WorldWideScience

Sample records for survivin cyclin d1

  1. Cyclin D1 expression in prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Tucci, S. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Muglia, V.F. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna (Centro de Ciência da Imagem), Ribeirão Preto, SP, Brasil, Departamento de Medicina Interna (Centro de Ciência da Imagem), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Reis, R.B. Dos [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Divisão de Urologia, Ribeirão Preto, SP, Brasil, Divisão de Urologia, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, G.E.B. [Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia, Ribeirão Preto, SP, Brasil, Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-05-09

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness.

  2. Cyclin D1 expression in prostate carcinoma

    International Nuclear Information System (INIS)

    Pereira, R.A.; Ravinal, R.C.; Costa, R.S.; Lima, M.S.; Tucci, S.; Muglia, V.F.; Reis, R.B. Dos; Silva, G.E.B.

    2014-01-01

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness

  3. Cyclin d1 expression in odontogenic cysts.

    Science.gov (United States)

    Taghavi, Nasim; Modabbernia, Shirin; Akbarzadeh, Alireza; Sajjadi, Samad

    2013-01-01

    In the present study expression of cyclin D1 in the epithelial lining of odontogenic keratocyst, radicular cyst, dentigerous cyst and glandular odontogenic cyst was investigated to compare proliferative activity in these lesions. Immunohistochemical staining of cyclin D1 on formalin-fixed, paraffin-embedded tissue sections of odontogenic keratocysts (n=23), dentigerous cysts (n=20), radicular cysts (n=20) and glandular odontogenic cysts (n=5) was performed by standard EnVision method. Then, slides were studied to evaluate the following parameters in epithelial lining of cysts: expression, expression pattern, staining intensity and localization of expression. The data analysis showed statistically significant difference in cyclin D1 expression in studied groups (p keratocysts, but difference was not statistically significant among groups respectively (p=0.204, 0.469). Considering expression localization, cyclin D1 positive cells in odontogenic keratocysts and dentigerous cysts were frequently confined in parabasal layer, different from radicular cysts and glandular odontogenic cysts. The difference was statistically significant (p keratocyst and the entire cystic epithelium of glandular odontogenic cysts comparing to dentigerous cysts and radicular cysts, implying the possible role of G1-S cell cycle phase disturbances in the aggressiveness of odontogenic keratocyst and glandular odontogenic cyst.

  4. Cyclin K and cyclin D1b are oncogenic in myeloma cells

    Directory of Open Access Journals (Sweden)

    Renoir Jack-Michel

    2010-05-01

    Full Text Available Abstract Background Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM and always associated with mantle cell lymphoma (MCL. CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. Results To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. Conclusions Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.

  5. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism.

    Science.gov (United States)

    Fu, Maofu; Wang, Chenguang; Rao, Mahadev; Wu, Xiaofang; Bouras, Toula; Zhang, Xueping; Li, Zhiping; Jiao, Xuanmao; Yang, Jianguo; Li, Anping; Perkins, Neil D; Thimmapaya, Bayar; Kung, Andrew L; Munoz, Alberto; Giordano, Antonio; Lisanti, Michael P; Pestell, Richard G

    2005-08-19

    Cyclin D1 encodes a regulatory subunit, which with its cyclin-dependent kinase (Cdk)-binding partner forms a holoenzyme that phosphorylates and inactivates the retinoblastoma protein. In addition to its Cdk binding-dependent functions, cyclin D1 regulates cellular differentiation in part by modifying several transcription factors and nuclear receptors. The molecular mechanism through which cyclin D1 regulates the function of transcription factors involved in cellular differentiation remains to be clarified. The histone acetyltransferase protein p300 is a co-integrator required for regulation of multiple transcription factors. Here we show that cyclin D1 physically interacts with p300 and represses p300 transactivation. We demonstrated further that the interaction of the two proteins occurs at the peroxisome proliferator-activated receptor gamma-responsive element of the lipoprotein lipase promoter in the context of the local chromatin structure. We have mapped the domains in p300 and cyclin D1 involved in this interaction. The bromo domain and cysteine- and histidine-rich domains of p300 were required for repression by cyclin D1. Cyclin D1 repression of p300 was independent of the Cdk- and retinoblastoma protein-binding domains of cyclin D1. Cyclin D1 inhibits histone acetyltransferase activity of p300 in vitro. Microarray analysis identified a signature of genes repressed by cyclin D1 and induced by p300 that promotes cellular differentiation and induces cell cycle arrest. Together, our results suggest that cyclin D1 plays an important role in cellular proliferation and differentiation through regulation of p300.

  6. Cyclin D1, Id1 and EMT in breast cancer

    International Nuclear Information System (INIS)

    Tobin, Nicholas P; Sims, Andrew H; Lundgren, Katja L; Lehn, Sophie; Landberg, Göran

    2011-01-01

    Cyclin D1 is a well-characterised cell cycle regulator with established oncogenic capabilities. Despite these properties, studies report contrasting links to tumour aggressiveness. It has previously been shown that silencing cyclin D1 increases the migratory capacity of MDA-MB-231 breast cancer cells with concomitant increase in 'inhibitor of differentiation 1' (ID1) gene expression. Id1 is known to be associated with more invasive features of cancer and with the epithelial-mesenchymal transition (EMT). Here, we sought to determine if the increase in cell motility following cyclin D1 silencing was mediated by Id1 and enhanced EMT-features. To further substantiate these findings we aimed to delineate the link between CCND1, ID1 and EMT, as well as clinical properties in primary breast cancer. Protein and gene expression of ID1, CCND1 and EMT markers were determined in MDA-MB-231 and ZR75 cells by western blot and qPCR. Cell migration and promoter occupancy were monitored by transwell and ChIP assays, respectively. Gene expression was analysed from publicly available datasets. The increase in cell migration following cyclin D1 silencing in MDA-MB-231 cells was abolished by Id1 siRNA treatment and we observed cyclin D1 occupancy of the Id1 promoter region. Moreover, ID1 and SNAI2 gene expression was increased following cyclin D1 knock-down, an effect reversed with Id1 siRNA treatment. Similar migratory and SNAI2 increases were noted for the ER-positive ZR75-1 cell line, but in an Id1-independent manner. In a meta-analysis of 1107 breast cancer samples, CCND1 low /ID1 high tumours displayed increased expression of EMT markers and were associated with reduced recurrence free survival. Finally, a greater percentage of CCND1 low /ID1 high tumours were found in the EMT-like 'claudin-low' subtype of breast cancer than in other subtypes. These results indicate that increased migration of MDA-MB-231 cells following cyclin D1 silencing can be mediated by Id

  7. Speeding through cell cycle roadblocks: Nuclear cyclin D1-dependent kinase and neoplastic transformation

    Directory of Open Access Journals (Sweden)

    Diehl J Alan

    2008-09-01

    Full Text Available Abstract Mitogenic induction of cyclin D1, the allosteric regulator of CDK4/6, is a key regulatory event contributing to G1 phase progression. Following the G1/S transition, cyclin D1 activation is antagonized by GSK3β-dependent threonine-286 (Thr-286 phosphorylation, triggering nuclear export and subsequent cytoplasmic degradation mediated by the SCFFbx4-αBcrystallin E3 ubiquitin ligase. Although cyclin D1 overexpression occurs in numerous malignancies, overexpression of cyclin D1 alone is insufficient to drive transformation. In contrast, cyclin D1 mutants refractory to phosphorylation-dependent nuclear export and degradation are acutely transforming. This raises the question of whether overexpression of cyclin D1 is a significant contributor to tumorigenesis or an effect of neoplastic transformation. Significantly, recent work strongly supports a model wherein nuclear accumulation of cyclin D1-dependent kinase during S-phase is a critical event with regard to transformation. The identification of mutations within SCFFbx4-αBcrystallin ligase in primary tumors provides mechanistic insight into cyclin D1 accumulation in human cancer. Furthermore, analysis of mouse models expressing cyclin D1 mutants refractory to degradation indicate that nuclear cyclin D1/CDK4 kinase triggers DNA re-replication and genomic instability. Collectively, these new findings provide a mechanism whereby aberrations in post-translational regulation of cyclin D1 establish a cellular environment conducive to mutations that favor neoplastic growth.

  8. Relationship between cyclin D1 expression and poor radioresponse of murine carcinomas

    International Nuclear Information System (INIS)

    Milas, Luka; Akimoto, Tetsuo; Hunter, Nancy R.; Mason, Kathyrn A.; Buchmiller, Lara; Yamakawa, Michitaka; Muramatsu, Hiroyuki; Ang, K. Kian

    2002-01-01

    Purpose: We recently reported that overexpression of epidermal growth factor receptor (EGFR) positively correlated with radioresistance of murine carcinomas. Because cyclin D1 is a downstream sensor of EGFR activation, the present study investigated whether a relationship exists between the extent of cyclin D1 expression and in vivo radiocurability of murine tumors. We further investigated the influence of radiation on cyclin D1 expression and the expression of p27, an inhibitor of the cyclin D1 downstream pathway, as well as the relationship of these molecular determinants to cell proliferation and induced apoptosis in tumors exposed to radiation. Methods and Materials: Cyclin D1 expression was assayed in nine carcinomas syngeneic to C3Hf/Kam mice using Western blot analysis. These tumors greatly differed in their radioresponse as assessed by TCD 50 . The expression of cyclin D1 and p27 proteins was determined by Western blotting. Cell proliferative activity in tumors was determined by proliferating cell nuclear antigen (PCNA) immunochemistry. The effect of irradiation on the expression of cyclin D1 or p27 proteins and on PCNA positivity was determined in the radiosensitive OCa-I and in the radioresistant SCC-VII tumors. Results: Cyclin D1 expression varied among tumors by 40-fold, and its magnitude positively correlated with poorer tumor radioresponse (higher TCD 50 values). The level of cyclin D1 expression paralleled that of EGFR. A 15-Gy dose reduced constitutive expression of cyclin D1 in the radiosensitive OCa-I tumors, but had no influence on expression of cyclin D1 in the radioresistant SCC-VII tumors. In contrast, 15 Gy increased the expression of p27 in radiosensitive tumors and reduced it in radioresistant tumors. Radiation induced no significant apoptosis or change in the percentage of PCNA-positive (proliferating) cells in SCC-VII tumors with high cyclin D1 levels, but it induced significant apoptosis and a decrease in the percentage of proliferating

  9. Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models

    International Nuclear Information System (INIS)

    Sutherland, Robert L; Musgrove, Elizabeth A

    2002-01-01

    Cyclin D1 is one of the most commonly overexpressed oncogenes in breast cancer, with 45–50% of primary ductal carcinomas overexpressing this oncoprotein. Targeted deletion of the gene encoding cyclin D1 demonstrates an essential role in normal mammary gland development while transgenic studies provide evidence that cyclin D1 is a weak oncogene in mammary epithelium. In a recent exciting development, Yu et al. demonstrate that cyclin D1-deficient mice are resistant to mammary carcinomas induced by c-neu and v-Ha-ras, but not those induced by c-myc or Wnt-1. These findings define a pivotal role for cyclin D1 in a subset of mammary cancers in mice and imply a functional role for cyclin D1 overexpression in human breast cancer

  10. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    International Nuclear Information System (INIS)

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-01-01

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16 INK4a , a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis

  11. Mantle cell lymphoma pathogenesis: another turn of the screw to cyclin D1 overexpression

    OpenAIRE

    Albero Gallego, Robert

    2017-01-01

    [eng] Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm derived from mature B cells characterized by the presence of the t(11;14)(q13;q32) translocation that leads to the overexpression of Cyclin D1. Cyclin D1 plays a well-established role in G1/S progression, although other functions including transcription or DNA damage response (DDR) can be regulated by this cyclin. Therefore, the main goal of this thesis is the characterization of the cyclin D1 non-canonical function in MCL a...

  12. Mantle cell lymphoma pathogenesis: another turn of the screw to cyclin D1 overexpression

    OpenAIRE

    Albero Gallego, Robert

    2017-01-01

    Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm derived from mature B cells characterized by the presence of the t(11;14)(q13;q32) translocation that leads to the overexpression of Cyclin D1. Cyclin D1 plays a well-established role in G1/S progression, although other functions including transcription or DNA damage response (DDR) can be regulated by this cyclin. Therefore, the main goal of this thesis is the characterization of the cyclin D1 non-canonical function in MCL and lymp...

  13. Immunohistochemical comparison of cyclin D1 and P16 in odontogenic keratocyst and unicystic ameloblastoma

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Razavi

    2013-01-01

    Conclusion: Cyclin D1 did show a higher staining intensity in UAs compared to the keratocysts, although the expression of P16 was similar in the studied groups. The invasive growth of OKC might be related to the state of expression of cyclin D1 and P16 in the epithelium of this cyst.

  14. Galectin-3 and cyclin D1 expression in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gołecki Marcin

    2011-10-01

    Full Text Available Abstract Introduction Lung cancer is a major cause of mortality and morbidity worldwide. Galectin-3 is multifunctional protein, which is involved in regulation of cell growth, cell adhesion, cell proliferation, angiogenesis and apoptosis. Cyclin D1 together with other cyclin plays an important role in cell cycle control. Cyclin D1 regulates the G1-to-S phase transition. The aim of this study was the evaluation of correlations between clinicopathological findings and cyclin D1 and galectin-3 expression in non-small cell lung cancer (NSCLC. We wanted also to analyze the prognostic value of cyclin D1 and galectin-3 expression. Moreover we tried to evaluate the correlations between galectin-3 and cyclin D1 expression in tumor tissue. Materials and methods We used the immunochemistry method to investigate the expression of galectin-3 and cyclin D1 in the paraffin-embedded tumor tissue of 47 patients (32 men and 15 women; mean age 59.34 ± 8.90. years. We used monoclonal antibodies to cyclin D1 (NCL-L-cyclin D1-GM clone P2D11F11 NOVO CASTRA and to galectin-3 (mouse monoclonal antibody NCL-GAL3 NOVO CASTRA. Results Galectin-3 expression was positive in 18 cases (38.29% and cyclin D1 in 39 (82.97%. We showed only weak trend, that galectin-3 expression was lower in patients without lymph node involvement (p = 0.07 and cyclin D1 expression was higher in this group (p = 0.080. We didn't reveal differences in cyclin D1 and galectin-3 expression in SCC and adenocarcinoma patients. We didn't demonstrated also differences in galectin-3 and cyclin D1 expression depending on disease stage. Moreover we analyzed the prognostic value of cyclin D1 expression and galectin-3 in all examinated patients and separately in SCC and in adenocarcinoma and in all stages, but we didn't find any statistical differences. We demonstrated that in galectin-3 positive tumors cyclin D1 expression was higher (96.55% vs 61.11%, Chi2 Yatesa 7.53, p = 0.0061 and we revealed negative

  15. MeCP2 Expression and Promoter Methylation of Cyclin D1 Gene Are Associated with Cyclin D1 Expression in Developing Rat Epididymal Duct

    International Nuclear Information System (INIS)

    Darwanto, Agus; Kitazawa, Riko; Mori, Kiyoshi; Kondo, Takeshi; Kitazawa, Sohei

    2008-01-01

    Hypermethylation-dependent silencing of the gene is achieved by recruiting methyl-CpG binding proteins (MeCPs). Among the MeCPs, MeCP2 is the most abundantly and ubiquitously expressed in various types of cells. We first screened the distribution and expression pattern of MeCP2 in adult and developing rat tissues and found strong MeCP2 expression, albeit rather ubiquitously among normal tissues, in ganglion cells and intestinal epithelium in the small intestine, in Purkinje cells and neurons in the brain, in spermatogonia and in epithelial cells in the epididymal duct of the testis. We then assessed the expression and the methylation pattern of the promoter region of cyclin D1 by immunohistochemistry and sodium bisulfite mapping, and found that cyclin D1 expression in the epididymal duct decreased rapidly during rat development: strong in newborn rats and very weak or almost negative in 7-day-old rats. Mirroring the decrease of cyclin D1 expression, methylated cytosine at both CpG and non-CpG loci in the cyclin D1 promoter was frequently observed in the epididymal duct of 7-day-old rats but not in that of newborn rats. Interestingly, MeCP2 expression also increased concomitant with the increase of methylation. Cyclin D1 expression in the epididymal duct may be efficiently regulated by the epigenetic mechanism of the cooperative increase of MeCP2 expression and promoter methylation

  16. Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements.

