinical use in both children and neonates. SWI in neonates might provide valuable additional diagnostic and prognostic information for a wide spectrum of neonatal neurological disorders. To date, there are few articles available on the application of SWI in neonatal neurological disorders. The purpose of this article is to illustrate and describe the characteristic SWI findings in various typical neonatal neurological disorders.

  15. Susceptibility weighted imaging of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Meoded, A.; Poretti, A. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Northington, F.J. [Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tekes, A.; Intrapiromkul, J. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Huisman, T.A.G.M., E-mail: thuisma1@jhmi.edu [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2012-08-15

    Susceptibility weighted imaging (SWI) is a well-established magnetic resonance technique, which is highly sensitive for blood, iron, and calcium depositions in the brain and has been implemented in the routine clinical use in both children and neonates. SWI in neonates might provide valuable additional diagnostic and prognostic information for a wide spectrum of neonatal neurological disorders. To date, there are few articles available on the application of SWI in neonatal neurological disorders. The purpose of this article is to illustrate and describe the characteristic SWI findings in various typical neonatal neurological disorders.

  16. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  17. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  18. Screened Poisson Equation for Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    Jean-Michel Morel

    2014-03-01

    Full Text Available In this work we propose a discussion and detailed implementation of a very simple gradient domain method that tries to eliminate the effect of nonuniform illumination and at the same time preserves the images details. This model, which to the best of our knowledge has not been explored in spite of its simplicity, acts as a high pass filter. We show that with a single contrast parameter (which keeps the same value in most experiments, the model delivers state of the art results. They compare favorably to results obtained with more complex algorithms. Our algorithm is designed for all kinds of images, but with the special specification of making minimal image detail alteration thanks to a first order fidelity term, instead of the usual zero order term. Experiments on non-uniform medical images and on hazy images illustrate significant perception gain.

  19. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  20. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI.

    Science.gov (United States)

    Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E

    2017-06-01

    Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.

  1. Contrast MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kogame, Saeko; Syakudo, Miyuki; Inoue, Yuichi (Osaka City Univ. (Japan). Faculty of Medicine) (and others)

    1992-04-01

    Thirty patients with acute and subacute cerebral infarction (13 and 17 deep cerebral infarction) were studied with 0.5 T MR unit before and after intravenous injection of Gd-DTPA. Thirteen patients were studied within 7 days after neurological ictus, 17 patients were studied between 7 and 14 days. Two types of abnormal enhancement, cortical arterial and parenchymal enhancement, were noted. The former was seen in 3 of 4 cases of very acute cortical infarction within 4 days after clinical ictus. The latter was detected in all 7 cases of cortical infarction after the 6th day of the ictus, and one patient with deep cerebral infarction at the 12th day of the ictus. Gd-DTPA enhanced MR imaging seems to detect gyral enhancement earlier compared with contrast CT, and depict intra-arterial sluggish flow which was not expected to see on contrast CT scans. (author).

  2. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  3. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  4. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Leach Martin O

    2004-10-01

    Full Text Available Abstract Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.

  5. Pediatric hemiplegic migraine: susceptibility weighted and MR perfusion imaging abnormality

    International Nuclear Information System (INIS)

    Altinok, Deniz; Agarwal, Ajay; Ascadi, Gyula; Luat, Aimee; Tapos, Daniela

    2010-01-01

    We report on an 11-year-old girl suffering from a typical attack of hemiplegic migraine with characteristic abnormalities in perfusion MR and susceptibility-weighted MR imaging findings. The imaging abnormalities were resolved 48 h after the attack. Susceptibility-weighted MR imaging findings correlated well with the MR perfusion, thus it can be used along with conventional MRI for evaluation of children with complex migraine attacks. Susceptibility-weighted MR imaging might have a diagnostic role in assessing the vascular events in hemiplegic migraine. (orig.)

  6. Pediatric hemiplegic migraine: susceptibility weighted and MR perfusion imaging abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Altinok, Deniz; Agarwal, Ajay [Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Ascadi, Gyula; Luat, Aimee; Tapos, Daniela [Children' s Hospital of Michigan, Department of Neurology, Detroit, MI (United States)

    2010-12-15

    We report on an 11-year-old girl suffering from a typical attack of hemiplegic migraine with characteristic abnormalities in perfusion MR and susceptibility-weighted MR imaging findings. The imaging abnormalities were resolved 48 h after the attack. Susceptibility-weighted MR imaging findings correlated well with the MR perfusion, thus it can be used along with conventional MRI for evaluation of children with complex migraine attacks. Susceptibility-weighted MR imaging might have a diagnostic role in assessing the vascular events in hemiplegic migraine. (orig.)

  7. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.

    Science.gov (United States)

    Guest, James R; Baird, Andrew H; Maynard, Jeffrey A; Muttaqin, Efin; Edwards, Alasdair J; Campbell, Stuart J; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pBleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died. The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.

  8. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    Science.gov (United States)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  9. Association of dynamic susceptibility contrast enhanced MR Perfusion parameters with prognosis in elderly patients with glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Jabehdar Maralani, Pejman [University of Toronto, Department of Medical Imaging, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Melhem, Elias R.; Herskovits, Edward H. [University of Maryland Medical Center, Department of Radiology, Baltimore, MD (United States); Wang, Sumei; Voluck, Matthew R.; Learned, Kim O.; Mohan, Suyash [Perelman School of Medicine at University of Pennsylvania, Department of Radiology, Division of Neuroradiology, Philadelphia, PA (United States); Kim, Sang Joon [University of Ulsan Asan Medical Center, Department of Radiology, Songpa-gu, Seoul (Korea, Republic of); O' Rourke, Donald M. [Perelman School of Medicine at University of Pennsylvania, Department of Surgery, Division of Neurosurgery, Philadelphia, PA (United States)

    2015-09-15

    We aimed to evaluate the prognostic value of dynamic susceptibility contrast (DSC) MR perfusion in elderly patients with glioblastomas (GBM). Thirty five patients aged ≥65 and 35 aged <65 years old, (referred to as elderly and younger, respectively) were included in this retrospective study. The median relative cerebral volume (rCBV) from the enhancing region (rCBV{sub ER-Med}) and immediate peritumoral region (rCBV{sub IPR-Med}) and maximum rCBV from the enhancing region of the tumor (rCBV{sub ER-Max}) were compared and correlated with survival data. Analysis was repeated after rCBVs were dichotomized into high and low values and after excluding elderly patients who did not receive postoperative chemoradiation (34.3 %). Kaplan-Meyer survival curves and parametric and semi-parametric regression tests were used for analysis. All rCBV parameters were higher in elderly compared to younger patients (p < 0.05). After adjustment for age, none were independently associated with shorter survival (p > 0.05). After rCBV dichotomization into high and low values, high rCBV in elderly was independently associated with shorter survival compared to low rCBV in elderly, or any rCBV in younger patients (p < 0.05). rCBV can be an imaging biomarker to identify a subgroup of GBM patients in the elderly with worse prognosis compared to others. (orig.)

  10. Determination of arterial input function in dynamic susceptibility contrast MRI using group independent component analysis technique

    International Nuclear Information System (INIS)

    Chen, S.; Liu, H.-L.; Yang Yihong; Hsu, Y.-Y.; Chuang, K.-S.

    2006-01-01

    Quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) requires the determination of the arterial input function (AIF). The segmentation of surrounding tissue by manual selection is error-prone due to the partial volume artifacts. Independent component analysis (ICA) has the advantage in automatically decomposing the signals into interpretable components. Recently group ICA technique has been applied to fMRI study and showed reduced variance caused by motion artifact and noise. In this work, we investigated the feasibility and efficacy of the use of group ICA technique to extract the AIF. Both simulated and in vivo data were analyzed in this study. The simulation data of eight phantoms were generated using randomized lesion locations and time activity curves. The clinical data were obtained from spin-echo EPI MR scans performed in seven normal subjects. Group ICA technique was applied to analyze data through concatenating across seven subjects. The AIFs were calculated from the weighted average of the signals in the region selected by ICA. Preliminary results of this study showed that group ICA technique could not extract accurate AIF information from regions around the vessel. The mismatched location of vessels within the group reduced the benefits of group study

  11. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  12. Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Science.gov (United States)

    Guest, James R.; Baird, Andrew H.; Maynard, Jeffrey A.; Muttaqin, Efin; Edwards, Alasdair J.; Campbell, Stuart J.; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Background Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Methodology/Principal Findings Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pSingapore, where only 5% and 12% of colonies died. Conclusions/Significance The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments. PMID:22428027

  13. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime [Diagnostic Radiology Department, Clinica Quiron, Zaragoza (Spain); Olmos, Salvador [Instituto de Investigacion en Ingenieria de Aragon, Zaragoza (Spain)], E-mail: olmos@unizar.es

    2008-09-15

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  14. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    International Nuclear Information System (INIS)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime; Olmos, Salvador

    2008-01-01

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  15. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    Science.gov (United States)

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  16. Monitoring stem cells in phase contrast imaging

    Science.gov (United States)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  17. Assessment of brain metastases by means of dynamic susceptibility contrast enhanced MRI

    International Nuclear Information System (INIS)

    Knopp, M.; Wenz, F.; Debus, J.; Hentrich, H.R.

    2002-01-01

    Full text: To assess if pre therapeutic measurements of regional cerebral blood flow (rCBF) and volume (rCVB) are able to predict the response of brain metastases to radiation therapy and to assess the influence of radiosurgery on rCBF and rCBV on brain metastases and normal surrounding tissue. We examined 25 patients with brain metastases prior to high dose radiosurgery with conventional T1 and T2 weighted MRI and dynamic susceptibility contrast enhanced MRI (DSC MRI). For DSC MRI 55 T2*w GE images of two sections were acquired after bolus administration of 0.1 mmol/kg gadoteridol (ProHance) for the simultaneous measurement of brain feeding arteries and brain tissue. This allowed an absolute quantification of rCBF and rCBV. Follow-up examinations were performed 6 weeks and 3 months after radiotherapy and the acquired perfusion data were related to a 3 point scale of treatment outcome. Radiosurgery was performed by a linear accelerator with a 80% isodose of 18-20 Gv. For treatment planning the heads of the patients were immobilized by a cask mask to avoid head movement. DSC MRI was able to assess perfusion data in all patients. Higher pre therapeutic rCBV seems to predict a poor treatment outcome. After radiosurgery patients with tumor remission and stable disease presented a decrease of rCBV over time regardless of temporary tumor volume increase. Patients with tumor progression at the 3 month followup presented an increase of rCBV. Effects on normal surrounding tissue could not be observed. DSC MRI using Gadoteridol allows the non-invasive assessment of rCBV and rCBF of brain metastases and its changes due to radiosurgery. The method may also be able to predict treatment outcome. Furthermore radiofrequency effects on surrounding unaffected tissue can be monitored. Copyright (2002) Blackwell Science Pty Ltd

  18. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  19. Clinical application of MR susceptibility weighted imaging in cerebrovascular diseases

    International Nuclear Information System (INIS)

    Zhu Wenzhen; Qi Jianpin; Shen Hao; Wang Chengyuan; Xia Liming; Hu Junwu; Feng Dingyi

    2007-01-01

    Objective: To assess clinical application value of susceptibility weighted imaging (SWI) in cerebrovascular diseases. Method: Twenty-three patients with cerebrovascular disease were investigated, including 7 cases of cavernoma, 4 of venous hemangioma, 3 of small AVM, 1 of Sturge-Weber Syndrome, 2 of cerebral venous sinus thrombosis and 6 of chronic cerebral infarction. All patients underwent standard Mill and SWI, and most of them also underwent enhanced T 1 WI and MRA. The corrected phase (CP) values were obtained at the lesions and control areas. Results: The average CP values of the lesions and the control areas were -0.112±0.032 and -0.013±0.004, respectively (t=2.167, P 2 WI. The cavemoma could be differentiated from the hemorrhage within lesions. Moreover, multiple microcavernomas were detected on SWI. In 4 cases of venous hemangioma, SWI detected spider-like lesions with more hair-thin pulp veins adjacent to the dilated draining vein than contrast MRI. In 3 cases of small AVM, SWI was more advantageous than MRA in clearly detecting the small feeding artery. In 1 case of Sturge-Weber Syndrome, SWI demonstrated large areas of calcification and the abnormal vessels on the cerebral surface and the deep part of the cerebrum at the same time. In 2 cases of cerebral venous sinus thrombosis, the deep draining veins and superficial venous rete were generally dilated and winding, and the hemorrhagic lesions could be detected earlier than conventional MR images in one case. In 6 eases of cerebral infarction, old hemorrhage was clearly displayed within the lesions. Conclusion: SWI has more predominant advantages than conventional MRI and MRA in detecting the low-flow cerebral vascular malformations, identifying microbleeds and cerebral infarction accompanying hemorrhage, and the dilation of cerebral deep or superficial veins in patients with cerebral venous sinus thrombosis. Moreover, SWI can show the phase contrast between the lesions and the control areas. (authors)

  20. Enhancing contrast of magnetic resonance imaging in patients with ...

    African Journals Online (AJOL)

    DTPA), a recent magnetic resonance imaging (MRI) contrast agent, in hepatobiliary system of patients with liver cirrhosis. Methods: Liver cirrhosis patients that underwent contrast MRI examination at Renai Hospital, Taipei City, Taiwan were ...

  1. Refraction-contrast bone imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Mori, Koichi; Sekine, Norio; Sato, Hitoshi; Shikano, Naoto; Shimao, Daisuke; Shiwaku, Hideaki; Hyodo, Kazuyuki; Oka, Hiroshi

    2002-01-01

    The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica and as mouse proximal femur using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1 m and those of 40, 50 keV at those of 4,5 m, respectively. High-energy refraction-contrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervcal vertebrae, sella turcica and mouse proximal femur using the synchrotron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images. (author)

  2. Factors influencing fast low angle positive contrast steady-state free precession (FLAPS) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Dharmakumar, Rohan; Koktzoglou, Ioannis; Li Debiao

    2007-01-01

    The presence of susceptibility-shifting media can lead to signal voids in magnetic resonance images. While signal voids have been traditionally used to detect such magnetic perturbers, selective magnetic resonance imaging of off-resonant spins surrounding susceptibility-shifted media allows for them to be visualized as hyper-intense (positive contrast) regions. These positive contrast methods can potentially improve the detection conspicuity of magnetic perturbers against regions that appear dark due to the absence of protons, such as air. Recently, a fast low angle positive contrast steady-state free precession (FLAPS) technique has been proposed as a positive contrast imaging method. This work systematically evaluates the contrast characteristics and acquisition strategies of FLAPS-based imaging from the standpoint of imaging parameters and physical properties of the magnetic perturbers. Results show that scan parameters (T R , flip angle, B 0 ), physical properties of the perturber (size and concentration of shift reagent) and the ratio of the relaxation constants (T 1 /T 2 ) of the medium are significant factors influencing the FLAPS-based positive contrast

  3. Role of magnetic susceptibility weighted imaging in evaluation of ...

    African Journals Online (AJOL)

    Introduction: Susceptibility-weighted imaging (SWI) is a new method in MR imaging. SWI detects the signal loss created by disturbance of a homogeneous magnetic field; these disturbances can be caused by paramagnetic, ferromagnetic, or diamagnetic substances. There are many neurologic conditions that can benefit ...

  4. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  5. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  6. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Wu; Wang, Xiaoyi; Xie, Fangfang; Liao, Weihua [Dept. of Radiology, Xiangya Hospital of Central South Univ., Changsha (China)], e-mail: doctoring@sina.com

    2013-02-15

    Background: Accurately locatithe epileptogenic focus in temporal lobe epilepsy (TLE) is important in clinical practice. Single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) have been widely used in the lateralization of TLE, but both have limitations. Magnetic resonance perfusion imaging can accurately and reliably reflect differences in cerebral blood flow and volume. Purpose: To investigate the diagnostic value of dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) in the lateralization of the epileptogenic focus in TLE. Material and Methods: Conventional MRI and DSC-MRI scanning was performed in 20 interictal cases of TLE and 20 healthy volunteers. The relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) of the bilateral mesial temporal lobes of the TLE cases and healthy control groups were calculated. The differences in the perfusion asymmetry indices (AIs), derived from the rCBV and rCBF of the bilateral mesial temporal lobes, were pared between the two groups. Results: In the control group, there were no statistically significant differences between the left and right sides in terms of rCBV (left 1.55 {+-} 0.32, right 1.57 {+-} 0.28) or rCBF (left 99.00 {+-} 24.61, right 100.38 {+-} 23.46) of the bilateral mesial temporal lobes. However, in the case group the ipsilateral rCBV and rCBF values (1.75 {+-} 0.64 and 96.35 {+-} 22.63, respectively) were markedly lower than those of the contralateral side (2.01 {+-} 0.79 and 108.56 {+-} 26.92; P < 0.05). Both the AI of the rCBV (AIrCBV; 13.03 {+-} 10.33) and the AI of the rCBF (AIrCBF; 11.24 {+-} 8.70) of the case group were significantly higher than that of the control group (AIrCBV 5.55 {+-} 3.74, AIrCBF 5.12 {+-} 3.48; P < 0.05). The epileptogenic foci of nine patients were correctly lateralized using the 95th percentile of the AIrCBV and AIrCBF of the control group as the normal upper limits. Conclusion: In

  7. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Xing, Wu; Wang, Xiaoyi; Xie, Fangfang; Liao, Weihua

    2013-01-01

    Background: Accurately locatithe epileptogenic focus in temporal lobe epilepsy (TLE) is important in clinical practice. Single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) have been widely used in the lateralization of TLE, but both have limitations. Magnetic resonance perfusion imaging can accurately and reliably reflect differences in cerebral blood flow and volume. Purpose: To investigate the diagnostic value of dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) in the lateralization of the epileptogenic focus in TLE. Material and Methods: Conventional MRI and DSC-MRI scanning was performed in 20 interictal cases of TLE and 20 healthy volunteers. The relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) of the bilateral mesial temporal lobes of the TLE cases and healthy control groups were calculated. The differences in the perfusion asymmetry indices (AIs), derived from the rCBV and rCBF of the bilateral mesial temporal lobes, were pared between the two groups. Results: In the control group, there were no statistically significant differences between the left and right sides in terms of rCBV (left 1.55 ± 0.32, right 1.57 ± 0.28) or rCBF (left 99.00 ± 24.61, right 100.38 ± 23.46) of the bilateral mesial temporal lobes. However, in the case group the ipsilateral rCBV and rCBF values (1.75 ± 0.64 and 96.35 ± 22.63, respectively) were markedly lower than those of the contralateral side (2.01 ± 0.79 and 108.56 ± 26.92; P < 0.05). Both the AI of the rCBV (AIrCBV; 13.03 ± 10.33) and the AI of the rCBF (AIrCBF; 11.24 ± 8.70) of the case group were significantly higher than that of the control group (AIrCBV 5.55 ± 3.74, AIrCBF 5.12 ± 3.48; P < 0.05). The epileptogenic foci of nine patients were correctly lateralized using the 95th percentile of the AIrCBV and AIrCBF of the control group as the normal upper limits. Conclusion: In patients with TLE interictal

  8. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    Science.gov (United States)

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image

  9. Spectroscopic AC susceptibility imaging (sASI) of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.

    2015-01-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurements to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement set and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R 2 =0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R 2 =0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R 2 =0.97, p<0.001). These results demonstrate the concept of ASI and advantages of sASI. - Highlights: • Development of an AC susceptibility imaging model. • Comparison of AC susceptibility imaging (ASI) and susceptibility magnitude imaging (SMI). • Demonstration of ASI and spectroscopic ASI (sASI) using three different magnetic nanoparticle types. • SASI scan separation of three different magnetic nanoparticles samples using 5 spectroscopic frequencies. • Demonstration of biological feasibility of sASI

  10. Algorithms for contrast enhancement of electronic portal images

    International Nuclear Information System (INIS)

    Díez, S.; Sánchez, S.

    2015-01-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results. - Highlights: • Two Algorithms are implemented to improve the contrast of Electronic Portal Images. • The multi-leaf and conformed beam are automatically segmented into Portal Images. • Hidden anatomical and bony structures in portal images are revealed. • The task related to the patient setup verification is facilitated by the contrast enhancement then achieved.

  11. Cardiac image segmentation for contrast agent videodensitometry

    NARCIS (Netherlands)

    Mischi, M.; Kalker, A.A.C.M.; Korsten, H.H.M.

    2005-01-01

    Indicator dilution techniques are widely used in the intensive care unit and operating room for cardiac parameter measurements. However, the invasiveness of current techniques represents a limitation for their clinical use. The development of stable ultrasound contrast agents allows new applications

  12. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  13. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Goetti, Robert [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); O' Gorman, Ruth [University Children' s Hospital Zurich, Center for MR Research, Zurich (Switzerland); Khan, Nadia [University Children' s Hospital Zurich, Moyamoya Center, Division of Neurosurgery, Department of Surgery, Zurich (Switzerland); Kellenberger, Christian J.; Scheer, Ianina [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland)

    2013-05-15

    This study seeks to evaluate the diagnostic accuracy of cerebral perfusion imaging with arterial spin labelling (ASL) MR imaging in children with moyamoya disease compared to dynamic susceptibility contrast (DSC) imaging. Ten children (7 females; age, 9.2 {+-} 5.4 years) with moyamoya disease underwent cerebral perfusion imaging with ASL and DSC on a 3-T MRI scanner in the same session. Cerebral perfusion images were acquired with ASL (pulsed continuous 3D ASL sequence, 32 axial slices, TR = 5.5 s, TE = 25 ms, FOV = 24 cm, matrix = 128 x 128) and DSC (gradient echo EPI sequence, 35 volumes of 28 axial slices, TR = 2,000 ms, TE = 36 ms, FOV = 24 cm, matrix = 96 x 96, 0.2 ml/kg Gd-DOTA). Cerebral blood flow maps were generated. ASL and DSC images were qualitatively assessed regarding perfusion of left and right ACA, MCA, and PCA territories by two independent readers using a 3-point-Likert scale and quantitative relative cerebral blood flow (rCBF) was calculated. Correlation between ASL and DSC for qualitative and quantitative assessment and the accuracy of ASL for the detection of reduced perfusion per territory with DSC serving as the standard of reference were calculated. With a good interreader agreement ({kappa} = 0.62) qualitative perfusion assessment with ASL and DSC showed a strong and significant correlation ({rho} = 0.77; p < 0.001), as did quantitative rCBF (r = 0.79; p < 0.001). ASL showed a sensitivity, specificity and accuracy of 94 %, 93 %, and 93 % for the detection of reduced perfusion per territory. In children with moyamoya disease, unenhanced ASL enables the detection of reduced perfusion per vascular territory with a good accuracy compared to contrast-enhanced DSC. (orig.)

  14. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  15. Fundamental study of DSA images using gadolinium contrast agent

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Shiraishi, Akihisa; Igarashi, Hitoshi; Sakamoto, Hajime; Sano, Yoshitomo

    2002-01-01

    Most contrast agents used in digital subtraction angiography (DSA) are non-ionic iodinated contrast agents, which can cause severe side effects in patients with contraindications for iodine or allergic reactions to iodine. Therefore, DSA examinations using carbon dioxide gas or examinations done by magnetic resonance imaging (MRI) and ultrasound (US) were carried out in these patients. However, none of these examinations provided mages as clear as those of DSA with an iodinated contrast agent. We experienced DSA examination using a gadolinium contrast agent in a patient contraindicated for iodine. The patient had undergone MRI examination with a gadolinium contrast agent previously without side effects. The characteristics of gadolinium and the iodinated contrast agent were compared, and the DSA images obtained clinically using these media were also evaluated. The signal-to-noise (SN) ratio of the gadolinium contrast agent was the highest at tube voltages of 70 to 80 kilovolts and improved slightly when the image intensifier (I.I.) entrance dose was greater than 300 μR (77.4 nC/kg). The dilution ratios of five iodinated contrast agents showed the same S/N value as the undiluted gadolinium contrast agent. Clinically, the images obtained showed a slight decrease in contrast but provided the data necessary to make a diagnosis and made it possible to obtain interventional radiology (IVR) without any side effects. DSA examinations using a gadolinium contrast agent have some benefit with low risk and are thought to be useful for patients contraindicated for iodine. (author)

  16. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  17. Sequential contrast-enhanced MR imaging of the penis.

    Science.gov (United States)

    Kaneko, K; De Mouy, E H; Lee, B E

    1994-04-01

    To determine the enhancement patterns of the penis at magnetic resonance (MR) imaging. Sequential contrast material-enhanced MR images of the penis in a flaccid state were obtained in 16 volunteers (12 with normal penile function and four with erectile dysfunction). Subjects with normal erectile function showed gradual and centrifugal enhancement of the corpora cavernosa, while those with erectile dysfunction showed poor enhancement with abnormal progression. Sequential contrast-enhanced MR imaging provides additional morphologic information for the evaluation of erectile dysfunction.

  18. Dynamic contrast-enhanced MR imaging of endometrial cancer. Optimizing the imaging delay for tumour-myometrium contrast

    International Nuclear Information System (INIS)

    Park, Sung Bin; Moon, Min Hoan; Sung, Chang Kyu; Oh, Sohee; Lee, Young Ho

    2014-01-01

    To investigate the optimal imaging delay time of dynamic contrast-enhanced magnetic resonance (MR) imaging in women with endometrial cancer. This prospective single-institution study was approved by the institutional review board, and informed consent was obtained from the participants. Thirty-five women (mean age, 54 years; age range, 29-66 years) underwent dynamic contrast-enhanced MR imaging with a temporal resolution of 25-40 seconds. The signal intensity difference ratios between the myometrium and endometrial cancer were analyzed to investigate the optimal imaging delay time using single change-point analysis. The optimal imaging delay time for appropriate tumour-myometrium contrast ranged from 31.7 to 268.1 seconds. The median optimal imaging delay time was 91.3 seconds, with an interquartile range of 46.2 to 119.5 seconds. The median signal intensity difference ratios between the myometrium and endometrial cancer were 0.03, with an interquartile range of -0.01 to 0.06, on the pre-contrast MR imaging and 0.20, with an interquartile range of 0.15 to 0.25, on the post-contrast MR imaging. An imaging delay of approximately 90 seconds after initiating contrast material injection may be optimal for obtaining appropriate tumour-myometrium contrast in women with endometrial cancer. (orig.)

  19. Magnetic resonance imaging contrast agents: Overview and perspectives

    International Nuclear Information System (INIS)

    Yan Guoping; Robinson, Leslie; Hogg, Peter

    2007-01-01

    Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis and/or staging of human diseases around the world. Some MRI examinations include the use of contrast agents. The categorizations of currently available contrast agents have been described according to their effect on the image, magnetic behavior and biodistribution in the body, respectively. In this field, superparamagnetic iron oxide particles and soluble paramagnetic metal chelates are two main classes of contrast agents for MRI. This review outlines the research and development of MRI contrast agents. In future, the ideal MRI contrast agent will be focused on the neutral tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time, high contrast enhancement with low dose in vivo, and with minimal cost

  20. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  1. Halftoning for high-contrast imaging

    Directory of Open Access Journals (Sweden)

    Kasper M.

    2011-07-01

    Full Text Available High-contrast instruments, such as SPHERE (upcoming planet finder instrument for the ESO-VLT, or EPICS (planet hunter project for the future E-ELT, will require customized components with spatially varying transmission (e.g. coronagraphs, optical components that reduce the contrast between a companion and its parent star. The goal of these sub-systems is to control the spatial transmission, either in a pupil plane (pupil apodization, or in a focal plane of the instrument (occulting mask, i.e. low-frequency filter. Reliably producing components with spatially varying transmission is not trivial, and different techniques have been already investigated for application to astronomy (e.g. metal deposition with spatially-varying thickness, or high-energy beam sensitive glass using e-beam lithography. We present some results related to the recent development of components with spatially varying transmission using a relatively simple technique analogous to the digital halftoning process used for printing applications.

  2. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.

    Science.gov (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard

    2005-03-01

    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  3. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  4. Susceptibility weighted imaging in the evaluation of movement disorders

    International Nuclear Information System (INIS)

    Hingwala, D.R.; Kesavadas, C.; Thomas, B.; Kapilamoorthy, T.R.

