WorldWideScience

Sample records for surviving cell numbers

  1. Physical skill training increases the number of surviving new cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Daniel M Curlik

    Full Text Available The dentate gyrus is a major site of plasticity in the adult brain, giving rise to thousands of new neurons every day, through the process of adult neurogenesis. Although the majority of these cells die within two weeks of their birth, they can be rescued from death by various forms of learning. Successful acquisition of select types of associative and spatial memories increases the number of these cells that survive. Here, we investigated the possibility that an entirely different form of learning, physical skill learning, could rescue new hippocampal cells from death. To test this possibility, rats were trained with a physically-demanding and technically-difficult version of a rotarod procedure. Acquisition of the physical skill greatly increased the number of new hippocampal cells that survived. The number of surviving cells positively correlated with performance on the task. Only animals that successfully mastered the task retained the cells that would have otherwise died. Animals that failed to learn, and those that did not learn well did not retain any more cells than those that were untrained. Importantly, acute voluntary exercise in activity wheels did not increase the number of surviving cells. These data suggest that acquisition of a physical skill can increase the number of surviving hippocampal cells. Moreover, learning an easier version of the task did not increase cell survival. These results are consistent with previous reports revealing that learning only rescues new neurons from death when acquisition is sufficiently difficult to achieve. Finally, complete hippocampal lesions did not disrupt acquisition of this physical skill. Therefore, physical skill training that does not depend on the hippocampus can effectively increase the number of surviving cells in the adult hippocampus, the vast majority of which become mature neurons.

  2. Unbiased estimates of number and size of rat dorsal root ganglion cells in studies of structure and cell survival

    DEFF Research Database (Denmark)

    Lamm, Trine Tandrup

    Neurodegenerative sygdomme er karakteriseret ved tab af nervefibre og nervecellelegemer. Tilstande med fysiske eller toksikologiske beskadigelser af de primære sensoriske nerveceller hos rotten har ofte været anvendt som model for forståelse af de processer, der fører til celledød eller -overleve...

  3. MET gene copy number predicts worse overall survival in patients with non-small cell lung cancer (NSCLC); a systematic review and meta-analysis.

    Science.gov (United States)

    Dimou, Anastasios; Non, Lemuel; Chae, Young Kwang; Tester, William J; Syrigos, Konstantinos N

    2014-01-01

    MET is a receptor present in the membrane of NSCLC cells and is known to promote cell proliferation, survival and migration. MET gene copy number is a common genetic alteration and inhibition o MET emerges as a promising targeted therapy in NSCLC. Here we aim to combine in a meta-analysis, data on the effect of high MET gene copy number on the overall survival of patients with resected NSCLC. Two independent investigators applied parallel search strategies with the terms "MET AND lung cancer", "MET AND NSCLC", "MET gene copy number AND prognosis" in PubMed through January 2014. We selected the studies that investigated the association of MET gene copy number with survival, in patients who received surgery. Among 1096 titles that were identified in the initial search, we retrieved 9 studies on retrospective cohorts with adequate retrievable data regarding the prognostic impact of MET gene copy number on the survival of patients with NSCLC. Out of those, 6 used FISH and the remaining 3 used RT PCR to assess the MET gene copy number in the primary tumor. We calculated the I2 statistic to assess heterogeneity (I2 = 72%). MET gene copy number predicted worse overall survival when all studies were combined in a random effects model (HR = 1.78, 95% CI 1.22-2.60). When only the studies that had at least 50% of adenocarcinoma patients in their populations were included, the effect was significant (five studies, HR 1.55, 95% CI 1.23-1.94). This was not true when we included only the studies with no more than 50% of the patients having adenocarcinoma histology (four studies HR 2.18, 95% CI 0.97-4.90). Higher MET gene copy number in the primary tumor at the time of diagnosis predicts worse outcome in patients with NSCLC. This prognostic impact may be adenocarcinoma histology specific.

  4. Recurrent copy number gains of ACVR1 and corresponding transcript overexpression are associated with survival in head and neck squamous cell carcinomas

    DEFF Research Database (Denmark)

    Ambrosio, Eliane P; Drigo, Sandra A; Bérgamo, Nádia A

    2011-01-01

    AIMS: This study aimed to evaluate the copy number alteration on 2q24, its association with ACVR1 transcript expression and the prognostic value of these data in head and neck squamous cell carcinomas. METHODS AND RESULTS: Twenty-eight samples of squamous cell carcinoma were evaluated by fluoresc...... overall survival in laryngeal carcinomas. To our knowledge, this is the first report indicating the relevance of ACVR1 expression in head and neck cancers.......RNA expression analysis in 78 cases revealed overexpression in 44% (34 of 78) of these tumours, suggesting that gene copy number alterations could be involved in gene overexpression. In laryngeal carcinomas, overexpression of ACVR1 mRNA levels was associated with longer overall survival (P = 0.013). Multivariate...... analysis revealed that ACVR1 is an independent prognostic marker in laryngeal carcinomas (P = 0.012, hazard ratio = 0.165, 95% confidence interval =0.041-0.668). CONCLUSIONS: These findings suggest that copy number alterations at 2q24 can be involved in ACVR1 overexpression, which is associated with longer...

  5. Rationale for a Minimum Number of Lymph Nodes Removed with Non-Small Cell Lung Cancer Resection: Correlating the Number of Nodes Removed with Survival in 98,970 Patients.

    Science.gov (United States)

    Samayoa, Andres X; Pezzi, Todd A; Pezzi, Christopher M; Greer Gay, E; Asai, Megumi; Kulkarni, Nandini; Carp, Ned; Chun, Stephen G; Putnam, Joe B

    2016-12-01

    The benefit of thoracic lymphadenectomy in the treatment of resectable non-small cell lung cancer (NSCLC) continues to be debated. We hypothesized that the number of lymph nodes (LNs) removed for patients with pathologic node-negative NSCLC would correlate with survival. The National Cancer Data Base (NCDB) was queried for resected, node-negative, NSCLC patients treated between 2004 and 2014. Patients were grouped according to the number of LNs removed (1-4, 5-8, 9-12, 13-16, and ≥17). Patients with patients with NSCLC reported to the NCDB during the study period, 98,970 (9.0 %) underwent resection without evidence of pathologic nodal involvement. Lobectomy was performed in 83.9 %, sublobar resection was performed in 12.7 % and pneumonectomy was performed in 2.8 % of patients. The number of LNs removed correlated with increasing tumor size and extent of resection. On multivariate analysis, increasing age, male sex, white ethnicity, high tumor grade, larger tumor size, pneumonectomy, and positive surgical margins were all negatively correlated with overall survival. The number of LNs removed and lobectomy/bi-lobectomy correlated with improved survival. The removal of patients is associated with the number of LNs removed. The surgical management of early-stage NSCLC should include thoracic lymphadenectomy of at least 10 nodes.

  6. Surviving the crash: T-cell homeostasis

    Indian Academy of Sciences (India)

    TOSHIBA

    Spatial and temporal elements. – Cellular sites for the integration of cell death and survival cues. – Spatial regulation of Notch activity for cell survival. Page 4. Cell survival is determined by the availability and uptake of nutrients live dead. Activated T-cells. T-cells. Page 5. dead wildtype. Bax active -6A7. Nucleus – H33342.

  7. Antibiotics Reduce Retinal Cell Survival In Vitro.

    Science.gov (United States)

    Lindsey, Amy E; Townes-Anderson, Ellen

    2017-11-02

    Antibiotics such as gentamicin (an aminoglycoside) and penicillin (a beta-lactam antibiotic) are routinely used in retinal cell and explant cultures. In many cases, these in vitro systems are testing parameters regarding photoreceptor transplantation or preparing cells for transplantation. In vivo, milligram doses of gentamicin are neurotoxic to the retina. However, little is known about the effects of antibiotics to retina in vitro and whether smaller doses of gentamicin are toxic to retinal cells. To test toxicity, retinal cells were dissociated from tiger salamander, placed in culture, and treated with either 20 μg/ml gentamicin, 100 μg/ml streptomycin, 100 U/ml antibiotic/antimycotic, 0.25 μg/ml amphotericin B, or 100 U/ml penicillin G. All dosages were within manufacturer's recommended levels. Control cultures had defined medium only. Cells were fixed at 2 h or 7 days. Three criteria were used to assess toxicity: (1) survival of retinal neurons, (2) neuritic growth of photoreceptors assessed by the development of presynaptic varicosities, and (3) survival and morphology of Mueller cells. Rod cells were immunolabeled for rod opsin, Mueller cells for glial fibrillary acidic protein, and varicosities for synaptophysin. Neuronal cell density was reduced with all pharmacological treatments. The number of presynaptic varicosities was also significantly lower in both rod and cone photoreceptors in treated compared to control cultures; further, rods were more sensitive to gentamicin than cones. Penicillin G (100 U/ml) was overall the least inhibitory and amphotericin B the most toxic of all the agents to photoreceptors. Mueller cell survival was reduced with all treatments; reduced survival was accompanied by the appearance of proportionally fewer stellate and more rounded glial morphologies. These findings suggest that even microgram doses of antibiotic and antimycotic drugs can be neurotoxic to retinal cells and reduce neuritic regeneration in cell

  8. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Directory of Open Access Journals (Sweden)

    Preethi Sankaranarayanan

    Full Text Available The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD, which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs. We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival

  9. Ten-year survival of patients with oesophageal squamous cell ...

    African Journals Online (AJOL)

    oesophageal junction ... after treatment of cancer. Reports of actual 10-year survivors of oesophageal squamous cell carcinoma (SCC) are rare, and demographic .... nodes, number of resected lymph nodes, adjuvant treatment and length of survival.

  10. Polyspermy in birds: sperm numbers and embryo survival.

    Science.gov (United States)

    Hemmings, N; Birkhead, T R

    2015-11-07

    Polyspermy is a major puzzle in reproductive biology. In some taxa, multiple sperm enter the ovum as part of the normal fertilization process, whereas in others, penetration of the ovum by more than one sperm is lethal. In birds, several sperm typically enter the germinal disc, yet only one fuses with the female pronucleus. It is unclear whether supernumerary sperm play an essential role in the avian fertilization process and, if they do, how females regulate the progression of sperm through the oviduct to ensure an appropriate number reach the ovum. Here, we show that when very few sperm penetrate the avian ovum, embryos are unlikely to survive beyond the earliest stages of development. We also show that when the number of inseminated sperm is limited, a greater proportion than expected reach and penetrate the ovum, indicating that females compensate for low sperm numbers in the oviduct. Our results suggest a functional role for supernumerary sperm in the processes of fertilization and early embryogenesis, providing an exciting expansion of our understanding of sperm function in birds. © 2015 The Authors.

  11. SERCA control of cell death and survival.

    Science.gov (United States)

    Chemaly, Elie R; Troncone, Luca; Lebeche, Djamel

    2018-01-01

    Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Germ Cell Cancer and Multiple Relapses: Toxicity and Survival

    DEFF Research Database (Denmark)

    Lauritsen, Jakob; Kier, Maria G.G.; Mortensen, Mette S.

    2015-01-01

    Purpose: A small number of patients with germ cell cancer (GCC) receive more than one line of treatment for disseminated disease. The purpose of this study was to evaluate late toxicity and survival in an unselected cohort of patients who experienced relapse after receiving first-line treatment...

  13. Lipid degradation promotes prostate cancer cell survival

    Science.gov (United States)

    Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Lau, Chung Ho; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J.; Takhar, Mandeep; Heemers, Hannelore V.; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L.; Clarke, Noel; Swinnen, Johan V.; Keun, Hector C.; Rekvig, Ole P.; Mills, Ian G.

    2017-01-01

    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential. PMID:28415728

  14. [Effect of resection margin and tumor number on survival of patients with small liver cancer].

    Science.gov (United States)

    Rong, Weiqi; Yu, Weibo; Wu, Fan; Wu, Jianxiong; Wang, Liming; Tian, Fei; An, Songlin; Feng, Li; Liu, Faqiang

    2015-12-01

    To explore the significance of resection margin and tumor number on survival of patients with small liver cancer after hepatectomy. We collected 219 cases with small liver cancer undergoing hepatectomy in Cancer Hospital, Chinese Academy of Medical Sciences between December 2003 to July 2013. The survival rates were compared by log-rank test between two resection margin groups (≥ 1 cm vs. number groups (single tumor vs. multiple tumors). We also performed a multifactor analysis by Cox model. The 1-, 3-, 5- and 10- year overall survival rates were 95.9%, 85.3%, 67.8% and 53.3%, respectively, in all patients. The median survival time was 28 months in the group of number on the patients' survival. For small liver cancer, the resection margin of 1 cm might be advised. Increasing resection margin in further could probably not improve therapeutic effect. Standardized operation and combined treatment will decrease the negative influence of multiple tumors on overall survival.

  15. Race and correlations between lymph node number and survival for patients with gastric cancer.

    Science.gov (United States)

    Nelson, Rebecca; Ko, Eun Bi; Arrington, Amanda; Lee, Wendy; Kim, Jae; Garcia-Aguilar, Julio; Kim, Joseph

    2013-03-01

    There is ongoing debate whether extended lymphadenectomy improves survival in gastric cancer patients who undergo surgical resection. We previously observed that Korean-American patients had the highest overall survival in Los Angeles County. Our objective was to assess lymph node (LN) number and its impact on survival for Korean-American gastric cancer patients. We utilized the National Cancer Institute's Surveillance, Epidemiology, and End Results registry to identify Korean-Americans with gastric adenocarcinoma treated with curative-intent gastrectomy between 1988 and 2008. We grouped patients according to examined LN number (1-15 and 16+) and compared characteristics. We performed similar analysis for white patients. Out of 982 Korean-American patients with gastric adenocarcinoma, most patients had 1-15 examined LNs (60 %). When we compared LN groups, we observed higher overall survival in the 1-15 group than the 16+ group (5-year survival, 59 % vs 52 %, respectively; p = 0.04). However, LN number was not prognostic of overall survival on stepwise Cox proportional hazards analysis. In contrast, LN number was prognostic for white patients. Although examined LN number may impact survival for white patients, outcomes of Korean-American gastric cancer patients were independent of LN number. Our data suggest that survival of Korean-American gastric cancer patients are comparable with outcomes from East Asian hospitals and may be independent of surgical technique.

  16. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  17. [The cell number in spontaneous uncentrifuged urine].

    Science.gov (United States)

    Rebentisch, G; Braun, H; Muche, J

    1982-08-01

    The leucocytes and erythrocytes in spontaneous urines were determined in the counting chamber at native and experimentally reduced pH values after standing for various periods. The pH value remained constant for up 6 h, whereby the disintegration of cells increases with rising pH values. The investigations do not rule out a circadian rhythm of cell excretion referring to the quantity of cells/time. Depending on the absolute number of cells the methodic variation coefficient lies between 4 and 25%.

  18. Influence of the location and number of metastases in the survival of metastatic prostatic cancer patients.

    Science.gov (United States)

    Guijarro, A; Hernández, V; de la Morena, J M; Jiménez-Valladolid, I; Pérez-Fernández, E; de la Peña, E; Llorente, C

    2017-05-01

    The prognosis of patients diagnosed with metastatic prostate cancer seems to be modulated by factors such as the number and site of metastases. Our objective is to evaluate survival outcomes according to the number and site of metastases in our series of metastatic patients over the last 15 years. A retrospective analysis was performed on patients diagnosed between 1998 and 2014. We analyzed overall survival and progression-free survival, depending on the number and location of metastases on patients with newly diagnosed metastatic prostate cancer. Other potential prognostic factors were also evaluated: age, clinical stage, PSA at diagnosis, Gleason, PSA nadir, time till PSA nadir and first-line or second-line treatment after progression. We analyzed a series of 162 patients. The mean age was 72.7yr (SD: 8.5). The estimated median overall survival was 3.9 yr (95% CI 2.6-5.2). The overall survival in patients with only lymph node metastases was 7 yr (95% CI 4.1-9.7), 3.9 (95%CI 2.3-5.5) in patients with only bone metastases, 2.5 yr (95% CI 2-2.3) in lymph nodes and bone metastases, and 2.2 yr (95% CI 1.4-3) in patients with visceral metastases (Pnumber of metastases showed no association with survival. The site of metastases has a clear impact on both overall survival and progression-free survival. Patients with only lymph node involvement had a better prognosis. The number of metastases showed no significant impact on survival in our series. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    and the lysis of relevant in vivo targets. However, the CTLA-4 blockage dependent expansion of CTLs also affect DC survival during booster DC injections and our data suggest that during a booster DC vaccine, the largest increase in CTL levels is already obtained during the first vaccination.......Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...... are emerging that combine vaccination with CTL expanding strategies, such as e.g. blockade of CTLA-4 signalling. On the other hand, the lifespan and in vivo survival of therapeutic DCs have only been addressed in a few studies, although this is of importance for the kinetics of CTL induction during vaccination...

  20. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  1. The optimal number of lymph nodes removed in maximizing the survival of breast cancer patients

    Science.gov (United States)

    Peng, Lim Fong; Taib, Nur Aishah; Mohamed, Ibrahim; Daud, Noorizam

    2014-07-01

    The number of lymph nodes removed is one of the important predictors for survival in breast cancer study. Our aim is to determine the optimal number of lymph nodes to be removed for maximizing the survival of breast cancer patients. The study population consists of 873 patients with at least one of axillary nodes involved among 1890 patients from the University of Malaya Medical Center (UMMC) breast cancer registry. For this study, the Chi-square test of independence is performed to determine the significant association between prognostic factors and survival status, while Wilcoxon test is used to compare the estimates of the hazard functions of the two or more groups at each observed event time. Logistic regression analysis is then conducted to identify important predictors of survival. In particular, Akaike's Information Criterion (AIC) are calculated from the logistic regression model for all thresholds of node involved, as an alternative measure for the Wald statistic (χ2), in order to determine the optimal number of nodes that need to be removed to obtain the maximum differential in survival. The results from both measurements are compared. It is recommended that, for this particular group, the minimum of 10 nodes should be removed to maximize survival of breast cancer patients.

  2. Long-term survival in small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U; Osterlind, K; Hansen, M

    1995-01-01

    PURPOSE: To describe in patients with small-cell lung cancer (SCLC) the characteristics of those who survive for > or = 5 years, to identify long-term prognostic factors, to analyze survival data of 5-year survivors, and to study 10-year survival in patients entered before 1981. PATIENTS......, especially tobacco-related cancers and other tobacco-related diseases....

  3. Possible role of pineal allopregnanolone in Purkinje cell survival

    Science.gov (United States)

    Haraguchi, Shogo; Hara, Sakurako; Ubuka, Takayoshi; Mita, Masatoshi; Tsutsui, Kazuyoshi

    2012-01-01

    It is believed that neurosteroids are produced in the brain and other nervous systems. Here, we show that allopregnanolone (ALLO), a neurosteroid, is exceedingly produced in the pineal gland compared with the brain and that pineal ALLO acts on the Purkinje cell, a principal cerebellar neuron, to prevent apoptosis in the juvenile quail. We first demonstrated that the pineal gland is a major organ of neurosteroidogenesis. A series of experiments using molecular and biochemical techniques has further demonstrated that the pineal gland produces a variety of neurosteroids de novo from cholesterol in the juvenile quail. Importantly, ALLO was far more actively produced in the pineal gland than in the brain. Pinealectomy (Px) decreased ALLO concentration in the cerebellum and induced apoptosis of Purkinje cells, whereas administration of ALLO to Px quail chicks prevented apoptosis of Purkinje cells. We further found that Px significantly increased the number of Purkinje cells that expressed active caspase-3, a key protease in apoptotic pathway, and daily injection of ALLO to Px quail chicks decreased the number of Purkinje cells expressing active caspase-3. These results indicate that the neuroprotective effect of pineal ALLO is associated with the decrease in caspase-3 activity during the early stage of neuronal development. We thus provide evidence that the pineal gland is an important neurosteroidogenic organ and that pineal ALLO may be involved in Purkinje cell survival during development. This is an important function of the pineal gland in the formation of neuronal circuits in the developing cerebellum. PMID:23213208

  4. Integrin Signaling, Cell Survival, and Anoikis: Distinctions, Differences, and Differentiation

    Directory of Open Access Journals (Sweden)

    Pierre H. Vachon

    2011-01-01

    Full Text Available Cell survival and apoptosis implicate an increasing complexity of players and signaling pathways which regulate not only the decision-making process of surviving (or dying, but as well the execution of cell death proper. The same complex nature applies to anoikis, a form of caspase-dependent apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. Not surprisingly, the regulation of cell survival, apoptosis, and anoikis furthermore implicates additional mechanistic distinctions according to the specific tissue, cell type, and species. Incidentally, studies in recent years have unearthed yet another layer of complexity in the regulation of these cell processes, namely, the implication of cell differentiation state-specific mechanisms. Further analyses of such differentiation state-distinct mechanisms, either under normal or physiopathological contexts, should increase our understanding of diseases which implicate a deregulation of integrin function, cell survival, and anoikis.

  5. A track-event theory of cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Besserer, Juergen; Schneider, Uwe [Zuerich Univ. (Switzerland). Inst. of Physics; Radiotherapy Hirslanden, Zuerich (Switzerland)

    2015-09-01

    When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. In this work a simple model for cell survival which is valid also at high dose is developed from Poisson statistics. An event is defined by two double strand breaks (DSB) on the same or different chromosomes. An event is always lethal due to direct lethal damage or lethal binary misrepair by the formation of chromosome aberrations. Two different mechanisms can produce events: one-track events (OTE) or two-track-events (TTE). The target for an OTE is always a lethal event, the target for an TTE is one DSB. At least two TTEs on the same or different chromosomes are necessary to produce an event. Both, the OTE and the TTE are statistically independent. From the stochastic nature of cell kill which is described by the Poisson distribution the cell survival probability was derived. It was shown that a solution based on Poisson statistics exists for cell survival. It exhibits exponential cell survival at high dose and a finite gradient of cell survival at vanishing dose, which is in agreement with experimental cell studies. The model fits the experimental data nearly as well as the three-parameter formula of Hug-Kellerer and is only based on two free parameters. It is shown that the LQ formalism is an approximation of the model derived in this work. It could be also shown that the derived model predicts a fractionated cell survival experiment better than the LQ-model. It was shown that cell survival can be described with a simple analytical formula on the basis of Poisson statistics. This solution represents in the limit of large dose the typical exponential behavior and predicts cell survival after fractionated dose application better than the LQ-model.

  6. Functional role of kallikrein 6 in regulating immune cell survival.

    Directory of Open Access Journals (Sweden)

    Isobel A Scarisbrick

    2011-03-01

    Full Text Available Kallikrein 6 (KLK6 is a newly identified member of the kallikrein family of secreted serine proteases that prior studies indicate is elevated at sites of central nervous system (CNS inflammation and which shows regulated expression with T cell activation. Notably, KLK6 is also elevated in the serum of multiple sclerosis (MS patients however its potential roles in immune function are unknown. Herein we specifically examine whether KLK6 alters immune cell survival and the possible mechanism by which this may occur.Using murine whole splenocyte preparations and the human Jurkat T cell line we demonstrate that KLK6 robustly supports cell survival across a range of cell death paradigms. Recombinant KLK6 was shown to significantly reduce cell death under resting conditions and in response to camptothecin, dexamethasone, staurosporine and Fas-ligand. Moreover, KLK6-over expression in Jurkat T cells was shown to generate parallel pro-survival effects. In mixed splenocyte populations the vigorous immune cell survival promoting effects of KLK6 were shown to include both T and B lymphocytes, to occur with as little as 5 minutes of treatment, and to involve up regulation of the pro-survival protein B-cell lymphoma-extra large (Bcl-XL, and inhibition of the pro-apoptotic protein Bcl-2-interacting mediator of cell death (Bim. The ability of KLK6 to promote survival of splenic T cells was also shown to be absent in cell preparations derived from PAR1 deficient mice.KLK6 promotes lymphocyte survival by a mechanism that depends in part on activation of PAR1. These findings point to a novel molecular mechanism regulating lymphocyte survival that is likely to have relevance to a range of immunological responses that depend on apoptosis for immune clearance and maintenance of homeostasis.

  7. Effects of teicoplanin on cell number of cultured cell lines

    Directory of Open Access Journals (Sweden)

    Kashkolinejad-Koohi Tahere

    2015-03-01

    Full Text Available Teicoplanin is a glycopeptide antibiotic with a wide variation in human serum half-life. It is also a valuable alternative of vancomycin. There is however no study on its effect on cultured cells. The aim of the present study was to test the effect of teicoplanin on cultured cell lines CHO, Jurkat E6.1 and MCF-7. The cultured cells were exposed to teicoplanin at final concentrations of 0–11000 μg/ml for 24 hours. To determine cell viability, the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT test was performed. At low concentrations of teicoplanin the numbers of cultured cells (due to cell proliferation were increased in the three cell lines examined. The maximum cell proliferation rates were observed at concentrations of 1000, 400, and 200 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. Cell toxicity was observed at final concentrations over 2000, 6000, and 400 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. A dose-dependent manner of cell toxicity was observed. Our present findings indicated that teicoplanin at clinically used concentrations induced cell proliferation. It should therefore be used cautiously, particularly in children, pregnant women and patients with cancer.

  8. Endothelial Cell Implantation and Survival within Experimental Gliomas

    Science.gov (United States)

    Lal, Bachchu; Indurti, Ravi R.; Couraud, Pierre-Olivier; Goldstein, Gary W.; Laterra, John

    1994-10-01

    The delivery of therapeutic genes to primary brain neoplasms opens new opportunities for treating these frequently fatal tumors. Efficient gene delivery to tissues remains an important obstacle to therapy, and this problem has unique characteristics in brain tumors due to the blood-brain and blood-tumor barriers. The presence of endothelial mitogens and vessel proliferation within solid tumors suggests that genetically modified endothelial cells might efficiently transplant to brain tumors. Rat brain endothelial cells immortalized with the adenovirus E1A gene and further modified to express the β-galactosidase reporter were examined for their ability to survive implantation to experimental rat gliomas. Rats received 9L, F98, or C6 glioma cells in combination with endothelial cells intracranially to caudate/putamen or subcutaneously to flank. Implanted endothelial cells were identified by β-galactosidase histochemistry or by polymerase chain reaction in all tumors up to 35 days postimplantation, the latest time examined. Implanted endothelial cells appeared to cooperate in tumor vessel formation and expressed the brain-specific endothelial glucose transporter type 1 as identified by immunohistochemistry. The proliferation of implanted endothelial cells was supported by their increased number within tumors between postimplantation days 14 and 21 (P = 0.015) and by their expression of the proliferation antigen Ki67. These findings establish that genetically modified endothelial cells can be stably engrafted to growing gliomas and suggest that endothelial cell implantation may provide a means of delivering therapeutic genes to brain neoplasms and other solid tumors. In addition, endothelial implantation to brain may be useful for defining mechanisms of brain-specific endothelial differentiation.

  9. Three-tier regulation of cell number plasticity by neurotrophins and Tolls inDrosophila.

    Science.gov (United States)

    Foldi, Istvan; Anthoney, Niki; Harrison, Neale; Gangloff, Monique; Verstak, Brett; Nallasivan, Mohanakarthik Ponnadai; AlAhmed, Samaher; Zhu, Bangfu; Phizacklea, Mark; Losada-Perez, Maria; Moreira, Marta; Gay, Nicholas J; Hidalgo, Alicia

    2017-05-01

    Cell number plasticity is coupled to circuitry in the nervous system, adjusting cell mass to functional requirements. In mammals, this is achieved by neurotrophin (NT) ligands, which promote cell survival via their Trk and p75 NTR receptors and cell death via p75 NTR and Sortilin. Drosophila NTs (DNTs) bind Toll receptors instead to promote neuronal survival, but whether they can also regulate cell death is unknown. In this study, we show that DNTs and Tolls can switch from promoting cell survival to death in the central nervous system (CNS) via a three-tier mechanism. First, DNT cleavage patterns result in alternative signaling outcomes. Second, different Tolls can preferentially promote cell survival or death. Third, distinct adaptors downstream of Tolls can drive either apoptosis or cell survival. Toll-6 promotes cell survival via MyD88-NF-κB and cell death via Wek-Sarm-JNK. The distribution of adaptors changes in space and time and may segregate to distinct neural circuits. This novel mechanism for CNS cell plasticity may operate in wider contexts. © 2017 Foldi et al.

  10. Small Numbers, Big Challenges: Adolescent and Young Adult Cancer Incidence and Survival in New Zealand.

    Science.gov (United States)

    Ballantine, Kirsten R; Watson, Heidi; Macfarlane, Scott; Winstanley, Mark; Corbett, Robin P; Spearing, Ruth; Stevanovic, Vladimir; Yi, Ma; Sullivan, Michael J

    2017-06-01

    This study was undertaken to determine cancer survival and describe the unique spectrum of cancers diagnosed among New Zealand's adolescents and young adult (AYA) population. Registrations for 1606 15-24 year olds diagnosed with a new primary malignant tumor between 2000 and 2009 were obtained from the New Zealand Cancer Registry and classified according to AYA diagnostic group and subgroup, age, sex, and prioritized ethnicity. Age-standardized incidence rates (IRs) per million person years and 5-year relative survival ratios were calculated. Cancer incidence was 228.6 per million for adolescents aged 15-19 years and 325.7 per million for young adults aged 20-24 years. Overall IRs were consistent across all ethnic groups but there were unique ethnic differences by tumor group including a higher incidence of bone tumors, carcinoma of the gastrointestinal tract, and gonadal germ cell tumors among Maori, a higher incidence of leukemia among Pacific peoples, and a higher incidence of melanoma among non-Maori/non-Pacific peoples. Five-year relative survival for adolescents (75.1%) and AYA overall (80.6%) appeared poorer than had been achieved in other high-income countries. Maori (69.5%) and Pacific (71.3%) AYA had lower 5-year survival compared to non-Maori/non-Pacific peoples (84.2%). The survival disparities observed require further investigation to identify and address the causes of these inferior outcomes. The newly established AYA Cancer Network Aotearoa has been tasked with improving cancer survival and care and ensuring equality of access for New Zealand AYAs with cancer.

  11. Red cell survival time in chronic renal failure

    Energy Technology Data Exchange (ETDEWEB)

    Rath, R.N.; Das, R.K.; Panda, R.K.; Mahakur, A.C.; Patnaik, S.R. (M.K.C.G. Medical College, Berhampur (India))

    1979-10-01

    The red cell survival time was estimated in 50 cases of chronic renal failure and 20 healthy subjects, using radioactive chromium /sup 51/Cr. The mean value of red cell survival half time (T1/2/sup 51/Cr) was determined to be 25.9 +- 1.1 days in control subjects. The red cell survival half time (17.9 +- 4.67 days) was found to be significantly decreased in cases of chronic renal failure, when compared to the control group. An inverse relationship was observed between T1/2/sup 51/Cr value and blood urea, serum creatinine, the magnitude of hypertension, and duration of illness, whereas, creatinine clearance showed a direct relationship. There was no increased splenic uptake of radioactive chromium, indicating that haemolysis occurred elsewhere in the circulation other than spleen. The possible mechanism for the reduction of red cell survival time and the effect of uraemic environment on it has been discussed.

  12. Cell survival in a simulated Mars environment

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  13. Properties of Lewis Lung Carcinoma Cells Surviving Curcumin Toxicity

    Directory of Open Access Journals (Sweden)

    Dejun Yan, Michael E. Geusz, Roudabeh J. Jamasbi

    2012-01-01

    Full Text Available The anti-inflammatory agent curcumin can selectively eliminate malignant rather than normal cells. The present study examined the effects of curcumin on the Lewis lung carcinoma (LLC cell line and characterized a subpopulation surviving curcumin treatments. Cell density was measured after curcumin was applied at concentrations between 10 and 60 μM for 30 hours. Because of the high cell loss at 60 μM, this dose was chosen to select for surviving cells that were then used to establish a new cell line. The resulting line had approximately 20% slower growth than the original LLC cell line and based on ELISA contained less of two markers, NF-κB and ALDH1A, used to identify more aggressive cancer cells. We also injected cells from the original and surviving lines subcutaneously into syngeneic C57BL/6 mice and monitored tumor development over three weeks and found that the curcumin surviving-line remained tumorigenic. Because curcumin has been reported to kill cancer cells more effectively when administered with light, we examined this as a possible way of enhancing the efficacy of curcumin against LLC cells. When LLC cells were exposed to curcumin and light from a fluorescent lamp source, cell loss caused by 20 μM curcumin was enhanced by about 50%, supporting a therapeutic use of curcumin in combination with white light. This study is the first to characterize a curcumin-surviving subpopulation among lung cancer cells. It shows that curcumin at a high concentration either selects for an intrinsically less aggressive cell subpopulation or generates these cells. The findings further support a role for curcumin as an adjunct to traditional chemical or radiation therapy of lung and other cancers.

  14. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach

    NARCIS (Netherlands)

    Wijnands, L.M.; Pielaat, A.; Dufrenne, J.B.; Zwietering, M.H.; Leusden, van F.M.

    2009-01-01

    Aims: Model the number of viable vegetative cells of B. cereus surviving the gastric passage after experiments in simulated gastric conditions. Materials and Methods: The inactivation of stationary and exponential phase vegetative cells of twelve different strains of Bacillus cereus, both mesophilic

  15. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S

    2007-01-01

    both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the induction......The partial cross-utilization of molecules and pathways involved in opposing processes like cell survival, proliferation and cell death, assures that mutations within one signaling cascade will also affect the other opposite process at least to some extent, thus contributing to homeostatic...... regulatory circuits. This review highlights some of the connections between opposite-acting pathways. Thus, we discuss the role of cyclins in the apoptotic process, and in the regulation of cell proliferation. CDKs and their inhibitors like the INK4-family (p16(Ink4a), p15(Ink4b), p18(Ink4c), p19(Ink4d...

  16. Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection.

    Science.gov (United States)

    Lokensgard, James R; Mutnal, Manohar B; Prasad, Sujata; Sheng, Wen; Hu, Shuxian

    2016-05-20

    Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and

  17. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    Directory of Open Access Journals (Sweden)

    Margaret A. Keighren

    2016-05-01

    Full Text Available The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues.

  18. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  19. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  20. Mitochondria: Regulators of Cell Death and Survival

    Directory of Open Access Journals (Sweden)

    David J. Granville

    2002-01-01

    Full Text Available The past 5 years has seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Apoptosis can be initiated by a wide array of stimuli, inducing multiple signaling pathways that, for the most part, converge at the mitochondrion. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also “gatekeepers” that ultimately determine the fate of the cell. The mitochondrial decision as to whether a cell lives or dies is complex, involving protein-protein interactions, ionic changes, reactive oxygen species, and other mechanisms that require further elucidation. Once the death process is initiated, mitochondria undergo conformational changes, resulting in the release of cytochrome c (cyt c, caspases, endonucleases, and other factors leading to the onset and execution of apoptosis. The present review attempts to outline the complex milieu of events regulating the mitochondrial commitment to and processes involved in the implementation of the executioner phase of apoptotic cell death.

  1. Caries risk and number of restored surfaces have impact on the survival of posterior composite restorations.

    Science.gov (United States)

    Balevi, Ben

    2014-12-01

    Cochrane Library, PubMed, the Web of Science (ISI) and Scopus. Longitudinal studies of direct class II or classes I and II restorations in permanent dentition of at least five years duration, a minimum of 20 restorations at final recall and the original datasets available were considered. Only English language studies were included. Two reviewers screened titles independently. Multivariate Cox regression method to analyse the variables of interest and hazard ratios with respective 95% confidence intervals were determined. The annual failure rate (AFR) of the investigated restorations and subgroups was calculated. Twelve studies, nine prospective and three retrospective were included. A total of 2,816 restorations (2,585 Class II and 231 Class I restorations) were included in the analysis. Five hundred and sixty-nine restorations failed during the observation period, and the main reasons for failure were caries and fracture. Regression analyses showed a significantly higher risk of failure for restorations in high-caries-risk individuals and those with a higher number of restored surfaces. The overall annual failure rate at five years and ten years was 1.8% and 2.4% respectively. The rates were higher in high-caries-rate individuals at 3.2% and 4.6% respectively. The conclusion of the present meta-analysis of 12 clinical studies based on raw data is that caries risk and number of restored surfaces play a significant role in restoration survival, and that, on average, posterior resin composite restorations show a good survival, with annual failure rates of 1.8% at five years and 2.4% after ten years of service.

  2. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  3. Can mesenchymal stem cell survive in hydroxyapatite sulphate?

    Directory of Open Access Journals (Sweden)

    Erica Kholinne

    2012-02-01

    Full Text Available Background: Many studies have reported the role of Mesenchymal Stem Cells (MSC in treating fractures. In case with bone defect, fracture healing needs not only osteogenic but also osteoconductive component (scaffold. Hydroxyapatite calcium sulphate (HA-CaSO4 being widely used as bone void filler, may serve as scaffold for MSC. However, the effect of this scaffold to the viability of MSC has not been evaluated before.Methods: MSC were isolated from the iliac marrow of a Giant Flamish rabbit, and expanded in DMEM using histogradient density. After one week, they were sub-cultured in a 25cc TC flask (passage 1 and have the medium replaced every 3 days. During the subculture, we embedded a HA-CaSO4 pellet into the flask. The cells were evaluated under inverted microscope at a weekly interval.Results: At the first week, MSC are difficult to be identified in microscope due to the large number of HA-CaSO4 crystals. By the third week however MSC have grown and the HA-CaSO4 crystals can readily be washed off by medium replacement. By the fourth weeks, MSC can be still seen on microscope.Conclusion: HA-CaSO4 could serve as a good scaffold due to its pellet shape and easily absorbed, thus providing revascularization which is essential for bone healing.In addition, HA-CaSO4 does not interfere with MSC survival. (Med J Indones 2012;21:8-12Keywords: Fracture healing, Hydroxyapatite Calcium Sulphate (HA-CaSO4, Mesenchymal Stem Cells (MSC

  4. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  5. Gene expression profiling predicts survival in conventional renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hongjuan Zhao

    2006-01-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  6. An optimized colony forming assay for low-dose-radiation cell survival measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zhu J.; Sutherland B.; Hu W.; Ding N.; Ye C.; Usikalu M.; Li S.; Hu B.; Zhou G.

    2011-11-01

    The aim of this study is to develop a simple and reliable method to quantify the cell survival of low-dose irradiations. Two crucial factors were considered, the same number of cells plated in each flask and an appropriate interval between cell plating and irradiation. For the former, we optimized cell harvest with trypsin, diluted cells in one container, and directly seeded cells on the bottom of flasks in a low density before irradiation. Reproducible plating efficiency was obtained. For the latter, we plated cells on the bottom of flasks and then monitored the processing of attachment, cell cycle variations, and the plating efficiency after exposure to 20 cGy of X-rays. The results showed that a period of 4.5 h to 7.5 h after plating was suitable for further treatment. In order to confirm the reliability and feasibility of our method, we also measured the survival curves of these M059K and M059J glioma cell lines by following the optimized protocol and obtained consistent results reported by others with cell sorting system. In conclusion, we successfully developed a reliable and simple way to measure the survival fractions of human cells exposed to low dose irradiation, which might be helpful for the studies on low-dose radiation biology.

  7. Metabolic pathways promoting cancer cell survival and growth.

    Science.gov (United States)

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  8. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  9. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  10. Comparable cell survival between high dose rate flattening filter free and conventional dose rate irradiation.

    Science.gov (United States)

    Verbakel, Wilko F A R; van den Berg, Jaap; Slotman, Ben J; Sminia, Peter

    2013-04-01

    Investigation of clonogenic cell survival and cell proliferation following single dose and fractionated delivery of high dose rate flattening filter free (FFF) irradiation compared to conventional dose rates. The human astrocytoma D384, glioma T98 and lung carcinoma SW1573 cell lines were irradiated using either a single dose (0-12 Gy) or a fractionated protocol of 5 daily fractions of 2 Gy (D384) or 3 Gy (SW1573). Cells were irradiated inside a phantom using fixed gantry beams of a linear accelerator. A sliding window technique created homogeneous dose distributions over the surface of the cell cultures. Irradiations using standard beams (6 MV, 600 MU/min.) and high dose rate FFF beams (10 MV, 2400 MU/min.) were compared. Cell survival was determined by clonogenic assay. In the fractionated irradiation set-up, the number of clonogenic cells was estimated by including tumor cell proliferation during the overall treatment time in the analysis. All cell lines showed equal cell survival following irradiation using either the FFF beams or conventional flattened (FF) beams. This was observed after single dose exposure (0-12 Gy) as well as after fractionated irradiation (p = 0.08 for D384 and 0.20 for SW1373 cell lines). FFF irradiation with a dose rate of 2400 MU/min and four times higher dose per pulse compared to irradiation with FF beams did not change cell survival for three human cancer cell lines up to a fraction dose of 12 Gy compared to irradiation using FF beams.

  11. Higher Numbers of T-Bet+ Tumor-Infiltrating Lymphocytes Associate with Better Survival in Human Epithelial Ovarian Cancer.

    Science.gov (United States)

    Xu, Yun; Chen, Lujun; Xu, Bin; Xiong, Yuqi; Yang, Min; Rui, Xiaohui; Shi, Liangrong; Wu, Changping; Jiang, Jingting; Lu, Binfeng

    2017-01-01

    T-bet, a member of the T-box family of transcription factors, is a key marker of type I immune response within the tumor microenvironment, and has been previously reported by us to serve as an important prognostic indicator for human gastric cancer patients and a potential biomarker for immunotherapy. In the present study, we aimed to assess the clinical significance and prognostic value of T-bet+ tumor-infiltrating lymphocytes in human epithelial ovarian cancer. The immunohistochemistry was used to analyze the infiltration density of T-bet+ lymphoid cells in human epithelial ovarian cancer tissues, and the flow cytometry analysis was used to further analyze the presence of T-bet+ tumor-infiltrating lymphocytes subgroups in cancer tissues. Our immunohistochemistry analysis showed increased number of T-bet+ lymphoid cells in the human epithelial ovarian cancer tissues, and the flow cytometry analysis further demonstrated the presence of T-bet+ tumor-infiltrating lymphocytes subgroups including CD4+ , CD8+ T cells and NK cells. In addition, we also observed a significant association of T-bet+ tumor-infiltrating lymphocytes density in the tumor nest of cancer with not only serum CA125 levels but also with distant metastasis. However no association was observed with other characteristics like patients' age, pathological type, FIGO stage, tumor site and tumor size. Furthermore, the survival analysis showed that higher density of T-bet+ tumor-infiltrating lymphocytes both in tumor nest and tumor stroma of cancer tissues was significantly associated with better patient survival. In addition, the density of T-bet+ tumor-infiltrating lymphocytes in tumor nest appeared to be an independent risk factor for predicting patients' postoperative prognoses. Our data indicated that the key transcription factor T-bet might play an important role in the type I immune cells mediated antitumor response, and the density of T-bet+ lymphocytes in human epithelial ovarian cancer tissues

  12. Higher Numbers of T-Bet+ Tumor-Infiltrating Lymphocytes Associate with Better Survival in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Yun Xu

    2017-01-01

    Full Text Available Background/Aims: T-bet, a member of the T-box family of transcription factors, is a key marker of type I immune response within the tumor microenvironment, and has been previously reported by us to serve as an important prognostic indicator for human gastric cancer patients and a potential biomarker for immunotherapy. In the present study, we aimed to assess the clinical significance and prognostic value of T-bet+ tumor-infiltrating lymphocytes in human epithelial ovarian cancer. Methods: The immunohistochemistry was used to analyze the infiltration density of T-bet+ lymphoid cells in human epithelial ovarian cancer tissues, and the flow cytometry analysis was used to further analyze the presence of T-bet+ tumor-infiltrating lymphocytes subgroups in cancer tissues. Results: Our immunohistochemistry analysis showed increased number of T-bet+ lymphoid cells in the human epithelial ovarian cancer tissues, and the flow cytometry analysis further demonstrated the presence of T-bet+ tumor-infiltrating lymphocytes subgroups including CD4+ , CD8+ T cells and NK cells. In addition, we also observed a significant association of T-bet+ tumor-infiltrating lymphocytes density in the tumor nest of cancer with not only serum CA125 levels but also with distant metastasis. However no association was observed with other characteristics like patients' age, pathological type, FIGO stage, tumor site and tumor size. Furthermore, the survival analysis showed that higher density of T-bet+ tumor-infiltrating lymphocytes both in tumor nest and tumor stroma of cancer tissues was significantly associated with better patient survival. In addition, the density of T-bet+ tumor-infiltrating lymphocytes in tumor nest appeared to be an independent risk factor for predicting patients’ postoperative prognoses. Conclusions: Our data indicated that the key transcription factor T-bet might play an important role in the type I immune cells mediated antitumor response, and the

  13. Brain Metastasis-Initiating Cells: Survival of the Fittest

    Directory of Open Access Journals (Sweden)

    Mohini Singh

    2014-05-01

    Full Text Available Brain metastases (BMs are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs or cancer stem cells (CSCs hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs. These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche.

  14. Progression-free survival, post-progression survival, and tumor response as surrogate markers for overall survival in patients with extensive small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Hisao Imai

    2015-01-01

    Full Text Available Objectives: The effects of first-line chemotherapy on overall survival (OS might be confounded by subsequent therapies in patients with small cell lung cancer (SCLC. We examined whether progression-free survival (PFS, post-progression survival (PPS, and tumor response could be valid surrogate endpoints for OS after first-line chemotherapies for patients with extensive SCLC using individual-level data. Methods: Between September 2002 and November 2012, we analyzed 49 cases of patients with extensive SCLC who were treated with cisplatin and irinotecan as first-line chemotherapy. The relationships of PFS, PPS, and tumor response with OS were analyzed at the individual level. Results: Spearman rank correlation analysis and linear regression analysis showed that PPS was strongly correlated with OS (r = 0.97, p < 0.05, R 2 = 0.94, PFS was moderately correlated with OS (r = 0.58, p < 0.05, R 2 = 0.24, and tumor shrinkage was weakly correlated with OS (r = 0.37, p < 0.05, R 2 = 0.13. The best response to second-line treatment, and the number of regimens employed after progression beyond first-line chemotherapy were both significantly associated with PPS ( p ≤ 0.05. Conclusion: PPS is a potential surrogate for OS in patients with extensive SCLC. Our findings also suggest that subsequent treatment after disease progression following first-line chemotherapy may greatly influence OS.

  15. Survival

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide information on the survival of California red-legged frogs in a unique ecosystem to better conserve this threatened species while restoring...

  16. Impact on survival of the number of lymph nodes resected in patients with lymph node-negative gastric cancer.

    Science.gov (United States)

    Chu, Xiaoyuan; Yang, Zhong-Fa

    2015-06-01

    Patients with lymph node-negative gastric cancer show a better overall survival rate than those who have a pathological lymph node-positive gastric cancer. But a large number of patients still develop recurrence. We aimed to explore the significant prognostic factors of lymph node-negative gastric cancer and determine how many lymph nodes should be removed. A total of 3103 patients who underwent radical operation are identified from the Surveillance, Epidemiology, and End Results database. Standard survival methods and restricted multivariable Cox regression models were applied. The overall survival rate was significantly higher with an increasing number of negative lymph node resected. Among the 843 patients who had the exact T stage, the overall survival rate was significantly better in T3-4 group with more than 15 lymph nodes resected (P patients (P = 0.44). A further 25 more lymph nodes resection did not show additional survival benefits. Multivariate analysis of patients demonstrated that age, depth of tumor invasion, and the number of lymph nodes resected were the significant and independent prognostic factors. A lymphadenectomy with more than 15 lymph nodes removal should be performed for T3-4 lymph node-negative gastric cancer. But the survival benefit of a lymphadenectomy with more than 25 lymph nodes removal is disputed. And the further treatment should refer to the prognostic indicators.

  17. Analysis of tumor and endothelial cell viability and survival using sulforhodamine B and clonogenic assays.

    Science.gov (United States)

    Woolston, Caroline; Martin, Stewart

    2011-01-01

    A variety of assays, and rationales for their use, exist to monitor viability and/or survival following cellular exposure to insult. Two commonly used in vitro assays are the sulforhodamine B assay and the clonogenic survival assay which can be used to monitor the efficacy of anticancer agents, either via direct tumor cell cytotoxicity or antiangiogenic mechanisms. The techniques described are suitable for studying survival in a number of different cell types; however, this chapter describes how they may be used in the assessment of chemo-/radiosensitivity. The methods are uncomplicated and robust as long as attention is paid to key optimization steps. Except for a multiwell plate reader they do not require any specialized equipment other than that found in a typical tissue-culture laboratory.

  18. Bone metastases from renal cell carcinoma: patient survival after surgical treatment

    Directory of Open Access Journals (Sweden)

    Baur-Melnyk Andrea

    2010-07-01

    Full Text Available Abstract Background Surgery is the primary treatment of skeletal metastases from renal cell carcinoma, because radiation and chemotherapy frequently are not effecting the survival. We therefore explored factors potentially affecting the survival of patients after surgical treatment. Methods We retrospectively reviewed 101 patients operatively treated for skeletal metastases of renal cell carcinoma between 1980 and 2005. Overall survival was calculated using the Kaplan-Meier method. The effects of different variables were evaluated using a log-rank test. Results 27 patients had a solitary bone metastasis, 20 patients multiple bone metastases and 54 patients had concomitant visceral metastases. The overall survival was 58% at 1 year, 37% at 2 years and 12% at 5 years. Patients with solitary bone metastases had a better survival (p Conclusions The data suggest that patients with a solitary metastasis or a limited number of resectable metastases are candidates for wide resections. As radiation and chemotherapy are ineffective in most patients, surgery is a better option to achieve local tumor control and increase the survival.

  19. Pharmacologically active microcarriers for endothelial progenitor cell support and survival.

    Science.gov (United States)

    Musilli, Claudia; Karam, Jean-Pierre; Paccosi, Sara; Muscari, Claudio; Mugelli, Alessandro; Montero-Menei, Claudia N; Parenti, Astrid

    2012-08-01

    The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A novel cell immunoassay to measure survival of motor neurons protein in blood cells

    Directory of Open Access Journals (Sweden)

    Fischbeck Kenneth H

    2006-02-01

    Full Text Available Abstract Background The motor neuron degenerative disease spinal muscular atrophy (SMA is the leading genetic cause of infant mortality and is caused by mutations in the survival of motor neurons (SMN gene that reduce the expression levels of the SMN protein. A major goal of current therapeutic approaches is to increase SMN levels in SMA patients. The purpose of this study was to develop a reliable assay to measure SMN protein levels from peripheral blood samples. Methods We developed a novel cell immunoassay to quantitatively measure SMN levels from peripheral blood mononuclear cells (PBMCs using a single anti-SMN antibody. Results SMN levels determined by the cell immunoassay are comparable to levels determined by Western blot, but in contrast, the immunoassay does not involve cell lysis, requires a small amount of patient material, and can be done on a large number of samples simultaneously. SMN levels from PBMCs are not influenced by cell type heterogeneity. Conclusion SMN levels measured from total PBMCs provide an important snapshot of SMN protein expression, which should be a useful aid in SMA diagnosis, and a surrogate marker of efficacy of treatment in SMA clinical trials.

  1. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield

    Science.gov (United States)

    Heideveld, Esther; Masiello, Francesca; Marra, Manuela; Esteghamat, Fatemehsadat; Yağcı, Nurcan; von Lindern, Marieke; Migliaccio, Anna Rita F.; van den Akker, Emile

    2015-01-01

    Expansion of erythroblasts from human peripheral blood mononuclear cells is 4- to 15-fold more efficient than that of CD34+ cells purified from peripheral blood mononuclear cells. In addition, purified CD34+ and CD34− populations from blood do not reconstitute this erythroid yield, suggesting a role for feeder cells present in blood mononuclear cells that increase hematopoietic output. Immunodepleting peripheral blood mononuclear cells for CD14+ cells reduced hematopoietic stem and progenitor cell expansion. Conversely, the yield was increased upon co-culture of CD34+ cells with CD14+ cells (full contact or transwell assays) or CD34+ cells re-constituted in conditioned medium from CD14+ cells. In particular, CD14++CD16+ intermediate monocytes/macrophages enhanced erythroblast outgrowth from CD34+ cells. No effect of CD14+ cells on erythroblasts themselves was observed. However, 2 days of co-culturing CD34+ and CD14+ cells increased CD34+ cell numbers and colony-forming units 5-fold. Proliferation assays suggested that CD14+ cells sustain CD34+ cell survival but not proliferation. These data identify previously unrecognized erythroid and non-erythroid CD34− and CD34+ populations in blood that contribute to the erythroid yield. A flow cytometry panel containing CD34/CD36 can be used to follow specific stages during CD34+ differentiation to erythroblasts. We have shown modulation of hematopoietic stem and progenitor cell survival by CD14+ cells present in peripheral blood mononuclear cells which can also be found near specific hematopoietic niches in the bone marrow. PMID:26294724

  2. Steroid hormone control of cell death and cell survival: molecular insights using RNAi.

    Directory of Open Access Journals (Sweden)

    Suganthi Chittaranjan

    2009-02-01

    Full Text Available The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087, was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-alpha3 and Smr with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2mbn cells (p<0.05 following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.