    Science.gov (United States)

    Liu, Shu; Bolger, Joshua K; Kirkland, Lindsay O; Premnath, Padmavathy N; McInnes, Campbell

    2010-12-17

    An alternative strategy for inhibition of the cyclin dependent kinases (CDKs) in antitumor drug discovery is afforded through the substrate recruitment site on the cyclin positive regulatory subunit. Critical CDK substrates such as the Rb and E2F families must undergo cyclin groove binding before phosphorylation, and hence inhibitors of this interaction also block substrate specific kinase activity. This approach offers the potential to generate highly selective and cell cycle specific CDK inhibitors and to reduce the inhibition of transcription mediated through CDK7 and 9, commonly observed with ATP competitive compounds. While highly potent peptide and small molecule inhibitors of CDK2/cyclin A, E substrate recruitment have been reported, little information has been generated on the determinants of inhibitor binding to the cyclin groove of the CDK4/cyclin D1 complex. CDK4/cyclin D is a validated anticancer drug target and continues to be widely pursued in the development of new therapeutics based on cell cycle blockade. We have therefore investigated the structural basis for peptide binding to its cyclin groove and have examined the features contributing to potency and selectivity of inhibitors. Peptidic inhibitors of CDK4/cyclin D of pRb phosphorylation have been synthesized, and their complexes with CDK4/cyclin D1 crystal structures have been generated. Based on available structural information, comparisons of the cyclin grooves of cyclin A2 and D1 are presented and provide insights into the determinants for peptide binding and the basis for differential binding and inhibition. In addition, a complex structure has been generated in order to model the interactions of the CDKI, p27(KIP)¹, with cyclin D1. This information has been used to shed light onto the endogenous inhibition of CDK4 and also to identify unique aspects of cyclin D1 that can be exploited in the design of cyclin groove based CDK inhibitors. Peptidic and nonpeptidic compounds have been

  17. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela B Ortiz

    Full Text Available The oncogenic capacity of cyclin D1 has long been established in breast cancer. CCND1 amplification has been identified in a subset of patients with poor prognosis, but there are conflicting data regarding the predictive value of cyclin D1 protein overexpression. This study was designed to analyze the expression of cyclin D1 and its correlation with CCND1 amplification and their prognostic implications in invasive breast cancer. By using the tissue microarray technique, we performed an immunohistochemical study of ER, PR, HER2, p53, cyclin D1, Ki67 and p16 in 179 invasive breast carcinoma cases. The FISH method was performed to detect HER2/Neu and CCND1 amplification. High cyclin D1 expression was identified in 94/179 (52% of invasive breast cancers. Cyclin D1 overexpression and CCND1 amplification were significantly associated (p = 0.010. Overexpression of cyclin D1 correlated with ER expression, PR expression and Luminal subtypes (p<0.001, with a favorable impact on overall survival in the whole series. However, in the Luminal A group, high expression of cyclin D1 correlated with shorter disease-free survival, suggesting that the prognostic role of cyclin D1 depends on the molecular subtype. CCND1 gene amplification was detected in 17 cases (9% and correlated significantly with high tumor grade (p = 0.038, high Ki-67 protein expression (p = 0.002, and the Luminal B subtype (p = 0.002. Patients with tumors with high amplification of CCND1 had an increased risk of recurrence (HR = 2.5; 95% CI, 1.2-4.9, p = 0.01. These findings suggest that CCND1 amplification could be useful for predicting recurrence in invasive breast cancer.

  18. The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0297 TITLE: The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma PRINCIPAL INVESTIGATOR: Vu Ngo...AND SUBTITLE The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma 5a. CONTRACT NUMBER The Role of Cyclin D1 in the Chemoresistance of...Mantle Cell Lymphoma 5b. GRANT NUMBER GRANT1173 9905 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Vu Ngo 5e. TASK NUMBER E

  19. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  20. A novel role for the cell cycle regulatory complex cyclin D1-CDK4 in gluconeogenesis

    OpenAIRE

    Hosooka, Tetsuya; Ogawa, Wataru

    2016-01-01

    Dysregulation of gluconeogenesis is a key pathological feature of type 2 diabetes. However, the molecular mechanisms underlying the regulation of gluconeogenesis remain unclear. Bhalla et?al. recently reported that cyclin D1 suppresses hepatic gluconeogenesis through CDK4?dependent phosphorylation of PGC1alpha and consequent inhibition of its activity. The cyclin D1?CDK4 might thus serve as an important link between the cell cycle and control of energy metabolism through modulation of PGC1alp...

  1. Cyclin D1 Expression and Its Correlation with Histopathological Differentiation in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Swati Saawarn

    2012-01-01

    Full Text Available Background. Cyclin D1 regulates the G1 to S transition of cell cycle. Its deregulation or overexpression may lead to disturbance in the normal cell cycle control and tumour formation. Overexpression of cyclin D1 has been reported in various tumors of diverse histogenesis. This case control retrospective study was carried out to study the immunohistochemical reactivity and expression of cyclin D1 and its association with site, clinical staging, and histopathological differentiation of oral squamous cell carcinoma (OSCC. Methods. Forty formalin-fixed paraffin-embedded tissue blocks of biopsy specimens of oral squamous cell carcinoma were immunohistochemically evaluated for expression of cyclin D1. Results. Cyclin D1 expression was seen in 45% cases of OSCC. It did not correlate with site and clinical staging. Highest expression was seen in well-differentiated, followed by moderately differentiated, and poorly differentiated squamous cell carcinomas, with a statistically significant correlation. Conclusion. Cyclin D1 expression significantly increases with increase in differentiation.

  2. Cyclin D1 and Ewing's sarcoma/PNET: A microarray analysis.

    Science.gov (United States)

    Fagone, Paolo; Nicoletti, Ferdinando; Salvatorelli, Lucia; Musumeci, Giuseppe; Magro, Gaetano

    2015-10-01

    Recent immunohistochemical analyses have showed that cyclin D1 is expressed in soft tissue Ewing's sarcoma/peripheral neuroectodermal tumor (PNET) of childhood and adolescents, while it is undetectable in both embryonal and alveolar rhabdomyosarcoma. In the present paper, microarray analysis provided evidence of a significant upregulation of cyclin D1 in Ewing's sarcoma as compared to normal tissues. In addition, we confirmed our previous findings of a significant over-expression of cyclin D1 in Ewing sarcoma as compared to rhabdomyosarcoma. Bioinformatic analysis also allowed to identify some other genes, strongly correlated to cyclin D1, which, although not previously studied in pediatric tumors, could represent novel markers for the diagnosis and prognosis of Ewing's sarcoma/PNET. The data herein provided support not only the use of cyclin D1 as a diagnostic marker of Ewing sarcoma/PNET but also the possibility of using drugs targeting cyclin D1 as potential therapeutic strategies. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Cyclin D1 overexpression, cell cycle progression and radiosensitivity in MBP cells

    International Nuclear Information System (INIS)

    Wu Lijun; Yu Zengliang

    2000-11-01

    Clones that exhibited a minimum of 7-8 fold cyclin D1 level above the parent cell lines or the vector control were obtained after transfected with the entire coding sequence of human 1.1 kb cyclin D1 cDNA. Studies showed that there was no significant difference in Radiosensitivity between over-expressing cyclin D1 and control cultures from either mouse or human origin. Using flow cytometry to access cell cycle distribution in the exponentially growth cultures of MCF10F-D1-21 and MCF10F-V-3, it was found that there was a 50 percent increase in the proportion of G2/M phase cells and 5.3 percent decrease in the proportion of G0/G1 phase cells in MCF10F-D1-21 comparing with MCF10F-V-3, though they were with the same proportion of cells in S phase

  4. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M.

    2006-01-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERα signaling. However, many ERα-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERα signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERα-negative cells. We previously noticed that both ERα-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERα-negative cell lines even exceeded its over-expression level in ERα-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERα-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene

  5. Sticky siRNAs targeting survivin and cyclin B1 exert an antitumoral effect on melanoma subcutaneous xenografts and lung metastases

    International Nuclear Information System (INIS)

    Kedinger, Valerie; Erbacher, Patrick; Bolcato-Bellemin, Anne-Laure; Meulle, Aline; Zounib, Omar; Bonnet, Marie-Elise; Gossart, Jean-Baptiste; Benoit, Elodie; Messmer, Melanie; Shankaranarayanan, Pattabhiraman; Behr, Jean-Paul

    2013-01-01

    Melanoma represents one of the most aggressive and therapeutically challenging malignancies as it often gives rise to metastases and develops resistance to classical chemotherapeutic agents. Although diverse therapies have been generated, no major improvement of the patient prognosis has been noticed. One promising alternative to the conventional therapeutic approaches currently available is the inactivation of proteins essential for survival and/or progression of melanomas by means of RNA interference. Survivin and cyclin B1, both involved in cell survival and proliferation and frequently deregulated in human cancers, are good candidate target genes for siRNA mediated therapeutics. We used our newly developed sticky siRNA-based technology delivered with linear polyethyleneimine (PEI) to inhibit the expression of survivin and cyclin B1 both in vitro and in vivo, and addressed the effect of this inhibition on B16-F10 murine melanoma tumor development. We confirm that survivin and cyclin B1 downregulation through a RNA interference mechanism induces a blockage of the cell cycle as well as impaired proliferation of B16-F10 cells in vitro. Most importantly, PEI-mediated systemic delivery of sticky siRNAs against survivin and cyclin B1 efficiently blocks growth of established subcutaneaous B16-F10 tumors as well as formation and dissemination of melanoma lung metastases. In addition, we highlight that inhibition of survivin expression increases the effect of doxorubicin on lung B16-F10 metastasis growth inhibition. PEI-mediated delivery of sticky siRNAs targeting genes involved in tumor progression such as survivin and cyclin B1, either alone or in combination with chemotherapeutic drugs, represents a promising strategy for melanoma treatment

  6. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  7. Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Zhaoming Li

    Full Text Available Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.

  8. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  9. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okabe

    2006-12-01

    Full Text Available Cyclin D1 regulates G1 progression. Its transcriptional regulation is well understood. However, the mechanism underlying cyclin D1 ubiquitination and its subsequent degradation is not yet clear. We report that cyclin D1 undergoes increased degradation in the cytoplasm during S phase in a variety of cancer cells. This is mediated by phosphorylation at Thr286 through the activity of the Ras/Raf/MEK/ERK cascade and the F-box protein FBXW8, which is an E3 ligase. The majority of FBXW8 is expressed in the cytoplasm during G1 and S phase. In contrast, cyclin D1 accumulates in the nucleus during G1 phase and exits into the cytoplasm in S phase. Increased cyclin D1 degradation is linked to association with FBXW8 in the cytoplasm, and enhanced phosphorylation of cyclin D1 through sustained ERK1/2 signaling. Depletion of FBXW8 caused a significant accumulation of cyclin D1, as well as sequestration of CDK1 in the cytoplasm. This resulted in a severe reduction of cell proliferation. These effects could be rescued by constitutive nuclear expression of cyclin D1-T286A. Thus, FBXW8 plays an essential role in cancer cell proliferation through proteolysis of cyclin D1. It may present new opportunities to develop therapies targeting destruction of cyclin D1 or its regulator E3 ligase selectively.

  10. Cyclin D1 in ASM Cells from Asthmatics Is Insensitive to Corticosteroid Inhibition.

    Science.gov (United States)

    Allen, Jodi C; Seidel, Petra; Schlosser, Tobias; Ramsay, Emma E; Ge, Qi; Ammit, Alaina J

    2012-01-01

    Hyperplasia of airway smooth muscle (ASM) is a feature of the remodelled airway in asthmatics. We examined the antiproliferative effectiveness of the corticosteroid dexamethasone on expression of the key regulator of G(1) cell cycle progression-cyclin D1-in ASM cells from nonasthmatics and asthmatics stimulated with the mitogen platelet-derived growth factor BB. While cyclin D1 mRNA and protein expression were repressed in cells from nonasthmatics in contrast, cyclin D1 expression in asthmatics was resistant to inhibition by dexamethasone. This was independent of a repressive effect on glucocorticoid receptor translocation. Our results corroborate evidence demonstrating that corticosteroids inhibit mitogen-induced proliferation only in ASM cells from subjects without asthma and suggest that there are corticosteroid-insensitive proliferative pathways in asthmatics.

  11. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Sun, Shiqin [College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319 (China); Chen, Xiangmei, E-mail: xm_chen6176@bjmu.edu.cn [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Fengmin [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  12. Cyclin D1 in well differentiated thyroid tumour of uncertain malignant potential.

    Science.gov (United States)

    Lamba Saini, Monika; Weynand, Birgit; Rahier, Jacques; Mourad, Michel; Hamoir, Marc; Marbaix, Etienne

    2015-04-18

    Encapsulated follicular tumours with equivocal papillary thyroid carcinoma (PTC) type nuclear features continue to remain a challenge despite the recent attempts to classify these borderline lesions. The term 'well differentiated tumour of uncertain malignant potential (WDT-UMP)' was introduced to classify these tumours. The present study aimed to evaluate the role of a cell cycle regulator like cyclin D1 in these tumours along with assessment of other well established PTC markers like galectin-3, HBME-1, CK19. Thirteen cases of metastatic PTC, papillary microcarcinoma and follicular variant of PTC (FVPTC) were identified from a histological review of 510 cases. In addition, 13 cases of a subset of follicular adenomatoid nodules with focal areas showing nuclear features characteristic of PTC, identified as WDT-UMP, were also analyzed. Immunohistochemical analysis of galectin-3, HBME-1, CK19 and the proliferation markers Ki67 and cyclin D1 was performed. Lesions were analyzed for cyclin D1 gene amplification by fluorescent in-situ hybridization. All WDT-UMP lesions showed immunolabelling of cyclin D1, Ki67; 11/ 13 cases showed immunolabelling of CK19; 10/13 cases showed immunolabelling of HBME-1 and 4/13 cases showed immunolabelling of galectin-3. Surrounding benign adenomatoid areas showed no to faint focal staining in all thirteen cases of cyclin D1, HBME-1 and galectin-3. A low rate of cyclin D1 gene amplification was identified in a significant proportion of cells in the WDT-UMP lesions as compared to surrounding benign adenomatoid areas. Increased expression of cyclin D1 and amplification of its gene along with immunolabelling of HBME-1 in WDT-UMP lesions showing cytological features of papillary thyroid carcinoma within follicular adenomatoid nodules suggest that these areas could correspond to a precursor lesion of follicular variant of PTC. Overexpression of cyclin D1, associated with the amplification of the gene suggests that these WDT-UMP lesions are an

  13. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    International Nuclear Information System (INIS)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing; Sun, Shiqin; Chen, Xiangmei; Lu, Fengmin

    2014-01-01

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  14. Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy

    DEFF Research Database (Denmark)

    Ok, Chi Young; Xu-Monette, Zijun Y; Tzankov, Alexandar

    2014-01-01

    oncogene E3 ubiquitin protein ligase (MDM2), MDM4, and tumor protein 53 (TP53) were rare or absent. Gene expression profiling did not reveal any striking differences with respect to cyclin D1 in DLBCL. CONCLUSIONS: Compared with patients who had cyclin D1-negative DLBCL, men were more commonly affected......1-positive according to immunohistochemistry were also assessed for rearrangements of the cyclin D1 gene (CCND1) using fluorescence in situ hybridization. Gene expression profiling was performed to compare patients who had DLBCL with and without cyclin D1 expression. RESULTS: In total, 30 patients...... (2.1%) who had DLBCL that expressed cyclin D1 and lacked CCND1 gene rearrangements were identified. Patients with cyclin D1-positive DLBCL had a median age of 57 years (range, 16.0-82.6 years). There were 23 males and 7 females. Twelve patients (40%) had bulky disease. None of them expressed CD5. Two...