    2013-01-01

    Movement disorders are neurodegenerative disorders associated with abnormalities of brain iron deposition. In this presentation, we aim to describe the role of susceptibility weighted imaging (SWI) in the imaging of patients with movement disorders and differentiate between the various disorders. SWI is a high-resolution, fully velocity-encoded gradient-echo magnetic resonance imaging (MRI) sequence that consists of using both magnitude and phase information. We describe briefly the physics behind this sequence and the post-processing techniques used. The anatomy of the midbrain and basal ganglia in normal subjects on SWI is covered. A number of neurodegenerative disorders are associated with abnormal iron deposition, which can be detected due to the susceptibility effects

  5. Optimization of contrast of MR images in imaging of knee joint

    International Nuclear Information System (INIS)

    Szyblinski, K.; Bacic, G.

    1994-01-01

    The work describes the method of contrast optimization in magnetic resonance imaging. Computer program presented in the report allows analysis of contrast in selected tissues as a function of experiment parameters. Application to imaging of knee joint is presented

  6. A Novel Contrast Enhancement Technique on Palm Bone Images

    Directory of Open Access Journals (Sweden)

    Yung-Tsang Chang

    2014-09-01

    Full Text Available Contrast enhancement plays a fundamental role in image processing. Many histogram-based techniques are widely used for contrast enhancement of given images, due to their simple function and effectiveness. However, the conventional histogram equalization (HE methods result in excessive contrast enhancement, which causes natural looking and satisfactory results for a variety of low contrast images. To solve such problems, a novel multi-histogram equalization technique is proposed to enhance the contrast of the palm bone X-ray radiographs in this paper. For images, the mean-variance analysis method is employed to partition the histogram of the original grey scale image into multiple sub-histograms. These histograms are independently equalized. By using this mean-variance partition method, a proposed multi-histogram equalization technique is employed to achieve the contrast enhancement of the palm bone X-ray radiographs. Experimental results show that the multi-histogram equalization technique achieves a lower average absolute mean brightness error (AMBE value. The multi-histogram equalization technique simultaneously preserved the mean brightness and enhanced the local contrast of the original image.

  7. Gadolinium-based contrast agents in pediatric magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Eric M.; Caravan, Peter [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, The Martinos Center for Biomedical Imaging, Boston, MA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); McDonald, Robert J. [College of Medicine, Mayo Clinic, Department of Radiology, Rochester, MN (United States); Winfeld, Matthew [University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (United States); Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Radiology, Cincinnati, OH (United States); Gee, Michael S. [MassGeneral Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2017-05-15

    Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available. (orig.)

  8. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  9. Assessment of image display of contrast enhanced T1W images with fat suppression

    International Nuclear Information System (INIS)

    Miyazaki, Isao; Ishizaki, Keiko; Kobayashi, Kuninori; Katou, Masanobu

    2006-01-01

    The effects of imaging conditions and measures for their improvement were examined with regard to recognition of the effects of contrast on images when T 1 -weighted imaging with selective fat suppression was applied. Luminance at the target region was examined before and after contrast imaging using phantoms assuming pre- and post-imaging conditions. A clinical examination was performed on tumors revealed by breast examination, including those surrounded by mammary gland and by fat tissue. When fat suppression was used and imaging contrast was enhanced, the luminance level of fat tumors with the same structure as the prepared phantoms appeared to be high both before and after contrast imaging, and the effects of contrast were not distinguishable. This observation is attributable to the fact that the imaging conditions before and after contrast imaging were substantially different. To make a comparison between pre- and post-contrast images, it is considered necessary to perform imaging with fixed receiver gain and to apply the same imaging method for pre- and post-contrast images by adjusting post-contrast imaging conditions to those of pre-contrast imaging. (author)

  10. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas; Fokong, Stanley; Brand, Christian; Andreou, Chrysafis; Krä utler, Bernhard; Rueping, Magnus; Kiessling, Fabian

    2017-01-01

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents

  11. A developed unsharp masking method for images contrast enhancement

    International Nuclear Information System (INIS)

    Zaafouri, A.; Sayadi, M.; Fnaiech, F.

    2011-01-01

    In this paper, we propose a developed unsharp masking process for contrast image enhancement. The main idea here is to enhance the dark and bright area in the same way which matches the response of human visual system well. Then in order to reduce the noise effect, a mean weighted high pass filter is used for edge extraction. The proposed method gives satisfactory results for wide range of low contrast images compared with others known approaches.

  12. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    Directory of Open Access Journals (Sweden)

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  13. Phase contrast image segmentation using a Laue analyser crystal

    International Nuclear Information System (INIS)

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  14. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    Science.gov (United States)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  15. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  16. Contrast-enhanced CISS imaging of cerebellopontine angle tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tozaki, Mitsuhiro; Toyoda, Keiko; Hata, Yuichi; Fukuda, Yasushi; Fukuda, Kunihiko [Jikei Univ., Tokyo (Japan). School of Medicine; Katano, Shuichi

    1999-10-01

    Our purpose of this study was to evaluate the clinical usefulness of contrast-enhanced CISS-3DFT MR imaging for the diagnosis of CP angle tumors. CISS-3DFT MR imaging is expected for screening procedure of acoustic schwannoma because of excellent spatial resolution. Recently, we discovered contrast enhancement effect on CISS sequence in spite of heavily T{sub 2}-weighted images. Fourteen patients with CP angle tumors were performed on a 1.0 T MR unit. Transaxial CISS-3DFT MRI was obtained both before and after intravenous injections of Gd-DTPA. Multiplanar reconstructions (MPRs) were performed in all cases. Contrast enhancement effect of CP angle tumors, and the relationship between tumors and the adjacent cranial nerves were evaluated. Contrast enhancement effect of the tumors was present in all cases in spite of heavily T{sub 2}-weighted images of CISS sequences. In the internal auditory canal, relationship between the tumors and the cranial nerves was demonstrated in 6 cases (6/9). In the cerebellopontine cistern, all cases were demonstrated (11/11). Contrast-enhanced CISS-3DFT MR imaging with a good contrast resolution and an excellent spatial resolution is useful for the diagnosis of CP angle tumors. (author)

  17. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  18. Assessing MRI susceptibility artefact through an indicator of image distortion

    Directory of Open Access Journals (Sweden)

    Illanes Alfredo

    2016-09-01

    Full Text Available Susceptibility artefacts in magnetic resonance imaging (MRI caused by medical devices can result in a severe degradation of the MR image quality. The quantification of susceptibility artefacts is regulated by the ASTM standard which defines a manual method to assess the size of an artefact. This means that the estimated artefact size can be user dependent. To cope with this problem, we propose an algorithm to automatically quantify the size of such susceptibility artefacts. The algorithm is based on the analysis of a 3D surface generated from the 2D MR images. The results obtained by the automatic algorithm were compared to the manual measurements performed by study participants. The results show that the automatic and manual measurements follow the same trend. The clear advantage of the automated algorithm is the absence of the inter- and intra-observer variability. In addition, the algorithm also detects the slice containing the largest artefact which was not the case for the manual measurements.

  19. Generalized image contrast enhancement technique based on the Heinemann contrast discrimination model

    Science.gov (United States)

    Liu, Hong; Nodine, Calvin F.

    1996-07-01

    This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.

  20. Low contrast detectability for color patterns variation of display images

    International Nuclear Information System (INIS)

    Ogura, Akio

    1998-01-01

    In recent years, the radionuclide images are acquired in digital form and displayed with false colors for signal intensity. This color scales for signal intensity have various patterns. In this study, low contrast detectability was compared the performance of gray scale cording with three color scales: the hot color scale, prism color scale and stripe color scale. SPECT images of brain phantom were displayed using four color patterns. These printed images and display images were evaluated with ROC analysis. Display images were indicated higher detectability than printed images. The hot scale and gray scale images indicated better Az of ROC than prism scale images because the prism scale images showed higher false positive rate. (author)

  1. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    International Nuclear Information System (INIS)

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-01-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. (fast track communication)

  2. Microcomputer simulation of nuclear magnetic resonance imaging contrasts

    International Nuclear Information System (INIS)

    Le Bihan, D.

    1985-01-01

    The high information content of magnetic resonance images is due to the multiplicity of its parameters. However, this advantage introduces a difficulty in the interpretation of the contrast: an image is strongly modified according to the visualised parameters. The author proposes a micro-computer simulation program. After recalling the main intrinsic and extrinsic parameters, he shows how the program works and its interest as a pedagogic tool and as an aid for contrast optimisation of images as a function of the suspected pathology [fr

  3. Quantitative susceptibility mapping across two clinical field strengths: Contrast-to-noise ratio enhancement at 1.5T.

    Science.gov (United States)

    Ippoliti, Matteo; Adams, Lisa C; Winfried, Brenner; Hamm, Bernd; Spincemaille, Pascal; Wang, Yi; Makowski, Marcus R

    2018-04-16

    Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content. To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.5T and 3T and to optimize the contrast-to-noise ratio (CNR) at 1.5T through bandwidth tuning. Prospective. Sixteen healthy volunteers (10 men, 6 women; age range 24-37; mean age 27.8 ± 3.2 years). 1.5T and 3T systems from the same vendor. Four spoiled gradient echo (SPGR) sequences were designed with different acquisition bandwidths. QSM reconstruction was achieved through a nonlinear morphology-enabled dipole inversion (MEDI) algorithm employing L1 regularization. CNR was calculated in seven regions of interest (ROIs), while reproducibility and consistency of QSM measurements were evaluated through voxel-based and region-specific linear correlation analyses and Bland-Altman plots. Interclass correlation, Wilcoxon rank sum test, linear regression analysis, Bland-Altman analysis, Welch's t-test. CNR analysis showed a statistically significant (P limits of agreement from -18.7 to 25.8 ppb) in the ROI-based analysis, while the correlation was found to be good for the voxel-based analysis of averaged maps (R ≥ 0.90, widest limits of agreement from -9.3 to 9.1 ppb). CNR of QSM images reconstructed from 1.5T acquisitions can be enhanced through bandwidth tuning. MEDI-based QSM reconstruction demonstrated to be reproducible and consistent both across field strengths (1.5T and 3T) and bandwidth variation. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Atomic Force Microscope Image Contrast Mechanisms on Supported Lipid Bilayers

    OpenAIRE

    Schneider, James; Dufrêne, Yves F.; Barger Jr., William R.; Lee, Gil U.

    2000-01-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures o...

  5. Modelling of chromatic contrast for retrieval of wallpaper images

    OpenAIRE

    Gao, Xiaohong W.; Wang, Yuanlei; Qian, Yu; Gao, Alice

    2015-01-01

    Colour remains one of the key factors in presenting an object and consequently has been widely applied in retrieval of images based on their visual contents. However, a colour appearance changes with the change of viewing surroundings, the phenomenon that has not been paid attention yet while performing colour-based image retrieval. To comprehend this effect, in this paper, a chromatic contrast model, CAMcc, is developed for the application of retrieval of colour intensive images, cementing t...

  6. Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography

    International Nuclear Information System (INIS)

    Lv Yong-Gang; Ji Zi-Heng; Dong Da-Shan; Gong Qi-Huang; Shi Ke-Bin

    2015-01-01

    We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging. (paper)

  7. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  8. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    International Nuclear Information System (INIS)

    Ogunlade, Olumide; Beard, Paul

    2015-01-01

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substance to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type

  9. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom)

    2015-01-15

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substance to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type

  10. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    Science.gov (United States)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  11. Principles and applications of susceptibility weighted imaging; Grundlagen und Anwendungen der suszeptibilitaetsgewichteten Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, F.T.; Ziener, C.H. [Deutsches Krebsforschungszentrum, Radiologie E010, INF 280, Heidelberg (Germany); Universitaetsklinikum Heidelberg, Abteilung fuer Neuroradiologie, INF 400, Heidelberg (Germany); Freitag, M.; Schlemmer, H.P. [Deutsches Krebsforschungszentrum, Radiologie E010, INF 280, Heidelberg (Germany); Bendszus, M. [Universitaetsklinikum Heidelberg, Abteilung fuer Neuroradiologie, INF 400, Heidelberg (Germany)

    2016-02-15

    Susceptibility-weighted imaging (SWI), initially developed to provide an improved method for cerebral magnetic resonance (MR) venography, is now an integral part of neuroradiological diagnostics and is steadily gaining importance in non-cerebral imaging. Tissue-inherent susceptibility differences generate a local magnetic field in which the dephasing of signal-producing protons occurs. This leads to a characteristic phase shift that can be used as a means to enhance contrast in the well-known T2*-weighted imaging. Many medically relevant pathologies induce tissue alterations that also influence the magnetic properties of tissue. Thus, the detection of blood residues and calcifications in SWI is superior to conventional MR sequences. New techniques, such as quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) allow improved differentiation between blood residues and calcifications and provide an alternative imaging method for fiber tractography with respect to diffusion tensor imaging. (orig.) [German] Die suszeptibilitaetsgewichtete Bildgebung (SWI), urspruenglich entwickelt als verbessertes Verfahren fuer die zerebrale MR-Venographie, ist inzwischen ein fester Bestandteil der neuroradiologischen Diagnostik und gewinnt zunehmend an Bedeutung in der nichtzerebralen Bildgebung. Gewebespezifische Suszeptibilitaetsunterschiede erzeugen ein lokales Magnetfeld, in dem die Dephasierung der signalgebenden Protonen stattfindet. Dabei kommt es zu einer charakteristischen Phasenverschiebung, die als Kontrastverstaerkung in der bekannten T2*-Bildgebung genutzt werden kann. Viele medizinisch relevante Pathologien erzeugen Veraenderungen im Gewebe, die auch die magnetischen Eigenschaften beeinflussen. So koennen Blutungen und Verkalkungen in der SWI besser identifiziert werden als mit konventionellen MR-Sequenzen. Neuere Techniken wie die quantitative Suszeptibilitaetskartierung (QSM) bzw. die Suszeptibilitaets-Tensor-Bildgebung (STI) ermoeglichen

  12. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    Science.gov (United States)

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  13. Colorectal liver metastases: contrast agent diffusion coefficient for quantification of contrast enhancement heterogeneity at MR imaging.

    Science.gov (United States)

    Jia, Guang; O'Dell, Craig; Heverhagen, Johannes T; Yang, Xiangyu; Liang, Jiachao; Jacko, Richard V; Sammet, Steffen; Pellas, Theodore; Cole, Patricia; Knopp, Michael V

    2008-09-01

    To describe and determine the reproducibility of a simplified model to quantitatively measure heterogeneous intralesion contrast agent diffusion in colorectal liver metastases. This HIPAA-compliant retrospective study received institutional review board approval, and written informed consent was obtained from 14 patients (mean age, 61 years +/- 9 [standard deviation]; range, 41-78 years), including 10 men (mean age, 65 years +/- 8; range, 47-78 years) and four women (mean age, 54 years +/- 9; range, 41-59 years), with colorectal liver metastases. Magnetic resonance (MR) imaging was performed twice (first baseline MR image [B(1)] and second baseline MR image [B(2)]) in a single target lesion prior to therapy. Dynamic contrast material-enhanced MR imaging was performed by using a saturation-recovery fast gradient-echo sequence. A simplified contrast agent diffusion model was proposed, and a contrast agent diffusion coefficient (CDC) was calculated. The reproducibility of the CDC measurement was evaluated by using the Bland-Altman plot and a linear regression model. The mean CDC was 0.22 mm(2)/sec (range, 0.01-0.73 mm(2)/sec) on B(1) and 0.24 mm(2)/sec (range, 0.01-0.71 mm(2)/sec) on B(2), with an intraclass correlation coefficient of 0.91 (P < .0001). Bland-Altman plot showed good agreement, with a mean difference in measurement pairs of 0.017 mm(2)/sec +/- 0.096. The slope from the linear regression model was 0.89 (95% confidence interval: 0.63, 1.15) and the intercept was 0.01 (95% confidence interval: -0.08, 0.09). The CDC enables a quantitative description of contrast enhancement heterogeneity in lesions. Given the high reproducibility of the CDC metric, CDC appears promising for further qualification as an imaging biomarker of change measurement in response assessment. http://radiology.rsnajnls.org/cgi/content/full/248/3/901/DC1. RSNA, 2008

  14. Susceptibility weighted imaging (SWI) of the kidney at 3 T. Initial results

    International Nuclear Information System (INIS)

    Mie, Moritz B.; Zoellner, Frank G.; Heilmann, Melanie; Schad, Lothar R.; Nissen, Johanna C.; Schoenberg, Stefan O.; Michaely, Henrik J.

    2010-01-01

    Susceptibility weighted imaging provides diagnostic information in strokes, hemorrhages, and cerebral tumors and has proven to be a valuable tool in imaging venous vessels in the cerebrum. The SWI principle is based on the weighting of T 2 * weighted magnitude images with a phase mask, therewith improving image contrast of veins or neighbouring structures of different susceptibility, in general. T 2 * weighted MRI is already used for assessment of kidney function. In this paper, the feasibility of SWI on kidneys was investigated. Translation of SWI from the brain to the kidneys comes along with two main challenges: (i) organ motion due to breathing and (ii) a higher oxygenation level of renal veins compared to the brain. To handle these problems, the acquisition time has been cut down to allow for breath-hold examinations, and different post-processing methods including a new phase mask were investigated to visualize renal veins. Results showed that by a new post-processing strategy SWI contrast was enhanced on average by a factor of 1.33 compared to the standard phase mask. In summary, initial experiences of SWI on the kidneys demonstrated the feasibility. However, further technical developments have to be performed to make this technology applicable in clinical abdominal MRI. (orig.)

  15. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    Science.gov (United States)

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  16. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  17. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  18. The experimental study of oxygen contrast MR ventilation imaging

    International Nuclear Information System (INIS)

    Yang Jian; Guo Youmin; Wu Xiaoming; Xi Nong; Wang Jianguo; Zhu Li; Lei Xiaoyan; Xie Enyi

    2003-01-01

    Objective: To study the feasibility and basic technology of the oxygen contrast MR ventilation imaging in lung. Methods: Six canine lungs were scanned by using inversion recovery pulse sequence with turbo spin echo acquisition before and after inhalation of the 100% oxygen as T 1 contrast agent, and the T 1 values were measured. The contrast-to-noise ratio (CNR) for each inversion recovery time was compared and the relationship between arterial blood oxygen pressure (PaO 2 ) and T 1 relaxation rate was observed. Subtraction technique was employed in the postprocessing of pre- and post-oxygen conditions. Results: Molecular oxygen could shorten the pulmonary T 1 value (average 13.37%, t=2.683, P 1 value of pre- and post-oxygen conditions. The relaxtivity of T 1 resulted in excellent linear correlation (r 2 =0.9974) with PaO 2 . Through the subtraction of pre- and post-oxygen image, the oxygen contrast MR ventilation -image was obtained. Conclusion: The oxygen contrast MR ventilation imaging has the feasibility and clinical potential for the assessment of regional pulmonary function

  19. Temporal adaptation enhances efficient contrast gain control on natural images.

    Directory of Open Access Journals (Sweden)

    Fabian Sinz

    Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.

  20. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    Science.gov (United States)

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  1. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    Science.gov (United States)

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  2. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  3. Image contrast enhancement based on a local standard deviation model

    International Nuclear Information System (INIS)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-01-01

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm

  4. A new ultrasonic transducer for improved contrast nonlinear imaging

    International Nuclear Information System (INIS)

    Bouakaz, Ayache; Cate, Folkert ten; Jong, Nico de

    2004-01-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  5. Temporal contrast enhancement and parametric imaging for the visualisation of time patterns in dynamic scintigraphic imaging

    International Nuclear Information System (INIS)

    Deconinck, F.; Bossuyt, A.; Lepoudre, R.

    1982-01-01

    Image contrast, photon noise and sampling frequency limit the visual extraction of relevant temporal information in scintigraphic image series. When the Unitation is mainly due to low temporal contrast, temporal contrast enhancement will strongly improve the perceptibility of time patterns in the series. When the limitation is due to photon noise and limited temporal sampling, parametric imaging by means of the Hadamard transform can visualise temporal patterns. (WU)

  6. A role for susceptibility weighted imaging in progressive multifocal leukoencephalopathy

    LENUS (Irish Health Repository)

    Yap, SM

    2017-04-01

    We report a radiologic finding on magnetic resonance imaging (MRI) of the brain of two cases of progressive multifocal leukoencephalopathy (PML) of hypointense signal of subcortical U-fibres on susceptibility weighted (SW) sequence. The first case is a 50-year-old man recently treated with chemotherapy including rituximab for non-Hodgkin\\'s lymphoma. The second case is a 64-year-old woman with human immunodeficiency virus (HIV) infection. Iron deposition is a likely causative factor. We propose that SWI may be especially useful in the assessment of indeterminate cases to reduce the likelihood of a missed diagnosis of PML

  7. Improved MR breast images by contrast optimization using artificial intelligence

    International Nuclear Information System (INIS)

    Konig, H.; Gohagan, J.; Laub, G.; Bachus, R.; Heywang, S.; Reinhardt, E.R.

    1986-01-01

    The clinical relevance of MR imaging of the breast is mainly related to the modelity's ability to differentiate among normal, benign, and malignant tissue and to yield prognostic information. In addition to the MR imaging parameters, morphologic features of these images are calculated. Based on statistical information of a comprehensive, labeled image and knowledge of a data base system, a numerical classifier is deduced. The application of this classifier to all cases leads to estimations of specific tissue types for each pixel. The method is sufficiently sensitive for grading a recognized tissue class. In this manner images with optimal contrast appropriate to particular diagnostic requirements are generated. The discriminant power of each MR imaging parameter as well as of a combination of parameters can be determined objectively with respect to tissue discrimination

  8. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  9. Modified natural nanoparticles as contrast agents for medical imaging

    NARCIS (Netherlands)

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2010-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have

  10. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    International Nuclear Information System (INIS)

    Salluzzi, M; Frayne, R; Smith, M R

    2006-01-01

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies

  11. Magnetic iron oxide for contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Fahlvik, A.K.

    1991-05-01

    The main objective of this experimental work has been to study the biological fate and the contrast enhancing potential of a model preparation of magnetic iron oxide (MSM) after intravenous injection to rodents. This was achieved by: Studying in vitro contrast efficacy of various magnetic iron oxide preparations by relaxation analysis. Studying in vivo contrast efficacy of MSM by relaxation analysis and NMR imaging. Studying the biodistribution and bioelimination of MSM in independent experiments using relaxation analysis, radioactivity studies and histological techniques. Studying interactions of MSM with target cells and target organelles using ex vivo techniques. Based on the presented experimental study, the MSM model preparation of magnetic iron oxide seems to fulfill basic requirements of NMR contrast agents: efficient proton relaxation, specific in vivo distribution, and biological tolerance. 177 refs., 5 figs., 2 tabs

  12. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  13. Fuzzy Logic-Based Histogram Equalization for Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    V. Magudeeswaran

    2013-01-01

    Full Text Available Fuzzy logic-based histogram equalization (FHE is proposed for image contrast enhancement. The FHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two subhistograms based on the median value of the original image and then equalizes them independently to preserve image brightness. The qualitative and quantitative analyses of proposed FHE algorithm are evaluated using two well-known parameters like average information contents (AIC and natural image quality evaluator (NIQE index for various images. From the qualitative and quantitative measures, it is interesting to see that this proposed method provides optimum results by giving better contrast enhancement and preserving the local information of the original image. Experimental result shows that the proposed method can effectively and significantly eliminate washed-out appearance and adverse artifacts induced by several existing methods. The proposed method has been tested using several images and gives better visual quality as compared to the conventional methods.

  14. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  15. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  16. Magnetic Resonance Imaging Contrast Agents: A Review of Literature

    Directory of Open Access Journals (Sweden)

    Zahra Sahraei

    2015-10-01

    Full Text Available  Magnetic Resonance Imaging (MRI contrast agents most commonly agents used in diagnosing different diseases. Several agents have been ever introduced with different peculiar characteristics. They vary in potency, adverse reaction and other specification, so it is important to select the proper agent in different situations. We conducted a systematic literature search in MEDLINE/PUBMED, Web of Science (ISI, Scopus,Google Scholar by using keywords "gadolinium" and "MRI contrast Medias", "Gadofosvest", "Gadobenate" and "Gadoxetate". The most frequent contrast media agents made based on gadolinium (Gd. These are divided into two categories based on the structure of their chelating parts, linear agents and macrocyclic agents. All characteristics of contrast media factors, including efficiency, kinetic properties, stability, side effects and the rate of resolution are directly related to the structure of chelating part of that formulation.In vitro data has shown that the macrocyclic compounds are the most stable Gd-CA as they do not bind to serum proteins, they all possess similar and relatively low relaxivity and the prevalence of Nephrogenic Systemic Fibrosis (NSF has decreased by increasing the use of macrocyclic agents in recent years. No cases of NSF have been recorded after the administration of any of the high-relaxivity protein interacting agents, the vascular imaging agent gadofosveset trisodium (Ablavar, the hepatic imaging agent gadoxetate meglumine (Eovist, and the multipurpose agent gadobenate dimeglumine (MultiHance. In pregnancy and lactating women, stable macrocyclic agent is recommended.

  17. The clinical use of contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bydder, G.M.

    1987-01-01

    Interest in the use of external agents to increase tissue contrasts has come from many sources dating back to the earliest work in NMR, to animal studies and to the widespread use of contrast agents in conventional radiological practice. The first clinical magnetic resonance images were published in 1980 and in the following year a brief account of the use of the paramagnetic agents in human volunteers was established. It was apparent relatively early in the development of magnetic resonance imaging (MRI) that a high level of soft tissue contrast was available de novo and the need for externally administered agents might therefore be small. This observation was tempered by the fact that separation of tumour from oedema was frequently better with contrast enhanced CT X-ray than with unenhanced MRI and that of a contrast agent might therefore be needed for MRI. At the end of 1983 the first parenteral agent gadoliminum diethylene triamine pentaacetic acid (Gd-DTPA) was used in volunteers and clinical studies began in 1984. At the present time only molecular O/sub 2/, oral iron compounds and Gd-DTPA are in clinical use although there are a number of other agents which have been used in animals and some of these may become available for clinical use in the foreseeable future

  18. Facial nerve palsy: Evaluation by contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Kinoshita, T.; Ishii, K.; Okitsu, T.; Okudera, T.; Ogawa, T.