  3. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  4. Condition number analysis and preconditioning of the finite cell method

    OpenAIRE

    de Prenter, F.; Verhoosel, C.V.; van Zwieten, G. J.; van Brummelen, E. H.

    2016-01-01

    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependen...

  5. The number of involved extracranial organs: a new predictor of survival in breast cancer patients with brain metastasis.

    Science.gov (United States)

    Gerdan, Lavinia; Segedin, Barbara; Nagy, Viorica; Khoa, Mai T; Trang, Ngo T; Schild, Steven E; Rades, Dirk

    2013-10-01

    This study was performed to investigate the potential impact of the number of involved extracranial organs on survival in patients with brain metastasis from breast cancer. The data of 196 patients treated with whole-brain radiotherapy (WBRT) alone for brain metastases from breast cancer were retrospectively analyzed. Six potential prognostic factors were evaluated for associations with survival. These factors included WBRT regimen, age, Karnofsky performance score (KPS), number of brain metastases, interval from breast cancer diagnosis to WBRT, and the number of involved extracranial organs. The 6-month survival rates of patients with involvement of 0, 1, 2, 3 and ≥4 extracranial organs were 59%, 49%, 26%, 26% and 13%, respectively, and the 12-month survival rates were 45%, 36%, 17%, 17% and 13%, respectively (pnumber of involved extracranial organs (risk ratio 1.17; 95%-confidence interval 1.02-1.35; p=0.028) maintained significance, as did KPS (pnumber of involved extracranial organs is an independent prognostic factor of survival in patients with brain metastasis from breast cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Control of neural stem cell survival by electroactive polymer substrates.

    Directory of Open Access Journals (Sweden)

    Vanessa Lundin

    Full Text Available Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy, a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs. NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS, tosylate (TsO, perchlorate (ClO(4 and chloride (Cl, showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS but low on PPy containing TsO, ClO(4 and Cl. On PPy(DBS, NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.

  7. Low C4 gene copy numbers are associated with superior graft survival in patients transplanted with a deceased donor kidney

    DEFF Research Database (Denmark)

    Bay, Jakob T; Schejbel, Lone; Madsen, Hans O

    2013-01-01

    rejection, but a relationship between graft survival and serum C4 concentration as well as C4 genetic variation has not been established. We evaluated this using a prospective study design of 676 kidney transplant patients and 211 healthy individuals as controls. Increasing C4 gene copy numbers...... significantly correlated with the C4 serum concentration in both patients and controls. Patients with less than four total copies of C4 genes transplanted with a deceased donor kidney experienced a superior 5-year graft survival (hazard ratio 0.46, 95% confidence interval: 0.25-0.84). No significant association...... was observed in patients transplanted with a living donor. Thus, low C4 copy numbers are associated with increased kidney graft survival in patients receiving a kidney from a deceased donor. Hence, the degree of ischemia may influence the clinical impact of complement....

  8. Oral squamous cell carcinoma: survival, recurrence and death

    Directory of Open Access Journals (Sweden)

    Antônio Camilo Souza Cruz

    2014-10-01

    Full Text Available This paper was based in data survey from macro and microscopic oral lesions characteristics, personal data and medical history of patients diagnosed with oral squamous cell carcinoma in the Lab of Pathological Anatomy from the Federal University of Alfenas from January 2000 to December 2010, establishing comparative parameters among clinical data, type of treatment, recurrence, survival and anatomic pathological characteristics of the lesions. Were analyzed the histopathological reports, dental and hospital records. The highest incidence was in white men, age between 50 and 60 years, married, with low education and socioeconomic levels. The beginning of treatment occurred in average 67 days after the histopathological diagnosis. The estimated survival of patients at five years was 42%. The consumption of alcohol and tobacco and the occurrence of metastasis were statistically significant for the increase of recurrence and lethality.

  9. Survival Patterns of 5750 Stereotactic Radiosurgery-Treated Patients with Brain Metastasis as a Function of the Number of Lesions.

    Science.gov (United States)

    Ali, Mir Amaan; Hirshman, Brian R; Wilson, Bayard; Carroll, Kate T; Proudfoot, James A; Goetsch, Steven J; Alksne, John F; Ott, Kenneth; Aiyama, Hitoshi; Nagano, Osamu; Carter, Bob S; Fogarty, Gerald; Hong, Angela; Serizawa, Toru; Yamamoto, Masaaki; Chen, Clark C

    2017-11-01

    The number of brain metastases (BMs) plays an important role in the decision between stereotactic radiosurgery (SRS) and whole-brain radiation therapy. We analyzed the survival of 5750 SRS-treated patients with BM as a function of BM number. Survival analyses were performed with Kaplan-Meier analysis as well as univariate and multivariate Cox proportional hazards models. Patients with BMs were first categorized as those with 1, 2-4, and 5-10 BMs based on the scheme proposed by Yamamoto et al. (Lancet Oncology 2014). Median overall survival for patients with 1 BM was superior to those with 2-4 BMs (7.1 months vs. 6.4 months, P = 0.009), and survival of patients with 2-4 BMs did not differ from those with 5-10 BMs (6.4 months vs. 6.3 months, P = 0.170). The median survival of patients with >10 BMs was lower than those with 2-10 BMs (6.3 months vs. 5.5 months, P = 0.025). In a multivariate model that accounted for age, Karnofsky Performance Score, systemic disease status, tumor histology, and cumulative intracranial tumor volume, we observed a ∼10% increase in hazard of death when comparing patients with 1 versus 2-10 BMs (P 10 BMs (P < 0.001). When BM number was modeled as a continuous variable rather than using the classification by Yamamoto et al., we observed a step-wise 4% increase in the hazard of death for every increment of 6-7 BM (P < 0.001). The contribution of BM number to overall survival is modest and should be considered as one of the many variables considered in the decision between SRS and whole-brain radiation therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Major histocompatibility complex I upregulation in clear cell renal cell carcinoma is associated with increased survival

    Directory of Open Access Journals (Sweden)

    Rishi R. Sekar

    2016-04-01

    Conclusion: Our data demonstrate that high MHCI expression confers improved overall and recurrence free survival in patients with clear cell RCC and could serve as an important prognostic tool in identifying high-risk patients.

  11. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Hack, N; Balázs, R

    1994-01-01

    The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from d...

  12. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Brotons

    2016-01-01

    Full Text Available In bioartificial pancreases (BP, the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2 in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ/cm2 and cultured in normal atmospheric pressure (160 mmHg as well as hypoxic conditions (15 mmHg for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.

  13. SU-E-T-352: Why Is the Survival Rate Low in Oropharyngeal Squamous Cell Carcinoma?

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z; Feng, Y; Rasmussen, K; Rice, J; Stephenson, S; Ferreira, Maria C [East Carolina University, Greenville, NC (United States); Liu, T [Baylor College of Medicine, Houston, TX (United States); Yuh, K [California Institute of Technology, Pasadena, CA (United States); Wang, R; Grecula, J [Case Western Reserve University, Cleveland, OH (United States); Lo, S [The Ohio State University, Columbus, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2014-06-01

    Purpose: Tumors are composed of a large number of clonogens that have the capability of indefinite reproduction. Even when there is complete clinical or radiographic regression of the gross tumor mass after treatment, tumor recurrence can occur if the clonogens are not completely eradicated by radiotherapy. This study was to investigate the colonogen number and its association with the tumor control probability (TCP) in oropharyngeal squamous cell carcinoma (OSCCA). Methods: A literature search was conducted to collect clinical information of patients with OSCCA, including the prescription dose, tumor volume and survival rate. The linear-quadratic (LQ) model was incorporated into TCP model for clinical data analysis. The total dose ranged from 60 to 70 Gy and tumor volume ranged from 10 to 50 cc. The TCP was calculated for each group according to tumor size and dose. The least χ{sup 2} method was used to fit the TCP calculation to clinical data while other LQ model parameters (α, β) were adopted from the literature, due to the limited patient data. Results: A total of 190 patients with T2–T4 OSCCA were included. The association with HPV was not available for all the patients. The 3-year survival rate was about 82% for T2 squamous cell carcinoma and 40% for advanced tumors. Fitting the TCP model to the survival data, the average clonogen number was 1.56×10{sup 12}. For the prescription dose of 70 Gy, the calculated TCP ranged from 40% to 90% when the tumor volume varied from 10 to 50 cc. Conclusion: Our data suggests variation between the clonogen number and TCP in OSCCA. Tumors with larger colonogen number tend to have lower TCP and therefore dose escalation above 70 Gy may be indicated in order to improve the TCP and survival rate. Our result will require future confirmation with a large number of patients.

  14. The number of prehospital defibrillation shocks and 1-month survival in patients with out-of-hospital cardiac arrest.

    Science.gov (United States)

    Hasegawa, Manabu; Abe, Takeru; Nagata, Takashi; Onozuka, Daisuke; Hagihara, Akihito

    2015-04-17

    The relationship between the number of pre-hospital defibrillation shocks and treatment outcome in patients with out-of-hospital cardiac arrest (OHCA) presenting with ventricular fibrillation (VF) is unknown currently. We examined the association between the number of pre-hospitalization defibrillation shocks and 1-month survival in OHCA patients. We conducted a prospective observational study using national registry data obtained from patients with OHCA between January 1, 2009 and December 31, 2012 in Japan. The study subjects were ≥ 18-110 years of age, had suffered from an OHCA before arrival of EMS personnel, had a witnessed collapse, had an initial rhythm that was shockable [VF/ventricular tachycardia (pulseless VT)], were not delivered a shock using a public automated external defibrillator (AED), received one or more shocks using a biphasic defibrillator by EMS personnel, and were transported to a medical institution between January 1, 2009 and December 31, 2012. There were 20,851 OHCA cases which met the inclusion criteria during the study period. Signal detection analysis was used to identify the cutoff point in the number of prehospital defibrillation shocks most closely related to one-month survival. Variables related to the number of defibrillations or one-month survival in OHCA were identified using multiple logistic regression analysis. A cutoff point in the number of pre-hospital defibrillation shocks most closely associated with 1-month OHCA survival was between two and three (χ(2) = 209.61, p defibrillations (odds ratio [OR] = 1.19, 95% CI: 1.03, 1.38), OHCA origin (OR = 2.81, 95% CI: 2.26, 3.49), use of ALS devices (OR = 0.68, 95% CI: 0.59, 0.79), use of epinephrine (OR = 0.33, 95% C: 0.28, 0.39), interval between first defibrillation and first ROSC (OR = 1.45, 95% CI: 1.18, 1.78), and chest compression (OR = 1.21, 95% CI: 1.06, 1.38) were associated significantly with 1-month OCHA survival. The cutoff point in the number of defibrillations of

  15. Survival Analysis of 1,742 Patients with Stage IV Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hong PENG

    2011-04-01

    Full Text Available Background and objective At present non-small cell lung cancer (NSCLC is still the leading cause of death induced by cancer. The aim of this study is to investigate the prognostic factors of advanced NSCLC. Methods Total 1,742 cases of stage IV NSCLC data from Jan 4, 2000 to Dec 25, 2008 in Shanghai Chest Hospital were collected, confirmed by pathological examinations. Analysis was made to observe the impact of treatment on prognosis in gender, age, smoking history, pathology, classification, clinical TNM stage. Survival rate, survival difference were evaluated by Kaplan-Meire method and Logrank test respectively. The prognosis were analyzed by Cox multivariate regression. Results The median survival time of 1,742 patients was 10.0 months (9.5 months-10.5 months. One, two, three, four, and five-year survival rates were 44%, 22%, 13%, 9%, 6% respectively. The median survivals of single or multiple metastasis were 11 months vs 7 months (P < 0.001. Survival time were different in metastasic organs, with the median survival time as follows: lung for about 12 months (11.0 months-12.9 months, bone for 9 months (8.3 months-9.6 months, brain for 8 months (6.8 months-9.1 months, liver, adrenal gland, distannt lymph node metastasis for 5 months (3.8 months-6.1 months, and subcutaneous for 3 months (1.7 months-4.3 months. The median survival times of adenocarcinoma (n=1,086, 62% and squamous cell carcinoma cases (n=305, 17.5% were 12 months vs 8 months (P < 0.001. The median survival time of chemotherapy and best supportive care were 11 months vs 6 months (P < 0.001; the median survival times of with and without radiotherapy were 11 months vs 9 months (P=0.017. Conclusion Gender, age, gross type, pathological type, clinical T stage, N stage, numbers of metastatic organ, smoking history, treatment of advanced non-small cell lung cancer were independent prognostic factors.

  16. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  17. Breast cancer patients with metastatic spinal cord compression. Number of extraspinal organs involved by metastases influences survival.

    Science.gov (United States)

    Weber, A; Bartscht, T; Karstens, J H; Schild, S E; Rades, D

    2014-03-01

    The goal of the present work was to investigate the predictive value of the number of extraspinal organs involved by metastases for the survival of patients with metastatic spinal cord compression (MSCC) from breast cancer. Data of 145 breast cancer patients who received 10 fractions of 3 Gy of radiotherapy (RT) alone for MSCC were retrospectively analyzed. Seven potential prognostic factors were investigated including age, Eastern Cooperative Oncology Group (ECOG) performance score, number of involved vertebrae, interval from breast cancer diagnosis to RT of MSCC, ambulatory status prior to RT, time to developing motor deficits, and the number of involved extraspinal organs. The 1-year survival rates for involvement of 0, 1, 2, and ≥ 3 extraspinal organs were 86, 73, 36, and 16 % (p number of involved extraspinal organs remained significant (risk ratio 2.19; 95 % confidence interval 1.61-3.00; p number of extraspinal organs involved by metastases is an independent prognostic factor of survival in patients with MSCC from breast cancer.

  18. NAC, tiron and trolox impair survival of cell cultures containing glioblastoma tumorigenic initiating cells by inhibition of cell cycle progression.

    Science.gov (United States)

    Monticone, Massimiliano; Taherian, Razieh; Stigliani, Sara; Carra, Elisa; Monteghirfo, Stefano; Longo, Luca; Daga, Antonio; Dono, Mariella; Zupo, Simona; Giaretti, Walter; Castagnola, Patrizio

    2014-01-01

    Reactive oxygen species (ROS) are metabolism by-products that may act as signaling molecules to sustain tumor growth. Antioxidants have been used to impair cancer cell survival. Our goal was to determine the mechanisms involved in the response to antioxidants of a human cell culture (PT4) containing glioblastoma (GBM) tumorigenic initiating cells (TICs). ROS production in the absence or presence of N-acetyl-L-cysteine (NAC), tiron, and trolox was evaluated by flow cytometry (FCM). The effects of these antioxidants on cell survival and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and FCM. The biological processes modulated by these drugs were determined by oligonucleotide microarray gene expression profiling. Our results showed that NAC, tiron and trolox impaired PT4 cell survival, had minor effects on ROS levels and caused wide deregulation of cell cycle genes. Furthermore, tiron and trolox caused inhibition of cell survival in two additional cell cultures containing TICs, FO-1 and MM1, established from a melanoma and a mesothelioma patient, respectively. NAC, instead, impaired survival of the MM1 cells but not of the FO-1 cells. However, when used in combination, NAC enhanced the inhibitory effect of PLX4032 (BRAF V600E inhibitor) and Gefitinib (EGFR inhibitor), on FO-1 and PT4 cell survival. Collectively, NAC, tiron and trolox modulated gene expression and impaired the growth of cultures containing TICs primarily by inhibiting cell cycle progression.

  19. Trends in incidence, treatment and survival of aggressive B-cell lymphoma in the Netherlands 1989–2010

    Science.gov (United States)

    Issa, Djamila E.; van de Schans, Saskia A.M.; Chamuleau, Martine E.D.; Karim-Kos, Henrike E.; Wondergem, Marielle; Huijgens, Peter C.; Coebergh, Jan Willem W.; Zweegman, Sonja; Visser, Otto

    2015-01-01

    Only a small number of patients with aggressive B-cell lymphoma take part in clinical trials, and elderly patients in particular are under-represented. Therefore, we studied data of the population-based nationwide Netherlands Cancer Registry to determine trends in incidence, treatment and survival in an unselected patient population. We included all patients aged 15 years and older with newly diagnosed diffuse large B-cell lymphoma or Burkitt lymphoma in the period 1989–2010 and mantle cell lymphoma in the period 2001–2010, with follow up until February 2013. We examined incidence, first-line treatment and survival. We calculated annual percentage of change in incidence and carried out relative survival analyses. Incidence remained stable for diffuse large B-cell lymphoma (n=23,527), while for mantle cell lymphoma (n=1,634) and Burkitt lymphoma (n=724) incidence increased for men and remained stable for women. No increase in survival for patients with aggressive B-cell lymphoma was observed during the period 1989–1993 and the period 1994–1998 [5-year relative survival 42% (95%CI: 39%–45%) and 41% (38%–44%), respectively], but increased to 46% (43%–48%) in the period 1999–2004 and to 58% (56%–61%) in the period 2005–2010. The increase in survival was most prominent in patients under 65 years of age, while there was a smaller increase in patients over 75 years of age. However, when untreated patients were excluded, patients over 75 years of age had a similar increase in survival to younger patients. In the Netherlands, survival for patients with aggressive B-cell lymphoma increased over time, particularly in younger patients, but also in elderly patients when treatment had been initiated. The improvement in survival coincided with the introduction of rituximab therapy and stem cell transplantation into clinical practice. PMID:25512643

  20. Relationship between number of proximal contacts and survival of root canal treated teeth.

    Science.gov (United States)

    Caplan, D J; Kolker, J; Rivera, E M; Walton, R E

    2002-02-01

    The present study tested the hypothesis that having two proximal contacts (PCs) at access is associated with improved survival of root canal treated (RCT) teeth, controlling for important presenting conditions, endodontic variables and restorative factors. A treatment database at the University of Iowa College of Dentistry was used to identify permanent teeth undergoing obturation between 1 July 1985 and 31 December 1987. The list was restricted to teeth of patients with at least one dental visit in each two-year interval from 1985 to 1996, and a simple random sample of 280 patients (n = 400 teeth) was selected. Dental charts, radiographs, and computerized databases were examined to ascertain variables of interest and to verify study inclusion criteria. Kaplan-Meier survival estimates were generated for the 221 teeth satisfying study inclusion criteria. Multivariate Cox models were developed, with standard errors adjusted to account for clustering of teeth within patients. The final Cox model showed that teeth with obturation. Because RCT teeth with two PCs at access experienced substantially better survival than teeth with fewer than two PCs, the influence of PCs on prognosis should be recognized during treatment planning. Future research should employ prospective study designs, capture additional variables, and provide data to support endodontic treatment decisions.

  1. Evaluation of motion tracking by cell survival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexander; Bert, Christoph; Saito, Nami; Chaudhri, Naved; Neubeck, Claere von; Iancu, Gheorghe; Schardt, Dieter [GSI, Abt. Biophysik, Darmstadt (Germany); Rietzel, Eike [GSI, Abt. Biophysik, Darmstadt (Germany); Siemens Medical Solutions, Particle Therapy, Erlangen (Germany)

    2008-07-01

    At GSI patients with stationary tumors are treated with a rasterscanned carbon ion beam. For moving targets interplay possibly deteriorates the dose distribution because target motion and scanner motion interfere. Several motion mitigation techniques are proposed to solve this problem. We use a fully integrated 3D online motion compensation system to track target motion of phantoms which includes adaptation of the Bragg peak position. To validate motion tracking with biological systems we conducted a series of repetitive experiments with hamster cells grown in wellplates. The wellplates were placed on a sliding table to induce lateral as well as longitudinal motion. Irradiations were performed with stationary wellplates and by tracking moving wellplates. Multiple samples were irradiated to gain statistics. As a result, we observed no significant difference in cell survival between the motion compensated measurements in comparison to a stationary reference irradiation. We conclude that our motion compensation system allows correct delivery of the biologically effective dose to moving phantoms.

  2. The Optical Fractionator Technique to Estimate Cell Numbers in a Rat Model of Electroconvulsive Therapy

    DEFF Research Database (Denmark)

    Olesen, Mikkel Vestergaard; Needham, Esther Kjær; Pakkenberg, Bente

    2017-01-01

    Stereological methods are designed to describe quantitative parameters without making assumptions about size, shape, orientation and distribution of cells or structures. These methods have been revolutionary for quantitative analysis of the mammalian brain, in which volumetric cell populations...... present the optical fractionator in conjunction with BrdU immunohistochemistry to estimate the production and survival of newly-formed neurons in the granule cell layer (including the sub-granular zone) of the rat hippocampus following electroconvulsive stimulation, which is among the most potent...... stimulators of neurogenesis. The optical fractionator technique is designed to provide estimates of the total number of cells from thick sections sampled from the full structure. Thick sections provide the opportunity to observe cells in their full 3-D extent and thus, allow for easy and robust cell...

  3. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  4. Neuroglobin, a Factor Playing for Nerve Cell Survival

    Directory of Open Access Journals (Sweden)

    Diego Guidolin

    2016-10-01

    Full Text Available Cell death represents the final outcome of several pathological conditions of the central nervous system and available evidence suggests that in both acute injuries and neurodegenerative diseases it is often associated with mitochondrial dysfunction. Thus, the possibility to prevent mitochondrial events involved in cell death might represent efficient tools to limit neuronal damage. In recent years, increased attention has been paid to the endogenous protein neuroglobin, since accumulating evidence showed that its high expression was associated with preserved mitochondrial function and to an increased survival of nerve cells in vitro and in vivo in a variety of experimental models of cell insult. The biological and structural features of neuroglobin and the mitochondria-related mechanisms of neuroglobin-induced neuroprotection will be here briefly discussed. In this respect, the inhibition of the intrinsic pathway of apoptosis emerges as a key neuroprotective effect induced by the protein. These findings could open the possibility to develop efficient neuroglobin-mediated therapeutic strategies aimed at minimizing the neuronal cell death occurring in impacting neurological pathologies like stroke and neurodegenerative diseases.

  5. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA

    DEFF Research Database (Denmark)

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H

    2015-01-01

    Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward...... various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD...... findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation....

  6. The regulation of function, growth and survival of GLP-1-producing L-cells

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Holst, Jens Juul; Kappe, Camilla

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a peptide hormone, released from intestinal L-cells in response to hormonal, neural and nutrient stimuli. In addition to potentiation of meal-stimulated insulin secretion, GLP-1 signalling exerts numerous pleiotropic effects on various tissues, regulating energy...... absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous...... secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms...

  7. Xenopus Vasa Homolog XVLG1 is Essential for Migration and Survival of Primordial Germ Cells.

    Science.gov (United States)

    Shimaoka, Kazumi; Mukumoto, Yoshiko; Tanigawa, Yoko; Komiya, Tohru

    2017-04-01

    Xenopus vasa-like gene 1 (XVLG1), a DEAD-Box Helicase 4 (DDX4) gene identified as a vertebrate vasa homologue, is required for the formation of primordial germ cells (PGCs). However, it remains to be clarified when and how XVLG1 functions in the formation of the germ cells. To gain a better understanding of the molecular mechanisms underlying XVLG1 during PGC development, we injected XVLG1 morpholino oligos into germ-plasm containing blastomeres of 32-cell stage of Xenopus embryos, and traced cell fates of the injected blastomere-derived PGCs. As a result of this procedure, migration of the PGCs was impaired and the number of PGCs derived from the blastomeres was significantly decreased. In addition, TUNEL staining in combination with in situ hybridization revealed that the loss of PGCs peaked at stage 27 was caused by apoptosis. This data strongly suggests an essential role for XVLG1 in migration and survival of the germ cells.

  8. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils.

    Science.gov (United States)

    Filer, Andrew; Parsonage, Greg; Smith, Emily; Osborne, Chloe; Thomas, Andrew M C; Curnow, S John; Rainger, G Ed; Raza, Karim; Nash, Gerard B; Lord, Janet; Salmon, Mike; Buckley, Christopher D

    2006-07-01

    Synovial fibroblasts share a number of phenotype markers with fibroblasts derived from bone marrow. In this study we investigated the role of matched fibroblasts obtained from 3 different sources (bone marrow, synovium, and skin) to test the hypothesis that synovial fibroblasts share similarities with bone marrow-derived fibroblasts in terms of their ability to support survival of T cells and neutrophils. Matched synovial, bone marrow, and skin fibroblasts were established from 8 different patients with rheumatoid arthritis who were undergoing knee or hip surgery. Resting or activated fibroblasts were cocultured with either CD4 T cells or neutrophils, and the degree of leukocyte survival, apoptosis, and proliferation were measured. Fibroblasts derived from all 3 sites supported increased survival of CD4 T cells, mediated principally by interferon-beta. However, synovial and bone marrow fibroblasts shared an enhanced site-specific ability to maintain CD4 T cell survival in the absence of proliferation, an effect that was independent of fibroblast activation or proliferation but required direct T cell-fibroblast cell contact. In contrast, fibroblast-mediated neutrophil survival was less efficient, being independent of the site of origin of the fibroblast but dependent on prior fibroblast activation, and mediated solely by soluble factors, principally granulocyte-macrophage colony-stimulating factor. These results suggest an important functional role for fibroblasts in the differential accumulation of leukocyte subsets in a variety of tissue microenvironments. The findings also provide a potential explanation for site-specific differences in the pattern of T cell and neutrophil accumulation observed in chronic inflammatory diseases.

  9. TAK1 maintains the survival of immunoglobulin λ-chain-positive B cells.

    Science.gov (United States)

    Shinohara, Hisaaki; Nagashima, Takeshi; Cascalho, Marilia I; Kurosaki, Tomohiro

    2016-11-01

    TAK1 (MAP3K7) mediation of the IκB kinase (IKK) complex-nuclear factor-κB (NF-κB) pathway is crucial for the activation of immune response and to perpetuate inflammation. Although progress has been made to understand TAK1 function in the B-cell receptor (BCR) signaling, the physiological roles of TAK1 in B-cell development, particularly in the bone marrow (BM), remain elusive. Previous studies suggested that the IKK complex is required for the development of immunoglobulin light chain λ-positive B cells, but not for receptor editing. In contrast, NF-κB activity is suggested to be involved in the regulation of receptor editing. Thus, NF-κB signaling in early B-cell development is yet to be fully characterized. Therefore, we addressed the role of TAK1 in early B-cell development. TAK1-deficient mice showed significant reduction of BM Igλ-positive B-cell numbers without any alteration in the BCR editing. Furthermore, the expression of survival factor Bcl-2 was reduced in TAK1-deficient BM B cells as assessed by microarray and quantitative PCR analyses. Ex vivo over-expression of exogenous Bcl-2 enhanced the survival of TAK1-deficient Igλ-positive B cells. TAK1-IKK-NF-κB signaling contributes to the survival of λ-chain-positive B cells through NF-κB-dependent anti-apoptotic Bcl-2 expression. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  10. A minimum number of autoimmune T cells to induce autoimmunity?

    Science.gov (United States)

    Bosch, Angela J T; Bolinger, Beatrice; Keck, Simone; Stepanek, Ondrej; Ozga, Aleksandra J; Galati-Fournier, Virginie; Stein, Jens V; Palmer, Ed

    2017-06-01

    While autoimmune T cells are present in most individuals, only a minority of the population suffers from an autoimmune disease. To better appreciate the limits of T cell tolerance, we carried out experiments to determine how many autoimmune T cells are required to initiate an experimental autoimmune disease. Variable numbers of autoimmune OT-I T cells were transferred into RIP-OVA mice, which were injected with antigen-loaded DCs in a single footpad; this restricted T cell priming to a few OT-I T cells that are present in the draining popliteal lymph node. Using selective plane illumination microscopy (SPIM) we counted the number of OT-I T cells present in the popliteal lymph node at the time of priming. Analysis of our data suggests that a single autoimmune T cell cannot induce an experimental autoimmune disease, but a "quorum" of 2-5 autoimmune T cells clearly has this capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The regrowth kinetic of the surviving population is independent of acute and chronic responses to temozolomide in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andrew Oliveira, E-mail: andrewbiomed@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Dalsin, Eloisa, E-mail: dalsineloisa@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Onzi, Giovana Ravizzoni, E-mail: gioonzi@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Filippi-Chiela, Eduardo Cremonese, E-mail: eduardochiela@gmail.com [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Lenz, Guido, E-mail: lenz@ufrgs.br [Department of Biophysics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2016-11-01

    Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagy and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence. - Highlights: • Little is known about the behavior of the glioma cells surviving to TMZ. • The short- and long-term response of six glioma cells lines to TMZ varies considerably. • These glioma cells lines recovered proliferation after therapeutic levels of TMZ. • The growth velocity of the surviving cells was different from the

  12. Sexual activity increases the number of newborn cells in the accessory olfactory bulb of male rats.

    Directory of Open Access Journals (Sweden)

    Wendy ePortillo

    2012-07-01

    Full Text Available In rodents, sexual behavior depends on the adequate detection of sexually relevant stimuli. The olfactory bulb (OB is a region of the adult mammalian brain undergoing constant cell renewal by continuous integration of new granular and periglomerular neurons in the accessory (AOB and main (MOB olfactory bulbs. The proliferation, migration, survival, maturation, and integration of these new cells to the OB depend on the stimulus that the subjects received. We have previously shown that 15 days after females control (paced the sexual interaction an increase in the number of cells is observed in the AOB. No changes are observed in the number of cells when females are not allowed to control the sexual interaction. In the present study we investigated if in male rats sexual behavior increases the number of new cells in the OB. Male rats were divided in five groups: 1 males that did not receive any sexual stimulation, 2 males that were exposed to female odors, 3 males that mated for 1 h and could not pace their sexual interaction, 4 males that paced their sexual interaction and ejaculated 1 time and 5 males that paced their sexual interaction and ejaculated 3 times. All males received three injections of the DNA synthesis marker bromodeoxyuridine at 1h intervals, starting 1h before the beginning of the behavioral test. Fifteen days later, males were sacrificed and the brains were processed to identify new cells and to evaluate if they differentiated into neurons. The number of newborn cells increased in the granular cell layer (also known as the internal cell layer of the AOB in males that ejaculated one or three times controlling (paced the rate of the sexual interaction. Some of these new cells were identified as neurons. In contrast, no significant differences were found in the mitral cell layer (also known as the external cell layer and glomerular cell layer of the AOB. In addition, no significant differences were found between groups in the MOB in

  13. PROGNOSTIC FACTORS FOR SURVIVAL IN PATIENTS WITH METASTATIC RENAL CELL CARCINOMA TREATED WITH CHEMOTHERAPY

    Directory of Open Access Journals (Sweden)

    Deyan Davidov

    2016-03-01

    Full Text Available Objective: The aim of this study was to investigate the prognostic significance for survival of certain clinical and pathological factors in patients with advanced or metastatic renal cell carcinoma (mRCC treated with chemotherapy. Methods: From 1990 to 2009 sixty seven consecutive patients with mRCC, treated in UMHAT- Dr. G. Stranski, Department of Medical Oncology entered the study. Parameters including some patients characteristics, hematological and pathological parameters, were evaluated for their role as predictors of overall survival. The therapeutic regimens included Interferon- alpha or Medroxyprogesterone acetat. Survival analysis was evaluated by Kaplan- Meier test. The influence of pretreatment characteristics as prognostic factor for survival was analyzed using multivariate stepwise Cox regression analyses. Results: Variables significantly associated with overall survival univariate analysis were performance status >1, thrombocytosis, anemia and number of metastatic sites >1. In multivariate analysis as independent poor prognostic factors were identified poor performance status and multiple sites of metastasis. Conclusion: These results indicated that performance status, presence of elevated platelet counts or anemia as well as well as multiple site of metastasis could be useful prognostic factors in patients with mRCC.

  14. Multifaceted role of prohibitin in cell survival and apoptosis.

    Science.gov (United States)

    Peng, Ya-Ting; Chen, Ping; Ouyang, Ruo-Yun; Song, Lei

    2015-09-01

    Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.

  15. The evolution of per-cell organelle number

    Directory of Open Access Journals (Sweden)

    Logan W. Cole

    2016-08-01

    Full Text Available Organelles with their own distinct genomes, such as plastids and mitochondria, are found in most eukaryotic cells. As these organelles and their host cells have evolved, the partitioning of metabolic processes and the encoding of interacting gene products have created an obligate codependence. This relationship has played a role in shaping the number of organelles in cells through evolution. Factors such as stochastic evolutionary forces acting on genes involved in organelle biogenesis, organelle-nuclear gene interactions, and physical limitations may, to varying degrees, dictate the selective constraint that per-cell organelle number is under. In particular, coordination between nuclear and organellar gene expression may be important in maintaining gene product stoichiometry, which may have a significant role in constraining the evolution of this trait.

  16. The effects of bilateral vestibular loss on hippocampal volume, neuronal number and cell proliferation in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2012-02-01

    Full Text Available Previous studies in humans have shown that bilateral loss of vestibular function is associated with a significant bilateral atrophy of the hippocampus, which correlated with the patients’ spatial memory deficits. More recently, patients who had recovered from unilateral vestibular neuritis have been reported to exhibit a significant atrophy of the left posterior hippocampus. Therefore, we investigated whether bilateral vestibular deafferentation (BVD would result in a decrease in neuronal number or volume in the rat hippocampus, using stereological methods. At 16 months post-BVD, we found no significant differences in hippocampal neuronal number or volume compared to sham controls, despite the fact that these animals exhibited severe spatial memory deficits. By contrast, using bromodeoxyuridine (BrdU as a marker of cell proliferation, we found that the number of BrdU-labelled cells significantly increased in the dentate gyrus of the hippocampus between 48 h and 1 week following BVD. Although a substantial proportion of these cells survived for up to 1 month, the survival rate was significantly lower in BVD animals when compared with that in sham animals. These results suggest a dissociation between the effects of BVD on spatial memory and hippocampal structure in rats and humans, which cannot be explained by an injury-induced increase in cell proliferation.

  17. Increased survival of normal cells during laser photodynamic therapy: implications for ex vivo autologous bone marrow purging

    Energy Technology Data Exchange (ETDEWEB)

    Gulliya, K.S.; Matthews, J.L.; Fay, J.W.; Dowben, R.M.

    1988-01-01

    Laser light-induced, dye-mediated photolysis of leukemic cells was tested in an in vitro model for its efficacy in eliminating occult tumor cells for ex vivo autologous bone marrow purging. Merocyanine 540 (MC540) was mixed with acute promyelocytic leukemia (HL-60) cells in the presence of human albumin. This cell-dye mixture was irradiated with 514 nm argon laser light. Results show that in the presence of 0.1%, 0.25% and 0.5% albumin, laser light doses of 62.4 J/cm/sup 2/, 93.6 J/cm/sup 2/ and 109.2 J/cm/sup 2/, respectively, were required for a 5 log reduction in the survival of leukemic cells. Under identical conditions, 80% to 84% of the normal bone marrow cells and 41% of the granulocyte-macrophage colony forming cells survived. The number of surviving stromal cells was reduced (1+) compared to the untreated control (4+). Mixing of irradiated bone marrow cells with equal number of HL-60 cells did not interfere with the killing of HL-60 cells treated with MC540 and laser light. The non-specific cytotoxicity of laser light alone was less than 6% for normal bone marrow cells. These results suggest that the concentration of human albumin plays an important role in laser light-induced phototoxicity. This laser light-induced selective photolysis of leukemic cells can be used in ex vivo purging of tumor cell-contaminated bone marrow grafts to achieve very high survival rates of normal bone marrow cells and granulocyte-macrophage colony forming cells.

  18. Change in number and size of circulating tumor cells with high telomerase activity during treatment of patients with gastric cancer.

    Science.gov (United States)

    Ito, Hiroaki; Yamaguchi, Noriko; Onimaru, Manabu; Kimura, Satoshi; Ohmori, Tohru; Ishikawa, Fumihiro; Sato, Jun; Ito, Shun; Inoue, Haruhiro

    2016-12-01

    Detection of circulating tumor cells (CTCs) in peripheral blood is useful for estimating the prognosis of patients with cancer. We previously reported the detection of CTCs by OBP-401, a telomerase-specific, replication-selective, oncolytic adenoviral agent carrying the green fluorescent protein (GFP) gene. We demonstrated that the number of large (L)-GFP+ cells (≥7.735 µm in diameter) in peripheral blood samples correlated significantly with the prognosis of treatment-naïve gastric cancer patients, whereas the number of small (S)-GFP+ cells (number of GFP+ cells during treatment, and analyzed the association between the number of GFP+ cells in blood samples and the outcome of patients. Peripheral blood samples were obtained from 37 gastric patients prior and subsequent to surgery (three samples per time point). Upon infection of blood cells with OBP-401, GFP+ cells of different sizes were counted and measured. The association between the number of GFP+ cells and surgical outcome was determined by statistical analysis. The median follow-up period after surgery was 39 months. Although the difference was not significant, patients with ≥6 L-GFP+ cells in preoperative blood samples had a lower relapse-free survival rate than patients with 0-5 L-GFP+ cells. There was no significant correlation between the number of L-GFP+ cells in postoperative blood samples and the prognosis of patients receiving adjuvant therapy. Although the difference was not significant, the number of S-GFP+ cells in samples from patients who had received postoperative chemotherapy was higher than in those who had not. The number of L-GFP+ cells was not significantly correlated with the relapse-free survival rate in gastric cancer patients who underwent surgery. The number of S-GFP+ cells was relatively high in samples from patients who had received postoperative chemotherapy.

  19. Recombinant Human Keratinocyte Growth Factor Induces Akt Mediated Cell Survival Progression in Emphysematous Mice.

    Science.gov (United States)

    Prakash Muyal, Jai; Kumar, Dhananjay; Kotnala, Sudhir; Muyal, Vandana; Kumar Tyagi, Amit

    2015-07-01

    Emphysema has been associated with decreased VEGF and VEGFR-2 expression and the presence of high numbers of apoptotic alveolar cells. Keratinocyte growth factor stimulates VEGF synthesis which in turn confers normal lung structure maintenance via the Akt pathway. In this study the potential role of rHuKGF in the improvement of deregulated Akt mediated cell survival pathway in emphysematous mice was investigated. Three experimental groups, i.e., emphysema, treatment and control groups, were prepared. Lungs of mice were treated on 3 occasions by oropharyngeal instillation of 10mg rHuKGF per kg body weight after induction of emphysema with porcine pancreatic elastase. Subsequently, lung tissues from mice were collected for histopathology and molecular biology studies. Histopathology photomicrographs and destructive index analysis have shown that elastase-induced airspace enlargement and loss of alveoli recovered in the treatment group. rHuKGF stimulates VEGF production which in turn induces the Akt mediated cell survival pathway in emphysematous lungs. mRNA expression of VEGF, VEGFR, PI3K and Akt was significantly increased while Pten, Caspase-9 and Bad was notably decreased in treatment group when compared with emphysema group, being comparable with the control group. Moreover, VEGF protein expression was in accordance with that found for mRNA. Therapeutic rHuKGF supplementation improves the deregulated Akt pathway in emphysema, resulting in alveolar cell survival through activation of the endogenous VEGF-dependent cell survival pathway. Hence rHuKGF may prove to be a potential drug in the treatment of emphysema. Copyright © 2014. Published by Elsevier Espana.

  20. Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain

    Directory of Open Access Journals (Sweden)

    Marina E. Emborg

    2013-03-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies.

  1. Patulin triggers NRF2-mediated survival mechanisms in kidney cells.

    Science.gov (United States)

    Pillay, Y; Phulukdaree, A; Nagiah, S; Chuturgoon, A A

    2015-06-01

    Patulin (PAT), a mycotoxin contaminant of apples and apple products, has been implicated in nephrotoxicity. PAT depletes glutathione (GSH) and elevates reactive oxygen species (ROS). The antioxidant (AO) response is activated by Nuclear erythroid 2-related factor (NRF2) and enhanced by Silent information regulator 3 (SIRT3). The effects of PAT on these molecules have yet to be examined. We investigated the effects of PAT on AO response survival pathways in human embryonic kidney cells (HEK293). PAT cytotoxicity on HEK293 cells was evaluated (MTT assay; 24 h; [0-100 μM]) to determine an IC50. GSH levels were measured using luminometry. Intracellular ROS was evaluated by flow cytometry. Protein expression of Keap1, NRF2, SIRT3 and PGC-1α was quantified by western blotting and gene expression of SOD2, CAT and GPx was evaluated by qPCR. PAT caused a dose dependent decrease in HEK293 cell viability and a significant increase in levels of intracellular ROS (p = 0.0006). A significant increase in protein expression (p = 0.029) was observed. PAT increased gene expression of SOD2 and CAT (p = 0.0043), however, gene expression of GPx was significantly reduced (p = 0.0043). These results show the up-regulation of NRF2 mediated AO mechanisms in response to PAT toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Survival benefit of greater number of lymph nodes dissection for advanced node-negative gastric cancer patients following radical gastrectomy.

    Science.gov (United States)

    He, Hongyong; Shen, Zhenbin; Wang, Xuefei; Qin, Jing; Sun, Yihong; Qin, Xinyu

    2016-01-01

    A common clinicopathological factor except for T stage that could significantly influence the clinical outcome of advanced node-negative gastric cancer patients following radical gastrectomy was unknown. This study was designed to investigate the clinicopathological characteristics of these patients, and to evaluate the outcome indicators and improve the risk stratification. A total of 195 patients harboring advanced gastric adenocarcinoma with no lymph node and distant metastases and following radical gastrectomy were retrospectively analyzed from the prospectively collected database of Zhongshan Hospital of Fudan University between 2006 and 2010. The 3-year and 5-year overall survival rates of this study population were 85.0 and 69.6%. Factors influencing the overall survival were the degree of tumor differentiation, the depth of invasion and the number of lymph nodes resected (LN, cutoff = 18). Lymph node was recognized as an independent prognostic factor for overall survival of advanced node-negative gastric cancer patients, and the prognosis of the patients with greater number of lymph nodes resected (LN ≥ 18) was significantly better than those with lymph node patients with T3/T4 stage could be significantly stratified by lymph node. Based on this condition, a new staging system named tumor-node-metastasis staging system for T3/T4 node-negative gastric cancer was constructed, which could have statistically different overall survival between subgroups. Lymph node was an independent prognostic factor of patients with advanced node-negative gastric cancer, and retrieval of more than 18 lymph nodes should be warranted. In addition, these patients with lesser number of lymph nodes resected might need aggressive postoperative treatment and closer follow-up. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Schwann cell-derived factors support serotoninergic neuron survival and promote neurite outgrowth

    Directory of Open Access Journals (Sweden)

    R Pellitteri

    2009-12-01

    Full Text Available During embryogenesis and the postnatal period, neurons and glia interact in the development and differentiation of specific populations of nerve cells. Both in the peripheral (PNS and in the central nervous system (CNS, glial cells have been shown in various experimental conditions to constitute a favorable substrate for neural adhesion, neural polarity, shape and axonal extension, while numerous soluble molecules secreted by neurons influence the survival and differentiation of the glial cells themselves. The aim of the present work was to investigate the influence of postnatal Schwann cells (SC on embryonic serotoninergic (5-HT neurons of the raphe, in order to study the possible influence of the peripheral glia on the CNS neurons. Cultures of SC from sciatic nerve of postnatal rats and neurons from rat embryonic rhombencephalon were successfully established and cells were immunocytochemically characterized. The number of 5-HT neurons, and the number and length of their branches were quantified in the cultures of 5-HT neurons, in cultures added with Nerve Growth Factor (NGF and Insulin-like Growth Factor I (IGF-I, in co-cultures with SC and in cultures added with conditioned medium obtained from SC cultures. The results indicated that SC have the capacity to promote the survival and growth of 5-HT neurons in culture, and that this activity is mediated by soluble factors. Although the precise nature and mechanism of action of the growth factor or factors produced by SC in the presence of 5-HT neurons was not identified, our results add more data on the possible activity of the peripheral glia in promoting and enhancing the survival and outgrowth of the CNS neurons.

  4. Prognostic impact of the number of viable circulating cells with high telomerase activity in gastric cancer patients: a prospective study.

    Science.gov (United States)

    Ito, Hiroaki; Inoue, Haruhiro; Kimura, Satoshi; Ohmori, Tohru; Ishikawa, Fumihiro; Gohda, Keigo; Sato, Jun

    2014-07-01

    The identification of circulating tumor cells (CTCs) in peripheral blood is a useful approach to estimate prognosis, monitor disease progression and measure treatment effects in several types of malignancies. We have previously used OBP-401, a telomerase-specific, replication-selective, oncolytic adenoviral agent carrying the green fluorescent protein (GFP) gene. GFP-positive cells (GFP+ cells) were counted under a fluorescence microscope. Our results showed that the number of at least 7.735 µm in diameter GFP+ cells (L-GFP+ cells) in the peripheral blood was a significant marker of prognosis in gastric cancer patients. However, tumor cells undergoing epithelial-mesenchymal transition (EMT) have been reported to be smaller in size than cells without EMT features; thus, CTCs undergoing EMT may escape detection with this technique. Therefore, in this study, we analyzed the relationship between patient outcome and the number of GFP+ cells of any size. We obtained peripheral blood samples from 65 patients with gastric cancer. After infection of OBP-401, GFP+ cells were counted and measured. The relationship between the number of GFP+ cells and surgical outcome was analyzed. The median follow-up period of the surviving patients was 36 months. A significant difference in overall survival was found between patients with 0-5 and patients with ≥6 L-GFP+ cells. No clear relationship was established between the number of small-sized GFP+ cells and patient prognosis. The number of L-GFP+ cells was significantly related to overall survival in patients with gastric cancer. The detection of L-GFP+ cells using OBP-401 may be a useful prognostic marker in gastric cancer.

  5. CCL3L gene copy number and survival in an HIV-1 infected Zimbabwean population

    DEFF Research Database (Denmark)

    Larsen, Margit Hørup; Thørner, Lise Wegner; Zinyama, Rutendo

    2012-01-01

    The C-C motif chemokine ligand 3-like (CCL3L) protein is a potent chemoattractant which by binding to C-C chemokine receptor type 5 (CCR5) inhibits human immunodeficiency virus (HIV) entry. Copy number variation (CNV) of the CCL3L has been shown to be associated with HIV susceptibility and progre...

  6. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.

    Science.gov (United States)

    Aguirre, Andrew J; Meyers, Robin M; Weir, Barbara A; Vazquez, Francisca; Zhang, Cheng-Zhong; Ben-David, Uri; Cook, April; Ha, Gavin; Harrington, William F; Doshi, Mihir B; Kost-Alimova, Maria; Gill, Stanley; Xu, Han; Ali, Levi D; Jiang, Guozhi; Pantel, Sasha; Lee, Yenarae; Goodale, Amy; Cherniack, Andrew D; Oh, Coyin; Kryukov, Gregory; Cowley, Glenn S; Garraway, Levi A; Stegmaier, Kimberly; Roberts, Charles W; Golub, Todd R; Meyerson, Matthew; Root, David E; Tsherniak, Aviad; Hahn, William C

    2016-08-01

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803. 2016 American Association for Cancer Research.

  7. Modulating cancer cell survival by targeting intracellular cholesterol transport.

    Science.gov (United States)

    Kuzu, Omer F; Gowda, Raghavendra; Noory, Mohammad A; Robertson, Gavin P

    2017-08-08

    Demand for cholesterol is high in certain cancers making them potentially sensitive to therapeutic strategies targeting cellular cholesterol homoeostasis. A potential approach involves disruption of intracellular cholesterol transport, which occurs in Niemann-Pick disease as a result of acid sphingomyelinase (ASM) deficiency. Hence, a class of lysosomotropic compounds that were identified as functional ASM inhibitors (FIASMAs) might exhibit chemotherapeutic activity by disrupting cancer cell cholesterol homoeostasis. Here, the chemotherapeutic utility of ASM inhibition was investigated. The effect of FIASMAs on intracellular cholesterol levels, cholesterol homoeostasis, cellular endocytosis and signalling cascades were investigated. The in vivo efficacy of ASM inhibition was demonstrated using melanoma xenografts and a nanoparticle formulation was developed to overcome dose-limiting CNS-associated side effects of certain FIASMAs. Functional ASM inhibitors inhibited intracellular cholesterol transport leading to disruption of autophagic flux, cellular endocytosis and receptor tyrosine kinase signalling. Consequently, major oncogenic signalling cascades on which cancer cells were reliant for survival were inhibited. Two tested ASM inhibitors, perphenazine and fluphenazine that are also clinically used as antipsychotics, were effective in inhibiting xenografted tumour growth. Nanoliposomal encapsulation of the perphenazine enhanced its chemotherapeutic efficacy while decreasing CNS-associated side effects. This study suggests that disruption of intracellular cholesterol transport by targeting ASM could be utilised as a potential chemotherapeutic approach for treating cancer.

  8. Breast cancer patients with metastatic spinal cord compression. Number of extraspinal organs involved by metastases influences survival

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A. [University of Luebeck, University Hospital Schleswig-Holstein, Campus Luebeck, Department of Radiation Oncology, Luebeck (Germany); University of Luebeck, Department of Medical Oncology and Hematology, Luebeck (Germany); Bartscht, T. [University of Luebeck, Department of Medical Oncology and Hematology, Luebeck (Germany); Karstens, J.H. [Hannover Medical University, Department of Radiation Oncology, Hannover (Germany); Schild, S.E. [Mayo Clinic Scottsdale, Department of Radiation Oncology, Arizona (United States); Rades, D. [University of Luebeck, University Hospital Schleswig-Holstein, Campus Luebeck, Department of Radiation Oncology, Luebeck (Germany)

    2014-03-15

    The goal of the present work was to investigate the predictive value of the number of extraspinal organs involved by metastases for the survival of patients with metastatic spinal cord compression (MSCC) from breast cancer. Data of 145 breast cancer patients who received 10 fractions of 3 Gy of radiotherapy (RT) alone for MSCC were retrospectively analyzed. Seven potential prognostic factors were investigated including age, Eastern Cooperative Oncology Group (ECOG) performance score, number of involved vertebrae, interval from breast cancer diagnosis to RT of MSCC, ambulatory status prior to RT, time to developing motor deficits, and the number of involved extraspinal organs. The 1-year survival rates for involvement of 0, 1, 2, and ≥ 3 extraspinal organs were 86, 73, 36, and 16 % (p < 0.001). In the multivariate analysis, the number of involved extraspinal organs remained significant (risk ratio 2.19; 95 % confidence interval 1.61-3.00; p < 0.001). ECOG performance score (p < 0.001), ambulatory status prior to RT (p = 0.003), and the time to developing motor deficits (p < 0.001) were also significantly associated with survival in the multivariate analysis. The number of extraspinal organs involved by metastases is an independent prognostic factor of survival in patients with MSCC from breast cancer. (orig.) [German] In dieser Studie wurde die prognostische Bedeutung der Anzahl metastatisch befallener extraspinaler Organe fuer das Ueberleben von Brustkrebspatientinnen mit metastatisch bedingter Rueckenmarkskompression (MBRK) untersucht. Die Daten von 145 Brustkrebspatientinnen, die eine alleinige Strahlentherapie (RT) mit 10 Fraktionen mit je 3 Gy aufgrund einer MBRK erhielten, wurden retrospektiv ausgewertet. Sieben moegliche Prognosefaktoren wurden untersucht: Alter, Allgemeinzustand (Eastern Cooperative Oncology Group performance score = ECOG-PS), Anzahl befallener Wirbelkoerper, Intervall von der Erstdiagnose der Tumorerkrankung bis zur RT der MBRK

  9. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  10. A cell number-counting factor regulates the cytoskeleton and cell motility in Dictyostelium

    OpenAIRE

    Tang, Lei; Gao, Tong; McCollum, Catherine; Jang, Wonhee; Vicker, Michael G.; Ammann, Robin R.; Gomer, Richard H.

    2002-01-01

    Little is known about how a morphogenetic rearrangement of a tissue is affected by individual cells. Starving Dictyostelium discoideum cells aggregate to form dendritic streams, which then break up into groups of ≈2 × 104 cells. Cell number is sensed at this developmental stage by using counting factor (CF), a secreted complex of polypeptides. A high extracellular concentration of CF indicates that there is a large number of cells, which then causes the aggregation stream to break up. Compute...