  15. Cyclin D1 and p22ack1 play opposite roles in plant growth and development

    International Nuclear Information System (INIS)

    Cho, Jeong Woo; Park, Sun Chung; Shin, Eun Ah; Kim, Chong Ki; Han, Woong; Sohn, Soo-In; Song, Pill Soon; Wang, Myeong Hyeon

    2004-01-01

    The plant cell division cycle, a highly coordinated process, is continually regulated during the growth and development of plants. In this report, we demonstrate how two cell-cycle regulators act together to control cell proliferation in transgenic Arabidopsis. To identify potential cyclin dependent kinase regulators from Arabidopsis, we employed an two-hybrid screening system to isolate genes encoding G1 specific cyclin-interacting proteins. One of these, p22 ack1 , which encodes a novel 22 kDa protein, binds to cyclin D1. Overexpression of p22 ack1 in transgenic Arabidopsis resulted in growth retardation due to a strong inhibition of cell division in the leaf primordial and meristematic tissue. The leaf shape of p22 ack1 transgenic Arabidopsis was altered from oval in wild-type to dentate. Wild-type phenotype was successfully restored in F1 hybrids by cross-hybridizing the p22 ackl Arabidopsis mutants with cyclin D1. Taken together, these results suggest that p22 ack1 and cyclin D1, which act antagonistically, are major rate-limiting factors for cell division in the leaf meristem

  16. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  17. VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells.

    Science.gov (United States)

    Bindra, Ranjit S; Vasselli, James R; Stearman, Robert; Linehan, W Marston; Klausner, Richard D

    2002-06-01

    Renal cell carcinoma is associated with mutation of the von Hippel-Lindau (VHL) tumor suppressor gene. Cell lines derived from these tumors cannot exit the cell cycle when deprived of growth factors, and the ability to exit the cell cycle can be restored by the reintroduction of wild-type protein VHL (pVHL). Here, we report that cyclin D1 is overexpressed and remains inappropriately high in during contact inhibition in pVHL-deficient cell lines. In addition, hypoxia increased the expression of cyclin D1 specifically in pVHL-negative cell lines into which pVHL expression was restored. Hypoxic-induction of cyclin D1 was not observed in other pVHL-positive cell lines. This suggests a model whereby in some kidney cell types, pVHL may regulate a proliferative response to hypoxia, whereas the loss of pVHL leads to constitutively elevated cyclin D1 and abnormal proliferation under normal growth conditions.

  18. Epigenetically altered miR-193b targets cyclin D1 in prostate cancer

    International Nuclear Information System (INIS)

    Kaukoniemi, Kirsi M; Rauhala, Hanna E; Scaravilli, Mauro; Latonen, Leena; Annala, Matti; Vessella, Robert L; Nykter, Matti; Tammela, Teuvo L J; Visakorpi, Tapio

    2015-01-01

    Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3’UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3’UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer

  19. Therapeutically targeting cyclin D1 in primary tumors arising from loss of Ini1

    Science.gov (United States)

    Smith, Melissa E.; Cimica, Velasco; Chinni, Srinivasa; Jana, Suman; Koba, Wade; Yang, Zhixia; Fine, Eugene; Zagzag, David; Montagna, Cristina; Kalpana, Ganjam V.

    2011-01-01

    Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16Ink4a and p21CIP. RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1+/− mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1+/− mice. In a PET-guided longitudinal study, we found that treating Ini1+/− mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1+/− mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors. PMID:21173237

  20. The validity of immunocytochemical expression of cyclin D1 in fine needle aspiration cytology of breast carcinoma

    International Nuclear Information System (INIS)

    Ezzat, N.; Hafez, N.

    2012-01-01

    Purpose: The aim of this work is to study the validity of cyclin D1 expression, a cell Fenac; cycle regulatory protein, on (fine needle aspiration cytology) FNAC samples in patients with breast Breast carcinoma; carcinoma using immunostaining technique. Cyclin D1 Patient and methods: This is a study done on 70 patients with primary breast carcinoma, presented to Cytology Unit, Pathology Department, National Cancer Institute, Cairo University. They underwent preoperative FNAC and diagnosed as breast carcinoma. The cytologic and tissue section slides were subjected to cyclin D1 immunocytochemical staining. Only the nuclear immunoreactivity for cyclin D1 was considered specific. The rate of concordance, and discordance, and kappa value were calculated. Relation between cytologic expression of cyclin D1 and different clinico pathologic parameters was evaluated. Results: Cyclin D1 immunocytochemical expression was observed in 53/70 cases (75.7%) in cytologic smears. In histologic sections of the corresponding cases, cyclin D1 was detected in 48/70 cases (68.6%). The concordance rate of cyclin D1 expression in the FNA and histologic sections was 87.1% while the discordance rate was 12.9%. Kappa showed a value of 0.65. A statistically significant relation was found between cyclin D1 immunocytochemical expression and hormonal status as well as nuclear grade. Conclusion: Cyclin D1 immunocytochemical expression can be performed successfully on cytologic samples with a high concordance rate and agreement with histologic results. This can help in determining tumor biology, and plan for patients treatment. The marker showed a significant relation with hormone receptor status and nuclear grade

  1. TSA-induced JMJD2B downregulation is associated with cyclin B1-dependent survivin degradation and apoptosis in LNCap cells.

    Science.gov (United States)

    Zhu, Shan; Li, Yueyang; Zhao, Li; Hou, Pingfu; Shangguan, Chenyan; Yao, Ruosi; Zhang, Weina; Zhang, Yu; Tan, Jiang; Huang, Baiqu; Lu, Jun

    2012-07-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to induce apoptosis of cancer cells, and a significant number of genes have been identified as potential effectors responsible for HDAC inhibitor-induced apoptosis. However, the mechanistic actions of these HDAC inhibitors in this process remain largely undefined. We here report that the treatment of LNCap prostate cancer cells with HDAC inhibitor trichostatin A (TSA) resulted in downregulation of the Jumonji domain-containing protein 2B (JMJD2B). We also found that the TSA-mediated decrease in survivin expression in LNCap cells was partly attributable to downregulation of JMJD2B expression. This effect was attributable to the promoted degradation of survivin protein through inhibition of Cyclin B1/Cdc2 complex-mediated survivin Thr34 phosphorylation. Consequently, knockdown of JMJD2B enhanced TSA-induced apoptosis by regulating the Cyclin B1-dependent survivin degradation to potentiate the apoptosis pathways. Copyright © 2012 Wiley Periodicals, Inc.

  2. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1.

    Science.gov (United States)

    Hu, G; Lee, H; Price, S M; Shen, M M; Abate-Shen, C

    2001-06-01

    During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.

  3. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    International Nuclear Information System (INIS)

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-01-01

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2

  4. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  5. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels.

    Science.gov (United States)

    Yang, Ke; Guo, Yang; Stacey, William C; Harwalkar, Jyoti; Fretthold, Jonathan; Hitomi, Masahiro; Stacey, Dennis W

    2006-08-30

    The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.

  6. Clinicopathological significance of p16, cyclin D1, Rb and MIB-1 levels in skull base chordoma and chondrosarcoma

    Directory of Open Access Journals (Sweden)

    Jun-qi Liu

    2015-09-01

    Full Text Available Objective: To investigate the expression of p16, cyclin D1, retinoblastoma tumor suppressor protein (Rb and MIB-1 in skull base chordoma and chondrosarcoma tissues, and to determine the clinicopathological significance of the above indexes in these diseases. Methods: A total of 100 skull base chordoma, 30 chondrosarcoma, and 20 normal cartilage tissue samples were analyzed by immunohistochemistry. The expression levels of p16, cyclinD1, Rb and MIB-1 proteins were assessed for potential correlation with the clinicopathological features. Results: As compared to normal cartilage specimen (control, there was decreased expression of p16, and increased expression of cyclin D1, Rb and MIB-1 proteins, in both skull base chordoma and chondrosarcoma specimens. MIB-1 LI levels were significantly increased in skull base chordoma specimens with negative expression of p16, and positive expression of cyclin D1 and Rb (P  0.05. However, p16 and MIB-1 levels correlated with the intradural invasion, and expression of p16, Rb and MIB-1 correlated with the number of tumor foci (P < 0.05. Further, the expression of p16 and MIB-1 appeared to correlate with the prognosis of patients with skull base chordoma. Conclusions: The abnormal expression of p16, cyclin D1 and Rb proteins might be associated with the tumorigenesis of skull base chordoma and chondrosarcoma. Keywords: p16, Cyclin D1, Rb, MIB-1, Skull base chordoma, Skull base chondrosarcoma

  7. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  8. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    International Nuclear Information System (INIS)

    Jeong, Jin Boo; Lee, Seong-Ho

    2013-01-01

    Highlights: ► Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. ► PCA enhanced transcriptional downregulation of cyclin D1 gene. ► PCA suppressed HDAC2 expression and activity. ► These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  9. The expression status of TRX, AR, and cyclin D1 correlates with clinicopathological characteristics and ER status in breast cancer.

    Science.gov (United States)

    Huang, Weisun; Nie, Weiwei; Zhang, Wenwen; Wang, Yanru; Zhu, Aiyu; Guan, Xiaoxiang

    2016-01-01

    The ER signaling pathway plays a critical role in breast cancer. ER signaling pathway-related proteins, such as TRX, AR, and cyclin D1, may have an important function in breast cancer. However, the ways that they influence breast cancer development and progression are still unclear. A total of 101 Chinese female patients diagnosed with invasive ductal breast adenocarcinoma were retrospectively enrolled in the study. The expression levels of TRX, AR, and cyclin D1 were detected by immunohistochemistry and analyzed via correlation with clinicopathological characteristics and the expression status of ER, PR, and HER2. The expression status of TRX, AR, and cyclin D1 was not associated with the patient's age, menopausal status, tumor size, or histological differentiation (P>0.05), but was positively correlated with ER and PR (PTRX-positive patients were also HER2-positive (P=0.003). Of AR- or cyclin D1-positive patients, most had relatively earlier I-II tumor stage (P=0.005 and P=0.047, respectively) and no metastatic lymph node involvement (P=0.008 and P=0.005, respectively). TRX was found to be positively correlated with ER and PR expression, whereas it was negatively correlated with HER2 expression. In addition, we found that the positive expression of AR and cyclin D1 was correlated with lower TNM stage and fewer metastatic lymph nodes, and it was more common in ER-positive breast cancer than in the basal-like subtype. This may indicate that AR and cyclin D1 are good predictive and prognostic factors and closely interact with ER signaling pathway. Further studies will be necessary to investigate the response and clinical outcomes of treatment targeting TRX, AR, and cyclin D1.

  10. Automated image analysis of cyclin D1 protein expression in invasive lobular breast carcinoma provides independent prognostic information.

    Science.gov (United States)

    Tobin, Nicholas P; Lundgren, Katja L; Conway, Catherine; Anagnostaki, Lola; Costello, Sean; Landberg, Göran

    2012-11-01

    The emergence of automated image analysis algorithms has aided the enumeration, quantification, and immunohistochemical analyses of tumor cells in both whole section and tissue microarray samples. To date, the focus of such algorithms in the breast cancer setting has been on traditional markers in the common invasive ductal carcinoma subtype. Here, we aimed to optimize and validate an automated analysis of the cell cycle regulator cyclin D1 in a large collection of invasive lobular carcinoma and relate its expression to clinicopathologic data. The image analysis algorithm was trained to optimally match manual scoring of cyclin D1 protein expression in a subset of invasive lobular carcinoma tissue microarray cores. The algorithm was capable of distinguishing cyclin D1-positive cells and illustrated high correlation with traditional manual scoring (κ=0.63). It was then applied to our entire cohort of 483 patients, with subsequent statistical comparisons to clinical data. We found no correlation between cyclin D1 expression and tumor size, grade, and lymph node status. However, overexpression of the protein was associated with reduced recurrence-free survival (P=.029), as was positive nodal status (Pinvasive lobular carcinoma. Finally, high cyclin D1 expression was associated with increased hazard ratio in multivariate analysis (hazard ratio, 1.75; 95% confidence interval, 1.05-2.89). In conclusion, we describe an image analysis algorithm capable of reliably analyzing cyclin D1 staining in invasive lobular carcinoma and have linked overexpression of the protein to increased recurrence risk. Our findings support the use of cyclin D1 as a clinically informative biomarker for invasive lobular breast cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Hoban PR

    2006-06-01

    Full Text Available Abstract Background Idiopathic Pulmonary Fibrosis (IPF is a debilitating disease characterized by exaggerated extracellular matrix deposition and aggressive lung structural remodeling. Disease pathogenesis is driven by fibroblastic foci formation, consequent on growth factor overexpression and myofibroblast proliferation. We have previously shown that both CTGF overexpression and myofibroblast formation in IPF cell lines are dependent on RhoA signaling. As RhoA-mediated regulation is also involved in cell cycle progression, we hypothesise that this pathway is key to lung fibroblast turnover through modulation of cyclin D1 kinetic expression. Methods Cyclin D1 expression was compared in primary IPF patient-derived fibroblasts and equivalent normal control cells. Quantitative real time PCR was employed to examine relative expression levels of cyclin D1 mRNA; protein expression was confirmed by western blotting. Effects of Rho signaling were investigated using transient transfection of constitutively active and dominant negative RhoA constructs as well as pharmacological inhibitors. Cellular proliferation of lung fibroblasts was determined by BrdU incorporation ELISA. To further explore RhoA regulation of cyclin D1 in lung fibroblasts and associated cell cycle progression, an established Rho inhibitor, Simvastatin, was incorporated in our studies. Results Cyclin D1 expression was upregulated in IPF compared to normal lung fibroblasts under exponential growth conditions (p Conclusion These findings report for the first time that cyclin D1 expression is deregulated in IPF through a RhoA dependent mechanism that influences lung fibroblast proliferation. This potentially unravels new molecular targets for future anti-IPF strategies; accordingly, Simvastatin inhibition of Rho-mediated cyclin D1 expression in IPF fibroblasts merits further exploitation.

  12. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  13. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  14. Correlation of cytoplasmic beta-catenin and cyclin D1 overexpression during thyroid carcinogenesis around Semipalatinsk nuclear test site.

    Science.gov (United States)

    Meirmanov, Serik; Nakashima, Masahiro; Kondo, Hisayoshi; Matsufuji, Reiko; Takamura, Noboru; Ishigaki, Katsu; Ito, Masahiro; Prouglo, Yuri; Yamashita, Shunichi; Sekine, Ichiro

    2003-06-01

    The Semipalatinsk nuclear test site (SNTS), the Republic of Kazakhstan, has been contaminated by radioactive fallout. The alteration of oncogenic molecules in thyroid cancer around the SNTS was considered worthy of analysis because it presented the potential to elucidate the relationship between radiation exposure and thyroid cancer. This study aimed to analyze both beta-catenin and cyclin D1 expressions in thyroid carcinomas around the SNTS. We examined nine cases of chronic thyroiditis, eight cases of follicular adenomas, and 23 cases of papillary carcinomas. Immunohistochemically, all carcinomas displayed a strong cytosolic beta-catenin expression, while both chronic thyroiditis and follicular adenomas showed a significantly lower cytoplasmic beta-catenin (22.2% and 37.5%, respectively). No cyclin D1 immunoreactivity was evident in chronic thyroiditis. In contrast, 62.5% of follicular adenomas and 87.0% of papillary carcinoma showed cyclin D1 overexpression. Additionally, a strong correlation between cytoplasmic beta-catenin and cyclin D1 expression was suggested in thyroid tumors. This study revealed a higher prevalence of both aberrant beta-catenin expression and cyclin D1 overexpression in papillary thyroid cancers around the SNTS than sporadic cases. The analysis of the alteration of the Wnt signaling-related molecules in thyroid cancer around the SNTS may be important to gain an insight into radiation-induced thyroid tumorigenesis.