    2001-01-01

    AIM: The purpose of this study was to investigate the value of contrast-enhanced magnetic resonance (MR) imaging in patients with peripheral facial nerve palsy. MATERIALS AND METHODS: MR imaging was performed in 147 patients with facial nerve palsy, using a 1.0 T unit. All of 147 patients were evaluated by contrast-enhanced MR imaging and the pattern of enhancement was compared with that in 300 control subjects evaluated for suspected acoustic neurinoma. RESULTS: The intrameatal and labyrinthine segments of the normal facial nerve did not show enhancement, whereas enhancement of the distal intrameatal segment and the labyrinthine segment was respectively found in 67% and 43% of patients with Bell's palsy. The geniculate ganglion or the tympanic-mastoid segment was enhanced in 21% of normal controls versus 91% of patients with Bell's palsy. Abnormal enhancement of the non-paralyzed facial nerve was found in a patient with bilateral temporal bone fracture. CONCLUSION: Enhancement of the distal intrameatal and labyrinthine segments is specific for facial nerve palsy. Contrast-enhanced MR imaging can reveal inflammatory facial nerve lesions and traumatic nerve injury, including clinically silent damage in trauma. Kinoshita T. et al. (2001)

  19. Facial nerve palsy: Evaluation by contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, T.; Ishii, K.; Okitsu, T.; Okudera, T.; Ogawa, T

    2001-11-01

    AIM: The purpose of this study was to investigate the value of contrast-enhanced magnetic resonance (MR) imaging in patients with peripheral facial nerve palsy. MATERIALS AND METHODS: MR imaging was performed in 147 patients with facial nerve palsy, using a 1.0 T unit. All of 147 patients were evaluated by contrast-enhanced MR imaging and the pattern of enhancement was compared with that in 300 control subjects evaluated for suspected acoustic neurinoma. RESULTS: The intrameatal and labyrinthine segments of the normal facial nerve did not show enhancement, whereas enhancement of the distal intrameatal segment and the labyrinthine segment was respectively found in 67% and 43% of patients with Bell's palsy. The geniculate ganglion or the tympanic-mastoid segment was enhanced in 21% of normal controls versus 91% of patients with Bell's palsy. Abnormal enhancement of the non-paralyzed facial nerve was found in a patient with bilateral temporal bone fracture. CONCLUSION: Enhancement of the distal intrameatal and labyrinthine segments is specific for facial nerve palsy. Contrast-enhanced MR imaging can reveal inflammatory facial nerve lesions and traumatic nerve injury, including clinically silent damage in trauma. Kinoshita T. et al. (2001)

  20. Contrast enhancement pattern in MR imaging of acute cerebral infarction

    International Nuclear Information System (INIS)

    Kim, Jong Deok; Cho, Mee Young; Lee, Chae Guk; Song, Dong Hoon

    1994-01-01

    To present the enhancement pattern of acute cerebral or cerebellar cortical infarctions aged 1-3 days on MR. Contrast-enhanced MR images of 26 patients with acute cerebral or cerebellar ischemic events were retrospectively reviewed. MR was performed within 3 days after ictus. Contrast enhancement in the area of infarction was observed in 61.5% (16/26) on MR. Of these 50% (13/26) showed non-parenchymal enhancement (NPE) representing either vascular or leptomeningeal enhancement, 7.7% (2/26) showed parenchymal enhancement (PE), and 2.8% (1/26) showed both NPE and PE. The earliest enhancement was seen in images obtained 12 hours after the onset of symptoms and appeared as NPE. One patient showed NPE without apparent high signal intensity at the corresponding area on T2-weighted images. In 38.5% (10/26), there was no enhancement. Contrast-enhanced MR imaging may be needed in acute ischemic infarction, because NPE may be seen as the earliest MR finding of acute cortical infraction aged 1-3 days

  1. Contrast enhancement pattern in MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Deok; Cho, Mee Young; Lee, Chae Guk; Song, Dong Hoon [Inje University College of Medicine, Pusan (Korea, Republic of)

    1994-08-15

    To present the enhancement pattern of acute cerebral or cerebellar cortical infarctions aged 1-3 days on MR. Contrast-enhanced MR images of 26 patients with acute cerebral or cerebellar ischemic events were retrospectively reviewed. MR was performed within 3 days after ictus. Contrast enhancement in the area of infarction was observed in 61.5% (16/26) on MR. Of these 50% (13/26) showed non-parenchymal enhancement (NPE) representing either vascular or leptomeningeal enhancement, 7.7% (2/26) showed parenchymal enhancement (PE), and 2.8% (1/26) showed both NPE and PE. The earliest enhancement was seen in images obtained 12 hours after the onset of symptoms and appeared as NPE. One patient showed NPE without apparent high signal intensity at the corresponding area on T2-weighted images. In 38.5% (10/26), there was no enhancement. Contrast-enhanced MR imaging may be needed in acute ischemic infarction, because NPE may be seen as the earliest MR finding of acute cortical infraction aged 1-3 days.

  2. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie

    2012-08-15

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  3. Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI).

    Science.gov (United States)

    Peters, S; Knöß, N; Wodarg, F; Cnyrim, C; Jansen, O

    2012-08-01

    It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    International Nuclear Information System (INIS)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O.

    2012-01-01

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  5. Improving parallel imaging by jointly reconstructing multi-contrast data.

    Science.gov (United States)

    Bilgic, Berkin; Kim, Tae Hyung; Liao, Congyu; Manhard, Mary Kate; Wald, Lawrence L; Haldar, Justin P; Setsompop, Kawin

    2018-08-01

    To develop parallel imaging techniques that simultaneously exploit coil sensitivity encoding, image phase prior information, similarities across multiple images, and complementary k-space sampling for highly accelerated data acquisition. We introduce joint virtual coil (JVC)-generalized autocalibrating partially parallel acquisitions (GRAPPA) to jointly reconstruct data acquired with different contrast preparations, and show its application in 2D, 3D, and simultaneous multi-slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint parallel imaging from limited autocalibration signal region, as well as permitting partial Fourier sampling and calibrationless reconstruction. We demonstrate highly accelerated 2D balanced steady-state free precession with phase cycling, SMS multi-echo spin echo, 3D multi-echo magnetization-prepared rapid gradient echo, and multi-echo gradient recalled echo acquisitions in vivo. Compared to conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-fold reduction in reconstruction error. JVC-GRAPPA takes advantage of additional spatial encoding from phase information and image similarity, and employs different sampling patterns across acquisitions. J-LORAKS achieves a more parsimonious low-rank representation of local k-space by considering multiple images as additional coils. Both approaches provide dramatic improvement in artifact and noise mitigation over conventional single-contrast parallel imaging reconstruction. Magn Reson Med 80:619-632, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Noise and contrast detection in computed tomography images

    International Nuclear Information System (INIS)

    Faulkner, K.; Moores, B.M.

    1984-01-01

    A discrete representation of the reconstruction process is used in an analysis of noise in computed tomography (CT) images. This model is consistent with the method of data collection in actual machines. An expression is derived which predicts the variance on the measured linear attenuation coefficient of a single pixel in an image. The dependence of the variance on various CT scanner design parameters such as pixel size, slice width, scan time, number of detectors, etc., is then described. The variation of noise with sampling area is theoretically explained. These predictions are in good agreement with a set of experimental measurements made on a range of CT scanners. The equivalent sampling aperture of the CT process is determined and the effect of the reconstruction filter on the variance of the linear attenuation coefficient is also noted, in particular, the choice and its consequences for reconstructed images and noise behaviour. The theory has been extended to include contrast detail behaviour, and these predictions compare favourably with experimental measurements. The theory predicts that image smoothing will have little effect on the contrast-detail detectability behaviour of reconstructed images. (author)

  7. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  8. Implementation of neutron phase contrast imaging at FRM-II

    International Nuclear Information System (INIS)

    Lorenz, Klaus

    2008-01-01

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  9. Analyser-based phase contrast image reconstruction using geometrical optics

    International Nuclear Information System (INIS)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-01-01

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser

  10. Characterization of encapsulated quantum dots via electron channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, Julia I.; McComb, David W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Carnevale, Santino D. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Grassman, Tyler J., E-mail: grassman.5@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-08-08

    A method for characterization of encapsulated epitaxial quantum dots (QD) in plan-view geometry using electron channeling contrast imaging (ECCI) is presented. The efficacy of the method, which requires minimal sample preparation, is demonstrated with proof-of-concept data from encapsulated (sub-surface) epitaxial InAs QDs within a GaAs matrix. Imaging of the QDs under multiple diffraction conditions is presented, establishing that ECCI can provide effectively identical visualization capabilities as conventional two-beam transmission electron microscopy. This method facilitates rapid, non-destructive characterization of sub-surface QDs giving immediate access to valuable nanostructural information.

  11. A phase contrast imaging system for TEXT-U

    International Nuclear Information System (INIS)

    Chatterjee, R.; Hallock, G.A.; Gartman, M.L.

    1994-01-01

    A diagnostic to study plasma density fluctuations, Phase Contrast Imaging (PCI) has been developed for the Texas Experimental Tokamak-Upgrade. The diagnostic has a sensitivity of about 10 -4 n e0 and is capable of detecting a wide range of wavenumbers (0.5 cm -1 - 12 cm -1 ) with a bandwidth of 500 Khz. The design of the diagnostic, some results of acoustic calibration tests and preliminary results of simulation of expected spectra are presented

  12. The V-SHARK high contrast imager at LBT

    Science.gov (United States)

    Pedichini, F.; Ambrosino, F.; Centrone, M.; Farinato, J.; Li Causi, G.; Pinna, E.; Puglisi, A.; Stangalini, M.; Testa, V.

    2016-08-01

    In the framework of the SHARK project the visible channel is a novel instrument synergic to the NIR channel and exploiting the performances of the LBT XAO at visible wavelengths. The status of the project is presented together with the design study of this innovative instrument optimized for high contrast imaging by means of high frame rate. Its expected results will be presented comparing the simulations with the real data of the "Forerunner" experiment taken at 630nm.

  13. Accuracy of pre-contrast imaging in abdominal magnetic resonance imaging of pediatric oncology patients

    International Nuclear Information System (INIS)

    Mohd Zaki, Faizah; Moineddin, Rahim; Grant, Ronald; Chavhan, Govind B.

    2016-01-01

    Safety concerns are increasingly raised regarding the use of gadolinium-based contrast media for MR imaging. To determine the accuracy of pre-contrast abdominal MR imaging for lesion detection and characterization in pediatric oncology patients. We included 120 children (37 boys and 83 girls; mean age 8.94 years) referred by oncology services. Twenty-five had MRI for the first time and 95 were follow-up scans. Two authors independently reviewed pre-contrast MR images to note the following information about the lesions: location, number, solid vs. cystic and likely nature. Pre- and post-contrast imaging reviewed together served as the reference standard. The overall sensitivity was 88% for the first reader and 90% for the second; specificity was 94% and 91%; positive predictive value was 96% and 94%; negative predictive value was 82% and 84%; accuracy of pre-contrast imaging for lesion detection as compared to the reference standard was 90% for both readers. The difference between mean number of lesions detected on pre-contrast imaging and reference standard was not significant for either reader (reader 1, P = 0.072; reader 2, P = 0.071). There was substantial agreement (kappa values of 0.76 and 0.72 for readers 1 and 2) between pre-contrast imaging and reference standard for determining solid vs. cystic lesion and likely nature of the lesion. The addition of post-contrast imaging increased confidence of both readers significantly (P < 0.0001), but the interobserver agreement for the change in confidence was poor (kappa 0.12). Pre-contrast abdominal MR imaging has high accuracy in lesion detection in pediatric oncology patients and shows substantial agreement with the reference standard for characterization of lesions. Gadolinium-based contrast media administration cannot be completely eliminated but can be avoided in many cases, with the decision made on a case-by-case basis, taking into consideration location and type of tumor. (orig.)

  14. Accuracy of pre-contrast imaging in abdominal magnetic resonance imaging of pediatric oncology patients

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaki, Faizah [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada); Universiti Kebangsaan Malaysia Medical Center, Department of Radiology, Kuala Lumpur (Malaysia); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto, ON (Canada); Grant, Ronald [University of Toronto, Department of Hematology and Oncology, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada); Chavhan, Govind B. [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children and Medical Imaging, Toronto, ON (Canada)

    2016-11-15

    Safety concerns are increasingly raised regarding the use of gadolinium-based contrast media for MR imaging. To determine the accuracy of pre-contrast abdominal MR imaging for lesion detection and characterization in pediatric oncology patients. We included 120 children (37 boys and 83 girls; mean age 8.94 years) referred by oncology services. Twenty-five had MRI for the first time and 95 were follow-up scans. Two authors independently reviewed pre-contrast MR images to note the following information about the lesions: location, number, solid vs. cystic and likely nature. Pre- and post-contrast imaging reviewed together served as the reference standard. The overall sensitivity was 88% for the first reader and 90% for the second; specificity was 94% and 91%; positive predictive value was 96% and 94%; negative predictive value was 82% and 84%; accuracy of pre-contrast imaging for lesion detection as compared to the reference standard was 90% for both readers. The difference between mean number of lesions detected on pre-contrast imaging and reference standard was not significant for either reader (reader 1, P = 0.072; reader 2, P = 0.071). There was substantial agreement (kappa values of 0.76 and 0.72 for readers 1 and 2) between pre-contrast imaging and reference standard for determining solid vs. cystic lesion and likely nature of the lesion. The addition of post-contrast imaging increased confidence of both readers significantly (P < 0.0001), but the interobserver agreement for the change in confidence was poor (kappa 0.12). Pre-contrast abdominal MR imaging has high accuracy in lesion detection in pediatric oncology patients and shows substantial agreement with the reference standard for characterization of lesions. Gadolinium-based contrast media administration cannot be completely eliminated but can be avoided in many cases, with the decision made on a case-by-case basis, taking into consideration location and type of tumor. (orig.)

  15. Diffraction contrast STEM of dislocations: Imaging and simulations

    International Nuclear Information System (INIS)

    Phillips, P.J.; Brandes, M.C.; Mills, M.J.; De Graef, M.

    2011-01-01

    The application of scanning transmission electron microscopy (STEM) to crystalline defect analysis has been extended to dislocations. The present contribution highlights the use of STEM on two oppositely signed sets of near-screw dislocations in hcp α-Ti with 6 wt% Al in solid solution. In addition to common systematic row diffraction conditions, other configurations such as zone axis and 3g imaging are explored, and appear to be very useful not only for defect analysis, but for general defect observation. It is demonstrated that conventional TEM rules for diffraction contrast such as g.b and g.R are applicable in STEM. Experimental and computational micrographs of dislocations imaged in the aforementioned modes are presented. -- Highlights: → STEM defect analysis has been extended to include dislocations. → Systematic row, zone axis and 3g diffraction conditions are all found to be useful for general defect observations in STEM mode. → Conventional contrast visibility rules for diffraction contrast are found to remain valid for STEM observations. → Multi-beam dynamical scattering matrix simulations provide excellent agreement with experimental images.

  16. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Peterzol, A.; Berthier, J.; Duvauchelle, P.; Babot, D.; Ferrero, C.

    2007-01-01

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  17. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  18. Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1.

    Science.gov (United States)

    Segarra, Amélie; Mauduit, Florian; Faury, Nicole; Trancart, Suzanne; Dégremont, Lionel; Tourbiez, Delphine; Haffner, Philippe; Barbosa-Solomieu, Valérie; Pépin, Jean-François; Travers, Marie-Agnès; Renault, Tristan

    2014-07-09

    Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.

  19. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging.

    Directory of Open Access Journals (Sweden)

    Shailesh B Raval

    Full Text Available The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity].A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization].High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]-images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The

  20. Development of a magnetic nanoparticle susceptibility magnitude imaging array

    International Nuclear Information System (INIS)

    Ficko, Bradley W; Nadar, Priyanka M; Hoopes, P Jack; Diamond, Solomon G

    2014-01-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R 2  > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml −1  mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. (paper)

  1. Analyser-based phase contrast image reconstruction using geometrical optics.

    Science.gov (United States)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  2. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers.

    Science.gov (United States)

    Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A

    2010-04-20

    Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.

  3. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  4. Contrast enhancement in EIT imaging of the brain

    International Nuclear Information System (INIS)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data. (paper)

  5. Contrast enhancement in EIT imaging of the brain.

    Science.gov (United States)

    Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V

    2016-01-01

    We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data.

  6. Clinical application of MR susceptibility weighted imaging in intracranial hemorrhage

    International Nuclear Information System (INIS)

    Shen Baozhong; Wang Dan; Sun Xilin; Shen Hao; Liu Fang

    2009-01-01

    Objective: To assess the value of susceptibility weighted imaging (SWI) in the diagnosis of intracranial hemorrhage. Methods: Forty patients with intracranial hemorrhage underwent MRI scanning (GE Signa HDe 1.5 T), which included T 2 WI, T 1 WI, T 2 * WI and SWI. Of them, DWI was conducted in 37 eases and enhanced MRI was conducted in 10 cases additionally. After post processing on the workstation, both magnitude and phase images of SWI were acquired for further analysis. The images of all sequences were scored from 1 to 3, according to their ability of depicting the lesions. Statistical analysis was conducted to compare the scores among these sequences. Results: On SWI, the scores in detecting the lesions, their margin and adjacent veins were 2.8, 2.8, and 2.8 respectively. The scores of those were 1.8, 1.7, and 0.0 on T 1 WI, 2.3, 2.0 and 0.0 on T 2 WI, 2.0, 2.1 and 0.2 on T 2 * WI, respectively. There was statistical difference between the scores on SWI and those on T 1 WI, T 2 WI and T 2 * WI (P 1 WI, T 2 WI, DWI and T 2 * WI were 402, 55, 61, 84 and 188 respectively. There was statistical difference in showing micro hemorrhagic lesions between SWI and T 1 WI, T 2 WI, DWI, T 2 * WI (P 2 * WI in detecting intracranial hemorrhage, especially cerebral microbleeding. According to the features of the paramagnetic and diamagnetic lesions, radiologists can differentiate hemorrhage and calcification with phase images. (authors)

  7. Focal hemodynamic patterns of status epilepticus detected by susceptibility weighted imaging (SWI)

    Energy Technology Data Exchange (ETDEWEB)

    Aellen, Jerome; Kottke, Raimund; Springer, Elisabeth; Weisstanner, Christian; El-Koussy, Marwan; Schroth, Gerhard; Wiest, Roland; Gralla, Jan; Verma, Rajeev K. [University of Bern, University Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern and Inselspital, Bern (Switzerland); Abela, Eugenio; Schindler, Kaspar [University of Bern, Department of Neurology, Inselspital, Bern (Switzerland); Buerki, Sarah E. [Inselspital, Department of Neuropaediatrics, University Children' s Hospital, Bern (Switzerland)

    2014-11-15

    To investigate pathological findings in the susceptibility weighted imaging (SWI) of patients experiencing convulsive (CSE) or non-convulsive status epilepticus (NCSE) with focal hyperperfusion in the acute setting. Twelve patients (six with NCSE confirmed by electroencephalogram (EEG) and six patients with CSE with seizure event clinically diagnosed) underwent MRI in this acute setting (mean time between onset of symptoms and MRI was 3 h 8 min), including SWI, dynamic susceptibility contrast MR imaging (DSC) and diffusion-weighted imaging (DWI). MRI sequences were retrospectively evaluated and compared with EEG findings (10/12 patients), and clinical symptoms. Twelve out of 12 (100 %) patients showed a focal parenchymal area with pseudo-narrowed cortical veins on SWI, associated with focal hyperperfused areas (increased cerebral blood flow (CBF) and mean transit time (MTT) shortening), and cortical DWI restriction in 6/12 patients (50 %). Additionally, these areas were associated with ictal or postical EEG patterns in 8/10 patients (80 %). Most frequent acute clinical findings were aphasia and/or hemiparesis in eight patients, and all of them showed pseudo-narrowed veins in those parenchymal areas responsible for these symptoms. In this study series with CSE and NCSE patients, SWI showed focally pseudo-narrowed cortical veins in hyperperfused and ictal parenchymal areas. Therefore, SWI might have the potential to identify an ictal region in CSE/NCSE. (orig.)

  8. Focal hemodynamic patterns of status epilepticus detected by susceptibility weighted imaging (SWI)

    International Nuclear Information System (INIS)

    Aellen, Jerome; Kottke, Raimund; Springer, Elisabeth; Weisstanner, Christian; El-Koussy, Marwan; Schroth, Gerhard; Wiest, Roland; Gralla, Jan; Verma, Rajeev K.; Abela, Eugenio; Schindler, Kaspar; Buerki, Sarah E.

    2014-01-01

    To investigate pathological findings in the susceptibility weighted imaging (SWI) of patients experiencing convulsive (CSE) or non-convulsive status epilepticus (NCSE) with focal hyperperfusion in the acute setting. Twelve patients (six with NCSE confirmed by electroencephalogram (EEG) and six patients with CSE with seizure event clinically diagnosed) underwent MRI in this acute setting (mean time between onset of symptoms and MRI was 3 h 8 min), including SWI, dynamic susceptibility contrast MR imaging (DSC) and diffusion-weighted imaging (DWI). MRI sequences were retrospectively evaluated and compared with EEG findings (10/12 patients), and clinical symptoms. Twelve out of 12 (100 %) patients showed a focal parenchymal area with pseudo-narrowed cortical veins on SWI, associated with focal hyperperfused areas (increased cerebral blood flow (CBF) and mean transit time (MTT) shortening), and cortical DWI restriction in 6/12 patients (50 %). Additionally, these areas were associated with ictal or postical EEG patterns in 8/10 patients (80 %). Most frequent acute clinical findings were aphasia and/or hemiparesis in eight patients, and all of them showed pseudo-narrowed veins in those parenchymal areas responsible for these symptoms. In this study series with CSE and NCSE patients, SWI showed focally pseudo-narrowed cortical veins in hyperperfused and ictal parenchymal areas. Therefore, SWI might have the potential to identify an ictal region in CSE/NCSE. (orig.)

  9. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    International Nuclear Information System (INIS)

    Lin Yuting; Thayer, David; Luk, Alex L; Gulsen, Gultekin; Gao Hao

    2013-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully. (paper)

  10. Atomic force microscopy of pea starch: origins of image contrast.

    Science.gov (United States)

    Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J

    2004-01-01

    Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.

  11. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    Science.gov (United States)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  12. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast

    Science.gov (United States)

    Gharehaghaji, Nahideh; Divband, Baharak; Zareei, Loghman

    2018-06-01

    In the current study, Fe3O4/NaA nanocomposites with various amounts of Fe3O4 (3.4, 6.8 & 10.2 wt%) were synthesized and characterized to study the effect of nano iron oxide content on the magnetic resonance (MR) image contrast. The cell viability of the nanocomposites was investigated by MTT assay method. T2 values as well as r2 relaxivities were determined with a 1.5 T MRI scanner. The results of the MTT assay confirmed the nanocomposites cytocompatibility up to 6.8% of the iron oxide content. Although the magnetization saturations and susceptibility values of the nanocomposites were increased as a function of the iron oxide content, their relaxivity was decreased from 921.78 mM-1 s-1 for the nanocomposite with the lowest iron oxide content to 380.16 mM-1 s-1 for the highest one. Therefore, Fe3O4/NaA nanocomposite with 3.4% iron oxide content led to the best MR image contrast. Nano iron oxide content and dispersion in the nanocomposites structure have important role in the nanocomposite r2 relaxivity and the MR image contrast. Aggregation of the iron oxide nanoparticles is a limiting factor in using of the high iron oxide content nanocomposites.

  13. Susceptibility weighted imaging depicts retinal hemorrhages in abusive head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Panigrahy, Ashok; Haldipur, Anshul; Willaman, Dennis [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Squires, Janet; Wolford, Jennifer [Children' s Hospital of Pittsburgh of UPMC, Division of Child Advocacy, Pittsburgh, PA (United States); Sylvester, Christin; Mitchell, Ellen; Lope, Lee Ann [Children' s Hospital of Pittsburgh of UPMC, Eye Center, Pittsburgh, PA (United States); Nischal, Ken K. [Children' s Hospital of Pittsburgh of UPMC, Eye Center, Pittsburgh, PA (United States); Children' s Hospital of Pittsburgh of UPMC, Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, Eye Center, Pittsburgh, PA (United States); Berger, Rachel P. [Children' s Hospital of Pittsburgh of UPMC, Division of Child Advocacy, Pittsburgh, PA (United States); University of Pittsburgh Medical Center, Safar Center for Resuscitation Research, Pittsburgh, PA (United States)

    2013-07-15

    This study aims to evaluate the capability of magnetic resonance imaging (MRI) susceptibility weighted images (SWI) in depicting retinal hemorrhages (RH) in abusive head trauma (AHT) compared to the gold standard dilated fundus exam (DFE). This is a retrospective, single institution, observational study on 28 patients with suspected AHT, who had a DFE and also underwent brain MRI-SWI as part of routine diagnostic protocol. Main outcome measures involved evaluation of patients to determine whether the RH could be identified on standard and high-resolution SWI sequences. Of the 21 subjects with RH on DFE, 13 (62 %) were identified by using a standard SWI sequence performed as part of brain MRI protocols. Of the 15 patients who also underwent an orbits SWI protocol, 12 (80 %) were positive for RH. None of the seven patients without RH on of DFE had RH on either standard or high-resolution SWI. Compared with DFE, the MRI standard protocol showed a sensitivity of 75 % which increased to 83 % for the orbits SWI protocol. Our study suggests the usefulness of a tailored high-resolution orbits protocol to detect RH in AHT. (orig.)

  14. Susceptibility weighted imaging depicts retinal hemorrhages in abusive head trauma

    International Nuclear Information System (INIS)

    Zuccoli, Giulio; Panigrahy, Ashok; Haldipur, Anshul; Willaman, Dennis; Squires, Janet; Wolford, Jennifer; Sylvester, Christin; Mitchell, Ellen; Lope, Lee Ann; Nischal, Ken K.; Berger, Rachel P.

    2013-01-01

    This study aims to evaluate the capability of magnetic resonance imaging (MRI) susceptibility weighted images (SWI) in depicting retinal hemorrhages (RH) in abusive head trauma (AHT) compared to the gold standard dilated fundus exam (DFE). This is a retrospective, single institution, observational study on 28 patients with suspected AHT, who had a DFE and also underwent brain MRI-SWI as part of routine diagnostic protocol. Main outcome measures involved evaluation of patients to determine whether the RH could be identified on standard and high-resolution SWI sequences. Of the 21 subjects with RH on DFE, 13 (62 %) were identified by using a standard SWI sequence performed as part of brain MRI protocols. Of the 15 patients who also underwent an orbits SWI protocol, 12 (80 %) were positive for RH. None of the seven patients without RH on of DFE had RH on either standard or high-resolution SWI. Compared with DFE, the MRI standard protocol showed a sensitivity of 75 % which increased to 83 % for the orbits SWI protocol. Our study suggests the usefulness of a tailored high-resolution orbits protocol to detect RH in AHT. (orig.)

  15. Mean magnetic susceptibility regularized susceptibility tensor imaging (MMSR-STI) for estimating orientations of white matter fibers in human brain.

    Science.gov (United States)

    Li, Xu; van Zijl, Peter C M

    2014-09-01

    An increasing number of studies show that magnetic susceptibility in white matter fibers is anisotropic and may be described by a tensor. However, the limited head rotation possible for in vivo human studies leads to an ill-conditioned inverse problem in susceptibility tensor imaging (STI). Here we suggest the combined use of limiting the susceptibility anisotropy to white matter and imposing morphology constraints on the mean magnetic susceptibility (MMS) for regularizing the STI inverse problem. The proposed MMS regularized STI (MMSR-STI) method was tested using computer simulations and in vivo human data collected at 3T. The fiber orientation estimated from both the STI and MMSR-STI methods was compared to that from diffusion tensor imaging (DTI). Computer simulations show that the MMSR-STI method provides a more accurate estimation of the susceptibility tensor than the conventional STI approach. Similarly, in vivo data show that use of the MMSR-STI method leads to a smaller difference between the fiber orientation estimated from STI and DTI for most selected white matter fibers. The proposed regularization strategy for STI can improve estimation of the susceptibility tensor in white matter. © 2014 Wiley Periodicals, Inc.

  16. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, C. Zuhal E-mail: sunarerdem@yahoo.com; Bayar, Ulku; Erdem, L. Oktay; Barut, Aykut; Gundogdu, Sadi; Kaya, Erdal

    2004-07-01

    Objective: to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. Method: 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T{sub p}); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. Results: the mean values of T{sub p} were found to be significantly lower in women with PCOS than in controls (p<0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p<0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. Conclusion: the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS.

  17. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  18. Polycystic ovary syndrome: dynamic contrast-enhanced ovary MR imaging

    International Nuclear Information System (INIS)

    Erdem, C. Zuhal; Bayar, Ulku; Erdem, L. Oktay; Barut, Aykut; Gundogdu, Sadi; Kaya, Erdal

    2004-01-01

    Objective: to determine the enhancement behaviour of the ovaries in women with polycystic ovary syndrome (PCOS) by dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging and to compare these data with those of normal ovulating controls. Method: 24 women with PCOS and 12 controls underwent DCE-MR imaging. Dynamic images were acquired before and after injection of a contrast bolus at 30 s and the min of 1, 2, 3, 4 and 5. On postprocessing examination: (i) the ovarian volumes; (ii) the signal intensity value of each ovary per dynamic study; (iii) early-phase enhancement rate; (iv) time to peak enhancement (T p ); and (v) percentage of washout of 5th min were determined. Data of the ovaries of the women with PCOS and controls were compared with Mann-Whitney U-test. Results: the mean values of T p were found to be significantly lower in women with PCOS than in controls (p<0.05). On the other hand, the mean values of ovarian volume, the early-phase enhancement rate, and percentage of washout of 5th min of ovaries were significantly higher in PCOS patients (p<0.05). Examination of the mean signal intensity-time curve revealed the ovaries in women with PCOS showed a faster and greater enhancement and wash-out. Conclusion: the enhancement behaviour of ovaries of women with PCOS may be significantly different from those of control subjects on DCE-MR imaging examination. In our experience, it is a valuable modality to highlight the vascularization changes in ovarian stroma with PCOS. We believe that improved DCE-MR imaging techniques may also provide us additional parameters in the diagnosis and treatment strategies of PCOS

  19. T2 values of femoral cartilage of the knee joint: Comparison between pre-contrast and post-contrast images

    International Nuclear Information System (INIS)

    Yoon, Hyun Jung; Yoon, Young Cheol; Choe, Bong Keun

    2014-01-01

    To retrospectively evaluate the relationship between T2 values of pre- and post-contrast magnetic resonance (MR) images of femoral cartilage in patients with varying degrees of osteoarthritis. A total of 19 patients underwent delayed gadolinium-enhanced MRI of cartilage. Six regions of interest for T2 value measurement were obtained from pre- and post-contrast T2-weighted, sagittal, multi-slice, multi-echo, source images in each subject. Regions with modified Noyes classification grade 2B and 3 were excluded. Comparison of T2 values between pre- and post-contrast images and T2 values among regions with the grade 0, 1 and 2A groups were statistically analyzed. Of a total of 114 regions, 79 regions showing grade 0 (n = 46), 1 (n = 18), or 2A (n = 15) were analyzed. The overall and individual T2 values of post-contrast images were significantly lower than those of pre-contrast images (overall, 35.3 ± 9.2 [mean ± SD] vs. 29.9 ± 8.2, p < 0.01; range of individual, 28.9-37.6 vs. 27.1-36.4, p < 0.01). Pearson correlation coefficients showed a strong positive correlation between pre- and post-contrast images (rho-Pearson = 0.712-0.905). T2 values of pre- and post-contrast images of the grade 0 group were significantly lower than those of the grade 1/2A group (pre T2, p = 0.003; post T2, p = 0.006). T2 values of the femoral cartilage of the knee joint are significantly lower on post-contrast images than on pre-contrast images. Furthermore, these T2 values have a strong positive correlation between pre- and post-contrast images.