  11. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication

    Directory of Open Access Journals (Sweden)

    Jide Tian

    2017-01-01

    Full Text Available The activation of β-cell’s A- and B-type gamma-aminobutyric acid receptors (GABAA-Rs and GABAB-Rs can promote their survival and replication, and the activation of α-cell GABAA-Rs promotes their conversion into β-cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS. Lesogaberan (AZD3355 is a peripherally restricted high-affinity GABAB-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD that appears to be safe for human use. This study tested the hypothesis that lesogaberan could be repurposed to promote human islet cell survival and β-cell replication. Treatment with lesogaberan significantly enhanced replication of human islet cells in vitro, which was abrogated by a GABAB-R antagonist. Immunohistochemical analysis of human islets that were grafted into immune-deficient mice revealed that oral treatment with lesogaberan promoted human β-cell replication and islet cell survival in vivo as effectively as GABA (which activates both GABAA-Rs and GABAB-Rs, perhaps because of its more favorable pharmacokinetics. Lesogaberan may be a promising drug candidate for clinical studies of diabetes intervention and islet transplantation.

  12. Relationship between cytomegalovirus cells and survival in acquired immunodeficiency syndrome patients.

    Science.gov (United States)

    Lemert, C M; Baughman, R P; Hayner, C E; Nestok, B R

    1996-01-01

    To determine whether cytopathic changes due to cytomegalovirus (CMV) in human immunodeficiency virus-infected patients are prognostic. Three-month mortality was compared in three groups: 36 patients with positive CMV cytology, 38 with negative cytology but culture positive, and 40 with no evidence of CMV. Bronchoalveolar lavage, Papanicolaou-stained cytocentrifuge smears were quantitated using an average of two slides per case. Additionally, coinfection with Pneumocystis carinii and Cryptococcus neoformans was evaluated. There was a statistically significant increase in mortality at three months in CMV cytology-positive patients versus those with no evidence of CMV. Ten patients had quantitative CMV counts of less than 2, with a median survival of 3.0 months (range, 0.3-13.0); seven patients had counts of 2 or 3, with a median survival of 5.5 months (0.4-13.5); and 11 patients had CMV counts greater than 3, with a median survival of 7.2 months (0.3-14.0). There was no significant difference between the groups. Coinfection was P Carinii (12) or C neoformans (2) showed no difference from patients without coinfection (chi2 = 0.81). The presence of CMV cytopathic changes is associated with poorer survival, but an increased number of CMV-infected cells is not related to higher mortality.

  13. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  14. Unbiased estimation of cell number using the automatic optical fractionator.

    Science.gov (United States)

    Mouton, Peter R; Phoulady, Hady Ahmady; Goldgof, Dmitry; Hall, Lawrence O; Gordon, Marcia; Morgan, David

    2017-03-01

    A novel stereology approach, the automatic optical fractionator, is presented for obtaining unbiased and efficient estimates of the number of cells in tissue sections. Used in combination with existing segmentation algorithms and ordinary immunostaining methods, automatic estimates of cell number are obtainable from extended depth of field images built from three-dimensional volumes of tissue (disector stacks). The automatic optical fractionator is more accurate, 100% objective and 8-10 times faster than the manual optical fractionator. An example of the automatic fractionator is provided for counts of immunostained neurons in neocortex of a genetically modified mouse model of neurodegeneration. Evidence is presented for the often overlooked prerequisite that accurate counting by the optical fractionator requires a thin focal plane generated by a high optical resolution lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Directory of Open Access Journals (Sweden)

    Sherezade Fuentes-Julián

    Full Text Available The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical

  16. Association of high HLA-E expression during acute cellular rejection and numbers of HLA class I leader peptide mismatches with reduced renal allograft survival.

    Science.gov (United States)

    Guberina, Hana; Rebmann, Vera; Wagner, Bettina; da Silva Nardi, Fabiola; Dziallas, Phillip; Dolff, Sebastian; Bienholz, Anja; Wohlschlaeger, Jeremias; Bankfalvi, Agnes; Heinemann, Falko M; Witzke, Oliver; Zoet, Yvonne M; Claas, Frans H J; Horn, Peter A; Kribben, Andreas; Doxiadis, Ilias I N

    2017-03-01

    Non-classical Human Leukocyte Antigen (HLA)-E preferentially presents leader peptides derived from classical HLA-class I molecules. HLA-E can trigger opposed immune responses by interacting with inhibitory NKG2A or by activating NKG2C receptors on NK and T-cells. We studied the impact of HLA-E on renal allograft survival during acute cellular rejection. HLA-E expression was up-regulated in acute cellular rejection (ACR) biopsies (n=12) compared to biopsies from 13 renal allografts with no rejection-signs. HLA-E up-regulation was correlated with numbers of HLA-class I leader peptide mismatches (p=0.04). CD8+ and CD56+ infiltrating cells correlated with HLA-E expression (pleader peptides might represent additional targets for immune-activating responses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Salivary glands of primary Sjögren's syndrome patients express factors vital for plasma cell survival

    Science.gov (United States)

    2011-01-01

    Introduction The presence of circulating Ro/SSA and La/SSB autoantibodies has become an important marker in the classification criteria for primary Sjögren's syndrome (pSS). Plasma cells producing these autoantibodies are mainly high affinity plasma cells originating from germinal centre reactions. When exposed to the right microenvironment these autoimmune plasma cells become long-lived and resistant to immunosuppressive treatment. Since autoimmune plasma cells have been detected in the salivary glands of SS patients, we wanted to investigate if the glandular microenvironment is suitable for plasma cell survival and if glandular residing plasma cells are the long-lived plasma cell subset. Methods Single, double and triple immunohistochemistry as well as immunofluorescence staining was performed on minor salivary gland tissue retrieved from pSS, chronically inflamed and normal subjects. Results We detected significant numbers of CD138+, non-proliferating, Bcl-2 expressing plasma cells in the salivary glands of pSS patients with high focus score (FS). Furthermore, we demonstrated that CXCL12 and interleukin (IL)-6 survival factors were highly expressed in pSS salivary gland epithelium and by focal mononuclear infiltrating cells. Notably, adipocytes when present in the salivary gland tissue were an important source of CXCL12. We clearly demonstrate that plasma cells are localised in close proximity to CXCL12 and IL-6 expressing cells and thus that the environment of salivary glands with high FS provide factors vital for plasma cell survival. Conclusions Plasma cells residing in the salivary glands of pSS patients with high FS showed phenotypic characteristics of the long-lived plasma cell subtype. Furthermore, the pSS salivary gland microenvironment provided niches rich in factors vital for plasma cell survival. PMID:21214903

  18. NanOx, a new model to predict cell survival in the context of particle therapy

    Science.gov (United States)

    Cunha, M.; Monini, C.; Testa, E.; Beuve, M.

    2017-02-01

    Particle therapy is increasingly attractive for the treatment of tumors and the number of facilities offering it is rising worldwide. Due to the well-known enhanced effectiveness of ions, it is of utmost importance to plan treatments with great care to ensure tumor killing and healthy tissues sparing. Hence, the accurate quantification of the relative biological effectiveness (RBE) of ions, used in the calculation of the biological dose, is critical. Nevertheless, the RBE is a complex function of many parameters and its determination requires modeling. The approaches currently used have allowed particle therapy to thrive, but still show some shortcomings. We present herein a short description of a new theoretical framework, NanOx, to calculate cell survival in the context of particle therapy. It gathers principles from existing approaches, while addressing some of their weaknesses. NanOx is a multiscale model that takes the stochastic nature of radiation at nanometric and micrometric scales fully into account, integrating also the chemical aspects of radiation-matter interaction. The latter are included in the model by means of a chemical specific energy, determined from the production of reactive chemical species induced by irradiation. Such a production represents the accumulation of oxidative stress and sublethal damage in the cell, potentially generating non-local lethal events in NanOx. The complementary local lethal events occur in a very localized region and can, alone, lead to cell death. Both these classes of events contribute to cell death. The comparison between experimental data and model predictions for the V79 cell line show a good agreement. In particular, the dependence of the typical shoulders of cell survival curves on linear energy transfer are well described, but also the effectiveness of different ions, including the overkill effect. These results required the adjustment of a number of parameters compatible with the application of the model in

  19. Ubc9 regulates mitosis and cell survival during zebrafish development.

    Science.gov (United States)

    Nowak, Matthias; Hammerschmidt, Matthias

    2006-12-01

    Many proteins are modified by conjugation with Sumo, a gene-encoded, ubiquitin-related peptide, which is transferred to its target proteins via an enzymatic cascade. A central component of this cascade is the E2-conjugating enzyme Ubc9, which is highly conserved across species. Loss-of-function studies in yeast, nematode, fruit fly, and mouse blastocystes point to multiple roles of Ubc9 during cell cycle regulation, maintenance of nuclear architecture, chromosome segregation, and viability. Here we show that in zebrafish embryos, reduction of Ubc9 activity by expression of a dominant negative version causes widespread apoptosis, similar to the effect described in Ubc9-deficient mice. However, antisense-based knock down of zygotic ubc9 leads to much more specific defects in late proliferating tissues, such as cranial cartilage and eyes. Affected cartilaginous elements are of relatively normal size and shape, but consist of fewer and larger cells. Stainings with mitotic markers and 5-Bromo-2'-deoxyuridine incorporation studies indicate that fewer chondrocyte precursors are in mitosis, whereas the proportion of cells in S-phase is unaltered. Consistently, FACS analyses reveal an increase in the number of cells with a DNA content of 4n or even 8n. Our data indicate an in vivo requirement of Ubc9 for G2/M transition and/or progression through mitosis during vertebrate organogenesis. Failed mitosis in the absence of Ubc9 is not necessarily coupled with cell death. Rather, cells can continue to replicate their DNA, grow to a larger size, and finish their normal developmental program.

  20. Simulation of Cell Group Formation Regulated by Coordination Number, Cell Cycle and Duplication Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-08-01

    Full Text Available The effects of coordination number, a cell cycle and duplication frequency on cell-group formation have been investigated in a computer simulation. In the simulation, multiplication occurs in the last three steps of a cell cycle with a probability function to give variations in the interval. Each cell has a constant coordination number: four or six. When a cell gets surrounded by adjacent cells, its status changes from an active stage to a resting stage. Each cell repeats multiplication, and disappears when the times of multiplication reach to the limit. Variation was made in the coordination number, in the interval of multiplication and in the limited times of multiplication. The cells of the colony, which have the larger number of coordination, have reached the larger maximum population and disappeared earlier.

  1. Number of negative lymph nodes is associated with disease-free survival in patients with breast cancer.

    Science.gov (United States)

    Wu, San-Gang; Sun, Jia-Yuan; Zhou, Juan; Li, Feng-Yan; Lin, Qin; Lin, Huan-Xin; Guan, Xun-Xing; He, Zhen-Yu

    2015-02-07

    The aim of this study was to evaluate the prognostic value of the number of negative lymph nodes (NLNs) in breast cancer patients after mastectomy. 2,455 breast cancer patients who received a mastectomy between January 1998 and December 2007 were retrospectively reviewed. The prognostic impact of the number of NLNs with respect to disease-free survival (DFS) was analyzed. The median follow-up time was 62.0 months, and the 5-year and 10-year DFS was 87.1% and 74.3%, respectively. The DFS of patients with >10 NLNs was significantly higher than that of patents with ≤10 NLNs, and the 5-year DFS rates were 87.5% and 69.5%, respectively (P patients with a higher number of NLNs had a better DFS (HR = 0.977, 95% CI: 0.958-0.997, P = 0.022). Subgroup analysis showed that the NLN count had a prognostic value in patients at different pT stages and pN positive patients (log-rank P patients (log-rank P = 0.684). The number of NLNs is an independent prognostic factor of DFS in breast cancer patients after mastectomy, and patients with a higher number of NLNs have a better DFS.

  2. Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli.

    Science.gov (United States)

    Xu, Wang-Ye; Li, Yi-Jing; Fan, Chen

    2018-02-01

    The increased serum survival gene (iss) has been identified as a virulence trait associated with the virulence of Escherichia coli, causing colibacillosis in poultry. However, it remains unclear as to whether iss mRNA copy number and sequence affect virulence. To examine these influences, we assessed the presence of iss, sequence analysis, iss mRNA copy number, and serum resistance. The iss gene was detected in 88 (all) E. coli isolates from different sources, and sequencing identified 16 alleles (32 different loci) and 10 amino acid sequences (10 different loci). Nested polymerase chain reaction improved iss detection. The isolates from sick chickens had >68% livability in serum resistance tests and higher iss mRNA copy number. The iss mRNA copy number highly correlated with mortality and E. coli livability. Student's t tests confirmed the relationship between the different loci to iss transcription, serum resistance, and virulence. These data suggest that iss mRNA copy number and different loci affect the virulence and serum resistance. These findings could be useful in further studies on the prevalence of iss among E. coli isolates and other virulence factors.

  3. Survival patterns in squamous cell carcinoma of the head and neck: pain as an independent prognostic factor for survival.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Anderson, Karen O; Merriman, Kelly W; Todd, Knox H; Shete, Sanjay S; Hanna, Ehab Y

    2014-10-01

    Survival outcomes in patients with squamous cell carcinoma of the head and neck (HNSCC) vary by extent of disease, behavioral factors, and socioeconomic factors. We assessed the extent to which pretreatment pain influences survival in 2,340 newly diagnosed patients with HNSCC, adjusting for disease stage, symptoms, pain medications, comorbidities, smoking, alcohol consumption, age, sex, and race/ethnicity. Patients rated their pain at presentation to the cancer center (0 = "no pain" and 10 = "pain as bad as you can imagine"). Survival time was calculated from the date of diagnosis to the date of death of any cause or last follow-up. Five-year overall survival was calculated for all the variables assessed in the study. Severe pain (≥7) was most prevalent among those with oral cancer (20.4%; pharynx = 18.8%; larynx = 16.1%) and significantly varied by tumor stage, fatigue severity, smoking status, comorbid lung disease, and race (all P pain for oral (severe pain = 31% vs nonsevere pain = 52%; P pain = 33% vs nonsevere pain = 53%; P pain persisted as an independent prognostic factor for survival. Pain reported prior to treatment should be considered in understanding survival outcomes in HNSCC patients. Pretreatment pain was an independent predictor of survival in a large sample of HNSCC patients even after accounting for tumor node metastasis stage, fatigue, age, race/ethnicity, smoking, and alcohol intake. Therefore, symptoms at presentation and before cancer treatment are important factors to be considered in understanding survival outcomes in HNSCC patients. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Survival and prognostic factors for survival, cancer specific survival and disease free interval in 239 patients with Hurthle cell carcinoma: a single center experience.

    Science.gov (United States)

    Oluic, Branisav; Paunovic, Ivan; Loncar, Zlatibor; Djukic, Vladimir; Diklic, Aleksandar; Jovanovic, Milan; Garabinovic, Zeljko; Slijepcevic, Nikola; Rovcanin, Branislav; Micic, Dusan; Filipovic, Aleksandar; Zivaljevic, Vladan

    2017-05-25

    Hurthle cell carcinoma makes up 3 to 5% of all thyroid cancers and is considered to be a true rarity. The aim of our study was to analyze clinical characteristics and survival rates of patients with Hurthle cell carcinoma. Clinical data regarding basic demographic characteristics, tumor grade, type of surgical treatment and vital status were collected. Methods of descriptive statistics and Kaplan-Meier survival curves were used for statistical analysis. Cox proportional hazards regression was used to identify independent predictors. During the period from 1995 to 2014, 239 patients with Hurthle cell carcinoma were treated at our Institution. The average age of the patients was 54.3, with female to male ratio of 3.6:1 and average tumor size was 41.8 mm. The overall recurrence rate was 12.1%, with average time for relapse of 90.74 months and average time without any signs of the disease of 222.4 months. Overall 5-year, 10-year and 20-year survival rates were 89.4%, 77.2%, 61.9% respectively. The 5-year, 10-year and 20-year cancer specific survival rates were 94.6%, 92.5%, 87.4%, respectively. When disease free interval was observed, 5-year, 10-year and 20-year rates were 91.1%, 86.2%, 68.5%, respectively. The affection of both thyroid lobes and the need for reoperation due to local relapse were unfavorable independent prognostic factors, while total thyroidectomy as primary procedure was favorable predictive factor for cancer specific survival. Hurthle cell carcinoma is a rare tumor with an encouraging prognosis and after adequate surgical treatment recurrences are rare.

  5. Resistance of Foxp3+ regulatory T cells to Nur77-induced apoptosis promotes allograft survival.

    Directory of Open Access Journals (Sweden)

    Ran Tao

    Full Text Available The NR4A nuclear receptor family member Nur77 (NR4A1 promotes thymocyte apoptosis during negative selection of autoreactive thymocytes, but may also function in mature extrathymic T cells. We studied the effects of over-expression of Nur77 on the apoptosis of murine peripheral T cells, including thymic-derived Foxp3+ regulatory (Treg cells. Overexpression of Nur77 in the T cell lineage decreased numbers of peripheral CD4 and CD8 T cells by approximately 80% compared to wild-type (WT mice. However, the proportions of Treg cells were markedly increased in the thymus (61% of CD4+Foxp3+ singly positive thymocytes vs. 8% in WT and secondary lymphoid organs (40-50% of CD4+Foxp3+ T cells vs. 7-8% in WT of Nur77 transgenic (Nur77Tg mice, and immunoprecipitation studies showed Nur77 was associated with a recently identified HDAC7/Foxp3 transcriptional complex. Upon activation through the T cell receptor in vitro or in vivo, Nur77Tg T cells showed only marginally decreased proliferation but significantly increased apoptosis. Fully allogeneic cardiac grafts transplanted to Nur77Tg mice survived long-term with well-preserved structure, and recipient splenocytes showed markedly enhanced apoptosis and greatly reduced anti-donor recall responses. Allografts in Nur77Tg recipients had significantly increased expression of multiple Treg-associated genes, including Foxp3, Foxp1, Tip60 and HDAC9. Allograft rejection was restored by CD25 monoclonal antibody therapy, indicating that allograft acceptance was dependent upon Treg function in Nur77Tg recipients. These data show that compared to conventional CD4 and CD8 T cells, Foxp3+ Tregs are relatively resistant to Nur77-mediated apoptosis, and that tipping the balance between the numbers of Tregs and responder T cells in the early period post-transplantation can determine the fate of the allograft. Hence, induced expression of Nur77 might be a novel means to achieve long-term allograft survival.

  6. Oxygen levels do not determine radiation survival of breast cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Chann Lagadec

    Full Text Available For more than a century oxygen has been known to be one of the most powerful radiosensitizers. However, despite decades of preclinical and clinical research aimed at overcoming tumor hypoxia, little clinical progress has been made so far. Ionizing radiation damages DNA through generation of free radicals. In the presence of oxygen these lesions are chemically modified, and thus harder to repair while hypoxia protects cells from radiation (Oxygen enhancement ratio (OER. Breast cancer stem cells (BSCSs are protected from radiation by high levels of free radical scavengers even in the presence of oxygen. This led us to hypothesize that BCSCs exhibit an OER of 1. Using four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, SUM159PT and primary breast cancer samples, we determined the number of BCSCs using cancer stem cell markers (ALDH1, low proteasome activity, compared radiation clonogenic survival and mammosphere formation under normoxic and hypoxic conditions, and correlated these results to the expression levels of key members of the free radical scavenging systems. The number of BCSCs increased with increased aggressiveness of the cancer. This correlated with increased radioresistance (SF(8Gy, and decreasing OERs. When cultured as mammospheres, breast cancer cell lines and primary samples were highly radioresistant and not further protected by hypoxia (OER∼1.We conclude that because BCSCs are protected from radiation through high expression levels of free radical scavengers, hypoxia does not lead to additional radioprotection of BCSCs.

  7. Promoting survival, migration, and integration of transplanted Schwann cells by over-expressing polysialic acid.

    Science.gov (United States)

    Luo, Juan; Bo, Xuenong; Wu, Dongsheng; Yeh, John; Richardson, Peter M; Zhang, Yi

    2011-03-01

    The poor survival and migration of transplanted Schwann cells (SCs) are major drawbacks for their clinical application in cell therapy for neurotrauma. To overcome such drawbacks we genetically modified SCs to over-express polysialic acid (PSA) by lentiviral delivery of polysialyltransferase (PST) to study whether over-expression of PSA could enhance their survival, migration, and integration when transplanted into the spinal cord. It was found that more PSA-expressing SCs (PST/SCs) survived than GFP-expressing SCs (GFP/SCs) after transplantation, although cell loss was still quite significant. PSA expression did not enhance the motility of transplanted SCs in uninjured spinal cord. However, in a spinal cord crush injury model PST/SCs transplanted caudal to the lesion showed that increased number of PST/SCs migrated to the injury site compared with that of GFP/SCs. Induced expression of PSA in spinal cord can further facilitate the infiltration of PST/SCs into the lesion site. PST/SCs were also shown to intermingle well with host spinal cells while GFP/SCs formed boundaries with host tissue. This was confirmed by an in vitro confrontation assay showing that more PST/SCs crossed over to astrocyte territory than GFP/SCs. Furthermore, PST/SCs induced much less expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycan in the surrounding tissues than GFP/SCs, indicating that expression of PSA on SCs do not cause significant stress response of astrocytes. These results demonstrate that expression of PSA on SCs significantly changes their biological properties and makes them more feasible for neural repair after neurotrauma. Copyright © 2010 Wiley-Liss, Inc.

  8. Survival of egg-laying controlling neuroendocrine cells during reproductive senescence of a mollusc

    NARCIS (Netherlands)

    Janse, C.

    2004-01-01

    During brain aging neuronal degradation occurs. In some neurons this may result in degeneration and cell death, still other neurons may survive and maintain their basic properties. The present study deals with survival of the egg-laying controlling neuroendocrine caudodorsal cells (CDCs) during

  9. Method of freezing living cells and tissues with improved subsequent survival

    Science.gov (United States)

    Senkan, Selim M.; Hirsch, Gerald P.

    1980-01-01

    This invention relates to an improved method for freezing red blood cells, ther living cells, or tissues with improved subsequent survival, wherein constant-volume freezing is utilized that results in significantly improved survival compared with constant-pressure freezing; optimization is attainable through the use of different vessel geometries, cooling baths and warming baths, and sample concentrations.

  10. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    Science.gov (United States)

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-03

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells.

  11. Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain.

    Science.gov (United States)

    Srivastava, Amit K; Bulte, Camille A; Shats, Irina; Walczak, Piotr; Bulte, Jeff W M

    2016-01-01

    Loss of functional cells from immunorejection during the early post-transplantation period is an important factor that reduces the efficacy of stem cell-based therapies. Recent studies have shown that transplanted mesenchymal stem cells (MSCs) can exert therapeutic effects by secreting anti-inflammatory and pro-survival trophic factors. We investigated whether co-transplantation of MSCs could improve the survival of other transplanted therapeutic cells. Allogeneic glial-restricted precursors (GRPs) were isolated from the brain of a firefly luciferase transgenic FVB mouse (at E13.5 stage) and intracerebrally transplanted, either alone, or together with syngeneic MSCs in immunocompetent BALB/c mice (n=20) or immunodeficient Rag2(-/-) mice as survival control (n=8). No immunosuppressive drug was given to any animal. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that co-transplantation of MSCs significantly improved (ptransplanted cells surviving in both the GRP only and the GRP+MSC group. In contrast, on day 21 post-transplantation, we observed a 94.2% decrease in BLI signal intensity in immunocompetent mice transplanted with GRPs alone versus 68.1% in immunocompetent mice co-transplanted with MSCs and GRPs (pcells, reduced astrogliosis, and a higher number of FoxP3(+) cells at the site of transplantation for the immunocompetent mice receiving MSCs. The present study demonstrates that co-transplantation of MSCs can be used to create a microenvironment that is more conducive to the survival of allogeneic GRPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Universal cell type identifier based on number theory.

    Science.gov (United States)

    Cosma, Antonio

    2018-02-23

    Cell type classification and handling is a key issue for understanding biological systems. The advent of high multiplexing technologies increased the complexity of the classification process and new tools are needed to support the organization of this knowledge. I propose a classification based on both prime numbers and the fundamental theorem of arithmetic. As a not limiting example, I show the application of this method to unambiguously define any existing cell type using the CD nomenclature established by the Human Leukocyte Differentiation Antigens Workshops. This system allows for the unique identification of any possible combination of markers hence any cell population without previous knowledge and without the need to increment the system. This method can be the future basis of any database and ontology system dealing with cell types and beyond the biological field applies to the description of any entity characterized by a list of discrete qualities. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  13. Paracrine Effects of Bone Marrow Mononuclear Cells in Survival and Cytokine Expression after 90% Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Carlos Oscar Kieling

    2017-01-01

    Full Text Available Acute liver failure is a complex and fatal disease. Cell-based therapies are a promising alternative therapeutic approach for liver failure due to relatively simple technique and lower cost. The use of semipermeable microcapsules has become an interesting tool for evaluating paracrine effects in vivo. In this study, we aimed to assess the paracrine effects of bone marrow mononuclear cells (BMMC encapsulated in sodium alginate to treat acute liver failure in an animal model of 90% partial hepatectomy (90% PH. Encapsulated BMMC were able to increase 10-day survival without enhancing liver regeneration markers. Gene expression of Il-6 and Il-10 in the remnant liver was markedly reduced at 6 h after 90% PH in animals receiving encapsulated BMMC compared to controls. This difference, however, was neither reflected by changes in the number of CD68+ cells nor by serum levels of IL6. On the other hand, treated animals presented increased caspase activity and gene expression in the liver. Taken together, these results suggest that BMMC regulate immune response and promote apoptosis in the liver after 90% PH by paracrine factors. These changes ultimately may be related to the higher survival observed in treated animals, suggesting that BMMC may be a promising alternative to treat acute liver failure.

  14. Exploitation of the complement system by oncogenic Kaposi's sarcoma-associated herpesvirus for cell survival and persistent infection.

    Directory of Open Access Journals (Sweden)

    Myung-Shin Lee

    2014-09-01

    Full Text Available During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi's sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705 of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection.

  15. Downregulation of the gli transcription factors regulator Kif7 facilitates cell survival and migration of choriocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna Ho

    Full Text Available The kinesin protein Kif7 has been recognized as an integral component of hedgehog signalling. Aberrant activation of hedgehog signalling has been implicated in many human solid tumours. Gestational trophoblastic disease includes frankly malignant choriocarcinoma and potentially malignant hydatidiform mole. Here we investigated the hedgehog signalling components expression profiles in gestational trophoblastic disease. Downregulation of Gli1, Gli2, Gli3 and Kif7 was demonstrated in clinical samples of choriocarcinoma and hydatidiform moles as well as choriocarcinoma cell lines when compared with normal placentas. Ectopic expression of Kif7 in two choriocarcinoma cell lines JAR and JEG-3 led to a decrease in cell growth and increase in apoptosis demonstrated by MTT and TUNEL assays, respectively. Overexpression of Kif7 also led to suppressed cell migration through transwell assay. In contrast, knocking down Kif7 in HTR-8/SVneo, an immortalized trophoblast cell line, increased cell number over time and increased the migratory ability of the cells. Taken together, Kif7 may contribute to pathogenesis of gestational trophoblastic disease through enhancing survival and promoting dissemination of trophoblasts.

  16. Impact of synchronous metastasis distribution on cancer specific survival in renal cell carcinoma after radical nephrectomy with tumor thrombectomy.

    Science.gov (United States)

    Tilki, Derya; Hu, Brian; Nguyen, Hao G; Dall'Era, Marc A; Bertini, Roberto; Carballido, Joaquín A; Chandrasekar, Thenappan; Chromecki, Thomas; Ciancio, Gaetano; Daneshmand, Siamak; Gontero, Paolo; Gonzalez, Javier; Haferkamp, Axel; Hohenfellner, Markus; Huang, William C; Koppie, Theresa M; Linares, Estefania; Lorentz, C Adam; Mandel, Philipp; Martinez-Salamanca, Juan I; Master, Viraj A; Matloob, Rayan; McKiernan, James M; Mlynarczyk, Carrie M; Montorsi, Francesco; Novara, Giacomo; Pahernik, Sascha; Palou, Juan; Pruthi, Raj S; Ramaswamy, Krishna; Rodriguez Faba, Oscar; Russo, Paul; Shariat, Shahrokh F; Spahn, Martin; Terrone, Carlo; Thieu, William; Vergho, Daniel; Wallen, Eric M; Xylinas, Evanguelos; Zigeuner, Richard; Libertino, John A; Evans, Christopher P

    2015-02-01

    Metastatic renal cell carcinoma can be clinically diverse in terms of the pattern of metastatic disease and response to treatment. We studied the impact of metastasis and location on cancer specific survival. The records of 2,017 patients with renal cell cancer and tumor thrombus who underwent radical nephrectomy and tumor thrombectomy from 1971 to 2012 at 22 centers in the United States and Europe were analyzed. Number and location of synchronous metastases were compared with respect to patient cancer specific survival. Multivariable Cox regression models were used to quantify the impact of covariates. Lymph node metastasis (155) or distant metastasis (725) was present in 880 (44%) patients. Of the patients with distant disease 385 (53%) had an isolated metastasis. The 5-year cancer specific survival was 51.3% (95% CI 48.6-53.9) for the entire group. On univariable analysis patients with isolated lymph node metastasis had a significantly worse cancer specific survival than those with a solitary distant metastasis. The location of distant metastasis did not have any significant effect on cancer specific survival. On multivariable analysis the presence of lymph node metastasis, isolated distant metastasis and multiple distant metastases were independently associated with cancer specific survival. Moreover higher tumor thrombus level, papillary histology and the use of postoperative systemic therapy were independently associated with worse cancer specific survival. In our multi-institutional series of patients with renal cell cancer who underwent radical nephrectomy and tumor thrombectomy, almost half of the patients had synchronous lymph node or distant organ metastasis. Survival was superior in patients with solitary distant metastasis compared to isolated lymph node disease. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Matthew E R Butchbach

    2016-03-01

    Full Text Available Proximal spinal muscular atrophy (SMA, a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1 on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7 and produce a protein that is both unstable and less than fully functional. Although only 10-20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS and progressive muscular atrophy (PMA. This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases.

  18. TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival.

    Directory of Open Access Journals (Sweden)

    Keming Yu

    Full Text Available BACKGROUND: Bone marrow stromal cells (BMSCs are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1, as a putative mechanistic agent acting on RGCs. METHODS AND FINDINGS: The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-beta expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-beta in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. CONCLUSIONS: Our data suggest that the TSP-1 signaling pathway might have an important

  19. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.

    Science.gov (United States)

    Ye, S J

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  20. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, T.; Pross, S.; Newton, C.; Friedman, H.

    1986-03-05

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by /sup 3/H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects.

  1. Calcium-independent phospholipase A₂, group VIA, is critical for RPE cell survival

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vohra, Rupali; Westlund, Barbro S.

    2014-01-01

    PURPOSE: To investigate the significance of calcium-independent phospholipase A₂, group VIA (iPLA2-VIA), in RPE cell survival following responses to sodium iodate (SI) in cell cultures. METHODS: The human retinal pigment epithelium (RPE) cell line (ARPE-19) cells and primary mouse-RPE cultures were...

  2. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maravillas Mellado-López

    2017-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  3. Number of mediastinal lymph nodes in non-small cell lung cancer: a Gaussian curve, not a prognostic factor.

    Science.gov (United States)

    Riquet, Marc; Legras, Antoine; Mordant, Pierre; Rivera, Caroline; Arame, Alex; Gibault, Laure; Foucault, Christophe; Dujon, Antoine; Le Pimpec Barthes, Françoise

    2014-07-01

    It has been proposed that examining a greater number of lymph nodes (LNs) in patients with non-small-cell lung cancer (NSCLC) treated by surgical resection may increase the likelihood of proper staging and affect outcome. Our purpose was to evaluate the interindividual variability and prognostic relevance of the number of LNs harvested during complete pulmonary and mediastinal lymphadenectomy performed for NSCLC. We prospectively collected and retrospectively reviewed the data from 1,095 patients who underwent lung cancer resection in association with systematic lymphadenectomy and pulmonary and mediastinal LN counts from 2004 to 2009. We analyzed the interindividual variability and prognostic impact of the number of LNs on overall survival (OS). The mean number of harvested pulmonary and mediastinal LNs was 17.4±7.3 (range, 1-65) and was higher in male patients, right lung surgical procedures, lobectomy and pneumonectomy, N2 disease, and pIII stage. The mean number of harvested mediastinal LNs was 10.7±5.6 and was normally distributed (range, 0-49; median, 10). The 5-year survival rate was 53.8%. Overall survival was influenced by the number of involved stations (single-station versus multi-station disease, 5-year survival rates 31.5% versus 16.9%, respectively; p=0.041) but not by the number of harvested LNs, the number of harvested mediastinal LNs, or the number of positive mediastinal LNs. After lung cancer resection and complete lymphadenectomy, the number of LNs is subject to normally distributed interindividual variability, with no significant impact on OS. Recommending an optimal number of nodes is therefore arbitrary. Instead, our recommendation is to perform a complete systematic pulmonary and mediastinal lymphadenectomy following established anatomical boundaries. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  5. N0/N1, PNL, or LNR? The effect of lymph node number on accurate survival prediction in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Valsangkar, Nakul P; Bush, Devon M; Michaelson, James S; Ferrone, Cristina R; Wargo, Jennifer A; Lillemoe, Keith D; Fernández-del Castillo, Carlos; Warshaw, Andrew L; Thayer, Sarah P

    2013-02-01

    We evaluated the prognostic accuracy of LN variables (N0/N1), numbers of positive lymph nodes (PLN), and lymph node ratio (LNR) in the context of the total number of examined lymph nodes (ELN). Patients from SEER and a single institution (MGH) were reviewed and survival analyses performed in subgroups based on numbers of ELN to calculate excess risk of death (hazard ratio, HR). In SEER and MGH, higher numbers of ELN improved the overall survival for N0 patients. The prognostic significance (N0/N1) and PLN were too variable as the importance of a single PLN depended on the total number of LN dissected. LNR consistently correlated with survival once a certain number of lymph nodes were dissected (≥13 in SEER and ≥17 in the MGH dataset). Better survival for N0 patients with increasing ELN likely represents improved staging. PLN have some predictive value but the ELN strongly influence their impact on survival, suggesting the need for a ratio-based classification. LNR strongly correlates with outcome provided that a certain number of lymph nodes is evaluated, suggesting that the prognostic accuracy of any LN variable depends on the total number of ELN.

  6. DNA double strand break (DSB) induction and cell survival in iodine-enhanced computed tomography (CT)

    Science.gov (United States)

    Streitmatter, Seth W.; Stewart, Robert D.; Jenkins, Peter A.; Jevremovic, Tatjana

    2017-08-01

    A multi-scale Monte Carlo model is proposed to assess the dosimetric and biological impact of iodine-based contrast agents commonly used in computed tomography. As presented, the model integrates the general purpose MCNP6 code system for larger-scale radiation transport and dose assessment with the Monte Carlo damage simulation to determine the sub-cellular characteristics and spatial distribution of initial DNA damage. The repair-misrepair-fixation model is then used to relate DNA double strand break (DSB) induction to reproductive cell death. Comparisons of measured and modeled changes in reproductive cell survival for ultrasoft characteristic k-shell x-rays (0.25-4.55 keV) up to orthovoltage (200-500 kVp) x-rays indicate that the relative biological effectiveness (RBE) for DSB induction is within a few percent of the RBE for cell survival. Because of the very short range of secondary electrons produced by low energy x-ray interactions with contrast agents, the concentration and subcellular distribution of iodine within and near cellular targets have a significant impact on the estimated absorbed dose and number of DSB produced in the cell nucleus. For some plausible models of the cell-level distribution of contrast agent, the model predicts an increase in RBE-weighted dose (RWD) for the endpoint of DSB induction of 1.22-1.40 for a 5-10 mg ml-1 iodine concentration in blood compared to an RWD increase of 1.07  ±  0.19 from a recent clinical trial. The modeled RWD of 2.58  ±  0.03 is also in good agreement with the measured RWD of 2.3  ±  0.5 for an iodine concentration of 50 mg ml-1 relative to no iodine. The good agreement between modeled and measured DSB and cell survival estimates provides some confidence that the presented model can be used to accurately assess biological dose for other concentrations of the same or different contrast agents.

  7. Favorable outcome of giant cell glioblastoma in a child. Report of an 11-year survival period.

    Science.gov (United States)

    Klein, R; Mölenkamp, G; Sörensen, N; Roggendorf, W

    1998-06-01

    Giant cell glioblastomas are defined as glioblastomas with a marked predominance of bizarre, multinucleated giant cells. They represent about 5% of all glioblastomas and can occur at any site of the central nervous system, but the temporal and frontal lobes are the sites of predilection. Overall, giant cell glioblastomas show a prolonged survival period compared with common glioblastoma multiforme, and survival periods of 7 and 9 years have been reported in adults. Here we report on a child aged 11 years at diagnosis, who has so far survived for 11 years since operation and adjunctive radio- and chemotherapy.

  8. BCL-W has a fundamental role in B cell survival and lymphomagenesis.

    Science.gov (United States)

    Adams, Clare M; Kim, Annette S; Mitra, Ramkrishna; Choi, John K; Gong, Jerald Z; Eischen, Christine M

    2017-02-01

    Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation-induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family-targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies.

  9. Prolyl hydroxylase PHD3 enhances the hypoxic survival and G1 to S transition of carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Heidi Högel

    Full Text Available Hypoxia restricts cell proliferation and cell cycle progression at the G1/S interface but at least a subpopulation of carcinoma cells can escape the restriction. In carcinoma hypoxia may in fact select for cells with enhanced hypoxic survival and increased aggressiveness. The cellular oxygen sensors HIF proline hydroxylases (PHDs adapt the cellular functions to lowered environmental oxygen tension. PHD3 isoform has shown the strongest hypoxic upregulation among the family members. We detected a strong PHD3 mRNA expression in tumors of head and neck squamous cell carcinoma (HNSCC. The PHD3 expression associated with expression of hypoxic marker gene. Using siRNA in cell lines derived from HNSCC we show that specific inhibition of PHD3 expression in carcinoma cells caused reduced cell survival in hypoxia. The loss of PHD3, but not that of PHD2, led to marked cell number reduction. Although caspase-3 was activated at early hypoxia no induction of apoptosis was detected. However, hypoxic PHD3 inhibition caused a block in cell cycle progression. Cell population in G1 phase was increased and the population in S phase reduced demonstrating a block in G1 to S transition under PHD3 inhibition. In line with this, the level of hyperphosphorylated retinoblastoma protein Rb was reduced by PHD3 knock-down in hypoxia. PHD3 loss led to increase in cyclin-dependent kinase inhibitor p27 expression but not that of p21 or p16. The data demonstrated that increased PHD3 expression under hypoxia enhances cell cycle progression and survival of carcinoma cells.

  10. Survival of transplanted human neural stem cell line (ReNcell VM) into the rat brain with and without immunosuppression.

    Science.gov (United States)

    Hovakimyan, M; Müller, J; Wree, A; Ortinau, S; Rolfs, A; Schmitt, O

    2012-09-01

    Functional replacement of specific neuronal populations through transplantation of neural tissue represents an attractive therapeutic strategy for treating neurodegenerative disorders like Parkinson's disease (PD). Even though the brain is a partially immune privileged site, immunosuppression is still needed for the prevention of host immune response, and thus, xenograft rejection. Here, we investigated the fate of human ventral mesencephalon derived immortalized cell line ReNcell VM upon unilateral transplantation into the intact rat striatum with or without immunosuppression with cyclosporine A (CsA). The status of xenografted human ReNcell VM cells was analysed by immunohistochemistry/immunofluorescence 4 and 6weeks after transplantation. Four weeks after transplantation, ReNcell VM cells could be detected in both groups, although the number of survived cells was significantly higher in brains of immunosuppressed rats. In contrast, only 2 out of 6 brains grafted without immunosuppression revealed human ReNcell VM cells 6weeks post grafting, whereas a considerable number of human cells could still be found in all the brains of immunosuppressed rats. Immunohistochemical analysis of grafted cells showed almost no evidence of neuronal differentiation, but rather astroglial development. In summary, we have shown that the immunosuppression is needed for the survival of human VM derived progenitor cells in the rat striatum. CsA affected cell survival, but not differentiation capacity: in both groups, grafted either with or without immunosuppression, the ReNcell VM cells lacked neuronal phenotype and developed preferentially into astroglia. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  12. Parenteral nutrition rapidly reduces hepatic mononuclear cell numbers and lipopolysaccharide receptor expression on Kupffer cells in mice.

    Science.gov (United States)

    Omata, Jiro; Fukatsu, Kazuhiko; Murakoshi, Satoshi; Noguchi, Midori; Moriya, Tomoyuki; Okamoto, Koichi; Saitoh, Daizoh; Yamamoto, Junji; Hase, Kazuo

    2010-01-01

    Parenteral nutrition (PN) reduces the number of hepatic mononuclear cell (MNCs) and impairs their function, resulting in poor survival after intraportal bacterial challenge in mice. Our recent animal study demonstrated resumption of enteral nutrition after PN to rapidly restore hepatic MNC numbers (in 12 hours) and lipopolysaccharide (LPS) receptor expression on Kupffer cells (in 48 hours). The present study examined the time courses of hepatic MNC number reductions and LPS receptor expression changes in mice receiving PN. Male mice (n = 49) from the Institute of Cancer Research were divided into chow (n = 8), PN0.5 (n = 8), PN1 (n = 8), PN2 (n = 9), PN3 (n = 9), and PN5 (n = 7) groups. The chow group was given chow with an intravenous saline infusion. The PN groups were fed parenterally for 0.5, 1, 2, 3, or 5 days following the chow-feeding courses. After 7 days of nutrition support, hepatic MNCs were isolated and counted. The expression of LPS receptors on Kupffer cells was analyzed by flow cytometry. Hepatic MNC numbers rapidly reached their lowest level in the PN0.5 and PN1 groups but were somewhat restored thereafter and remained stable after the third day, without significant differences between any 2 of the PN groups. CD14 and Toll-like receptor 4/MD-2 expressions both showed significant reductions in the PN1 group compared with the chow group and gradually decreased to their lowest levels in the PN5 group. PN administration rapidly reduces hepatic MNC numbers and LPS receptor expression on Kupffer cells.

  13. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation

    Directory of Open Access Journals (Sweden)

    Sébastien Sart

    2015-01-01

    Full Text Available Reactive oxygen species (ROS have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs and pluripotent stem cells (PSCs, this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.

  14. IR-induced autophagy plays a role in survival of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong Min; Kim, Jin Hong; Kim, Jin Kyu [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2014-04-15

    Cells respond to stress with repair, or are diverted into irreversible cell cycle exit (senescence) or are eliminated through programmed cell death. There are two major morphologically distinctive forms of programmed cell death, apoptosis and autophagic cell death. Apoptosis contribute to cell death, whereas autophagy can play a dual role in mediating either cell survival or death in response to various stress stimuli. Here we analysed cellular responses induced by IR. The understanding of an appropriate cellular stress response is of crucial importance in foreseeing the cell fate. Apoptotic feagures were not detected in HeLa under our experimental irradiation condition. Autophagic cell death in HeLa may play an important role in cell protection and can result in cell survival.

  15. Survival after primary and deferred cystectomy for stage T1 transitional cell carcinoma of the bladder

    Directory of Open Access Journals (Sweden)

    Bedeir Ali-El-Dein

    2011-01-01

    Conclusions: Cancer-specific survival is statistically comparable for primary and deferred cystectomy in T1 bladder cancer, although there is a non-significant difference in favor of primary cystectomy. In the deferred cystectomy group, the number of TURBTs beyond three is associated with lower survival. Conservative treatment should be adopted for most cases in this category.

  16. Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Clavier, Séverine; Zaal, Esther A; Pijls, Maud M E; van Kooten, Robert T; Vermaas, Klaas; Leen, René; Jongejan, Aldo; Moerland, Perry D; van Kampen, Antoine H C; van Kuilenburg, André B P; Berkers, Celia R; Lemeer, Simone; Heger, Michal

    2017-03-01

    Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC50) and supralethal (LC90) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC90. PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.

  17. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Czub, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Banas, D. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Blaszczyk, A. [Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Braziewicz, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Buraczewska, I. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Choinski, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, 02-093 Warsaw (Poland); Gorak, U. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Lankoff, A.; Lisowska, H. [Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Lukaszek, A. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw (Poland); Szeflinski, Z. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)], E-mail: szef@fuw.edu.pl; Wojcik, A. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland)

    2009-03-15

    Chinese hamster ovary CHO-K1 cells were exposed to high LET {sup 12}C-beam (LET: 830 keV/{mu}m) in the dose range of 0-6 Gy and to {sup 60}Co irradiation and the RBE value was obtained. Effects of {sup 12}C-beam exposure on cell survival and chromosomal aberrations were calculated. The chromosomal aberration data were fitted with linear equation. The distribution of aberration in cells was examined with a standard u-test and used to evaluate the data according to Poisson probabilities. The variance to the mean ratio {sigma}{sup 2}/Y and the dispersion index (u) were determined. Overdispersion was significant (p<0.05) when the value of u exceeded 1.96.

  18. A Validated Prediction Model for Overall Survival From Stage III Non-Small Cell Lung Cancer: Toward Survival Prediction for Individual Patients

    Energy Technology Data Exchange (ETDEWEB)

    Oberije, Cary, E-mail: cary.oberije@maastro.nl [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands); De Ruysscher, Dirk [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Universitaire Ziekenhuizen Leuven, KU Leuven (Belgium); Houben, Ruud [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Heuvel, Michel van de; Uyterlinde, Wilma [Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Deasy, Joseph O. [Memorial Sloan Kettering Cancer Center, New York (United States); Belderbos, Jose [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Dingemans, Anne-Marie C. [Department of Pulmonology, University Hospital Maastricht, Research Institute GROW of Oncology, Maastricht (Netherlands); Rimner, Andreas; Din, Shaun [Memorial Sloan Kettering Cancer Center, New York (United States); Lambin, Philippe [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands)

    2015-07-15

    Purpose: Although patients with stage III non-small cell lung cancer (NSCLC) are homogeneous according to the TNM staging system, they form a heterogeneous group, which is reflected in the survival outcome. The increasing amount of information for an individual patient and the growing number of treatment options facilitate personalized treatment, but they also complicate treatment decision making. Decision support systems (DSS), which provide individualized prognostic information, can overcome this but are currently lacking. A DSS for stage III NSCLC requires the development and integration of multiple models. The current study takes the first step in this process by developing and validating a model that can provide physicians with a survival probability for an individual NSCLC patient. Methods and Materials: Data from 548 patients with stage III NSCLC were available to enable the development of a prediction model, using stratified Cox regression. Variables were selected by using a bootstrap procedure. Performance of the model was expressed as the c statistic, assessed internally and on 2 external data sets (n=174 and n=130). Results: The final multivariate model, stratified for treatment, consisted of age, gender, World Health Organization performance status, overall treatment time, equivalent radiation dose, number of positive lymph node stations, and gross tumor volume. The bootstrapped c statistic was 0.62. The model could identify risk groups in external data sets. Nomograms were constructed to predict an individual patient's survival probability ( (www.predictcancer.org)). The data set can be downloaded at (https://www.cancerdata.org/10.1016/j.ijrobp.2015.02.048). Conclusions: The prediction model for overall survival of patients with stage III NSCLC highlights the importance of combining patient, clinical, and treatment variables. Nomograms were developed and validated. This tool could be used as a first building block for a decision support system.

  19. JAK/STAT autocontrol of ligand-producing cell number through apoptosis.

    Science.gov (United States)

    Borensztejn, Antoine; Boissoneau, Elisabeth; Fernandez, Guillaume; Agnès, François; Pret, Anne-Marie

    2013-01-01

    During development, specific cells are eliminated by apoptosis to ensure that the correct number of cells is integrated in a given tissue or structure. How the apoptosis machinery is activated selectively in vivo in the context of a developing tissue is still poorly understood. In the Drosophila ovary, specialised follicle cells [polar cells (PCs)] are produced in excess during early oogenesis and reduced by apoptosis to exactly two cells per follicle extremity. PCs act as an organising centre during follicle maturation as they are the only source of the JAK/STAT pathway ligand Unpaired (Upd), the morphogen activity of which instructs distinct follicle cell fates. Here we show that reduction of Upd levels leads to prolonged survival of supernumerary PCs, downregulation of the pro-apoptotic factor Hid, upregulation of the anti-apoptotic factor Diap1 and inhibition of caspase activity. Upd-mediated activation of the JAK/STAT pathway occurs in PCs themselves, as well as in adjacent terminal follicle and interfollicular stalk cells, and inhibition of JAK/STAT signalling in any one of these cell populations protects PCs from apoptosis. Thus, a Stat-dependent unidentified relay signal is necessary for inducing supernumerary PC death. Finally, blocking apoptosis of PCs leads to specification of excess adjacent border cells via excessive Upd signalling. Our results therefore show that Upd and JAK/STAT signalling induce apoptosis of supernumerary PCs to control the size of the PC organising centre and thereby produce appropriate levels of Upd. This is the first example linking this highly conserved signalling pathway with developmental apoptosis in Drosophila.

  20. B-cell lymphoma 6 promotes proliferation and survival of trophoblastic cells.

    Science.gov (United States)

    Muschol-Steinmetz, Cornelia; Jasmer, Britta; Kreis, Nina-Naomi; Steinhäuser, Kerstin; Ritter, Andreas; Rolle, Udo; Yuan, Juping; Louwen, Frank

    2016-01-01

    Preeclampsia is one of the leading causes of maternal and perinatal mortality and morbidity and its pathogenesis is not fully understood. B-cell lymphoma 6 (BCL6), a key regulator of B-lymphocyte development, is altered in preeclamptic placentas. We show here that BCL6 is present in all 3 studied trophoblast cell lines and it is predominantly expressed in trophoblastic HTR-8/SVneo cells derived from a 1(st) trimester placenta, suggestive of its involvement in trophoblast expansion in the early stage of placental development. BCL6 is strongly stabilized upon stress stimulation. Inhibition of BCL6, by administrating either small interfering RNA or a specific small molecule inhibitor 79-6, reduces proliferation and induces apoptosis in trophoblastic cells. Intriguingly, depletion of BCL6 in HTR-8/SVneo cells results in a mitotic arrest associated with mitotic defects in centrosome integrity, indicative of its involvement in mitotic progression. Thus, like in haematopoietic cells and breast cancer cells, BCL6 promotes proliferation and facilitates survival of trophoblasts under stress situation. Further studies are required to decipher its molecular roles in differentiation, migration and the fusion process of trophoblasts. Whether increased BCL6 observed in preeclamptic placentas is one of the causes or the consequences of preeclampsia warrants further investigations in vivo and in vitro.

  1. Forced mastication increases survival of adult neural stem cells in the hippocampal dentate gyrus.

    Science.gov (United States)

    Akazawa, Yuki; Kitamura, Takamasa; Fujihara, Yuri; Yoshimura, Yoshitaka; Mitome, Masato; Hasegawa, Tomokazu

    2013-02-01

    In this study, we examined the effect of forced mastication on neurogenesis in the hippocampal dentate gyrus (DG) of adult mice. Six-week-old mice were subjected to either a hard or normal diet for 13 weeks. They received a daily injection of bromodeoxyuridine (BrdU) for 12 consecutive days beginning at 14 weeks of age. The number of BrdU-positive cells in the DG was counted 1 day after and 5 weeks after the final BrdU injection. The number of BrdU-positive cells 1 day after injection did not differ between the 2 diet groups. However, the number of BrdU-positive cells in the group fed the hard diet was significantly increased 5 weeks after BrdU injection compared to the group fed the normal diet. The results of the Morris water maze test showed that mice fed a hard diet required significantly less time to reach the platform than the control mice when tested at 10 days. Moreover, mice in the group fed the hard diet spent significantly more time in the former platform area than the group fed the normal diet, indicating that hard diet feeding improved spatial memory compared to normal diet feeding. Real-time PCR analysis showed that the expression of glutamate receptor 1 mRNA was significantly increased in the group fed the hard diet compared with the group fed the normal diet. These results suggest that mastication increases the survival of adult neural stem cells in the hippocampal DG.

  2. Influence of cis-diamminedichloroplatinum (II) on mouse duodenal crypt stem cell survival after multifraction X ray treatment

    Energy Technology Data Exchange (ETDEWEB)

    Dewit, L.; Begg, A.C.; Koehler, Y.S.; Stewart, F.A.; Bartelink, H.