  15. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Heidi Loponen

    Full Text Available Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1 and p21(Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  16. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    Science.gov (United States)

    Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla

    2011-01-01

    Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  17. DNA repair and cyclin D1 polymorphisms and styrene-induced genotoxicity and immunotoxicity

    International Nuclear Information System (INIS)

    Kuricova, M.; Naccarati, A.; Kumar, R.; Koskinen, M.; Sanyal, S.; Dusinska, M.; Tulinska, J.; Vodickova, L.; Liskova, A.; Jahnova, E.; Fuortes, L.; Haufroid, V.; Hemminki, K.; Vodicka, P.

    2005-01-01

    1-SO-adenine DNA adducts, DNA single-strand breaks (SBs), chromosomal aberrations (CAs), mutant frequency (MF) at the HPRT gene, and immune parameters (hematological and of humoral immunity) were studied in styrene-exposed human subjects and controls. Results were correlated with genetic polymorphisms in DNA repair genes (XPD, exon 23, XPG, exon 15, XPC, exon 15, XRCC1, exon 10, XRCC3, exon 7) and cell cycle gene cyclin D1. Results for biomarkers of genotoxicity after stratification for the different DNA repair genetic polymorphisms showed that the polymorphism in exon 23 of the XPD gene modulates levels of chromosomal and DNA damage, HPRT MF, and moderately affects DNA adduct levels. The highest levels of biomarkers were associated with the wild-type homozygous AA genotype. The exposed individuals with the wild-type GG genotype for XRCC1 gene exhibited the lowest CA frequencies, compared to those with an A allele (P < 0.05). Cyclin D1 polymorphism seems to modulate the number of leukocytes and lymphocytes in the analyzed subjects. The number of eosinophiles was positively associated with XPD variant C allele and negatively with XRCC1 variant A allele (P < 0.05) and XPC variant C allele (P < 0.05). Immunoglobulin IgA was positively associated with an XRCC3 variant T allele (P < 0.01) and negatively with XPC variant C allele (P < 0.05). Both C3- and C4-complement components were lower in individuals with XRCC3 CT (P < 0.05) and TT genotypes (P < 0.01). Adhesion molecules sL-selectin and sICAM-1 were associated with XPC genotype (P < 0.05). Individual susceptibility may be reflected in genotoxic and immunotoxic responses to environmental and occupational exposures to xenobiotics

  18. Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells.

    Science.gov (United States)

    Or, Chi-Hung R; Chang, Yachu; Lin, Wei-Cheng; Lee, Wee-Chyan; Su, Hong-Lin; Cheung, Muk-Wing; Huang, Chang-Po; Ho, Cheesang; Chang, Chia-Che

    2016-12-27

    Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G₁-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G₁-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.

  19. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  20. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma

    International Nuclear Information System (INIS)

    Mori, Jun; Takahashi-Yanaga, Fumi; Miwa, Yoshikazu; Watanabe, Yutaka; Hirata, Masato; Morimoto, Sachio; Shirasuna, Kanemitsu; Sasaguri, Toshiyuki

    2005-01-01

    Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G 0 /G 1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3β (GSK-3β). Depletion of endogenous GSK-3β by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3β and found that DIF-1 dephosphorylated GSK-3β on Ser 9 and induced the nuclear translocation of GSK-3β, suggesting that DIF-1 activated GSK-3β. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr 286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3β-mediated phosphorylation of Thr 286

  1. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle

    International Nuclear Information System (INIS)

    Shimura, Tsutomu

    2011-01-01

    Fractionated radiotherapy (RT) is widely used in cancer therapy for its advantages in the preservation of normal tissues. However, repopulation of surviving tumor cells during fractionated RT limits the efficacy of RT. In fact, repopulating tumors often acquire radioresistance and this is the major cause of failure of RT. We have recently demonstrated that human tumor cells acquire radioresistance when exposed to fractionated radiation (FR) of X-rays every 12 hours for 1 month. The acquired radioresistance was associated with overexpression of cyclin D1, a result of a series of molecular changes; constitutive activation of DNA-PK and AKT with concomitant down-regulation of glycogen synthase kinase-3β (GSK3β) which results in suppression of cyclin D1 proteolysis. Aberrant cyclin D1 overexpression in S-phase induced DNA double strand breaks which activated DNA-PK and established the vicious cycle of cycling D1 overexpression. This overexpression of cyclin D1 is responsible for the radioresistance phenotype of long-term FR cells, since this phenotype was completely abrogated by treatment of FR cells by the AKT/PKB signaling inhibitor (API-2), an AKT inhibitor or by a Cdk4 inhibitor. Thus, targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway can be an efficient modality to suppress acquired radioresistance of tumor cells. In this article, I overview the newly discovered molecular mechanisms underlying acquired radioresistance of tumor cells induced by FR, and propose a strategy for eradication of tumors using fractionated RT by overcoming tumor radioresistance. (author)

  2. Amplification and protein overexpression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer.

    Science.gov (United States)

    Noorlag, Rob; Boeve, Koos; Witjes, Max J H; Koole, Ronald; Peeters, Ton L M; Schuuring, Ed; Willems, Stefan M; van Es, Robert J J

    2017-02-01

    Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is often amplified in oral cancer with nodal metastases. However, evidence in predicting occult nodal metastases is limited. In 158 patients with early tongue and floor of mouth (FOM) squamous cell carcinomas, both CCND1 amplification and cyclin D1, FADD, and cortactin protein expression were correlated with occult nodal metastases. CCND1 amplification and cyclin D1 expression correlated with occult nodal metastases. Cyclin D1 expression was validated in an independent multicenter cohort, confirming the correlation with occult nodal metastases in early FOM cancers. Cyclin D1 is a predictive biomarker for occult nodal metastases in early FOM cancers. Prospective research on biopsy material should confirm these results before implementing its use in routine clinical practice. © 2016 Wiley Periodicals, Inc. Head Neck 39: 326-333, 2017. © 2016 Wiley Periodicals, Inc.

  3. Differential expression of cyclin D1 in keratin-producing odontogenic cysts.

    Science.gov (United States)

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-01-01

    The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology.

  4. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Neubauer, Nicole; Lee, Ying C

    2006-01-01

    pathways leading to mitosis by incretins and cytokines, respectively. The response to both GLP-1 and GIP was completely blocked by the protein kinase A (PKA) inhibitor, H89. In addition, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin and the mitogen-activated protein kinase kinase (MEK) inhibitor...... and we have previously demonstrated hGH-induced cyclin D2 expression in the insulinoma cell line, INS-1. GLP-1 time-dependently induced the cyclin D1 mRNA and protein levels in INS-1E, whereas the cyclin D2 levels were unaffected. However, minor effect of GLP-1 stimulation was observed on the cyclin D3 m......RNA levels. Transient transfection of a cyclin D1 promoter-luciferase reporter construct into islet monolayer cells or INS-1 cells revealed approximately a 2-3 fold increase of transcriptional activity in response to GLP-1 and GIP, and a 4-7 fold increase in response to forskolin. However, treatment...

  5. Therapeutic effects of lentivirus-mediated shRNA targeting of cyclin D1 in human gastric cancer

    International Nuclear Information System (INIS)

    Seo, Jin-Hee; Jeong, Eui-Suk; Choi, Yang-Kyu

    2014-01-01

    Gastric cancer is the second most common cause of cancer-related death in males and the fourth in females. Traditional treatment has poor prognosis because of recurrence and systemic side effects. Therefore, the development of new therapeutic strategies is an important issue. Lentivirus-mediated shRNA stably inhibits target genes and can efficiently transduce most cells. Since overexpressed cyclin D1 is closely related to human gastric cancer progression, inhibition of cyclin D1 using specific targeting could be an effective treatment method of human gastric cancer. The therapeutic effect of lentivirus-mediated shRNA targeting of cyclin D1 (ShCCND1) was analyzed both in vitro and in vivo experiments. In vitro, NCI-N87 cells with downregulation of cyclin D1 by ShCCND1 showed significant inhibition of cell proliferation, cell motility, and clonogenicity. Downregulation of cyclin D1 in NCI-N87 cells also resulted in significantly increased G1 arrest and apoptosis. In vivo, stable NCI-N87 cells expressing ShCCND1 were engrafted into nude mice. Then, the cancer-growth inhibition effect of lentivirus was confirmed. To assess lentivirus including ShCCND1 as a therapeutic agent, intratumoral injection was conducted. Tumor growth of the lentivirus-treated group was significantly inhibited compared to growth of the control group. These results are in accordance with the in vitro data and lend support to the mitotic figure count and apoptosis analysis of the tumor mass. The lentivirus-mediated ShCCND1 was constructed, which effectively inhibited growth of NCI-N87-derived cancer both in vitro and in vivo. The efficiency of shRNA knockdown and variation in the degree of inhibition is mediated by different shRNA sequences and cancer cell lines. These experimental results suggest the possibility of developing new gastric cancer therapies using lentivirus-mediated shRNA

  6. Anticancer activity of calyx of Diospyros kaki Thunb. through downregulation of cyclin D1 via inducing proteasomal degradation and transcriptional inhibition in human colorectal cancer cells.

    Science.gov (United States)

    Park, Su Bin; Park, Gwang Hun; Song, Hun Min; Son, Ho-Jun; Um, Yurry; Kim, Hyun-Seok; Jeong, Jin Boo

    2017-09-05

    Although it has been reported to contain high polyphenols, the pharmacological studies of the calyx of Diospyros kaki Thunb (DKC) have not been elucidated in detail. In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. Anti-cell proliferative effect of 70% ethanol extracts from the calyx of Diospyros kaki (DKC-E70) was evaluated by MTT assay. The effect of DKC-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β-catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  7. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells.

    Science.gov (United States)

    Liu, Linna; Zhang, Hongmei; Shi, Lei; Zhang, Wenjuan; Yuan, Juanli; Chen, Xiang; Liu, Juanjuan; Zhang, Yan; Wang, Zhipeng

    2014-10-01

    Rac1 has been shown to regulate the cell cycle in cancer cells. Yet, the related mechanism remains unclear. Thus, the present study aimed to investigate the mechanism involved in the regulation of G1/S phase transition by Rac1 in cancer cells. Inhibition of Rac1 by inhibitor NSC23766 induced G1/S phase arrest and inhibited the proliferation of A431, SW480 and U2-OS cells. Suppression of GSK3 by shRNA partially rescued G1/S phase arrest and inhibition of proliferation. Incubation of cells with NSC23766 reduced p-AKT and inactivated p-GSK3α and p-GSK3β, increased p-cyclin D1 expression and decreased the level of cyclin D1 protein. Consequently, cyclin D1 targeting transcriptional factor E2F1 expression, which promotes G1 to S phase transition, was also reduced. In contrast, constitutive active Rac1 resulted in increased p-AKT and inactivated p-GSK3α and p-GSK3β, decreased p-cyclin D1 expression and enhanced levels of cyclin D1 and E2F1 expression. Moreover, suppression of GSK3 did not alter p-AKT or Rac1 activity, but decreased p-cyclin D1 and increased total cyclin D1 protein. However, neither Rac1 nor GSK3 inhibition altered cyclin D1 at the RNA level. Moreover, after inhibition of Rac1 or GSK3 following proteasome inhibitor MG132 treatment, cyclin D1 expression at the protein level remained constant, indicating that Rac1 and GSK3 may regulate cyclin D1 turnover through phosphorylation and degradation. Therefore, our findings suggest that inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway.

  8. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro.

    Science.gov (United States)

    Lee, Eunju; Jin, DongHao; Lee, Bo Bin; Kim, Yujin; Han, Joungho; Shim, Young Mog; Kim, Duk-Hwan

    2015-12-17

    This study was aimed at identifying prognostic biomarkers for stage II-IIIA non-small cell lung cancer (NSCLC) according to histology and at investigating the effect of vorinostat on the expression of these biomarkers. Expression levels of cyclin D1, cyclin A2, cyclin E, and p16 proteins that are involved in the G1-to-S phase progression of cell cycle were analyzed using immunohistochemistry in formalin-fixed paraffin-embedded tissues from 372 samples of stage II-IIIA NSCLC. The effect of vorinostat on the expression of these proteins, impacts on cell cycle, and histone modification was explored in lung cancer cells. Abnormal expression of cyclin A2, cyclin D1, cyclin E, and p16 was found in 66, 47, 34, and 51 % of 372 cases, respectively. Amongst the four proteins, only cyclin D1 overexpression was significantly associated with poor recurrence-free survival (adjusted hazard ratio = 1.87; 95 % confidence interval = 1.12 - 2.69, P = 0.02) in adenocarcinoma but not in squamous cell carcinoma (P = 0.44). Vorinostat inhibited cell cycle progression to the S-phase and induced down-regulation of cyclin D1 in vitro. The down-regulation of cyclin D1 by vorinostat was comparable to a siRNA-mediated knockdown of cyclin D1 in A549 cells, but vorinostat in the presence of benzo[a]pyrene showed a differential effect in different lung cancer cell lines. Cyclin D1 down-regulation by vorinostat was associated with the accumulation of dimethyl-H3K9 at the promoter of the gene. The present study suggests that cyclin D1 may be an independent prognostic factor for recurrence-free survival in stage II-IIIA adenocarcinoma of lung and its expression may be modulated by vorinostat.

  9. Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck

    NARCIS (Netherlands)

    Michalides, R.; van Veelen, N.; Hart, A.; Loftus, B.; Wientjens, E.; Balm, A.

    1995-01-01

    We evaluated the prognostic significance of overexpression of cyclin D1 in 47 patients with surgically resected squamous cell carcinomas of the head and neck. Overexpression of cyclin D1 was detected immunohistochemically using an affinity-purified polyclonal antibody directed against the

  10. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription

    Directory of Open Access Journals (Sweden)

    James Claudine G

    2006-09-01

    Full Text Available Abstract Background Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3, is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown. Results Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter. Conclusion Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.

  11. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.

    Science.gov (United States)

    Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A

    2010-05-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.

  12. PENGARUH EKSTRAK ETHANOL PROPOLIS TERHADAP EKSPRESI PROTEIN Bcl2, CYCLIN D1 DAN INDUKSI APOPTOSIS PADA KULTUR SEL KANKER KOLON

    Directory of Open Access Journals (Sweden)

    Haryono Yuniarto

    2017-06-01

    Full Text Available Kanker kolorektal menempati urutan kejadian kanker ketiga di seluruh dunia, dengan lebih dari 1 juta angka kejadian tiap tahunnya. Berbagai strategi terapi pengobatan kanker kolorektal tetapi relatif belum optimal. Oleh karena itu, terdapat kebutuhan mengembangkan terapi alternatif sebagai pendamping. Propolis menunjukkan aktivitas proapoptosis pada berbagai jenis sel kanker. Mengetahui pengaruh pemberian propolis yang berasal dari Kerjo, Karanganyar, Indonesia terhadap induksi proses apoptosis dan aktivitas antiproliferasi, terutama terkait dengan penekanan ekspresi protein Bcl 2 dan cyclin D1 pada kultur sel WiDr (cell line kanker kolon. Penelitian eksperimental laboratorik menggunakan post test with control group design. Penelitian dilakukan pada kultur sel WiDr (sel kanker kolon dengan pemberian propolis. Pengamatan ekspresi protein Cyclin D1 dan Bcl2 dilakukan dengan metode imunositokimia, sedangkan pengamatan induksi apoptosis dilakukan dengan flowcytometry. Analisis statistik dengan uji Kruskal-Wallis, signifikan bila p <0,05. Rata-rata ekspresi Bcl2 pada kelima kelompok yaitu kontrol 83.40 ± 0.69 μg/ml, EEP 1/2 IC50 60.63 ± 0.40, EEP IC50 33.77 ± 1.08 μg/ml, EEP 2 IC50 24.28 ± 1.91 μg/ml, 5fluorouracil 12.74 ± 2.19 μg/ml. Terdapat perbedaan bermakna ekspresi Bcl2 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Rata-rata ekspresi cyclin D1 pada kelima kelompok yaitu kontrol 83.77 ± 0.39 μg/ml, EEP 1/2 IC50 61.44 ± 0.41, EEP IC50 36.67 ± 1.18 μg/ml, EEP 2 IC50 24.50 ± 0.38 μg/ml, 5fluorouracil 13.42 ± 1.04μg/ml. Terdapat perbedaan bermakna ekspresi cyclin D1 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Pemberian ekstrak etanol propolis mempunyai pengaruh menekan ekspresi Bcl2, cyclin D1, dan menginduksi apoptosis pada kultur sel kanker kolon (WiDr Cell Line.   Kata Kunci: Ekstrak Ethanol Propolis, Bcl2, cyclin D1, Sel WiDr

  13. Cyclin D1-AR Crosstalk: Potential Implications for Therapeutic Response in Prostate Cancer

    Science.gov (United States)

    2013-06-01

    metastatic androgen-independent prostate cancer. Clin Cancer Res 2004; 10: 924–928. 12 Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H et...al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 2005; 48: 2388–2406. 13 Fry DW, Harvey PJ, Keller PR...cyclin- dependent kinase 6 specific inhibition. J Med Chem 2006; 49: 3826–3831. 58 Lim JT, Mansukhani M, Weinstein IB. Cyclin-dependent kinase 6

  14. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells.