  20. T2 values of femoral cartilage of the knee joint: Comparison between pre-contrast and post-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Yoon, Young Cheol [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choe, Bong Keun [Department of Preventive Medicine, Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2014-02-15

    To retrospectively evaluate the relationship between T2 values of pre- and post-contrast magnetic resonance (MR) images of femoral cartilage in patients with varying degrees of osteoarthritis. A total of 19 patients underwent delayed gadolinium-enhanced MRI of cartilage. Six regions of interest for T2 value measurement were obtained from pre- and post-contrast T2-weighted, sagittal, multi-slice, multi-echo, source images in each subject. Regions with modified Noyes classification grade 2B and 3 were excluded. Comparison of T2 values between pre- and post-contrast images and T2 values among regions with the grade 0, 1 and 2A groups were statistically analyzed. Of a total of 114 regions, 79 regions showing grade 0 (n = 46), 1 (n = 18), or 2A (n = 15) were analyzed. The overall and individual T2 values of post-contrast images were significantly lower than those of pre-contrast images (overall, 35.3 ± 9.2 [mean ± SD] vs. 29.9 ± 8.2, p < 0.01; range of individual, 28.9-37.6 vs. 27.1-36.4, p < 0.01). Pearson correlation coefficients showed a strong positive correlation between pre- and post-contrast images (rho-Pearson = 0.712-0.905). T2 values of pre- and post-contrast images of the grade 0 group were significantly lower than those of the grade 1/2A group (pre T2, p = 0.003; post T2, p = 0.006). T2 values of the femoral cartilage of the knee joint are significantly lower on post-contrast images than on pre-contrast images. Furthermore, these T2 values have a strong positive correlation between pre- and post-contrast images.

  1. Novel MR imaging contrast agents for cancer detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2009-05-01

    Full Text Available

    • BACKGROUND: Novel potential MR imaging contrast agents Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP, Gd-hematoporphyrin (Gd-H, Gd-DTPA-9.2.27 against melanoma, Gd-DTPA-WM53 against leukemia and Gd-DTPAC595 against breast cancer cells were synthesized and applied to mice with different human cancer cells (melanoma MM-138, leukemia HL-60, breast MCF-7. The relaxivity, the biodistribution, T1 relaxation times, and signal enhancement of the contrast agents are presented and the results are compared.
    • METHODS: After preparation of contrast agents, the animal studies were performed. The cells (2×106 cells were injected subcutaneously in the both flanks of mice. Two to three weeks after tumor plantation, when the tumor diameter was 2-4 mm, mice were injected with the different contrast agents. The animals were sacrificed at 24 hr post IP injection followed by removal of critical organs. The T1 relaxation times and signal intensities of samples were measured using 11.4 T magnetic field and Gd concentration were measured using UV-spectrophotometer.
    • RESULTS: For Gd-H, the percent of Gd localized to the tumors measured by UV-spect was 28, 23 and 21 in leukemia, melanoma and breast cells, respectively. For Gd-TCP this amount was 21%, 18% and 15%, respectively. For Gd-DTPA-9.2.27, Gd-DTPA-WM53 and Gd-DTPA-C595 approximately 35%, 32% and 27% of gadolinium localized to their specific tumor, respectively.
    • CONCLUSION: The specific studied conjugates showed good tumor uptake in the relevant cell lines and low levels of Gd in the liver, kidney and spleen. The studied agents have considerable promise for further diagnosis applications of MR imaging.
    • KEYWORDS: Magnetic Resonance, Imaging, Monoclonal Antibody, Contrast Agents, Gadolinium, Early Detection of Cancer.

  2. Research on Wavelet-Based Algorithm for Image Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    Wu Ying-qian; Du Pei-jun; Shi Peng-fei

    2004-01-01

    A novel wavelet-based algorithm for image enhancement is proposed in the paper. On the basis of multiscale analysis, the proposed algorithm solves efficiently the problem of noise over-enhancement, which commonly occurs in the traditional methods for contrast enhancement. The decomposed coefficients at same scales are processed by a nonlinear method, and the coefficients at different scales are enhanced in different degree. During the procedure, the method takes full advantage of the properties of Human visual system so as to achieve better performance. The simulations demonstrate that these characters of the proposed approach enable it to fully enhance the content in images, to efficiently alleviate the enhancement of noise and to achieve much better enhancement effect than the traditional approaches.

  3. Polarization-dependent imaging contrast in abalone shells

    Science.gov (United States)

    Metzler, Rebecca A.; Zhou, Dong; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Ariosa, Daniel; Coppersmith, Susan N.; Gilbert, P. U. P. A.

    2008-02-01

    Many biominerals contain micro- or nanocrystalline mineral components, organized accurately into architectures that confer the material with improved mechanical performance at the macroscopic scale. We present here an effect which enables us to observe the relative orientation of individual crystals at the submicron scale. We call it polarization-dependent imaging contrast (PIC), as it is an imaging development of the well-known x-ray linear dichroism. Most importantly, PIC is obtained in situ, in biominerals. We present here PIC in the prismatic and nacreous layers of Haliotis rufescens (red abalone), confirm it in geologic calcite and aragonite, and corroborate the experimental data with theoretical simulated spectra. PIC reveals different and unexpected aspects of nacre architecture that have inspired theoretical models for nacre formation.

  4. Effect of Mahanarva fimbriolata (Hemiptera: Cercopidae) Attack on Photosynthetic Parameters of Sugarcane Genotypes of Contrasting Susceptibility.

    Science.gov (United States)

    Soares, Bruno Oliveira; Chaves, Vinicius de Vicente; Tomaz, Adriano Cirino; Kuki, Kacilda Naomi; Peternelli, Luiz Alexandre; Barbosa, Márcio Henrique Pereira

    2017-12-05

    The aim of this study was to compare the effect of spittlebug Mahanarva fimbriolata Stål (Hemiptera: Cercopidae) on photosynthetic parameters of both a susceptible (SP81-3250) and a resistant (H.Kawandang) sugarcane genotype. In the first assay, the susceptibility level of genotypes to spittlebug was confirmed by comparing damage score and chlorophyll content of the plants. In the second assay, the effect of spittlebug nymphs on photosynthetic characteristics was assessed using the following parameters: Net photosynthetic rate (A), carboxylation efficiency (A/Ci), stomata conductance (gS), transpiration (E), electron transport rate (ETR), maximum quantum yield of Photosystem 2 (PSII) (FV/FM), effective quantum yield (Y(II)), photochemical quenching (Y(NPQ)), and nonphotochemical quenching (Y(NO)). Spittlebug nymphs affected the photosynthetic process of the susceptible genotype SP81-3250 by decreasing the Chl content, ETR, FV/FM, and Y(II). However, this genotype was able to maintain A probably due to its ability to maintain stomata aperture, increase the carboxylation efficiency of Rubisco, and dissipate excess energy through the xanthophyll cycle, as Y(NPQ) increased under the spittlebug attack. On the other hand, the spittlebug did not affect Chl content and FV/FM of the H.Kawandang genotype. Furthermore, H.Kawandang increased A to compensate for the sink demand by the spittlebug by increasing stomatal aperture and carboxylation efficiency and increasing efficiency of the photochemical apparatus in converting light energy into chemical products. We can conclude that the feeding habits of spittlebug nymphs have different impacts on photosynthesis of susceptible and resistant sugarcane genotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Nutrient regeneration susceptibility under contrasting sedimentary conditions from the Rio de Janeiro coast, Brazil

    International Nuclear Information System (INIS)

    Matos, Christiene R.L.; Mendoza, Ursula; Diaz, Rut; Moreira, Manuel; Belem, Andre L.; Metzger, Edouard; Albuquerque, Ana Luiza S.

    2016-01-01

    Dissolved silicate (DSi), NH 4 + , NO 3 − and PO 4 3− susceptibility to be exchanged between sediment pore waters and overlying waters was evaluated in Jurujuba Sound (JS station) and Coroa Grande Sound (CGS station), southeastern Brazil. Sedimentary elemental (C, N and P) and isotopic (δ 13 C and δ 15 N) compositions evidenced stronger anthropogenic fertilization in JS station. Net NO 3 − influxes from overlying waters occurred, which was two orders of magnitude higher under the more fertilized condition. This condition resulted in 6–13-times higher net effluxes of NH 4 + , DSi and PO 4 3− to overlying waters. Vertical alternation between production and consumption processes in pore waters contributed for a more limited regeneration in CGS station. This was associated with diagenetic responses to sedimentary grain size variability in deeper layers and biological disturbance in upper layers. Nearly continuous production of NH 4 + , DSi and PO 4 3− in pore waters implied in intensified susceptibility to remobilization under the eutrophic condition of JS station. - Highlights: • SO 4 2− reduction was a driver for the larger nutrient regeneration susceptibilities. • NO 3 − reduction processes resulted in net NO 3 − influxes from overlying waters. • Effluxes (NH 4 + > DSi > PO 4 3− ) were accentuated under the more fertilized condition. • Fluxes were limited by alternations between consumption and production processes.

  6. Contrast agents for tumor diagnosis in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Rensuke; Doi, Hisayoshi; Okada, Shoji [University of Shizuoka (Japan). School of Pharmaceutical Science; Yano, Masayuki; Katano, Susumu; Nakajima, Nobuaki

    1992-01-01

    In order to develop contrast agents for tumor diagnosis in magnetic resonance imaging (MRI), we investigated the effects of several gadolinium complexes on T{sub 1} relaxation time of proton in some tissues of Ehrlich solid tumor-bearing mice. L-Aspartic acid, L-glutamic acid, DL-homocysteine, L-glutamyl-glutamic acid, glutathione, sperimidine and ethylenediaminetetrakis (methylenephosphate) (EDTMP) were used as ligands for Gd{sup 3+}. Since each Gd-complex could not be purified except Gd-EDTMP, the mixture of GdCl{sub 3} and a ligand was administered intravenously. Among the compounds tested, the mixture of aspartic acid, glutathione or spermidine with GdCl{sub 3} showed almost the same or above reduction of T{sub 1} relaxation times in the tumor tissue compared with Gd-diethylenetriamine pentaacetic acid (Gd-DTPA) which is used clinically. Furthermore, the contrast-enhancing effect of the three mixtures in the tumor was observed by in vivo T{sub 1}-weighted magnetic resonance imaging. The in vivo tissue distribution using radioactive {sup 153}Gd{sup 3+} showed that these mixtures mentioned above were also taken up more highly in the tumor than {sup 153}GdCl{sub 3} itself and {sup 153}Gd-DTPA, suggesting the formation of Gd-complexes. However, the overall tissue distribution of the mixtures was similar to that of {sup 153}GdCl{sub 3} because the Gd-complexes were not purified. Gd-EDTMP exhibited the almost same effects with Gd-DTPA as a contrast agent. (author).

  7. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  8. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  9. pH-induced contrast in viscoelasticity imaging of biopolymers

    International Nuclear Information System (INIS)

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  10. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  11. Supervised detection of exoplanets in high-contrast imaging sequences

    Science.gov (United States)

    Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.

    2018-06-01

    Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve

  12. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  13. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  14. Contribution of dynamic contrast MR imaging to the differentiation between dural metastasis and meningioma

    International Nuclear Information System (INIS)

    Kremer, S.; Grand, S.; Le Bas, J.F.; Remy, C.; Pasquier, B.; Benabid, A.L.; Bracard, S.

    2004-01-01

    To determine the perfusion-sensitive characteristics of cerebral dural metastases and compare them with the data on meningiomas. Twenty-two patients presenting with dural tumor underwent conventional and dynamic susceptibility-contrast MR imaging: breast carcinoma metastases, two patients; colorectal carcinoma metastasis, one patient; lung carcinoma metastasis, one patient; Merkel carcinoma metastasis, one patient; lymphoma, one patient; meningiomas, 16 patients. The imaging characteristics were analyzed using conventional MR imaging. The cerebral blood volume (CBV) maps were obtained for each patient and the relative CBV (rCBV) in different areas was calculated using the ratio between the CBV in the pathological area (CBVp) and in the contralateral white matter (CBVn). The differentiation between a meningioma and a dural metastasis can be difficult using conventional MR imaging. The rCBVs of lung carcinoma metastasis (1 case: 1.26), lymphoma (1 case: 1.29), breast carcinoma metastasis (2 cases: 1.50,1.56) and rectal carcinoma metastasis (1 case: 3.34) were significantly lower than that of meningiomas (16 cases: mean rCBV = 8.97±4.34, range 4-18). Merkel carcinoma metastasis (1 case: 7.56) showed an elevated rCBV, not different from that of meningiomas. Dural metastases are sometimes indistinguishable from meningiomas using conventional MR imaging. rCBV mapping can provide additional information by demonstrating a low rCBV which may suggest the diagnosis of metastasis. (orig.)

  15. Contrasting dynamic spin susceptibility models and their relation to high-temperature superconductivity

    International Nuclear Information System (INIS)

    Schuettler, H.; Norman, M.R.

    1996-01-01

    We compare the normal-state resistivities ρ and the critical temperatures T c for superconducting d x 2 -y 2 pairing due to antiferromagnetic (AF) spin fluctuation exchange in the context of two phenomenological dynamical spin susceptibility models for the cuprate high-T c materials, one based on fits to NMR data on Y-Ba-Cu-O (YBCO) proposed by Millis, Monien, and Pines (MMP) and Monthoux and Pines (MP), and the other based on fits to neutron scattering data on YBCO proposed by Radtke, Ullah, Levin, and Norman (RULN). Assuming comparable electronic bandwidths and resistivities in both models, we show that the RULN model gives a much lower d-wave T c (approx-lt 20 K) than the MMP model (with T c ∼100 K). We demonstrate that these profound differences in the T c close-quote s arise from fundamental differences in the spectral weight distributions of the two model susceptibilities at high (>100 meV) frequencies and are not primarily caused by differences in the calculational techniques employed by MP and RULN. Further neutron scattering experiments, to explore the spectral weight distribution at all wave vectors over a sufficiently large excitation energy range, will thus be of crucial importance to resolve the question whether AF spin fluctuation exchange can provide a viable mechanism to account for high-T c superconductivity. Limitations of the Migdal-Eliashberg approach in such models will be discussed. copyright 1996 The American Physical Society

  16. The intrusive complexof the Island of Giglio: geomagnetic characteristics of plutonic facies with low susceptibility contrast

    Directory of Open Access Journals (Sweden)

    R. Cavallini

    1998-06-01

    Full Text Available Two main plutonic facies characterize the intrusive complex of the Island of Giglio, and the trend of their contact at depth has been modelled using a 2D½ analysis based on a detailed geomagnetic survey in order to verify the geological hypothesis of the subsurface geometry of this contact. The magnetic anomaly connected with the discontinuity is quite low, due to the small difference between the magnetic susceptibilities of the two granitic facies. Development of this model of inversion of the magnetic field, which is in good agreement with the geological interpretation, was made possible by: 1 accurate control of the geomagnetic time variations and consequent temporal reduction, 2 a very low level of the artificial magnetic noise, 3 high density of the magnetic survey, 4 detailed knowledge of the mapped geologic contact between facies and of their petrologic characteristics, and 5 direct local measurements of the magnetic susceptibilities of the key lithologies. The model shows the trends of the geological contact, as projected in three E-W sections, that dips eastward in the range between 210 and 540, supporting the geologic hypothesis that the Pietrabona facies represents an external shell of the shallowly emplaced Giglio monzogranite intrusion.

  17. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...

  18. Tracers and contrast agents in cardiovascular imaging: present and future

    International Nuclear Information System (INIS)

    Marmion, M.; Deutsch, E.

    1996-01-01

    This brief article addresses the current status and future potential of nuclear medicine, X-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) imaging in the diagnosis of cardiovascular diseases. The currently perceived advantages and disadvantages, as well as the possible future roles, of each of the modalities with regard to the evaluation of coronary artery disease are delineated. The certain advent of Mr and US myocardial contrast agents, combined with the inexorable pressures of health care reform, will alter the future usage patterns of all four modalities. Future debates about which modality should be used in which clinical situation will be based not on 'anatomy vs function', nor on the issues of cost effectiveness and patient outcomes

  19. Contrast-enhanced dynamic MR imaging in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Koenig, H.; Sieper, J.; Wolf, K.J.

    1989-01-01

    This paper reports on a study for the identification of different pannus formations. Twenty patients with advanced rheumatoid arthritis of the knee joint were examined with MR imaging primary to surgery. The authors used a 1.5-T Magnetom unit, a circular surface coil for signal detection, 0.1 mmol/kg of Gd-DTPA given as a bolus injection, fast low-angle shot (FLASH) sequence (TR, 30 msec; TE, 10 msec; 128 x 128 matrix; excitation angle, 70 degrees) repeated 30 times within 120 seconds, and a T1-weighted spin-echo sequence (Tr, 500 msec; TE, 22 msec) before and 2 minutes after contrast medium injection. Enhancement of pannus and joint effusion has been measured and standardized to muscle tissue

  20. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  1. Contrast-enhanced turbo spin-echo(TSE) T1-weighted imaging: improved contrast of enhancing lesions

    International Nuclear Information System (INIS)

    Choi, Sung Wook; Lee, Ghi Jai; Shim, Jae Chan; Lee, Young Ju; Jeong, Se Hyung; Kim, Ho kyun

    1997-01-01

    The purpose of this study was to evaluate the effect of contrast improvement of enhancing brain lesions by inherent magnetization transfer effect in turbo spin-echo(TSE)T1-weighted MR imaging. Twenty-six enhancing lesions of 19 patients were included in this study. Using a 1.0T superconductive MR unit, contrast-enhanced SE T1-weighted images(TR=3D600 msec, TE=3D12 msec, NEX=3D2, acquistition time=3D4min 27sec) and contrast-enhanced TSE T1-weighted images(TR=3D600 msec, TE=3D12, acquistition time=3D1min 44sec) were obtained. Signal intensities at enhancing lesions and adjacent white matter were measured in the same regions of both images. Signal-to-noise ratio(SNR) of enhancing lesions and adjacent white matter, and con-trast-to-noise ratio(CNR) and lesion-to-background contrast (LBC) of enhancing lesions were calculated and statistically analysed using the paired t-test. On contrast-enhanced TSE T1-weighted images, SNR of enhancing lesions and adjacent white matter decreased by 18%(p<0.01) and 32%(p<0.01), respectively, compared to contrast-enhanced SE T1-weighted images. CNR and LBC of enhancing lesions increased by 16%(p<0.05) and 66%(p<0.01), respectively. Due to the proposed inherent magnetization transfer effects in TSE imaging, con-trast-enhanced T1-weighted TSE images demonstrated a statistically significant improvement in CNR and LBC, compared to conventional contrast-enhanced T1-weighted SE images, and scan time was much shorter

  2. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  3. Magnetic resonance imaging of urinary bladder carcinoma: tumor staging and gadolinium contrast-enhanced imaging

    International Nuclear Information System (INIS)

    Doringer, E.; Joos, H.; Forstner, R.; Schmoller, H.

    1992-01-01

    Forty-nine patients with urinary bladder carcinomas underwent pre-operative examinations using magnetic resonance (MR) imaging. The results of the MR examinations were correlated with the clinical-pathological findings following transurethral resection (TUR) and bimanual palpation (n = 47) or radical cystectomy (n = 2). The results of pre-contrast MR tumor staging (T1, T2), viewing stages Tis-T2 collectively, and subsequent to separate assessments of stages T3b-T4b, were correct 76.6% of the time. Gadolinium-DTPA (Gd-DTPA) contrast-enhanced examinations (pre-contrast T1 and after Gd-DTPA) showed a staging accuracy rate of 85.7%. T2-weighted images did not indicate any advantage when compared to T1-weighted images following Gd-DTPA. The signal intensity ratios of tumor/fat and tumor/muscle tissue were measured on T1-weighted pre-contrast images and following Gd-DTPA and then evaluated statistically, whereby the increased tumor signal intensity was statistically significant (Wilcoxon test, P < 0.01). Due to the relatively short examination time needed for T1-weighted images and the specific tumor enhancement, the administration of Gd-DTPA proves valuable in the diagnosis of bladder carcinomas. T2-weighted images are not necessary. (orig.)

  4. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  5. MR imaging of the early rheumatoid arthritis: usefulness of contrast enhanced fat suppressed SPGR imaging

    International Nuclear Information System (INIS)

    Kim, Sun Mi; Joo, Kyung Bin; Kim, Seong Tae; Hahm, Chang Kok

    1995-01-01

    To evaluate value of post-contrast 3-Dimensional fat suppressed Spoiled GRASS (FS SPGR) in detecting subtle bony erosion and tenosynovitis of hands and wrists due to early rheumatoid arthritis. Fourteen MR imagings of the hands and wrists were performed in 7 early rheumatoid arthritis without any abnormalities in plain radiography and in 7 healthy volunteers. All subjects underwent MR sequence of coronal 3D FS SPGR with and without contrast enhancement in 1.5T MR unit. We evaluated the number of the bony erosion and tenosynovitis respectively in pre-and post-contrast FS SPGR images. The abnormal enhancing areas were not demonstrated in 7 healthy volunteers. Seven patients had 25 bony erosions in pre-contrast FS SPGR and 52 bony erosions with tenosynovitis (n = 10) in post-contrast FS SPGR. Enhancing joint spaces were shown in 8 cases. Post-contrast FS SPGR was better than pre-contrast FS SPGR in the evaluation of early rheumatoid arthritis and is valuable as a baseline study

  6. MR imaging of the early rheumatoid arthritis: usefulness of contrast enhanced fat suppressed SPGR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Mi; Joo, Kyung Bin; Kim, Seong Tae; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1995-06-15

    To evaluate value of post-contrast 3-Dimensional fat suppressed Spoiled GRASS (FS SPGR) in detecting subtle bony erosion and tenosynovitis of hands and wrists due to early rheumatoid arthritis. Fourteen MR imagings of the hands and wrists were performed in 7 early rheumatoid arthritis without any abnormalities in plain radiography and in 7 healthy volunteers. All subjects underwent MR sequence of coronal 3D FS SPGR with and without contrast enhancement in 1.5T MR unit. We evaluated the number of the bony erosion and tenosynovitis respectively in pre-and post-contrast FS SPGR images. The abnormal enhancing areas were not demonstrated in 7 healthy volunteers. Seven patients had 25 bony erosions in pre-contrast FS SPGR and 52 bony erosions with tenosynovitis (n = 10) in post-contrast FS SPGR. Enhancing joint spaces were shown in 8 cases. Post-contrast FS SPGR was better than pre-contrast FS SPGR in the evaluation of early rheumatoid arthritis and is valuable as a baseline study.

  7. Contrast-enhanced fast fluid-attenuated inversion recovery MR imaging in patients with brain tumors

    International Nuclear Information System (INIS)

    Kim, Chan Kyo; Na, Dong Gyu; Ryoo, Wook Jae; Byun Hong Sik; Yoon, Hye Kyung; Kim, Jong hyun

    2000-01-01

    To assess the feasibility of contrast-enhanced fast fluid-attenuated inversion recovery (fast FLAIR) MR imaging in patients with brain tumors. This study involved 31 patients with pathologically proven brain tumors and nine with clinically diagnosed metastases. In all patients, T2-weighted, fast FLAIR, images were visual contrast-enhanced T1-weighted MR images were obtained. Contrast-enhanced fast FLAIR images were visually compared with other MR sequences in terms of tumor conspicuity. In order to distinguish tumor and surrounding edema, contrast-enhanced fast FLAIR images were compared with fast FLAIR and T2-weighted images. The tumor-to- white matter contrast-to-noise ratios (CNRs), as demonstrated by T2-weighted, fast FLAIR, contrast-enhanced fast FLAIR and contrast-enhanced T1-weighted imaging, were quantitatively assessed and compared. For the visual assessment of tumor conspicuity, contrast-enhanced fast FLAIR image imaging superior to fast FLAIR in 60% of cases (24/40), and superior to T2-weighted in 70% (28/40). Contrast-enhanced fast FLAIR imaging was inferior to contrast-enhanced T1-weighted in 58% of cases (23/40). For distinguishing between tumor and surrounding edema, contrast-enhanced fast FLAIR imaging was superior to fast FLAIR or T2-weighted in 22 of 27 tumors with peritumoral edema (81%). Quantitatively, CNR was the highest on contrast-enhanced fast FLAIR image and the lowest on fast FLAIR. For the detection of leptomeningeal metastases, contrast-enhanced fast FLAIR was partially superior to contrast-enhanced T1-weighted imaging in two of three high-grade gliomas. Although contrast-enhanced fast FLAIR imaging should not be seen as a replacement for conventional modalities, it provides additional informaton for assessment of the extent of glial cell tumors and leptomeningeal metastases in patients with brain tumors. (author)

  8. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    Science.gov (United States)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  9. X-ray phase contrast imaging at MAMI

    International Nuclear Information System (INIS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-01-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σ h =(8.6±0.1) μm in the horizontal and σ v =(7.5±0.1) μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σ f =(1.2±0.4) μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σ v =(1.2±0.3)μm and a

  10. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  11. X-ray phase contrast imaging at MAMI

    Science.gov (United States)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical

  12. Improving Signal-to-Noise Ratio in Susceptibility Weighted Imaging: A Novel Multicomponent Non-Local Approach.

    Directory of Open Access Journals (Sweden)

    Pasquale Borrelli

    Full Text Available In susceptibility-weighted imaging (SWI, the high resolution required to obtain a proper contrast generation leads to a reduced signal-to-noise ratio (SNR. The application of a denoising filter to produce images with higher SNR and still preserve small structures from excessive blurring is therefore extremely desirable. However, as the distributions of magnitude and phase noise may introduce biases during image restoration, the application of a denoising filter is non-trivial. Taking advantage of the potential multispectral nature of MR images, a multicomponent approach using a Non-Local Means (MNLM denoising filter may perform better than a component-by-component image restoration method. Here we present a new MNLM-based method (Multicomponent-Imaginary-Real-SWI, hereafter MIR-SWI to produce SWI images with high SNR and improved conspicuity. Both qualitative and quantitative comparisons of MIR-SWI with the original SWI scheme and previously proposed SWI restoring pipelines showed that MIR-SWI fared consistently better than the other approaches. Noise removal with MIR-SWI also provided improvement in contrast-to-noise ratio (CNR and vessel conspicuity at higher factors of phase mask multiplications than the one suggested in the literature for SWI vessel imaging. We conclude that a proper handling of noise in the complex MR dataset may lead to improved image quality for SWI data.

  13. Contrast in atomically resolved EF-SCEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); D’Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Morgan, Andrew J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Takeguchi, Masaki [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548 (Japan); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2013-11-15

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the <110> orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored.

  14. Contrast in atomically resolved EF-SCEM imaging

    International Nuclear Information System (INIS)

    Wang, Peng; D’Alfonso, Adrian J.; Hashimoto, Ayako; Morgan, Andrew J.; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki; Kirkland, Angus I.; Allen, Leslie J.; Nellist, Peter D.