    1985-10-01

    The mechanism of interaction of cis-platinum and X rays was investigated in mouse duodenal crypts using the microcolony assay. Mice were exposed to 1, 2, 5, 10, or 15 fractions of X rays, either alone or preceded by a single i.p. injection of cis-platinum, 8 mg/kg, one-half hour before the first fraction. In all fractionation regimens, cisplatinum caused a shift of the X ray survival curve for crypt cells towards lower doses. The vertical distances between the survival curves after X rays and those in combination with cis-platinum were about the same. After cis-platinum treatment alone, a crypt cell survival curve was established in the high dose range. The estimated cell kill by 8 mg/kg of cis-platinum, obtained by extrapolation of this curve, was 1 log10 cell number. These data imply independent cell killing mechanisms for cis-platinum and X rays. However, even after correction for cell kill by the drug, cis-platinum tended to inhibit slightly sublethal damage repair after X rays. This was supported by linear quadratic analyses, in which the alpha/beta value after combined treatment was found to be slightly higher than after X rays alone.

  3. Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo

    Science.gov (United States)

    Ishizuka, Satoshi; Martin, Kareen; Booth, Catherine; Potten, Christopher S.; de Murcia, Gilbert; Bürkle, Alexander; Kirkwood, Thomas B. L.

    2003-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme mediating the cellular response to DNA strand breaks. It plays a critical role in genomic stability and survival of proliferating cells in culture undergoing DNA damage. Intestinal epithelium is the most proliferative tissue in the mammalian body and its stem cells show extreme sensitivity to low-level genotoxic stress. We investigated the role of PARP-1 in the in vivo damage response of intestinal stem cells in crypts of PARP-1–/– and control mice following whole-body γ-irradiation (1 Gy). In the PARP-1–/– mice there was a significant delay during the first 6 h in the transient p53 accumulation in stem cells whereas an increased number of cells were positive for p21CIP1/WAF1. Either no or only marginal differences were noted in MDM2 expression, apoptosis, induction of or recovery from mitotic blockage, or inhibition of DNA synthesis. We further observed a dose-dependent reduction in crypt survival measured at 4 days post-irradiation in control mice, and this crypt-killing effect was significantly potentiated in PARP-1–/– mice. Our results thus establish that PARP-1 acts as a survival factor for intestinal stem cells in vivo and suggest a functional link with early p53 and p21CIP1/WAF1 responses. PMID:14576306

  4. IL-15 expression on RA synovial fibroblasts promotes B cell survival.

    Directory of Open Access Journals (Sweden)

    Marta Benito-Miguel

    Full Text Available INTRODUCTION: The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib IL-15 expression on B cell survival. METHODS: Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. RESULTS: RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/-8% (p<0.001. IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/-6% (p<0.05. Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. CONCLUSION: IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.

  5. Emerging role of LRRK2 in human neural progenitor cell cycle progression, survival and differentiation.

    Science.gov (United States)

    Milosevic, Javorina; Schwarz, Sigrid C; Ogunlade, Vera; Meyer, Anne K; Storch, Alexander; Schwarz, Johannes

    2009-06-15

    Despite a comprehensive mapping of the Parkinson's disease (PD)-related mRNA and protein leucine-rich repeat kinase 2 (LRRK2) in the mammalian brain, its physiological function in healthy individuals remains enigmatic. Based on its structural features and kinase properties, LRRK2 may interact with other proteins involved in signalling pathways. Here, we show a widespread LRRK2 mRNA and/or protein expression in expanded or differentiated human mesencephalic neural progenitor cells (hmNPCs) and in post-mortem substantia nigra PD patients. Using small interfering RNA duplexes targeting LRRK2 in hmNPCs following their differentiation into glia and neurons, we observed a reduced number of dopaminergic neurons due to apoptosis in LRRK2 knockdown samples. LRRK2-deficient hmNPCs exhibited elevated cell cycle- and cell death-related markers. In conclusion, a reduction of LRRK2 expression in hmNPCs severely impaired dopaminergic differentiation and/or survival of dopaminergic neurons most likely via preserving or reactivating the cell cycle.

  6. Emerging role of LRRK2 in human neural progenitor cell cycle progression, survival and differentiation

    Directory of Open Access Journals (Sweden)

    Meyer Anne K

    2009-06-01

    Full Text Available Abstract Despite a comprehensive mapping of the Parkinson's disease (PD-related mRNA and protein leucine-rich repeat kinase 2 (LRRK2 in the mammalian brain, its physiological function in healthy individuals remains enigmatic. Based on its structural features and kinase properties, LRRK2 may interact with other proteins involved in signalling pathways. Here, we show a widespread LRRK2 mRNA and/or protein expression in expanded or differentiated human mesencephalic neural progenitor cells (hmNPCs and in post-mortem substantia nigra PD patients. Using small interfering RNA duplexes targeting LRRK2 in hmNPCs following their differentiation into glia and neurons, we observed a reduced number of dopaminergic neurons due to apoptosis in LRRK2 knockdown samples. LRRK2-deficient hmNPCs exhibited elevated cell cycle- and cell death-related markers. In conclusion, a reduction of LRRK2 expression in hmNPCs severely impaired dopaminergic differentiation and/or survival of dopaminergic neurons most likely via preserving or reactivating the cell cycle.

  7. Survival of the fittest?--survival of stored red blood cells after transfusion.

    NARCIS (Netherlands)

    Luten, M.; Roerdinkholder-Stoelwinder, B.; Bost, H.J.; Bosman, G.J.C.G.M.

    2004-01-01

    During the last 90 years many developments have taken place in the world of blood transfusion. Several anticoagulants and storage solutions have been developed. Also the blood processing has undergone many changes. At the moment, in The Netherlands, red blood cell (RBC) concentrates (prepared from a

  8. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in

  9. Rapamycin Prolongs the Survival of Corneal Epithelial Cells in Culture

    OpenAIRE

    Sanaz Gidfar; Farnoud Y. Milani; Milani, Behrad Y.; Xiang Shen; Medi Eslani; Ilham Putra; Michael J. Huvard; Hossein Sagha; Djalilian, Ali R.

    2017-01-01

    Rapamycin has previously been shown to have anti-aging effects in cells and organisms. These studies were undertaken to investigate the effects of rapamycin on primary human corneal epithelial cells in vitro. Cell growth and viability were evaluated by bright field microscopy. Cell proliferation and cycle were evaluated by flow cytometry. The expression of differentiation markers was evaluated by quantitative PCR and Western blot. Senescence was evaluated by senescence-associated ?-Galactosid...

  10. Circulating melanoma cells and survival in metastatic melanoma

    NARCIS (Netherlands)

    Rao, C.; Bui, T.; Connelly, M.; Doyle, G.; Karydis, I.; Middleton, M. R.; Clack, G.; Malone, M.; Coumans, F. A. W.; Terstappen, L. W. M. M.

    2011-01-01

    A validated assay for the enumeration of circulating melanoma cells (CMCs) may facilitate the development of more effective therapies for metastatic melanoma patients. In this study CD146(+) cells were immunomagnetically enriched from 7.5 ml of blood. Isolated cells were fluorescently stained with

  11. Pro-inflammatory type-1 and anti-inflammatory type-2 macrophages differentially modulate cell survival and invasion of human bladder carcinoma T24 cells.

    Science.gov (United States)

    Dufresne, Mathieu; Dumas, Geneviève; Asselin, Eric; Carrier, Christian; Pouliot, Marc; Reyes-Moreno, Carlos

    2011-07-01

    Findings from numerous studies suggest that inflammation is likely to have an important role in bladder carcinogenesis and cancer disease progression. While macrophages (Mϕs) constitute a major inflammatory component of the stroma of human bladder carcinoma, the regulatory role of such inflammatory leukocytes in tumor cell survival and invasion remains elusive. Human urothelial bladder cancer (UBC) T24 cells and monocyte-derived macrophages were used to study the relative contribution of pro-inflammatory type-1 (Mϕ-1) and anti-inflammatory type-2 (Mϕ-2) macrophages in the regulation of UBC cell behaviour. Cell-to-cell studies indicated that the number of viable cells were considerable higher in T24 cell/Mϕ-2 cocultures but lower in T24 cell/Mϕ-1 cocultures when compared to cultures of T24 cells alone. Mϕ-1-derived factors inhibit T24 cell growth but fail to induce caspase-3-mediated apoptosis. Mϕ-2-derived factors have the ability to suppress the inhibitory effect of Mϕ-1-derived factors on T24 cell growth. Exogenous interleukin (IL)-10 reverse Mϕ-1-mediated arrest growth in T24 cell/Mϕ-1 cell cocultures. Further analyses showed that Mϕ-1-derived factors induced tumor necrosis factor (TNF)-α gene expression, promoted cellular invasiveness and increased phosphoinositide 3-kinase (PI 3-K)/Akt signaling pathway activity in T24 cells. Inhibition of PI 3-K activation in T24 cells or blockade of TNFα receptor in T24 cell/Mϕ-1 cell cocultures decreased cellular invasiveness but did not affect T24 cell viability. Based on these observations, we propose that similar functional interactions between UBC cells and infiltrating macrophages can take place in vivo and influence tumor cell survival and invasion during bladder cancer progression. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. Effects of cell-bound microcystins on survival and feeding of Daphnia spp

    DEFF Research Database (Denmark)

    Rohrlack, T; Dittmann, E; Börner, T

    2001-01-01

    microcystin synthesis, were compared. Additionally, the relationship between microcystin ingestion rate by the Daphnia clones and Daphnia survival time was analyzed. Microcystins ingested with Microcystis cells were poisonous to all Daphnia clones tested. The median survival time of the animals was closely......-producing and -lacking cells, and (iv) the strength of the toxic effect can be predicted from the microcystin ingestion rate of the animals....

  13. Diurnal variations in proliferation and crypt survival suggest a small target cell population in mouse colon

    Energy Technology Data Exchange (ETDEWEB)

    Dobbin, J.; Hamilton, E.

    1986-01-01

    Male C57BLasup(t) mice of two ages, 3-5 months (young) and 14-15 months (old) were given 11 or 15Gy whole body irradiation at different times through the day. The mice were killed after 4.5 days and the number of surviving crypts per circumference of jejunum, ileum, transverse colon and descending colon were scored. These results show crypt survival in the small and large intestine of 15-month-old mice. In the ileum the maximum crypt survival was found at 04.00 h and the minimum at 08.00 h. In the jejunum and both regions of the colon the maximum crypt survival occurred at 16.00 h. The nadir of crypt survival after 15 Gy was at 04.00 h in the jejunum and at 20.00 and 24.00 h in the transverse and descending colon, respectively. In young mice, crypt survival levels were similar to those found in old animals except at 04.00 h. when survival in the jejunum and ileum fell to 0.0004+-0.0002 and 0.0007+-0.0004, respectively. The lowest crypt survival in the colon of young mice also occurred at 04.00 h and in all four tissues the greatest number of crypts survived irradiation at 24.00 h.

  14. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  15. Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.

    Science.gov (United States)

    Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep

    2017-09-01

    Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 year follow-up.

    Science.gov (United States)

    Bigagli, Elisabetta; De Filippo, Carlotta; Castagnini, Cinzia; Toti, Simona; Acquadro, Francesco; Giudici, Francesco; Fazi, Marilena; Dolara, Piero; Messerini, Luca; Tonelli, Francesco; Luceri, Cristina

    2016-12-01

    DNA copy number alterations (CNAs) and gene expression changes have amply been encountered in colorectal cancers (CRCs), but the extent at which CNAs affect gene expression, as well as their relevance for tumor development, are still poorly defined. Here we aimed at assessing the clinical relevance of these parameters in a 10 year follow-up study. Tumors and normal adjacent colon mucosa, obtained at primary surgery from 21 CRC patients, were subjected to (i) high-resolution array CGH (a-CGH) for the detection of CNAs and (ii) microarray-based transcriptome profiling for the detection of gene expression (GE) changes. Correlations between these genomic and transcriptomic changes and their associations with clinical and histopathological parameters were assessed with the aim to identify molecular signatures associated with disease-free survival of the CRC patients during a 10 year follow-up. DNA copy number gains were frequently detected in chromosomes 7, 8q, 13, 19, 20q and X, whereas DNA copy number losses were frequently detected in chromosomes 1p, 4, 8p, 15, 17p, 18, 19 and 22q. None of these alterations were observed in all samples. In addition, we found that 2,498 genes were up- and that 1,094 genes were down-regulated in the tumor samples compared to their corresponding normal mucosa (p number gains, whereas decreased expression levels of the MUC1, E2F2, HRAS and SIRT3 genes were associated with copy number losses. Pathways related to cell cycle progression, eicosanoid metabolism, and TGF-β and apoptosis signaling, were found to be most significantly affected. Our results suggest that CNAs in CRC tumor tissues are associated with concomitant changes in the expression of cancer-related genes. In other genes epigenetic mechanism may be at work. Up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, appear to be associated with a poor survival. These alterations may, in addition to Dukes' staging

  17. Effects of common germ-line genetic variation in cell cycle genes on ovarian cancer survival

    DEFF Research Database (Denmark)

    Song, H.; Hogdall, E.; Ramus, S.J.

    2008-01-01

    .05) in these genes. The genotypes of each polymorphism were tested for association with survival by Cox regression analysis. RESULTS: A nominally statistically significant association between genotype and ovarian cancer survival was observed for polymorphisms in CCND2 and CCNE1. The per-allele hazard ratios (95......PURPOSE: Somatic alterations have been shown to correlate with ovarian cancer prognosis and survival, but less is known about the effects on survival of common inherited genetic variation. Of particular interest are genes involved in cell cycle pathways, which regulate cell division and could......) and survival among women with invasive ovarian cancer participating in a multicenter case-control study from United Kingdom, Denmark, and United States. DNAs from up to 1,499 women were genotyped for 97 single-nucleotide polymorphisms that tagged the known common variants (minor allele frequency > or = 0...

  18. Nurse-like cells promote CLL survival through LFA-3/CD2 interactions.

    Science.gov (United States)

    Boissard, Frédéric; Tosolini, Marie; Ligat, Laetitia; Quillet-Mary, Anne; Lopez, Frederic; Fournié, Jean-Jacques; Ysebaert, Loic; Poupot, Mary

    2017-08-08

    In the tumoral micro-environment (TME) of chronic lymphocytic leukemia (CLL), nurse-like cells (NLC) are tumor-associated macrophages which play a critical role in the survival and chemoresistance of tumoral cells. This pro-survival activity is known to involve soluble factors, but few data are available on the relative role of cells cross-talk. Here, we used a transcriptome-based approach to systematically investigate the expression of various receptor/ligand pairs at the surface of NLC/CLL cells. Their relative contribution to CLL survival was assessed both by fluorescent microscopy to identify cellular interactions and by the use of functional tests to measure the impact of uncoupling these pairs with blocking monoclonal antibodies. We found for the first time that lymphocyte function-associated antigen 3 (LFA-3), expressed in CLL at significantly higher levels than in healthy donor B-cells, and CD2 expressed on NLC, were both key for the specific pro-survival signals delivered by NLC. Moreover, we found that NLC/CLL interactions induced the shedding of soluble LFA-3. Importantly, in an exploratory cohort of 60 CLL patients receiving frontline immunochemotherapy, increased levels of soluble LFA-3 were found to correlate with shorter overall survival. Altogether, these data suggest that LFA-3/CD2 interactions promote the survival of CLL cells in the tumor microenvironment.

  19. Cooperation of B cells and T cells is required for survival of mice infected with vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Nansen, A; Andersen, C

    1997-01-01

    To define the role of T cells and B cells in resistance to vesicular stomatitis virus (VSV) infection, knockout mice with different specific immune defects on an identical background were infected i.v. and the outcome of infection was compared; in this way a more complete picture of the relative...... antibodies are pivotal for survival in the early phase of VSV infection, T cells are required for long-term survival, with CD4+ T cells being more effective in controlling this infection than CD8+ T cells....

  20. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  1. Glial cell-line derived neurotrophic factor-dependent fusimotor neuron survival during development.

    Science.gov (United States)

    Whitehead, Jennifer; Keller-Peck, Cynthia; Kucera, Jan; Tourtellotte, Warren G

    2005-01-01

    Glial cell-line derived neurotrophic factor (GDNF) is a potent survival factor for motor neurons. Previous studies have shown that some motor neurons depend upon GDNF during development but this GDNF-dependent motor neuron subpopulation has not been characterized. We examined GDNF expression patterns in muscle and the impact of altered GDNF expression on the development of subtypes of motor neurons. In GDNF hemizygous mice, motor neuron innervation to muscle spindle stretch receptors (fusimotor neuron innervation) was decreased, whereas in transgenic mice that overexpress GDNF in muscle, fusimotor innervation to muscle spindles was increased. Facial motor neurons, which do not contain fusimotor neurons, were not changed in number when GDNF was over expressed by facial muscles during their development. Taken together, these data indicate that fusimotor neurons depend upon GDNF for survival during development. Since the fraction of cervical and lumbar motor neurons lost in GDNF-deficient mice at birth closely approximates the size of the fusimotor neuron pool, these data suggest that motor neuron loss in GDNF-deficient mice may be primarily of fusimotor neuron origin.

  2. Clinical and Pathologic Correlation of Increased MYC Gene Copy Number in Diffuse Large B-Cell Lymphoma.

    Science.gov (United States)

    Haws, Bryn T; Cui, Wei; Persons, Diane L; Zhang, Da

    2016-12-01

    Only a few studies have investigated the presence of increased MYC gene copy number (ICN) as a prognostic indicator in patients with diffuse large B-cell lymphoma (DLBCL), and the results have been variable. We compared overall survival in patients with ICN to MYC-negative patients and investigated the prognostic significance of increased MYC gene copy number. Two groups, those with MYC ICN (n = 33) and those with no MYC aberrations (n = 43), identified by fluorescence in-situ hybridization DNA probes for the MYC region at 8q24, were compared for survival (1-9 years), MYC immunohistochemical (IHC) protein expression, and treatment protocol. Comparison of cases of DLBCL with MYC ICN to those with no MYC aberration demonstrated no significant difference in survival (P = .58). Additionally, no difference in survival was found between patients with increased MYC protein expression (IHC MYC ≥ 40%) compared to those with IHC MYC  .05). Importantly, the majority of patients in both groups (79% of patients with ICN and 81% of patients with no MYC aberrations) were treated with rituximab-based therapies. No significant difference in survival was found between patients with DLBCL with MYC ICN and patients with no MYC aberrations (P = .58). Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Number of negative lymph nodes can predict survival of breast cancer patients with four or more positive lymph nodes after postmastectomy radiotherapy.

    Science.gov (United States)

    Wu, San-Gang; Sun, Jia-Yuan; Zhou, Juan; Li, Feng-Yan; Zhou, Hao; Lin, Qin; Lin, Huan-Xin; Bao, Yong; He, Zhen-Yu

    2014-12-16

    This study was conducted to assess the prognostic value of the number of negative lymph nodes (NLNs) in breast cancer patients with four or more positive lymph nodes after postmastectomy radiotherapy (PMRT). This retrospective study examined 605 breast cancer patients with four or more positive lymph nodes who underwent mastectomy. A total of 371 patients underwent PMRT. The prognostic value of the NLN count in patients with and without PMRT was analyzed. The log-rank test was used to compare survival curves, and Cox regression analysis was performed to identify prognostic factors. The median follow-up was 54 months, and the overall 8-year locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), disease-free survival (DFS), and overall survival (OS) were 79.8%, 50.0%, 46.8%, and 57.9%, respectively. The optimal cut-off points for NLN count was 12. Univariate analysis showed that the number of NLNs, lymph node ratio (LNR) and pN stage predicted the LRFS of non-PMRT patients (pnumber of NLNs was an independent prognostic factor affecting the LRFS, patients with a higher number of NLNs had a better LRFS (hazard ratio = 0.132, 95% confidence interval=0.032-0.547, p =0.005). LNR and pN stage had no effect on LRFS. PMRT improved the LRFS (ppatients with 12 or fewer NLNs, but it did not any effect on survival of patients with more than 12 NLNs. PMRT improved the regional lymph node recurrence-free survival (ppatients with 12 or fewer NLNs. The number of NLNs can predict the survival of breast cancer patients with four or more positive lymph nodes after PMRT.

  4. Protein kinase G1 α overexpression increases stem cell survival and cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs contributing to regeneration of the ischemic heart.MSCs from male rats were transduced with adenoviral vector encoding for PKG1α ((PKG1αMSCs.Controls included native MSCs ((NatMSCs and MSCs transduced with an empty vector ((NullMSCs. PKG1α activity was increased approximately 20, 5 and 16 fold respectively in (PKG1αMSCs. (PKG1αMSCs showed improved survival under oxygen and glucose deprivation (OGD which was evidenced by lower LDH release, caspase-3/7 activity and number of positive TUNEL cells. Anti-apoptotic proteins pAkt, pGSK3β, and Bcl-2 were significantly increased in (PKG1αMSCs compared to (NatMSCs and (NullMSCs. Higher release of multiple prosurvival and angiogenic factors such as HGF, bFGF, SDF-1 and Ang-1 was observed in (PKG1αMSCs before and after OGD. In a female rat model of acute myocardial infarction, (PKG1αMSCs group showed higher survival compared with (NullMSCs group at 3 and 7 days after transplantation as determined by TUNEL staining and sry-gene quantitation by real-time PCR. Increased anti-apoptotic proteins and paracrine factors in vitro were also identified. Immunostaining for cardiac troponin I combined with GFP showed increased myogenic differentiation of (PKG1αMSCs. At 4 weeks after transplantation, compared to DMEM group and (NullMSCs group, (PKG1αMSCs group showed increased blood vessel density in infarct and peri-infarct areas (62.5±7.7; 68.8±7.3 per microscopic view, p<0.05 and attenuated infarct size (27.2±2.5%, p<0.01. Heart function indices including ejection fraction (52.1±2.2%, p<0.01 and fractional shortening (24.8%±1.3%, p<0.01 were improved significantly in (PKG1αMSCs group.Overexpression of PKG1α transgene could be a powerful approach to improve MSCs survival and their angiomyogenic potential in the

  5. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    Science.gov (United States)

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  6. Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea.

    Directory of Open Access Journals (Sweden)

    Fu-Quan Chen

    Full Text Available This study delineates the role of peroxiredoxin 3 (Prx3 in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age. In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss.

  7. Phosphatidylinositol transfer proteins in cell survival and apoptosis

    NARCIS (Netherlands)

    Schenning, M.

    2007-01-01

    Mouse fibroblast cells overexpressing phosphatidylinositol transfer protein alpha [PI-TPalpha; sense PI-TPalpha (SPIalpha) cells] show a significantly increased rate of proliferation and an extreme resistance toward ultraviolet- or tumor necrosis factor-alpha-induced apoptosis. The fact that the

  8. International Assessment of Event-Free Survival at 24 Months and Subsequent Survival in Peripheral T-Cell Lymphoma.

    Science.gov (United States)

    Maurer, Matthew J; Ellin, Fredrik; Srour, Line; Jerkeman, Mats; Bennani, N Nora; Connors, Joseph M; Slack, Graham W; Smedby, Karin E; Ansell, Stephen M; Link, Brian K; Cerhan, James R; Relander, Thomas; Savage, Kerry J; Feldman, Andrew L

    2017-12-20

    Purpose Peripheral T-cell lymphomas (PTCLs) have aggressive clinical behavior. We have previously shown that event-free survival (EFS) at 24 months (EFS24) is a clinically useful end point in diffuse large B-cell lymphoma. Here, we assess EFS24 and subsequent overall survival (OS) in large, multinational PTCL cohorts. Patients and Methods Patients with systemic PTCL newly diagnosed from 2000 to 2012 and treated with curative intent were included from the United States and Sweden (initial cohorts) and from Canada (replication cohort). EFS was defined as time from date of diagnosis to progression after primary treatment, retreatment, or death. Subsequent OS was measured after achieving EFS24 or from the time of progression if it occurred within 24 months. OS rates were compared with the age-, sex-, and country-matched general population. Results Seven hundred seventy-five patients were included in the study (the median age at diagnosis was 64 years; 63% were men). Results were similar in the initial and replication cohorts, and a combined analysis was undertaken. Sixty-four percent of patients progressed within the first 24 months and had a median OS of only 4.9 months (5-year OS, 11%). In contrast, median OS after achieving EFS24 was not reached (5-year OS, 78%), although relapses within 5 years of achieving EFS24 occurred in 23% of patients. Superior outcomes after achieving EFS24 were observed in younger patients (≤ 60 years of age: 5-year OS, 91%). Conclusion EFS24 stratifies subsequent outcome in PTCL. Patients with PTCL with primary refractory disease or early relapse have extremely poor survival. However, more than one third of patients with PTCL remain in remission 2 years after diagnosis with encouraging subsequent OS, especially in younger patients. These marked differences in outcome suggest that EFS24 has utility for patient counseling, study design, and risk stratification in PTCL.

  9. T-cell numbers and antigen-specific T-cell function follow different circadian rhythms.

    Science.gov (United States)

    Kirsch, Sarah; Thijssen, Stephan; Alarcon Salvador, Susana; Heine, Gunnar H; van Bentum, Kai; Fliser, Danilo; Sester, Martina; Sester, Urban

    2012-12-01

    Circadian rhythms play an important role in modulating cellular immune responses. The present study was performed to characterise circadian variations in lymphocyte numbers and antigen-specific T-cell functionality in healthy individuals under physiological conditions. Blood leukocyte populations of six healthy volunteers were quantified over 24 h. In addition, antigen-specific T-cell functionality was analysed directly ex vivo from whole blood using flow cytometry based on intracellular cytokine induction after a 6-hour stimulation with adenovirus antigen and Staphylococcus aureus enterotoxin B (SEB), respectively. T-cell numbers and reactivity were stable during daytime, whereas a significant increase was observed during late evening and early morning hours. The percentage of T cells reacting towards adenovirus antigen and SEB showed a 1.76 ± 0.55-fold (p = 0.0002) and a 1.42 ± 0.33-fold (p = 0.0002) increase, respectively. Dynamics in T-cell reactivity were independent of the mode of antigen stimulation and inversely correlated with plasma levels of endogenous cortisol. Interestingly, peak frequencies of reactive T cells occurred late in the evening and did not directly coincide with peak numbers of bulk T cells that were observed in the early morning hours. Taken together, our data reveal a circadian regulation of T-cell immune responses in the peripheral blood of humans under physiological conditions. This knowledge may be of practical consequence for the timing of blood sampling for functional T-cell assays as well as for immunosuppressive drug intake after organ transplantation, where T-cell function may be influenced not only by drug-mediated inhibition but also by circadian fluctuations in T-cell reactivity.

  10. Hydrostatic pressure does not cause detectable changes in survival of human retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew Osborne

    Full Text Available PURPOSE: Elevated intraocular pressure (IOP is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP. The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC survival in the human retina was investigated. METHODS: A chamber was designed to expose cells to increased HP (constant and fluctuating. Accurate pressure control (10-100 mmHg was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs from donor eyes (<24 h post mortem were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD. Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1 and RGC number by immunohistochemistry (NeuN. Activated p38 and JNK were detected by Western blot. RESULTS: Exposure of HORCs to constant (60 mmHg or fluctuating (10-100 mmHg; 1 cycle/min pressure for 24 or 48 h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1 or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24 h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100 mmHg; 1 cycle/min for 15, 30, 60 and 90 min durations, whereas OGD (3 h increased activation of p38 and JNK, remaining elevated for 90 min post-OGD. CONCLUSIONS: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.

  11. Hydrostatic Pressure Does Not Cause Detectable Changes in Survival of Human Retinal Ganglion Cells

    Science.gov (United States)

    Osborne, Andrew; Aldarwesh, Amal; Rhodes, Jeremy D.; Broadway, David C.; Everitt, Claire; Sanderson, Julie

    2015-01-01

    Purpose Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina. PMID:25635827

  12. Effect of number of pig embryos in the uterus on their survival and development and on maternal metabolism.

    Science.gov (United States)

    Père, M C; Dourmad, J Y; Etienne, M

    1997-05-01

    The effects of pig embryo number on fetal survival and growth and maternal metabolism were evaluated with 114 Large White gilts. Gilts were assigned at 38 kg to three treatments: control (CTR), ligature of the left oviduct (LIG), or right hemi-hysteroovariectomy (HHO). Insemination occurred at 311 +/- 18 d of age. A laparotomy was performed at d 35 of gestation, and gilts were slaughtered at d 112. Ovulation rate per uterine horn was 4.30, 8.70, and 17.12 in the LIG, CTR, and HHO groups, respectively. The hierarchy was the same for litter size at d 35 of gestation, but the relative differences were reduced (3.24, 5.98, and 8.40 fetuses/uterine horn, respectively). Litter size per uterine horn was similar in the CTR and HHO groups at d 112 of pregnancy (2.93, 4.69, and 4.76 fetuses in the LIG, CTR, and HHO groups, respectively). Early (before d 35 of gestation), late, and total fetal mortality increased with embryo potential per uterine horn. There was a compensation between early and late fetal mortality in the CTR and HHO groups. Fetal weight at d 112 was related to litter size in early pregnancy (1.50, 1.38, and 1.27 kg in the LIG, CTR, and HHO groups, respectively). Uterine capacity limits litter size and fetal development, even in sows with a conventional potential of embryos. Availability of energetic and gluconeogenic substrates was higher at 110 than at 60 d of gestation in the three groups. Blood substrate levels suggested that lipid mobilization and glucose uptake were higher in the gilts with a larger litter weight.

  13. Survival in patients with metastatic spinal cord compression from prostate cancer is associated with the number of extra-spinal organs involved.

    Science.gov (United States)

    Weber, Axel; Bartscht, Tobias; Karstens, Johann H; Schild, Steven E; Rades, Dirk

    2013-10-01

    To investigate the predictive value of the number of extra-spinal organs involved by metastases for survival in metastatic spinal cord compression (MSCC) from prostate cancer. In 95 patients irradiated with 10 × 3 Gy for MSCC from prostate cancer, seven factors were investigated: Age, performance score, number of involved vertebrae, interval from prostate cancer diagnosis to MSCC, pre-radiotherapy ambulatory status, time to motor deficits development, number of involved extra-spinal organs. Six-month survival rates for 0, 1 and ≥ 2 involved extra-spinal organs, were 81, 53 and 33%, respectively (pnumber of involved extra-spinal organs maintained significance (risk ratio 1.88, p=0.023). Better performance score (pcancer diagnosis to radiotherapy of MSCC (pnumber of extra-spinal organs involved by metastases predicts survival in patients with MSCC from prostate cancer.

  14. Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart.

    Science.gov (United States)

    Kawamura, Masashi; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Miki, Kenji; Ito, Emiko; Sougawa, Nagako; Kawamura, Takuji; Daimon, Takashi; Shimizu, Tatsuya; Okano, Teruo; Toda, Koichi; Sawa, Yoshiki

    2013-09-10

    Transplantation of cardiomyocytes that are derived from human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) shows promise in generating new functional myocardium in situ, whereas the survival and functionality of the transplanted cells are critical in considering this therapeutic impact. Cell-sheet method has been used to transplant many functional cells; however, potential ischemia might limit cell survival. The omentum, which is known to have rich vasculature, is expected to be a source of blood supply. We hypothesized that transplantation of hiPS-CM cell sheets combined with an omentum flap may deliver a large number of functional hiPS-CMs with enhanced blood supply. Retrovirally established human iPS cells were treated with Wnt signaling molecules to induce cardiomyogenic differentiation, followed by superparamagnetic iron oxide labeling. Cell sheets were created from the magnetically labeled hiPS-CMs using temperature-responsive dishes and transplanted to porcine hearts with or without the omentum flap (n=8 each). Two months after transplantation, the survival of superparamagnetic iron oxide-labeled hiPS-CMs, assessed by MRI, was significantly greater in mini-pigs with the omentum than in those without it; histologically, vascular density in the transplanted area was significantly greater in mini-pigs with the omentum than in those without it. The transplanted tissues contained abundant cardiac troponin T-positive cells surrounded by vascular-rich structures. The omentum flap enhanced the survival of hiPS-CMs after transplantation via increased angiogenesis, suggesting that this strategy is useful in clinical settings. The combination of hiPS-CMs and the omentum flap may be a promising technique for the development of tissue-engineered vascular-rich new myocardium in vivo.

  15. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  16. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Hwa Shin

    2016-02-01

    Full Text Available The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1 complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells.

  17. Impaired survival of regulatory T cells in pulmonary sarcoidosis

    NARCIS (Netherlands)

    Broos, Caroline E.; van Nimwegen, Menno; Kleinjan, Alex; ten Berge, Bregje; Muskens, Femke; in 't Veen, Johannes C. C. M.; Annema, Jouke T.; Lambrecht, Bart N.; Hoogsteden, Henk C.; Hendriks, Rudi W.; Kool, Mirjam; van den Blink, Bernt

    2015-01-01

    Impaired regulatory T cell (Treg) function is thought to contribute to ongoing inflammatory responses in sarcoidosis, but underlying mechanisms remain unclear. Moreover, it is not known if increased apoptotic susceptibility of Tregs may contribute to an impaired immunosuppressive function in

  18. Impaired survival of regulatory T cells in pulmonary sarcoidosis

    NARCIS (Netherlands)

    C.E. Broos (Caroline); M. van Nimwegen (Menno); A. Kleinjan (Alex); B. ten Berge (Bregje); F. Muskens (Femke); J.C.C.M. in 't Veen (Johannes); J.T. Annema (Jouke); B.N.M. Lambrecht (Bart); H.C. Hoogsteden (Henk); R.W. Hendriks (Rudi); M. Kool (Mirjam); B. van den Blink (Bernt)

    2015-01-01

    textabstractBackground: Impaired regulatory T cell (Treg) function is thought to contribute to ongoing inflammatory responses in sarcoidosis, but underlying mechanisms remain unclear. Moreover, it is not known if increased apoptotic susceptibility of Tregs may contribute to an impaired

  19. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    Science.gov (United States)

    2008-12-01

    hyaluronidase pretreatment or by using RNAi for the hyaluronan synthase enzymes expressed by these cells. The prediction, again, is that limiting HA...vertebrates and is not found in lower organisms or in insects (Fig. 9.2). Given its roles in such important cellular processes as motility and cell division in...cancer. Gut Zlobec, I., et al. (2008b). Node-negative colorectal cancer at high risk of distant metastasis identified by combined analysis of lymph

  20. Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure.

    Science.gov (United States)

    Trigal, B; Muñoz, M; Gómez, E; Caamaño, J N; Martin, D; Carrocera, S; Casais, R; Diez, C

    2013-04-01

    This work analyses the effects of a high hydrostatic pressure (HHP) treatment on in vitro survival of in vitro produced (IVP) bovine embryos vitrified with the Cryologic Vitrification Method (CVM). Consequences on embryo quality in terms of cell proliferation and differentiation, and levels of embryonic Heat Shock Protein 70 (Hsp-70) were also examined. Day 7 and 8 bovine in vitro-produced blastocysts were submitted to an HHP treatment (60 MPa, at 32 °C for 1 h) and allowed to recover for 1 or 2 h in culture medium. The HHP treatment did not improve blastocyst survival rates after vitrification/warming. Survival (24 h post-warming) and hatching (48 h post-warming) rates were 79.3 ± 4.9 and 51.8 ± 4.2 vs 73.9 ± 4.2 and 44.7 ± 4.1 for untreated controls and HHP-treated embryos, respectively. Total cell numbers measured in fresh embryos were reduced after 1 h at 32 °C, with or without HHP treatment, indicating that cell proliferation was stopped as a result of stress. Vitrified HHP-treated embryos that hatched at 48 h after warming showed increased cell numbers in their ICM compared with untreated controls (50.2 ± 3.1 vs 38.8 ± 2.7), indicating higher embryo quality. Treatment of blastocysts with HHP did not alter the level of the Hsp-70 protein. In our conditions, HHP treatment did not affect the cryoresistance of these embryos. However, combination of HHP treatment and vitrification in fibreplugs resulted in an increase in the ICM cell number of hatched embryos 48 h post-warming. © 2012 Blackwell Verlag GmbH.

  1. Parasitic infection improves survival from septic peritonitis by enhancing mast cell responses to bacteria in mice.

    Directory of Open Access Journals (Sweden)

    Rachel E Sutherland

    Full Text Available Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2-4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient Kit(W-sh/Kit(W-sh mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to Kit(W-sh/Kit(W-sh mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host.

  2. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells.

    Science.gov (United States)

    Mendoza, Alejandra; Fang, Victoria; Chen, Cynthia; Serasinghe, Madhavika; Verma, Akanksha; Muller, James; Chaluvadi, V Sai; Dustin, Michael L; Hla, Timothy; Elemento, Olivier; Chipuk, Jerry E; Schwab, Susan R

    2017-06-01

    Effective adaptive immune responses require a large repertoire of naive T cells that migrate throughout the body, rapidly identifying almost any foreign peptide. Because the production of T cells declines with age, naive T cells must be long-lived. However, it remains unclear how naive T cells survive for years while constantly travelling. The chemoattractant sphingosine 1-phosphate (S1P) guides T cell circulation among secondary lymphoid organs, including spleen, lymph nodes and Peyer's patches, where T cells search for antigens. The concentration of S1P is higher in circulatory fluids than in lymphoid organs, and the S1P1 receptor (S1P1R) directs the exit of T cells from the spleen into blood, and from lymph nodes and Peyer's patches into lymph. Here we show that S1P is essential not only for the circulation of naive T cells, but also for their survival. Using transgenic mouse models, we demonstrate that lymphatic endothelial cells support the survival of T cells by secreting S1P via the transporter SPNS2, that this S1P signals through S1P1R on T cells, and that the requirement for S1P1R is independent of the established role of the receptor in guiding exit from lymph nodes. S1P signalling maintains the mitochondrial content of naive T cells, providing cells with the energy to continue their constant migration. The S1P signalling pathway is being targeted therapeutically to inhibit autoreactive T cell trafficking, and these findings suggest that it may be possible simultaneously to target autoreactive or malignant cell survival.

  3. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  4. Stereological estimation of total cell numbers in the young human utricular macula

    DEFF Research Database (Denmark)

    Severinsen, Stig Avall; Sørensen, Mads Sølvsten; Kirkegaard, Mette

    2010-01-01

    . The optical fractionator was used to estimate the total number of cells in the utricular macula. Results: The total cell number was found to be 143 000 in subjects older than gestational week 16. The number of hair cells and supporting cells did not change between the 16th gestational week and 15 years......Abstract Conclusion: There is no change in the total cell population and hair cell:supporting cell ratio in the human utricular macula from gestational week 16 and onwards, whereas the lower hair cell:supporting cell ratio and lower total number of cells in the youngest specimens indicate...... that the utricle is still differentiating and adding new cells at the 10th to 12th gestational week. Objectives: Archival temporal bones were investigated to quantify cell numbers in the utricular macula in fetuses and children. Methods: The age of the subjects ranged from gestational week 10 to 15 years...

  5. Stereological estimation of total cell numbers in the young human utricular macula

    DEFF Research Database (Denmark)

    Severinsen, Stig Åvall; Sørensen, Mads Sølvsten; Kirkegaard, Mette

    2010-01-01

    Abstract Conclusion: There is no change in the total cell population and hair cell:supporting cell ratio in the human utricular macula from gestational week 16 and onwards, whereas the lower hair cell:supporting cell ratio and lower total number of cells in the youngest specimens indicate...... that the utricle is still differentiating and adding new cells at the 10th to 12th gestational week. Objectives: Archival temporal bones were investigated to quantify cell numbers in the utricular macula in fetuses and children. Methods: The age of the subjects ranged from gestational week 10 to 15 years....... The optical fractionator was used to estimate the total number of cells in the utricular macula. Results: The total cell number was found to be 143 000 in subjects older than gestational week 16. The number of hair cells and supporting cells did not change between the 16th gestational week and 15 years...

  6. Proteomic changes resulting from gene copy number variations in cancer cells.

    Directory of Open Access Journals (Sweden)

    Tamar Geiger

    2010-09-01

    Full Text Available Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications, and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene expression--the level of proteins--is generally unknown. Here we use large-scale and high-resolution proteomics combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of 6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this approach helps to interpret the data from large-scale cancer genomics efforts.

  7. Doxycycline Enhances Survival and Self-Renewal of Human Pluripotent Stem Cells

    Science.gov (United States)

    Chang, Mi-Yoon; Rhee, Yong-Hee; Yi, Sang-Hoon; Lee, Su-Jae; Kim, Rae-Kwon; Kim, Hyongbum; Park, Chang-Hwan; Lee, Sang-Hun

    2014-01-01

    Summary We here report that doxycycline, an antibacterial agent, exerts dramatic effects on human embryonic stem and induced pluripotent stem cells (hESC/iPSCs) survival and self-renewal. The survival-promoting effect was also manifest in cultures of neural stem cells (NSCs) derived from hESC/iPSCs. These doxycycline effects are not associated with its antibacterial action, but mediated by direct activation of a PI3K-AKT intracellular signal. These findings indicate doxycycline as a useful supplement for stem cell cultures, facilitating their growth and maintenance. PMID:25254347

  8. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    Science.gov (United States)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  9. Association of pretreatment body mass index and survival in human papillomavirus positive oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Albergotti, William G; Davis, Kara S; Abberbock, Shira; Bauman, Julie E; Ohr, James; Clump, David A; Heron, Dwight E; Duvvuri, Umamaheswar; Kim, Seungwon; Johnson, Jonas T; Ferris, Robert L

    2016-09-01

    Pretreatment body mass index (BMI) >25kg/m(2) is a positive prognostic factor in patients with head and neck cancer. Previous studies have not been adequately stratified by human papilloma virus (HPV) status or subsite. Our objective is to determine prognostic significance of pretreatment BMI on overall survival in HPV+ oropharyngeal squamous cell carcinoma (OPSCC). This is a retrospective review of patients with HPV+ OPSCC treated between 8/1/2006 and 8/31/2014. Patients were stratified by BMI status (>/25kg/m(2) had a longer overall survival (HR=0.49, P=0.01) as well as a longer disease-specific survival (HR=0.43, P=0.02). Overall survival remained significantly associated with high BMI on multivariate analysis (HR=0.54, P=0.04). Pre-treatment normal or underweight BMI status is associated with worse overall survival in HPV+ OPSCC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. SV40 DNA amplification and reintegration in surviving hamster cells after 60Co gamma-irradiation.

    Science.gov (United States)

    Lücke-Huhle, C; Pech, M; Herrlich, P

    1990-10-01

    SV40-transformed Chinese hamster embryo cells were exposed to 60Co gamma-irradiation and the fate of the integrated SV40 sequences was pursued over a period of 20 days following radiation exposure. As shown by colony hybridization, integrated SV40 sequences were amplified in surviving and non-surviving cells. At later times, however, clonal sublines of surviving cells grown for 20-30 cell generations after irradiation had lost most of their amplified SV40 copies but showed altered restriction fragment patterns indicating reintegration of SV40 sequences at new sites of the hamster genome. This suggests that 60Co gamma-irradiation can generate mutations by inducing over-replication of chromosome segments that are then substrates of enzymatic rearrangements.

  11. Cell signalling in survival: Natural compounds and small-molecule inhibitors provide essential insight

    NARCIS (Netherlands)

    K.C. de Souza Queiroz (Karla)

    2011-01-01

    textabstractEffective response to treatment is still a challenge in the clinical management of many types of tumors. As result of pharmacological intervention two different fates are observed for a cancer cell: survival or death. These two cell fates are intimately related to the overall response to

  12. Astrocytes Upregulate Survival Genes in Tumor Cells and Induce Protection from Chemotherapy

    Directory of Open Access Journals (Sweden)

    Sun-Jin Kim

    2011-03-01

    Full Text Available In the United States, more than 40% of cancer patients develop brain metastasis. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with conventional radiotherapy and chemotherapy. The growth and survival of metastasis depend on the interaction of tumor cells with host factors in the organ microenvironment. Brain metastases are surrounded and infiltrated by activated astrocytes and are highly resistant to chemotherapy. We report here that coculture of human breast cancer cells or lung cancer cells with murine astrocytes (but not murine fibroblasts led to the up-regulation of survival genes, including GSTA5, BCL2L1, and TWIST1, in the tumor cells. The degree of up-regulation directly correlated with increased resistance to all tested chemotherapeutic agents. We further show that the up-regulation of the survival genes and consequent resistance are dependent on the direct contact between the astrocytes and tumor cells through gap junctions and are therefore transient. Knocking down these genes with specific small interfering RNA rendered the tumor cells sensitive to chemotherapeutic agents. These data clearly demonstrate that host cells in the microenvironment influence the biologic behavior of tumor cells and reinforce the contention that the organ microenvironment must be taken into consideration during the design of therapy.

  13. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  14. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  15. Macropinocytosis of Bevacizumab by Glioblastoma Cells in the Perivascular Niche Affects their Survival.

    Science.gov (United States)

    Müller-Greven, Gaëlle; Carlin, Cathleen R; Burgett, Monica E; Ahluwalia, Manmeet S; Lauko, Adam; Nowacki, Amy S; Herting, Cameron J; Qadan, Maha A; Bredel, Markus; Toms, Steven A; Lathia, Justin D; Hambardzumyan, Dolores; Sarkaria, Jann N; Hamerlik, Petra; Gladson, Candece L

    2017-11-15

    Purpose: Bevacizumab, a humanized monoclonal antibody to VEGF, is used routinely in the treatment of patients with recurrent glioblastoma (GBM). However, very little is known regarding the effects of bevacizumab on the cells in the perivascular space in tumors. Experimental Design: Established orthotopic xenograft and syngeneic models of GBM were used to determine entry of monoclonal anti-VEGF-A into, and uptake by cells in, the perivascular space. Based on the results, we examined CD133 + cells derived from GBM tumors in vitro Bevacizumab internalization, trafficking, and effects on cell survival were analyzed using multilabel confocal microscopy, immunoblotting, and cytotoxicity assays in the presence/absence of inhibitors. Results: In the GBM mouse models, administered anti-mouse-VEGF-A entered the perivascular tumor niche and was internalized by Sox2 + /CD44 + tumor cells. In the perivascular tumor cells, bevacizumab was detected in the recycling compartment or the lysosomes, and increased autophagy was found. Bevacizumab was internalized rapidly by CD133 + /Sox2 + -GBM cells in vitro through macropinocytosis with a fraction being trafficked to a recycling compartment, independent of FcRn, and a fraction to lysosomes. Bevacizumab treatment of CD133 + GBM cells depleted VEGF-A and induced autophagy thereby improving cell survival. An inhibitor of lysosomal acidification decreased bevacizumab-induced autophagy and increased cell death. Inhibition of macropinocytosis increased cell death, suggesting macropinocytosis of bevacizumab promotes CD133 + cell survival. Conclusions: We demonstrate that bevacizumab is internalized by Sox2 + /CD44 + -GBM tumor cells residing in the perivascular tumor niche. Macropinocytosis of bevacizumab and trafficking to the lysosomes promotes CD133 + cell survival, as does the autophagy induced by bevacizumab depletion of VEGF-A. Clin Cancer Res; 23(22); 7059-71. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients.

    Science.gov (United States)

    Li, Chunyan; Bai, Jingchao; Hao, Xiaomeng; Zhang, Sheng; Hu, Yunhui; Zhang, Xiaobei; Yuan, Weiping; Hu, Linping; Cheng, Tao; Zetterberg, Anders; Lee, Mong-Hong; Zhang, J

    2014-01-01

    Breast cancer is a disease of cell cycle, and the dysfunction of cell cycle checkpoints plays a vital role in the occurrence and development of breast cancer. We employed multi-gene fluorescence in situ hybridization (M-FISH) to investigate gene copy number aberrations (CNAs) of 4 genes (Rb1, CHEK2, c-Myc, CCND1) that are involved in the regulation of cell cycle, in order to analyze the impact of gene aberrations on prognosis in the young breast cancer patients. Gene copy number aberrations of these 4 genes were more frequently observed in young breast cancer patients when compared with the older group. Further, these CNAs were more frequently seen in Luminal B type, Her2 overexpression, and tiple-negative breast cancer (TNBC) type in young breast cancer patients. The variations of CCND1, Rb1, and CHEK2 were significantly correlated with poor survival in the young breast cancer patient group, while the amplification of c-Myc was not obviously correlated with poor survival in young breast cancer patients. Thus, gene copy number aberrations (CNAs) of cell cycle-regulated genes can serve as an important tool for prognosis in young breast cancer patients.

  17. Influence of stochastic gene expression on the cell survival rheostat after traumatic brain injury.

    Science.gov (United States)

    Rojo, Daniel R; Prough, Donald S; Falduto, Michael T; Boone, Deborah R; Micci, Maria-Adelaide; Kahrig, Kristen M; Crookshanks, Jeanna M; Jimenez, Arnaldo; Uchida, Tatsuo; Cowart, Jeremy C; Hawkins, Bridget E; Avila, Marcela; DeWitt, Douglas S; Hellmich, Helen L

    2011-01-01

    Experimental evidence suggests that random, spontaneous (stochastic) fluctuations in gene expression have important biological consequences, including determination of cell fate and phenotypic variation within isogenic populations. We propose that fluctuations in gene expression represent a valuable tool to explore therapeutic strategies for patients who have suffered traumatic brain injury (TBI), for which there is no effective drug therapy. We have studied the effects of TBI on the hippocampus because TBI survivors commonly suffer cognitive problems that are associated with hippocampal damage. In our previous studies we separated dying and surviving hippocampal neurons by laser capture microdissection and observed unexplainable variations in post-TBI gene expression, even though dying and surviving neurons were adjacent and morphologically identical. We hypothesized that, in hippocampal neurons that subsequently are subjected to TBI, randomly increased pre-TBI expression of genes that are associated with neuroprotection predisposes neurons to survival; conversely, randomly decreased expression of these genes predisposes neurons to death. Thus, to identify genes that are associated with endogenous neuroprotection, we performed a comparative, high-resolution transcriptome analysis of dying and surviving hippocampal neurons in rats subjected to TBI. We found that surviving hippocampal neurons express a distinct molecular signature--increased expression of networks of genes that are associated with regeneration, cellular reprogramming, development, and synaptic plasticity. In dying neurons we found decreased expression of genes in those networks. Based on these data, we propose a hypothetical model in which hippocampal neuronal survival is determined by a rheostat that adds injury-induced genomic signals to expression of pro-survival genes, which pre-TBI varies randomly and spontaneously from neuron to neuron. We suggest that pharmacotherapeutic strategies that co

  18. Targeting A20 decreases glioma stem cell survival and tumor growth.

    Directory of Open Access Journals (Sweden)

    Anita B Hjelmeland

    2010-02-01

    Full Text Available Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs. GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3, a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA. Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.

  19. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Madhu Sudhan

    H 2004 Expression of heat-shock protein Hsp60 correlated with the apoptotic index and patient prognosis in human oesophageal squamous cell carcinoma; Eur. J. Cancer 40 2804–2811. Fink A L 1999 Chaperone-mediated protein folding; Physiol. Rev. 79 425–449. Gabai V L, Mabuchi K, Mosser D D and Sherman M Y ...

  20. Heat shock genes–integrating cell survival and death

    Indian Academy of Sciences (India)

    2007-03-22

    Mar 22, 2007 ... Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with ...

  1. Circulating tumor cell clusters-associated gene plakoglobin and breast cancer survival.

    Science.gov (United States)

    Lu, Lingeng; Zeng, Hongmei; Gu, Xinsheng; Ma, Wenxue

    2015-06-01

    Breast cancer recurrence is a major cause of the disease-specific death. Circulating tumor cells (CTCs) are negatively associated with breast cancer survival. Plakoglobin, a cell adhesion protein, was recently reported as a determinant of CTCs types, single or clustered ones. Here, we aim to summarize the studies on the roles of plakoglobin and evaluate the association of plakoglobin and breast cancer survival. Plakoglobin as a key component in both cell adhesion and the signaling pathways was briefly reviewed first. Then the double-edge functions of plakoglobin in tumors and its association with CTCs and breast cancer metastasis were introduced. Finally, based on an open-access database, the association between plakoglobin and breast cancer survival was investigated using univariate and multivariate survival analyses. Plakoglobin may be a molecule functioning as a double-edge sword. Loss of plakoglobin expression leads to increased motility of epithelial cells, thereby promoting epithelial-mesenchymal transition and further metastasis of cancer. However, studies also show that plakoglobin can function as an oncogene. High expression of plakoglobin results in clustered tumor cells in circulation with high metastatic potential in breast cancer and shortened patient survival. Plakoglobin may be a potential prognostic biomarker that can be exploited to develop as a therapeutic target for breast cancer.

  2. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  3. Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination

    Science.gov (United States)

    Zheng, Yu; Miyamoto, David T.; Wittner, Ben S.; Sullivan, James P.; Aceto, Nicola; Jordan, Nicole Vincent; Yu, Min; Karabacak, Nezihi Murat; Comaills, Valentine; Morris, Robert; Desai, Rushil; Desai, Niyati; Emmons, Erin; Milner, John D.; Lee, Richard J.; Wu, Chin-Lee; Sequist, Lecia V.; Haas, Wilhelm; Ting, David T.; Toner, Mehmet; Ramaswamy, Sridhar; Maheswaran, Shyamala; Haber, Daniel A.