    Science.gov (United States)

    Feng, Wan; Cai, Dawei; Zhang, Bin; Lou, Guochun; Zou, Xiaoping

    2015-08-01

    Histone deacetylases (HDAC) are involved in diverse biological processes and therefore emerge as potential targets for pancreatic cancer. Silibinin, an active component of silymarin, is known to inhibit growth of pancreatic cancer in vivo and in vitro. Herein, we examined the cytotoxic effects of TSA in combination with silibinin and investigated the possible mechanism in two pancreatic cancer cell lines (Panc1 and Capan2). Our study found that combination treatment of HDAC inhibitor and silibinin exerted additive growth inhibitory effect on pancreatic cancer cell. Annexin V-FITC/PI staining and flow cytometry analysis demonstrated that combination therapy induced G2/M cell cycle arrest and apoptosis in Panc1and Capan2 cells. The induction of apoptosis was further confirmed by evaluating the activation of caspases. Moreover, treatment with TSA and silibinin resulted in a profound reduction in the expression of cyclinA2, cyclinB1/Cdk1 and survivin. Taken together, our study might indicate that the novel combination of HDAC inhibitor and silibinin could offer therapeutic potential against pancreatic cancer. Copyright © 2015. Published by Elsevier Masson SAS.

  15. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression

    International Nuclear Information System (INIS)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-01-01

    Highlights: ► CARMA3 expression is elevated in colon cancers. ► CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. ► CARMA3 upregulates cyclinD1 through NF-κB activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  16. Rottlerin inhibits the nuclear factor kappaB/cyclin-D1 cascade in MCF-7 breast cancer cells

    Czech Academy of Sciences Publication Activity Database

    Torricelli, C.; Fortino, V.; Capurro, E.; Valacchi, G.; Pacini, A.; Muscettola, M.; Souček, Karel; Maioli, E.

    2008-01-01

    Roč. 82, 11-12 (2008), s. 638-643 ISSN 0024-3205 R&D Projects: GA ČR(CZ) GA310/07/0961; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Rottlerin * MCF-7 cells * cyclin-D1 Subject RIV: BO - Biophysics Impact factor: 2.583, year: 2008

  17. Lysine-specific demethylase 2A expression is associated with cell growth and cyclin D1 expression in colorectal adenocarcinoma.

    Science.gov (United States)

    Cao, Lin-Lin; Du, Changzheng; Liu, Hangqi; Pei, Lin; Qin, Li; Jia, Mei; Wang, Hui

    2018-04-01

    Lysine-specific demethylase 2A (KDM2A), a specific H3K36me1/2 demethylase, has been reported to be closely associated with several types of cancer. In this study, we aimed to investigate the expression and function of KDM2A in colorectal adenocarcinoma. A total of 215 colorectal adenocarcinoma specimens were collected, and then subjected to immunohistochemistry assay to evaluate the expression levels of KDM2A, cyclin D1 and other proteins in colorectal adenocarcinoma tissues. Real-time polymerase chain reaction, Western blot, and other molecular biology methods were used to explore the role of KDM2A in colorectal adenocarcinoma cells. In this study, we report that the expression level of KDM2A is high in colorectal adenocarcinoma tissues, and this high expression promotes the proliferation and colony formation of colorectal adenocarcinoma cells, as demonstrated by KDM2A knockdown experiments. In addition, the expression of KDM2A is closely associated with cyclin D1 expression in colorectal adenocarcinoma tissues and cell lines. Our study reveals a novel role for high-expressed KDM2A in colorectal adenocarcinoma cell growth, and that the expression of KDM2A is associated with that of cyclin D1 in colorectal adenocarcinoma.

  18. Systematic validation of predicted microRNAs for cyclin D1

    International Nuclear Information System (INIS)

    Jiang, Qiong; Feng, Ming-Guang; Mo, Yin-Yuan

    2009-01-01

    MicroRNAs are the endogenous small non-coding RNA molecules capable of silencing protein coding genes at the posttranscriptional level. Based on computer-aided predictions, a single microRNA could have over a hundred of targets. On the other hand, a single protein-coding gene could be targeted by many potential microRNAs. However, only a relatively small number of these predicted microRNA/mRNA interactions are experimentally validated, and no systematic validation has been carried out using a reporter system. In this study, we used luciferease reporter assays to validate microRNAs that can silence cyclin D1 (CCND1) because CCND1 is a well known proto-oncogene implicated in a variety of types of cancers. We chose miRanda (http://www.microRNA.org) as a primary prediction method. We then cloned 51 of 58 predicted microRNA precursors into pCDH-CMV-MCS-EF1-copGFP and tested for their effect on the luciferase reporter carrying the 3'-untranslated region (UTR) of CCND1 gene. Real-time PCR revealed the 45 of 51 cloned microRNA precursors expressed a relatively high level of the exogenous microRNAs which were used in our validation experiments. By an arbitrary cutoff of 35% reduction, we identified 7 microRNAs that were able to suppress Luc-CCND1-UTR activity. Among them, 4 of them were previously validated targets and the rest 3 microRNAs were validated to be positive in this study. Of interest, we found that miR-503 not only suppressed the luciferase activity, but also suppressed the endogenous CCND1 both at protein and mRNA levels. Furthermore, we showed that miR-503 was able to reduce S phase cell populations and caused cell growth inhibition, suggesting that miR-503 may be a putative tumor suppressor. This study provides a more comprehensive picture of microRNA/CCND1 interactions and it further demonstrates the importance of experimental target validation

  19. Targeting the AKT/GSK3β/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-01-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3β-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3β/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor eradication in

  20. C/EBP{delta} targets cyclin D1 for proteasome-mediated degradation via induction of CDC27/APC3 expression.

    Science.gov (United States)

    Pawar, Snehalata A; Sarkar, Tapasree Roy; Balamurugan, Kuppusamy; Sharan, Shikha; Wang, Jun; Zhang, Youhong; Dowdy, Steven F; Huang, A-Mei; Sterneck, Esta

    2010-05-18

    The transcription factor CCAAT/enhancer binding protein delta (C/EBPdelta, CEBPD, NFIL-6beta) has tumor suppressor function; however, the molecular mechanism(s) by which C/EBPdelta exerts its effect are largely unknown. Here, we report that C/EBPdelta induces expression of the Cdc27 (APC3) subunit of the anaphase promoting complex/cyclosome (APC/C), which results in the polyubiquitination and degradation of the prooncogenic cell cycle regulator cyclin D1, and also down-regulates cyclin B1, Skp2, and Plk-1. In C/EBPdelta knockout mouse embryo fibroblasts (MEF) Cdc27 levels were reduced, whereas cyclin D1 levels were increased even in the presence of activated GSK-3beta. Silencing of C/EBPdelta, Cdc27, or the APC/C coactivator Cdh1 (FZR1) in MCF-10A breast epithelial cells increased cyclin D1 protein expression. Like C/EBPdelta, and in contrast to cyclin D1, Cdc27 was down-regulated in several breast cancer cell lines, suggesting that Cdc27 itself may be a tumor suppressor. Cyclin D1 is a known substrate of polyubiquitination complex SKP1/CUL1/F-box (SCF), and our studies show that Cdc27 directs cyclin D1 to alternative degradation by APC/C. These findings shed light on the role and regulation of APC/C, which is critical for most cellular processes.

  1. Cyclin D1 affects epithelial–mesenchymal transition in epithelial ovarian cancer stem cell-like cells

    Directory of Open Access Journals (Sweden)

    Jiao J

    2013-06-01

    Full Text Available Jie Jiao,1,4 Lu Huang,1 Feng Ye,1 MinFeng Shi,2 XiaoDong Cheng,3 XinYu Wang,3 DongXiao Hu,3 Xing Xie,3 WeiGuo Lu31Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 2Department of Gynaecology and Obstetrics, Changhai Hospital, the Second Military Medical University, Shanghai, 3Women's Reproductive Health Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 4Department of Gynaecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, People's Republic of ChinaBackground: The association of cancer stem cells with epithelial–mesenchymal transition (EMT is receiving attention. We found in our previous study that EMT existed from CD24- phenotype cells to their differentiated cells. It was shown that cyclin D1 functioned in sustaining self-renewal independent of CDK4/CDK6 activation, but its effect on the EMT mechanism in ovarian cancer stem cells is unclear.Methods: The anchorage-independent spheroids from ovarian adenocarcinoma cell line 3AO were formed in a serum-free medium. CD24- and CD24+ cells were isolated by fluorescence-activated cell sorting. Cell morphology, viability, apoptosis, and migratory ability were observed. Stem-related molecule Bmi-1, Oct-4 and EMT-related marker E-cadherin, and vimentin expressions were analyzed. Cyclin D1 expression in CD24- phenotype enriched spheroids was knocked down with small interfering RNA, and its effects on cell proliferation, apoptosis, migration ability, and EMT-related phenotype after transfection were observed. Results: In our study, CD24- cells presented stronger proliferative, anti-apoptosis capacity, and migratory ability, than CD24+ cells or parental cells. CD24- cells grew with a scattered spindle-shape within 3 days of culture and transformed into a cobblestone-like shape, identical to CD24+ cells or parental cells at 7

  2. p52-Bcl3 complex promotes cyclin D1 expression in BEAS-2B cells in response to low concentration arsenite

    International Nuclear Information System (INIS)

    Wang, Feng; Shi, Yongli; Yadav, Santosh; Wang, He

    2010-01-01

    Arsenic is a well-recognized human carcinogen that causes a number of malignant diseases, including lung cancer. Previous studies have indicated that cyclin D1 is frequently over-expressed in many cancer types. It is also known that arsenite exposure enhances cyclin D1 expression, which involves NF-κB activation. However, the mechanism between cyclin D1 and the NF-κB pathway has not been well studied. This study was designed to characterize the underlying mechanism of induced cell growth and cyclin D1 expression in response to low concentration sodium arsenic (NaAsO 2 ) exposure through the NF-κB pathway. Cultured human bronchial epithelial cells, BEAS-2B, were exposed to low concentration sodium arsenite for the indicated durations, and cytotoxicity, gene expression, and protein activity were assessed. To profile the canonical and non-canonical NF-κB pathways involved in cell growth and cyclin D1 expression induced by low concentration arsenite, the NF-κB-specific inhibitor-phenethyl caffeate (CAPE) and NF-κB2 mRNA target sequences were used, and cyclin D1 expression in BEAS-2B cells was assessed. Our results demonstrated that exposure to low concentration arsenite enhanced BEAS-2B cells growth and cyclin D1 mRNA and protein expression. Activation and nuclear localization of p52 and Bcl3 in response to low concentration arsenite indicated that the non-canonical NF-κB pathway was involved in arsenite-induced cyclin D1 expression. Moreover, we further demonstrated that p52/Bcl3 complex formation enhanced cyclin D1 expression through the cyclin D1 gene promoter via its κB site. The up-regulation of cyclin D1 mediated by the p52-Bcl3 complex in response to low concentration arsenite might be important in assessing the health risk of low concentration arsenite and understanding the mechanisms of the harmful effects of arsenite.

  3. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  4. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjia [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Song, Ting [Nursing Department of Orthopedics 3rd Ward, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Bao, E-mail: liubao72@yahoo.com.cn [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Changwei, E-mail: liucw@vip.sina.com [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China)

    2014-10-24

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.

  5. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    International Nuclear Information System (INIS)

    Li, Tianjia; Song, Ting; Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei; Liu, Bao; Liu, Changwei

    2014-01-01

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE

  6. CyclinD1, CDK4, and P21 expression by IEC-6 cells in response to NiTi alloy and polymeric biomaterials

    International Nuclear Information System (INIS)

    Wang, Zhanhui; Yan, Jun; Zheng, Qi; Wang, Zhigang

    2012-01-01

    In order to investigate how cells recognize biomaterials, mRNA that was expressed in attached Intestinal epithelial cells (IEC-6) on various suture substrates was evaluated. The expressed cell cycle regulators (cyclin D1, CDK4 and p21) mRNA were then isolated and detected using the real time- polymerase chain reaction (PCR) method. As a result, cyclin D1 gene expression was affected by cell-polymer adhesion and was associated with cell proliferation. In addition, CDK4 gene expression was affected by cell proliferation rather than by cell-biomaterial interaction. The p21 mRNA gene expression was higher in cells on more hydrophilic surfaces than on hydrophobic surfaces. Further, the cyclin D1, CDK4 and p21 gene expression were also influenced by the surface chemistry of suture materials. We concluded that the expression of cyclin D1, CDK4 and p21 mRNA was a powerful method for studying cell-biomaterial interactions or the evaluation of the carcinogenic activity of biomaterials. - Highlights: ►We evaluated the effects of biomaterials on the cyclin D1, CDK4 and p21 expression. ►Cell-polymer adhesion and cell proliferation affected cyclin D1 and CDK4 expression. ►The p21 expression was higher on more hydrophilic surfaces than on hydrophobic. ►They were also influenced by surface chemistry of biomaterials.

  7. Oct-1 potentiates CREB-driven cyclin D1 promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism.

    Science.gov (United States)

    Boulon, Séverine; Dantonel, Jean-Christophe; Binet, Virginie; Vié, Annick; Blanchard, Jean-Marie; Hipskind, Robert A; Philips, Alexandre

    2002-11-01

    Cyclin D1, the regulatory subunit for mid-G(1) cyclin-dependent kinases, controls the expression of numerous cell cycle genes. A cyclic AMP-responsive element (CRE), located upstream of the cyclin D1 mRNA start site, integrates mitogenic signals that target the CRE-binding factor CREB, which can recruit the transcriptional coactivator CREB-binding protein (CBP). We describe an alternative mechanism for CREB-driven cyclin D1 induction that involves the ubiquitous POU domain protein Oct-1. In the breast cancer cell line MCF-7, overexpression of Oct-1 or its POU domain strongly increases transcriptional activation of cyclin D1 and GAL4 reporter genes that is specifically dependent upon CREB but independent of Oct-1 DNA binding. Gel retardation and chromatin immunoprecipitation assays confirm that POU forms a complex with CREB bound to the cyclin D1 CRE. In solution, CREB interaction with POU requires the CREB Q2 domain and, notably, occurs with CREB that is not phosphorylated on Ser 133. Accordingly, Oct-1 also potently enhances transcriptional activation mediated by a Ser133Ala CREB mutant. Oct-1/CREB synergy is not diminished by the adenovirus E1A 12S protein, a repressor of CBP coactivator function. In contrast, E1A strongly represses CBP-enhanced transactivation by CREB phosphorylated on Ser 133. Our observation that Oct-1 potentiates CREB-dependent cyclin D1 transcriptional activity independently of Ser 133 phosphorylation and E1A-sensitive coactivator function offers a new paradigm for the regulation of cyclin D1 induction by proliferative signals.