    2013-01-01

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored

  15. Hepatocellular carcinoma on MR diffusion weighted imaging and dynamic contrast-enhanced imaging

    International Nuclear Information System (INIS)

    Dong Aisheng; Zuo Changjing; Tian Jianming; Lu Jianping; Wang Jian; Wang Li; Wang Fei

    2009-01-01

    Objective: To evaluate the findings of hepatocellular carcinoma (HCC) on DWI and dynamic Gd-DTPA-enhanced MR imaging. Methods: Eighty one patients with chronic hepatitis or liver cirrhosis underwent both DWI and dynamic Gd-DTPA-enhanced MRI studies of the liver for HCC detection. MR data of were retrospectively analyzed. Two observers determined in consensus the location and the number of focal lesions. The signal manifestation of the lesions on DWI and dynamic Gd-DTPA-enhanced MR imaging were analyzed. Results: DWI and Gd-DTPA-enhanced MR images detected 122 HCCs and 14 benign lesions. One hundred and sixteen HCCs (95.1%) showed hyperintensity on DWI and 6 HCCs in patients with severe cirrhosis showed isointensity. One hundred and five HCCs (86.1%) revealed hypointensity, 11 HCCs (9.0%) showed isointensity and 6 HCCs (4.9%) exhibited hyperintensity on T 1 weighted images. On Gd-DTPA-enhanced MR images, 101 HCCs(82.8%) were significantly enhanced on arterial phase and 99 HCCs showed hypointensity on portal and equilibrium phases. Twenty HCCs (16.4%), 18 of 20 less than 20 mm in diameter, showed isointensity on arterial phase and hyperintensity on DWI. Eight of 14 benign lesions showed hyperintensity and 6 isointensity on DWI. Five benign lesions with hypointensity on T 1 weighted images without contrast and hyperintensity on DWI showed no enhancement on Gd-DTPA-enhanced MR images; 6 benign lesions with isointensity on both T 1 weighted imaging without contrast and DWI exhibited avid enhancement on arterial phase and isointensty on portal and equilibrium phases; one of the two benign lesions, with isointensity before and after contrast images and hyperintentiy on DWI, was a regenerative nodule; another regenerative nodule with hyperintensity on both T 1 weighted images without contrast and DWI was greatly enhanced on arterial phase and showed isointensity on portal and equilibrium phases. Conclusions: Most of the HCCs were greatly enhanced on arterial phase on Gd

  16. Phase contrast imaging diagnostic for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, Lukas-Georg; Grulke, Olaf [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany)

    2016-07-01

    The phase contrast imaging (PCI) diagnostic allows for non-invasive measurements of density fluctuations in high temperature plasmas. Since the index of refraction in a plasma is a function of the electron density, an incoming laser beam experiences a phase shift, which can be converted to intensity variations via interference after passing a phase plate. Generally speaking, the signal contains only the line-integrated information along the beam path. This limitation can be circumvented by using the fact that the density fluctuations form filamentary structures that are well aligned with the local magnetic field. If the magnetic field direction significantly varies along the beam path, optical filtering allows for localization of the density fluctuations. In order to identify the best diagnostic position regarding localization performance three figures of merit are introduced. They allow for quantitative comparison of different lines of sight and different magnetic field configurations. The results of the optimization process and a comparison with other fusion experiments are shown in this contribution.

  17. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    Science.gov (United States)

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  18. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.

    Science.gov (United States)

    Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles

    2012-06-01

    The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  20. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzini, D.; Viti, J. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Tortoli, P. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Verweij, M. D. [Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands); Jong, N. de; Vos, H. J., E-mail: h.vos@erasmusmc.nl [Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands)

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  1. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  2. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    Science.gov (United States)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  3. NMR multiple-echo phase-contrast blood flow imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1986-01-01

    A method is described for magnetic resonance imaging of fluid flow in a sample, comprising the steps of: (a) immersing the sample in a static magnetic field disposed in a first direction; (b) applying a first sequence of magnetic field gradients and radio-frequency signals to the sample to both define a slab, of the sample to be imaged, in a plane substantially orthogonal to a selected direction for which flow velocity is to be measured, and to obtain a plurality N of spin-echo response signals form that slab; (c) processing the plurality of first sequence spin-echo signals to obtain a complex value A/sub 1/(X,Y,Z) relating both the spin density rho'(X,Y,Z),... and the phase rotation phi(X,Y,Z), induced by the first sequence, for each of a selected number of sequential locations (X,Y,Z) in the sample slab; (d) applying a second sequence of magnetic field gradient and radio-frequency signals to both define the same sample slab as in step (b) and to obtain another plurality N of spin-echo response signals from that slab; (e) including a waveform in at least one of the magnetic field gradient and radio-frequency signals applied in step (d) for imparting to each of the spin-echo signal components from each slab location having a flowing material therein a phase rotation dependent upon the magnitude of the flow velocity therein in the selected direction; (f) processing the plurality of second sequence spin-echo signals to obtain a complex value A/sub 2/(X,Y,Z) relating the spin density rho'(X,Y,Z) and the imparted phase rotation of the sample material along the selected flow measurement direction for each of the sequential locations (X,Y,Z) in the sample slab; and (g) processing the complex values A/sub 1/(X,Y,Z) and A/sub 2/(X,Y,Z) for each sample location to obtain a differential phase-contrast value related to the velocity of the flowing material therein in the selected measurement direction

  4. Magnetic susceptibility measurement using 2D magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Marcon, P.; Bartušek, Karel; Burdkova, M.; Dokoupil, Zdeněk

    2011-01-01

    Roč. 22, č. 10 (2011), 105702:1-8 ISSN 0957-0233 R&D Projects: GA ČR GAP102/11/0318; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : magnetic flux density * magnetic susceptibility * MRI * MR signal * reaction field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.494, year: 2011

  5. Active optics: off axis aspherics generation for high contrast imaging

    Science.gov (United States)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism

  6. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases

    International Nuclear Information System (INIS)

    Parmar, Hemant; Sitoh, Y.-Y.; Anand, Pooja; Chua, Violet; Hui, Francis

    2006-01-01

    Purpose: The purpose of our study was to compare contrast-enhanced fluid-attenuated inversion recovery (FLAIR) images with contrast-enhanced T1 weighted images for infectious leptomeningitis. Materials and methods: We studied twenty-four patients with a clinical suspicion of infectious meningitis with unenhanced FLAIR, contrast-enhanced T1 weighted and contrast-enhanced FLAIR MR sequences. Twelve patients had cytologic and biochemical diagnosis of meningitis on cerebrospinal fluid (CSF) examination obtained 48 h before or after the MR study. Sequences were considered positive if abnormal signal was seen in the subarachnoid space (cistern or sulci) or along pial surface. Results: Twenty-seven examinations in 24 patients were performed. Of the 12 patients (thirteen studies) in whom cytology was positive, unenhanced FLAIR images were positive in six cases (sensitivity 46%), contrast-enhanced FLAIR images were positive in 11 (sensitivity 85%), and contrast-enhanced T1 weighted MR images were positive in 11 patients (sensitivity 85%). Of the 12 patients (14 studies) in whom cerebrospinal fluid study was negative, unenhanced FLAIR images were negative in 13, contrast-enhanced FLAIR images were negative in 11, and contrast-enhanced T1 weighted MR images were negative in eight. Thus, the specificity of unenhanced FLAIR, contrast-enhanced FLAIR and contrast-enhanced T1 weighted images was 93, 79 and 57%, respectively. Conclusion: Our results suggest that post-contrast FLAIR images have similar sensitivity but a higher specificity compared to contrast-enhanced T1 weighted images for detection of leptomeningeal enhancement. It can be a useful adjunct to post-contrast T1 weighted images in evaluation of infectious leptomeningitis

  7. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Hemant [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore) and Department of Diagnostic Imaging, Hospital for Sick Children, Toronto (Canada)]. E-mail: parurad@hotmail.com; Sitoh, Y.-Y. [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Anand, Pooja [Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng (Singapore); Chua, Violet [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore); Hui, Francis [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-04-15

    Purpose: The purpose of our study was to compare contrast-enhanced fluid-attenuated inversion recovery (FLAIR) images with contrast-enhanced T1 weighted images for infectious leptomeningitis. Materials and methods: We studied twenty-four patients with a clinical suspicion of infectious meningitis with unenhanced FLAIR, contrast-enhanced T1 weighted and contrast-enhanced FLAIR MR sequences. Twelve patients had cytologic and biochemical diagnosis of meningitis on cerebrospinal fluid (CSF) examination obtained 48 h before or after the MR study. Sequences were considered positive if abnormal signal was seen in the subarachnoid space (cistern or sulci) or along pial surface. Results: Twenty-seven examinations in 24 patients were performed. Of the 12 patients (thirteen studies) in whom cytology was positive, unenhanced FLAIR images were positive in six cases (sensitivity 46%), contrast-enhanced FLAIR images were positive in 11 (sensitivity 85%), and contrast-enhanced T1 weighted MR images were positive in 11 patients (sensitivity 85%). Of the 12 patients (14 studies) in whom cerebrospinal fluid study was negative, unenhanced FLAIR images were negative in 13, contrast-enhanced FLAIR images were negative in 11, and contrast-enhanced T1 weighted MR images were negative in eight. Thus, the specificity of unenhanced FLAIR, contrast-enhanced FLAIR and contrast-enhanced T1 weighted images was 93, 79 and 57%, respectively. Conclusion: Our results suggest that post-contrast FLAIR images have similar sensitivity but a higher specificity compared to contrast-enhanced T1 weighted images for detection of leptomeningeal enhancement. It can be a useful adjunct to post-contrast T1 weighted images in evaluation of infectious leptomeningitis.

  8. Simultaneous determination of arterial input function of the internal carotid and middle cerebral arteries for dynamic susceptibility contrast MRI

    International Nuclear Information System (INIS)

    Scholdei, R.; Wenz, F.; Fuss, M.; Essig, M.; Knopp, M.V.

    1999-01-01

    Purpose: The determination of the arterial input function (AIF) is necessary for absolute quantification of the regional cerebral blood volume and blood flow using dynamic susceptibility contrast MRI. The suitability of different vessels (ICA-internal carotid artery, MCA-middle cerebral artery) for AIF determination was compared in this study. Methods: A standard 1.5 T MR system and a simultaneous dual FLASH sequence (TR/TE1/TE2/α=32/15/25/10 ) were used to follow a bolus of contrast agent. Slice I was chosen to cut the ICA perpendicularly. Slice II included the MCA. Seventeen data sets from ten subjects were evaluated. Results: The number of AIF-relevant pixels, the area under the AIF and the maximum concentration were all lower when the AIF was determined from the MCA compared to the ICA. Additionally, the mean transit time (MTT) and the time to maximum concentration (TTM) were longer in the MCA, complicating the computerized identification of AIF-relevant pixels. Data from one subject, who was examined five times, demonstrated that the intraindividual variance of the measured parameters was markedly lower than the interpersonal variance. Conclusions: It appears to be advantageous to measure the AIF in the ICA rather than the MCA. (orig.) [de

  9. Contrast enhanced cartilage imaging: Comparison of ionic and non-ionic contrast agents

    International Nuclear Information System (INIS)

    Wiener, Edzard; Woertler, Klaus; Weirich, Gregor; Rummeny, Ernst J.; Settles, Marcus

    2007-01-01

    Our objective was to compare relaxation effects, dynamics and spatial distributions of ionic and non-ionic contrast agents in articular cartilage at concentrations typically used for direct MR arthrography at 1.5 T. Dynamic MR-studies over 11 h were performed in 15 bovine patella specimens. For each of the contrast agents gadopentetate dimeglumine, gadobenate dimeglumine, gadoteridol and mangafodipir trinatrium three patellae were placed in 2.5 mmol/L contrast solution. Simultaneous measurements of T 1 and T 2 were performed every 30 min using a high-spatial-resolution 'MIX'-sequence. T 1 , T 2 and ΔR 1 , ΔR 2 profile plots across cartilage thickness were calculated to demonstrate the spatial and temporal distributions. The charge is one of the main factors which controls the amount of the contrast media diffusing into intact cartilage, but independent of the charge, the spatial distribution across cartilage thickness remains highly inhomogeneous even after 11 h of diffusion. The absolute ΔR 2 -effect in cartilage is at least as large as the ΔR 1 -effect for all contrast agents. Maximum changes were 5-12 s -1 for ΔR 1 and 8-15 s -1 for ΔR 2 . This study indicates that for morphologically intact cartilage only the amount of contrast agents within cartilage is determined by the charge but not the spatial distribution across cartilage thickness. In addition, ΔR 2 can be considered for quantification of contrast agent concentrations, since it is of the same magnitude and less time consuming to measure than ΔR 1

  10. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    Directory of Open Access Journals (Sweden)

    Shibin Wu

    2013-01-01

    Full Text Available A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR, and contrast improvement index (CII.

  11. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review

    International Nuclear Information System (INIS)

    Thomas, Bejoy; Somasundaram, Sivaraman; Thamburaj, Krishnamoorthy; Kesavadas, Chandrasekharan; Kumar Gupta, Arun; Bodhey, Narendra K.; Raman Kapilamoorthy, Tirur

    2008-01-01

    Susceptibility-weighted imaging (SWI) is a novel magnetic resonance (MR) technique that exploits the magnetic susceptibility differences of various tissues, such as blood, iron and calcification. This pictorial review covers many clinical conditions illustrating its usefulness. SWI consists of using both magnitude and phase images from a high-resolution, three-dimensional fully velocity-compensated gradient echo sequence. Phase mask is created from the MR phase images, and multiplying these with the magnitude images increase the conspicuity of the smaller veins and other sources of susceptibility effects, which is depicted using minimal intensity projection (minIP). The phase images are useful in differentiating between diamagnetic and paramagnetic susceptibility effects of calcium and blood, respectively. This unique MR sequence will help in detecting occult low flow vascular lesions, calcification and cerebral microbleed in various pathologic conditions and aids in characterizing tumors and degenerative diseases of the brain. This sequence also can be used to visualize normal brain structures with conspicuity. Susceptibility-weighted imaging is useful in differentiating and characterizing diverse brain pathologies. (orig.)

  12. Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement: Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T.; Yupapin, Preecha P.

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of “adequate contrast enhancement” to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection. PMID:24977191

  13. Bjork-Shiley convexoconcave valves: Susceptibility artifacts at brain MR imaging and mechanical valve fractures

    NARCIS (Netherlands)

    van Gorp, Maarten J.; van der Graaf, Yolanda; de Mol, Bas A. J. M.; Bakker, Chris J. G.; Witkamp, Theo D.; Ramos, Lino M. P.; Mali, Willem P. T. M.

    2004-01-01

    PURPOSE: To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Bjork-Shiley convexoconcave (BSCC) valves. MATERIALS AND METHODS: MR images of the brain were obtained in 58 patients with prosthetic heart

  14. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts

    Czech Academy of Sciences Publication Activity Database

    Starčuková, Jana; Starčuk jr., Zenon; Hubálková, H.; Linetskiy, I.

    2008-01-01

    Roč. 24, č. 6 (2008), s. 715-723 ISSN 0109-5641 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : metallic dental materials * dental alloys * amalgams * MR imaging * magnetic susceptibility * electric conductivity * image artifact Subject RIV: FF - HEENT, Dentistry Impact factor: 2.941, year: 2008

  15. Comparison of increased venous contrast in ischemic stroke using phase-sensitive MR imaging with perfusion changes on flow-sensitive alternating inversion recovery at 3 Tesla

    International Nuclear Information System (INIS)

    Yamashita, Eijiro; Kanasaki, Yoshiko; Fujii, Shinya; Ogawa, Toshihide; Tanaka, Takuro; Hirata, Yoshiharu

    2011-01-01

    Background Increased venous contrast in ischemic stroke using susceptibility-weighted imaging has been widely reported, although few reports have compared increased venous contrast areas with perfusion change areas. Purpose To compare venous contrast on phase-sensitive MR images (PSI) with perfusion change on flow-sensitive alternating inversion recovery (FAIR) images, and to discuss the clinical use of PSI in ischemic stroke. Material and Methods Thirty patients with clinically suspected acute infarction of the middle cerebral artery (MCA) territory within 7 days of onset were evaluated. Phase-sensitive imaging (PSI), flow-sensitive alternating inversion recovery (FAIR), diffusion-weighted imaging (DWI) and magnetic resonance angiography (MRA) were obtained using 3 Tesla scanner. Two neuroradiologists independently reviewed the MR images, as well as the PSI, DWI, and FAIR images. They were blinded to the clinical data and to each other's findings. The abnormal area of each image was ultimately identified after both neuroradiologists reached consensus. We analyzed areas of increased venous contrast on PSI, perfusion changes on FAIR images and signal changes on DWI for each case. Results Venous contrast increased on PSI and hypoperfusion was evident on FAIR images from 22 of the 30 patients (73%). The distribution of the increased venous contrast was the same as that of the hypoperfused areas on FAIR images in 16 of these 22. The extent of these lesions was larger than that of lesions visualized by on DWI in 18 of the 22 patients. Hypointense signals reflecting hemorrhage and no increased venous contrast on PSI and hyperperfusion on FAIR images were found in six of the remaining eight patients (20%). Findings on PSI were normal and hypoperfusion areas were absent on FAIR images of two patients (7%). Conclusion Increased venous contrast on PSI might serve as an index of misery perfusion and provide useful information

  16. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  17. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India); Kesavadas, C. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)], E-mail: chandkesav@yahoo.com; Thomas, B.; Gupta, A.K.; Thamburaj, K.; Kapilamoorthy, T. Raman [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)

    2009-01-15

    Susceptibility weighted imaging (SWI) is a magnetic resonance (MR) technique that is exquisitely sensitive to paramagnetic substances, such as deoxygenated blood, blood products, iron, and calcium. This sequence allows detection of haemorrhage as early as 6 h and can reliably detect acute intracerebral parenchymal, as well as subarachnoid haemorrhage. It detects early haemorrhagic transformation within an infarct and provides insight into the cerebral haemodynamics following stroke. It helps in the diagnosis of cerebral venous thrombosis. It also has applications in the work-up of stroke patients. The sequence helps in detecting microbleeds in various conditions, such as vasculitis, cerebral autosomal dominant arteriopathy, subacute infarcts and leucoencephalopathy (CADASIL), amyloid angiopathy, and Binswanger's disease. The sequence also aids in the diagnosis of vascular malformations and perinatal cerebrovascular injuries. This review briefly illustrates the utility of this MR technique in various aspects of stroke diagnosis and management.

  18. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    Science.gov (United States)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  19. Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement: Data from the Osteoarthritis Initiative

    Directory of Open Access Journals (Sweden)

    Hong-Seng Gan

    2014-01-01

    Full Text Available Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of “adequate contrast enhancement” to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image’s maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher’s Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection.

  20. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  1. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2005-01-01

    ...) and receiving at the subharmonic (f0). Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  2. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2001-01-01

    ...) and receiving at the subharmonic (f0) . Because of no subharmonic generation in tissue and significant subharmonic scattering from some new contrast agents SHI has the potential to detect slow, small volume blood flow associated with tumor...

  3. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2002-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  4. Estimation of Tumor Angiogenesis with Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2004-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  5. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    Science.gov (United States)

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  6. Improvement of Fuzzy Image Contrast Enhancement Using Simulated Ergodic Fuzzy Markov Chains

    Directory of Open Access Journals (Sweden)

    Behrouz Fathi-Vajargah

    2014-01-01

    Full Text Available This paper presents a novel fuzzy enhancement technique using simulated ergodic fuzzy Markov chains for low contrast brain magnetic resonance imaging (MRI. The fuzzy image contrast enhancement is proposed by weighted fuzzy expected value. The membership values are then modified to enhance the image using ergodic fuzzy Markov chains. The qualitative performance of the proposed method is compared to another method in which ergodic fuzzy Markov chains are not considered. The proposed method produces better quality image.

  7. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.

    Science.gov (United States)

    Wei, Hongjiang; Gibbs, Eric; Zhao, Peida; Wang, Nian; Cofer, Gary P; Zhang, Yuyao; Johnson, G Allan; Liu, Chunlei

    2017-11-01

    To investigate the B 0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B 0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M.O.; Orton, M. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Cancer Research UK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Morgan, B. [Univ. of Leicester, College of Medicine, Biological Sciences and Psychology, Leicester (United Kingdom); Tofts, P.S. [Brighton and Sussex Medical School, Univ. of Sussex, Clinical Imaging Sciences Centre, Sussex (United Kingdom); Buckley, D.L. [University of Leeds, Division of Medical Physics, Leeds (United Kingdom); Huang, W. [Oregon Health and Science Univ., Advanced Imaging Research Centre, Portland, OR (United States); Horsfield, M.A. [Medical Physics Section, Leicester Royal Infirmary, Dept. of Cardiovascular Sciences, Leicester (United Kingdom); Chenevert, T.L. [Univ. of Michigan Health System, Ann Arbor, MI (United States); Collins, D.J. [Royal Marsden Hospital NHS Foundation Trust, Cancer Research UK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Jackson, A. [Univ. of Manchester, Wolfson Molecular Imaging Centre, Withington, Manchester, M20 3LJ (United Kingdom); Lomas, D. [Univ. of Cambridge, Dept. of Radiology, Cambridge (United Kingdom); Whitcher, B. [Unit 2 Greenways Business Park, Mango Solutions, Chippenham (United Kingdom); Clarke, L. [Cancer Imaging Program, Imaging Technology Development Branch, Rockville, MD (United States); Plummer, R. [Univ. of Newcastle Upon Tyne, The Medical School, Medical Oncology, Northern Inst. for Cancer Research, Newcastle Upon Tyne (United Kingdom); Judson, I. [Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Jones, R. [Beatson West of Scotland Cancer Centre, Glasgow (United Kingdom); Alonzi, R. [Mount Vernon Cancer Centre, Northwood (United Kingdom); Brunner, T. [Gray Inst. for Radiation, Oncology and Biology, Oxford (United Kingdom); Koh, D.M. [Royal Marsden NHS Foundation Trust, Diagnostic Radiology, Sutton, Surrey (United Kingdom)] [and others

    2012-07-15

    Many therapeutic approaches to cancer affect the tumour vasculature, either indirectly or as a direct target. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important means of investigating this action, both pre-clinically and in early stage clinical trials. For such trials, it is essential that the measurement process (i.e. image acquisition and analysis) can be performed effectively and with consistency among contributing centres. As the technique continues to develop in order to provide potential improvements in sensitivity and physiological relevance, there is considerable scope for between-centre variation in techniques. A workshop was convened by the Imaging Committee of the Experimental Cancer Medicine Centres (ECMC) to review the current status of DCE-MRI and to provide recommendations on how the technique can best be used for early stage trials. This review and the consequent recommendations are summarised here. (orig.)

  9. Intra-individual comparison of image contrast in SPIO-enhanced liver MRI at 1.5T and 3.0T

    International Nuclear Information System (INIS)

    Falkenhausen, Marcus von; Meyer, Carsten; Lutterbey, Goetz; Morakkabati, Nuschin; Bloemer, Renate; Willinek, Winfried A.; Kuhl, Christiane K.; Schild, Hans H.; Walter, Oliver; Gieseke, Juergen

    2007-01-01

    The purpose of the study was to examine if the higher susceptibility at 3.0 Tesla (T) compared to 1.5 T will affect the contrast in MR imaging of the liver after application of superparamagnetic iron oxide particles (SPIO). The study was approved by our institutional review board and informed consent was obtained. Seventeen healthy volunteers were examined in a prospective, intra-individual comparative study within one day on a 1.5 T and a 3.0 T MRI system. T2 weighted TSE sequences were acquired after bolus injection of a SPIO contrast agent. Image contrast and signal to noise ratio (SNR) were compared between the field strengths. Image contrast was calculated between the liver tissue and the kidneys / spleen / muscles and fluids. The students'T-test was used for statistical analysis. No influence of the higher field strength could be observed on image contrast except for the liver / muscle contrast. This was due to a distinct SNR increase of the muscle tissue at 3.0 T as a result of their relaxation properties. The higher susceptibility at 3.0 T compared to 1.5 T does not translate into a stronger signal attenuation of the SPIO enhanced liver parenchyma. (orig.)

  10. Intra-individual comparison of image contrast in SPIO-enhanced liver MRI at 1.5T and 3.0T

    Energy Technology Data Exchange (ETDEWEB)

    Falkenhausen, Marcus von; Meyer, Carsten; Lutterbey, Goetz; Morakkabati, Nuschin; Bloemer, Renate; Willinek, Winfried A.; Kuhl, Christiane K.; Schild, Hans H. [University of Bonn, Department of Radiology, Bonn (Germany); Walter, Oliver [Leibniz-Institute for Science Education, Kiel (Germany); Gieseke, Juergen [University of Bonn, Department of Radiology, Bonn (Germany); Philips Medical Systems, Hamburg (Germany)

    2007-05-15

    The purpose of the study was to examine if the higher susceptibility at 3.0 Tesla (T) compared to 1.5 T will affect the contrast in MR imaging of the liver after application of superparamagnetic iron oxide particles (SPIO). The study was approved by our institutional review board and informed consent was obtained. Seventeen healthy volunteers were examined in a prospective, intra-individual comparative study within one day on a 1.5 T and a 3.0 T MRI system. T2 weighted TSE sequences were acquired after bolus injection of a SPIO contrast agent. Image contrast and signal to noise ratio (SNR) were compared between the field strengths. Image contrast was calculated between the liver tissue and the kidneys / spleen / muscles and fluids. The students'T-test was used for statistical analysis. No influence of the higher field strength could be observed on image contrast except for the liver / muscle contrast. This was due to a distinct SNR increase of the muscle tissue at 3.0 T as a result of their relaxation properties. The higher susceptibility at 3.0 T compared to 1.5 T does not translate into a stronger signal attenuation of the SPIO enhanced liver parenchyma. (orig.)

  11. Tolerance of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis

    Science.gov (United States)

    Rianti, R. A.; Priaminiarti, M.; Syahraini, S. I.

    2017-08-01

    Image enhancement brightness and contrast can be adjusted on lateral cephalometric digital radiographs to improve image quality and anatomic landmarks for measurement by Steiner analysis. To determine the limit value for adjustments of image enhancement brightness and contrast in lateral cephalometric digital radiography for Steiner analysis. Image enhancement brightness and contrast were adjusted on 100 lateral cephalometric radiography in 10-point increments (-30, -20, -10, 0, +10, +20, +30). Steiner analysis measurements were then performed by two observers. Reliabilities were tested by the Interclass Correlation Coefficient (ICC) and significance tested by ANOVA or the Kruskal Wallis test. No significant differences were detected in lateral cephalometric analysis measurements following adjustment of the image enhancement brightness and contrast. The limit value of adjustments of the image enhancement brightness and contrast associated with incremental 10-point changes (-30, -20, -10, 0, +10, +20, +30) does not affect the results of Steiner analysis.

  12. Utility decay rates of T1-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro

    2009-01-01

    The availability and applicability of the combination of paramagnetic nitroxyl contrast agent and T 1 -weighted gradient echo (GE)-based dynamic magnetic resonance imaging (MRI) measurement for redox imaging are described. The time courses of T 1 -weighted GE MRI signal intensities according to first-order paramagnetic loss of a nitroxyl contrast agent were simulated for several experimental conditions. The apparent decay rate calculated based on decreasing T 1 -weighted MRI contrast (k MRI ) can show an approximate value of the original decay rate (k true ) discretionarily given for simulation with suitable experimental parameters. The difference between k MRI and k true can be sufficiently small under T 1 -weighted spoiled gradient echo (SPGR) scan conditions (repetition time=75 ms, echo time=3 ms, and flip angle=45deg), with a conventional redox-sensitive nitroxyl contrast agent, such as 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPOL) and/or 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (carbamoyl-PROXYL), and with intravenous (i.v.) doses of below 1.5 γmol/g body weight (b.w.) for mice. The results of this simulation suggest that the k MRI of nitroxyl contrast agents can be the primary index of redox status under biological conditions. (author)

  13. The influence of body temperature on image contrast in post mortem MRI

    International Nuclear Information System (INIS)

    Ruder, Thomas D.; Hatch, Gary M.; Siegenthaler, Lea; Ampanozi, Garyfalia; Mathier, Sandra; Thali, Michael J.; Weber, Oliver M.