    2017-01-01

    Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of β-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that β-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis. PMID:28181495

  4. A new prognostic factor for the survival of patients with renal cell carcinoma developing metastatic spinal cord compression

    Energy Technology Data Exchange (ETDEWEB)

    Rades, D. [University Hospital Schleswig-Holstein, Campus Luebeck, University of Luebeck, Department of Radiation Oncology, Luebeck (Germany); Weber, A. [University Hospital Schleswig-Holstein, Campus Luebeck, University of Luebeck, Department of Radiation Oncology, Luebeck (Germany); University of Luebeck, Department of Medical Oncology and Hematology, Luebeck (Germany); Bartscht, T. [University of Luebeck, Department of Medical Oncology and Hematology, Luebeck (Germany); Bajrovic, A. [University Medical Center Hamburg-Eppendorf, Department of Radiation Oncology, Hamburg (Germany); Karstens, J.H. [Hannover Medical University, Department of Radiation Oncology, Hannover (Germany); Schild, S.E. [Mayo Clinic Scottsdale, Department of Radiation Oncology, Scottsdale (United States)

    2014-07-15

    This study aimed to identify a potential association of the number of involved extraspinal organs with the survival of patients with metastatic spinal cord compression (MSCC) from renal cell carcinoma. Data of 69 patients irradiated for MSCC from renal cell carcinoma were retrospectively evaluated for survival. The prognostic value of the number of involved extraspinal organs and eight additional factors were investigated. These additional factors included age, gender, performance status, number of involved vertebrae, interval from cancer diagnosis to radiotherapy (RT) of MSCC, ambulatory status prior to RT, time developing motor deficits, and the fractionation regimen (30 Gy in 10 fractions vs. higher doses). The 6-month survival rates for involvement of 0, 1, and ≥ 2 extraspinal organs were 93, 57, and 21 %, respectively (p < 0.001). In the multivariate analysis, the number of involved extraspinal organs maintained significance (risk ratio 2.65; 95 % confidence interval 1.64-4.52; p < 0.001). The interval from cancer diagnosis to RT of MSCC (p = 0.013) and ambulatory status prior to RT (p = 0.002) were also independent predictors of survival. The number of involved extraspinal organs is a new prognostic factor of survival in patients with MSCC from renal cell carcinoma and should be considered in future clinical trials. (orig.) [German] Ziel dieser Studie war es, eine moegliche Assoziation zwischen der Zahl metastatisch befallener extraspinaler Organe und dem Ueberleben von Patienten mit einem Nierenzellkarzinom und metastatisch bedingter Rueckenmarkskompression (MSCC) aufzudecken. Die Daten von 69 Patienten mit einem Nierenzellkarzinom, die aufgrund einer MSCC eine Strahlentherapie erhalten hatten, wurden retrospektiv fuer den Endpunkt Ueberleben ausgewertet. Die prognostische Bedeutung der Zahl metastatisch befallener extraspinaler Organe und 8 weiterer Faktoren wurden untersucht. Die weiteren Faktoren waren Alter, Geschlecht, Allgemeinzustand, Zahl

  5. Racial disparities in survival among patients with advanced renal cell carcinoma in the targeted therapy era.

    Science.gov (United States)

    Rose, Tracy L; Deal, Allison M; Krishnan, Bhavani; Nielsen, Matthew E; Smith, Angela B; Kim, William Y; Milowsky, Matthew I

    2016-10-01

    Historically, African American (AA) patients with renal cell carcinoma (RCC) have had inferior survival compared with Caucasian patients. Recent studies suggest that the survival disparity between races may be worsening since the advent of targeted therapies for RCC. In this study, survival rates among AA and Caucasian patients with advanced RCC are examined over time to determine whether a disparity in survival persists in the targeted therapy era. The authors identified patients with stage IV RCC in the National Cancer Data Base and compared survival between AA and Caucasian patients during the periods before (1998-2004) and after (2006-2011) the advent of targeted therapy. In total, 48,846 patients were identified, and 10% were AA. Three-year survival among both AA and Caucasian patients improved between the 2 periods (P therapy era, which was unchanged from the pretargeted therapy era (adjusted HR, 1.10; 95% confidence interval, 1.04-1.15). The adjusted HR was similar when the analysis was restricted to those who received systemic therapy. Both AA and Caucasian patients with advanced RCC have had a significant improvement in survival since the advent of targeted therapy. However, AA patients maintain a survival disadvantage compared with Caucasians independent of treatment received, potentially related to unmeasured comorbidities, disease burden, or tumor biology. Cancer 2016;122:2988-2995. © 2016 American Cancer Society. © 2016 American Cancer Society.

  6. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Keya De Mukhopadhyay

    Full Text Available In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  7. Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer.

    Directory of Open Access Journals (Sweden)

    Gianluca Ascolani

    2015-05-01

    Full Text Available Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET. In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics.

  8. Heparan sulfate glycosaminoglycans modulate migration and survival in zebrafish primordial germ cells.

    Science.gov (United States)

    Wei, Ke-Hsuan; Liu, I-Hsuan

    2014-06-01

    Early in embryonic development, primordial germ cells (PGCs) are specified and migrate from the site of their origin to where the gonad develops, following a specific route. Heparan sulfate glycosaminoglycans (HS-GAGs) are ubiquitous in extracellular matrix and the cell surface and have long been speculated to play a role during the migration of PGCs. In line with this speculation, whole-mount immunohistochemistry revealed the existence of HS-GAGs in the vicinity of migrating PGCs in early zebrafish embryos. To examine the roles of HS-GAGs during PGC migration, zebrafish heparanase 1 (hpse1), which degrades HS-GAGs, was cloned and overexpressed specifically in PGCs. The guidance signal for the migration of PGCs was disrupted with the overexpression of hpse1, as cluster formation and marginal localization at the blastoderm were significantly perturbed at 6 hours postfertilization. Furthermore, the number of PGCs was significantly decreased with the lack of vicinal HS-GAGs, as observed in the whole-mount in situ hybridization and quantitative PCR of the PGC marker gene vasa. Terminal deoxynucleotidyl transferase dUTP nick-end labeling indicated significantly increased apoptosis in PGCs overexpressing hpse1, suggesting that HS-GAGs contribute to the maintenance of PGC survival. In conclusion, HS-GAGs play multifaceted roles in PGCs during migration and are required both for guidance signals and multiplication of PGCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways.

    Science.gov (United States)

    Nafar, F; Clarke, J P; Mearow, K M

    2017-05-01

    Alzheimer's disease is a progressive neurodegenerative disease that has links with other conditions that can often be modified by dietary and life-style interventions. In particular, coconut oil has received attention as having potentially having benefits in lessening the cognitive deficits associated with Alzheimer's disease. In a recent report, we showed that neuron survival in cultures co-treated with coconut oil and Aβ was rescued compared to cultures exposed only to Aβ. Here we investigated treatment with Aβ for 1, 6 or 24 h followed by addition of coconut oil for a further 24 h, or treatment with coconut oil for 24 h followed by Aβ exposure for various periods. Neuronal survival and several cellular parameters (cleaved caspase 3, synaptophysin labeling and ROS) were assessed. In addition, the influence of these treatments on relevant signaling pathways was investigated with Western blotting. In terms of the treatment timing, our data indicated that coconut oil rescues cells pre-exposed to Aβ for 1 or 6 h, but is less effective when the pre-exposure has been 24 h. However, pretreatment with coconut oil prior to Aβ exposure showed the best outcomes. Treatment with octanoic or lauric acid also provided protection against Aβ, but was not as effective as the complete oil. The coconut oil treatment reduced the number of cells with cleaved caspase and ROS labeling, as well as rescuing the loss of synaptophysin labeling observed with Aβ treatment. Treatment with coconut oil, as well as octanoic, decanoic and lauric acids, resulted in a modest increase in ketone bodies compared to controls. The biochemical data suggest that Akt and ERK activation may contribute to the survival promoting influence of coconut oil. This was supported by observations that a PI3-Kinase inhibitor blocked the rescue effect of CoOil on Aβ amyloid toxicity. Further studies into the mechanisms of action of coconut oil and its constituent medium chain fatty acids are warranted

  10. Renal cell carcinoma in end-stage renal disease: Multi-institutional comparative analysis of survival.

    Science.gov (United States)

    Song, Cheryn; Hong, Sung Hoo; Chung, Jin Soo; Byun, Seok Soo; Kwak, Cheol; Jeong, Chang Wook; Seo, Seong Il; Jeon, Hwang Gyun; Seo, Ill Young

    2016-06-01

    To describe the clinical features of renal cell carcinoma arising in end-stage renal disease and to compare survival outcomes after definitive treatment with non-end-stage renal disease renal cell carcinoma. Data of 181 consecutive patients with end-stage renal disease renal cell carcinoma who had received surgical treatment between 1995 and 2011 at seven institutions were reviewed. Data of 362 non-end-stage renal disease renal cell carcinoma patients matched for clinicopathological parameters who received surgery at Asan Medical Center during the same study period were also reviewed. The two study groups were compared with respect to recurrence-free, cancer-specific, and overall survival by Kaplan-Meier analysis and Cox proportional hazards method. Mean follow up was 40 ± 34.2 months after surgery. Median tumor size was 2.5 cm (interquartile range 1.5-4.5), and pathological tumor stage was T1 in 78%, T2 in 7.1% and T3 and higher in 14.9%. Tumor histological type was clear cell in 63%, papillary in 17%, chromophobe in 5%, clear cell papillary in 2.8% and acquired cystic disease-related in 6.1%. Compared with the controls, the stage-specific 5-year recurrence-free survival was similar (87.6 vs 88.5%), but cancer-specific and overall survival was significantly lower. On multivariate analysis, end-stage renal disease renal cell carcinoma was not a predictor for recurrence-free survival, but a significant predictor for cancer-specific (hazard ratio 4.07, 95% confidence interval 2.08-7.94) and overall survival (hazard ratio 3.13, 95% confidence interval 1.66-5.96). End-stage renal disease renal cell carcinoma seems to have comparable stage-specific recurrence-free, but poorer cancer-specific and overall survival compared with non-end-stage renal disease renal cell carcinoma. As patients with end-stage renal disease are a high-risk population for renal cell carcinoma, routine radiographic screening to improve survival outcomes should be further investigated. © 2016

  11. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  12. Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water

    Energy Technology Data Exchange (ETDEWEB)

    Barcina, I.; Gonzalez, J.M.; Iriberri, J.; Egea, L.

    1989-01-01

    Some effects of visible light on the survival of Escherichia coli in waters of the Butron river were studied by comparing illuminated and nonilluminated systems. The following count methods were used: CFU on a selective medium (eosin-methylene blue agar), CFU on a medium of recuperation (Trypticase soy agar with yeast extract and glucose), number of metabolically active cells by reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, and total number of E. coli cells as determined by the acridine orange direct-count method. In the illuminated systems, decreases in CFU of E. coli and in the number of metabolically active cells were observed. However, no decline of the total number of E. coli cells was observed. By count methods, different stages of progressive dormancy of E. coli cells were determined to exist in illuminated systems. Culturable and recoverable cells were defined as viable cells, and metabolically active cells and morphologically intact cells were defined as somnicells. Indirect activity measurements were also done by using (14C)glucose. In illuminated systems, a decrease of glucose uptake by E. coli cells was observed throughout the experiments. The assimilated fraction of (14C)glucose decreased faster than the respired fraction in illuminated systems. The percentage of respired (14C)glucose (14CO2 production) with respect to the total glucose uptake increased throughout the experiments, and the percentage of assimilated glucose decreased. Therefore, the visible light was also responsible for an additional inhibition of biosynthetic processes.

  13. Targeting the Pro-Survival Protein MET with Tivantinib (ARQ 197) Inhibits Growth of Multiple Myeloma Cells12

    Science.gov (United States)

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z.; Stellrecht, Christine M.; Gandhi, Varsha

    2015-01-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by > 50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138 + plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. PMID:25810013

  14. Targeting the pro-survival protein MET with tivantinib (ARQ 197) inhibits growth of multiple myeloma cells.

    Science.gov (United States)

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z; Stellrecht, Christine M; Gandhi, Varsha

    2015-03-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by >50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138+ plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Preliminary Study on Intrasplenic Implantation of Artificial Cell Bioencapsulated Stem Cells to Increase the Survival of 90% Hepatectomized Rats

    Science.gov (United States)

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    We implanted artificial cell bioencapsulated bone marrow mesenchymal stem cells into the spleens of 90% hepatectomized (PH) rats. The resulting 14 days survival rate was 91%. This is compared to a survival rate of 21% in 90% hepatectomized rats and 25% for those receiving free MSCs transplanted the same way. Unlike free MSCs, the bioencapsulated MSCs are retained in the spleens and their hepatotrophic factors can continue to drain directly into the liver without dilution resulting in improved hepatic regeneration. In addition, with time the transdifferentiation of MSCs into hepatocyte-like cells in the spleen renders the spleen as a ectopic liver support. PMID:19132579

  16. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Directory of Open Access Journals (Sweden)

    Chen Yan-Hua

    2009-03-01

    Full Text Available Abstract Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.

  17. Survival Analysis of F98 Glioma Rat Cells Following Minibeam or Broad-Beam Synchrotron Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Prezado Yolanda

    2011-04-01

    Full Text Available Abstract Background In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF, a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Methods Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. Results The endpoint (or threshold dose from which an important enhancement in the effectiveness of both radiation treatments is achieved obtained by flow cytometry could be established just before 12 Gy in the two irradiation schemes, whilst the endpoints assessed by the QBlue reagent, taking into account the cell recovery, were set around 18 Gy in both cases. In addition, flow cytometric analysis pointed at a larger effectiveness for minibeams, due to the higher proportion of early apoptotic cells. Conclusions When the valley doses in MBRT equal the dose deposited in the BB scheme, similar cell survival ratio and cell recovery were observed. However, a significant increase in the number of early apoptotic cells were found 48 hours after the minibeam radiation in comparison with

  18. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation

    Science.gov (United States)

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  19. Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence.

    Science.gov (United States)

    Kaur, Ekjot; Rajendra, Jacinth; Jadhav, Shailesh; Shridhar, Epari; Goda, Jayant Sastri; Moiyadi, Aliasgar; Dutt, Shilpee

    2015-06-01

    Understanding of molecular events underlying resistance and relapse in glioblastoma (GBM) is hampered due to lack of accessibility to resistant cells from patients undergone therapy. Therefore, we mimicked clinical scenario in an in vitro cellular model developed from five GBM grade IV primary patient samples and two cell lines. We show that upon exposure to lethal dose of radiation, a subpopulation of GBM cells, innately resistant to radiation, survive and transiently arrest in G2/M phase via inhibitory pCdk1(Y15). Although arrested, these cells show multinucleated and giant cell phenotype (MNGC). Significantly, we demonstrate that these MNGCs are not pre-existing giant cells from parent population but formed via radiation-induced homotypic cell fusions among resistant cells. Furthermore, cell fusions induce senescence, high expression of senescence-associated secretory proteins (SASPs) and activation of pro-survival signals (pAKT, BIRC3 and Bcl-xL) in MNGCs. Importantly, following transient non-proliferation, MNGCs escape senescence and despite having multiple spindle poles during mitosis, they overcome mitotic catastrophe to undergo normal cytokinesis forming mononucleated relapse population. This is the first report showing radiation-induced homotypic cell fusions as novel non-genetic mechanism in radiation-resistant cells to sustain survival. These data also underscore the importance of non-proliferative phase in resistant glioma cells. Accordingly, we show that pushing resistant cells into premature mitosis by Wee1 kinase inhibitor prevents pCdk1(Y15)-mediated cell cycle arrest and relapse. Taken together, our data provide novel molecular insights into a multistep process of radiation survival and relapse in GBM that can be exploited for therapeutic interventions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis

    NARCIS (Netherlands)

    Alemdar, N.; Leijten, Jeroen Christianus Hermanus; Camci-Unal, G.; Hjortnaes, J.; Ribas, J.; Paul, A.; Mostafalu, P.; Gaharwar, A.K.; Qiu, Y.; Sonkusale, S.; Liao, R.; Khademhosseini, A.

    2016-01-01

    Oxygen is essential to cell survival and tissue function. Not surprisingly, ischemia resulting from myocardial infarction induces cell death and tissue necrosis. Attempts to regenerate myocardial tissue with cell based therapies exacerbate the hypoxic stress by further increasing the metabolic

  1. LPS, Oleuropein and Blueberry extracts affect the survival, morphology and Phosphoinositide signalling in stimulated human endothelial cells.

    Science.gov (United States)

    Lo Vasco, Vincenza Rita; Leopizzi, Martina; Di Maio, Valeria; Di Raimo, Tania; Cesa, Stefania; Masci, Alessandra; Rocca, Carlo Della

    2017-12-01

    Endothelial cells (EC) act as leading actors in angiogenesis. Understanding the complex network of signal transduction pathways which regulate angiogenesis might offer insights in the regulation of normal and pathological events, including tumours, vascular, inflammatory and immune diseases. The effects of olive oil and of Blueberry extracts upon the phosphoinositide (PI)-specific phospholipase C (PLC) enzymes were evaluated both in quiescent and inflammatory stimulated human umbilical vein EC (HUVEC) using molecular biology (multiliquid bioanalysis) and immunofluorescence techniques. Oleuropein significantly increased the number of surviving HUVEC compared to untreated controls, suggesting that it favours the survival and proliferation of EC. Our results suggest that Oleuropein might be useful to induce EC proliferation, an important event during angiogenesis, with special regard to wound healing. Blueberry extracts increased the number of surviving HUVEC, although the comparison to untreated controls did not result statistically significant. Lipopolysaccharide (LPS) administration significantly reduced the number of live HUVEC. LPS can also modify the expression of selected PLC genes. Adding Blueberry extracts to LPS treated HUVEC cultures did not significantly modify the variations of PLC expression induced by LPS. Oleuropein increased or reduced the expression of PLC genes, and statistically significant results were identified for selected PLC isoforms. Oleuropein also modified the effects of LPS upon PLC genes' expression. Thus, our results corroborate the hypothesis that Oleuropein owns anti-inflammatory activity. The intracellular localization of PLC enzymes was modified by the different treatments we used. Podosome-like structures were observed in differently LPS treated HUVEC.

  2. Influence of pH on the toxicity and survival of total cells and spores of Bacillus thuringiensis.

    Science.gov (United States)

    Dias, S C; Sagardoy, M A

    1998-01-01

    B. thuringiensis (Bt) is one of the most important microorganism among those studied because of their entomopathogenic potential against insect plagues and vectors. In this work, the pathogenicity and survival of total cells and spores of three autochthonous strains of B. thuringiensis isolated from Argentine soils (A61, A27 and A68) and the commercial strain HD-1 were studied at different ion hidrogen concentrations (pH = 4.4; 5.4; 7.4; 8.4; 9.4 and 10.4) under laboratory conditions. The greatest antimicrobial effect on the number of spores and total cells was observed at pH 4.4 with a great decrease after 72 hours' growth. Comparing the survival percentage of total cells and spores; pH 5.4 was the one which allowed the higher relative tolerance (survival) among the studied strains. No decrease in pathogenicity was observed in the investigated serotypes at different pHs in bioassays against Cydia pomonella. Two soil strains of Bt (A61/A27) and the Bt (HD-1) of commercial origin caused the highest mortality of the target insect. The sotto serotype (A68), however, did not produce this effect.

  3. Young age is independent prognostic factor for cancer-specific survival of low-stage clear cell renal cell carcinoma.

    Science.gov (United States)

    Jung, Eun-Jung; Lee, Hyun Ju; Kwak, Cheol; Ku, Ja Hyeon; Moon, Kyung Chul

    2009-01-01

    To clarify the clinicopathologic features and prognosis of renal cell carcinoma (RCC) in young adults. The features of RCC in young adults have been reported, but the results have been conflicting. The data from 619 patients with RCC were analyzed. The patients were divided into 2 groups according to age at diagnosis, 55 years of age. The clinicopathologic parameters were compared, and a survival analysis was performed. Younger patients were more likely to have a lower disease stage (P age was a favorable prognostic factor for cancer-specific survival of clear cell RCC (P age was independently associated with a longer cancer-specific survival rate of clear cell RCC (P = .003). In addition, the prognostic implication of age differed between low (I or II) and high (III or IV) stage tumors. In low-stage clear cell RCC, young age was significantly associated with prolonged cancer-specific survival on univariate (P age was an independent prognostic factor for cancer-specific survival of low-stage clear cell RCC.

  4. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  5. Brain metastasis from non-small cell lung cancer (NSCLC). Prognostic importance of the number of involved extracranial organs

    Energy Technology Data Exchange (ETDEWEB)

    Gerdan, L. [University of Luebeck, Department of Radiation Oncology, Luebeck (Germany); University of Luebeck, Section of Nuclear Medicine, Luebeck (Germany); Segedin, B. [Institute of Oncology, Department of Radiation Oncology, Ljubljana (Slovenia); Nagy, V. [Oncology Institute Ion Ciricuta, Department of Radiotherapy, Cluj-Napoca (Romania); Khoa, M.T. [Hanoi Medical University, Department of Nuclear Medicine, Hanoi (Viet Nam); Bach Mai Hospital, Nuclear Medicine and Oncology Center, Hanoi (Viet Nam); Trang, N.T. [Bach Mai Hospital, Nuclear Medicine and Oncology Center, Hanoi (Viet Nam); Schild, S.E. [Mayo Clinic Scottsdale, Department of Radiation Oncology, Scottsdale, AZ (United States); Rades, D. [University of Luebeck, Department of Radiation Oncology, Luebeck (Germany)

    2014-01-15

    This study investigated the potential prognostic value of the number of involved extracranial organs in patients with brain metastasis from non-small cell lung cancer (NSCLC). A total of 472 patients who received whole-brain radiotherapy (WBRT) alone with 5 x 4 Gy or 10 x 3 Gy for brain metastasis from NSCLC were included in this retrospective study. In addition to the number of involved extracranial organs, 6 further potential prognostic factors were investigated including WBRT regimen, age, gender, Karnofsky Performance Score (KPS), number of brain metastases, and the interval from cancer diagnosis to WBRT. Subgroup analyses were performed for patients with metastatic involvement of one (lung vs. bone vs. other metastasis) and two (lung+bone vs. lung+lymph nodes vs. other combinations) extracranial organs. The survival rates at 6 months of the patients with involvement of 0, 1, 2, 3, and ≥4 extracranial organs were 52, 27, 17, 4, and 14%, respectively (p<0.001). On multivariate analysis, the number of involved extracranial organs remained significant (risk ratio 1.32; 95% confidence interval 1.19-1.46; p<0.001). Age <65 years (p=0.004), KPS ≥70 (p<0.001), and only 1-3 brain metastases (p=0.022) were also significantly associated with survival in the multivariate analysis. In the separate analyses of patients with involvement of one and two extracranial organs, survival was not significantly different based on the pattern of extracranial organ involvement. The number of involved extracranial organs is an independent prognostic factor of survival in patients with brain metastasis from NSCLC, irrespective of the pattern of extracranial organ involvement. (orig.)

  6. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    Science.gov (United States)

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  7. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    Science.gov (United States)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  8. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lin.796@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: lin.674@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  9. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Zhanshan [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Qian, Guangfang [Department of Endocrinology, Zhangqiu Municipal Hospital of Traditional Chinese Medicine, Zhangqiu, Shandong 250200 (China); Zang, Yan; Gu, Haihui; Huang, Yanyan; Zhu, Lishuang; Li, Jinqi; Liu, Yang; Tu, Xiaohua [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Song, Haihan [Emergency Center, East Hospital, Shanghai 200120 (China); Qian, Baohua, E-mail: qianbhl963@163.com [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2017-01-01

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis of primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.

  10. High expression of HMGA2 predicts poor survival in patients with clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Na N

    2016-11-01

    Full Text Available Ning Na,1,* Tujie Si,2,* Zhengyu Huang,1,* Bin Miao,1 Liangqing Hong,1 Heng Li,1 Jiang Qiu,2 Jianguang Qiu3 1Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 2Department of Organ Transplant, The First Affiliated Hospital of Sun Yat-sen University, 3Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: High-mobility group AT-hook 2 (HMGA2 is involved in a wide spectrum of biological processes and is upregulated in several tumors, but its role in renal carcinoma remains unclear. The aim of this study was to examine the expression of HMGA2 and its relationship to the overall survival (OS of patients with non-metastatic clear cell renal cell carcinoma (ccRCC following surgery. The expression of HMGA2 was evaluated retrospectively by immunohistochemistry (IHC in 162 patients with ccRCC who underwent nephrectomy in 2003 and 2004. An IHC analysis revealed that HMGA2 was expressed in the nuclei of tumor cells in 146 (90.1% patients with ccRCC. The level of HMGA2 was positively correlated with tumor size, lymph node metastasis, and Fuhrman Grade. A Kaplan–Meier analysis with log-rank test found that patients with high HMGA2 expression had a poor outcome and that patients with low HMGA2 expression had better survival. Cox regression analysis showed that HMGA2 expression could serve as an independent prognostic factor for ccRCC patients. The efficacy of the following prognostic models was improved when HMGA2 expression was added: tumor node metastasis stage, UCLA Integrated Scoring System, Mayo Clinic stage, size, grade, and necrosis score. In summary, this study showed that HMGA2 expression is an independent prognostic factor for OS in patients with ccRCC. HMGA2 was found to be a valuable biomarker for ccRCC progression. Keywords: renal carcinoma, high-mobility group protein A

  11. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models

    Science.gov (United States)

    Foroglou, Pericles; Karathanasis, Vasileios; Demiri, Efterpi; Koliakos, George; Papadakis, Marios

    2016-01-01

    The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals. PMID:27022440

  12. How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart?

    Directory of Open Access Journals (Sweden)

    Liangpeng Li

    2016-01-01

    Full Text Available Mesenchymal stem cell (MSC is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease. However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review, we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this question.

  13. Increased mast cell numbers in a calcaneal tendon overuse model

    DEFF Research Database (Denmark)

    Pingel, Jessica; Wienecke, Jacob; Kongsgaard Madsen, Mads

    2013-01-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar ra...

  14. A minimum number of autoimmune T cells to induce autoimmunity?

    Czech Academy of Sciences Publication Activity Database

    Bosch, A.J.T.; Bolinger, B.; Keck, S.; Štěpánek, Ondřej; Ozga, A.J.; Galati-Fournier, V.; Stein, J.V.; Palmer, E.

    2017-01-01

    Roč. 316, jaro (2017), s. 21-31 ISSN 0008-8749 R&D Projects: GA ČR GJ16-09208Y Institutional support: RVO:68378050 Keywords : T cell * Tolerance * Autoimmunity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.172, year: 2016

  15. Dietary lutein modulates growth and survival genes in prostate cancer cells.

    Science.gov (United States)

    Rafi, Mohamed M; Kanakasabai, Saravanan; Gokarn, Sarita V; Krueger, Eric G; Bright, John J

    2015-02-01

    Lutein is a carotenoid pigment present in fruits and vegetables that has anti-inflammatory and antitumor properties. In this study, we examined the effect of lutein on proliferation and survival-associated genes in prostate cancer (PC-3) cells. We found that in vitro culture of PC-3 cells with lutein induced mild decrease in proliferation that improved in combination treatment with peroxisome proliferator-activated receptor gamma (PPARγ) agonists and other chemotherapeutic agents. Flow cytometry analyses showed that lutein improved drug-induced cell cycle arrest and apoptosis in prostate cancer. Gene array and quantitative reverse transcription-polymerase chain reaction analyses showed that lutein altered the expression of growth and apoptosis-associated biomarker genes in PC-3 cells. These findings highlight that lutein modulates the expression of growth and survival-associated genes in prostate cancer cells.

  16. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

    Science.gov (United States)

    Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.

    2014-01-01

    Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499

  17. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    Science.gov (United States)

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  18. Ex Vivo Expanded Human NK Cells Survive and Proliferate in Humanized Mice with Autologous Human Immune Cells.

    Science.gov (United States)

    Vahedi, Fatemeh; Nham, Tina; Poznanski, Sophie M; Chew, Marianne V; Shenouda, Mira M; Lee, Dean; Ashkar, Ali A

    2017-09-21

    Adoptive immune cell therapy is emerging as a promising immunotherapy for cancer. Particularly, the adoptive transfer of NK cells has garnered attention due to their natural cytotoxicity against tumor cells and safety upon adoptive transfer to patients. Although strategies exist to efficiently generate large quantities of expanded NK cells ex vivo, it remains unknown whether these expanded NK cells can persist and/or proliferate in vivo in the absence of exogenous human cytokines. Here, we have examined the adoptive transfer of ex vivo expanded human cord blood-derived NK cells into humanized mice reconstituted with autologous human cord blood immune cells. We report that ex vivo expanded NK cells are able to survive and possibly proliferate in vivo in humanized mice without exogenous cytokine administration, but not in control mice that lack human immune cells. These findings demonstrate that the presence of autologous human immune cells supports the in vivo survival of ex vivo expanded human NK cells. These results support the application of ex vivo expanded NK cells in cancer immunotherapy and provide a translational humanized mouse model to test the lifespan, safety, and functionality of adoptively transferred cells in the presence of autologous human immune cells prior to clinical use.

  19. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice

    Science.gov (United States)

    Randall, Katrina L.; Chan, Stephanie S.-Y.; Ma, Cindy S.; Fung, Ivan; Mei, Yan; Yabas, Mehmet; Tan, Andy; Arkwright, Peter D.; Al Suwairi, Wafaa; Lugo Reyes, Saul Oswaldo; Yamazaki-Nakashimada, Marco A.; de la Luz Garcia-Cruz, Maria; Smart, Joanne M.; Picard, Capucine; Okada, Satoshi; Jouanguy, Emmanuelle; Casanova, Jean-Laurent; Lambe, Teresa; Cornall, Richard J.; Russell, Sarah; Oliaro, Jane; Tangye, Stuart G.; Bertram, Edward M.

    2011-01-01

    In humans, DOCK8 immunodeficiency syndrome is characterized by severe cutaneous viral infections. Thus, CD8 T cell function may be compromised in the absence of DOCK8. In this study, by analyzing mutant mice and humans, we demonstrate a critical, intrinsic role for DOCK8 in peripheral CD8 T cell survival and function. DOCK8 mutation selectively diminished the abundance of circulating naive CD8 T cells in both species, and in DOCK8-deficient humans, most CD8 T cells displayed an exhausted CD45RA+CCR7− phenotype. Analyses in mice revealed the CD8 T cell abnormalities to be cell autonomous and primarily postthymic. DOCK8 mutant naive CD8 T cells had a shorter lifespan and, upon encounter with antigen on dendritic cells, exhibited poor LFA-1 synaptic polarization and a delay in the first cell division. Although DOCK8 mutant T cells underwent near-normal primary clonal expansion after primary infection with recombinant influenza virus in vivo, they showed greatly reduced memory cell persistence and recall. These findings highlight a key role for DOCK8 in the survival and function of human and mouse CD8 T cells. PMID:22006977

  20. β-Catenin Signaling Increases during Melanoma Progression and Promotes Tumor Cell Survival and Chemoresistance

    Science.gov (United States)

    Sinnberg, Tobias; Menzel, Moritz; Ewerth, Daniel; Sauer, Birgit; Schwarz, Michael; Schaller, Martin; Garbe, Claus; Schittek, Birgit

    2011-01-01

    Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the transcriptional function of beta-catenin takes place. Blockade of beta-catenin in metastatic melanoma cell lines efficiently induces apoptosis, inhibits proliferation, migration and invasion in monolayer and 3-dimensional skin reconstructs and decreases chemoresistance. In addition, subcutaneous melanoma growth in SCID mice was almost completely inhibited by an inducible beta-catenin knockdown. In contrast, the survival of benign melanocytes and primary melanoma cell lines was less affected by beta-catenin depletion. However, enhanced expression of beta-catenin in primary melanoma cell lines increased invasive capacity in vitro and tumor growth in the SCID mouse model. These data suggest that beta-catenin is an essential survival factor for metastatic melanoma cells, whereas it is dispensable for the survival of benign melanocytes and primary, non-invasive melanoma cells. Furthermore, beta-catenin increases tumorigenicity of primary melanoma cell lines. The differential requirements for beta-catenin signaling in aggressive melanoma versus benign melanocytic cells make beta-catenin a possible new target in melanoma therapy. PMID:21858114

  1. Knockdown of human bid gene expression enhances survival of CD8+ T cells.

    Science.gov (United States)

    Lei, Xiao-Ying; Xu, Yan-Ming; Wang, Tao; Xie, Qiao-Sheng; Jia, Lin-Tao; Wang, Li-Feng; Jin, Bo-Quan; Yan, Zhen; Yao, Li-Bo; Yang, An-Gang

    2009-01-29

    Tumor cells have developed immune evasion mechanisms such as considerably heterogenous FasL expression on their surface via which they could induce apoptosis of tumor-specific cytotoxic T lymphocytes (CTLs) in the immune system. Meanwhile, the competition of normal immune cells with tumor cells results in relative growth factors shortage for growth and proliferation of nontumor cells, which improves a susceptibility to early apoptosis of CTL. In an attempt to develop strategies for prolonging the survival of adoptively transferred T cells in a hostile pro-apoptotic tumor microenvironment, we used synthetic siRNA and vector-based shRNA to suppress the expression of Bid in human uterocervical carcinoma HeLa cells, followed by the further achievement of Bid gene silencing in human primary cells-CD8(+) lymphocytes via retrovirus-delivered siRNAs. Our results indicated that Bid knockdown HeLa cells are partially resistant to Fas antibody- or serum deprivation-induced apoptosis. Additionally, the blockade of Bid expression in CD8(+) lymphocytes resulted in a less susceptiveness to Fas antibody-induced apoptosis and a survival advantage following recombinant human interleukin-2 (rhIL-2) withdrawal or under lower rhIL-2 concentrations compared with control lymphocytes. These data suggest that knockdown of Bid might serve as an approach to enhancing the survival and tumoricidal activity of T lymphocytes in adoptive immunotherapy.

  2. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  3. Association between donor leukocyte telomere length and survival after unrelated allogeneic hematopoietic cell transplantation for severe aplastic anemia.

    Science.gov (United States)

    Gadalla, Shahinaz M; Wang, Tao; Haagenson, Michael; Spellman, Stephen R; Lee, Stephanie J; Williams, Kirsten M; Wong, Jason Y; De Vivo, Immaculata; Savage, Sharon A

    2015-02-10

    Telomeres protect chromosome ends and are markers of cellular aging and replicative capacity. To evaluate the association between recipient and donor pretransplant leukocyte telomere length with outcomes after unrelated donor allogeneic hematopoietic cell transplantation (HCT) for patients with severe aplastic anemia. The study included 330 patients (235 acquired, 85 Fanconi anemia, and 10 Diamond-Blackfan anemia) and their unrelated donors who had pre-HCT blood samples and clinical and outcome data available at the Center for International Blood and Marrow Transplant Research. Patients underwent HCT between 1989 and 2007 in 84 centers and were followed-up to March 2013. Recipient and donor pre-HCT leukocyte telomere length classified into long (third tertile) and short (first and second tertiles combined) based on donor telomere length distribution. Overall survival, neutrophil recovery, and acute and chronic graft-vs-host disease, as ascertained by transplant centers through regular patient follow-up. Longer donor leukocyte telomere length was associated with higher survival probability (5-year overall survival, 56%; number at risk, 57; cumulative deaths, 50) than shorter donor leukocyte telomere length (5-year overall survival, 40%; number at risk, 71; cumulative deaths, 128; P = .009). The association remained statistically significant after adjusting for donor age, disease subtype, Karnofsky performance score, graft type, HLA matching, prior aplastic anemia therapy, race/ethnicity, and calendar year of transplant (hazard ratio [HR], 0.61; 95% CI, 0.44-0.86). Similar results were noted in analyses stratified on severe aplastic anemia subtype, recipient age, HLA matching, calendar year of transplant, and conditioning regimen. There was no association between donor telomere length and neutrophil engraftment at 28 days (cumulative incidence, 86% vs 85%; HR, 0.94; 95% CI, 0.73-1.22), acute graft-vs-host disease grades III-IV at 100 days (cumulative incidence

  4. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells

    Science.gov (United States)

    Fujiwara, Nagatoshi; Maeda, Shinji; Naka, Takashi; Taniguchi, Hatsumi; Yamamoto, Saburo; Ayata, Minoru

    2015-01-01

    Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells. PMID:25970481

  5. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells.

    Directory of Open Access Journals (Sweden)

    Nagatoshi Fujiwara

    Full Text Available Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc(2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402 correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc(2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc(2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells.

  6. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Science.gov (United States)

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  7. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Directory of Open Access Journals (Sweden)

    María García-Amado

    Full Text Available Cell number alterations in the amygdaloid complex (AC might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL, corticomedial and central groups, 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3 and mean cell numbers (x10(6 were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  8. In vitro study of cell survival following dynamic MLC intensity-modulated radiation therapy dose delivery.

    Science.gov (United States)

    Moiseenko, Vitali; Duzenli, Cheryl; Durand, Ralph E

    2007-04-01

    The possibility of reduced cell kill following intensity-modulated radiation therapy (IMRT) compared to conventional radiation therapy has been debated in the literature. This potential reduction in cell kill relates to prolonged treatment times typical of IMRT dose delivery and consequently increased repair of sublethal lesions. While there is some theoretical support to this reduction in cell kill published in the literature, direct experimental evidence specific to IMRT dose delivery patterns is lacking. In this study we present cell survival data for three cell lines: Chinese hamster V79 fibroblasts, human cervical carcinoma, SiHa and colon adenocarcinoma, WiDr. Cell survival was obtained for 2.1 Gy delivered as acute dose with parallel-opposed pair (POP), irradiation time 75 s, which served as a reference; regular seven-field IMRT, irradiation time 5 min; and IMRT with a break for multiple leaf collimator (MLC) re-initialization after three fields were delivered, irradiation time 10 min. An actual seven-field dynamic MLC IMRT plan for a head and neck patient was used. The IMRT plan was generated for a Varian EX or iX linear accelerator with 120 leaf Millenium MLC. Survival data were also collected for doses 1X, 2X, 3X, 4X, and 5x 2.1 Gy to establish parameters of the linear-quadratic equation describing survival following acute dose delivery. Cells were irradiated inside an acrylic cylindrical phantom specifically designed for this study. Doses from both IMRT and POP were validated using ion chamber measurements. A reproducible increase in cell survival was observed following IMRT dose delivery. This increase varied from small for V79, with a surviving fraction of 0.8326 following POP vs 0.8420 following uninterrupted IMRT, to very pronounced for SiHa, with a surviving fraction of 0.3903 following POP vs 0.5330 for uninterrupted IMRT. When compared to IMRT or IMRT with a break for MLC initialization, cell survival following acute dose delivery was

  9. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Edward Rockenstein

    2015-07-01

    Full Text Available Neural stem cells (NSCs have been considered as potential therapy in Alzheimer's disease (AD but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL, a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9 months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting.

  10. Long-term Survival and Clinical Benefit from Adoptive T-cell Transfer in Stage IV Melanoma Patients Is Determined by a Four-Parameter Tumor Immune Signature.

    Science.gov (United States)

    Melief, Sara M; Visconti, Valeria V; Visser, Marten; van Diepen, Merel; Kapiteijn, Ellen H W; van den Berg, Joost H; Haanen, John B A G; Smit, Vincent T H B M; Oosting, Jan; van der Burg, Sjoerd H; Verdegaal, Els M E

    2017-02-01

    The presence of tumor-infiltrating immune cells is associated with longer survival and a better response to immunotherapy in early-stage melanoma, but a comprehensive study of the in situ immune microenvironment in stage IV melanoma has not been performed. We investigated the combined influence of a series of immune factors on survival and response to adoptive cell transfer (ACT) in stage IV melanoma patients. Metastases of 73 stage IV melanoma patients, 17 of which were treated with ACT, were studied with respect to the number and functional phenotype of lymphocytes and myeloid cells as well as for expression of galectins-1, -3, and -9. Single factors associated with better survival were identified using Kaplan-Meier curves and multivariate Cox regression analyses, and those factors were used for interaction analyses. The results were validated using The Cancer Genome Atlas database. We identified four parameters that were associated with a better survival: CD8(+) T cells, galectin-9(+) dendritic cells (DC)/DC-like macrophages, a high M1/M2 macrophage ratio, and the expression of galectin-3 by tumor cells. The presence of at least three of these parameters formed an independent positive prognostic factor for long-term survival. Patients displaying this four-parameter signature were found exclusively among patients responding to ACT and were the ones with sustained clinical benefit. Cancer Immunol Res; 5(2); 170-9. ©2017 AACR. ©2017 American Association for Cancer Research.

  11. Prognostic model for survival in patients with metastatic renal cell carcinoma: results from the international kidney cancer working group.

    Science.gov (United States)

    Manola, Judith; Royston, Patrick; Elson, Paul; McCormack, Jennifer Bacik; Mazumdar, Madhu; Négrier, Sylvie; Escudier, Bernard; Eisen, Tim; Dutcher, Janice; Atkins, Michael; Heng, Daniel Y C; Choueiri, Toni K; Motzer, Robert; Bukowski, Ronald

    2011-08-15

    To develop a single validated model for survival in metastatic renal cell carcinoma (mRCC) using a comprehensive international database. A comprehensive database of 3,748 patients including previously reported clinical prognostic factors was established by pooling patient-level data from clinical trials. Following quality control and standardization, descriptive statistics were generated. Univariate analyses were conducted using proportional hazards models. Multivariable analysis using a log-logistic model stratified by center and multivariable fractional polynomials was conducted to identify independent predictors of survival. Missing data were handled using multiple imputation methods. Three risk groups were formed using the 25th and 75th percentiles of the resulting prognostic index. The model was validated using an independent data set of 645 patients treated with tyrosine kinase inhibitor (TKI) therapy. Median survival in the favorable, intermediate and poor risk groups was 26.9 months, 11.5 months, and 4.2 months, respectively. Factors contributing to the prognostic index included treatment, performance status, number of metastatic sites, time from diagnosis to treatment, and pretreatment hemoglobin, white blood count, lactate dehydrogenase, alkaline phosphatase, and serum calcium. The model showed good concordance when tested among patients treated with TKI therapy (C statistic = 0.741, 95% CI: 0.714-0.768). Nine clinical factors can be used to model survival in mRCC and form distinct prognostic groups. The model shows utility among patients treated in the TKI era. ©2011 AACR.

  12. Serum Adiponectin Predicts Cancer-specific Survival of Patients with Renal Cell Carcinoma.

    Science.gov (United States)

    de Martino, Michela; Leitner, Carmen V; Hofbauer, Sebastian L; Lucca, Ilaria; Haitel, Andrea; Shariat, Shahrokh F; Klatte, Tobias

    2016-06-01

    Prediction of outcomes in patients with renal cell carcinoma (RCC) is crucial for clinical decision-making. The limited accuracy of conventional prognostic factors such as stage and grade may be increased by the use of biomarkers. To evaluate the association of serum adiponectin and leptin and polymorphisms in the leptin and leptin receptor genes with RCC histopathology and prognosis. Adiponectin and leptin levels were measured in preoperative serum samples from 131 consecutive patients with sporadic unilateral RCC. The polymorphisms G-2548A (rs7799039) in the leptin gene (LEP) and Gln223Arg (Q223R, A668G, rs1137101) in the leptin receptor gene (LEPR) were genotyped in 233 patients. Multivariable associations with RCC-specific survival were analyzed using Cox models. Median preoperative serum adiponectin was 15.8μg/ml (interquartile range 10.0-23.1). Adiponectin was lower in patients with distant metastases (p=0.017) or histologic tumor necrosis (p=0.015). On multivariable analysis adjusted for the effects of variables in the Karakiewicz nomogram, each 1-μg/ml increase in adiponectin was associated with a 8% decrease in the hazard of death from RCC (hazard ratio 0.92, 95% confidence interval 0.86-0.98; p=0.007). The discrimination of the Karakiewicz nomogram increased by 0.6% on inclusion of adiponectin. Leptin levels, LEP G-2548A and LEPR Q223R were not associated with either RCC pathology or outcomes. Limitations include the retrospective study design, the low numbers of patients, and a lack of standardized follow-up. This study suggests that lower preoperative serum adiponectin is associated with features of biologically aggressive RCC, metastasis, and survival. We assessed the relationship between outcomes and blood levels of adiponectin and leptin and genetic changes in leptin and leptin receptor genes. We found that patients with lower adiponectin levels have more aggressive tumors and poorer survival. Copyright © 2015 European Association of Urology

  13. 3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival.

    Science.gov (United States)

    Zaher, Sarah S; Germain, Conrad; Fu, Hongmei; Larkin, Daniel F P; George, Andrew J T

    2011-04-01

    IDO (indoleamine 2,3-dioxygenase) modulates the immune response by depletion of the essential amino acid tryptophan, and IDO overexpression has been shown to prolong corneal allograft survival. This study was conducted to examine the effect of kynurenines, the products of tryptophan breakdown and known to act directly on T lymphocytes, on corneal graft survival. The effects of kynurenines on T-cell proliferation and death, T-regulatory-cell development, and dendritic cell function, phenotype, and viability were analyzed in vitro. The effect of topical and systemic administration of 3-hydroxykynurenine (3HK) on orthotopic murine corneal allograft survival was examined. T-lymphocyte proliferation was inhibited by two of the four different kynurenines: 3HK and 3-hydroxyanthranilic acid (3HAA). This effect was accompanied by significant T-cell death. Neither 3HK nor 3HAA altered dendritic cell function, nor did they induce apoptosis or pathogenicity to corneal endothelial cells. Administration of systemic and topical 3HK to mice receiving a fully mismatched corneal graft resulted in significant prolongation of graft survival (median survival of control grafts, 12 days; of treated, 19 and 15 days, respectively; P < 0.0003). While systemic administration of 3HK was associated with a significant depletion of CD4(+) T, CD8(+) T, and B lymphocytes in peripheral blood, no depletion was found after topical administration. The production of kynurenines, in particular 3HK and 3HAA, may be one mechanism (in addition to tryptophan depletion) by which IDO prolongs graft survival. These molecules have potential as specific agents for preventing allograft rejection in patients at high rejection risk.

  14. Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor.

    Science.gov (United States)

    Soto, Raymond; Petersen, Charisse; Novis, Camille L; Kubinak, Jason L; Bell, Rickesha; Stephens, W Zac; Lane, Thomas E; Fujinami, Robert S; Bosque, Alberto; O'Connell, Ryan M; Round, June L

    2017-05-23

    Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease.

  15. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis.

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2016-05-01

    Full Text Available Aerobic glycolysis is essential for supporting the fast growth of a variety of cancers. However, its role in the survival of cancer cells under stress conditions is unclear. We have previously reported an efficient model of gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV-induced cellular transformation of rat primary mesenchymal stem cells. KSHV-transformed cells efficiently induce tumors in nude mice with pathological features reminiscent of Kaposi's sarcoma tumors. Here, we report that KSHV promotes cell survival and cellular transformation by suppressing aerobic glycolysis and oxidative phosphorylation under nutrient stress. Specifically, KSHV microRNAs and vFLIP suppress glycolysis by activating the NF-κB pathway to downregulate glucose transporters GLUT1 and GLUT3. While overexpression of the transporters rescues the glycolytic activity, it induces apoptosis and reduces colony formation efficiency in softagar under glucose deprivation. Mechanistically, GLUT1 and GLUT3 inhibit constitutive activation of the AKT and NF-κB pro-survival pathways. Strikingly, GLUT1 and GLUT3 are significantly downregulated in KSHV-infected cells in human KS tumors. Furthermore, we have detected reduced levels of aerobic glycolysis in several KSHV-infected primary effusion lymphoma cell lines compared to a Burkitt's lymphoma cell line BJAB, and KSHV infection of BJAB cells reduced aerobic glycolysis. These results reveal a novel mechanism by which an oncogenic virus regulates a key metabolic pathway to adapt to stress in tumor microenvironment, and illustrate the importance of fine-tuning the metabolic pathways for sustaining the proliferation and survival of cancer cells, particularly under stress conditions.

  16. Encapsulated Whole Bone Marrow Cells Improve Survival in Wistar Rats after 90% Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Carolina Uribe-Cruz

    2016-01-01

    Full Text Available Background and Aims. The use of bone marrow cells has been suggested as an alternative treatment for acute liver failure. In this study, we investigate the effect of encapsulated whole bone marrow cells in a liver failure model. Methods. Encapsulated cells or empty capsules were implanted in rats submitted to 90% partial hepatectomy. The survival rate was assessed. Another group was euthanized at 6, 12, 24, 48, and 72 hours after hepatectomy to study expression of cytokines and growth factors. Results. Whole bone marrow group showed a higher than 10 days survival rate compared to empty capsules group. Gene expression related to early phase of liver regeneration at 6 hours after hepatectomy was decreased in encapsulated cells group, whereas genes related to regeneration were increased at 12, 24, and 48 hours. Whole bone marrow group showed lower regeneration rate at 72 hours and higher expression and activity of caspase 3. In contrast, lysosomal-β-glucuronidase activity was elevated in empty capsules group. Conclusions. The results show that encapsulated whole bone marrow cells reduce the expression of genes involved in liver regeneration and increase those responsible for ending hepatocyte division. In addition, these cells favor apoptotic cell death and decrease necrosis, thus increasing survival.

  17. Factors associated with disease-specific survival of patients with non-small cell lung cancer.

    Science.gov (United States)

    Souza, Mirian Carvalho de; Cruz, Oswaldo Gonçalves; Vasconcelos, Ana Glória Godoi

    2016-01-01

    Lung cancer is a global public health problem and is associated with high mortality. Lung cancer could be largely avoided by reducing the prevalence of smoking. The objective of this study was to analyze the effects of social, behavioral, and clinical factors on the survival time of patients with non-small cell lung cancer treated at Cancer Hospital I of the José Alencar Gomes da Silva National Cancer Institute, located in the city of Rio de Janeiro, Brazil, between 2000 and 2003. This was a retrospective hospital cohort study involving 1,194 patients. The 60-month disease-specific survival probabilities were calculated with the Kaplan-Meier method for three stage groups. The importance of the studied factors was assessed with a hierarchical theoretical model after adjustment by Cox multiple regression. The estimated 60-month specific-disease lethality rate was 86.0%. The 60-month disease-specific survival probability ranged from 25.0% (stages I/II) to 2.5% (stage IV). The performance status, the intention to treat, and the initial treatment modality were the major prognostic factors identified in the study population. In this cohort of patients, the disease-specific survival probabilities were extremely low. We identified no factors that could be modified after the diagnosis in order to improve survival. Primary prevention, such as reducing the prevalence of smoking, is still the best method to reduce the number of people who will suffer the consequences of lung cancer. O câncer de pulmão é um problema de saúde pública global e é associado a elevada mortalidade. Ele poderia ser evitado em grande parte com a redução da prevalência do tabagismo. O objetivo deste estudo foi analisar os efeitos de fatores sociais, comportamentais e clínicos sobre o tempo de sobrevida de pacientes com câncer de pulmão de células não pequenas atendidos, entre 2000 e 2003, no Hospital do Câncer I do Instituto Nacional de Câncer José Alencar Gomes da Silva, localizado na

  18. Distribution of surviving tumor cells after chemoradiotherapy in tongue and floor of mouth carcinomas.

    Science.gov (United States)

    Osaki, T; Hirota, J; Yoneda, K; Yamamoto, T; Ueta, E

    1994-01-01

    Conservative surgery according to the clinical response to induction therapy is applied in breast carcinomas but not yet in head and neck carcinomas. The possibility of conservative surgery after induction therapy for preservation of function was examined. Forty-three tongue and 15 floor of mouth carcinomas that had received induction therapy and tumor resection were submitted for a comparative investigation on the clinical effect of induction therapy and cancer cell degeneration, which was examined in semiserial specimens from the bread-loaf sections of the excised materials, and a classification of the surviving tumor cell distribution in the tissue was proposed. The distribution was divided into four patterns according to the dispersion and volume of the remaining tumor cells (pattern I, no surviving tumor cells; pattern IIA, viable tumor cells in the central superficial region of the original tumor tissue; pattern IIB, viable cells in the superficial portion, but distributed widely; pattern III, massive tumor cell nests in the deep portion, but centrally localized; pattern IVA, sporadical viable cell islands, but not in the periphery; and pattern IVB, diffuse viable cells scattered throughout the original tumor tissue). The original tumor size did not affect the remaining viable tumor cell distribution pattern, but sporadic distribution patterns (patterns IVA and IVB) were observed in most of the T4 cases. In many cases, especially in tumors of the nondiffuse invasion type (invasion of grade 1 and 2), the tumor remission rate was inversely correlated with the dispersion of the viable tumor cells. However, some cases of grade 3 and 4 invasion exhibited sporadical surviving tumor cells even though a high tumor remission rate was obtained. These tumors, especially those located on the floor of the mouth, recurred with high frequency. Conservative surgery can be applied to nondiffuse invasion cases, according to the tumor remission rate. In T3 and T4 cases

  19. Skp2 expression unfavorably impacts survival in resectable esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Liang Yi

    2012-05-01

    Full Text Available Abstract Background The correlation of S-phase kinase–associated protein 2 (Skp2 with metastasis and prognosis in esophageal squamous cell carcinoma (ESCC is controversial. The purpose of this study was to explore whether there was a correlation between the expression of Skp2 evaluated by immunohistochemistry and the clinical outcome of patients with operable ESCC, and to further determine the possible mechanism of the impact of Skp2 on survival. Methods Tissue microarrays that included 157 surgically resected ESCC specimens was successfully generated for immunohistochemical evaluation. The clinical/prognostic significance of Skp2 expression was analyzed. Kaplan-Meier analysis was used to compare the postoperative survival between groups. The prognostic impact of clinicopathologic variables and Skp2 expression was evaluated using a Cox proportional hazards model. A cell proliferation assay and a colony formation assay were performed in ESCC cell lines to determine the function of Skp2 on the progression of ESCC in vitro. Results Skp2 expression correlated closely with the T category (p = 0.035 and the pathological tumor-node-metastasis (TNM stage (p = 0.027. High expression of Skp2 was associated with poor overall survival in resectable ESCC (p = 0.01. The multivariate Cox regression analysis demonstrated that pathological T category, pathological N category, cell differentiation, and negative Skp2 expression were independent factors for better overall survival. In vitro assays of ESCC cell lines demonstrated that Skp2 promoted the proliferative and colony-forming capacity of ESCCs. Conclusions Negative Skp2 expression in primary resected ESCC is an independent factor for better survival. Skp2 may play a pro-proliferative role in ESCC cells.