  8. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  9. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    International Nuclear Information System (INIS)

    Alao, John P; Sunnerhagen, Per

    2009-01-01

    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles

  10. Impact of 9p deletion and p16, Cyclin D1, and Myc hyperexpression on the outcome of anaplastic oligodendrogliomas.

    Directory of Open Access Journals (Sweden)

    Karine Michaud

    Full Text Available To study the presence of 9p deletion and p16, cyclin D1 and Myc expression and their respective diagnostic and prognostic interest in oligodendrogliomas.We analyzed a retrospective series of 40 consecutive anaplastic oligodendrogliomas (OIII from a single institution and compared them to a control series of 10 low grade oligodendrogliomas (OII. Automated FISH analysis of chromosome 9p status and immunohistochemistry for p16, cyclin D1 and Myc was performed for all cases and correlated with clinical and histological data, event free survival (EFS and overall survival (OS.Chromosome 9p deletion was observed in 55% of OIII (22/40 but not in OII. Deletion was highly correlated to EFS (median = 29 versus 53 months, p<0.0001 and OS (median = 48 versus 83 months, p<0.0001 in both the total cohort and the OIII population. In 9p non-deleted oligodendrogliomas, p16 hyperexpression correlated with a shorter OS (p = 0.02 in OII and p = 0.0001 in OIII whereas lack of p16 expression was correlated to a shorter EFS and OS in 9p deleted OIII (p = 0.001 and p = 0.0002 respectively. Expression of Cyclin D1 was significantly higher in OIII (median expression 45% versus 14% for OII, p = 0.0006 and was correlated with MIB-1 expression (p<0.0001, vascular proliferation (p = 0.002, tumor necrosis (p = 0.04 and a shorter EFS in the total cohort (p = 0.05. Hyperexpression of Myc was correlated to grade (median expression 27% in OII versus 35% in OIII, p = 0.03, and to a shorter EFS in 9p non-deleted OIII (p = 0.01.Chromosome 9p deletion identifies a subset of OIII with significantly worse prognosis. The combination of 9p status and p16 expression level identifies two distinct OIII populations with divergent prognosis. Hyperexpression of Bcl1 and Myc appears highly linked to anaplasia but the prognostic value is unclear and should be investigated further.

  11. Growth inhibition of head and neck squamous cell carcinoma cells by sgRNA targeting the cyclin D1 mRNA based on TRUE gene silencing.

    Directory of Open Access Journals (Sweden)

    Satoshi Iizuka

    Full Text Available Head and neck squamous cell carcinoma (HNSCC exhibits increased expression of cyclin D1 (CCND1. Previous studies have shown a correlation between poor prognosis of HNSCC and cyclin D1 overexpression. tRNase ZL-utilizing efficacious gene silencing (TRUE gene silencing is one of the RNA-mediated gene expression control technologies that have therapeutic potential. This technology is based on a unique enzymatic property of mammalian tRNase ZL, which is that it can cleave any target RNA at any desired site by recognizing a pre-tRNA-like complex formed between the target RNA and an artificial small guide RNA (sgRNA. In this study, we designed several sgRNAs targeting human cyclin D1 mRNA to examine growth inhibition of HNSCC cells. Transfection of certain sgRNAs decreased levels of cyclin D1 mRNA and protein in HSC-2 and HSC-3 cells, and also inhibited their proliferation. The combination of these sgRNAs and cisplatin showed more than additive inhibition of cancer cell growth. These findings demonstrate that TRUE gene silencing of cyclin D1 leads to inhibition of the growth of HNSCC cells and suggest that these sgRNAs alone or combined with cisplatin may be a useful new therapy for HNSCCs.

  12. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Zhang, Xiangning; Liu, Hui; Li, Binbin; Huang, Peichun; Shao, Jianyong; He, Zhiwei

    2012-01-01

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  13. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    Science.gov (United States)

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  14. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  15. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  16. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    Science.gov (United States)

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Altered expression of the cell cycle regulatory protein cyclin D1 in the rat dentate gyrus after adrenalectomy-induced granular cell lass

    NARCIS (Netherlands)

    Postigo, JA; Van der Werf, YD; Korf, J; Krugers, HJ

    1998-01-01

    The loss of dentate gyrus (DG) granular cells after removal of the rat adrenal glands (ADX) is mediated by a process that is apoptotic in nature. The present study was initiated to compare changes in the immunocytochemical distribution of the cell-cycle regulatory protein cyclin D1, which has been

  18. Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Background. The functions of insulin in mesenchymal stem cells (MSC remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM cultured in serum-free media (SFM with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.

  19. Cyclin D1 gene polymorphism as a risk factor for squamous cell carcinoma of the upper aerodigestive system in non-alcoholics

    DEFF Research Database (Denmark)

    Nishimoto, Ines Nobuko; Pinheiro, Nidia Alice; Rogatto, Silvia Regina

    2004-01-01

    Squamous cell carcinoma of the upper aerodigestive tract (UADT) is associated with environmental factors, especially tobacco and alcohol consumption. Genetic factors, including cyclin D1 (CCND1) polymorphism have been suggested to play an important role in tumorigenesis and progression of UADT...

  20. Origin of cells cultured in vitro from human breast carcinomas traced by cyclin D1 and HER2/neu FISH signal numbers

    Czech Academy of Sciences Publication Activity Database

    Matoušková, Eva; Kudláčková, Iva; Chaloupková, Alena; Brožová, Markéta; Netíková, I.; Veselý, Pavel

    2005-01-01

    Roč. 25, 2A (2005), s. 1051-1058 ISSN 0250-7005 R&D Projects: GA MZd(CZ) NR8145 Institutional research plan: CEZ:AV0Z50520514 Keywords : breast carcinomas * primary cultures of carcinoma cells * cyclin D1 and HER2/neu by FISH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.604, year: 2005

  1. [Relationship between the expression of beta-cat, cyclin D1 and c-myc and the occurance and biological behavior of pancreatic cancer].

    Science.gov (United States)

    Li, Yu-jun; Ji, Xiang-rui

    2003-06-01

    To study the relationship between the abnormal expression of beta-catenin (beta-cat) and the high expressions of cyclin D1 and c-myc and the occurance, proliferation, infiltration, metastasis and prognosis of pancreatic cancer, and to provide rational basis for the clinical diagnosis and treatment. Immunohistochemical PicTure trade mark was used to examine the expressions of beta-cat, cyclin D1 and c-myc in 47 cases of the cancerous tissue of pancreas, 12 cases of the pancreatic intraepithelial neoplasia and 10 cases of normal tissue of pancreas, respectively. Pancreatic cancer proliferation cell nuclear antigen (PCNA) was also tested as the index of the extent of proliferation of the pancreatic cancer. beta-cat was expressed normally in the 10 cases of the normal pancreatic tissue, while cyclin D1 and c-myc were negative. The expression rates of beta-cat, cyclin D1 and c-myc in the tissues of the pancreatic intraepithelial neoplasia and the pancreatic cancer had no significant difference [6/12 and 68.1% (32/47), 6/12 and 74.5% (35/47), 5/12 and 70.2% (33/47) respectively;P values were all more than 0.05]. The abnormal expression rate of beta-cat was significantly correlated to the metastasis of the pancreatic cancer and the one-year survival rate (both P 0.05). The expression rate of cyclin D1 was correlated with the proliferation of the pancreatic cancer and the extent of differentiation (both P 0.05). The expression rate of c-myc was not correlated with the size, the extent of proliferation, infiltration, metastasis, or one-year survival rate (both P > 0.05), but closely with the proliferation activity of the cancerous tissue of pancreas (P < 0.05). The abnormal expression of beta-cat and the high expressions of cyclin D1 and c-myc had a parallel relationship with the pancreatic intraepithelial neoplasia and pancreatic cancer (both P < 0.05, gamma = 1.000, 0.845, 0.437, 0.452). The abnormal expression of beta-cat activates cyclin D1 and c-myc, and results in the

  2. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  3. Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events.

    Science.gov (United States)

    Quintanilla-Martinez, Leticia; Kremer, Marcus; Specht, Katja; Calzada-Wack, Julia; Nathrath, Michaela; Schaich, Robert; Höfler, Heinz; Fend, Falko

    2003-05-01

    The signal transducer and activator of transcription molecules (Stats) play key roles in cytokine-induced signal transduction. Recently, it was proposed that constitutively activated Stat 3 (Stat 3 phosphorylated) contributes to the pathogenesis of multiple myeloma (MM) by preventing apoptosis and inducing proliferation. The study aim was to investigate Stat 3 activation in a series of multiple myeloma (MM) cases and its effect on downstream targets such as the anti-apoptotic proteins Bcl-xL, Mcl-1, and Bcl-2, and the cell-cycle protein cyclin D1. Forty-eight cases of MM were analyzed. Immunohistochemistry was performed on paraffin sections using antibodies against cyclin D1, Bcl-2, Bcl-xL, Mcl-1, p21, Stat 3, and Stat 3 phosphorylated (P). Their specificity was corroborated by Western blot analysis using eight human MM cell lines as control. The proliferation rate was assessed with the antibody MiB1. In addition, the mRNA levels of cyclin D1 and Stat 3 were determined by quantitative real-time reverse transcriptase-polymerase chain reaction of paraffin-embedded microdissected tissue. Three different groups determined by the expression of Stat 3P and cyclin D1 (protein and mRNA) were identified: group 1, Stat 3-activated (23 cases, 48%). All cases revealed nuclear expression of Stat 3P. No elevation of Stat 3 mRNA was identified in any of the cases. Three cases in this group showed intermediate to low cyclin D1 protein and mRNA expression. Group 2 included 15 (31%) cases with cyclin D1 staining and lack of Stat 3P. All cases showed intermediate to high levels of cyclin D1 mRNA expression. Group 3 included 10 (21%) cases with no expression of either cyclin D1 or Stat 3P. High levels of anti-apoptotic proteins Bcl-xL and Mcl-1 were identified in 89% and 100% of all cases, respectively. In contrast to Bcl-xL and Mcl-1, the expression of Bcl-2 showed an inverse correlation with proliferation rate (P: 0.0003). No significant differences were found between the three

  4. Role of immunoexpression of cyclin D1, D3, retinoblastoma (Rb mutant and clinical risk factors on complete mole as risk factors of persistent mole

    Directory of Open Access Journals (Sweden)

    Yudi M Hidayat

    2015-10-01

    Full Text Available Introduction: Changes in complete hydatidiform mole (CHM that become persistent are difficult to handle because the malignant pathogenesis of CHM is still unclear. The growth of abnormal cells in CHM is thought to be caused by cell cycle abnormalities. Some components that play a role in this phase include cyclin D and retinoblastoma (Rb. The aim of our study was to determine the role of clinical risk factors, as well as cyclin D1, cyclin D3 and Rb-protein, in the occurrence of persistent moles. Materials and Method: This study involves 68 CHM cases at Dr. Hasan Sadikin Hospital from 2007–2011. The protein expression of cyclin D1, cyclin D3, and Rb were determined by immunohistochemistry. The results were analyzed by comparing the two groups of CHM that became persistent to those that returned to normal, as determined by a Mochizuki regression curve assessment. Results: 20 cases (29% of CHM became persistent and that 48 cases (71% returned to normal. Significant clinical variables were age (p 0.05. Conclusion: There is a strong relationship between clinical risk factors of age, excessive proliferation histopathology, serum βhCG levels ≥100,000 mU/mL, cyclin D1 and Rb mutations with the incidence of persistent moles after the evacuation of the CHM. We proposed a model to predict the risks of persistent moles with a cut-off point of 2.384, which can be used as a reference for patients with CHM.

  5. Resveratrol Suppresses Growth and Migration of Myelodysplastic Cells by Inhibiting the Expression of Elevated Cyclin D1 (CCND1).

    Science.gov (United States)

    Zhou, Wei; Xu, Shilin; Ying, Yi; Zhou, Ruiqing; Chen, Xiaowei

    2017-11-01

    Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases characterized by poorly formed blood cells. We wanted to elucidate the underlying molecular mechanism to better determine pathogenesis, prognosis, diagnosis, and treatment for patients with MDS. We compared gene expression levels between normal and MDS tissue samples by immunohistochemical analysis. We studied the proliferation, survival, and migration of MDS cells using the EDU assay, colony formation, and transwell assays. We assessed the apoptotic rate and cell cycle status using flow cytometry and Hoechst staining. Finally, we evaluated RNA and protein expressions using polymerase chain reaction and Western blots, respectively. We found that resveratrol suppressed SKM-1 (an advanced MDS cell line) proliferation in a dose-dependent manner. Consistent with this finding, the EDU and colony formation assays also showed that resveratrol inhibited SKM-1 growth. Moreover, flow cytometry and Hoechst 33258 staining demonstrated that resveratrol induced apoptosis and a change in cell cycle status in SKM-1 cells, while the transwell assay showed that resveratrol reduced the migratory ability of SKM-1 cells. Resveratrol also decreased the expression of CCND1 (a gene that encodes the cyclin D1 protein) and increased expressions of KMT2A [lysine (K)-specific methyltransferase 2A] and caspase-3, suggesting that resveratrol exerts its effect by regulating CCND1 in SKM-1 cells. In addition, a combination of resveratrol and the PI3K/AKT inhibitor LY294002 exhibited a stronger inhibitory effect on the SKM-1 cells, compared with resveratrol alone. Our study proved that resveratrol suppresses SKM-1 growth and migration by inhibiting CCND1 expression. This finding provides novel insights into the pathogenesis of MDS and might help develop new diagnosis and treatment for patients with MDS.

  6. Centrosome clustering and cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    International Nuclear Information System (INIS)

    Rey, Javier del; Prat, Esther; Ponsa, Immaculada; Lloreta, Josep; Gelabert, Antoni; Algaba, Ferran; Camps, Jordi; Miró, Rosa

    2010-01-01

    Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

  7. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition.

    Science.gov (United States)

    Song, Hun Min; Park, Gwang Hun; Park, Su Bin; Kim, Hyun-Seok; Son, Ho-Jun; Um, Yurry; Jeong, Jin Boo

    2018-01-01

    Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  8. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Sònia Najas

    2015-02-01

    Full Text Available Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

  9. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei

    2017-05-02

    Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.

  10. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  11. Rsf-1 is overexpressed in non-small cell lung cancers and regulates cyclinD1 expression and ERK activity

    International Nuclear Information System (INIS)

    Li, Qingchang; Dong, Qianze; Wang, Enhua

    2012-01-01

    Highlights: ► Rsf-1 expression is elevated in non-small cell lung cancers. ► Rsf-1 depletion inhibits proliferation and increased apoptosis in lung cancer cells. ► Rsf-1 depletion decreases the level of cyclinD1 and phosphor-ERK expression. -- Abstract: Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 in primary lung cancer and its biological roles in non-small cell lung cancer (NSCLC) have not been reported. The molecular mechanism of Rsf-1 in cancer aggressiveness remains ambiguous. In the present study, we analyzed the expression pattern of Rsf-1 in NSCLC tissues and found that Rsf-1 was overexpressed at both the mRNA and protein levels. There was a significant association between Rsf-1 overexpression and TNM stage (p = 0.0220) and poor differentiation (p = 0.0013). Furthermore, knockdown of Rsf-1 expression in H1299 and H460 cells with high endogenous Rsf-1 expression resulted in a decrease of colony formation ability and inhibition of cell cycle progression. Rsf-1 knockdown also induced apoptosis in these cell lines. Further analysis showed that Rsf-1 knockdown decreased cyclin D1 expression and phospho-ERK levels. In conclusion, Rsf-1 is overexpressed in NSCLC and contributes to malignant cell growth by cyclin D1 and ERK modulation, which makes Rsf-1 a candidate therapeutic target in lung cancer.

  12. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    International Nuclear Information System (INIS)

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  13. Hepatitis C Virus core+1/ARF Protein Modulates the Cyclin D1/pRb Pathway and Promotes Carcinogenesis.