    2012-01-01

    Objective: To assess the temperature dependency of tissue contrast on post mortem magnetic resonance (PMMR) images both objectively and subjectively; and to visually demonstrate the changes of image contrast at various temperatures. Materials and methods: The study was approved by the responsible justice department and the ethics committee. The contrast of water, fat, and muscle was measured using regions of interest (ROI) in the orbit of 41 human corpses to assess how body temperature (range 2.1–39.8 °C) relates to image contrast of T1-weighted (T1W) and T2-weighted (T2W) sequences on PMMR. Regressions were calculated using the method of least squares. Three readers judged visible changes of image contrast subjectively by consensus. Results: There was a positive relationship between temperature and contrast on T1-weighted (T1W) images and between temperature and the contrast of fat/muscle on T2-weighted (T2W) images. There was a negative relationship between temperature and the contrast of water/fat and water/muscle on T2W images. Subjectively, the influence of temperature became visible below 20 °C on T2W images, and below 10 °C on T1W images. Conclusion: Image contrast on PMMR depends on the temperature of a corpse. Radiologists involved in post mortem imaging must be aware of temperature-related changes in MR image contrast. To preserve technical quality, scanning corpses below 10 °C should be avoided.

  14. Artifact Reduction of Susceptibility-Weighted Imaging Using a Short-Echo Phase Mask

    International Nuclear Information System (INIS)

    Ishimori, Y.; Monma, M.; Kohno, Y.

    2009-01-01

    Background: Susceptibility-weighted imaging (SWI) is utilized in magnetic resonance (MR) venography and other applications, but can include artifacts caused by the phase-masking process. Purpose: To demonstrate risks of filter processes used in making phase masks for SWI, and to propose a simple method for reducing artifacts. Material and Methods: Phase linearity related to echo time (TE) was evaluated for the original phase and high-pass-filtered phase using a CuSO 4 -doped water phantom. Effect of filter size of the Hanning window and background homogeneity were also evaluated in a phantom study. Use of a phase mask generated by data with differing magnitudes of TE was attempted in a human study. Shorter TE was used for making the phase mask, and the number of multiplications was increased. As short and long TEs were necessary simultaneously for phase mask and T2* contrast, a dual-echo technique was used. Results: Linearity of TE and phase value collapsed, and an unexpected negative phase appeared in the high-pass-filtered phase. Using a short-TE phase mask, phase-aliasing artifacts were reduced and visibility of deep veins was equivalent to that under conventional methods with an increased number of multiplications. Conclusion: Use of a short-echo phase mask in SWI is useful for reducing artifacts

  15. Artifact Reduction of Susceptibility-Weighted Imaging Using a Short-Echo Phase Mask

    Energy Technology Data Exchange (ETDEWEB)

    Ishimori, Y.; Monma, M. (Dept. of Radiological Sciences, Ibaraki Prefectural Univ. of Health Sciences, Inashiki-gun, Ibaraki (Japan)); Kohno, Y. (Dept. of Neurology, Ibaraki Prefectural Univ. of Health Sciences, Inashiki-gun, Ibaraki (Japan))

    2009-11-15

    Background: Susceptibility-weighted imaging (SWI) is utilized in magnetic resonance (MR) venography and other applications, but can include artifacts caused by the phase-masking process. Purpose: To demonstrate risks of filter processes used in making phase masks for SWI, and to propose a simple method for reducing artifacts. Material and Methods: Phase linearity related to echo time (TE) was evaluated for the original phase and high-pass-filtered phase using a CuSO{sub 4}-doped water phantom. Effect of filter size of the Hanning window and background homogeneity were also evaluated in a phantom study. Use of a phase mask generated by data with differing magnitudes of TE was attempted in a human study. Shorter TE was used for making the phase mask, and the number of multiplications was increased. As short and long TEs were necessary simultaneously for phase mask and T2 contrast, a dual-echo technique was used. Results: Linearity of TE and phase value collapsed, and an unexpected negative phase appeared in the high-pass-filtered phase. Using a short-TE phase mask, phase-aliasing artifacts were reduced and visibility of deep veins was equivalent to that under conventional methods with an increased number of multiplications. Conclusion: Use of a short-echo phase mask in SWI is useful for reducing artifacts

  16. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    Science.gov (United States)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  17. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  18. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    Science.gov (United States)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  19. Magnetization transfer contrast MR imaging of the knee at 0.3 T

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Onaya, Hiroaki; Niitsu, Mamoru; Anno, Izumi; Itai, Yuji; Nishimura, Hiroshi; Kajiyama, Koji; Masuda, Tomonori; Nakajima, Kotaro.

    1994-01-01

    It has been reported that magnetization transfer contrast (MTC) images were effective in evaluating the articular cartilage. However, only one in vivo study of the articular cartilage in the knee has been demonstrated at 1.5T. The purpose of this study was to evaluate the optimal off-resonance MTC pulse at 0.3T MR imager and assess its clinical usefulness. Five normal volunteers and eleven patients with suspected knee injuries were investigated using off-resonance sinc, gaussian, constant shaped irradiation pulses. All MTC images revealed higher contrast and contrast-to-noise (C/N) ratio between articular cartilage and external reference (saline) in the normal volunteers' knee than conventional gradient recalled echo images. MTC images with the gaussian or sinc shaped pulse were judged superior to those with constant wave pulse because the former images showed a fewer artifact with lower specific absorption rate than the latter images. The sinc MTC images were performed with the lowest SAR. The gaussian MTC images revealed better contrast and C/N between articular cartilage and joint fluid than the sinc MTC images in patients. 3D MTC images using Guassian pulse were also performed within a clinically tolerable imaging time (13 min 39 sec). Thus, MTC images in the knee at 0.3T using off-resonance pulse may be effective to assess knee injury due to better contrast between articular cartilage and joint fluid. (author)

  20. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  1. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina

    2013-01-01

    -contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study...

  2. Role of magnetic susceptibility weighted imaging in evaluation of ...

    African Journals Online (AJOL)

    Mohamed Masoud Radwan

    Conclusion: SWI is valuable in the diagnosis of different brain lesions and should be ... Production and hosting by Elsevier B.V. All rights reserved. ... Table 1 Age and sex frequency of the studied 30 patients with brain ... other patient with left CPA lesion, on conventional imaging ..... Diffuse axonal injury in children: clinical.

  3. Correlation between image quality of CT scan and amount of intravenous contrast media

    International Nuclear Information System (INIS)

    Yoon, Dae Young; Choi, Dae Seob; Kim, Seung Hyup; Han, Joon Koo; Choi, Byung Ihn; Im, Jung Gi; Han, Moon Hee; Chang, Kee Hyun; Kim, Jong Hyo; Han, Man Chung

    1993-01-01

    A blind, comparative clinical study was performed prospectively to examine the correlation between image quality of CT scan in terms of contrast enhancement effect and amount of intravenous contrast media. A total of 357 patients were randomized into two groups. Ionic high-osmolality contrast media (68% meglumine ioglicate) was administered intravenously as 100 ml bolus in one group and as 50 ml bolus in the other group. Statistically significant differences of image quality were found in CT scans of the brain, head and neck, chest and abdomen (p 0.05). We suggest that amount of contrast media may be reduced in pelvis CT without significant degradation of image quality

  4. Optimization of contrast of MR images in imaging of knee joint; Optymalizacja kontrastu obrazow MR na przykladzie obrazow stawu kolanowego

    Energy Technology Data Exchange (ETDEWEB)

    Szyblinski, K. [Institute of Nuclear Physics, Cracow (Poland); Bacic, G. [Dartmouth College, Hanover, NH (United States)

    1994-12-31

    The work describes the method of contrast optimization in magnetic resonance imaging. Computer program presented in the report allows analysis of contrast in selected tissues as a function of experiment parameters. Application to imaging of knee joint is presented. 2 refs, 4 figs.

  5. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives.

    Science.gov (United States)

    Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus

    2015-09-01

    Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future.

  6. 3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix

    Science.gov (United States)

    Vargas Sanchez, Andrea Fernanda

    Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.

  7. Estimation of chromatic errors from broadband images for high contrast imaging

    Science.gov (United States)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  8. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    The role of 18 fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2 nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted

  9. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  10. Contrast-enhanced MR imaging monitoring of acute tumor response to chemotherapy

    International Nuclear Information System (INIS)

    Ranney, D.F.; Cohen, J.M.; Antich, P.P.; Endman, W.A.; Kulkarni, P.; Weinreb, J.C.; Giovanella, B.

    1987-01-01

    Treatment responses of human malignant melanomas were monitored at millimeter resolution in athymic mice by injecting a new polymeric contrast agent, Gd-DTPA-dextran (0.1 mmol Gd/kg, intravenously). Proton MR imaging (0.35 T, spin-echo, repetition time = 0.5 second, echo time = 50 msec) was performed 30 hours after administering diphtheria toxin. Pre-contrast medium images revealed only homogeneous intermediate-intensity tumor masses. Post-contrast medium images of untreated (viable) tumors demonstrated 32% enhancement throughout the entire mass. Post-contrast medium images of toxin-treated tumors revealed marked enhancement (65%) of the histologically viable outer rims, lesser enhancement (38%) of heavily damaged subregions, and no enhancement of dead tumor. These acute, contrast medium-enhanced MR images accurately identified tumor subregions that survived for longer than one week

  11. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2016-11-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent PRINCIPAL...TITLE AND SUBTITLE In vivo Photoacoustic Imaging of Prostate Cancer Using T argeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b. GRANT...diagnose prostate cancer based on the near-infrared optical absorption of either endogenous tissue constituents or exogenous contrast agents . Although

  12. Quantitative evaluation of susceptibility effects caused by dental materials in head magnetic resonance imaging

    Science.gov (United States)

    Strocchi, S.; Ghielmi, M.; Basilico, F.; Macchi, A.; Novario, R.; Ferretti, R.; Binaghi, E.

    2016-03-01

    This work quantitatively evaluates the effects induced by susceptibility characteristics of materials commonly used in dental practice on the quality of head MR images in a clinical 1.5T device. The proposed evaluation procedure measures the image artifacts induced by susceptibility in MR images by providing an index consistent with the global degradation as perceived by the experts. Susceptibility artifacts were evaluated in a near-clinical setup, using a phantom with susceptibility and geometric characteristics similar to that of a human head. We tested different dentist materials, called PAL Keramit, Ti6Al4V-ELI, Keramit NP, ILOR F, Zirconia and used different clinical MR acquisition sequences, such as "classical" SE and fast, gradient, and diffusion sequences. The evaluation is designed as a matching process between reference and artifacts affected images recording the same scene. The extent of the degradation induced by susceptibility is then measured in terms of similarity with the corresponding reference image. The matching process involves a multimodal registration task and the use an adequate similarity index psychophysically validated, based on correlation coefficient. The proposed analyses are integrated within a computer-supported procedure that interactively guides the users in the different phases of the evaluation method. 2-Dimensional and 3-dimensional indexes are used for each material and each acquisition sequence. From these, we drew a ranking of the materials, averaging the results obtained. Zirconia and ILOR F appear to be the best choice from the susceptibility artefacts point of view, followed, in order, by PAL Keramit, Ti6Al4V-ELI and Keramit NP.

  13. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  14. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    Science.gov (United States)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  15. 3D and 4D magnetic susceptibility tomography based on complex MR images

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  16. Contrast-enhanced CT with a High-Affinity Cationic Contrast Agent for Imaging ex Vivo Bovine, Intact ex Vivo Rabbit, and in Vivo Rabbit Cartilage

    OpenAIRE

    Stewart, Rachel C.; Bansal, Prashant N.; Entezari, Vahid; Lusic, Hrvoje; Nazarian, Rosalynn M.; Snyder, Brian D.; Grinstaff, Mark W.

    2013-01-01

    The high affinity of a cationic iodinated contrast agent for cartilage provides better tissue visualization, easier segmentation, higher contrast-to-noise ratios, and longer usable imaging windows and requires a lower dose of injected contrast agent compared with an anionic contrast agent.

  17. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kurosaki, Masamichi [Department of Neurosurgery, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kanasaki, Yoshiko; Matsusue, Eiji; Kaminou, Toshio; Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan)

    2011-07-15

    Introduction: To clarify whether a three-dimensional-gradient echo (3D-GRE) or spin echo (SE) sequence is more useful for evaluating sellar lesions on contrast-enhanced T1-weighted MR imaging at 3.0 Tesla (T). Methods: We retrospectively assessed contrast-enhanced T1-weighted images using 3D-GRE and SE sequences at 3.0 T obtained from 33 consecutive patients with clinically suspected sellar lesions. Two experienced neuroradiologists evaluated the images qualitatively in terms of the following criteria: boundary edge of the cavernous sinus and pituitary gland, border of sellar lesions, delineation of the optic nerve and cranial nerves within the cavernous sinus, susceptibility and flow artifacts, and overall image quality. Results: At 3.0 T, 3D-GRE provided significantly better images than the SE sequence in terms of the border of sellar lesions, delineation of cranial nerves, and overall image quality; there was no significant difference regarding the boundary edge of the cavernous sinus and pituitary gland. In addition, the 3D-GRE sequence showed fewer pulsation artifacts but more susceptibility artifacts. Conclusion: Our results indicate that 3D-GRE is the more suitable sequence for evaluating sellar lesions on contrast-enhanced T1-weighted imaging at 3.0 T.

  18. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv, E-mail: rajiv.chopra@sri.utoronto.ca [Sunnybrook Health Sciences Centre, Imaging Research, Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, M4N 3M5 (Canada)

    2011-02-07

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 {+-} 0.2 and 0.3 {+-} 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm {+-}0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  19. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    Science.gov (United States)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  20. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  1. High contrast two-photon imaging of fingermarks

    Science.gov (United States)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  2. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope.

    Science.gov (United States)

    Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming

    2018-02-28

    In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media.

    Science.gov (United States)

    Frick, Kyle; Michael, Tesfaldet T; Alomar, Mohammed; Mohammed, Atif; Rangan, Bavana V; Abdullah, Shuaib; Grodin, Jerrold; Hastings, Jeffrey L; Banerjee, Subhash; Brilakis, Emmanouil S

    2014-11-01

    Optical coherence tomography (OCT) coronary imaging requires displacement of red blood cells from the vessel lumen. This is usually accomplished using radiographic contrast. Low molecular weight dextran has low cost and is safe in low volumes. In the present study, we compared dextran with contrast for coronary OCT imaging. Fifty-one vessels in 26 patients were sequentially imaged using manual injection of radiographic contrast (iodixanol) and dextran. OCT images were analyzed at 1 mm intervals to determine the image clarity (defined as a visible lumen border > 270°) and to measure the lumen area and lumen diameter. To correct for the refractive index of dextran, the dextran area measurements were multiplied by 1.117 and the dextran length measurements were multiplied by 1.057. A total of 3,418 cross-sections (1,709 with contrast and 1,709 with dextran) were analyzed. There were no complications related to OCT imaging or to contrast or dextran administration. Clear image segments were observed in 97.0% vs. 96.7% of the cross-sections obtained with contrast and dextran, respectively (P = 0.45). The mean lumen areas were also similar: 6.69 ± 1.95 mm(2) with iodixanol vs. 7.06 ± 2.06 mm(2) with dextran (correlation coefficient 0.984). The image quality and measurements during OCT image acquisition are similar for dextran and contrast. Dextran could be used instead of contrast for OCT imaging, especially in patients in whom contrast load minimization is desired. © 2013 Wiley Periodicals, Inc.

  4. Contrast-enhanced magnetic resonance angiography in carotid artery disease: does automated image registration improve image quality?

    International Nuclear Information System (INIS)

    Menke, Jan; Larsen, Joerg

    2009-01-01

    Contrast-enhanced magnetic resonance angiography (MRA) is a noninvasive imaging alternative to digital subtraction angiography (DSA) for patients with carotid artery disease. In DSA, image quality can be improved by shifting the mask image if the patient has moved during angiography. This study investigated whether such image registration may also help to improve the image quality of carotid MRA. Data from 370 carotid MRA examinations of patients likely to have carotid artery disease were prospectively collected. The standard nonregistered MRAs were compared to automatically linear, affine and warp registered MRA by using three image quality parameters: the vessel detection probability (VDP) in maximum intensity projection (MIP) images, contrast-to-noise ratio (CNR) in MIP images, and contrast-to-noise ratio in three-dimensional image volumes. A body shift of less than 1 mm occurred in 96.2% of cases. Analysis of variance revealed no significant influence of image registration and body shift on image quality (p > 0.05). In conclusion, standard contrast-enhanced carotid MRA usually requires no image registration to improve image quality and is generally robust against any naturally occurring body shift. (orig.)

  5. Tissue Necrosis Monitoring for HIFU Ablation with T1 Contrast MRI Imaging

    Science.gov (United States)

    Hwang, San-Chao; Yao, Ching; Kuo, Ih-Yuan; Tsai, Wei-Cheng; Chang, Hsu

    2011-09-01

    In MR-guided HIFU ablation, MTC (Magnetization Transfer Contrast) or perfusion imaging is usually used after ablation to evaluate the ablated area based on the thermally induced necrosis contrast. In our MR-guided HIFU ablation study, a T1 contrast MRI scan sequence has been used to distinguish between necrotic and non-necrotic tissue. The ablation of porcine meat in-vitro and in-vivo pig leg muscle show that the necrotic area of T1 contrast MRI image coincides with the photographs of sliced specimen. The sequence is considerably easier to apply than MTC or perfusion imaging, while giving good necrosis contrast. In addition, no injection of contrast agent is needed, allowing multiple scans to be applied throughout the entire ablation procedure.

  6. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  7. Gd-DTPA as a paramagnetic contrast agent in MR imaging of focal liver lesions

    International Nuclear Information System (INIS)

    Hamm, B.; Roemer, T.; Wolf, K.J.; Felix, R.; Weinmann, H.J.

    1986-01-01

    Gd-DTPA enhances signal intensity in healthy liver and in intrahepatic tumors. However, after contrast agent administration, tumor enhances significantly more than liver parenchyma (2α≤ 0.05). Doubling the dose of Gd-DTPA from 0.1 to 0.2 mmol/kg of body weight increases the enhancement of intrahepatic tumors (2α≤ 0.05) and optimizes the contrast between tumor and liver in T1-weighted spin-echo sequences. However, the contrast between tumor and liver on inversion-recovery and T2-weighted images obtained before contrast agent administration is much greater than the difference on T1-weighted images obtained after contrast agent administration (2α≤ 0.05). In fast images the contrast between liver and tumor can be markedly improved by administering Gd-DTPA

  8. Detection of prostate cancer by contrast-ultrasound dispersion imaging

    NARCIS (Netherlands)

    Kuenen, M.P.J.; Saidov, T.A.; Heneweer, C.; Wijkstra, H.; Mischi, M.

    2013-01-01

    Despite the development of several efficient focal therapies for prostate cancer, treatment options are often restricted to radical treatments, such as a radical prostatectomy. One of the main obstacles preventing a wider application of focal therapies is the lack of reliable imaging methods for

  9. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    Science.gov (United States)

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  10. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Bremer, Christoph; Ntziachristos, Vasilis; Weissleder, Ralph

    2003-01-01

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  11. Diagnostic value of susceptibility weighted image in diffuse axonal injury

    International Nuclear Information System (INIS)

    Liang Changsong; Chen Zhong; Ye Wenqin; Chen Zewen; Liao Miaoyou; Ma Chaojin; Li Weifeng

    2010-01-01

    Objective: To investigate the value of SWI sequence in diagnosis of DAI by analyzing the MRI images of DAI. Methods: The MRI data of 30 cases with DAI diagnosed by clinic were analyzed retrospectively. The signal intensity features and detection rate of lesions were compared in all sequences. Results: SET 1 WI sequence had the lowest sensitivity, secondly was T 2 WI sequence. DAI showed as long T 1 long T 2 signal. Some lesions could be detected with FLAIR, appearing as nodular or patchy hyperintensity. More lesions were detected with SWI sequence than with other sequences. DAI lesions mainly located in the junctional zone of cortex and medulla, basal ganglia, corpus callosum, brain stem and cerebellum. It appeared as needle tip, mottling, nodular hypointensity in SWI sequence. Conclusion: SWI can detect more lesions in cases with DAI than other sequences. It can be an additional sequence in MRI examination for the patients suspicioused with DAI. (authors)

  12. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  13. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  14. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    Science.gov (United States)

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  15. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    International Nuclear Information System (INIS)

    Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi

    2015-01-01

    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model. (paper)

  16. Improvements on Fresnel arrays for high contrast imaging

    Science.gov (United States)

    Wilhem, Roux; Laurent, Koechlin

    2018-03-01

    The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman- α line ( λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.

  17. Initial studies of synchrotron radiation phase-contrast imaging in the field of medicine

    International Nuclear Information System (INIS)

    Chen Shaoliang; Zhang Xi; Peng Yifeng; Li Beilei; Cheng Aiping; Zhu Peiping; Yuan Xiqing; Huang Wanxia

    2010-01-01

    Recently,research on using X-ray phase information in medicine has been growing remarkably fast. Phase-contrast imaging with synchrotron radiation can reveal inner soft tissues such as tendons, cartilage, ligaments, adipose tissue, vessels and nerves without a contrast agent. We have visualized the liver, bile duct, lung, kidney, stomach and intestine, heart, blood vessel, bone and arthrosis, and tumor tissues using 'in-line' phase contrast imaging and diffraction-enhanced imaging. It is seen that the synchrotron radiation graphs show much higher resolution. This method is especially suitable for studying soft tissue structure and blood vessels. (authors)

  18. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  19. Contrast-enhanced photoacoustic imaging with an optical wavelength of 1064 nm

    Science.gov (United States)

    Kim, Jeesu; Park, Sara; Park, Gyeong Bae; Choi, Wonseok; Jeong, Unyong; Kim, Chulhong

    2018-02-01

    Photoacoustic (PA) imaging is a biomedical imaging method that can provide both structural and functional information of living tissues beyond the optical diffusion limit by combining the concepts of conventional optical and ultrasound imaging methods. Although endogenous chromophores can be utilized to acquire PA images of biological tissues, exogenous contrast agents that absorb near-infrared (NIR) lights have been extensively explored to improve the contrast and penetration depth of PA images. Here, we demonstrate Bi2Se3 nanoplates, that strongly absorbs NIR lights, as a contrast agent for PA imaging. In particularly, the Bi2Se3 nanoplates produce relatively strong PA signals with an optical wavelength of 1064 nm, which has several advantages for deep tissue imaging including: (1) relatively low absorption by other intrinsic chromophores, (2) cost-effective light source using Nd:YAG laser, and (3) higher available energy than other NIR lights according to American National Standards Institute (ANSI) safety limit. We have investigated deep tissue imaging capability of the Bi2Se3 nanoplates by acquiring in vitro PA images of microtubes under chicken breast tissues. We have also acquired in vivo PA images of bladders, gastrointestinal tracts, and sentinel lymph nodes in mice after injection of the Bi2Se3 nanoplates to verify their applicability to a variety of biomedical research. The results show the promising potential of the Bi2Se3 nanoplates as a PA contrast agent for deep tissue imaging with an optical wavelength of 1064 nm.

  20. Diagnostic utility of intravenous contrast for MR imaging in pediatric appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Gray R.; Renjen, Pooja; Kovanlikaya, Arzu [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Radiology, New York, NY (United States); Askin, Gulce; Giambrone, Ashley E. [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Biostatistics and Epidemiology, New York, NY (United States); Beneck, Debra [New York-Presbyterian Hospital/Weill Cornell Medicine, Department of Pathology, New York, NY (United States)

    2017-04-15

    Magnetic resonance imaging (MRI) is increasingly employed as a diagnostic modality for suspected appendicitis in children. However, there is uncertainty as to which MRI sequences are sufficient for safe, timely and accurate diagnosis. Several recent studies have described different MRI protocols, including exams both with and without the use of intravenous contrast. We hypothesized that intravenous contrast may be useful in some patients but could be safely omitted in others. All MRI examinations (n=112) performed at our institution for evaluating appendicitis in children were retrospectively reevaluated. Exams were reread by pediatric radiologists under three conditions: With postcontrast images, Without postcontrast images, and Without/With - selective use of postcontrast sequences only when needed for diagnostic certainty. Samples were scored as positive, negative or equivocal for appendicitis. Findings were compared to pathological or clinical follow-up in the medical record. Without the use of intravenous contrast yielded more equivocal results (12.4%) compared to With contrast (3.4%). By selectively using postcontrast sequences, the Without/With group yielded fewer equivocal results (1.1%) compared to Without while also reducing contrast use 79.8% compared to the With contrast group. No significant differences in conditional sensitivity or conditional specificity were detected among the three groups. MRI diagnosis of acute appendicitis can be performed without contrast for most patients; injection of contrast can be reserved for only those patients with equivocal non-contrast imaging. (orig.)

  1. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  2. Double contrast MR imaging with iron colloid and Gd-DTPA in cholangiocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Suto, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Shimatani, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kato, T. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kamba, M. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Ohuchi, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kodama, F. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan); Kato, T.; Ohta, Y. [Dept. of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)

    1994-11-01

    Double contrast MR imaging with combined use of chondroitin sulfate iron colloid (CSIC) and Gd-DTPA was attempted in 3 cases of cholangiocellular carcinoma (CCC). In all cases, nonenhanced spin echo T1- and T2-weighted images, and T1-weighted images after i.v. injection of Gd-DTPA were obtained. Within one week, the MR sequences were repeated one hour after i.v. injection of CSIC. Double contrast (CSIC/Gd-DTPA) T1-weighted imaging was evaluated and compared with the other sequences in terms of tumor detectability, tumor spreading and tumor characterization. Double contrast MR imaging was comparable in tumor detectability and superior as to the evaluation of spreading and characterization to the other MR imaging modalities. (orig.).

  3. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    International Nuclear Information System (INIS)

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  4. Evaluation of sclerosis in Modic changes of the spine using susceptibility-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Böker, Sarah M., E-mail: Sarah-maria.boeker@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Bender, Yvonne Y., E-mail: Yi-na.bender@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Adams, Lisa C., E-mail: Lisa.adams@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Fallenberg, Eva M., E-mail: Eva.fallenberg@charite.de [Department of Radiology, Charité, Augustenburger Platz 1, 13353 Berlin (Germany); Wagner, Moritz, E-mail: Moritz.wagner@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Hamm, Bernd, E-mail: Bernd.hamm@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Makowski, Marcus R., E-mail: Marcus.makowski@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany)

    2017-03-15

    Highlights: • SWMR allows a reliable detection of sclerosis in Modic changes. • SWI has a better accuracy for detection of sclerosis in Modic changes than T1/T2w MR. • By applying SWMR the use of additional CT/radiography can be minimized. - Abstract: Purpose: To evaluate the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the differentiation of sclerotic and non-sclerotic Modic changes (MC) of the spine compared to computed tomography (CT) and radiographs. Materials and methods: The Institutional Ethics-Review-Board approved this prospective study in advance. Written consent was obtained from all subjects. SWMR and standard T1/T2 MR of the cervical (n = 21) and/or lumbar spine (n = 34) were performed in 54 patients. 21 patients served as control. 18 patients were evaluated with CT; in all other patients radiographs were available. 67 Modic changes were identified on T1/T2 MR. On SWMR changes were classified as sclerotic and non-sclerotic based on signal intensity measurements. The sensitivity and specificity of SWMR and T1/T2 MR for differentiating between sclerotic and non-sclerotic Modic changes were determined with CT and radiographs as reference standard. Results: On SWMR, signal measurements between sclerotic and non-sclerotic Modic changes differed significantly (p < 0.01). On T1- and T2-weighted MR no significant difference (p > 0.05) was measured. On SWMR, a reliable differentiation between sclerotic and non-sclerotic Modic changes could be achieved, with a sensitivity of 100% and specificity of 95%. In contrast, the combination of T1-/T2-weighted MR yielded a significantly lower sensitivity to detect sclerosis (20%). Conclusion: SWMR allows a reliable detection of sclerosis in Modic changes with a higher accuracy compared to standard spine MR sequences, using radiographs and CT as reference standard.

  5. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    Science.gov (United States)

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  6. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  7. Comparison of the image quality of intravenous urograms using low-osmolar contrast media

    International Nuclear Information System (INIS)

    Kaye, B.; Howard, J.; Foord, K.D.; Cumberland, D.C.