  20. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul J J; Keller, Beat

    2002-01-01

    TISSUE SIZE (VAS) and LEP. These genes are closely linked and arranged in tandem. Activation tagging of LEP only caused a specific increase in the number of xylem cells. This increased xylem cell number, together with the ectopic leaf blade formation, indicates that LEP functions as a cell division...

  1. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.

    Directory of Open Access Journals (Sweden)

    Robert O Watson

    2008-01-01

    Full Text Available Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni-containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells.

  2. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Directory of Open Access Journals (Sweden)

    Razmik Mirzayans

    2016-05-01

    Full Text Available It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis.

  3. Captivity reduces hippocampal volume but not survival of new cells in a food-storing bird.

    Science.gov (United States)

    Tarr, Bernard A; Rabinowitz, Jeremy S; Ali Imtiaz, Mubdiul; DeVoogd, Timothy J

    2009-12-01

    In many naturalistic studies of the hippocampus wild animals are held in captivity. To test if captivity itself affects hippocampal integrity, adult black-capped chickadees (Poecile atricapilla) were caught in the fall, injected with bromodeoxyuridine to mark neurogenesis, and alternately released to the wild or held in captivity. The wild birds were recaptured after 4-6 weeks and perfused simultaneously with their captive counterparts. The hippocampus of captive birds was 23% smaller than wild birds, with no hemispheric differences in volume within groups. Between groups there was no statistically significant difference in the size of the telencephalon, or in the number and density of surviving new cells. Proximate causes of the reduced hippocampal volume could include stress, lack of exercise, diminished social interaction, or limited caching opportunity-a hippocampal-dependent activity. The results suggest the avian hippocampus-a structure essential for rapid, complex relational and spatial learning-is both plastic and sensitive, much as in mammals, including humans.

  4. Captivity Reduces Hippocampal Volume but not Survival of New Cells in a Food-Storing Bird

    Science.gov (United States)

    Rabinowitz, Jeremy S.; Ali Imtiaz, Mubdiul; DeVoogd, Timothy J.

    2010-01-01

    In many naturalistic studies of the hippocampus wild animals are held in captivity. To see if captivity itself affects hippocampal structure, adult black-capped chickadees (Poecile atricapilla) were caught in the fall, injected with bromodeoxyuridine to mark neurogenesis and alternately released back to the wild or held in captivity for 4–6 weeks. Wild birds were recaptured and perfused simultaneously with their captive counterparts. The hippocampus of the captive birds was 23% smaller than the wild birds, with no hemispheric differences in volume within groups. There was no statistically significant difference in the size of the telencephalon between groups, or in the number and density of surviving new cells. Proximate causes of the hippocampal volume change could include stress, lack of exercise, diminished social interaction or limited caching opportunity; a hippocampal-dependent activity. The results suggest the avian hippocampus - a structure essential for rapid, complex relational and spatial learning - is both plastic and sensitive, much as is the case in mammals, including humans. PMID:19813245

  5. LONG-TERM SURVIVAL OF SMALL-CELL LUNG-CANCER PATIENTS AFTER CHEMOTHERAPY

    NARCIS (Netherlands)

    VANDERGAAST, A; POSTMUS, PE; BURGHOUTS, J; VANBOLHUIS, C; STAM, J; SPLINTER, TAW

    Eighty-one patients with small cell lung cancer (SCLC) with a survival Of more than 2 years start of chemotherapy were studied. Twenty-six of the 28 patients who died of relapsed SCLC had in relapsed before two years and of the 55 who had not then only two (4%) relapsed subsequently. It is stressed

  6. Stem Cell Factor Expression after Renal Ischemia Promotes Tubular Epithelial Survival

    NARCIS (Netherlands)

    Stokman, Geurt; Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J. D.; Weening, Jan J.; Leemans, Jaklien C.; Florquin, Sandrine

    2010-01-01

    Background: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration

  7. Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein

    DEFF Research Database (Denmark)

    Prager, Gerald W; Mihaly, Judit; Brunner, Patrick M

    2008-01-01

    ), but independent of the phosphatidylinositol 3 (PI3) kinase pathway, whereas vascular endothelial growth factor (VEGF)-induced antiapoptosis was PI3 kinase dependent. uPA-induced cell survival involved phosphorylation of p21-activated kinase 1 (Pak1) and the IkappaB kinase alpha that leads to nuclear factor kappa...

  8. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2...

  9. Nicotine-mediated signals modulate cell death and survival of T lymphocytes.

    Science.gov (United States)

    Oloris, Silvia C S; Frazer-Abel, Ashley A; Jubala, Cristan M; Fosmire, Susan P; Helm, Karen M; Robinson, Sally R; Korpela, Derek M; Duckett, Megan M; Baksh, Shairaz; Modiano, Jaime F

    2010-02-01

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease. Copyright 2009 Elsevier Inc. All rights reserved.

  10. NICOTINE-MEDIATED SIGNALS MODULATE CELL DEATH AND SURVIVAL OF T LYMPHOCYTES1

    Science.gov (United States)

    Oloris, Silvia C. S.; Frazer-Abel, Ashley A.; Jubala, Cristan M.; Fosmire, Susan P.; Helm, Karen M.; Robinson, Sally R.; Korpela, Derek M.; Duckett, Megan M.; Baksh, Shairaz; Modiano, Jaime F.

    2009-01-01

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease. PMID:19896492

  11. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Department of Bone and Joint Surgery, The affiliated hospital of Luzhou Medical College, Luzhou 646000 (China); Qing, Quan [Sichuan College of Traditional Chinese Medicine, Mianyang 621000 (China); Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041 (China); Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Hu, Jin-Lian [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Qin, Ting-Wu, E-mail: tingwuqin@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2016-12-01

    Highlights: • The shapes of tenocytes varied when seeded on different surface of scaffolds. • Tenocytes were flat on smooth surface and spindle on micro-grooved surface. • Tenocytes were ellipse or spindle on porous surface. • Tenocytes got varying adhesion shape and elongation index on varying surfaces. • The tenocyte survival on porous surface was superior to the other two groups. - Abstract: The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.

  12. Immunotherapy using slow-cycling tumor cells prolonged overall survival of tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Sun Qing

    2012-12-01

    Full Text Available Abstract Background Despite considerable progress in the development of anticancer therapies, there is still a high mortality rate caused by cancer relapse and metastasis. Dormant or slow-cycling residual tumor cells are thought to be a source of tumor relapse and metastasis, and are therefore an obstacle to therapy. In this study, we assessed the drug resistance of tumor cells in mice, and investigated whether vaccination could promote survival. Methods The mouse colon carcinoma cell line CT-26 was treated with 5-fluorouracil to assess its sensitivity to drug treatment. Mice with colon tumors were immunized with inactivated slow-cycling CT-26 cells to estimate the efficacy of this vaccine. Results We identified a small population of slow-cycling tumor cells in the mouse colon carcinoma CT-26 cell line, which was resistant to conventional chemotherapy. To inhibit tumor recurrence and metastasis more effectively, treatments that selectively target the slow-cycling tumor cells should be developed to complement conventional therapies. We found that drug-treated, slow-cycling tumor cells induced a more intense immune response in vitro. Moreover, vaccination with inactivated slow-cycling tumor cells caused a reduction in tumor volume and prolonged the overall survival of tumor-bearing mice. Conclusions These findings suggest that targeting of slow-cycling tumor cells application using immunotherapy is a possible treatment to complement traditional antitumor therapy.

  13. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ivana Márcia Alves Diniz

    2015-01-01

    Full Text Available Background. We investigated the influence of laser phototherapy (LPT on the survival of human mesenchymal stem cells (MSCs submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2. After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey’s test (P<0.05. Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  14. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jerfiz D. Constanzo

    2016-05-01

    Full Text Available The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  15. The number of positive nodes and the ratio of positive to excised nodes are significant predictors of survival in women with micrometastatic node-positive breast cancer.

    Science.gov (United States)

    Truong, Pauline T; Vinh-Hung, Vincent; Cserni, Gabor; Woodward, Wendy A; Tai, Patricia; Vlastos, Georges

    2008-08-01

    To evaluate the prognostic impact of the number of positive nodes and the lymph node ratio (LNR) of positive to excised nodes on survival in women diagnosed with nodal micrometastatic breast cancer before the era of widespread sentinel lymph node biopsy. Subjects were 62,551 women identified by the Surveillance Epidemiology and End Results database, diagnosed with pT1-2pN0-1 breast cancer between 1988 and 1997. Kaplan-Meier breast cancer-specific survival (BCSS) and overall survival (OS) were compared between three cohorts: node-negative (pN0, n=57,980) nodal micrometastasis all 2mm but or= 4) and the LNR (0.25). Median follow-up was 7.3 yr. Ten-year BCSS and OS in pNmic breast cancer were significantly lower compared to pN0 disease (BCSS 82.3% versus 91.9%, p<0.001 and OS 68.1% versus 75.7%, p<0.001). BCSS and OS with pNmic disease progressively declined with increasing number of positive nodes and increasing LNR. OS with pNmic was similar to pNmac disease when matched by the number of positive nodes and by the LNR. Both pN-based and LNR-based classifications were significantly prognostic of BCSS and OS on Cox regression multivariate analysis. Nodal micrometastasis is associated with poorer survival compared to pN0 disease. Mortality hazards with nodal micrometastasis increased with increasing number of positive nodes and increasing LNR. The number of positive nodes and the LNR should be considered in risk estimates for patients with nodal micrometastatic breast cancer.

  16. A novel NFIA-NFκB feed-forward loop contributes to glioblastoma cell survival.

    Science.gov (United States)

    Lee, JunSung; Hoxha, Edlira; Song, Hae-Ri

    2017-04-01

    The nuclear factor I-A (NFIA) transcription factor promotes glioma growth and inhibits apoptosis in glioblastoma (GBM) cells. Here we report that the NFIA pro-survival effect in GBM is mediated in part via a novel NFIA-nuclear factor-kappaB (NFκB) p65 feed-forward loop. We examined effects of gain- and loss-of-function manipulations of NFIA and NFκB p65 on each other's transcription, cell growth, apoptosis and sensitivity to chemotherapy in patient-derived GBM cells and established GBM cell lines. NFIA enhanced apoptosis evasion by activating NFκB p65 and its downstream anti-apoptotic factors tumor necrosis factor receptor-associated factor 1 (TRAF1) and cellular inhibitor of apoptosis proteins (cIAPs). Induction of NFκB by NFIA was required to protect cells from apoptosis, and inhibition of NFκB effectively reversed the NFIA anti-apoptotic effect. Conversely, NFIA knockdown decreased expression of NFκB and anti-apoptotic genes TRAF1 and cIAPs, and increased baseline apoptosis. NFIA positively regulated NFκB transcription and NFκB protein level. Interestingly, NFκB also activated the NFIA promoter and increased NFIA level, and knockdown of NFIA was sufficient to attenuate the NFκB pro-survival effect, suggesting a reciprocal regulation between NFIA and NFκB in governing GBM cell survival. Supporting this, NFIA and NFκB expression levels were highly correlated in human GBM and patient-derived GBM cells. These data define a previously unknown NFIA-NFκB feed-forward regulation that may contribute to GBM cell survival.

  17. The impact of histology on survival for patients with metastatic renal cell carcinoma undergoing cytoreductive nephrectomy

    Directory of Open Access Journals (Sweden)

    Alonso Carrasco

    2014-01-01

    Full Text Available Objective: To evaluate the impact of histology on cancer-specific and overall survival for patients with metastatic renal cell carcinoma (mRCC undergoing cytoreductive nephrectomy (CN. Materials and Methods: We retrospectively reviewed the data of 505 patients with mRCC who underwent CN at Mayo Clinic, Rochester, MN, USA, between 1970 and 2008. All specimen were re-reviewed by a single genitourinary pathologist. Survival was estimated using the Kaplan-Meier method and compared according to histology with the log-rank test. Cox proportional hazard regression models were used to evaluate the association of histology with outcome. Results: Forty (8% patients with non-clear cell histology and 465 (92% patients with clear cell histology were identified. The median follow-up was 7.8 years. Metastatic non-clear cell histology was associated with a significantly older median age at nephrectomy (66 vs. 60 years; P = 0.002, larger median tumor size (11.5 vs. 9.2 cm; P = 0.02, and higher rate of lymph node involvement (50% vs. 16%; P < 0.001. No significant difference in 3-year cancer-specific survival (25% vs. 22%; P = 0.50 was noted between patients with clear cell and non-clear cell histology. On multivariate analysis, non-clear cell histology was not significantly associated with patients′ risk of death from cancer (HR 0.96; 95% CI 0.61, 1.51; P = 0.85. Conclusions: Non-clear cell histology was not independently associated with adverse survival for patients with mRCC undergoing CN. As such, we advocate that surgical resection should continue to be considered in the multimodal treatment approach to these patients, while additional efforts to risk stratify and optimize management in this setting remain necessary.

  18. Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress.

    Science.gov (United States)

    Li, J; Huang, Q; Long, X; Guo, X; Sun, X; Jin, X; Li, Z; Ren, T; Yuan, P; Huang, X; Zhang, H; Xing, J

    2017-08-24

    To date, mechanisms of tumour cell survival under energy stress are not well understood. Cumulative evidence is beginning to reveal that specific mitochondrial morphologies are often associated with energetic states and survival of cells. However, the functional roles of mitochondria in the metabolic adaptation of tumour cells to energy stress remain to be elucidated. In this study, we first investigated the changes in mitochondrial morphology induced by nutrition deprivation in tumour cells, and the underlying molecular mechanism. We then systematically explored glucose metabolism reprogramming by energy stress-induced alteration of mitochondrial morphology and its effect on tumour cell survival. Our results showed that starvation treatment resulted in a dramatic mitochondrial elongation, which was mainly mediated by DRP1S637 phosphorylation through protein kinase A activation and subsequent suppression of mitochondrial translocation of DRP1. We further observed that tumour cells under an energy stress condition exhibited a clear shift from glycolysis towards oxidative phosphorylation, which was reversed by the recovery of mitochondrial fission induced by forced expression of mutant DRP1S637A. Mechanistically, energy stress-induced mitochondrial elongation facilitated cristae formation and assembly of respiratory complexes to enhance oxidative phosphorylation, which in turn exhibited a feedback inhibitory effect on glycolysis through NAD+-dependent SIRT1 activation. In addition, our data indicated that DRP1S637-mediated mitochondrial elongation under energy stress was essential for tumour cell survival both in vitro and in vivo and predicted poor prognosis of hepatocellular carcinoma patients. Overall, our study demonstrates that remodelling of mitochondrial morphology plays a critical role in tumour cell adaptation to energy stress by reprogramming glucose metabolism.

  19. IL-7 Promotes T Cell Viability, Trafficking, and Functionality and Improves Survival in Sepsis

    OpenAIRE

    Unsinger, Jacqueline; McGlynn, Margaret; Kasten, Kevin R.; Hoekzema, Andrew S.; Watanabe, Eizo; Muenzer, Jared T.; McDonough, Jacquelyn S.; Tschoep, Johannes; Ferguson, Thomas A.; McDunn, Jonathan E.; Morre, Michel; Hildeman, David A.; Caldwell, Charles C.; Hotchkiss, Richard S.

    2010-01-01

    Sepsis is a highly lethal disorder characterized by widespread apoptosis-induced depletion of immune cells and the development of a profound immunosuppressive state. IL-7 is a potent antiapoptotic cytokine that enhances immune effector cell function and is essential for lymphocyte survival. In this study, recombinant human IL-7 (rhIL-7) efficacy and potential mechanisms of action were tested in a murine peritonitis model. Studies at two independent laboratories showed that rhIL-7 markedly imp...

  20. Dendritic cell derived IL-2 inhibits survival of terminally mature cells via an autocrine signaling pathway.

    Science.gov (United States)

    Balachander, Akhila; Nabti, Sabrina; Sobota, Radoslaw M; Foo, Shihui; Zolezzi, Francesca; Lee, Bernett T K; Poidinger, Michael; Ricciardi-Castagnoli, Paola

    2015-05-01

    DCs are crucial for sensing pathogens and triggering immune response. Upon activation by pathogen-associated molecular pattern (PAMP) ligands, GM-CSF myeloid DCs (GM-DCs) secrete several cytokines, including IL-2. DC IL-2 has been shown to be important for innate and adaptive immune responses; however, IL-2 importance in DC physiology has never been demonstrated. Here, we show that autocrine IL-2 signaling is functional in murine GM-DCs in an early time window after PAMPs stimulation. IL-2 signaling selectively activates the JAK/STAT5 pathway by assembling holo-receptor complexes at the cell surface. Using the sensitivity of targeted mass spectrometry, we show conclusively that GM-DCs express CD122, the IL-2 receptor β-chain, at steady state. In myeloid DCs, this cytokine pathway inhibits survival of PAMP-matured GM-DCs which is crucial for maintaining immune tolerance and preventing autoimmunity. Our findings suggest that immune regulation by this novel autocrine signaling pathway can potentially be used in DC immunotherapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival

    Science.gov (United States)

    Chen, Yaoyu; Peng, Cong; Abraham, Sheela A.; Shan, Yi; Guo, Zhiru; Desouza, Ngoc; Cheloni, Giulia; Li, Dongguang; Holyoake, Tessa L.; Li, Shaoguang

    2014-01-01

    Cancer stem cells (CSCs) are responsible for the initiation and maintenance of some types of cancer, suggesting that inhibition of these cells may limit disease progression and relapse. Unfortunately, few CSC-specific genes have been identified. Here, we determined that the gene encoding arachidonate 15-lipoxygenase (Alox15/15-LO) is essential for the survival of leukemia stem cells (LSCs) in a murine model of BCR-ABL–induced chronic myeloid leukemia (CML). In the absence of Alox15, BCR-ABL was unable to induce CML in mice. Furthermore, Alox15 deletion impaired LSC function by affecting cell division and apoptosis, leading to an eventual depletion of LSCs. Moreover, chemical inhibition of 15-LO function impaired LSC function and attenuated CML in mice. The defective CML phenotype in Alox15-deficient animals was rescued by depleting the gene encoding P-selectin, which is upregulated in Alox15-deficient animals. Both deletion and overexpression of P-selectin affected the survival of LSCs. In human CML cell lines and CD34+ cells, knockdown of Alox15 or inhibition of 15-LO dramatically reduced survival. Loss of Alox15 altered expression of PTEN, PI3K/AKT, and the transcription factor ICSBP, which are known mediators of cancer pathogenesis. These results suggest that ALOX15 has potential as a therapeutic target for eradicating LSCs in CML. PMID:25105362

  2. Comparative transcriptome analysis quantifies immune cell transcript levels, metastatic progression and survival in osteosarcoma.

    Science.gov (United States)

    Scott, Milcah C; Temiz, Nuri A; Sarver, Anne E; LaRue, Rebecca S; Rathe, Susan K; Varshney, Jyotika; Wolf, Natalie K; Moriarity, Branden S; O'Brien, Timothy D; Spector, Logan G; Largaespada, David A; Modiano, Jaime F; Subramanian, Subbaya; Sarver, Aaron L

    2017-10-24

    Overall survival of patients with osteosarcoma (OS) has improved little in the past three decades and better models for study are needed. OS is common in large dog breeds and is genetically inducible in mice, making the disease ideal for comparative genomic analyses across species. Understanding the level of conservation of inter-tumor transcriptional variation across species and how it is associated with progression to metastasis will enable us to more efficiently develop effective strategies to manage OS and improve therapy. In this study, transcriptional profiles of OS tumors and cell lines derived from humans (n=49), mice (n=103) and dogs (n=34) were generated using RNA-sequencing. Conserved inter-tumor transcriptional variation was present in tumor sets from all three species and comprised gene clusters associated with cell cycle and mitosis and with the presence or absence of immune cells. Further, we developed a novel Gene Cluster Expression Summary Score (GCESS) to quantify inter-tumor transcriptional variation and demonstrated that these GCESS values associated with patient outcome. Human OS tumors with GCESS values suggesting decreased immune cell presence were associated with metastasis and poor survival. We validated these results in an independent human OS tumor cohort and in 15 different tumor data sets obtained from The Cancer Genome Atlas (TCGA). Our results suggest that quantification of immune cell absence and tumor cell proliferation may better inform therapeutic decisions and improve overall survival for OS patients. Copyright ©2017, American Association for Cancer Research.

  3. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2015-01-01

    Full Text Available Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1 or fibroblasts (FB, group 2 under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P<0.001 without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  4. Cell culture condition-dependent impact of AGE-rich food extracts on kinase activation and cell survival on human fibroblasts.

    Science.gov (United States)

    Nass, Norbert; Weissenberg, Kristian; Somoza, Veronika; Ruhs, Stefanie; Silber, Rolf-Edgar; Simm, Andreas

    2014-03-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction. Effects of food extracts are often initially analysed in cellular test systems and it is not clear how different cell culture conditions might influence the results. Therefore, we compared the effects of two models for AGE-rich food, bread crust and coffee extract (CE) on WI-38 human lung fibroblasts under different cell culture conditions (sub-confluent versus confluent cells, with and without serum). WI-38 cells responded to coffee and bread crust extract (BCE) with a rapid phosphorylation of PKB (AKT), p42/44 MAPK (ERK 1/2) and p38 MAPK, strongly depending on culture conditions. BCE resulted in increased cell numbers, whereas CE appeared to be cytotoxic. When cell numbers under all culture conditions and treatments were correlated with kinase phosphorylation, the relation between phospho-p38 MAPK and phospho-AKT represented a good, cell culture condition-independent predictor of cell survival.

  5. A simple prognostic model for overall survival in metastatic renal cell carcinoma

    Science.gov (United States)

    Assi, Hazem I.; Patenaude, Francois; Toumishey, Ethan; Ross, Laura; Abdelsalam, Mahmoud; Reiman, Tony

    2016-01-01

    Introduction: The primary purpose of this study was to develop a simpler prognostic model to predict overall survival for patients treated for metastatic renal cell carcinoma (mRCC) by examining variables shown in the literature to be associated with survival. Methods: We conducted a retrospective analysis of patients treated for mRCC at two Canadian centres. All patients who started first-line treatment were included in the analysis. A multivariate Cox proportional hazards regression model was constructed using a stepwise procedure. Patients were assigned to risk groups depending on how many of the three risk factors from the final multivariate model they had. Results: There were three risk factors in the final multivariate model: hemoglobin, prior nephrectomy, and time from diagnosis to treatment. Patients in the high-risk group (two or three risk factors) had a median survival of 5.9 months, while those in the intermediate-risk group (one risk factor) had a median survival of 16.2 months, and those in the low-risk group (no risk factors) had a median survival of 50.6 months. Conclusions: In multivariate analysis, shorter survival times were associated with hemoglobin below the lower limit of normal, absence of prior nephrectomy, and initiation of treatment within one year of diagnosis. PMID:27217858

  6. Oral cavity squamous cell carcinoma in never smokers: analysis of clinicopathologic characteristics and survival.

    Science.gov (United States)

    Durr, Megan L; Li, David; Wang, Steven J

    2013-01-01

    To examine the relationship between tobacco smoking history and the clinicopathologic and survival characteristics of patients with oral cavity squamous cell carcinoma (OCSCC). This is a retrospective review of 531 patients treated for OCSCC from January 1998 to December 2009 at a tertiary care medical center. Thirty-two percent of OCSCC patients were never smokers. There were significant differences in tumor location between ever smokers and never smokers (pnever smokers more likely to have oral tongue tumors. Smokers were significantly (pnever smokers to present with locally advanced (T3 or T4) disease (57.8% vs. 35.4%). Never smokers demonstrated improved overall survival (78.8 months in never smokers vs. 44.7 months in ever smokers, p=.03). However, there were no survival differences when the two groups were compared separately for locally early (T1/T2) or advanced (T3/T4) disease. For T1/T2 tumors, mean survival was 88.2 months for never smokers and 78.5 months for smokers (p=.10). For T3/T4 tumors, median survival was 29.1 months for never smokers and 23.8 months for smokers (p=.09). Primary tumor location and T-status in OCSCC differed between never smokers and smokers. Compared to smokers, never smokers had fewer locally advanced tumors and better overall survival. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Borcel, Erika; Pérez-Alvarez, Laura; Herrero, Ana Isabel

    2008-01-01

    each week to a stress stimulus. When evaluated in the water maze at the early stages of aging (18 months old), chronic unpredictable stress accelerated spatial-cognitive decline, an effect that was accompanied by a reduction in the survival of newborn cells and in the number of adult granular cells......In this study, we examined whether chronic stress in adulthood can exert long-term effects on spatial-cognitive abilities and on the survival of newborn hippocampal cells in aging animals. Male Wistar rats were subjected to chronic unpredictable stress at midlife (12 months old) and then reexposed......, a peptide mimetic of neural cell adhesion molecule, during the 4 weeks of continuous stress not only prevented the deleterious effects of chronic stress on spatial memory, but also reduced the survival of the newly generated hippocampal cells in aging animals. FGL treatment did not, however, prevent...

  8. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Science.gov (United States)

    Marques, Márcia Martins

    2015-01-01

    Background. We investigated the influence of laser phototherapy (LPT) on the survival of human mesenchymal stem cells (MSCs) submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2). After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey's test (P adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives. PMID:25879065

  9. Cyclosporine decreases vascular progenitor cell numbers after cardiac transplantation and attenuates progenitor cell growth in vitro.

    Science.gov (United States)

    Davies, William R; Wang, Shaohua; Oi, Keiji; Bailey, Kent R; Tazelaar, Henry D; Caplice, Noel M; McGregor, Christopher G A

    2005-11-01

    Recent experimental evidence suggests that the neointimal proliferation seen in cardiac allograft vasculopathy may in part derive from recipient progenitor cells. The effect of cyclosporine on these circulating progenitors in the setting of cardiac transplantation is currently unknown. Three surgical series were performed: sham operation alone, sham operation with immunosuppression, and heterotopic porcine cardiac transplantation with immunosuppression. The sham operation involved laparotomy and consecutive clamping of the abdominal aorta and inferior vena cava. Post-operative immunosuppression consisted of cyclosporine at therapeutic levels (100-300 ng/ml) and 0.5 mg/kg methylprednisolone. Endothelial outgrowth colony numbers (EOC(CFU)) and smooth muscle outgrowth colony numbers (SOC(CFU)) were quantified weekly for 4 weeks post-operatively. A series of in vitro experiments were performed to determine the effect of cyclosporine on the differentiation, migration, and proliferation of EOCs and SOCs. In the sham alone series there were no changes to either EOC(CFU) or SOC(CFU). In the sham with immunosuppression and the transplant series, both EOC(CFU) and SOC(CFU) fell in the first 2 weeks (p Cyclosporine, even at a low dose, prevented differentiation, inhibited proliferation, and attenuated migration of both EOCs and SOCs. Immunosuppression in the setting of cardiac transplantation causes a profound reduction in circulating progenitor cells capable of differentiating into endothelial and smooth muscle cells. This effect can in part be explained by the inhibitory effects of cyclosporine on progenitor growth and differentiation seen in this study.

  10. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation.

    Science.gov (United States)

    Hahn, Christian; Islamian, Ariyan Pirayesh; Renz, Harald; Nockher, Wolfgang Andreas

    2006-04-01

    Eosinophil-epithelial cell interactions make a major contribution to asthmatic airway inflammation. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and other members of the neurotrophin family, originally defined as a class of neuronal growth factors, are now recognized to support the survival and activation of immune cells. Neurotrophin levels are increased in bronchoalveolar lavage fluid during allergic asthma. We sought to investigate the role of neurotrophins as inflammatory mediators in eosinophil-epithelial cell interactions during the allergic immune response. Neurotrophin expression in the lung was investigated by means of immunohistochemistry and ELISA in a mouse model of chronic experimental asthma. Coculture experiments were performed with airway epithelial cells and bronchoalveolar lavage fluid eosinophils. Neurotrophin levels increased continuously during chronic allergic airway inflammation, and airway epithelial cells were the major source of NGF and BDNF within the inflamed lung. Epithelial neurotrophin production was upregulated by IL-1beta, TNF-alpha, and T(H)2 cytokines. Lung eosinophils expressed the BDNF and NGF receptors tropomyosin-related kinase (Trk) A and TrkB, and coculture with airway epithelial cells resulted in enhanced epithelial neurotrophin production, as well as in prolonged survival of eosinophils. Eosinophil survival was completely abolished in the presence of the neurotrophin receptor Trk antagonist K252a. During allergic inflammation, airway epithelial cells express increased amounts of NGF and BDNF that promote the survival of tissue eosinophils. Controlling epithelial neurotrophin production might be an important therapeutic target to prevent allergic airway eosinophilia. Attenuating the release of inflammatory mediators from the activated airway epithelium will become an important strategy to disrupt the pathogenesis of chronic allergic asthma.

  11. Sox2+ adult stem/progenitor cells are important for tissue regeneration and survival of mice

    Science.gov (United States)

    Arnold, Katrin; Sarkar, Abby; Yram, Mary Anna; Polo, Jose M.; Bronson, Rod; Sengupta, Sumitra; Seandel, Marco; Geijsen, Niels; Hochedlinger, Konrad

    2012-01-01

    Summary The transcription factor Sox2 maintains the pluripotency of early embryonic cells and regulates the formation of several epithelia during fetal development. Whether Sox2 continues to play a role in adult tissues remains largely unknown. We here show that Sox2 marks adult cells in several epithelial tissues where its expression has not previously been characterized, including the stomach, cervix, anus, testes, lens and multiple glands. Genetic lineage tracing and transplantation experiments demonstrate that Sox2-expressing cells continuously give rise to mature cell types within these tissues, documenting their self-renewal and differentiation potentials. Consistent with these findings, ablation of Sox2+ cells in mice results in a disruption of epithelial tissue homeostasis and lethality. Developmental fate mapping reveals that Sox2+ adult stem cells originate from fetal Sox2+ tissue progenitors. Thus, our results identify Sox2 expression in numerous adult ectodermal and endodermal stem cell compartments, which are critical for normal tissue regeneration and survival. PMID:21982232

  12. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  13. Dual effects of radiation bystander signaling in urothelial cancer: purinergic-activation of apoptosis attenuates survival of urothelial cancer and normal urothelial cells.

    Science.gov (United States)

    Bill, Malgorzata A; Srivastava, Kirtiman; Breen, Conor; Butterworth, Karl T; McMahon, Stephen J; Prise, Kevin M; McCloskey, Karen D

    2017-11-14

    Radiation therapy (RT) delivers tumour kill, directly and often via bystander mechanisms. Bladder toxicity is a dose limiting constraint in pelvic RT, manifested as radiation cystitis and urinary symptoms. We aimed to investigate the impact of radiation-induced bystander signaling on normal/cancer urothelial cells. Human urothelial cancer cells T24, HT1376 and normal urothelial cells HUC, SV-HUC were used. Cells were irradiated and studied directly, or conditioned medium from irradiated cells (CM) was transferred to naïve, cells. T24 or SV-HUC cells in the shielded half of irradiated flasks had increased numbers of DNA damage foci vs non-irradiated cells. A physical barrier blocked this response, indicating release of transmitters from irradiated cells. Clonogenic survival of shielded T24 or SV-HUC was also reduced; a physical barrier prevented this phenomenon. CM-transfer increased pro-apoptotic caspase-3 activity, increased cleaved caspase-3 and cleaved PARP expression and reduced survival protein XIAP expression. This effect was mimicked by ATP. ATP or CM evoked suramin-sensitive Ca 2+ -signals. Irradiation increased [ATP] in CM from T24. The CM-inhibitory effect on T24 clonogenic survival was blocked by apyrase, or mimicked by ATP. We conclude that radiation-induced bystander signaling enhances urothelial cancer cell killing via activation of purinergic pro-apoptotic pathways. This benefit is accompanied by normal urothelial damage indicating RT bladder toxicity is also bystander-mediated.

  14. Dual effects of radiation bystander signaling in urothelial cancer: purinergic-activation of apoptosis attenuates survival of urothelial cancer and normal urothelial cells

    Science.gov (United States)

    Bill, Malgorzata A.; Srivastava, Kirtiman; Breen, Conor; Butterworth, Karl T.; McMahon, Stephen J.; Prise, Kevin M.; McCloskey, Karen D.

    2017-01-01

    Radiation therapy (RT) delivers tumour kill, directly and often via bystander mechanisms. Bladder toxicity is a dose limiting constraint in pelvic RT, manifested as radiation cystitis and urinary symptoms. We aimed to investigate the impact of radiation-induced bystander signaling on normal/cancer urothelial cells. Human urothelial cancer cells T24, HT1376 and normal urothelial cells HUC, SV-HUC were used. Cells were irradiated and studied directly, or conditioned medium from irradiated cells (CM) was transferred to naïve, cells. T24 or SV-HUC cells in the shielded half of irradiated flasks had increased numbers of DNA damage foci vs non-irradiated cells. A physical barrier blocked this response, indicating release of transmitters from irradiated cells. Clonogenic survival of shielded T24 or SV-HUC was also reduced; a physical barrier prevented this phenomenon. CM-transfer increased pro-apoptotic caspase-3 activity, increased cleaved caspase-3 and cleaved PARP expression and reduced survival protein XIAP expression. This effect was mimicked by ATP. ATP or CM evoked suramin-sensitive Ca2+-signals. Irradiation increased [ATP] in CM from T24. The CM-inhibitory effect on T24 clonogenic survival was blocked by apyrase, or mimicked by ATP. We conclude that radiation-induced bystander signaling enhances urothelial cancer cell killing via activation of purinergic pro-apoptotic pathways. This benefit is accompanied by normal urothelial damage indicating RT bladder toxicity is also bystander-mediated. PMID:29228614

  15. CD4+IL-21+T cells are correlated with regulatory T cells and IL-21 promotes regulatory T cells survival during HIV infection.

    Science.gov (United States)

    Zhang, Zi-Ning; Bai, Li-Xin; Fu, Ya-Jing; Jiang, Yong-Jun; Shang, Hong

    2017-03-01

    IL-21 enhances T and natural killer cells survival and antiviral functions without promoting T cell activation during HIV infection, which makes it a better adjuvant in anti-HIV immunotherapy. Due to the pleiotropy and redundancy of cytokines, it is vital to have a comprehensive knowledge of the role of IL-21 in the regulation of immune responses. Regulatory T cells (Tregs) play an important role in immune regulation and are a determinant of immune therapeutic efficacy in certain circumstances. In this study, we explored the direct effect of IL-21 on Tregs during HIV infection, which has not been addressed before. Thirty-four HIV treatment-naïve patients were enrolled and the relationship between CD4 + IL-21 + T cells and Tregs were studied. The effects of IL-21 on CD4 + CD25 + CD127 low Tregs' apoptosis, proliferation, and CTLA-4 and TGF-β expression in HIV-infected patients was investigated and compared with the effect of other common γ-chain cytokines. We found the percentage and absolute numbers of CD4 + IL-21 + T cells were positively related to the frequency or absolute numbers of CD4 + CD25 + or CD4 + CD25 + CD127 low Tregs. Compared with the media-alone control, IL-21, IL-7, and IL-15 could significantly reduce apoptosis of Tregs (pHIV infected patients. There were no significant differences of the fold induction of apoptosis, proliferation, or CTLA-4 and TGF-β expression by Tregs from HIV-infected patients and normal controls after IL-21 treatment. In vitro experiment showed that pretreatment with IL-21 significantly enhanced the suppressive effect of Tregs on CD8+ T cells' IFN-γ expression. We conclude that IL-21 promotes the survival and CTLA-4 expression of Tregs and enhanced the suppressive capacity of Tregs during HIV infection. These results broaden the understanding of HIV pathogenesis and provide critical information for HIV interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Experimental study of the survival of metastatic cancer cells in corneal organ culture.

    Science.gov (United States)

    Deb-Joardar, Nilanjana; Thuret, Gilles; Dumollard, Jean-Marc; Absi, Lena; Campos-Guyotat, Lydia; Peoc'h, Michel; Garraud, Olivier; Gain, Philippe

    2006-04-01

    Transmission of donor malignancy to the recipient could be one of the most disastrous complications of corneal grafting. Because of the scarcity of donor tissue and the lack of sufficient scientific evidence, the harvest of donor tissues from deaths due to systemic malignancy is permitted. This study was conducted to investigate the possible transmission of donor metastatic disease via corneal tissue preserved in organ culture (OC) conditions. The viability of four frequent human cancer cell lines (lung, breast, skin, and colon) was studied in OC. Various inoculums of cancer cells labeled with the membrane marker PKH67 were seeded on donor corneas and preserved in OC, followed by cell-tracking studies, histopathology, and immunohistochemistry. HLA matching of the dissected Descemet's membrane (DM) of preserved corneas was conducted, to demonstrate cell adherence. Primary cell culture was performed to confirm the viability of adherent tumor cells. Viability tests showed a poor but persistent survival of cancer cells after 2 weeks in OC. Cell tracking, histopathology, and immunohistochemistry demonstrated cancer cell adherence to donor endothelium. HLA typing of the DM of preserved corneas revealed the presence of cancer cell alleles. Primary culture of the DM showed cell proliferation that was identical with the original cancer cell line, according to HLA studies. The findings demonstrate that under laboratory conditions, metastatic cancer cells adhere to donor corneal tissue, survive, and retain proliferative capacity during storage in OC. Cell lines differ in their viability potential, as well as the pattern of adherence to donor endothelium. Further in vivo experimentation in laboratory animals is need to determine the safety of such harvests.

  17. HIF1-Alpha Expression Predicts Survival of Patients with Squamous Cell Carcinoma of the Oral Cavity

    Science.gov (United States)

    dos Santos, Marcelo; Mercante, Ana Maria da Cunha; Louro, Iúri Drumond; Gonçalves, Antônio José; de Carvalho, Marcos Brasilino; da Silva, Eloiza Helena Tajara; da Silva, Adriana Madeira Álvares

    2012-01-01

    Background Oral squamous cell carcinoma is an important cause of death and morbidity wordwide and effective prognostic markers are still to be discovered. HIF1α protein is associated with hypoxia response and neovascularization, essential conditions for solid tumors survival. The relationship between HIF1α expression, tumor progression and treatment response in head and neck cancer is still poorly understood. Patients and Methods In this study, we investigated HIF1α expression by immunohistochemistry in tissue microarrays and its relationship with clinical findings, histopathological results and survival of 66 patients with squamous cell carcinoma of the lower mouth. Results Our results demonstrated that high HIF1α expression is associated with local disease-free survival, independently from the choice of treatment. Furthermore, high expression of HIF1α in patients treated with postoperative radiotherapy was associated with survival, therefore being a novel prognostic marker in squamous cell carcinoma of the mouth. Additionally, our results showed that MVD was associated with HIF1α expression and local disease relapse. Conclusion These findings suggest that HIF1α expression can be used as a prognostic marker and predictor of postoperative radiotherapy response, helping the oncologist choose the best treatment for each patient. PMID:23028863

  18. HIF1-alpha expression predicts survival of patients with squamous cell carcinoma of the oral cavity.

    Science.gov (United States)

    dos Santos, Marcelo; Mercante, Ana Maria da Cunha; Louro, Iúri Drumond; Gonçalves, Antônio José; de Carvalho, Marcos Brasilino; da Silva, Eloiza Helena Tajara; da Silva, Adriana Madeira Álvares

    2012-01-01

    Oral squamous cell carcinoma is an important cause of death and morbidity wordwide and effective prognostic markers are still to be discovered. HIF1α protein is associated with hypoxia response and neovascularization, essential conditions for solid tumors survival. The relationship between HIF1α expression, tumor progression and treatment response in head and neck cancer is still poorly understood. In this study, we investigated HIF1α expression by immunohistochemistry in tissue microarrays and its relationship with clinical findings, histopathological results and survival of 66 patients with squamous cell carcinoma of the lower mouth. Our results demonstrated that high HIF1α expression is associated with local disease-free survival, independently from the choice of treatment. Furthermore, high expression of HIF1α in patients treated with postoperative radiotherapy was associated with survival, therefore being a novel prognostic marker in squamous cell carcinoma of the mouth. Additionally, our results showed that MVD was associated with HIF1α expression and local disease relapse. These findings suggest that HIF1α expression can be used as a prognostic marker and predictor of postoperative radiotherapy response, helping the oncologist choose the best treatment for each patient.

  19. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  20. The number of FoxP3+ cells in transbronchial lung allograft biopsies does not predict bronchiolitis obliterans syndrome within the first five years after transplantation

    DEFF Research Database (Denmark)

    Krustrup, Dorrit; Iversen, Martin; Martinussen, Torben

    2015-01-01

    Background: An important limitation to the success of lung transplantation is the development of bronchiolitis obliterans syndrome (BOS). It has been hypothesized that regulatory T lymphocytes (Tregs) are related to the risk of BOS. We aim to evaluate whether the number of forkhead box P3 (FoxP3...... grade 1 and grade 2/3, respectively, to no rejection. According to a Cox regression analysis, the number of FoxP3+ cells/mm2 was not predictive of time to BOS. Discussion and Conclusions: Our data indicate that the number of FoxP3+ cells in the lung allograft did not correlate with BOS-free survival...

  1. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  2. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  3. Molecular Genetic Analysis of Human Endometrial Mesenchymal Stem Cells That Survived Sublethal Heat Shock

    Directory of Open Access Journals (Sweden)

    A. E. Vinogradov

    2017-01-01

    Full Text Available High temperature is a critical environmental and personal factor. Although heat shock is a well-studied biological phenomenon, hyperthermia response of stem cells is poorly understood. Previously, we demonstrated that sublethal heat shock induced premature senescence in human endometrial mesenchymal stem cells (eMSC. This study aimed to investigate the fate of eMSC-survived sublethal heat shock (SHS with special emphasis on their genetic stability and possible malignant transformation using methods of classic and molecular karyotyping, next-generation sequencing, and transcriptome functional analysis. G-banding revealed random chromosome breakages and aneuploidy in the SHS-treated eMSC. Molecular karyotyping found no genomic imbalance in these cells. Gene module and protein interaction network analysis of mRNA sequencing data showed that compared to untreated cells, SHS-survived progeny revealed some difference in gene expression. However, no hallmarks of cancer were found. Our data identified downregulation of oncogenic signaling, upregulation of tumor-suppressing and prosenescence signaling, induction of mismatch, and excision DNA repair. The common feature of heated eMSC is the silence of MYC, AKT1/PKB oncogenes, and hTERT telomerase. Overall, our data indicate that despite genetic instability, SHS-survived eMSC do not undergo transformation. After long-term cultivation, these cells like their unheated counterparts enter replicative senescence and die.

  4. Timp1 Promotes Cell Survival by Activating the PDK1 Signaling Pathway in Melanoma

    Directory of Open Access Journals (Sweden)

    Mariana Toricelli

    2017-04-01

    Full Text Available High TIMP1 expression is associated with poor prognosis in melanoma, where it can bind to CD63 and β1 integrin, inducing PI3-kinase pathway and cell survival. Phosphatidylinositol (3,4,5-trisphosphate (PIP3, generated under phosphatidylinositol-3-kinase (PI3K activation, enables the recruitment and activation of protein kinase B (PKB/AKT and phosphoinositide-dependent kinase 1 (PDK1 at the membrane, resulting in the phosphorylation of a host of other proteins. Using a melanoma progression model, we evaluated the impact of Timp1 and AKT silencing, as well as PI3K, PDK1, and protein kinase C (PKC inhibitors on aggressiveness characteristics. Timp1 downregulation resulted in decreased anoikis resistance, clonogenicity, dacarbazine resistance, and in vivo tumor growth and lung colonization. In metastatic cells, pAKTThr308 is highly expressed, contributing to anoikis resistance. We showed that PDK1Ser241 and PKCβIISer660 are activated by Timp1 in different stages of melanoma progression, contributing to colony formation and anoikis resistance. Moreover, simultaneous inhibition of Timp1 and AKT in metastatic cells resulted in more effective anoikis inhibition. Our findings demonstrate that Timp1 promotes cell survival with the participation of PDK1 and PKC in melanoma. In addition, Timp1 and AKT act synergistically to confer anoikis resistance in advanced tumor stages. This study brings new insights about the mechanisms by which Timp1 promotes cell survival in melanoma, and points to novel perspectives for therapeutic approaches.

  5. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival.

    Science.gov (United States)

    Cruickshank, Sheena-M; Wakenshaw, Louise; Cardone, John; Howdle, Peter-D; Murray, Peter-J; Carding, Simon-R

    2008-10-14

    To investigate the function of NOD2 in colonic epithelial cells (CEC). A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2(-/-) mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation.

  6. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  7. p38α negatively regulates survival and malignant selection of transformed bronchioalveolar stem cells.

    Directory of Open Access Journals (Sweden)

    Edwige Voisset

    Full Text Available Lung cancer is the cause of most cancer-related deaths in the Western world. Non-small cell lung cancer accounts for almost 80% of all lung cancers, and 50% of this type are adenocarcinomas. The cellular and molecular origin of this type of lung cancer remains elusive and the mechanisms are poorly known. It is known that K-Ras mutations appear in 25-30% of lung adenocarcinomas and it is the best known single mutation that can be related to lung cancers. Recently, it has been suggested that a putative population of mouse bronchioalveolar stem cells could be considered as the cell of origin of adenocarcinomas. These cells are expanded in the early stages of lung tumorigenesis. We have isolated a population of mouse bronchioalveolar stem cells and induced their transformation by oncogenic K-RasG12. Different approaches have shown that an intracellular network linking the p38α MAPK and the PI3K-Pdk1 pathways is involved in regulating the survival and malignant progression of the transformed cells. Absence of p38α catalytic activity leads to further Pdk1 activation (independent of Akt and Erk activity, enhancing the survival and proliferation of the more malignant lung cancer cells. This specifically selects high Sca-1/Sox9 cells that harbour a stronger colonizing potential, as they maintain their capacity to produce secondary tumors after serial transplantations.

  8. Effects of Thapsigargin on the Proliferation and Survival of Human Rheumatoid Arthritis Synovial Cells

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available A series of experiments have been carried out to investigate the effects of different concentrations of thapsigargin (0, 0.001, 0.1, and 1 μM on the proliferation and survival of human rheumatoid arthritis synovial cells (MH7A. The results showed that thapsigargin can block the cell proliferation in human rheumatoid arthritis synovial cells in a time- and dose-dependent manner. Results of Hoechst staining suggested that thapsigargin may induce cell apoptosis in MH7A cells in a time- and dose-dependent manner, and the percentages of cell death reached 44.6% at thapsigargin concentration of 1 μM treated for 4 days compared to the control. The protein and mRNA levels of cyclin D1 decreased gradually with the increasing of thapsigargin concentration and treatment times. Moreover, the protein levels of mTORC1 downstream indicators pS6K and p4EBP-1 were reduced by thapsigargin treatment at different concentrations and times, which should be responsible for the reduced cyclin D1 expressions. Our results revealed that thapsigargin may effectively impair the cell proliferation and survival of MH7A cells. The present findings will help to understand the molecular mechanism of fibroblast-like synoviocytes proliferations and suggest that thapsigargin is of potential for the clinical treatment of rheumatoid arthritis.

  9. The prohibitin protein complex promotes mitochondrial stabilization and cell survival in hematologic malignancies

    Science.gov (United States)

    Ross, Jeremy A.; Robles-Escajeda, Elisa; Oaxaca, Derrick M.; Padilla, Diana L.; Kirken, Robert A.

    2017-01-01

    Prohibitins (PHB1 and PHB2) have been proposed to play important roles in cancer development and progression, however their oncogenic mechanism of action has not been fully elucidated. Previously, we showed that the PHB1 and PHB2 protein complex is required for mitochondrial homeostasis and survival of normal human lymphocytes. In this study, novel evidence is provided that indicates mitochondrial prohibitins are overexpressed in hematologic tumor cells and promote cell survival under conditions of oxidative stress. Immunofluorescent confocal microscopy revealed both proteins to be primarily confined to mitochondria in primary patient lymphoid and myeloid tumor cells and tumor cell lines, including Kit225 cells. Subsequently, siRNA-mediated knockdown of PHB1 and PHB2 in Kit225 cells significantly enhanced sensitivity to H2O2-induced cell death, suggesting a protective or anti-apoptotic function in hematologic malignancies. Indeed, PHB1 and PHB2 protein levels were significantly higher in tumor cells isolated from leukemia and lymphoma patients compared to PBMCs from healthy donors. These findings suggest that PHB1 and PHB2 are upregulated during tumorigenesis to maintain mitochondrial integrity and therefore may serve as novel biomarkers and molecular targets for therapeutic intervention in certain types of hematologic malignancies. PMID:29029444

  10. A validated survival score for patients with metastatic spinal cord compression from non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Rades Dirk

    2012-07-01

    Full Text Available Abstract Background This multicenter study aimed to create and validate a scoring system for survival of patients with metastatic spinal cord compression (MSCC from non-small cell lung cancer (NSCLC. Methods The entire cohort of 356 patients was divided in a test group (N = 178 and a validation group (N = 178. In the test group, nine pre-treatment factors including age, gender, Eastern Cooperative Oncology Group performance status (ECOG-PS, number of involved vertebrae, pre-radiotherapy ambulatory status, other bone metastases, visceral metastases, interval from cancer diagnosis to radiotherapy of MSCC, and the time developing motor were retrospectively analyzed. Results On multivariate analysis, survival was significantly associated with ECOG-PS, pre-radiotherapy ambulatory status, visceral metastases, and the time developing motor deficits. These factors were included in the scoring system; the score for each factor was determined by dividing the 6-month survival rate (in % by 10. The risk score represented the sum of the scores for each factor. According to the risk scores, which ranged from 6 to 19 points, three prognostic groups were designed. The 6-month survival rates were 6% for 6–10 points, 29% for 11–15 points, and 78% for 16–19 points (p  Conclusions Since the survival rates of the validation group were similar to those of the test group, this score can be considered reproducible. The scoring system can help when selecting the individual treatment for patients with MSCC from NSCLC. A prospective confirmatory study is warranted.

  11. Impact of number of [(18)F]fluorodeoxyglucose-PET-positive lymph nodes on survival of patients receiving neoadjuvant chemotherapy and surgery for oesophageal cancer.