    Science.gov (United States)

    Moustafa, Savvina; Karakasiliotis, Ioannis; Mavromara, Penelope

    2018-05-01

    Viruses often encompass overlapping reading frames and unconventional translation mechanisms in order to maximize the output from a minimum genome and to orchestrate their timely gene expression. Hepatitis C virus (HCV) possesses such an unconventional open reading frame (ORF) within the core-coding region, encoding an additional protein, initially designated ARFP, F, or core+1. Two predominant isoforms of core+1/ARFP have been reported, core+1/L, initiating from codon 26, and core+1/S, initiating from codons 85/87 of the polyprotein coding region. The biological significance of core+1/ARFP expression remains elusive. The aim of the present study was to gain insight into the functional and pathological properties of core+1/ARFP through its interaction with the host cell, combining in vitro and in vivo approaches. Our data provide strong evidence that the core+1/ARFP of HCV-1a stimulates cell proliferation in Huh7-based cell lines expressing either core+1/S or core+1/L isoforms and in transgenic liver disease mouse models expressing core+1/S protein in a liver-specific manner. Both isoforms of core+1/ARFP increase the levels of cyclin D1 and phosphorylated Rb, thus promoting the cell cycle. In addition, core+1/S was found to enhance liver regeneration and oncogenesis in transgenic mice. The induction of the cell cycle together with increased mRNA levels of cell proliferation-related oncogenes in cells expressing the core+1/ARFP proteins argue for an oncogenic potential of these proteins and an important role in HCV-associated pathogenesis. IMPORTANCE This study sheds light on the biological importance of a unique HCV protein. We show here that core+1/ARFP of HCV-1a interacts with the host machinery, leading to acceleration of the cell cycle and enhancement of liver carcinogenesis. This pathological mechanism(s) may complement the action of other viral proteins with oncogenic properties, leading to the development of hepatocellular carcinoma. In addition, given that

  14. Apoptosis, proliferation and p53, cyclin D1, and retinoblastoma gene expression in relation to radiation response in transitional cell carcinoma of the bladder

    International Nuclear Information System (INIS)

    Moonen, Luc; Ong, Francisca; Gallee, Maarten; Verheij, Marcel; Horenblas, Simon; Hart, Augustinus A.M.; Bartelink, Harry

    2001-01-01

    Purpose: To determine whether the apoptotic index, the Ki67 index, and the expression of the p53, cyclin D1, and retinoblastoma genes correlate with local control, overall survival, and time to distant metastases in invasive bladder cancer treated with external beam radiation. Methods and Materials: Paraffin-embedded pretreatment biopsies from 83 patients with invasive transitional cell carcinoma of the bladder were scored morphologically for apoptosis and immunohistochemically for Ki67, p53, cyclin D1, and retinoblastoma gene expression. Survival analysis methods were used to assess overall survival, local control, and freedom from distant metastases. A multiple proportional hazard (PH) regression analysis was performed to study the prognostic value of the above mentioned biologic parameters (all divided into two categories, except Ki67) in addition to classical prognostic factors such as T stage, histologic grade, multifocality of the tumor, and completeness of transurethral resection. All patients were treated with external beam radiation as sole treatment. Median follow-up for the 19 patients still living was 7.5 years. Results: Apoptotic index varied from 0% to 3.4% with a mean of 0.8% and a median of 0.6%. Ki67 index varied from 0% to 60% with a mean of 14% and a median of 12%. P53 protein was detectable in 61% of the tumors. Overexpression of cyclin D1 was observed in 39% of the tumors and loss of retinoblastoma protein in 23% of the tumors. High Ki67 index was found to be significantly associated with p53 expression (p=0.04) and cyclin D1 overexpression (p=0.023). Cyclin D1 overexpression was found more often in Rb-positive tumors than in Rb-negative tumors (p=0.006). Other associations between the markers are less clear. Biologic markers were not correlated with T stage or grade. In the PH analysis local control was found to be significantly better for tumors with wild-type p53 (p=0.028). Also, tumors with an apoptotic index above the median value (0

  15. Modulations of benzo[a]pyrene-induced DNA adduct, cyclin D1 and PCNA in oral tissue by 1,4-phenylenebis(methylene)selenocyanate

    International Nuclear Information System (INIS)

    Chen, Kun-Ming; Sacks, Peter G.; Spratt, Thomas E.; Lin, Jyh-Ming; Boyiri, Telih; Schwartz, Joel; Richie, John P.; Calcagnotto, Ana; Das, Arunangshu; Bortner, James; Zhao, Zonglin; Amin, Shantu; Guttenplan, Joseph; El-Bayoumy, Karam

    2009-01-01

    Tobacco smoking is an important cause of human oral squamous cell carcinoma (SCC). Tobacco smoke contains multiple carcinogens include polycyclic aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P). Surgery is the conventional treatment approach for SCC, but it remains imperfect. However, chemoprevention is a plausible strategy and we had previously demonstrated that 1,4-phenylenebis(methylene)selenocyanate (p-XSC) significantly inhibited tongue tumors-induced by the synthetic 4-nitroquinoline-N-oxide (not present in tobacco smoke). In this study, we demonstrated that p-XSC is capable of inhibiting B[a]P-DNA adduct formation, cell proliferation, cyclin D1 expression in human oral cells in vitro. In addition, we showed that dietary p-XSC inhibits B[a]P-DNA adduct formation, cell proliferation and cyclin D1 protein expression in the mouse tongue in vivo. The results of this study are encouraging to further evaluate the chemopreventive efficacy of p-XSC initially against B[a]P-induced tongue tumors in mice and ultimately in the clinic.

  16. A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway

    Directory of Open Access Journals (Sweden)

    Wen Li

    2017-10-01

    Full Text Available Background/Aims: ALT1 is a novel long non-coding RNA derived from the alternatively spliced transcript of the deleted in lymphocytic leukemia 2 (DLEU2. To date, ALT1 biological roles in human vascular endothelial cells have not been reported. Methods: ALT1 was knocked down by siRNAs. Cell proliferation was analyzed by cck-8. The existence and sequence of human ALT1 were identified by 3’ rapid amplification of cDNA ends. The interaction between lncRNA and proteins was analyzed by RNA-Protein pull down assay, RNA immunoprecipitation, and mass spectrometry analysis. Results: ALT1 was expressed in human umbilical vein endothelial cells (HUVECs. The expression of ALT1 was significantly downregulated in contact-inhibited HUVECs and in hypoxia-induced, growth-arrested HUVECs. Knocking down of ALT1 inhibited the proliferation of HUVECs by G0/G1 cell cycle arrest. We observed that angiotensin converting enzyme Ⅱ(ACE2 was a direct target gene of ALT1. Knocking-down of ALT1 or its target gene ACE2 could efficiently decrease the expression of cyclin D1 via the enhanced ubiquitination and degradation, in which HIF-1α and protein von Hippel-Lindau (pVHL might be involved. Conclusion: The results suggested the human long non-coding RNA ALT1 is a novel regulator for cell cycle of HUVECs via ACE2 and cyclin D1 pathway.

  17. Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers

    Science.gov (United States)

    French, Juliet D.; Ghoussaini, Maya; Edwards, Stacey L.; Meyer, Kerstin B.; Michailidou, Kyriaki; Ahmed, Shahana; Khan, Sofia; Maranian, Mel J.; O’Reilly, Martin; Hillman, Kristine M.; Betts, Joshua A.; Carroll, Thomas; Bailey, Peter J.; Dicks, Ed; Beesley, Jonathan; Tyrer, Jonathan; Maia, Ana-Teresa; Beck, Andrew; Knoblauch, Nicholas W.; Chen, Constance; Kraft, Peter; Barnes, Daniel; González-Neira, Anna; Alonso, M. Rosario; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Loehberg, Christian R.; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Aitken, Zoe; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Benitez, Javier; Anton-Culver, Hoda; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Lichtner, Peter; Schmutzler, Rita K.; Engel, Christoph; Brauch, Hiltrud; Hamann, Ute; Justenhoven, Christina; Aaltonen, Kirsimari; Heikkilä, Päivi; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Lambrechts, Diether; Peeters, Stephanie; Smeets, Ann; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Sardella, Domenico; Couch, Fergus J.; Wang, Xianshu; Pankratz, Vernon S.; Lee, Adam; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Teo, Soo Hwang; Yip, Cheng Har; Ng, Char-Hong; Vithana, Eranga Nishanthie; Kristensen, Vessela; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Klevebring, Daniel; Schoof, Nils; Hooning, Maartje J.; Martens, John W.M.; Collée, J. Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Balasubramanian, Sabapathy P.; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D.P.; Healey, Catherine S.; Shah, Mitul; Pooley, Karen A.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Sng, Jen-Hwei; Sim, Xueling; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; McKay, James; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Godwin, Andrew K.; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Chen, Shou-Tung; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Ponder, Bruce A.J.; Nevanlinna, Heli; Brown, Melissa A.; Chenevix-Trench, Georgia; Easton, Douglas F.; Dunning, Alison M.

    2013-01-01

    Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1. PMID:23540573

  18. Perinatal exposure to BDE-99 causes decreased protein levels of cyclin D1 via GSK3β activation and increased ROS production in rat pup livers.

    Science.gov (United States)

    Blanco, Jordi; Mulero, Miquel; Domingo, Jose L; Sanchez, Domènec J

    2014-02-01

    We here examined the potential liver toxicity in rat pups from dams exposed during the gestational and lactation periods to 2,2',4,4',5-pentabromodiphenyl ether (BDE-99). Dams were exposed to 0, 1, and 2mg/kg/day of BDE-99 from gestation day 6 to postnatal day 21. When the pups were weaning, the liver from 1 pup of each litter was excised to evaluate oxidative stress markers and the messenger RNA (mRNA) expression of multiple cytochrome P450 (CYP) isoforms. To determine whether thyroid hormone (TH) was disrupted, the protein and mRNA expressions of several TH receptor (TR) isoforms, as well as the protein levels of cyclin D1 and the phosphorylated protein kinases Akt and glycogen synthase kinase 3 beta (GSK3β), were evaluated. Perinatal exposure to BDE-99 produced decreased levels of cyclin D1 in rat pup livers. A decrease in the active form of Akt and an increase in the active form of GSK3β were observed. The decreased Akt pathway may be due to a potential disruption of the nongenomic actions of TH by BDE-99 and its metabolites. This possible TH disruption was noted as a decrease in TR isoforms expression. By contrast, we observed an upregulation of CYP2B1 gene expression, which is correlated with an increase in reactive oxygen species production. This outcome indicates activation of the nuclear constitutive androstane receptor, which could induce the expression of other enzymes capable of metabolizing TH. The present findings support the hypothesis that perinatal exposure to PBDEs, at levels found in humans, may have serious implications for metabolic processes in rat pup livers.

  19. 17-AAG mediated targeting of Hsp90 limits tert activity in peritoneal sarcoma related malignant ascites by downregulating cyclin D1 during cell cycle entry.

    Science.gov (United States)

    Chaklader, M; Das, P; Pereira, J A; Law, A; Chattopadhyay, S; Chatterjee, R; Mondal, A; Law, S

    2012-07-01

    Peritoneal or retro-peritoneal sarcomatosis related malignant ascites formation is a rare but serious consequence of the locoregional metastatic event. The present work aimed to study the effect of the Hsp90 inhibitor (17-AAG), an ansamycin analog, on cell cycle and DNA replication specific chaperone-clients interaction in the event of peritoneal sarcoma related malignant ascites formation in mouse model at the late stage of malignant growth. We administered 17-AAG, an Hsp90 inhibitor, divided doses (330 μg/kg b.w./day for first five days then next ten days with166 μg/kg b.w./day) through intra-peritoneal route of inbred Swiss albino mice bearing full grown peritoneal malignant ascites of sarcoma-180. Our study was evaluated by peripheral blood hemogram analysis, malignant ascitic cytology, cell viability test, survival time and mitotic indexing. Furthermore, flowcytometric HSP90, TERT, CyclinD1, PCNA and GM-CSF expression analysis has been considered for special objective of the study. Our experimental efforts reduced the aggressive proliferation of malignant ascites by drastic downregulation of TERT and cyclin D1 on the verge of cell cycle entry along with DNA replication processivity factor PCNA by directly modulating their folding machinery - heat shock protein 90. Consequently, we observed that malignant ascitic cells became error prone during the event of karyokinesis and produced micronucleus containing malignant cells with low viability. Peripheral neutrophilia due to over-expression of GM-CSF by the peritoneal malignant ascites were also controlled by the treatment with 17-AAG and overall, the treatment modality improved the median survival time. Finally we can conclude that 17AAG administration might serve as a prospective pharmacological agent for the management of peritoneal sarcoma related malignant ascites and throws light towards prolonged survival of the patients concerned.

  20. Human amniotic fluid stem cells (hAFSCs expressing p21 and cyclin D1 genes retain excellent viability after freezing with (dimethyl sulfoxide DMSO

    Directory of Open Access Journals (Sweden)

    Shiva Gholizadeh-Ghaleh Aziz

    2018-04-01

    Full Text Available Human amniotic fluid stem cells (hAFSCs have features intermediate between embryonic and adult SCs, can differentiate into lineages of all three germ layers, and do not develop into tumors in vivo. Moreover, hAFSCs can be easily obtained in routine procedures and there is no ethical or legal limitations regarding their use for clinical and experimental applications. The aim of this study was to assess the effect of slow freezing/thawing and two different concentrations of DMSO (10% DMSO + 90% fetal bovine serum [FBS] and 5% DMSO + 95% FBS on the survival of hAFSCs. hAFSCs were obtained from 5 pregnant women during amniocentesis at 16–22 weeks of gestation. The expression of pluripotency markers (Octamer-binding transcription factor 4 [Oct4] and NANOG by reverse transcription polymerase chain reaction and cell surface markers (cluster of differentiation [CD31], CD44, CD45, and CD90 by flow cytometry was analyzed before and after the slow-freezing. Cell viability was assessed by trypan blue exclusion or MTT assay. Quantitative mRNA expression of Oct4, NANOG, cyclin D1 and p21 was determined by real-time PCR before and after the slow-freezing. Pluripotency of hAFSCs was confirmed by NANOG and POU5F1 (Oct4 gene expression before and after slow-freezing. All hAFSC cultures were positive for CD44 and CD90. A higher viability of hAFSCs was observed after freezing with 90% FBS + 10% DMSO. There was increased expression of NANOG and decreased expression of POU5F1 gene after freezing, compared to control cells (before freezing. DMSO and the process of freezing did not significantly change the expression of p21 and cyclin D1 genes in hAFSCs. Overall, our results indicate the applicability of slow-freezing and DMSO in cryopreservation of SCs.

  1. Expression of Cyclin D1 protein and CCN DI with PNKP genes in peripheral blood mononuclear cells in clean-up worker of Chernobyl accident with different state of immune system

    International Nuclear Information System (INIS)

    Bazika, D.A.; Kubashko, A.V.; Yil'jenko, Yi.M.; Belyajev, O.A.; Pleskach, O.Ya.

    2015-01-01

    The investigate of Cyclin D1+cells levels changes, associated CCND1 and PNKP genes in peripheral blood mononuclear cells in cleanup workers of Chornobyl accident with different state of immune system in depends on the dose irradiation. Analyzed data of the nuclear controller of cell cycle- Cyclin D1 protein expression changes and related CCND1 and PNKP genes in peripheral blood mononuclear cells in cleanup workers Chornobyl accident with different status of immune system in remote period after exposure is represented. Reveled changes in expression of Cyclin D1+cells and regulation of related genes may point on possible radiation-associated firm molecular disturbances occurred during elimination of consequences of Chornobyl accident, that could be a potential basis for cell and humoral communicative links breach in immune system result ing in elevation of stochastic effects like oncopathology in cleanup workers of Chornobyl accident in remote peri od after exposure

  2. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Chen, Chien-Ho; Wang, Y.-J.; Pestell, Richard G.; Albanese, Chris; Chen, R.-J.; Chang, M.-C.; Jeng, J.-H.; Lin, S.-Y.; Liang, Y.-C.; Tseng, H.; Lee, W.-S.; Lin, J.-K.; Chu, J.-S.; Chen, L.-C.; Lee, C.-H.; Tso, W.-L.; Lai, Y.-C.; Wu, C.-H.