    1988-01-01

    Almost equivalent, intravenous iodine doses of the three new low-osmolar contrast media, ioxaglate (Hexabrix), iopamidol (Niopam) and iohexol (Omnipaque) have been compared for image quality on the intravenous urogram. Generally good radiographic images were obtained. Iohexol gave better results for the nephrogram and pelvicalyceal distension compared with the other contrast media, but only the nephrogram results were statistically significant. Pyelographic density and ureteric distension and density were similar with all three contrast media. In patients where low-osmolality contrast media need to be used for intravenous urography, we suggest that iohexol gives the best radiographic images. Other factors, such as cost and the relative incidence of side-effects of the low-osmolar contrast media also need to be taken into consideration. (author)

  8. Technical aspects of contrast-enhanced magnetic resonance imaging of the breast: literature review

    International Nuclear Information System (INIS)

    Leopoldino, Denise de Deus; Gracio, Tatiana Schiller; D'Ippolito, Giuseppe; Bezerra, Alexandre Sergio de Araujo; Gracio, Tatiana Schiller

    2005-01-01

    With the advances in surface coil technology and the development of new imaging protocols in addition to the increase of the use of contrast agents, contrast enhanced magnetic resonance imaging (MRI) has emerged as a promising modality for detection, diagnosis and staging of breast cancer. Despite these advances, there are some unresolved issues, including no defined standard technique for contrast-enhanced breast MRI and no standard criteria of interpretation for the evaluation of such studies. In this article, we review the literature and discuss the general requirements and recommendations for contrast agent-enhanced breast MRI, including image interpretation criteria, MR equipment, dedicated radiofrequency coils, use of paramagnetic contrast agents, fat-suppression techniques, planes of acquisition, pulse sequence specifications and artifact sources. (author)

  9. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baheza, Richard A. [Department of Biomedical Engineering and Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Welch, E. Brian [Institute of Imaging Science and Departments of Radiology and Radiological Sciences and Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gochberg, Daniel F. [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, and Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Sanders, Melinda [Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Harvey, Sara [Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gore, John C. [Institute of Imaging Science and Departments of Biomedical Engineering, Radiology and Radiological Sciences, Physics and Astronomy, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Yankeelov, Thomas E., E-mail: thomas.yankeelov@vanderbilt.edu [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, Biomedical Engineering, Physics and Astronomy, and Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States)

    2015-03-15

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12

  10. The use contrast agent for imaging biological samples

    Czech Academy of Sciences Publication Activity Database

    Dammer, J.; Weyda, František; Sopko, V.; Jakůbek, J.

    2011-01-01

    Roč. 6, C01096 (2011), s. 1-7 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /12./. Cambridge, 11.07.2010-15.7.2010] R&D Projects: GA MŠk 2B06005 Grant - others:Research Program(CZ) 6840770029; Research Program(CZ) 6840770040; GA AV ČR(CZ) IAA600550614; GA MŠk(CZ) 2B06007; GA MŠk(CZ) 1PO4LA211; GA MŠk(CZ) LC06041 Program:IA; 2B; LC Institutional research plan: CEZ:AV0Z50070508 Keywords : x-ray radiography and digital radiography (DR) * x-ray detectors * inspections with x-rays Subject RIV: EA - Cell Biology Impact factor: 1.869, year: 2011

  11. Numerical deconvolution to enhance sharpness and contrast of portal images for radiotherapy patient positioning verification

    International Nuclear Information System (INIS)

    Looe, H.K.; Uphoff, Y.; Poppe, B.; Carl von Ossietzky Univ., Oldenburg; Harder, D.; Willborn, K.C.

    2012-01-01

    The quality of megavoltage clinical portal images is impaired by physical and geometrical effects. This image blurring can be corrected by a fast numerical two-dimensional (2D) deconvolution algorithm implemented in the electronic portal image device. We present some clinical examples of deconvolved portal images and evaluate the clinical advantages achieved by the improved sharpness and contrast. The principle of numerical 2D image deconvolution and the enhancement of sharpness and contrast thereby achieved are shortly explained. The key concept is the convolution kernel K(x,y), the mathematical equivalent of the smearing or blurring of a picture, and the computer-based elimination of this influence. Enhancements of sharpness and contrast were observed in all clinical portal images investigated. The images of fine bone structures were restored. The identification of organ boundaries and anatomical landmarks was improved, thereby permitting a more accurate comparison with the x-ray simulator radiographs. The visibility of prostate gold markers is also shown to be enhanced by deconvolution. The blurring effects of clinical portal images were eliminated by a numerical deconvolution algorithm that leads to better image sharpness and contrast. The fast algorithm permits the image blurring correction to be performed in real time, so that patient positioning verification with increased accuracy can be achieved in clinical practice. (orig.)

  12. Numerical deconvolution to enhance sharpness and contrast of portal images for radiotherapy patient positioning verification

    Energy Technology Data Exchange (ETDEWEB)

    Looe, H.K.; Uphoff, Y.; Poppe, B. [Pius Hospital, Oldenburg (Germany). Clinic for Radiation Therapy; Carl von Ossietzky Univ., Oldenburg (Germany). WG Medical Radiation Physics; Harder, D. [Georg August Univ., Goettingen (Germany). Medical Physics and Biophysics; Willborn, K.C. [Pius Hospital, Oldenburg (Germany). Clinic for Radiation Therapy

    2012-02-15

    The quality of megavoltage clinical portal images is impaired by physical and geometrical effects. This image blurring can be corrected by a fast numerical two-dimensional (2D) deconvolution algorithm implemented in the electronic portal image device. We present some clinical examples of deconvolved portal images and evaluate the clinical advantages achieved by the improved sharpness and contrast. The principle of numerical 2D image deconvolution and the enhancement of sharpness and contrast thereby achieved are shortly explained. The key concept is the convolution kernel K(x,y), the mathematical equivalent of the smearing or blurring of a picture, and the computer-based elimination of this influence. Enhancements of sharpness and contrast were observed in all clinical portal images investigated. The images of fine bone structures were restored. The identification of organ boundaries and anatomical landmarks was improved, thereby permitting a more accurate comparison with the x-ray simulator radiographs. The visibility of prostate gold markers is also shown to be enhanced by deconvolution. The blurring effects of clinical portal images were eliminated by a numerical deconvolution algorithm that leads to better image sharpness and contrast. The fast algorithm permits the image blurring correction to be performed in real time, so that patient positioning verification with increased accuracy can be achieved in clinical practice. (orig.)

  13. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-01-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  14. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  15. An alternative approach to contrast-detail testing of X-ray image intensifier systems

    International Nuclear Information System (INIS)

    Kotre, C.J.; Marshall, N.W.; Faulkner, K.

    1992-01-01

    The difficulties of making the results of threshold contrast-detail diameter tests on X-ray image intensifier systems consistent with published performance standards are discussed. The current approach to contrast-detail testing is described and an alternative method intended to give greater consistency for all image intensifier input field diameters proposed. The current and alternative test conditions are compared on two image intensifier systems. The results obtained show that the contrast-detail curves for image intensifier systems with a wide range of input field diameters can be effectively normalized to be directly comparable to a common reference standard by applying the proposed alternative test conditions. The implications of this result on the interpretation of the contrast-detail test are discussed. (author)

  16. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside

    International Nuclear Information System (INIS)

    Croisille, Pierre; Revel, Didier; Saeed, Maythem

    2006-01-01

    This review paper presents, in the first part, the different classes of contrast media that are already used or are in development for cardiac magnetic resonance imaging. A classification of the different types of contrast media is proposed based on the distribution of the compounds in the body, their type of relaxivity and their potential affinity to particular molecules. In the second part, the different uses of the extracellular type of T1-enhancing contrast agent for myocardial imaging is covered from the detection of stable coronary artery disease to the detection and characterization of chronic infarction. A particular emphasis is placed on the clinical use of gadolinium-chelates, which are the universally used type of MRI contrast agent in the clinical routine. Both approaches, first-pass magnetic resonance imaging (FP-MRI) as well as delayed-enhanced magnetic resonance imaging (DE-MRI), are covered in the different situations of acute and chronic myocardial infarction. (orig.)

  17. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  18. Variability induced by the MR imager in dynamic contrast-enhanced imaging of the prostate.

    Science.gov (United States)

    Brunelle, S; Zemmour, C; Bratan, F; Mège-Lechevallier, F; Ruffion, A; Colombel, M; Crouzet, S; Sarran, A; Rouvière, O

    2018-04-01

    To evaluate the variability induced by the imager in discriminating high-grade (Gleason≥7) prostate cancers (HGC) using dynamic contrast-enhanced MRI. We retrospectively selected 3T MRIs with temporal resolution<10 seconds and comprising T1 mapping from a prospective radiologic-pathologic database of patients treated by prostatectomy. Ktrans, Kep, Ve and Vp were calculated for each lesion seen on MRI using the Weinmann arterial input function (AIF) and three patient-specific AIFs measured in the right and left iliac arteries in pixels in the center of the lumen (psAIF-ST) or manually selected by two independent readers (psAIF-R1 and psAIF-R2). A total of 43 patients (mean age, 63.6±4.9 [SD]; range: 48-72 years) with 100 lesions on MRI (55 HGC) were selected. MRIs were performed on imager A (22 patients, 49 lesions) or B (21 patients, 51 lesions) from two different manufacturers. Using the Weinmann AIF, Kep (P=0.005), Ve (P=0.04) and Vp (P=0.01) significantly discriminated HCG. After adjusting on tissue classes, the imager significantly influenced the values of Kep (P=0.049) and Ve (P=0.007). Using patient-specific AIFs, Vp with psAIF-ST (P=0.008) and psAIF-R2 (P=0.04), and Kep with psAIF-R1 (P=0.03) significantly discriminated HGC. After adjusting on tissue classes, types of patient-specific AIF and side of measurement, the imager significantly influenced the values of Ktrans (P=0.0002), Ve (P=0.0072) and Vp (P=0.0003). For all AIFs, the diagnostic value of pharmacokinetic parameters remained unchanged after adjustment on the imager, with stable odds ratios. The imager induced variability in the absolute values of pharmacokinetic parameters but did not change their diagnostic performance. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  19. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This

  20. Hybrid imaging with contrast enhanced CT scan: A nuclear physician's point of view

    International Nuclear Information System (INIS)

    Houzard, C.; Tychyj-Pinel, C.; Defez, D.; Valette, P.J.; Giammarile, F.; Houzard, C.; Valette, P.J.; Giammarile, F.

    2010-01-01

    The ongoing development of hybrid imaging, with physical association of CT scan and PET or SPECT scan, allows integrating morphological and functional information on a single exam. This important technological evolution changes diagnostic and therapeutic strategy in a major manner, essentially in oncology. The possibility to inject intravenously iodinated contrast media in order to enhance CT image contrast is still a controversial question in France. We present our experience in this domain by approaching technical problems and diagnostic advantages. (authors)

  1. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Saline Contrast Echocardiography in the Era of Multimodality Imaging--Importance of "Bubbling It Right".

    Science.gov (United States)

    Gupta, Saurabh K; Shetkar, Sudhir S; Ramakrishnan, Sivasubramanian; Kothari, Shyam S

    2015-11-01

    Saline contrast echocardiography is an established imaging modality. Logical interpretation of a carefully performed study is vital to realize its diagnostic potential. In this review, we discuss utility of saline contrast echocardiography in evaluation of various pathologies within and outside the heart other than a patent foramen ovale. © 2015, Wiley Periodicals, Inc.

  3. Comparison of positive and negative enteral contrast agents for MR imaging of the abdomen

    International Nuclear Information System (INIS)

    Kaminsky, S.; Langer, M.

    1994-01-01

    Following oral administration of a buffered gadopentetate-dimeglumine solution (Magnevist enteral R , 1 mmol/l, 6-17 ml/kg) T 1 -, proton-density- and T 2 -weighted spin-echo images of abdominal and retroperitoneal lesions were acquired (0.5 T). Gadopentetate is a signal-enhancing, positive MR contrast agent, intraluminar air served as a model of a signal-free, negative agent. In 21 patients contrast/noise ratios of gadopentetate and air versus lesions and fat were compared quantitatively (t-test). In T 1 - and T 2 -weighted images contrast/noise ratios of gadopentetate versus lesions were significantly higher than those of air. In proton-density images there was no significant difference. In T 1 - and proton-density images contrast/noise ratios of air versus abdominal fat were significantly higher than those of gadopentetate, in T 2 -weighted images gadopentetate had a significantly higher contrast/noise ratio than air. Signal-enhancing positive contrast agents seem advantageous over signal-free negative enteral MR contrast agents. (orig.) [de

  4. Experimental validation of the Wigner distributions theory of phase-contrast imaging

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2005-01-01

    Recently, a new theory of phase-contrast imaging has been proposed by Wu and Liu [Med. Phys. 31, 2378-2384 (2004)]. This theory, based upon Wigner distributions, provides a much stronger foundation for the evaluation of phase-contrast imaging systems than did the prior theories based upon Fresnel-Kirchhoff diffraction theory. In this paper, we compare results of measurements made in our laboratory of phase contrast for different geometries and tube voltages to the predictions of the Wu and Liu model. In our previous publications, we have used an empirical measurement (the edge enhancement index) to parametrize the degree of phase-contrast effects in an image. While the Wu and Liu model itself does not predict image contrast, it does measure the degree of phase contrast that the system can image for a given spatial frequency. We have found that our previously published experimental results relating phase-contrast effects to geometry and x-ray tube voltage are consistent with the predictions of the Wu and Liu model

  5. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  6. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    International Nuclear Information System (INIS)

    Beitzke, Dietrich; Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-01-01

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  7. Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast

    Science.gov (United States)

    Guggenheim, James A.; Allen, Thomas J.; Plumb, Andrew; Zhang, Edward Z.; Rodriguez-Justo, Manuel; Punwani, Shonit; Beard, Paul C.

    2015-05-01

    Lymph nodes play a central role in metastatic cancer spread and are a key clinical assessment target. Abnormal node vascularization, morphology, and size may be indicative of disease but can be difficult to visualize with sufficient accuracy using existing clinical imaging modalities. To explore the potential utility of photoacoustic imaging for the assessment of lymph nodes, images of ex vivo samples were obtained at multiple wavelengths using a high-resolution three-dimensional photoacoustic scanner. These images showed that hemoglobin based contrast reveals nodal vasculature and lipid-based contrast reveals the exterior node size, shape, and boundary integrity. These two sources of complementary contrast may allow indirect observation of cancer, suggesting a future role for photoacoustic imaging as a tool for the clinical assessment of lymph nodes.

  8. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

    Science.gov (United States)

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L

    2015-11-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

  10. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  11. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    Science.gov (United States)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  12. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality

    International Nuclear Information System (INIS)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-01-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols. (orig.)

  13. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  14. [Comparison of film-screen combination in a contrast detail diagram and with interactive image analysis. 1: Contrast detail diagram].

    Science.gov (United States)

    Hagemann, G; Eichbaum, G

    1997-07-01

    The following three film-screen combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film, and c) a conventional green fluorescing screen film combination. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) were obtained that contained bar patterns of lead and plaster (calcium sulfate) to test high and intermediate contrast resolution and bar patterns of air to test low contrast resolution, respectively. An aluminum step wedge was integrated to evaluate dose-density curves of the radiographs. The dose values for the various step thicknesses were measured as percentage of the dose value in air for 60, 81, and 117 kV. Exposure conditions were the following: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum prefilter, a grid with 40 lines/cm (12:1), and a focus-detector distance of 1.15 m. The thresholds of visible bars of the various pattern materials were assessed by seven radiologists, one technician, and the authors. The resulting contrast detail diagram could not prove any significant differences between the three tested screen film combinations. The pairwise comparison, however, found 8 of the 18 paired differences to be statistically significant between the conventional and the two new screen-film combinations. The authors concluded that subjective visual assessment of the threshold in a contrast detail study alone is of only limited value to grade image quality if no well-defined criteria are used (BIR report 20 [1989] 137-139). The statistical approach of paired differences of the estimated means appeared to be more appropriate.

  15. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas.

    Science.gov (United States)

    Hojjati, Mojgan; Badve, Chaitra; Garg, Vasant; Tatsuoka, Curtis; Rogers, Lisa; Sloan, Andrew; Faulhaber, Peter; Ros, Pablo R; Wolansky, Leo J

    2018-01-01

    To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). The study included 24 patients with GBM treated with surgery, radiotherapy, and temozolomide who presented with progression on imaging follow-up. All patients underwent PET/MRI and pMRI during a single examination. Additionally, 19 of 24 patients underwent PET/CT on the same day. Diagnosis was established by pathology in 17 of 24 and by clinical/radiologic consensus in 7 of 24. For the quantitative PET/MRI and PET/CT analysis, a region of interest (ROI) was drawn around each lesion and within the contralateral white matter. Lesion to contralateral white matter ratios for relative maximum, mean, and median were calculated. For pMRI, lesion ROI was drawn on the cerebral blood volume (CBV) maps and histogram metrics were calculated. Diagnostic performance for each metric was assessed using receiver operating characteristic curve analysis and area under curve (AUC) was calculated. In 24 patients, 28 lesions were identified. For PET/MRI, relative mean ≥ 1.31 resulted in AUC of .94 with both sensitivity and negative predictive values (NPVs) of 100%. For pMRI, CBV max ≥3.32 yielded an AUC of .94 with both sensitivity and NPV measuring 100%. The joint model utilizing r-mean (PET/MRI) and CBV mode (pMRI) resulted in AUC of 1.0. Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  16. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  17. Cine Magnetic Resonance Imaging of the Small Bowel: Comparison of Different Oral Contrast Media

    International Nuclear Information System (INIS)

    Asbach, P.; Breitwieser, C.; Diederichs, G.; Eisele, S.; Kivelitz, D.; Taupitz, M.; Zeitz, M.; Hamm, B.; Klessen, C.

    2006-01-01

    Purpose: To evaluate several substances regarding small bowel distension and contrast on balanced steady-state free precession (bSSFP) cine magnetic resonance (MR) images. Material and Methods: Luminal contrast was evaluated in 24 volunteers after oral application of two different contrast agent groups leading to either bright lumen (pineapple, blueberry juice) or dark lumen (tap water, orange juice) on T1-weighted images. Bowel distension was evaluated in 30 patients ingesting either methylcellulose or mannitol solution for limiting intestinal absorption. Fifteen patients with duodeno-jejunal intubation served as the control. Quantitative evaluation included measurement of luminal signal intensities and diameters of four bowel segments, qualitative evaluation assessed luminal contrast and distension on a five-point scale. Results: Quantitative and qualitative evaluation of the four contrast agents revealed no significant differences regarding luminal contrast on bSSFP images. Quantitative evaluation revealed significantly lower (P<0.05) small bowel distension for three out of four segments (qualitative evaluation: two out of four segments) for methylcellulose in comparison to the control. Mannitol was found to be equal to the control. Conclusion: Oral ingestion of tap water or orange juice in combination with mannitol is recommended for cine MR imaging of the small bowel regarding luminal contrast and small bowel distension on bSSFP sequences

  18. Cine Magnetic Resonance Imaging of the Small Bowel: Comparison of Different Oral Contrast Media

    Energy Technology Data Exchange (ETDEWEB)

    Asbach, P.; Breitwieser, C.; Diederichs, G.; Eisele, S.; Kivelitz, D.; Taupitz, M.; Zeitz, M.; Hamm, B.; Klessen, C. [Charite - Universitatsmedizin Berlin, Charite Campus Mitte, Berlin (Germany). Dept. of Radiology

    2006-11-15

    Purpose: To evaluate several substances regarding small bowel distension and contrast on balanced steady-state free precession (bSSFP) cine magnetic resonance (MR) images. Material and Methods: Luminal contrast was evaluated in 24 volunteers after oral application of two different contrast agent groups leading to either bright lumen (pineapple, blueberry juice) or dark lumen (tap water, orange juice) on T1-weighted images. Bowel distension was evaluated in 30 patients ingesting either methylcellulose or mannitol solution for limiting intestinal absorption. Fifteen patients with duodeno-jejunal intubation served as the control. Quantitative evaluation included measurement of luminal signal intensities and diameters of four bowel segments, qualitative evaluation assessed luminal contrast and distension on a five-point scale. Results: Quantitative and qualitative evaluation of the four contrast agents revealed no significant differences regarding luminal contrast on bSSFP images. Quantitative evaluation revealed significantly lower (P<0.05) small bowel distension for three out of four segments (qualitative evaluation: two out of four segments) for methylcellulose in comparison to the control. Mannitol was found to be equal to the control. Conclusion: Oral ingestion of tap water or orange juice in combination with mannitol is recommended for cine MR imaging of the small bowel regarding luminal contrast and small bowel distension on bSSFP sequences.

  19. Usefulness of IDEAL T2 imaging for homogeneous fat suppression and reducing susceptibility artefacts in brachial plexus MRI at 3.0 T.

    Science.gov (United States)

    Tagliafico, Alberto; Bignotti, Bianca; Tagliafico, Giulio; Martinoli, Carlo

    2016-01-01

    To quantitatively and qualitatively compare fat-suppressed MR imaging quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency-selective fat-suppressed (FSFS) T2 images of the brachial plexus at 3.0 T. Prospective MR image analysis was performed in 40 volunteers and 40 patients at a single centre. Oblique-sagittal and coronal IDEAL fat-suppressed T2 images and FSFS T2 images were compared. Visual assessment was performed by two independent musculoskeletal radiologists with respect to: (1) susceptibility artefacts around the neck, (2) homogeneity of fat suppression, (3) image sharpness and (4) tissue resolution contrast of pathologies. The signal-to-noise ratios (SNR) for each image sequence were assessed. Compared to FSFS sequences, IDEAL fat-suppressed T2 images significantly reduced artefacts around the brachial plexus and significantly improved homogeneous fat suppression (p < 0.05). IDEAL significantly improved sharpness and lesion-to-tissue contrast (p < 0.05). The mean SNRs were significantly improved on T2-weighted IDEAL images (p < 0.05). IDEAL technique improved image quality by reducing artefacts around the brachial plexus while maintaining a high SNR and provided superior homogeneous fat suppression than FSFS sequences.

  20. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  1. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging

    NARCIS (Netherlands)

    Mulder, Willem J. M.; Strijkers, Gustav J.; van Tilborg, Geralda A. F.; Griffioen, Arjan W.; Nicolay, Klaas

    2006-01-01

    In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the

  2. Reflective THz and MR imaging of burn wounds: a potential clinical validation of THz contrast mechanisms

    Science.gov (United States)

    Bajwa, Neha; Nowroozi, Bryan; Sung, Shijun; Garritano, James; Maccabi, Ashkan; Tewari, Priyamvada; Culjat, Martin; Singh, Rahul; Alger, Jeffry; Grundfest, Warren; Taylor, Zachary

    2012-10-01

    Terahertz (THz) imaging is an expanding area of research in the field of medical imaging due to its high sensitivity to changes in tissue water content. Previously reported in vivo rat studies demonstrate that spatially resolved hydration mapping with THz illumination can be used to rapidly and accurately detect fluid shifts following induction of burns and provide highly resolved spatial and temporal characterization of edematous tissue. THz imagery of partial and full thickness burn wounds acquired by our group correlate well with burn severity and suggest that hydration gradients are responsible for the observed contrast. This research aims to confirm the dominant contrast mechanism of THz burn imaging using a clinically accepted diagnostic method that relies on tissue water content for contrast generation to support the translation of this technology to clinical application. The hydration contrast sensing capabilities of magnetic resonance imaging (MRI), specifically T2 relaxation times and proton density values N(H), are well established and provide measures of mobile water content, lending MRI as a suitable method to validate hydration states of skin burns. This paper presents correlational studies performed with MR imaging of ex vivo porcine skin that confirm tissue hydration as the principal sensing mechanism in THz burn imaging. Insights from this preliminary research will be used to lay the groundwork for future, parallel MRI and THz imaging of in vivo rat models to further substantiate the clinical efficacy of reflective THz imaging in burn wound care.

  3. Non-contrast MR imaging of the glenohumeral joint. Part I. Normal anatomy

    International Nuclear Information System (INIS)

    Rafii, Mahvash

    2004-01-01

    MR imaging of the shoulder without contrast is frequently used for evaluation of glenohumeral instability in spite of the popularity of MR arthrography. With proper imaging technique, familiarity with normal anatomy and variants as well as knowledge of the expected pathologic findings high diagnostic accuracy may be achieved. (orig.)

  4. Non-contrast MR imaging of the glenohumeral joint. Part II. Glenohumeral instability and labrum tears

    International Nuclear Information System (INIS)

    Rafii, Mahvash

    2004-01-01

    MR imaging of the shoulder without contrast is frequently used for evaluation of glenohumeral instability in spite of the popularity of MR arthrography. With proper imaging technique, familiarity with normal anatomy and variants as well as knowledge of the expected pathologic findings high diagnostic accuracy may be achieved. (orig.)

  5. Non-contrast MR imaging of the glenohumeral joint. Part I. Normal anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Rafii, Mahvash [NYU School of Medicine, NYU Medical Center, Department of Radiology, New York (United States)

    2004-10-01

    MR imaging of the shoulder without contrast is frequently used for evaluation of glenohumeral instability in spite of the popularity of MR arthrography. With proper imaging technique, familiarity with normal anatomy and variants as well as knowledge of the expected pathologic findings high diagnostic accuracy may be achieved. (orig.)

  6. Non-contrast MR imaging of the glenohumeral joint. Part II. Glenohumeral instability and labrum tears

    Energy Technology Data Exchange (ETDEWEB)

    Rafii, Mahvash [NYU School of Medicine, NYU Medical Center, Department of Radiology, New York (United States)

    2004-11-01

    MR imaging of the shoulder without contrast is frequently used for evaluation of glenohumeral instability in spite of the popularity of MR arthrography. With proper imaging technique, familiarity with normal anatomy and variants as well as knowledge of the expected pathologic findings high diagnostic accuracy may be achieved. (orig.)

  7. New K-edge-balanced contrast phantom for image quality assurance in projection radiography

    Science.gov (United States)

    Cresens, Marc; Schaetzing, Ralph

    2003-06-01

    X-ray-absorber step-wedge phantoms serve in projection radiography to assess a detection system's overall exposure-related signal-to-noise ratio performance and contrast response. Data derived from a phantom image, created by exposing a step-wedge onto the image receptor, are compared with predefined acceptance criteria during periodic image quality assurance (QA). For contrast-related measurements, in particular, the x-ray tube potential requires accurate setting and low ripple, since small deviations from the specified kVp, causing energy spectrum changes, lead to significant image signal variation at high contrast ratios. A K-edge-balanced, rare-earth-metal contrast phantom can generate signals that are significantly more robust to the spectral variability and instability of exposure equipment in the field. The image signals from a hafnium wedge, for example, are up to eight times less sensitive to spectral fluctuations than those of today"s copper phantoms for a 200:1 signal ratio. At 120 kVp (RQA 9), the hafnium phantom still preserves 70% of the subject contrast present at 75 kVp (RQA 5). A copper wedge preserves only 7% of its contrast over the same spectral range. Spectral simulations and measurements on prototype systems, as well as potential uses of this new class of phantoms (e.g., QA, single-shot exposure response characterization) are described.

  8. Value of MR contrast media in image-guided body interventions.

    Science.gov (United States)

    Saeed, Maythem; Wilson, Mark

    2012-01-28

    In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability

  9. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  10. Morphological image processing for quantitative shape analysis of biomedical structures: effective contrast enhancement

    International Nuclear Information System (INIS)

    Kimori, Yoshitaka

    2013-01-01

    A contrast enhancement approach utilizing a new type of mathematical morphology called rotational morphological processing is introduced. The method is quantitatively evaluated and then applied to some medical images. Image processing methods significantly contribute to visualization of images captured by biomedical modalities (such as mammography, X-ray computed tomography, magnetic resonance imaging, and light and electron microscopy). Quantitative interpretation of the deluge of complicated biomedical images, however, poses many research challenges, one of which is to enhance structural features that are scarcely perceptible to the human eye. This study introduces a contrast enhancement approach based on a new type of mathematical morphology called rotational morphological processing. The proposed method is applied to medical images for the enhancement of structural features. The effectiveness of the method is evaluated quantitatively by the contrast improvement ratio (CIR). The CIR of the proposed method is 12.1, versus 4.7 and 0.1 for two conventional contrast enhancement methods, clearly indicating the high contrasting capability of the method

  11. X-ray phase contrast imaging of objects with subpixel-size inhomogeneities: a geometrical optics model.

    Science.gov (United States)

    Gasilov, Sergei V; Coan, Paola

    2012-09-01

    Several x-ray phase contrast extraction algorithms use a set of images acquired along the rocking curve of a perfect flat analyzer crystal to study the internal structure of objects. By measuring the angular shift of the rocking curve peak, one can determine the local deflections of the x-ray beam propagated through a sample. Additionally, some objects determine a broadening of the crystal rocking curve, which can be explained in terms of multiple refraction of x rays by many subpixel-size inhomogeneities contained in the sample. This fact may allow us to differentiate between materials and features characterized by different refraction properties. In the present work we derive an expression for the beam broadening in the form of a linear integral of the quantity related to statistical properties of the dielectric susceptibility distribution function of the object.