    Science.gov (United States)

    Miyata, H; Yamasaki, M; Makino, T; Tatsumi, M; Miyazaki, Y; Takahashi, T; Kurokawa, Y; Takiguchi, S; Mori, M; Doki, Y

    2016-01-01

    [(18) F]fluorodeoxyglucose (FDG)-PET has been used to evaluate the response of primary tumours to neoadjuvant therapy for oesophageal cancer. The clinical significance of the number of PET-positive nodes before and after therapy has not been investigated previously. [(18) F]FDG-PET was performed before and 2-3 weeks after completion of neoadjuvant chemotherapy to identify the number of PET-positive nodes, and these numbers were assessed in relation to metabolic changes in the primary tumour. Of 302 patients in total, 90 had no PET-positive nodes, 83 had one, 59 had two and 70 patients had three or more positive nodes before therapy. After treatment, the numbers were: none in 207 patients, one in 59, two in 20 and three or more in 16 patients. The number of PET-positive nodes after treatment was influenced by both the number of PET-positive nodes before therapy and the response to preoperative therapy, and correlated with the number of metastatic lymph nodes. Overall survival was longer in patients who had no PET-positive nodes after treatment than in those who had one or more. Multivariable analysis identified the numbers of PET-positive nodes before and after chemotherapy as independent prognostic factors, together with clinical response, tumour depth and lymph node involvement. The number of PET-positive nodes after treatment correlated with survival in patients with oesophageal cancer who underwent neoadjuvant chemotherapy. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  12. Gene expression profiling of Corynebacterium glutamicum during Anaerobic nitrate respiration: induction of the SOS response for cell survival.

    Science.gov (United States)

    Nishimura, Taku; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-03-01

    The gene expression profile of Corynebacterium glutamicum under anaerobic nitrate respiration revealed marked differences in the expression levels of a number of genes involved in a variety of cellular functions, including carbon metabolism and respiratory electron transport chain, compared to the profile under aerobic conditions using DNA microarrays. Many SOS genes were upregulated by the shift from aerobic to anaerobic nitrate respiration. An elongated cell morphology, similar to that induced by the DivS-mediated suppression of cell division upon cell exposure to the DNA-damaging reagent mitomycin C, was observed in cells subjected to anaerobic nitrate respiration. None of these transcriptional and morphological differences were observed in a recA mutant strain lacking a functional RecA regulator of the SOS response. The recA mutant cells additionally showed significantly reduced viability compared to wild-type cells similarly grown under anaerobic nitrate respiration. These results suggest a role for the RecA-mediated SOS response in the ability of cells to survive any DNA damage that may result from anaerobic nitrate respiration in C. glutamicum.

  13. The effect of comorbidity on stage-specific survival in resected non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Lüchtenborg, Margreet; Jakobsen, Erik; Krasnik, Mark

    2012-01-01

    To quantify the effect of comorbidity on stage-specific survival in resected non-small cell lung cancer (NSCLC) patients.......To quantify the effect of comorbidity on stage-specific survival in resected non-small cell lung cancer (NSCLC) patients....

  14. Cell lines derived from feline fibrosarcoma display unstable chromosomal aneuploidy and additionally centrosome number aberrations.

    Science.gov (United States)

    von Erichsen, J; Hecht, W; Löhberg-Gruene, C; Reinacher, M

    2012-07-01

    The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast cell line as a control. The clonality of all cell lines was examined using limited-dilution cloning. The number of chromosomes was counted in metaphase spreads. The immunocytochemical analysis of centrosome numbers was performed by indirect immunofluorescence using a monoclonal antibody that targets γ-tubulin, a well-characterized component of centrosomes. Monoclonal cell populations could be established from all cell lines. In all feline fibrosarcoma cell lines, the number of chromosomes deviated abnormally from the normal feline chromosome number of 2n = 38, ranging from 19 to 155 chromosomes per cell. Centrosome hyperamplification was observed in all 5 feline fibrosarcoma cell lines with a proportion of cells (5.7 to 15.2%) having more than 2 centrosomes. In the control cell line, only 0.6% of the cells had more than 2 centrosomes. In conclusion, the examinations revealed that centrosome hyperamplification occurs in feline fibrosarcoma cell lines. The feline fibrosarcoma cell lines possessed 10 to 25 times as many cells with centrosome hyperamplification as the control cell line. These observations suggest an association of numerical centrosome aberrations with karyotype instability by increasing the frequency of chromosome missegregation. The results of this study may be helpful for further characterization of feline fibrosarcomas and may contribute to the knowledge of cytogenetic factors that may be important for the pathogenesis of feline fibrosarcomas.

  15. Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

    Directory of Open Access Journals (Sweden)

    César A. Terrazas

    2010-01-01

    Full Text Available Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved.

  16. Environmental temperature affects physiology and survival of nanosecond pulsed electric field-treated cells.

    Science.gov (United States)

    Yin, Shengyong; Miao, Xudong; Zhang, Xueming; Chen, Xinhua; Wen, Hao

    2018-02-01

    Nanosecond pulsed electric field (nsPEF) is a novel non-thermal tumor ablation technique. However, how nsPEF affect cell physiology at different environmental temperature is still kept unknown. But this issue is of critical clinical practice relevance. This work aim to investigate how nsPEF treated cancer cells react to different environmental temperatures (0, 4, 25, and 37°C). Their cell viability, apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) were examined. Lower temperature resulted in higher apoptosis rate, decreased mitochondria membrane potential, and increased ROS levels. Sucrose and N-acetylcysteine (NAC) pre-incubation inhibit ROS generation and increase cell survival, protecting nsPEF-treated cells from low temperature-caused cell death. This work provides an experimental basis for hypothermia and fluid transfusion during nsPEF ablation with anesthesia. © 2017 Wiley Periodicals, Inc.

  17. Estimation of the total number of mast cells in the human umbilical cord. A methodological study

    DEFF Research Database (Denmark)

    Engberg Damsgaard, T M; Windelborg Nielsen, B; Sørensen, Flemming Brandt

    1992-01-01

    The aim of the present study was to estimate the total number of mast cells in the human umbilical cord. Using 50 microns-thick paraffin sections, made from a systematic random sample of umbilical cord, the total number of mast cells per cord was estimated using a combination of the optical...... disector and fractionated sampling. The mast cell of the human umbilical cord was found in Wharton's jelly, most frequently in close proximity to the three blood vessels. No consistent pattern of variation in mast cell numbers from the fetal end of the umbilical cord towards the placenta was seen....... The total number of mast cells found in the umbilical cord was 5,200,000 (median), range 2,800,000-16,800,000 (n = 7), that is 156,000 mast cells per gram umbilical cord (median), range 48,000-267,000. Thus, the umbilical cord constitutes an adequate source of mast cells for further investigation...

  18. Both Maturation and Survival of Human Dendritic Cells are Impaired in the Presence of Anergic/Suppressor T Cells

    Directory of Open Access Journals (Sweden)

    E. Piccolella

    2003-01-01

    Full Text Available T cell suppression is a well established phenomenon, but the mechanisms involved are still a matter of debate. Mouse anergic T cells were shown to suppress responder T cell activation by inhibiting the antigen presenting function of DC. In the present work we studied the effects of co-culturing human anergic CD4+ T cells with autologous dendritic cells (DC at different stages of maturation. Either DC maturation or survival, depending on whether immature or mature DC where used as APC, was impaired in the presence of anergic cells. Indeed, MHC and costimulatory molecule up-regulation was inhibited in immature DC, whereas apoptotic phenomena were favored in mature DC and consequently in responder T cells. Defective ligation of CD40 by CD40L (CD154 was responsible for CD95-mediated and spontaneous apoptosis of DC as well as for a failure of their maturation process. These findings indicate that lack of activation of CD40 on DC by CD40L-defective anergic cells might be the primary event involved in T cell suppression and support the role of CD40 signaling in regulating both activation and survival of DC.

  19. Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    Directory of Open Access Journals (Sweden)

    Paquet Éric R

    2011-07-01

    Full Text Available Abstract Background Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. Methods Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. Results Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT

  20. Does the survival motor neuron copy number variation play a role in the onset and severity of sporadic amyotrophic lateral sclerosis in Malians?

    Science.gov (United States)

    Sangare, Modibo; Dicko, Ilo; Guinto, Cheick Oumar; Sissoko, Adama; Dembele, Kekouta; Coulibaly, Youlouza; Coulibaly, Siaka Y; Landoure, Guida; Diallo, Abdallah; Dolo, Mamadou; Dolo, Housseini; Maiga, Boubacar; Traore, Moussa; Karembe, Mamadou; Traore, Kadiatou; Toure, Amadou; Sylla, Mariam; Togora, Arouna; Coulibaly, Souleymane; Traore, Sékou Fantamady; Hendrickson, Brant; Bricceno, Katherine; Schindler, Alice B; Kokkinis, Angela; Meilleur, Katherine G; Sangho, Hammadoun Ali; Diakite, Brehima; Kassogue, Yaya; Coulibaly, Yaya Ibrahim; Burnett, Barrington; Maiga, Youssoufa; Doumbia, Seydou; Fischbeck, Kenneth H

    2016-06-01

    Spinal muscular atrophy (SMA) and sporadic amyotrophic lateral sclerosis (SALS) are both motor neuron disorders. SMA results from the deletion of the survival motor neuron ( SMN ) 1 gene. High or low SMN1 copy number and the absence of SMN2 have been reported as risk factors for the development or severity of SALS. To investigate the role of SMN gene copy number in the onset and severity of SALS in Malians. We determined the SMN1 and SMN2 copy number in genomic DNA samples from 391 Malian adult volunteers, 120 Yoruba from Nigeria, 120 Luyha from Kenya and 74 U.S. Caucasians using a Taqman quantitative PCR assay. We evaluated the SALS risk based on the estimated SMA protein level using the Veldink formula ( SMN1 copy number + 0.2 ∗  SMN2 copy number). We also characterized the disease natural history in 15 ALS patients at the teaching hospital of Point G, Bamako, Mali. We found that 131 of 391 (33.5%) had an estimated SMN protein expression of ≤ 2.2; 60 out of 391 (15.3%) had an estimated SMN protein expression < 2 and would be at risk of ALS and the disease onset was as early as 16 years old. All 15 patients were male and some were physically handicapped within 1-2 years in the disease course. Because of the short survival time of our patients, family histories and sample DNA for testing were not done. However, our results show that sporadic ALS is of earlier onset and shorter survival time as compared to patients elsewhere. We plan to establish a network of neurologists and researchers for early screening of ALS.

  1. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors.

    Science.gov (United States)

    Mak, Vivien; Hamm, Jeremey; Chhanabhai, Mukesh; Shenkier, Tamara; Klasa, Richard; Sehn, Laurie H; Villa, Diego; Gascoyne, Randy D; Connors, Joseph M; Savage, Kerry J

    2013-06-01

    A number of novel therapies are under investigation in relapsed or refractory peripheral T-cell lymphoma (PTCL); however, their relative impact on outcome is unknown. We examined the survival of patients with PTCL after relapse or progression in the absence of hematopoietic stem-cell transplantation and explored factors influencing survival. The three most common subtypes encountered in North America were evaluated: PTCL not otherwise specified (PTCL-NOS), angioimmunoblastic T-cell lymphoma (AITL), and anaplastic large-cell lymphoma (ALCL; anaplastic lymphoma kinase [ALK] positive and ALK negative. After exclusions, 153 patients were analyzed (PTCL-NOS, n = 79 [52%]; AITL, n = 38 [25%]; ALK-positive ALCL, n = 11 [7%]; ALK-negative ALCL, n = 27 [16%; including ALK status unknown, n = 1]). Median time from initial diagnosis to relapse or progression after primary therapy was 6.7 months, and median age at relapse was 66 years (ALK-positive ALCL, 39 years). Median overall survival (OS) and median progression-free survival (PFS) after relapse or progression (second PFS) were 5.5 and 3.1 months, respectively, and were only marginally better in patients who received chemotherapy at relapse (n = 89 [58%]; 6.5 and 3.7 months, respectively). Patients with good performance status (PS) of 0 or 1 (n = 47) at relapse who received chemotherapy had a more favorable OS (P survival. Select patients with good PS have more favorable outcomes with standard chemotherapy.

  2. DNA Repair Gene Polymorphisms in Relation to Non-Small Cell Lung Cancer Survival

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-07-01

    Full Text Available Background: Single nucleotide polymorphisms (SNPs in the DNA repair genes are suspected to be related to the survival of lung cancer patients due to their possible influence on DNA repair capacity (DRC. However, the study results are inconsistent. Methods: A follow-up study of 610 non-small cell lung cancer (NSCLC patients was conducted to investigate genetic polymorphisms associated with the DNA repair genes in relation to NSCLC survival; 6 SNPs were genotyped, including XRCC1 (rs25487 G>A, hOGG1 (rs1052133 C>G, MUTYH (rs3219489 G>C, XPA (rs1800975 G>A, ERCC2 (rs1799793 G>A and XRCC3 (rs861539 C>T. Kaplan-Meier survival curve and Cox proportional hazards regression analyses were performed. SNP-SNP interaction was also examined using the survival tree analysis. Results: Advanced disease stage and older age at diagnosis were associated with poor prognosis of NSCLC. Patients with the variant ‘G' allele of hOGG1 rs1052133 had poor overall survival compared with those with the homozygous wild ‘CC' genotype, especially in female patients, adenocarcinoma histology, early stage, light smokers and without family history of cancer. For never smoking female lung cancer patients, individuals carrying homozygous variant ‘AA' genotype of XPA had shorter survival time compared to those with wild ‘G' alleles. Furthermore, females carrying homozygous variant XPA and hOGG1 genotypes simultaneously had 2.78-fold increased risk for death. Among all 6 polymorphisms, the homozygous variant ‘AA' of XPA carriers had poor prognosis compared to the carriers of wild ‘G' alleles of XPA together with other base excision repair (BER polymorphisms. Conclusions: Besides disease stage and age, the study found DNA repair gene polymorphisms were associated with lung cancer survival.

  3. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhongli [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhang, Wencheng [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhou, Yuling; Yu, Dianke; Chen, Xiabin; Chang, Jiang; Qiao, Yan; Zhang, Meng; Huang, Ying; Wu, Chen [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Xiao, Zefen, E-mail: xiaozefen@sina.com [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Tan, Wen, E-mail: tanwen@cicams.ac.cn [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); and others

    2015-09-01

    Purpose: To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. Methods and Materials: Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. Results: We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. Conclusion: These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.

  4. Survival Patterns in Elderly Head and Neck Squamous Cell Carcinoma Patients Treated With Definitive Radiation Therapy.

    Science.gov (United States)

    Sommers, Linda W; Steenbakkers, Roel J H M; Bijl, Henk P; Vemer-van den Hoek, Johanna G M; Roodenburg, Jan L N; Oosting, Sjoukje F; Halmos, Gyorgy B; de Rooij, Sophia E; Langendijk, Johannes A

    2017-07-15

    We sought to assess the effect of age on overall survival (OS), cancer-specific survival (CSS), and non-cancer-related death (NCRD) in elderly (aged ≥70 years) head and neck squamous cell carcinoma (HNSCC) patients treated with definitive radiation therapy. The results were compared with those of younger patients, and the most important prognostic factors for survival endpoints were determined. Treatments may be better justified based on identification of the main differences in survival between young and elderly patients. Data were analyzed from all consecutive HNSCC patients treated with definitive radiation therapy (66-70 Gy) in our department between April 2007 and December 2014. A total of 674 patients, including 168 elderly patients (24.9%), were included in the study. Multivariate association models were constructed to assess the effect of age on survival endpoints. Multivariate analysis was performed to identify potential prognostic factors for survival in elderly patients. A total of 674 consecutive patients, including 168 elderly patients, were analyzed. The 5-year OS and NCRD rates were significantly worse for elderly patients than for young patients: 45.5% versus 58.2% (P=.007) and 39.0% versus 20.7% (Pelderly patient group. Of the elderly patients, 80 (47%) died during follow-up; 45% of these deaths were ascribed to the index tumor. For elderly patients, radiation therapy combined with systemic forms of treatment was significantly associated with adverse NCRD rate (hazard ratio, 8.02; 95% confidence interval, 2.36-27.2; P=.001) after we performed a multivariate association analysis. Elderly HNSCC patients have worse survival outcomes than young HNSCC patients. Age is an independent prognostic factor for OS, mainly due to an increase in non-cancer-related mortality and comorbid diseases. The differences in CSS between young and elderly patients are negligible. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The influence of social support on hematopoietic stem cell transplantation survival: a systematic review of literature.

    Directory of Open Access Journals (Sweden)

    Sara Beattie

    Full Text Available BACKGROUND: Hematopoietic Stem cell Transplantation (HSCT can negatively impact the psychosocial well-being of the patient. Social support is a complex term that has been variably used to encompass perceived and objective support, including caregiver presence. Social support has been associated with superior psychosocial outcomes; however the influence of social support on HSCT survival remains unclear. We sought to summarize the literature on the influence of social support on HSCT survival. METHODS: MEDLINE, EMBASE, COCHRANE, CINAHL, AND PSYCINFO WERE SEARCHED USING THE FOLLOWING SEARCH CATEGORIES/CONCEPTS: 1 HSCT, 2 Social support, 3 Caregiver, 4 Survival, and 5 Treatment outcomes. RESULTS: We identified 6 relevant studies: 4 publications, 1 dissertation, and 1 abstract. Three studies were retrospective and 3, prospective. Sample size ranged between 92-272 with a mean/median patient age between 30-55 yrs. The duration of follow-up ranged between 13.3-48 months. Social support was measured inconsistently: 2 by retrospective investigator assessment, 2 as patients' perceived support, 1 as caregiver presence, and 1 included caregiver presence and retrospective investigator assessment. The 4 published studies and 1 abstract demonstrate an association between better social support and survival. However, the unpublished dissertation, with the largest sample size found no association. CONCLUSIONS: There is a paucity of evidence examining social support with HSCT survival. Available studies are older, with the most recent publication in 2005. A heterogeneous group of HSCT patients were studied with variable follow-up times. Further, covariates were variably considered in HSCT survival analyses and we suggest that there may be publication bias, given the negative unpublished study with the largest sample size. Prospective studies using validated scales are necessary to better assess the influence of social support on HSCT mortality. Given the potential

  6. The Geriatric Nutritional Risk Index Predicts Survival in Elderly Esophageal Squamous Cell Carcinoma Patients with Radiotherapy.

    Science.gov (United States)

    Bo, Yacong; Wang, Kunlun; Liu, Yang; You, Jie; Cui, Han; Zhu, Yiwei; Lu, Quanjun; Yuan, Ling

    2016-01-01

    The impact of nutritional status on survival among elderly esophageal squamous cell carcinoma (ESCC) patients undergoing radiotherapy is unclear. In this study, we aimed at validating the performance of the geriatric nutritional risk index (GNRI) in predicting overall survival time in elderly ESCC patients with radiotherapy. A retrospective cohort study was conducted on 239 ESCC patients aged 60 and over admitted consecutively from January 2008 to November 2014 in the Department of Radiotherapy, Henan Tumor Hospital (Affiliated Tumor Hospital of Zhengzhou University), Zhengzhou, Henan, China. All patients were subjected to nutritional screening using GNRI, and were followed for the occurrence of lymphatic node metastasis, radiation complication and mortality. The Kaplan-Meier method with Log-rank test was used to estimate survival curves. Univariable Cox regression analysis was used to identify variables associated with overall survival time. Among the 239 patients, 184 patients (76.9%) took no nutritional risk, 32 patients (13.4%) took moderate risk of malnutrition, and 23 patients (9.7%) took a high risk of malnutrition. Univariable Cox regression showed that both high nutritional risk group and moderate nutritional risk group were significantly less likely to survive than no nutritional risk patients (hazard ratio (HR) = 1.688, 95% confidence interval (CI) = 1.019-2.798 for moderate risk group, and HR = 2.699, 95% CI = 1.512-4.819 for high risk group, respectively). The GNRI is an independent prognostic factor for overall survival time in elderly ESCC patients with radiotherapy. A GNRI ≤98 can be suggested as an indicator of surviving less.

  7. Survivability of Salmonella cells in popcorn after microwave oven and conventional cooking.

    Science.gov (United States)

    Anaya, I; Aguirrezabal, A; Ventura, M; Comellas, L; Agut, M

    2008-01-01

    The survivability of Salmonella cells in popcorn preparation was determined for two distinct cooking methods. The first method used a standard microwave oven. The second method used conventional cooking in a pan. Prior to thermal processing in independent experiments, 12 suspensions in a range between 1x10(3) and 8x10(6) colony-forming units (CFU) per gram of Salmonella cells were inoculated in both raw microwave popcorn and conventional corn kernels. The influence of the initial concentration of Salmonella cells in the raw products and the lethal effects on Salmonella by thermal treatments for cooking were studied. Survival of Salmonella cells was determined in the thermally processed material by pre-enrichment and enrichment in selective medium, in accordance with the legislation for expanded cereals and cereals in flakes. Viable experimental contaminants were recovered from the conventionally cooked popcorn with initial inoculation concentrations of 9x10(4)cells/g or greater. Salmonella cell viability was significantly reduced after microwave oven treatment, with recoveries only from initial concentrations of 2x10(6)cells/g or superior.

  8. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    Science.gov (United States)

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  9. Survival of Dental Pulp Stem Cells: The effect of Soymilk and Milk

    Directory of Open Access Journals (Sweden)

    Fatemeh Sholehvar

    2015-11-01

    Full Text Available Background & Objectives: Dental pulp stem cells (DPSCs are alternate source of mesenchymal stem cells. Subsequent to tooth avulsion and fracture, DPSCs can play a prominent role in tissue regeneration. This study was conducted to evaluate the effect of soymilk and milk on survival of dental pulp stem cells. Materials & Methods: DPSCs were isolated from 16 freshly extracted incisors of 5 rabbits. The 3rd passage was seeded in 24 well plates, and after 3 days, soymilk, cow milk, HBSS, and distilled water were replaced with culture media. After 45 minutes, 1.5, 3, and 6 hours, the viability of DPSCs were investigated. Mesenchymal nature of stem cells was investigated by RT-PCR. The cell viability was determined by Trypan blue exclusion. Karyotyping was done to evaluate the cytogenetic stability of cells.  Results: The viability of DPSCs in all media were significantly more than distilled water at all intervals. After 6 h, the viability of DPSCs in soymilk, cow milk, and HBSS were 100,000±0.00, 100,000±0.00, and 74.74±5.70, respectively. After 6 h, both soymilk and cow milk maintained cells significantly better than HBSS. Conclusion: Like cow milk, soymilk is a suitable alternative transfer media for avulsed and broken teeth that can increase the survival of DPSCs.   

  10. Glycolytic ATP fuels the plasma membrane calcium pump critical for pancreatic cancer cell survival.

    Science.gov (United States)

    James, Andrew D; Chan, Anthony; Erice, Oihane; Siriwardena, Ajith K; Bruce, Jason I E

    2013-12-13

    Pancreatic cancer is an aggressive cancer with poor prognosis and limited treatment options. Cancer cells rapidly proliferate and are resistant to cell death due, in part, to a shift from mitochondrial metabolism to glycolysis. We hypothesized that this shift is important in regulating cytosolic Ca(2+) ([Ca(2+)]i), as the ATP-dependent plasma membrane Ca(2+) ATPase (PMCA) is critical for maintaining low [Ca(2+)]i and thus cell survival. The present study aimed to determine the relative contribution of mitochondrial versus glycolytic ATP in fuelling the PMCA in human pancreatic cancer cells. We report that glycolytic inhibition induced profound ATP depletion, PMCA inhibition, [Ca(2+)]i overload, and cell death in PANC1 and MIA PaCa-2 cells. Conversely, inhibition of mitochondrial metabolism had no effect, suggesting that glycolytic ATP is critical for [Ca(2+)]i homeostasis and thus survival. Targeting the glycolytic regulation of the PMCA may, therefore, be an effective strategy for selectively killing pancreatic cancer while sparing healthy cells.

  11. Gastrin activates autophagy and increases migration and survival of gastric adenocarcinoma cells.

    Science.gov (United States)

    Rao, Shalini V; Solum, Guri; Niederdorfer, Barbara; Nørsett, Kristin G; Bjørkøy, Geir; Thommesen, Liv

    2017-01-21

    The peptide hormone gastrin exerts a growth-promoting effect in both normal and malignant gastrointestinal tissue. Gastrin mediates its effect via the cholecystokinin 2 receptor (CCKBR/CCK2R). Although a substantial part of the gastric adenocarcinomas express gastrin and CCKBR, the role of gastrin in tumor development is not completely understood. Autophagy has been implicated in mechanisms governing cytoprotection, tumor growth, and contributes to chemoresistance. This study explores the role of autophagy in response to gastrin in gastric adenocarcinoma cell lines. Immunoblotting, survival assays and the xCELLigence system were used to study gastrin induced autophagy. Chemical inhibitors of autophagy were utilized to assess the role of this process in the regulation of cellular responses induced by gastrin. Further, knockdown studies using siRNA and immunoblotting were performed to explore the signaling pathways that activate autophagy in response to gastrin treatment. We demonstrate that gastrin increases the expression of the autophagy markers MAP1LC3B-II and SQSTM1 in gastric adenocarcinoma cells. Gastrin induces autophagy via activation of the STK11-PRKAA2-ULK1 and that this signaling pathway is involved in increased migration and cell survival. Furthermore, gastrin mediated increase in survival of cells treated with cisplatin is partially dependent on induced autophagy. This study reveals a novel role of gastrin in the regulation of autophagy. It also opens up new avenues in the treatment of gastric cancer by targeting CCKBR mediated signaling and/or autophagy in combination with conventional cytostatic drugs.

  12. REP1 Modulates Autophagy and Macropinocytosis to Enhance Cancer Cell Survival.

    Science.gov (United States)

    Choi, Jungwon; Kim, Hyena; Bae, Young Ki; Cheong, Heesun

    2017-08-28

    Rab escort protein 1 (REP1), a component of the Rab geranyl-geranyltransferase 2 complex, plays a role in Rab protein recruitment in proper vesicles during vesicle trafficking. In addition to having well-known tissue degenerative phenotypes in the REP1 mutant, REP1 is tightly associated with cancer development and contributes to cell growth and survival. However, the functional mechanism of REP1 in cancer progression is largely uninvestigated. Here, we show that REP1 plays a crucial role in regulating mammalian target of rapamycin (mTOR) signaling and its downstream pathways, as well as autophagy and macropinocytosis, which are essential for cancer cell survival during metabolic stresses including starvation. REP1 small interfering RNA (siRNA) treatment downregulates mTORC1 activity in growing media, but blocks autophagosome formation under nutrient-depleted conditions. In contrast to the mild decrease of lysosomal enzyme activity seen in REP1 depletion, in REP1 knockdown the subcellular localization of lysosomes is altered, and localization of REP1 itself is modulated by intracellular nutrient levels and mTOR activity. Furthermore, REP1 depletion increases macro pinocytosis which may be a feedback mechanism to compensate autophagy inhibition. Concomitant treatment with macropinocytosis inhibitor and REP1siRNAresults in more significant cell death than autophagy blockade with REP1 knockdown. Therefore, REP1-mediated autophagy and lysosomal degradation processes act as novel regulatory mechanisms to support cancer cell survival, which can be further investigated as a potential cancer-targeting pathway.

  13. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Tanmay M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Green, Maja M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Department of Anatomy & Neuroscience, The University of Melbourne, Parkville 3010 (Australia); Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Hawkins, Christine J., E-mail: c.hawkins@latrobe.edu.au [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia)

    2015-07-15

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  14. Endothelial Progenitor Cell Mobilization in Preterm Infants With Sepsis Is Associated With Improved Survival.

    Science.gov (United States)

    Siavashi, Vahid; Asadian, Simin; Taheri-Asl, Masoud; Keshavarz, Samaneh; Zamani-Ahmadmahmudi, Mohamad; Nassiri, Seyed Mahdi

    2017-10-01

    Microvascular dysfunction plays a key role in the pathology of sepsis, leading to multi-organ failure, and death. Circulating endothelial progenitor cells (cEPCs) are critically involved in the maintenance of the vascular homeostasis in both physiological and pathological contexts. In this study, concentration of cEPCs in preterm infants with sepsis was determined to recognize whether the EPC mobilization would affect the clinical outcome of infantile sepsis. One hundred and thirty-three preterm infants (81 with sepsis and 52 without sepsis) were enrolled in this study. The release of EPCs in circulation was first quantified. Thereafter, these cells were cultivated and biological features of these cells such as, proliferation and colony forming efficiency were analyzed. The levels of chemoattractant cytokines were also measured in infants. In mouse models of sepsis, effects of VEGF and SDF-1 as well as anti-VEGF and anti-SDF-1 were evaluated in order to shed light upon the role which the EPC mobilization plays in the overall survival of septic animals. Circulating EPCs were significantly higher in preterm infants with sepsis than in the non-sepsis group. Serum levels of VEGF, SDF-1, and Angiopoietin-2 were also higher in preterm infants with sepsis than in control non-sepsis. In the animal experiments, injection of VEGF and SDF-1 prompted the mobilization of EPCs, leading to an improvement in survival whereas injection of anti-VEGF and anti-SDF-1 was associated with significant deterioration of survival. Overall, our results demonstrated the beneficial effects of EPC release in preterm infants with sepsis, with increased mobilization of these cells was associated with improved survival. J. Cell. Biochem. 118: 3299-3307, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Do Increased Doses to Stem-Cell Niches during Radiation Therapy Improve Glioblastoma Survival?

    Directory of Open Access Journals (Sweden)

    Sebastian Adeberg

    2016-01-01

    Full Text Available Background and Purpose. The reasons for the inevitable glioblastoma recurrence are yet understood. However, recent data suggest that tumor cancer stem cells (CSCs in the stem-cell niches, with self-renewing capacities, might be responsible for tumor initiation, propagation, and recurrence. We aimed to analyze the effect of higher radiation doses to the stem-cell niches on progression-free survival (PFS and overall survival (OS in glioblastoma patients. Materials and Methods. Sixty-five patients with primary glioblastoma treated with radiation therapy were included in this retrospective analysis. The SVZ and DG were segmented on treatment planning magnetic resonance imaging, and the dose distributions to the structures were calculated. The relationship of dosimetry data and survival was evaluated using the Cox regression analysis. Results. Conventionally fractionated patients (n=54 who received higher doses (Dmean ≥ 40 Gy to the IL SVZ showed improved PFS (8.5 versus 5.2 months; p=0.013. Furthermore, higher doses (Dmean ≥ 30 Gy to the CL SVZ were associated with increased PFS (10.1 versus 6.9 months; p=0.025. Conclusion. Moderate higher IL SVZ doses (≥40 Gy and CL SVZ doses (≥30 Gy are associated with improved PFS. Higher doses to the DG, the second stem-cell niche, did not influence the survival. Targeting the potential cancer stem cells in the SVZ might be a promising treatment approach for glioblastoma and should be addressed in a prospective randomized trial.

  16. The numbers game: Campylobacter survival in poultry products through the pH effects of polyphosphate additives

    Science.gov (United States)

    Campylobacter species are responsible for the largest number of food-borne gastrointestinal bacterial infections in the developed world. Poultry products are a primary pathway for the introduction of Campylobacter into the food supply. Undercooked poultry products and the cross-contamination of ot...

  17. Assessment of satellite cell number and activity status in human skeletal muscle biopsies

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Kjær, Michael; Charifi, Nadia

    2009-01-01

    The primary aim of our study was to validate the assessment of myonuclear and satellite cell number in biopsies from human skeletal muscle. We found that 25 type I and 25 type II fibers are sufficient to estimate the mean number of myonuclei per fiber. In contrast, the assessment of satellite cells...

  18. Early Life Processes, Endocrine Mediators and Number of Susceptible Cells in Relation to Breast Cancer Risk

    Science.gov (United States)

    2007-04-01

    Early life processes, endocrine mediators and number of susceptible cells in relation 5a. CONTRACT NUMBER to breast cancer ... cancer risk. Method: Five interlinked component projects covering the spectrum from endometrial to adult life . Progress report: Component projects...Analyses are pending and no findings can be reported yet. 15. SUBJECT TERMS Breast cancer , early life , mammary gland specific stem cells, hormones 16

  19. Quality of life assessment as a predictor of survival in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Staren Edgar D

    2011-08-01

    Full Text Available Abstract Background There are conflicting and inconsistent results in the literature on the prognostic role of quality of life (QoL in cancer. We investigated whether QoL at admission could predict survival in lung cancer patients. Methods The study population consisted of 1194 non-small cell lung cancer patients treated at our institution between Jan 2001 and Dec 2008. QoL was evaluated using EORTC-QLQ-C30 prior to initiation of treatment. Patient survival was defined as the time interval between the date of first patient visit and the date of death from any cause/date of last contact. Univariate and multivariate Cox regression evaluated the prognostic significance of QoL. Results Mean age at presentation was 58.3 years. There were 605 newly diagnosed and 589 previously treated patients; 601 males and 593 females. Stage of disease at diagnosis was I, 100; II, 63; III, 348; IV, 656; and 27 indeterminate. Upon multivariate analyses, global QoL as well as physical function predicted patient survival in the entire study population. Every 10-point increase in physical function was associated with a 10% increase in survival (95% CI = 6% to 14%, p Conclusions Baseline global QoL and physical function provide useful prognostic information in non-small cell lung cancer patients.

  20. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  1. MYC and Human Telomerase Gene (TERC) Copy Number Gain in Early-stage Non–small Cell Lung Cancer

    Science.gov (United States)

    Flacco, Antonella; Ludovini, Vienna; Bianconi, Fortunato; Ragusa, Mark; Bellezza, Guido; Tofanetti, Francesca R.; Pistola, Lorenza; Siggillino, Annamaria; Vannucci, Jacopo; Cagini, Lucio; Sidoni, Angelo; Puma, Francesco; Varella-Garcia, Marileila; Crinò, Lucio

    2015-01-01

    Objectives We investigated the frequency of MYC and TERC increased gene copy number (GCN) in early-stage non–small cell lung cancer (NSCLC) and evaluated the correlation of these genomic imbalances with clinicopathologic parameters and outcome. Materials and Methods Tumor tissues were obtained from 113 resected NSCLCs. MYC and TERC GCNs were tested by fluorescence in situ hybridization (FISH) according to the University of Colorado Cancer Center (UCCC) criteria and based on the receiver operating characteristic (ROC) classification. Results When UCCC criteria were applied, 41 (36%) cases for MYC and 41 (36%) cases for TERC were considered FISH-positive. MYC and TERC concurrent FISH-positive was observed in 12 cases (11%): 2 (17%) cases with gene amplification and 10 (83%) with high polysomy. By using the ROC analysis, high MYC (mean ≥2.83 copies/cell) and TERC (mean ≥2.65 copies/cell) GCNs were observed in 60 (53.1%) cases and 58 (51.3%) cases, respectively. High TERC GCN was associated with squamous cell carcinoma (SCC) histology (P = 0.001). In univariate analysis, increased MYC GCN was associated with shorter overall survival (P = 0.032 [UCCC criteria] or P = 0.02 [ROC classification]), whereas high TERC GCN showed no association. In multivariate analysis including stage and age, high MYC GCN remained significantly associated with worse overall survival using both the UCCC criteria (P = 0.02) and the ROC classification (P = 0.008). Conclusions Our results confirm MYC as frequently amplified in early-stage NSCLC and increased MYC GCN as a strong predictor of worse survival. Increased TERC GCN does not have prognostic impact but has strong association with squamous histology. PMID:25806711

  2. Type VI collagen increases cell survival and prevents anti-beta 1 integrin-mediated apoptosis.

    Science.gov (United States)

    Howell, S J; Doane, K J

    1998-05-25

    Cell-matrix interactions are important in the development of the avian cornea. Type VI collagen is present within the periocular mesenchyme prior to the migration of cells into the corneal stroma and is abundant in the mature stroma. Whether the interaction of cells with type VI collagen is essential for cellular survival in the cornea is not known. In the present study, we examined the interaction of corneal cells with type VI collagen in vitro to determine if it can increase cell proliferation and decrease apoptosis. In vivo analysis demonstrated that apoptosis occurs in the periocular region during early stages of avian corneal development, but in fully mature corneas apoptosis only occurs in the corneal epithelium and not in the stroma. In vitro analysis examined the importance of beta 1 integrin interactions with type VI collagen in mature corneal fibroblasts and the precursor cells. Using an anti-beta 1 integrin blocking antibody, CSAT, integrin/matrix interactions were disrupted. Results indicated that viability of both corneal fibroblasts and periocular mesenchyme cells was greater on type VI collagen than on type I collagen or BSA-blocked glass. In addition, less apoptosis was observed for both cell types on type VI collagen when beta 1 integrin--matrix interactions were disrupted. These data indicated that these cells require intact beta 1 interactions with type I collagen and with BSA-coated glass controls to remain viable. Thus, type VI collagen may play a role in the rescue of corneal cells from anti-beta 1 integrin-induced apoptosis by increasing cell survival, probably via a non-beta 1 integrin-dependent mechanism.

  3. Salidroside, A Natural Antioxidant, Improves β-Cell Survival and Function via Activating AMPK Pathway

    Directory of Open Access Journals (Sweden)

    Linjie Ju

    2017-10-01

    Full Text Available Aim: The enhanced oxidative stress contributes to progression of type 2 diabetes mellitus (T2DM and induces β-cell failure. Salidroside is a natural antioxidant extracted from medicinal food plant Rhodiola rosea. This study was aimed to evaluate protective effects of salidroside on β-cells against diabetes associated oxidative stress.Methods and Results: In diabetic db/db and high-fat diet-induced mice, we found salidroside ameliorated hyperglycemia and relieved oxidative stress. More importantly, salidroside increased β-cell mass and β-cell replication of diabetic mice. Mechanism study in Min6 cells revealed that, under diabetic stimuli, salidroside suppressed reactive oxygen species production and restore mitochondrial membrane potential (ΔΨm via reducing NOX2 expression and inhibiting JNK–caspase 3 apoptotic cascade subsequently to protect β-cell survival. Simultaneously, diabetes associated oxidative stress also activated FOXO1 and triggered nuclear exclusion of PDX1 which resulted in β-cell dysfunction. This deleterious result was reversed by salidroside by activating AMPK-AKT to inhibit FOXO1 and recover PDX1 nuclear localization. The efficacy of salidroside in improving β-cell survival and function was further confirmed in isolated cultured mouse islets. Moreover, the protective effects of salidroside on β-cells against diabetic stimuli can be abolished by an AMPK inhibitor compound C, which indicated functions of salidroside on β-cells were AMPK activation dependent.Conclusion: These results confirmed beneficial metabolic effects of salidroside and identified a novel role for salidroside in preventing β-cell failure via AMPK activation. Our finding highlights the potential value of Rhodiola rosea as a dietary supplement for diabetes control.

  4. Salidroside, A Natural Antioxidant, Improves β-Cell Survival and Function via Activating AMPK Pathway.

    Science.gov (United States)

    Ju, Linjie; Wen, Xiaohua; Wang, Chunjun; Wei, Yingjie; Peng, Yunru; Ding, Yongfang; Feng, Liang; Shu, Luan

    2017-01-01

    Aim: The enhanced oxidative stress contributes to progression of type 2 diabetes mellitus (T2DM) and induces β-cell failure. Salidroside is a natural antioxidant extracted from medicinal food plant Rhodiola rosea. This study was aimed to evaluate protective effects of salidroside on β-cells against diabetes associated oxidative stress. Methods and Results: In diabetic db/db and high-fat diet-induced mice, we found salidroside ameliorated hyperglycemia and relieved oxidative stress. More importantly, salidroside increased β-cell mass and β-cell replication of diabetic mice. Mechanism study in Min6 cells revealed that, under diabetic stimuli, salidroside suppressed reactive oxygen species production and restore mitochondrial membrane potential (ΔΨm) via reducing NOX2 expression and inhibiting JNK-caspase 3 apoptotic cascade subsequently to protect β-cell survival. Simultaneously, diabetes associated oxidative stress also activated FOXO1 and triggered nuclear exclusion of PDX1 which resulted in β-cell dysfunction. This deleterious result was reversed by salidroside by activating AMPK-AKT to inhibit FOXO1 and recover PDX1 nuclear localization. The efficacy of salidroside in improving β-cell survival and function was further confirmed in isolated cultured mouse islets. Moreover, the protective effects of salidroside on β-cells against diabetic stimuli can be abolished by an AMPK inhibitor compound C, which indicated functions of salidroside on β-cells were AMPK activation dependent. Conclusion: These results confirmed beneficial metabolic effects of salidroside and identified a novel role for salidroside in preventing β-cell failure via AMPK activation. Our finding highlights the potential value of Rhodiola rosea as a dietary supplement for diabetes control.

  5. Revised Estimates for the Number of Human and Bacteria Cells in the Body

    Science.gov (United States)

    Milo, Ron

    2016-01-01

    Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg. PMID:27541692

  6. Revised Estimates for the Number of Human and Bacteria Cells in the Body.

    Directory of Open Access Journals (Sweden)

    Ron Sender

    2016-08-01

    Full Text Available Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90% and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.

  7. Five-year lung cancer survival: which advanced stage nonsmall cell lung cancer patients attain long-term survival?

    National Research Council Canada - National Science Library

    Wang, Tina; Nelson, Rebecca A; Bogardus, Alicia; Grannis, Jr, Frederic W

    2010-01-01

    .... In the absence of screening, most symptomatic lung cancer is discovered at advanced stages, with the goal of long-term survival entirely dependent on effective treatment of stage III and IV lung cancer...

  8. Mast Cell Leukemia: Review of a Rare Disease and Case Report of Prolonged Survival after Allogeneic Stem Cell Transplant

    Directory of Open Access Journals (Sweden)

    James Bauer, MD, PhD

    2017-11-01

    Full Text Available Mast cell leukemia is a rare and aggressive form of mastocytosis characterized by >20% mast cells found in the bone marrow aspirates of patients with signs of systemic mastocytosis-related organ damage. The prognosis for patients with mast cell leukemia is extremely poor, with resistance to both cytoreductive therapies and tyrosine kinase inhibitors being relatively common. While allogeneic hematopoietic stem cell transplantation has been associated with long-term survival in patients with advanced systemic mastocytosis, reports regarding its effectiveness in mast cell leukemia are limited to fewer than 20 cases described in the literature. Here, we report a patient with mast cell leukemia who remains in complete remission 24 months after allogeneic HSCT at the time of this writing, and briefly review the clinical, diagnostic, and therapeutic approaches to this rare disease.

  9. Stratification of clear cell renal cell carcinoma (ccRCC genomes by gene-directed copy number alteration (CNA analysis.

    Directory of Open Access Journals (Sweden)

    H-J Thiesen

    Full Text Available Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs presented in 48 clear cell renal cell carcinoma (ccRCC genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25 and 20 G3 (ratio 0.58. Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes has been successfully validated on published Swiss data (GSE19949 leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and

  10. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2.

    Science.gov (United States)

    Foley, Niamh H; Bray, Isabella M; Tivnan, Amanda; Bryan, Kenneth; Murphy, Derek M; Buckley, Patrick G; Ryan, Jacqueline; O'Meara, Anne; O'Sullivan, Maureen; Stallings, Raymond L

    2010-04-21

    Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.

  11. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2

    Directory of Open Access Journals (Sweden)

    Murphy Derek M

    2010-04-01

    Full Text Available Abstract Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.

  12. Endoplasmic Reticulum–Mitochondrial Ca2+ Fluxes Underlying Cancer Cell Survival

    Directory of Open Access Journals (Sweden)

    Hristina Ivanova

    2017-05-01

    Full Text Available Calcium ions (Ca2+ are crucial, ubiquitous, intracellular second messengers required for functional mitochondrial metabolism during uncontrolled proliferation of cancer cells. The mitochondria and the endoplasmic reticulum (ER are connected via “mitochondria-associated ER membranes” (MAMs where ER–mitochondria Ca2+ transfer occurs, impacting the mitochondrial biology related to several aspects of cellular survival, autophagy, metabolism, cell death sensitivity, and metastasis, all cancer hallmarks. Cancer cells appear addicted to these constitutive ER–mitochondrial Ca2+ fluxes for their survival, since they drive the tricarboxylic acid cycle and the production of mitochondrial substrates needed for nucleoside synthesis and proper cell cycle progression. In addition to this, the mitochondrial Ca2+ uniporter and mitochondrial Ca2+ have been linked to hypoxia-inducible factor 1α signaling, enabling metastasis and invasion processes, but they can also contribute to cellular senescence induced by oncogenes and replication. Finally, proper ER–mitochondrial Ca2+ transfer seems to be a key event in the cell death response of cancer cells exposed to chemotherapeutics. In this review, we discuss the emerging role of ER–mitochondrial Ca2+ fluxes underlying these cancer-related features.

  13. Francisella noatunensis subsp. noatunensis invades, survives and replicates in Atlantic cod cells.

    Science.gov (United States)

    Bakkemo, Kathrine R; Mikkelsen, Helene; Johansen, Audny; Robertsen, Børre; Seppola, Marit

    2016-09-26

    Systemic infection caused by the facultative intracellular bacterium Francisella noatunensis subsp. noatunensis remains a disease threat to Atlantic cod Gadus morhua L. Future prophylactics could benefit from better knowledge on how the bacterium invades, survives and establishes infection in its host cells. Here, facilitated by the use of a gentamicin protection assay, this was studied in primary monocyte/macrophage cultures and an epithelial-like cell line derived from Atlantic cod larvae (ACL cells). The results showed that F. noatunensis subsp. noatunensis is able to invade primary monocyte/macrophages, and that the actin-polymerisation inhibitor cytochalasin D blocked internalisation, demonstrating that the invasion is mediated through phagocytosis. Interferon gamma (IFNγ) treatment of cod macrophages prior to infection enhanced bacterial invasion, potentially by stimulating macrophage activation in an early step in host defence against F. noatunensis subsp. noatunensis infections. We measured a rapid drop of the initial high levels of internalised bacteria in macrophages, indicating the presence and action of a cellular immune defence mechanism before intracellular bacterial replication took place. Low levels of bacterial internalisation and replication were detected in the epithelial-like ACL cells. The capacity of F. noatunensis subsp. noatunensis to enter, survive and even replicate within an epithelial cell line may play an important role in its ability to infect live fish and transverse epithelial barriers to reach the bacterium's main target cells-the macrophage.

  14. Attenuated AMPA receptor expression allows glioblastoma cell survival in glutamate-rich environment.

    Directory of Open Access Journals (Sweden)

    Dannis G van Vuurden

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM cells secrete large amounts of glutamate that can trigger AMPA-type glutamate receptors (AMPARs. This commonly results in Na(+ and Ca(2+-permeability and thereby in excitotoxic cell death of the surrounding neurons. Here we investigated how the GBM cells themselves survive in a glutamate-rich environment. METHODS AND FINDINGS: In silico analysis of published reports shows down-regulation of all ionotropic glutamate receptors in GBM as compared to normal brain. In vitro, in all GBM samples tested, mRNA expression of AMPAR subunit GluR1, 2 and 4 was relatively low compared to adult and fetal total brain mRNA and adult cerebellum mRNA. These findings were in line with primary GBM samples, in which protein expression patterns were down-regulated as compared to the normal tissue. Furthermore, mislocalized expression of these receptors was found. Sequence analysis of GluR2 RNA in primary and established GBM cell lines showed that the GluR2 subunit was found to be partly unedited. CONCLUSIONS: Together with the lack of functional effect of AMPAR inhibition by NBQX our results suggest that down-regulation and afunctionality of AMPARs, enable GBM cells to survive in a high glutamate environment without going into excitotoxic cell death themselves. It can be speculated that specific AMPA receptor inhibitors may protect normal neurons against the high glutamate microenvironment of GBM tumors.

  15. Parotid small cell carcinoma presenting with long-term survival after surgery alone: a case report

    Directory of Open Access Journals (Sweden)

    Kanazawa Takeharu

    2012-12-01

    Full Text Available Abstract Introduction Primary involvement of the salivary glands in small cell carcinoma is rare, and has one of the worst prognoses of salivary gland neoplasms. However, it has been reported that some cases have a favorable outcome, although the prognostic factors are still under consideration. Multidisciplinary therapy was usually required to achieve long-term survival. Recently, a resemblance of some small cell carcinomas of the salivary gland to cutaneous Merkel cell carcinoma was suggested; the latter have the potential for spontaneous regression, which is related to a favorable clinical outcome. Case presentation We present a locoregional advanced parotid small cell carcinoma with multiple lymph node metastases in an 87-year-old Asian woman. The tumor was controlled by surgery alone, and nine-year disease-free survival was achieved without any adjunctive therapy. To the best of our knowledge, this is the longest reported follow-up of head and neck small cell carcinoma. Conclusion We believe this to be the first case of small cell carcinoma with involvement of the salivary glands reported in the literature with a good outcome after surgery alone without any adjunctive therapy.

  16. RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius.

    Directory of Open Access Journals (Sweden)

    Haiming Zhao

    Full Text Available Deregulated reactive oxygen species (ROS production can lead to the disruption of structural and functional integrity of cells as a consequence of reactive interaction between ROS and various biological components. Catalase (CAT is a common enzyme existing in nearly all organisms exposed to oxygen, which decomposes harmful hydrogen peroxide, into water and oxygen. In this study, the full length sequence that encodes CAT-like protein from Spodoptera litura named siltCAT (GenBank accession number: JQ_663444 was cloned and characterized. Amino acid sequence alignment showed siltCAT shared relatively high conservation with other insect, especially the conserved residues which defined heme and NADPH orientation. Expression pattern analysis showed that siltCAT mRNA was mainly expressed in the fat body, midgut, cuticle and malpighian tube, and as well as over last instar larvae, pupa and adult stages. RNA interference was used to silence CAT gene in SL-1 cells and the fourth-instar stage of S. litura larvae respectively. Our results provided evidence that CAT knockdown induced ROS generation, cell cycle arrest and apoptosis in SL-1 cells. It also confirmed the decrease in survival rate because of increased ROS production in experimental groups injected with double-stranded RNA of CAT (dsCAT. This study implied that ROS scavenging by CAT is important for S. litura survival.

  17. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper.

    Science.gov (United States)

    Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Wang, Yang; Gui, Jian-Fang

    2017-06-01

    Dead end (dnd), vertebrate-specific germ cell marker, had been demonstrated to be essential for primordial germ cell (PGC) migration and survival, and the link between PGC number and sex change had been revealed in some teleost species, but little is known about dnd in hermaphroditic vertebrates. In the present study, a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides) dnd homologue (Ecdnd) was identified and characterized. Quantitative real-time PCR and in situ hybridization analysis revealed a dynamic and sexually dimorphic expression pattern in PGCs and germ cells of gonads. During sex changing, the Ecdnd transcript sharply increased in early transitional gonad, reached the highest level at late transitional gonad stage, and decreased after testis maturation. Visualization of zebrafish PGCs by injecting with RFP-Ecdnd-3'UTR RNA and GFP-zfnanos3-3'UTR RNA confirmed importance of Ecdnd 3'UTR for the PGC distribution. In addition, knockdown of EcDnd by using antisense morpholinos (MO) caused the ablation of PGCs in orange-spotted grouper. Therefore, the current data indicate that Ecdnd is essential for PGCs survival and may serve as a useful germ cell marker during gametogenesis in hermaphroditic grouper. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats.

    Directory of Open Access Journals (Sweden)

    Howard Kim

    Full Text Available Neural stem/progenitor cells (NSPCs have great potential as a cell replacement therapy for spinal cord injury. However, poor control over transplant cell differentiation and survival remain major obstacles. In this study, we asked whether dibutyryl cyclic-AMP (dbcAMP, which was shown to induce up to 85% in vitro differentiation of NSPCs into neurons would enhance survival of transplanted NSPCs through prolonged exposure either in vitro or in vivo through the controlled release of dbcAMP encapsulated within poly(lactic-co-glycolic acid (PLGA microspheres and embedded within chitosan guidance channels. NSPCs, seeded in fibrin scaffolds within the channels, differentiated in vitro to betaIII-tubulin positive neurons by immunostaining and mRNA expression, in response to dbcAMP released from PLGA microspheres. After transplantation in spinal cord injured rats, the survival and differentiation of NSPCs was evaluated. Untreated NSPCs, NSPCs transplanted with dbcAMP-releasing microspheres, and NSPCs pre-differentiated with dbcAMP for 4 days in vitro were transplanted after rat spinal cord transection and assessed 2 and 6 weeks later. Interestingly, NSPC survival was highest in the dbcAMP pre-treated group, having approximately 80% survival at both time points, which is remarkable given that stem cell transplantation often results in less than 1% survival at similar times. Importantly, dbcAMP pre-treatment also resulted in the greatest number of in vivo NSPCs differentiated into neurons (37±4%, followed by dbcAMP-microsphere treated NSPCs (27±14% and untreated NSPCs (15±7%. The reverse trend was observed for NSPC-derived oligodendrocytes and astrocytes, with these populations being highest in untreated NSPCs. This combination strategy of stem cell-loaded chitosan channels implanted in a fully transected spinal cord resulted in extensive axonal regeneration into the injury site, with improved functional recovery after 6 weeks in animals implanted with

  19. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Chien-Chih [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Liu, Ren-Shyan [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, National PET/Cyclotron Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Yang, An-Hang [Taipei Veterans General Hospital, Department of Pathology and Laboratory Medicine, Taipei (China); National Yang-Ming University, Department of Pathology, School of Medicine, Taipei (China); Liu, Ching-Sheng [National Yang-Ming University Medical School, Department of Nuclear Medicine, School of Medicine, Taipei (China); Chi, Chin-Wen [National Yang-Ming University, Institute of Pharmacology, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China); Tseng, Ling-Ming [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Tsai, Yi-Fan [Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Ho, Jennifer H. [Taipei Medical University, Graduate Institute of Clinical Medicine, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Department of Ophthalmology, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Center for Stem Cell Research, Taipei (China); Lee, Chen-Hsen [NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Lee, Oscar K. [Taipei Veterans General Hospital, Department of Orthopedics, Taipei (China); National Yang-Ming University, Stem Cell Research Center, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China)

    2013-01-15

    {sup 131}I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133{sup +} cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133{sup +} cells and higher radioresistance. After {gamma}-irradiation of the cells, the CD133{sup +} population was enriched due to the higher apoptotic rate of CD133{sup -} cells. In vivo {sup 131}I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133{sup +} cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133{sup +} cells. (orig.)

  20. Low GILT expression is associated with poor patient survival in diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Hannah ePhipps-Yonas

    2013-12-01

    Full Text Available The MHC class II-restricted antigen processing pathway presents antigenic peptides acquired in the endocytic route for the activation of CD4+ T cells. Multiple cancers express MHC class II, which may influence the anti-tumor immune response and patient outcome. Low MHC class II expression is associated with poor survival in diffuse large B-cell lymphoma (DLBCL, the most common form of aggressive non-Hodgkin lymphoma. Therefore, we investigated whether gamma-interferon-inducible lysosomal thiol reductase (GILT, an upstream component of the MHC class II-restricted antigen processing pathway that is not regulated by the transcription factor class II transactivator, may be important in DLBCL biology. GILT reduces protein disulfide bonds in the endocytic compartment, exposing additional epitopes for MHC class II binding and facilitating antigen presentation. In each of four independent gene expression profiling cohorts with a total of 585 DLBCL patients, low GILT expression was significantly associated with poor overall survival. In contrast, low expression of a classical MHC class II gene, HLA-DRA, was associated with poor survival in one of four cohorts. The association of low GILT expression with poor survival was independent of established clinical and molecular prognostic factors, the International Prognostic Index and the cell of origin classification, respectively. Immunohistochemical analysis of GILT expression in 96 DLBCL cases demonstrated variation in GILT protein expression within tumor cells which correlated strongly with GILT mRNA expression. These studies identify a novel association between GILT expression and clinical outcome in lymphoma. Our findings underscore the role of antigen processing in DLBCL and suggest that molecules targeting this pathway warrant investigation as potential therapeutics.

  1. Prognostic factors for survival in metastatic renal cell carcinoma: update 2008.

    Science.gov (United States)

    Bukowski, Ronald M

    2009-05-15

    A variety of prognostic factor models to predict survival in patients with metastatic renal cell carcinoma have been developed. Diverse populations of patients with variable treatments have been used for these analyses. A variety of clinical, pathologic, and molecular factors have been studied, but current models use predominantly easily obtained clinical factors. These approaches are reviewed, and current approaches to further refine and develop these techniques are reviewed. (c) 2009 American Cancer Society.

  2. Rac1 selective activation improves retina ganglion cell survival and regeneration.

    Directory of Open Access Journals (Sweden)

    Erika Lorenzetto

    Full Text Available In adult mammals, after optic nerve injury, retinal ganglion cells (RGCs do not regenerate their axons and most of them die by apoptosis within a few days. Recently, several strategies that activate neuronal intracellular pathways were proposed to prevent such degenerative processes. The rho-related small GTPase Rac1 is part of a complex, still not fully understood, intracellular signaling network, mediating in neurons many effects, including axon growth and cell survival. However, its role in neuronal survival and regeneration in vivo has not yet been properly investigated. To address this point we intravitreally injected selective cell-penetrating Rac1 mutants after optic nerve crush and studied the effect on RGC survival and axonal regeneration. We injected two well-characterized L61 constitutively active Tat-Rac1 fusion protein mutants, in which a second F37A or Y40C mutation confers selectivity in downstream signaling pathways. Results showed that, 15 days after crush, both mutants were able to improve survival and to prevent dendrite degeneration, while the one harboring the F37A mutation also improved axonal regeneration. The treatment with F37A mutant for one month did not improve the axonal elongation respect to 15 days. Furthermore, we found an increase of Pak1 T212 phosphorylation and ERK1/2 expression in RGCs after F37A treatment, whereas ERK1/2 was more activated in glial cells after Y40C administration. Our data suggest that the selective activation of distinct Rac1-dependent pathways could represent a therapeutic strategy to counteract neuronal degenerative processes in the retina.

  3. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Constanzo, Jerfiz D; Tang, Ke-Jing; Rindhe, Smita; Melegari, Margherita; Liu, Hui; Tang, Ximing; Rodriguez-Canales, Jaime; Wistuba, Ignacio; Scaglioni, Pier Paolo

    2016-05-01

    The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Providing cell phone numbers and email addresses to Patients: the physician's perspective.

    Science.gov (United States)

    Peleg, Roni; Avdalimov, Angelika; Freud, Tamar

    2011-03-23

    The provision of cell phone numbers and email addresses enhances the accessibility of medical consultations, but can add to the burden of physicians' routine clinical practice and affect their free time. The objective was to assess the attitudes of physicians to providing their telephone number or email address to patients. Primary care physicians in the southern region of Israel completed a structured questionnaire that related to the study objective. The study population included 120 primary care physicians with a mean age of 41.2 ± 8.5, 88 of them women (73.3%). Physicians preferred to provide their cell phone number rather than their email address (P = 0.0007). They preferred to answer their cell phones only during the daytime and at predetermined times, but would answer email most hours of the day, including weekends and holidays (P = 0.001). More physicians (79.7%) would have preferred allotted time for email communication than allotted time for cell phone communication (50%). However, they felt that email communication was more likely to lead to miscommunication than telephone calls (P = 0.0001). There were no differences between male and female physicians on the provision of cell phone numbers or email addresses to patients. Older physicians were more prepared to provide cell phone numbers that younger ones (P = 0.039). The attitude of participating physicians was to provide their cell phone number or email address to some of their patients, but most of them preferred to give out their cell phone number.

  5. The influence of the number of cells scored on the sensitivity in the comet assay

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Soussaline, Françoise; Sallette, Jerome

    2012-01-01

    The impact on the sensitivity of the in vitro comet assay by increasing the number of cells scored has only been addressed in a few studies. The present study investigated whether the sensitivity of the assay could be improved by scoring more than 100 cells. Two cell lines and three different...... out by means of a fully automated scoring system and the results were analyzed by evaluating the % tail DNA of 100–700 randomly selected cells for each slide consisting of two gels. By increasing the number of cells scored, the coefficients of variance decreased, leading to an improved sensitivity...

  6. Saposin C promotes survival and prevents apoptosis via PI3K/Akt-dependent pathway in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Lee Tae-Jin

    2004-11-01

    Full Text Available Abstract Background In addition to androgens, growth factors are also implicated in the development and neoplastic growth of the prostate gland. Prosaposin is a potent neurotrophic molecule. Homozygous inactivation of prosaposin in mice has led to the development of a number of abnormalities in the male reproductive system, including atrophy of the prostate gland and inactivation of mitogen-activated protein kinase (MAPK and Akt in prostate epithelial cells. We have recently reported that prosaposin is expressed at a higher level by androgen-independent (AI prostate cancer cells as compared to androgen-sensitive prostate cancer cells or normal prostate epithelial and stromal cells. In addition, we have demonstrated that a synthetic peptide (prosaptide TX14A, derived from the trophic sequence of the saposin C domain of prosaposin, stimulated cell proliferation, migration and invasion and activated the MAPK signaling pathway in prostate cancer cells. The biological significances of saposin C and prosaposin in prostate cancer are not known. Results Here, we report that saposin C, in a cell type-specific and dose-dependent manner, acts as a survival factor, activates the Akt-signaling pathway, down-modulates caspase-3, -7, and -9 expression and/or activity, and decreases the cleaved nuclear substrate of caspase-3 in prostate cancer cells under serum-starvation stress. In addition, prosaptide TX14A, saposin C, or prosaposin decreased the growth-inhibitory effect, caspase-3/7 activity, and apoptotic cell death induced by etoposide. We also discovered that saposin C activates the p42/44 MAP kinase pathway in a pertussis toxin-sensitive and phosphatidylinositol 3-kinase (PI3K /Akt-dependent manner in prostate cancer cells. Our data also show that the anti-apoptotic activity of saposin C is at least partially mediated via PI3K/Akt signaling pathway. Conclusion We postulate that as a mitogenic, survival, and anti-apoptotic factor for prostate cancer cells

  7. Fibronectin peptides that bind PDGF-BB enhance survival of cells and tissue under stress

    Science.gov (United States)

    Lin, Fubao; Zhu, Jia; Tonnesen, Marcia G.; Taira, Breena R.; McClain, Steve A.; Singer, Adam J.; Clark, Richard A.F.

    2013-01-01

    Stressors after injury from a multitude of factors can lead to cell death. We have identified four fibronectin (FN) peptides, two from the first FN type III repeat (FNIII1), one from the 13th FN type III repeat (FNIII13), and one from FN variable region (IIICS), that when tethered to a surface acted as platelet-derived growth factor-BB (PDGF-BB) enhancers to promote cell survival. One of the FNIII1 peptides and its smallest (14mer) bioactive form (P12) were also active in solution. Specifically, P12 bound PDGF-BB (KD = 200nM), enhanced adult human dermal fibroblast (AHDF) survival under serum starvation, oxidative or endoplasmic reticulum (ER) stressors, and limited burn injury progression in a rat hot comb model. Furthermore, P12 inhibited ER stress-induced c-Jun N-terminal kinase (JNK) activation. Although many growth factors have been found to bind FN directly or indirectly, this is the first report to identify peptide sequences of growth factor-binding sites in FN. The finding of these novel peptides further delineated how the extracellular matrix protein FN can support cell survival. Since the peptide P12 is active in either soluble form or tethered to a substrate, it will have multifactorial uses as a bioactive in tissue engineering. PMID:24126844

  8. Tumor Cells Growth and Survival Time with the Ketogenic Diet in Animal Models: A Systematic Review.

    Science.gov (United States)

    Khodadadi, Soheila; Sobhani, Nafiseh; Mirshekar, Somaye; Ghiasvand, Reza; Pourmasoumi, Makan; Miraghajani, Maryam; Dehsoukhteh, Somayeh Shahraki

    2017-01-01

    Recently, interest in targeted cancer therapies via metabolic pathways has been renewed with the discovery that many tumors become dependent on glucose uptake during anaerobic glycolysis. Also the inability of ketone bodies metabolization due to various deficiencies in mitochondrial enzymes is the major metabolic changes discovered in malignant cells. Therefore, administration of a ketogenic diet (KD) which is based on high in fat and low in carbohydrates might inhibit tumor growth and provide a rationale for therapeutic strategies. So, we conducted this systematic review to assess the effects of KD on the tumor cells growth and survival time in animal studies. All databases were searched from inception to November 2015. We systematically searched the PubMed, Scopus, Google Scholars, Science Direct and Cochrane Library according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. To assess the quality of included studies we used SYRCLE's RoB tool. 268 articles were obtained from databases by primary search. Only 13 studies were eligible according to inclusion criteria. From included studies, 9 articles indicate that KD had a beneficial effect on tumor growth and survival time. Tumor types were included pancreatic, prostate, gastric, colon, brain, neuroblastoma and lung cancers. In conclusions, although studies in this field are rare and inconsistence, recent findings have demonstrated that KD can potentially inhibit the malignant cell growth and increase the survival time. Because of differences physiology between animals and humans, future studies in cancer patients treated with a KD are needed.

  9. Tumor cells growth and survival time with the ketogenic diet in animal models: A systematic review

    Directory of Open Access Journals (Sweden)

    Soheila Khodadadi

    2017-01-01

    Full Text Available Recently, interest in targeted cancer therapies via metabolic pathways has been renewed with the discovery that many tumors become dependent on glucose uptake during anaerobic glycolysis. Also the inability of ketone bodies metabolization due to various deficiencies in mitochondrial enzymes is the major metabolic changes discovered in malignant cells. Therefore, administration of a ketogenic diet (KD which is based on high in fat and low in carbohydrates might inhibit tumor growth and provide a rationale for therapeutic strategies. So, we conducted this systematic review to assess the effects of KD on the tumor cells growth and survival time in animal studies. All databases were searched from inception to November 2015. We systematically searched the PubMed, Scopus, Google Scholars, Science Direct and Cochrane Library according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. To assess the quality of included studies we used SYRCLE's RoB tool. 268 articles were obtained from databases by primary search. Only 13 studies were eligible according to inclusion criteria. From included studies, 9 articles indicate that KD had a beneficial effect on tumor growth and survival time. Tumor types were included pancreatic, prostate, gastric, colon, brain, neuroblastoma and lung cancers. In conclusions, although studies in this field are rare and inconsistence, recent findings have demonstrated that KD can potentially inhibit the malignant cell growth and increase the survival time. Because of differences physiology between animals and humans, future studies in cancer patients treated with a KD are needed.

  10. Squamous cell carcinoma of the pancreas: A systematic review and pooled survival analysis.

    Science.gov (United States)

    Ntanasis-Stathopoulos, Ioannis; Tsilimigras, Diamantis I; Georgiadou, Despoina; Kanavidis, Prodromos; Riccioni, Olga; Salla, Charitini; Psaltopoulou, Theodora; Sergentanis, Theodoros N

    2017-07-01

    The diagnosis and treatment of squamous cell carcinoma of the pancreas pose dilemmas in the clinical practice. The present study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eligible articles were sought in MEDLINE up to 30th April 2016. A pooled Cox regression analysis was performed to evaluate factors potentially associated with overall survival (OS) and relapse-free survival (RFS). Fifty-four cases of pure squamous cell pancreatic carcinomas were identified in total. The mean age was 61.9 years, and most patients were males (61.1%). The median OS was 7 months. Resectability (p = 0.003) and more recent publication year (p < 0.001) were associated with better OS, as was low/intermediate tumour grade (p = 0.032) with RFS. Despite its poor prognosis, survival rates of pancreatic squamous cell carcinoma seem improved during the recent years; resectability and low/intermediate grade emerged as favourable prognostic factors. Collaborative epidemiological studies are deemed necessary to further validate the results stemming from the published case reports of this rare entity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mucinous and Signet Ring Cell Differentiation Affect Patterns of Metastasis in Colorectal Carcinoma and Influence Survival.

    Science.gov (United States)

    Kermanshahi, Taher Reza; Magge, Deepa; Choudry, Haroon; Ramalingam, Leksmi; Zhu, Benjamin; Pingpank, James; Ahrendt, Steven; Holtzman, Matthew; Zeh, Herbert; Bartlett, David; Zureikat, Amer; Pai, Reetesh K

    2017-04-01

    Peritoneal metastasis in colorectal carcinoma is associated with a dismal prognosis; however, features that correlate with patterns of metastatic spread are not well characterized. We analyzed the clinicopathologic and molecular features of 166 patients with colorectal carcinomas stratified by metastases to the peritoneum or liver. Mucinous and signet ring cell differentiation were more frequently observed in colorectal carcinoma with peritoneal dissemination compared to colorectal carcinoma with liver metastasis (mucinous differentiation: 62% vs 23%, P metastasis was identified in patients with both synchronous and metachronous development of metastasis ( P metastasis were more frequently low-grade (90% vs 72%, P = .005) and associated with dirty necrosis (81% vs 56%, P = .001) compared with colorectal carcinomas with peritoneal dissemination. No significant differences were identified between colorectal carcinoma with peritoneal metastasis versus liver metastasis with respect to KRAS mutations, BRAF mutation, or high levels of microsatellite instability. Patients with tumors involving the peritoneum had a significantly worse overall survival in comparison to patients with liver metastasis lacking peritoneal involvement ( P = .02). When including only those patients with peritoneal metastasis, the presence of any mucinous or signet ring cell differentiation was associated with a significantly worse overall survival ( P = .006). Our findings indicate that mucinous and signet ring cell differentiation may be histologic features that are associated with an increased risk of peritoneal dissemination and poor overall survival in patients with peritoneal metastasis.

  12. Evaluation of red blood cell labelling methods based on a statistical model for red blood cell survival.

    Science.gov (United States)

    Korell, Julia; Coulter, Carolyn V; Duffull, Stephen B

    2011-12-21

    The aim of this work is to compare different labelling methods that are commonly used to estimate the lifespan of red blood cells (RBCs), e.g. in anaemia of renal failure, where the effect of treatment with erythropoietin depends on the lifespan of RBCs. A previously developed model for the survival time of RBCs that accounts for plausible physiological processes of RBC destruction was used to simulate ideal random and cohort labelling methods for RBCs, as well as the flaws associated with these methods (e.g. reuse of label and loss of the label from the surviving RBCs). Random labelling with radioactive chromium and cohort labelling using heavy nitrogen were considered. Blood sampling times were determined for RBC survival studies using both labelling methods by applying the theory of optimal design. It was assessed whether the underlying parameter values of the model are estimable from these studies, and the precision of the parameter estimates were calculated. In theory, parameter estimation would be possible for both types of ideal labelling methods without flaws. However, flaws associated with random labelling are significant and not all parameters controlling RBC survival in the model can be estimated with good precision. In contrast, cohort labelling shows good precision in the parameter estimates even in the presence of reuse and prolonged incorporation of the label. A model based analysis of RBC survival studies is recommended in future to account for limitations in methodology as well as likely causes of RBC destruction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion.

    Science.gov (United States)

    Cheng, Wei-Hung; Huang, Kuo-Yang; Huang, Po-Jung; Hsu, Jo-Hsuan; Fang, Yi-Kai; Chiu, Cheng-Hsun; Tang, Petrus

    2015-07-25

    Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. The findings in this

  14. The transcription factor Myt3 acts as a pro-survival factor in β-cells.

    Directory of Open Access Journals (Sweden)

    Bryan R Tennant

    Full Text Available We previously identified the transcription factor Myt3 as specifically expressed in pancreatic islets. Here, we sought to determine the expression and regulation of Myt3 in islets and to determine its significance in regulating islet function and survival.Myt3 expression was determined in embryonic pancreas and adult islets by qPCR and immunohistochemistry. ChIP-seq, ChIP-qPCR and luciferase assays were used to evaluate regulation of Myt3 expression. Suppression of Myt3 was used to evaluate gene expression, insulin secretion and apoptosis in islets.We show that Myt3 is the most abundant MYT family member in adult islets and that it is expressed in all the major endocrine cell types in the pancreas after E18.5. We demonstrate that Myt3 expression is directly regulated by Foxa2, Pdx1, and Neurod1, which are critical to normal β-cell development and function, and that Ngn3 induces Myt3 expression through alterations in the Myt3 promoter chromatin state. Further, we show that Myt3 expression is sensitive to both glucose and cytokine exposure. Of specific interest, suppressing Myt3 expression reduces insulin content and increases β-cell apoptosis, at least in part, due to reduced Pdx1, Mafa, Il-6, Bcl-xl, c-Iap2 and Igfr1 levels, while over-expression of Myt3 protects islets from cytokine induced apoptosis.We have identified Myt3 as a novel transcriptional regulator with a critical role in β-cell survival. These data are an important step in clarifying the regulatory networks responsible for β-cell survival, and point to Myt3 as a potential therapeutic target for improving functional β-cell mass.

  15. Preoperative Erythrocyte Sedimentation Rate Independently Predicts Overall Survival in Localized Renal Cell Carcinoma following Radical Nephrectomy

    Directory of Open Access Journals (Sweden)

    Brian W. Cross

    2012-01-01

    Full Text Available Objectives. To determine the relationship between preoperative erythrocyte sedimentation rate (ESR and overall survival in localized renal cell carcinoma (RCC following nephrectomy. Methods. 167 patients undergoing nephrectomy for localized RCC had ESR levels measured preoperatively. Receiver Operating Characteristics curves were used to determine Area Under the Curve and relative sensitivity and specificity of preoperative ESR in predicting overall survival. Cut-offs for low (0.0–20.0 mm/hr, intermediate (20.1–50.0 mm/hr, and high risk (>50.0 mm/hr groups were created. Kaplan-Meier analysis was conducted to assess the univariate impact of these ESR-based groups on overall survival. Univariate and multivariate Cox regression analysis was conducted to assess the potential of these groups to predict overall survival, adjusting for other patient and tumor characteristics. Results. Overall, 55.2% were low risk, while 27.0% and 17.8% were intermediate and high risk, respectively. Median (95% CI survival was 44.1 (42.6–45.5 months, 35.5 (32.3–38.8 months, and 32.1 (25.5–38.6 months, respectively. After controlling for other patient and tumor characteristics, intermediate and high risk groups experienced a 4.5-fold (HR: 4.509, 95% CI: 0.735–27.649 and 18.5-fold (HR: 18.531, 95% CI: 2.117–162.228 increased risk of overall mortality, respectively. Conclusion. Preoperative ESR values represent a robust predictor of overall survival following nephrectomy in localized RCC.

  16. Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts

    Directory of Open Access Journals (Sweden)

    Chae Min Kim

    2017-09-01

    Full Text Available Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2, ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05. ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05 in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.

  17. Evaluation of the effects of red blood cell distribution width on survival in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Mehmet Kos

    2016-06-01

    Full Text Available Aim of the study : Data are available indicating that red blood cell distribution width (RDW is higher in cancer patients compared to healthy individuals or benign events. In our study, we aimed to investigate the influence of different RDW levels on survival in lung cancer patients. Material and methods: Clinical and laboratory data from 146 patients with lung cancer and 40 healthy subjects were retrospectively studied. RDW was recorded before the application of any treatment. Patients were categorised according to four different RDW cut-off values (median RDW, RDW determined by ROC curve analysis, the upper limit at the automatic blood count device, and RDW cut of value which used in previous studies. Kaplan-Meier survival analysis was used to examine the effect of RDW on survival for each cut-off level. Results : The median age of patients was 56.5 years (range: 26–83 years. The difference in median RDW between patients and the control group was statistically significant (14.0 and 13.8, respectively, p = 0.04. There was no difference with regard to overall survival when patients with RDW ≥ 14.0 were compared to those with RDW < 14.0 (p = 0.70; however, overall survival was 3.0 months shorter in low values of its own group in each of the following cut-off values: ≥ 14.2 (p = 0.34, ≥ 14.5 (p = 0.25, ≥ 15 (p = 0.59, although no results were statistically significant. Discussion : We consider that the difference between low and high RDW values according to certain cut-off values may reflect the statistics of larger studies although there is a statistically negative correlation between RDW level and survival.

  18. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  19. ID helix-loop-helix proteins as determinants of cell survival in B-cell chronic lymphocytic leukemia cells in vitro.

    Science.gov (United States)

    Weiler, Sarah; Ademokun, Jolaolu A; Norton, John D

    2015-02-03

    Members of the inhibitor of DNA-binding (ID) family of helix-loop-helix proteins have been causally implicated in the pathogenesis of several types of B-cell lineage malignancy, either on the basis of mutation or by altered expression. B-cell chronic lymphocytic leukemia encompasses a heterogeneous group of disorders and is the commonest leukaemia type in the Western world. In this study, we have investigated the pathobiological functions of the ID2 and ID3 proteins in this disease with an emphasis on their role in regulating leukemic cell death/survival. Bioinformatics analysis of microarray gene expression data was used to investigate expression of ID2/ID3 in leukemic versus normal B cells, their association with clinical course of disease and molecular sub-type and to reconstruct a gene regulatory network using the 'maximum information coefficient' (MIC) for target gene inference. In vitro cultured primary leukemia cells, either in isolation or co-cultured with accessory vascular endothelial cells, were used to investigate ID2/ID3 protein expression by western blotting and to assess the cytotoxic response of different drugs (fludarabine, chlorambucil, ethacrynic acid) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. ID2/ID3 protein levels in primary leukemia cells and in MEC1 cells were manipulated by transduction with siRNA reagents. Datamining showed that the expression profiles of ID2 and ID3 are associated with distinct pathobiological features of disease and implicated both genes in regulating cell death/survival by targeting multiple non-overlapping sets of apoptosis effecter genes. Consistent with microarray data, the overall pattern of ID2/ID3 protein expression in relation to cell death/survival responses of primary leukemia cells was suggestive of a pro-survival function for both ID proteins. This was confirmed by siRNA knock-down experiments in MEC1 cells and in primary leukemia cells, but with variability in the dependence of

  20. Sunitinib-induced hypothyroidism predicts progression-free survival in metastatic renal cell carcinoma patients.

    Science.gov (United States)

    Buda-Nowak, Anna; Kucharz, Jakub; Dumnicka, Paulina; Kuzniewski, Marek; Herman, Roman Maria; Zygulska, Aneta L; Kusnierz-Cabala, Beata

    2017-04-01

    Sunitinib is a tyrosine kinase inhibitor (TKI) used in treatment of metastatic renal cell carcinoma (mRCC), gastrointestinal stromal tumors and pancreatic neuroendocrine tumors. One of the most common side effects related to sunitinib is hypothyroidism. Recent trials suggest correlation between the incidence of hypothyroidism and treatment outcome in patients treated with TKI. This study evaluates whether development of hypothyroidism is a predictive marker of progression-free survival (PFS) in patients with mRCC treated with sunitinib. Twenty-seven patients diagnosed with clear cell mRCC, after nephrectomy and in 'good' or 'intermediate' MSKCC risk prognostic group, were included in the study. All patients received sunitinib as a first-line treatment on a standard schedule (initial dose 50 mg/day, 4 weeks on, 2 weeks off). The thyroid-stimulating hormone serum levels were obtained at the baseline and every 12 weeks of treatment. In statistic analyses, we used Kaplan-Meier method for assessment of progression-free survival; for comparison of survival, we used log-rank test. In our study, the incidence of hypothyroidism was 44%. The patients who had developed hypothyroidism had better median PFS to patients with normal thyroid function 28,3 months [95% (CI) 20.4-36.2 months] versus 9.8 months (6.4-13.1 months). In survival analysis, we perceive that thyroid dysfunction is a predictive factor of a progression-free survival (PFS). In the unified group of patients, the development of hypothyroidism during treatment with sunitinib is a positive marker for PFS. During that treatment, thyroid function should be evaluated regularly.

  1. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    Science.gov (United States)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effect of growth phase and parental cell survival in river water on plasmid transfer between Escherichia coli strains.

    OpenAIRE

    Muela, A; Pocino, M; Arana, I; Justo, J I; Iriberri, J; Barcina, I

    1994-01-01

    We evaluated the transfer to and from Escherichia coli of endogenously isolated plasmid material from the River Butrón during the growth of three donor strains and two recipient strains as well as after the survival of these parental cells in river water. Transfer frequency varied greatly during the growth of donor cells, with minimum values in the exponential phase; frequency remained constant, however, during the growth of recipient strains. After survival in river water, donor cells lost t...

  3. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    Directory of Open Access Journals (Sweden)

    Jariya Umka Welbat

    2016-05-01

    Full Text Available Valproic acid (VPA is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU, respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ of the hippocampal dentate gyrus (DG. However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA.

  4. Overall survival after immunotherapy, tyrosine kinase inhibitors and surgery in treatment of metastatic renal cell cancer

    DEFF Research Database (Denmark)

    de Lichtenberg, Trine Honnens; Hermann, Gregers G.; Rorth, Mikael

    2014-01-01

    , stage, performance status and white cell blood count were related to poor OS. Using multivariate analyses to adjust for risk predictors the difference in OS disappeared. Median OS before and after introduction of TKIs was 16 months and 14 months, respectively (p = 0.189). Memorial Sloan Kettering Cancer......Abstract Objective. The aim of this study was to evaluate overall survival (OS) after treatment of metastatic renal cell carcinoma (mRCC) following the introduction of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors. Material and methods. One-hundred and forty...

  5. Fhit-deficient hematopoietic stem cells survive hydroquinone exposure carrying precancerous changes.

    Science.gov (United States)

    Ishii, Hideshi; Mimori, Koshi; Ishikawa, Kazuhiro; Okumura, Hiroshi; Pichiorri, Flavia; Druck, Teresa; Inoue, Hiroshi; Vecchione, Andrea; Saito, Toshiyuki; Mori, Masaki; Huebner, Kay

    2008-05-15

    The fragile FHIT gene is among the first targets of DNA damage in preneoplastic lesions, and recent studies have shown that Fhit protein is involved in surveillance of genome integrity and checkpoint response after genotoxin exposure. We now find that Fhit-deficient hematopoietic cells, exposed to the genotoxin hydroquinone, are resistant to the suppression of stem cell in vitro colony formation observed with wild-type (Wt) hematopoietic cells. In vivo-transplanted, hydroquinone-exposed, Fhit-deficient bone marrow cells also escaped the bone marrow suppression exhibited by Wt-transplanted bone marrow. Comparative immunohistochemical analyses of bone marrow transplants showed relative absence of Bax in Fhit-deficient bone marrow, suggesting insensitivity to apoptosis; assessment of DNA damage showed that occurrence of the oxidized base 8-hydroxyguanosine, a marker of DNA damage, was also reduced in Fhit-deficient bone marrow, as was production of intracellular reactive oxygen species. Treatment with the antioxidant N-acetyl-l-cysteine relieved hydroquinone-induced suppression of colony formation by Wt hematopoietic cells, suggesting that the decreased oxidative damage to Fhit-deficient cells, relative to Wt hematopoietic cells, accounts for the survival advantage of Fhit-deficient bone marrow. Homology-dependent recombination repair predominated in Fhit-deficient cells, although not error-free repair, as indicated by a higher incidence of 6-thioguanine-resistant colonies. Tissues of hydroquinone-exposed Fhit-deficient bone marrow-transplanted mice exhibited preneoplastic alterations, including accumulation of histone H2AX-positive DNA damage. The results indicate that reduced oxidative stress, coupled with efficient but not error-free DNA damage repair, allows unscheduled long-term survival of genotoxin-exposed Fhit-deficient hematopoietic stem cells carrying deleterious mutations.

  6. Sphingosine kinase-2 maintains viral latency and survival for KSHV-infected endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lu Dai

    Full Text Available Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2 generates sphingosine-1-phosphate (S1P, a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV, and this occurs in part through inhibition of canonical NF-κB activation. In contrast, pharmacologic inhibition of SphK2 has minimal impact for uninfected B-cell lines or circulating human B cells from healthy donors. Therefore, we designed additional studies employing primary human endothelial cells to explore mechanisms responsible for the selective death observed for KSHV-infected cells during SphK2 targeting. Using RNA interference and a clinically relevant pharmacologic approach, we have found that targeting SphK2 induces apoptosis selectively for KSHV-infected endothelial cells through induction of viral lytic gene expression. Moreover, this effect occurs through repression of KSHV-microRNAs regulating viral latency and signal transduction, including miR-K12-1 which targets IκBα to facilitate activation of NF-κB, and ectopic expression of miR-K12-1 restores NF-κB activation and viability for KSHV-infected endothelial cells during SphK2 inhibition. These data illuminate a novel survival mechanism and potential therapeutic target for KSHV-infected endothelial cells: SphK2-associated maintenance of viral latency.

  7. BCL6 Antagonizes NOTCH2 to Maintain Survival of Human Follicular Lymphoma Cells.

    Science.gov (United States)

    Valls, Ester; Lobry, Camille; Geng, Huimin; Wang, Ling; Cardenas, Mariano; Rivas, Martín; Cerchietti, Leandro; Oh, Philmo; Yang, Shao Ning; Oswald, Erin; Graham, Camille W; Jiang, Yanwen; Hatzi, Katerina; Agirre, Xabier; Perkey, Eric; Li, Zhuoning; Tam, Wayne; Bhatt, Kamala; Leonard, John P; Zweidler-McKay, Patrick A; Maillard, Ivan; Elemento, Olivier; Ci, Weimin; Aifantis, Iannis; Melnick, Ari

    2017-05-01

    Although the BCL6 transcriptional repressor is frequently expressed in human follicular lymphomas (FL), its biological role in this disease remains unknown. Herein, we comprehensively identify the set of gene promoters directly targeted by BCL6 in primary human FLs. We noted that BCL6 binds and represses NOTCH2 and NOTCH pathway genes. Moreover, BCL6 and NOTCH2 pathway gene expression is inversely correlated in FL. Notably, BCL6 upregulation is associated with repression of NOTCH2 and its target genes in primary human and murine germinal center (GC) cells. Repression of NOTCH2 is an essential function of BCL6 in FL and GC B cells because inducible expression of Notch2 abrogated GC formation in mice and killed FL cells. Indeed, BCL6-targeting compounds or gene silencing leads to the induction of NOTCH2 activity and compromises survival of FL cells, whereas NOTCH2 depletion or pathway antagonists rescue FL cells from such effects. Moreover, BCL6 inhibitors induced NOTCH2 expression and suppressed growth of human FL xenografts in vivo and primary human FL specimens ex vivo These studies suggest that established FLs are thus dependent on BCL6 through its suppression of NOTCH2Significance: We show that human FLs are dependent on BCL6, and primary human FLs can be killed using specific BCL6 inhibitors. Integrative genomics and functional studies of BCL6 in primary FL cells point toward a novel mechanism whereby BCL6 repression of NOTCH2 drives the survival and growth of FL cells as well as GC B cells, which are the FL cell of origin. Cancer Discov; 7(5); 506-21. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 443. ©2017 American Association for Cancer Research.

  8. VILIP-1 downregulation in non-small cell lung carcinomas: mechanisms and prediction of survival.

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2008-02-01

    Full Text Available VILIP-1, a member of the neuronal Ca++ sensor protein family, acts as a tumor suppressor gene in an experimental animal model by inhibiting cell proliferation, adhesion and invasiveness of squamous cell carcinoma cells. Western Blot analysis of human tumor cells showed that VILIP-1 expression was undetectable in several types of human tumor cells, including 11 out of 12 non-small cell lung carcinoma (NSCLC cell lines. The down-regulation of VILIP-1 was due to loss of VILIP-1 mRNA transcripts. Rearrangements, large gene deletions or mutations were not found. Hypermethylation of the VILIP-1 promoter played an important role in gene silencing. In most VILIP-1-silent cells the VILIP-1 promoter was methylated. In vitro methylation of the VILIP-1 promoter reduced its activity in a promoter-reporter assay. Transcriptional activity of endogenous VILIP-1 promoter was recovered by treatment with 5'-aza-2'-deoxycytidine (5'-Aza-dC. Trichostatin A (TSA, a histone deacetylase inhibitor, potently induced VILIP-1 expression, indicating that histone deacetylation is an additional mechanism of VILIP-1 silencing. TSA increased histone H3 and H4 acetylation in the region of the VILIP-1 promoter. Furthermore, statistical analysis of expression and promoter methylation (n = 150 primary NSCLC samples showed a significant relationship between promoter methylation and protein expression downregulation as well as between survival and decreased or absent VILIP-1 expression in lung cancer tissues (p<0.0001. VILIP-1 expression is silenced by promoter hypermethylation and histone deacetylation in aggressive NSCLC cell lines and primary tumors and its clinical evaluation could have a role as a predictor of short-term survival in lung cancer patients.

  9. MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1

    Energy Technology Data Exchange (ETDEWEB)

    Han, Na [Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014 (China); Zhao, Wenchao [Department of Physiology and Neurobiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001 (China); Zhang, Zhongmian [Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014 (China); Zheng, Pengyuan, E-mail: pengyuanzhengcn@163.com [No.3, Kangfuqian Street, Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052 (China); No.3, Kangfuqian Street, Medical Microecology and Clinical Nutrition Research Institute of Zhengzhou University, Zhengzhou, Henan, 450052 (China)

    2016-01-29

    Esophageal cancer (EC) is the sixth leading cause of death worldwide. Recent studies have highlighted the vital role of microRNAs (miRNAs) in EC development and diagnosis. In our study, qPCR analysis showed that miRNA-328 was expressed at significantly low levels in EC109 and EC9706 cells. The results also showed that overexpression of miR-328 by lentivirus-mediated gene transfer markedly inhibited cell proliferation and invasion, and enhanced apoptosis; whereas, inhibition of miR-328 significantly promoted cell proliferation and invasion, and suppressed apoptosis in EC109 and EC9706 cells. Dual-luciferase reporter assay confirmed that miR-328 directly targeted phospholipase C epsilon 1 (PLCE1) by binding to target sequences in the 3′-UTR. qPCR and Western blot analysis showed that the PLCE1 was overexpressed in EC109 and EC9706 cells. Additionally, we found that miR-328 overexpression decreased PLCE1 mRNA and protein levels, while miR-328 inhibition enhanced the PLCE1 expression. Further analysis showed that PLCE1 overexpression rescued the inhibitory effect of miR-328 on cell proliferation and invasion, and repressed the promotive effect of miR-328 on cell apoptosis. In conclusion, our results suggest that miR-328 suppresses the survival of EC cells by regulating PLCE1 expression, which might be a potential therapeutic method for EC. - Highlights: • PLCE1 was a target gene of miR-328. • MiR-328 overexpression decreased PLCE1 expression. • PLCE1 overexpression rescued the inhibitory effect of miR-328 on the survival of EC cells.

  10. Does polyandry really pay off? The effects of multiple mating and number of fathers on morphological traits and survival in clutches of nesting green turtles at Tortuguero

    Directory of Open Access Journals (Sweden)

    Alonzo Alfaro-Núñez

    2015-04-01

    Full Text Available Despite the long debate of whether or not multiple mating benefits the offspring, studies still show contradictory results. Multiple mating takes time and energy. Thus, if females fertilize their eggs with a single mating, why to mate more than once? We investigated and inferred paternal identity and number of sires in 12 clutches (240 hatchlings of green turtles (Chelonia mydas nests at Tortuguero, Costa Rica. Paternal alleles were inferred through comparison of maternal and hatchling genotypes, and indicated multiple paternity in at least 11 of the clutches (92%. The inferred average number of fathers was three (ranging from 1 to 5. Moreover, regression analyses were used to investigate for correlation of inferred clutch paternity with morphological traits of hatchlings fitness (emergence success, length, weight and crawling speed, the size of the mother, and an environmental variable (incubation temperature. We suggest and propose two different comparative approaches for evaluating morphological traits and clutch paternity, in order to infer greater offspring survival. First, clutches coded by the exact number of fathers and second by the exact paternal contribution (fathers who gives greater proportion of the offspring per nest. We found significant differences (P 0.05 for any of the traits. We conclude that multiple paternity does not provide any extra benefit in the morphological fitness traits or the survival of the offspring, when analysed following the proposed comparative statistical methods.

  11. Aggregative adherent strains of Corynebacterium pseudodiphtheriticum enter and survive within HEp-2 epithelial cells

    Directory of Open Access Journals (Sweden)

    Monica Cristina de Souza

    2012-06-01

    Full Text Available Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2 cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.

  12. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis.

    Science.gov (United States)

    Unsinger, Jacqueline; McGlynn, Margaret; Kasten, Kevin R; Hoekzema, Andrew S; Watanabe, Eizo; Muenzer, Jared T; McDonough, Jacquelyn S; Tschoep, Johannes; Ferguson, Thomas A; McDunn, Jonathan E; Morre, Michel; Hildeman, David A; Caldwell, Charles C; Hotchkiss, Richard S

    2010-04-01

    Sepsis is a highly lethal disorder characterized by widespread apoptosis-induced depletion of immune cells and the development of a profound immunosuppressive state. IL-7 is a potent antiapoptotic cytokine that enhances immune effector cell function and is essential for lymphocyte survival. In this study, recombinant human IL-7 (rhIL-7) efficacy and potential mechanisms of action were tested in a murine peritonitis model. Studies at two independent laboratories showed that rhIL-7 markedly improved host survival, blocked apoptosis of CD4 and CD8 T cells, restored IFN-gamma production, and improved immune effector cell recruitment to the infected site. Importantly, rhIL-7 also prevented a hallmark of sepsis (i.e., the loss of delayed-type hypersensitivity), which is an IFN-gamma- and T cell-dependent response. Mechanistically, rhIL-7 significantly increased the expression of the leukocyte adhesion markers LFA-1 and VLA-4, consistent with its ability to improve leukocyte function and trafficking to the infectious focus. rhIL-7 also increased the expression of CD8. The potent antiapoptotic effect of rhIL-7 was due to increased Bcl-2, as well as to a dramatic decrease in sepsis-induced PUMA, a heretofore unreported effect of IL-7. If additional animal studies support its efficacy in sepsis and if current clinical trials continue to confirm its safety in diverse settings, rhIL-7 should be strongly considered for clinical trials in sepsis.

  13. Ubiquitin is associated with the survival of ectopic stromal cells in endometriosis

    Directory of Open Access Journals (Sweden)

    Bebington Catherine R

    2004-09-01

    Full Text Available Abstract Background Endometriosis is a condition that affects women of reproductive age, where the glandular and/or stromal tissues from the eutopic endometrium implant in ectopic locations. It is well established that the survival of ectopic implants is due to lower levels of apoptosis, but no consensus exists as to which pathway/s this is mediated by. The ubiquitin protein shares a similar sequence homology to an anti-apoptotic protein called BAG-1 and is expressed in the normal endometrium. Currently, no studies have been conducted to determine ubiquitin expression and its possible anti-apoptotic effects in endometriosis. Methods Archived endometrial tissues from endometriosis patients and women undergoing laparoscopic diagnosis (controls from January 2000 to July 2003 at Westmead Hospital were examined, where 14 cases of endometriosis and 55 controls were included in the study. Results Both the ubiquitin protein and apoptosis were expressed in both glandular and stromal cells throughout the menstrual cycle of the eutopic endometrium, in which ubiquitin exhibited a cyclic expression, reaching a peak in late proliferative phase. In contrast, ubiquitin was predominantly expressed in cells of stromal origin in endometriosis, was no longer regulated by a cyclic pattern and was associated with an aberrant level of cell survival. Conclusions For the first time, this study shows that ubiquitin is expressed in endometriotic cells and may contribute to a reduced sensitivity of ectopic endometrial tissue to apoptosis. These findings also suggest that stromal cells contribute differentially to the development of ectopic endometrial tissue.

  14. Metformin use and survival after non-small cell lung cancer: A cohort study in the US Military health system.

    Science.gov (United States)

    Lin, Jie; Gill, Abegail; Zahm, Shelia H; Carter, Corey A; Shriver, Craig D; Nations, Joel A; Anderson, William F; McGlynn, Katherine A; Zhu, Kangmin

    2017-07-15

    Research suggests that metformin may be associated with improved survival in cancer patients with type II diabetes. This study assessed whether metformin use after non-small cell lung cancer (NSCLC) diagnosis is associated with overall survival among type II diabetic patients with NSCLC in the U.S. military health system (MHS). The study included 636 diabetic patients with histologically confirmed NSCLC diagnosed between 2002 and 2007, identified from the linked database from the Department of Defense's Central Cancer Registry (CCR) and the Military Health System Data Repository (MDR). Time-dependent multivariate Cox proportional hazards models were used to assess the association between metformin use and overall survival during follow-up. Among the 636 patients, 411 died during the follow-up. The median follow-up time was 14.6 months. Increased post-diagnosis cumulative use (per 1 year of use) conferred a significant reduction in mortality (adjusted hazard ratio (HR) = 0.76; 95% CI = 0.65-0.88). Further analysis by duration of use revealed that compared to non-users, the lowest risk reduction occurred among patients with the longest duration of use (i.e. use for more than 2 years) (HR = 0.19; 95% CI = 0.09-0.40). Finally, the reduced mortality was particularly observed only among patients who also used metformin before lung cancer diagnosis and among patients at early stage of diagnosis. Prolonged duration of metformin use in the study population was associated with improved survival, especially among early stage patients. Future research with a larger number of patients is warranted. © 2017 UICC.

  15. Galectin-3 up-regulation in hypoxic and nutrient deprived microenvironments promotes cell survival.

    Directory of Open Access Journals (Sweden)

    Rafael Yamashita Ikemori

    Full Text Available Galectin-3 (gal-3 is a β-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM. This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7-2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions.

  16. Survival of spray-dried and free-cells of potential probiotic Lactobacillus plantarum 564 in soft goat cheese.

    Science.gov (United States)

    Radulović, Zorica; Miočinović, Jelena; Mirković, Nemanja; Mirković, Milica; Paunović, Dušanka; Ivanović, Marina; Seratlić, Sanja

    2017-11-01

    A high viability of probiotics in food product, with a living cells threshold of 107 /cfu/g (colony-forming units/g) is a challenge to achieve in food production. Spray drying is an efficient and economic industrial method for probiotic bacterial preservation and its application in food products. In this study, the survival of free and spray-dried cells of potential probiotic strain Lactobacillus plantarum 564 after production and during 8 weeks of storage of soft acid coagulated goat cheese was investigated, as well as compositional and sensory quality of cheese. Total bacterial count of spray-dried Lb. plantarum 564 cells were maintained at the high level of 8.82 log/cfu/g in cheese after 8 weeks of storage, while free-cell number decreased to 6.9 log/cfu/g. However, the chemical composition, pH values and sensory evaluation between control cheese (C1 sample made with commercial starter culture) and treated cheese samples (C2 and C3, made with the same starter, with the addition of free and spray-dried Lb. plantarum 564 cells, respectively) did not significantly differ. High viability of potential probiotic bacteria and acceptable sensory properties indicate that spray-dried Lb. plantarum 564 strain could be successfully used in the production of soft acid coagulated goat cheeses. © 2017 Japanese Society of Animal Science.

  17. Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation.

    Directory of Open Access Journals (Sweden)

    Marc P Forrest

    Full Text Available Haploinsufficiency of TCF4 causes Pitt-Hopkins syndrome (PTHS: a severe form of mental retardation with phenotypic similarities to Angelman, Mowat-Wilson and Rett syndromes. Genome-wide association studies have also found that common variants in TCF4 are associated with an increased risk of schizophrenia. Although TCF4 is transcription factor, little is known about TCF4-regulated processes in the brain. In this study we used genome-wide expression profiling to determine the effects of acute TCF4 knockdown on gene expression in SH-SY5Y neuroblastoma cells. We identified 1204 gene expression changes (494 upregulated, 710 downregulated in TCF4 knockdown cells. Pathway and enrichment analysis on the differentially expressed genes in TCF4-knockdown cells identified an over-representation of genes involved in TGF-β signaling, epithelial to mesenchymal transition (EMT and apoptosis. Among the most significantly differentially expressed genes were the EMT regulators, SNAI2 and DEC1 and the proneural genes, NEUROG2 and ASCL1. Altered expression of several mental retardation genes such as UBE3A (Angelman Syndrome, ZEB2 (Mowat-Wilson Syndrome and MEF2C was also found in TCF4-depleted cells. These data suggest that TCF4 regulates a number of convergent signaling pathways involved in cell differentiation and survival in addition to a subset of clinically important mental retardation genes.

  18. Evaluation of beta-blockers and survival among hypertensive patients with renal cell carcinoma.

    Science.gov (United States)

    Parker, William P; Lohse, Christine M; Zaid, Harras B; Cheville, John C; Boorjian, Stephen A; Leibovich, Bradley C; Thompson, R Houston

    2017-01-01

    Beta-blocker use is associated with improved survival for multiple nonurologic malignancies. Our objective was to evaluate the association between beta-blocker use and survival among surgically managed hypertensive patients with clear-cell renal cell carcinoma (ccRCC). Hypertensive patients with ccRCC treated with either radical or partial nephrectomy between 2000 and 2010 were identified from our Nephrectomy Registry. Beta-blocker use within 90 days before surgery was identified. The associations between beta-blocker use and risk of disease progression, death from renal cell carcinoma (RCC), and all-cause mortality were assessed using Cox proportional hazards regression models. In total, 913 hypertensive patients were identified who underwent either partial or radical nephrectomy for ccRCC. Of these, 104 (11%) had documented beta-blocker use within 90 days before surgery. At last follow-up (median 8.2y among survivors), 258 patients showed progression (median 1.6y following surgery), and 369 patients had died (median 4.1y following surgery), including 138 who died of RCC. After adjusting for PROG (progression-free survival) and SSIGN (cancer-specific survival) scores, beta-blocker use was not significantly associated with the risk of disease progression (hazard ratio [HR] = 0.94; 95% CI: 0.61-1.47; P = 0.80) or the risk of death from RCC (HR = 0.74; 95% CI: 0.38-1.41; P = 0.35). Similarly, on multivariable analysis adjusting for clinicopathologic features, there was not a significant association between beta-blocker use and the risk of all-cause mortality (HR = 0.83; 95% CI: 0.59-1.16; P = 0.27). Beta-blocker use for hypertension within 90 days before surgery was not associated with the risk of progression, death from RCC, or death from any cause. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Blocking LINGO-1 function promotes retinal ganglion cell survival following ocular hypertension and optic nerve transection.

    Science.gov (United States)

    Fu, Qing-Ling; Hu, Bing; Wu, Wutian; Pepinsky, R Blake; Mi, Sha; So, Kwok-Fai

    2008-03-01

    LINGO-1 is a functional member of the Nogo66 receptor (NgR1)/p75 and NgR1/TROY signaling complexes that prevent axonal regeneration through RhoA in the central nervous system. LINGO-1 also promotes cell death after neuronal injury and spinal cord injury. The authors sought to examine whether blocking LINGO-1 function with LINGO-1 antagonists promotes retinal ganglion cell (RGC) survival after ocular hypertension and optic nerve transection. An experimental ocular hypertension model was induced in adult rats using an argon laser to photocoagulate the episcleral and limbal veins. LINGO-1 expression in the retinas was investigated using immunohistochemistry and Western blotting. Soluble LINGO-1 protein (LINGO-1-Fc) and anti-LINGO-1 mAb 1A7 were injected into the vitreous body to examine their effects on RGC survival after ocular hypertension and optic nerve transection. Signal transduction pathways mediating neuroprotective LINGO-1-Fc effects were characterized using Western blotting and specific kinase inhibitors. LINGO-1 was expressed in RGCs and up-regulated after intraocular pressure elevation. Blocking LINGO-1 function with LINGO-1 antagonists, LINGO-1-Fc and 1A7 significantly reduced RGC loss 2 and 4 weeks after ocular hypertension and also promoted RGC survival after optic nerve transection. LINGO-1-Fc treatment blocked the RhoA, JNK pathway and promoted Akt activation. LINGO-1-Fc induced Akt phosphorylation, and the survival effect of LINGO-1 antagonists was abolished by Akt phosphorylation inhibitor. The authors demonstrated that blocking LINGO-1 function with LINGO-1 antagonists rescues RGCs from cell death after ocular hypertension and optic nerve transection. They also delineated the RhoA and PI-3K/Akt pathways as the predominant mediator of LINGO-1-Fc neuroprotection in this paradigm of RGC death.

  20. Expression of the SNARE protein SNAP-23 is essential for cell survival.

    Science.gov (United States)

    Kaul, Sunil; Mittal, Sharad K; Feigenbaum, Lionel; Kruhlak, Michael J; Roche, Paul A

    2015-01-01

    Members of the SNARE-family of proteins are known to be key regulators of the membrane-membrane fusion events required for intracellular membrane traffic. The ubiquitously expressed SNARE protein SNAP-23 regulates a wide variety of exocytosis events and is essential for mouse development. Germline deletion of SNAP-23 results in early embryonic lethality in mice, and for this reason we now describe mice and cell lines in which SNAP-23 can be conditionally-deleted using Cre-lox technology. Deletion of SNAP-23 in CD19-Cre expressing mice prevents B lymphocyte development and deletion of SNAP-23 using a variety of T lymphocyte-specific Cre mice prevents T lymphocyte development. Acute depletion of SNAP-23 in mouse fibroblasts leads to rapid apoptotic cell death. These data highlight the importance of SNAP-23 for cell survival and describe a mouse in which specific cell types can be eliminated by expression of tissue-specific Cre-recombinase.

  1. Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenasee

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, M.P. (Rush Medical College, Chicago, IL); Wald, N.; Diloy-Puray, M.

    1980-03-01

    X radiation of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells causes distinct shortening of their survival time. This is accompanied by significant lowering of reduced glutathione content and is not observed in similarly prepared and treated normal cells. The damage is most likely related to irradiation-induced formation of activated oxygen products and to their subsequent effects on the cells. Neither methemoglobin increases nor Heinz body formation were observed, suggesting that hemolysis occurred prior to these changes. The study provides a model for examining the effects of irradiation and activated oxygen on red cells and suggests that patients with G6PD deficiency who receive irradiation could develop severe hemolysis in certain clinical settings.

  2. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    Science.gov (United States)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  3. Comparison of Total Tumor Volume, Size and Number of Colorectal Liver Metastases in Prediction of Survival in Patients after Liver Resection.