  12. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image.

    Science.gov (United States)

    Saukko, Annina E A; Honkanen, Juuso T J; Xu, Wujun; Väänänen, Sami P; Jurvelin, Jukka S; Lehto, Vesa-Pekka; Töyräs, Juha

    2017-12-01

    Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.

  13. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  14. Clinical implementation of x-ray phase-contrast imaging: Theoretical foundations and design considerations

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong

    2003-01-01

    Theoretical foundation and design considerations of a clinical feasible x-ray phase contrast imaging technique were presented in this paper. Different from the analysis of imaging phase object with weak absorption in literature, we proposed a new formalism for in-line phase-contrast imaging to analyze the effects of four clinically important factors on the phase contrast. These are the body parts attenuation, the spatial coherence of spherical waves from a finite-size focal spot, and polychromatic x-ray and radiation doses to patients for clinical applications. The theory presented in this paper can be applied widely in diagnostic x-ray imaging procedures. As an example, computer simulations were conducted and optimal design parameters were derived for clinical mammography. The results of phantom experiments were also presented which validated the theoretical analysis and computer simulations

  15. Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2.

    Science.gov (United States)

    Muto, Mario; Frauenfelder, Giulia; Senese, Rossana; Zeccolini, Fabio; Schena, Emiliano; Giurazza, Francesco; Jäger, Hans Rolf

    2018-07-01

    Distinction between treatment-related changes and tumour recurrence in patients who have received radiation treatment for brain metastases can be difficult on conventional MRI. In this study, we investigated the ability of dynamic susceptibility contrast (DSC) perfusion in differentiating necrotic changes from pathological angiogenesis and compared measurements of relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF) and K2, using a dedicated software. Twenty-nine patients with secondary brain tumors were included in this retrospective study and underwent DSC perfusion MRI with a 3-month follow-up imaging after chemo- or radiation-therapy. Region-of-interests were drawn around the contrast enhancing lesions and measurements of rCBV, rCBF and K2 were performed in all patients. Based on subsequent histological examination or clinico-radiological follow-up, the cohort was divided in two groups: recurrent disease and stable disease. Differences between the two groups were analyzed using the Student's t test. Sensitivity, specificity and diagnostic accuracy of rCBV measurements were analyzed considering three different cut-off values. Between patients with and without disease, only rCBV and rCBF values were significant (p < 0.05). The only cut-off value giving the best diagnostic accuracy of 100% was rCBV = 2.1 (sensitivity = 100%; specificity = 100%). Patients with tumor recurrence showed a higher mean value of rCBV (mean = 4.28, standard deviation = 2.09) than patients with necrotic-related changes (mean = 0.77, standard deviation = 0.44). DSC-MRI appears a clinically useful method to differentiate between tumor recurrence, tumor necrosis and pseudoprogression in patients treated for cerebral metastases. Relative CBV using a cut-off value of 2.1 proved to be the most accurate and reliable parameter.

  16. Susceptibility effects in nuclear magnetic resonance imaging; Suszeptibilitaetseffekte in der Kernspinresonanzbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Ziener, Christian Herbert

    2008-07-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  17. Evaluation of chirp reversal power modulation sequence for contrast agent imaging

    International Nuclear Information System (INIS)

    Novell, A; Sennoga, CA; Escoffre, JM; Chaline, J; Bouakaz, A

    2014-01-01

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5 MHz; amplitude of 350 kPa) a tissue-mimicking flow phantom comprising a 4 mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue ® were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10 dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at −3 dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI. (paper)

  18. Monte Carlo simulation of grating-based neutron phase contrast imaging at CPHS

    International Nuclear Information System (INIS)

    Zhang Ran; Chen Zhiqiang; Huang Zhifeng; Xiao Yongshun; Wang Xuewu; Wie Jie; Loong, C.-K.

    2011-01-01

    Since the launching of the Compact Pulsed Hadron Source (CPHS) project of Tsinghua University in 2009, works have begun on the design and engineering of an imaging/radiography instrument for the neutron source provided by CPHS. The instrument will perform basic tasks such as transmission imaging and computerized tomography. Additionally, we include in the design the utilization of coded-aperture and grating-based phase contrast methodology, as well as the options of prompt gamma-ray analysis and neutron-energy selective imaging. Previously, we had implemented the hardware and data-analysis software for grating-based X-ray phase contrast imaging. Here, we investigate Geant4-based Monte Carlo simulations of neutron refraction phenomena and then model the grating-based neutron phase contrast imaging system according to the classic-optics-based method. The simulated experimental results of the retrieving phase shift gradient information by five-step phase-stepping approach indicate the feasibility of grating-based neutron phase contrast imaging as an option for the cold neutron imaging instrument at the CPHS.

  19. Avascular necrosis of femoral head: findings of contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Shin, Yong Moon; Kang, Heung Sik; Kim, Chu Wan; Kim, Hee Joong; Kim, Young Min

    1995-01-01

    To evaluate the findings and the role of contrast enhanced magnetic resonance imaging in avascular necrosis of femoral head. Sixteen patients with avascular necorsis of femoral head were examined with MRI. T1-weighted and T2-weighted image and contrast-enhanced T1-weighted images were obtained. Enhancing characteristics of the necrotic area and synovium were determined. Also a change of the disease extent after enhancement was assessed. Twenty seven avascular necrosis of the femoral head including 11 cases of bilateral lesion were detected. Fifteen cases revealed collapse of the femoral head. The portions of the lesion with low signal intensity on T1-weighted images and high signal intensity on T2-weighted images showed contrast enhancement in 15 cases. However, the potions with low signal intensities both on T1 and T2-weighted images showed enhancement in one case. There was no significant change of the disease extent after enhancement. Synovium showed enhancement in 18 cases, and joint effusion was detected in 23 cases. Contrast enhanced MR images may be helpful in predicting histopathologic findings of avascular necrosis of the femoral head, but not useful for evaluating the extent of disease

  20. Avascular necrosis of femoral head: findings of contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong Moon; Kang, Heung Sik; Kim, Chu Wan; Kim, Hee Joong; Kim, Young Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1995-06-15

    To evaluate the findings and the role of contrast enhanced magnetic resonance imaging in avascular necrosis of femoral head. Sixteen patients with avascular necorsis of femoral head were examined with MRI. T1-weighted and T2-weighted image and contrast-enhanced T1-weighted images were obtained. Enhancing characteristics of the necrotic area and synovium were determined. Also a change of the disease extent after enhancement was assessed. Twenty seven avascular necrosis of the femoral head including 11 cases of bilateral lesion were detected. Fifteen cases revealed collapse of the femoral head. The portions of the lesion with low signal intensity on T1-weighted images and high signal intensity on T2-weighted images showed contrast enhancement in 15 cases. However, the potions with low signal intensities both on T1 and T2-weighted images showed enhancement in one case. There was no significant change of the disease extent after enhancement. Synovium showed enhancement in 18 cases, and joint effusion was detected in 23 cases. Contrast enhanced MR images may be helpful in predicting histopathologic findings of avascular necrosis of the femoral head, but not useful for evaluating the extent of disease.

  1. A new procedure for imaging liver and spleen with water soluble contrast media in liposomes

    International Nuclear Information System (INIS)

    Zherbin, E.A.; Davidenkova, E.F.; Khanson, K.P.; Gubareva, A.V.; Zhdanova, N.V.; Aliyakparov, M.T.; Loshakova, L.V.; Fomina, Eh.V.; Rozenberg, O.A.

    1983-01-01

    The problems of long-term, reversible, and safe contrast investigation of liver and spleen and reduction of the irritating action of water-soluble contrast media on the wall of blood vessels are unresolved. The production and experimental application of contrast media encapsulated in liposomes are described. It is possible to produce a liposome preparation with 10-20 % Verografin content. After intravenous injection it leads to a quick (after 16-30 min), persisting (10-12 h) and reversible (24-30 h) contrast imaging of liver and spleen in rodents. The contrast medium has no pathological effects on heart, blood and circulatory system and on the morphology of liver, spleen, heart, lungs, kidneys and urinary bladder. The perspectives of clinical application of such contrast media are discussed. (author)

  2. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    Science.gov (United States)

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in

  3. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  4. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  5. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Johnson, Joyce T.; Robinson, Joshua D.; Deng, Jie; Rigsby, Cynthia K.

    2016-01-01

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  6. Acetabular labral tears: contrast-enhanced MR imaging under continuous leg traction

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, T. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Nakanishi, K. [Dept. of Radiology, Osaka Univ. Medical School, Suita (Japan); Sugano, N. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan); Naito, H. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Tamura, S. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Ochi, T. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan)

    1996-05-01

    The objective of this study was to evaluate the effects of continuous leg traction on contrast-enhanced MR imaging of the hip joint and to determine whether MR imaging under these conditions is useful for demonstrating acetabular labral tears. Nineteen hips underwent MR imaging with a T1-weighted spin-echo sequence, followed by MR imaging under continuous leg traction after intravenous injection of gadolinium-DTPA. Joint fluid enhancement and labral contour detection were evaluated. Eleven hips had labral tears shown by conventional arthrography, arthroscopy and macroscopic surgical findings. Assessment of labral tears by MR imaging was correlated with the diagnosis based on these standard techniques. Joint fluid enhancement was obtained in all hips at 30 min after injection. Superior and inferior labral surfaces were completely delineated in 1 hip on the unenhanced MR images, and in 7 and 13 hips, respectively, on the enhanced images under traction. The enhanced images under traction depicted 9 of the 11 labral tears. Comparison between the unenhanced image and the enhanced image under traction avoided mistaking undercutting of the labrum for a tear in 4 hips. Contrast-enhanced MR imaging under traction was valuable for detecting labral tears non-invasively and without radiation. Follow-up examinations using this method in patients with acetabular dysplasia can help to clarify the natural course of labral disorders and enable better treatment planning. (orig./MG)

  7. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  8. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  9. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  10. Susceptibility-weighted imaging in stroke-like migraine attacks after radiation therapy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Khanipour Roshan, Sara; Salmela, Michael B.; McKinney, Alexander M. [University Of Minnesota, Department of Radiology, Division of Neuroradiology, Minneapolis, MN (United States)

    2015-11-15

    Stroke-like migraine attacks after radiation therapy (SMART) syndrome has a characteristic clinical presentation and postcontrast T1WI MRI appearance. Susceptibility-weighted imaging (SWI) may help distinguish SMART from other disorders that may have a similar postcontrast MRI appearance. The MRI examinations of four patients with SMART syndrome are described herein, each of which included SWI, FLAIR, DWI, and postcontrast T1WI on the presenting and follow-up MRI examinations. In each, the initial SWI MRI demonstrated numerous susceptibility hypointensities <5 mm in size throughout the cerebrum, particularly within the periventricular white matter (PVWM), presumably related to radiation-induced cavernous hemangiomas (RICHs). By follow-up MRI, each postcontrast examination had demonstrated resolution of the gyriform enhancement on T1WI, without susceptibility hypointensities on SWI within those previously enhancing regions. These preliminary findings suggest that SWI may help identify SMART syndrome or at least help discriminate it from other disorders, by the findings of numerous susceptibility hypointensities on SWI likely representing RICHs, gyriform enhancement on T1WI, and postsurgical findings or appropriate clinical history. (orig.)

  11. Usefulness of 3D-VIBE method in breast dynamic MRI. Imaging parameters and contrasting effects

    International Nuclear Information System (INIS)

    Uchikoshi, Masato; Ueda, Takashi; Nishiki, Shigeo; Satou, Kouichi; Wada, Akihiko; Imaoka, Izumi; Matsuo, Michimasa

    2003-01-01

    MR imaging (MRI) has been reported to be a useful modality to characterize breast tumors and to evaluate disease extent. Contrast-enhanced dynamic MRI, in particular, allows breast lesions to be characterized with high sensitivity and specificity. Our study was designed to develop three-dimensional volumetric interpolated breath-hold examination (3D-VIBE) techniques for the evaluation of breast tumors. First, agarose/Gd-DTPA phantoms with various concentrations of Gd-DTPA were imaged using 3D-VIBE and turbo spin echo (TSE). Second, one of the phantoms was imaged with 3D-VIBE using different flip angles. Finally, water excitation (WE) and a chemical shift-selective (CHESS) pulse were applied to the images. Each image was analyzed for signal intensity, signal-to-noise ratio (1.25*Ms/Mb) (SNR), and contrast ratio [(Ms1-Ms2)/{(Ms1+Ms2)/2}]. The results showed that 3D-VIBE provided better contrast ratios with a linear fit than TSE, although 3D-VIBE showed a lower SNR. To reach the best contrast ratio, the optimized flip angle was found to be 30 deg for contrast-enhanced dynamic study. Both WE and CHESS pulses were reliable for obtaining fat- suppressed images. In conclusion, the 3D-VIBE technique can image the entire breast area with high resolution and provide better contrast than TSE. Our phantom study suggests that optimized 3D-VIBE may be useful for the assessment of breast tumors. (author)

  12. Exchange-Mediated Contrast in CEST and Spin-Lock Imaging

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F.; Gore, John C.

    2014-01-01

    PURPOSE Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. METHODS Simulations and experimental measurements at 9.4T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. RESULTS The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. > 2ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate to fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CONCLUSION CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ dependent acquisitions can be employed to selectively portray protons of specific exchange rates. PMID:24239335

  13. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    Science.gov (United States)

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  14. Exchange-mediated contrast in CEST and spin-lock imaging.

    Science.gov (United States)

    Cobb, Jared Guthrie; Li, Ke; Xie, Jingping; Gochberg, Daniel F; Gore, John C

    2014-01-01

    Magnetic resonance images of biological media based on chemical exchange saturation transfer (CEST) show contrast that depends on chemical exchange between water and other protons. In addition, spin-lattice relaxation rates in the rotating frame (R1ρ) are also affected by exchange, especially at high fields, and can be exploited to provide novel, exchange-dependent contrast. Here, we evaluate and compare the factors that modulate the exchange contrast for these methods using simulations and experiments on simple, biologically relevant samples. Simulations and experimental measurements at 9.4 T of rotating frame relaxation rate dispersion and CEST contrast were performed on solutions of macromolecules containing amide and hydroxyl exchanging protons. The simulations and experimental measurements confirm that both CEST and R1ρ measurements depend on similar exchange parameters, but they manifest themselves differently in their effects on contrast. CEST contrast may be larger in the slow and intermediate exchange regimes for protons with large resonant frequency offsets (e.g. >2 ppm). Spin-locking techniques can produce larger contrast enhancement when resonant frequency offsets are small (exchange is in the intermediate-to-fast regime. The image contrasts scale differently with field strength, exchange rate and concentration. CEST and R1ρ measurements provide different and somewhat complementary information about exchange in tissues. Whereas CEST can depict exchange of protons with specific chemical shifts, appropriate R1ρ-dependent acquisitions can be employed to selectively portray protons of specific exchange rates. © 2013.

  15. Simulations of multi-contrast x-ray imaging using near-field speckles

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Herzen, Julia; Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany)

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  16. High-contrast imaging in the cloud with klipReduce and Findr

    Science.gov (United States)

    Haug-Baltzell, Asher; Males, Jared R.; Morzinski, Katie M.; Wu, Ya-Lin; Merchant, Nirav; Lyons, Eric; Close, Laird M.

    2016-08-01

    Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loève image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.

  17. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  18. Images of paraffin monolayer crystals with perfect contrast: Minimization of beam-induced specimen motion

    International Nuclear Information System (INIS)

    Glaeser, R.M.; McMullan, G.; Faruqi, A.R.; Henderson, R.

    2011-01-01

    Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem in monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots, each of a diameter of around 7 nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, where the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support; however great care is needed in practice and the problem remains of how to best image ice-embedded biological structures in the absence of a strong, conductive support film. -- Research Highlights: →Three ideas were tested to improve the contrast of images of an organic specimen. →High-resolution images of paraffin on thick carbon films can have perfect contrast

  19. Images of paraffin monolayer crystals with perfect contrast: Minimization of beam-induced specimen motion

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, R.M. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); McMullan, G.; Faruqi, A.R. [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Henderson, R., E-mail: rh15@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom)

    2011-01-15

    Quantitative analysis of electron microscope images of organic and biological two-dimensional crystals has previously shown that the absolute contrast reached only a fraction of that expected theoretically from the electron diffraction amplitudes. The accepted explanation for this is that irradiation of the specimen causes beam-induced charging or movement, which in turn causes blurring of the image due to image or specimen movement. In this paper, we used three different approaches to try to overcome this image-blurring problem in monolayer crystals of paraffin. Our first approach was to use an extreme form of spotscan imaging, in which a single image was assembled on film by the successive illumination of up to 50,000 spots, each of a diameter of around 7 nm. The second approach was to use the Medipix II detector with its zero-noise readout to assemble a time-sliced series of images of the same area in which each frame from a movie with up to 400 frames had an exposure of only 500 electrons. In the third approach, we simply used a much thicker carbon support film to increase the physical strength and conductivity of the support. Surprisingly, the first two methods involving dose fractionation in space or time produced only partial improvements in contrast whereas the third approach produced many virtually perfect images, where the absolute contrast predicted from the electron diffraction amplitudes was observed in the images. We conclude that it is possible to obtain consistently almost perfect images of beam-sensitive specimens if they are attached to an appropriately strong and conductive support; however great care is needed in practice and the problem remains of how to best image ice-embedded biological structures in the absence of a strong, conductive support film. -- Research Highlights: {yields}Three ideas were tested to improve the contrast of images of an organic specimen. {yields}High-resolution images of paraffin on thick carbon films can have perfect

  20. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools.

    Science.gov (United States)

    Carrel, Maxence; Beltran, Mario A; Morales, Verónica L; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus

    2017-01-01

    X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent-biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development

  1. Changes of renal blood flow after ESWL: assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index.

    Science.gov (United States)

    Abd Ellah, Mohamed; Kremser, Christian; Pallwein, Leo; Aigner, Friedrich; Schocke, Michael; Peschel, Reinhard; Pedross, Florian; Pinggera, Germar-Michael; Wolf, Christian; Alsharkawy, Mostafa A M; Jaschke, Werner; Frauscher, Ferdinand

    2010-10-01

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12h before and 12h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (pESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Craniopharyngiomas - the utility of contrast medium enhancement for MR imaging at 1.5 T

    International Nuclear Information System (INIS)

    Hald, J.K.; Eldevik, O.P.; Brunberg, J.A.; Chandler, W.F.

    1994-01-01

    To evaluate the efficacy of i.v. contrast medium administration in MR imaging at 1.5 T in patients with craniopharyngiomas, MR studies of 10 men and 6 women with pathologically proven craniopharyngiomas were made. The MR images were obtained as 3- to 5-mm-thick coronal (n=13) or axial (n=3) T1-weighted images (T1WI) prior to an following i.v. Gd-DTPA administration. Proton density-(PD) and T2-weighted images (T2WI) were also obtained. Conspicuity of tumor margins, cystic versus solid components, size, location and effect upon adjacent structures were separately characterized in all imaging sequences. In 6 patients contrast medium-enhanced T1WI, PD and T2WI demonstrated cystic tumor components not seen on unenhanced T1WI. There were significant differences (p<0.004) on 2-tailed Student's t-test comparing tumor conspicuity on contrast medium-enhanced T1WI with unenhanced T1WI, PD and T2WI. Optimal tumor delineation on MR imaging of patients with craniopharyngiomas justifies the use of i.v. contrast medium. (orig.)

  3. Contrast-Enhanced MR Imaging of Lymph Nodes in Cancer Patients

    International Nuclear Information System (INIS)

    Choi, Seung Hong; Moon, Woo Kyung

    2010-01-01

    The accurate identification and characterization of lymph nodes by modern imaging modalities has important therapeutic and prognostic significance for patients with newly diagnosed cancers. The presence of nodal metastases limits the therapeutic options, and it generally indicates a worse prognosis for the patients with nodal metastases. Yet anatomic imaging (CT and MR imaging) is of limited value for depicting small metastatic deposits in normal-sized nodes, and nodal size is a poor criterion when there is no extracapsular extension or focal nodal necrosis to rely on for diagnosing nodal metastases. Thus, there is a need for functional methods that can be reliably used to identify small metastases. Contrast-enhanced MR imaging of lymph nodes is a non-invasive method for the analysis of the lymphatic system after the interstitial or intravenous administration of contrast media. Moreover, some lymphotrophic contrast media have been developed and used for detecting lymph node metastases, and this detection is independent of the nodal size. This article will review the basic principles, the imaging protocols, the interpretation and the accuracies of contrast-enhanced MR imaging of lymph nodes in patients with malignancies, and we also focus on the recent issues cited in the literature. In addition, we discuss the results of several pre-clinical studies and animal studies that were conducted in our institution

  4. Contrast-enhanced magnetic resonance imaging of tumours of the central nervous systems: a clinical review

    International Nuclear Information System (INIS)

    Graif, M.; Steiner, R.E.

    1986-01-01

    The clinical application of the intravascular paramagnetic contrast agent gadolinium-DTPA for magnetic resonance imaging (MRI) imaging of tumours of the central nervous system (CNS) has been assessed over the past 3 years. Various patterns of contrast enhancement were observed, and situations in MRI where the administration of contrast medium may be useful have been defined. These include lesions which are isointense with normal brain matter, the separation of tumour from surrounding oedema, evaluation of the degree of blood-brain barrier breakdown, delineation of tumours obscured by overlying calcification on computed tomography (CT) and in the investigation of lesions in anatomical areas where CT has known limitations (brain, stem, cervical spine). Changes in relaxation times in normal and abnormal tissues following contrast medium, toxicity and dosage of gadolinium-DTPA, and MRI pulse sequence techniques are reviewed. (author)

  5. Post double-contrast sigmoid flush: An adjuvant technique in imaging diverticular disease

    International Nuclear Information System (INIS)

    Lappas, J.C.; Maglinte, D.D.T.; Kopecky, K.K.; Cockerill, E.M.; Lehman, G.A.

    1987-01-01

    In a prospective study, the effect of a low-density contrast medium infusion was evaluated as an adjunct to high-density double-contrast medium sigmoid imaging. Following a double-contrast medium barium enema (DCBE), 52 consecutive patients with sigmoid diverticulosis received an additional 500-700-mL enema with either water or a 1.5%CT barium suspension. Rectosigmoid films were evaluated for luminal distention, visualization of the interhaustral space, definition of diverticula, and interpretation of polypoid defects. While double-contrast medium views were excellent in 21%, improvement in multiple factors by water or 1.5% barium flush resulted in improved sigmoid images in 65% and 73% of patients, respectively. Polyps may be confirmed and artifactual defects confidently excluded. Sigmoid flush, particularly with low-density barium, is a simple adjunct to DCBE that improves visualization of the diverticular sigmoid

  6. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  7. Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

    Science.gov (United States)

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921

  8. Barium sulfate suspension as a negative oral contrast agent for MR imaging

    International Nuclear Information System (INIS)

    Li, K.C.P.; Tart, R.P.; Fitzsimmons, J.R.; Storm, B.; Mao, J.

    1989-01-01

    Proton spectroscopy with linewidth measurements and MR imaging were performed on various commercially available barium sulfate suspensions as well as inorganic sulfates and barium salts. Approximately 500 mL of 20%, 40%, 60%, and 70% wt/wt single-contrast oral barium sulfate suspensions were administered to four normal volunteers, and MR imaging was performed with both a 1.5-T and a 0.15-T MR imager. As much as 80% of the small bowel and the entire colon were well visualized with the 60% or 70% wt/wt single-contrast barium sulfate suspensions. The authors conclude that barium sulfate suspensions are useful as oral MR contrast agents

  9. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  10. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  11. Characterisation of phase evolution under load by means of phase contrast imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Besseghini, S.; Stortiero, F.; Carcano, G.; Villa, E.; Mancini, L.; Tromba, G.; Zanini, F.; Montanari, F.; Airoldi, G.

    2003-01-01

    Phase contrast radiography (PCR) is a quite novel technique that is collecting increasing attention due to the possibility to obtain image information in presence of very small differences in the densities of the materials under analysis. Phase contrast imaging (PCI) has some specific advantage when compared with common microscopic techniques: (a) no special preparation of the sample is needed (b) the simultaneously investigated area is very large and (c) it allows the setting up of complex experimental apparatus. The results here presented are a good evidence of these three advantages. In this paper, we report on the application of phase contrast imaging in the study of the phase evolution during pseudoelastic transformation in the NiTiCu shape memory alloys (SMAs). The investigation was undertaken with the aim to identify some modification of the structure taking place at the end of the transformation plateau in the pseudoelastic behaviour of the alloy

  12. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    Science.gov (United States)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  13. Automated detection of acute haemorrhagic stroke in non-contrasted CT images

    International Nuclear Information System (INIS)

    Meetz, K.; Buelow, T.

    2007-01-01

    An efficient treatment of stroke patients implies a profound differential diagnosis that includes the detection of acute haematoma. The proposed approach provides an automated detection of acute haematoma, assisting the non-stroke expert in interpreting non-contrasted CT images. It consists of two steps: First, haematoma candidates are detected applying multilevel region growing approach based on a typical grey value characteristic. Second, true haematomas are differentiated from partial volume artefacts, relying on spatial features derived from distance-based histograms. This approach achieves a specificity of 77% and a sensitivity of 89.7% in detecting acute haematoma in non-contrasted CT images when applied to a set of 25 non-contrasted CT images. (orig.)

  14. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Liu, Y; Nelson, J; Andrews, J C; Pianetta, P; Holzner, C

    2013-01-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  15. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    Science.gov (United States)

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  16. The role of contrast-enhanced ultrasonography in image-guided liver ablations

    International Nuclear Information System (INIS)

    Pescatori, Lorenzo Carlo; Sconfienza, Luca Maria; Mauri, Giovanni

    2016-01-01

    We read with great interest the paper by Kim et al. entitled “Local ablation therapy with contrast enhanced ultrasonography for hepatocellular carcinoma: a practical review,” recently published in Ultrasonography. We think that contrast-enhanced ultrasonography (CEUS), together with the development of reliable navigation systems, is likely to represent one of the most important advances in image-guided ablations in recent years. Thus, we offer some considerations on the topic

  17. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  18. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  19. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  20. Reduced iodinated contrast media for abdominal imaging by dual-layer spectral detector computed tomography for patients with kidney disease

    Directory of Open Access Journals (Sweden)

    Hirokazu Saito, MD

    2018-04-01

    Full Text Available Contrast-enhanced computed tomography using iodinated contrast media is useful for diagnosis of gastrointestinal diseases. However, contrast-induced nephropathy remains problematic for kidney diseases patients. Although current guidelines recommended the use of a minimal dose of contrast media necessary to obtain adequate images for diagnosis, obtaining adequate images with sufficient contrast enhancement is difficult with conventional computed tomography using reduced contrast media. Dual-layer spectral detector computed tomography enables the simultaneous acquisition of low- and high-energy data and the reconstruction of virtual monochromatic images ranging from 40 to 200 keV, retrospectively. Low-energy virtual monochromatic images can enhance the contrast of images, thereby facilitating reduced contrast media. In case 1, abdominal computed tomography angiography at 50 keV using 40% of the conventional dose of contrast media revealed the artery that was the source of diverticular bleeding in the ascending colon. In case 2, ischemia of the transverse colon was diagnosed by contrast-enhanced computed tomography and iodine-selective imaging using 40% of the conventional dose of contrast media. In case 3, advanced esophagogastric junctional cancer was staged and preoperative abdominal computed tomography angiography could be obtained with 30% of the conventional dose of contrast media. However, the texture of virtual monochromatic images may be a limitation at low energy. Keywords: Virtual monochromatic images, Contrast-induced nephropathy

  1. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors. A pilot study

    International Nuclear Information System (INIS)

    Morana, Giovanni; Tortora, Domenico; Severino, Mariasavina; Rossi, Andrea; Alves, Cesar Augusto; Finlay, Jonathan L.; Nozza, Paolo; Ravegnani, Marcello; Pavanello, Marco; Milanaccio, Claudia; Garre, Maria Luisa; Maghnie, Mohamad

    2018-01-01

    The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naive intracranial GCT, who underwent MRI,