    2005-01-01

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser 795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  3. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+-induced neuronal death in cultured hippocampal neurons

    International Nuclear Information System (INIS)

    Li Chenchen; Xing Tairan; Tang Mingliang; Yong Wu; Yan Dan; Deng Hongmin; Wang Huili; Wang Ming; Chen Jutao; Ruan Diyun

    2008-01-01

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb 2+ causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb 2+ . Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb 2+ -induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb 2+ treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 μM) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb 2+ . And that Pb 2+ -elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb 2+ and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death

  4. The effect of miR-338-3p on HBx deletion-mutant (HBx-d382 mediated liver-cell proliferation through CyclinD1 regulation.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    Full Text Available Hepatitis B Virus (HBV DNA integration and HBV X (HBx deletion mutation occurs in HBV-positive liver cancer patients, and C-terminal deletion in HBx gene mutants are highly associated with hepatocarcinogenesis. Our previous study found that the HBx-d382 deletion mutant (deleted at nt 382-400 can down-regulate miR-338-3p expression in HBx-expressing cells. The aim of the present study is to examine the role of miR-338-3p in the HBx-d382-mediated liver-cell proliferation.We established HBx-expressing LO2 cells by Lipofectamine 2000 transfection. A miR-338-3p mimics or inhibitor was transfected into LO2/HBx-d382 and LO2/HBx cells using miR-NC as a control miRNA. In silico analysis of potential miR-338-3p targets revealed that miR-338-3p could target the cell cycle regulatory protein CyclinD1. To confirm that CyclinD1 is negatively regulated by miR-338-3p, we constructed luciferase reporters with wild-type and mutated CyclinD1-3'UTR target sites for miR-338-3p binding. We examined the CyclinD1 expression by real-time PCR and western blot, and proliferation activity by flow cytometric cell cycle analysis, Edu incorporation, and soft agar colony.HBx-d382 exhibited enhanced proliferation and CyclinD1 expression in LO2 cells. miR-338-3p expression inhibited cell proliferation in LO2/HBx-d382 cells (and LO2/HBx cells, and also negatively regulated CyclinD1 protein expression. Of the two putative miR-338-3p binding sites in the CyclinD1-3'UTR region, the effect of miR-338-3p on the second binding site (nt 2397-2403 was required for the inhibition.miR-338-3p can directly regulate CyclinD1 expression through binding to the CyclinD1-3'UTR region, mainly at nt 2397-2403. Down-regulation of miR-338-3p expression is required for liver cell proliferation in both LO2/HBx and LO2/HBx-d382 mutant cells, although the effect is more pronounced in LO2/HBx-d382 cells. Our study elucidated a novel mechanism, from a new miRNA-regulation perspective, underlying the

  5. Distinction between asymptomatic monoclonal B-cell lymphocytosis with cyclin D1 overexpression and mantle cell lymphoma: from molecular profiling to flow cytometry.

    Science.gov (United States)

    Espinet, Blanca; Ferrer, Ana; Bellosillo, Beatriz; Nonell, Lara; Salar, Antonio; Fernández-Rodríguez, Concepción; Puigdecanet, Eulàlia; Gimeno, Javier; Garcia-Garcia, Mar; Vela, Maria Carmen; Luño, Elisa; Collado, Rosa; Navarro, José Tomás; de la Banda, Esmeralda; Abrisqueta, Pau; Arenillas, Leonor; Serrano, Cristina; Lloreta, Josep; Miñana, Belén; Cerutti, Andrea; Florensa, Lourdes; Orfao, Alberto; Sanz, Ferran; Solé, Francesc; Dominguez-Sola, David; Serrano, Sergio

    2014-02-15

    According to current diagnostic criteria, mantle cell lymphoma (MCL) encompasses the usual, aggressive variants and rare, nonnodal cases with monoclonal asymptomatic lymphocytosis, cyclin D1-positive (MALD1). We aimed to understand the biology behind this clinical heterogeneity and to identify markers for adequate identification of MALD1 cases. We compared 17 typical MCL cases with a homogeneous group of 13 untreated MALD1 cases (median follow-up, 71 months). We conducted gene expression profiling with functional analysis in five MCL and five MALD1. Results were validated in 12 MCL and 8 MALD1 additional cases by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in 24 MCL and 13 MALD1 cases by flow cytometry. Classification and regression trees strategy was used to generate an algorithm based on CD38 and CD200 expression by flow cytometry. We found 171 differentially expressed genes with enrichment of neoplastic behavior and cell proliferation signatures in MCL. Conversely, MALD1 was enriched in gene sets related to immune activation and inflammatory responses. CD38 and CD200 were differentially expressed between MCL and MALD1 and confirmed by flow cytometry (median CD38, 89% vs. 14%; median CD200, 0% vs. 24%, respectively). Assessment of both proteins allowed classifying 85% (11 of 13) of MALD1 cases whereas 15% remained unclassified. SOX11 expression by qRT-PCR was significantly different between MCL and MALD1 groups but did not improve the classification. We show for the first time that MALD1, in contrast to MCL, is characterized by immune activation and driven by inflammatory cues. Assessment of CD38/CD200 by flow cytometry is useful to distinguish most cases of MALD1 from MCL in the clinical setting. MALD1 should be identified and segregated from the current MCL category to avoid overdiagnosis and unnecessary treatment. ©2013 AACR

  6. [Effects of Biejiajian Pills on Wnt signal pathway signal molecules β-catenin/TCF4 complex activities and downstream proteins cyclin D1 and MMP-2 in hepatocellular carcinoma cells].

    Science.gov (United States)

    Wen, Bin; Sun, Haitao; He, Songqi; Cheng, Yang; Jia, Wenyan; Fan, Eryan; Pang, Jie

    2014-12-01

    To study the effect of Biejiajian Pills on Wnt signal pathway and the mechanisms underlying its action to suppress the invasiveness of hepatocellular carcinoma. HepG2 cells cultured in the serum of rats fed with Biejiajian Pills for 48 h were examined for β-catenin expression using immunofluorescence, β-catenin/TCF4 complex activity with luciferase, and expressions of the downstream proteins cyclin D1 and MMP-2 using qRT-PCR. Biejiajian Pills-treated sera significantly reduced the expressions of cytoplasmic and nuclear β-catenin protein, cyclin D1 and MMP-2 proteins and lowered the activities of β-catenin/TCF4 complex. Biejiajian Pills may serve as a potential anti-tumor agent, whose effect might be mediated by inhibiting the Wnt/β-catenin pathway.

  7. The effect of the ginger on the apoptosis of hippochampal cells according to the expression of BAX and Cyclin D1 genes and histological characteristics of brain in streptozotocin male diabetic rats.

    Science.gov (United States)

    Molahosseini, A; Taghavi, M M; Taghipour, Z; Shabanizadeh, A; Fatehi, F; Kazemi Arababadi, M; Eftekhar Vaghefe, S H

    2016-10-31

    Diabetes is the most common endocrine disorder in humans with multiple complications including nervous system damages. The aim of the present study was to determine the effect of ginger extract on apoptosis of the neurons of hippocampus, via evaluation of BAX and Cyclin D1 and also histological analysis, in male diabetic rats. In this experimental study, 60 Wistar rats (220 ± 30gr) were conducted in 5 groups as follow: diabetic group treated with saline (group 1), normal group treated with saline (group 2), diabetic group treated with ginger (group 3), diabetic group treated with ginger-insulin (group 4), diabetic group treated with insulin (group 5). STZ (60 mg/kg) was intraperitoneally used to induce the diabetes. Expression levels of BAX and Cyclin D1 were examined using Real-Time PCR technique and the normality of neurons was evaluated using H&E staining method. The results showed that blood glucose level significantly decreased in group 4 when compared to group 1. In molecular analysis, there was no significant difference between groups regarding the expression of BAX gens, while, the expression of Cyclin D1 were significantly decreased in group 4 compared with group 1. Histological analysis revealed that pathological symptoms were lower in group 4 than the other diabetic groups. The results of present study showed that the ginger in addition to lowering blood sugar level, changes the expression of Cyclin D1 gene and histological characteristics in a positive manner. This means that the ginger may protects neurons of the hippocampus from apoptosis in diabetic patients.

  8. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  9. miR-338-3p Is Down-Regulated by Hepatitis B Virus X and Inhibits Cell Proliferation by Targeting the 3′-UTR Region of CyclinD1

    Directory of Open Access Journals (Sweden)

    Xiaoyu Fu

    2012-07-01

    Full Text Available Hepatitis B virus X protein (HBx is recognized as an oncogene in hepatocellular carcinoma (HCC. HBx regulates microRNA expression, including down-regulating miR-338-3p in LO2 cells. Here, we investigated miR-338-3p function in HBx-mediated hepatocarcinogenesis. In 23 HBV-infected HCC clinical patient tumor and adjacent non-tumor control tissues, 17 and 19 tumors expressed HBx mRNA and protein, respectively. When considered as a group, HBV-infected HCC tumors had lower miR-338-3p expression than controls; however, miR-338-3p was only significantly down-regulated in HBx-positive tumors, indicating that HBx inversely correlated with miR-338-3p. Functional characterization of miR-338-3p indicated that miR-338-3p mimics inhibited cell proliferation by inducing cell cycle arrest at the G1/S phase as assessed by EdU and cell cycle assays in HBx-expressing LO2 cells. CyclinD1, containing two putative miR-338-3p targets, was confirmed as a direct target using 3′-UTR luciferase reporter assays from cells transfected with mutated binding sites. Mutating the 2397–2403 nt binding site conferred the greatest resistance to miR-338-3p suppression of CyclinD1, indicating that miR-338-3p suppresses CyclinD1 at this site. Overall, this study demonstrates that miR-338-3p inhibits proliferation by regulating CyclinD1, and HBx down-regulates miR-338-3p in HCC. This newly identified miR-338-3p/CyclinD1 interaction provides novel insights into HBx-mediated hepatocarcinogenesis and may facilitate therapeutic development against HCC.

  10. Hath1 inhibits proliferation of colon cancer cells probably through up-regulating expression of Muc2 and p27 and down-regulating expression of cyclin D1.

    Science.gov (United States)

    Zhu, Dai-Hua; Niu, Bai-Lin; Du, Hui-Min; Ren, Ke; Sun, Jian-Ming; Gong, Jian-Ping

    2012-01-01

    Previous studies showed that Math1 homologous to human Hath1 can cause mouse goblet cells to differentiate. In this context it is important that the majority of colon cancers have few goblet cells. In the present study, the potential role of Hath1 in colon carcinogenesis was investigated. Sections of paraffin-embedded tissues were used to investigate the goblet cell population of normal colon mucosa, mucosa adjacent colon cancer and colon cancer samples from 48 patients. Hath1 and Muc2 expression in these samples were tested by immunohistochemistry, quantitative real-time reverse transcription -PCR and Western blotting. After the recombinant plasmid, pcDNA3.1(+)-Hath1 had been transfected into HT29 colon cancer cells, three clones were selected randomly to test the levels of Hath1 mRNA, Muc2 mRNA, Hath1, Muc2, cyclin D1 and p27 by quantitative real-time reverse transcription-PCR and Western blotting. Moreover, the proliferative ability of HT29 cells introduced with Hath1 was assessed by means of colony formation assay and xenografting. Expression of Hath1, Muc2, cyclin D1 and p27 in the xenograft tumors was also detected by Western blotting. No goblet cells were to be found in colon cancer and levels of Hath1 mRNA and Hath1, Muc2 mRNA and Muc2 were significantly down-regulated. Hath1 could decrease cyclin D1, increase p27 and Muc2 in HT29 cells and inhibit their proliferation. Hath1 may be an anti-oncogene in colon carcinogenesis.

  11. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    Science.gov (United States)

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-09

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.

  12. Expression of proteins FGFR3, PI3K, AKT, p21Waf1/Cip1 and cyclins D1 and D3 in patients with T1 bladder tumours: clinical implications and prognostic significance.

    Science.gov (United States)

    Blanca Pedregosa, A M; Sánchez-González, Á; Carrasco Valiente, J; Ruiz García, J M; Gómez Gómez, E; López Beltrán, A; Requena Tapia, M J

    2017-04-01

    To determine the differential protein expression of biomarkers FGFR3, PI3K (subunits PI3Kp110α, PI3KClassIII, PI3Kp85), AKT, p21Waf1/Cip1 and cyclins D1 and D3 in T1 bladder cancer versus healthy tissue and to study their potential role as early recurrence markers. This is a prospective study that employed a total of 67 tissue samples (55 cases of T1 bladder tumours that underwent transurethral resection and 12 cases of adjacent healthy mucosa). The protein expression levels were assessed using Western blot, and the means and percentages were compared using Student's t-test and the chi-squared test. The survival analysis was conducted using the Kaplan-Meier method and the log-rank test. Greater protein expression was detected for FGFR3, PI3Kp110α, PI3KClassIII, cyclins D1 and D3 and p21Waf1/Cip1 in the tumour tissue than in the healthy mucosa. However, these differences were not significant for PI3Kp85 and AKT. We observed statistically significant correlations between early recurrence and PI3Kp110α, PI3KClassIII, PI3Kp85 and AKT (P=.003, P=.045, P=.050 and P=.028, respectively), between the tumour type (primary vs. recurrence) and cyclin D3 (P=.001), between the tumour size and FGFR3 (P=.035) and between multifocality and cyclin D1 (P=.039). The survival analysis selected FGFR3 (P=.024), PI3Kp110α (P=.014), PI3KClassIII (P=.042) and AKT (P=.008) as markers of early-recurrence-free survival. There is an increase in protein expression levels in bladder tumour tissue. The overexpression of FGFR3, PI3Kp110α, PI3KClassIII and AKT is associated with increased early-recurrence-free survival for patients with T1 bladder tumours. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression.

    Science.gov (United States)

    Yoshikawa, Noriko; Yamada, Shizuo; Takeuchi, Chihiro; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru; Nakamura, Kazuki

    2008-06-01

    Cordyceps sinensis, a parasitic fungus on the larvae of Lepidoptera, has been used as a traditional Chinese medicine. We previously reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. In this study, the radioligand binding assay using [125I]-AB-MECA (a selective adenosine A3 receptor agonist) has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. We also confirmed the involvement of adenosine A3 receptors in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists. Next, indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin using Western blot analysis. In conclusion, this study demonstrated that cordycepin inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition.

  14. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana

    Science.gov (United States)

    Mei, Yuzhen; Yang, Xiuling; Huang, Changjun

    2018-01-01

    The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants. PMID:29293689

  15. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    International Nuclear Information System (INIS)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi; Tomaru, Yasuhisa; Koshikiya, Noboru; Nojima, Junya; Kokabu, Shoichiro; Sakata, Yasuaki; Kobayashi, Akio; Yoda, Tetsuya

    2008-01-01

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblastic cells

  16. Adenocarcinoma of the esophagogastric junction: relationship between clinicopathological data and p53, cyclin D1 and Bcl-2 immunoexpressions Adenocarcinoma da junção esôfago-gástrica: relação entre os dados cllnipatológicos e a imunoexpressão de p53, ciclina D1 e Bcl-2

    Directory of Open Access Journals (Sweden)

    Dárcio Matenhauer Lehrbach

    2009-12-01

    Full Text Available CONTEXT: Esophagogastric junction adenocarcinoma has an aggressive behavior, and TNM (UICC staging is not always accurate enough to categorize patient's outcome. OBJECTIVES: To evaluated p53, cyclin D1 and Bcl-2 immunoexpressions in esophagogastric junction adenocarcinoma patients, without Barrett's esophagus, and to compared to clinicopathological characteristics and survival rate. METHODS: Tissue sections from 75 esophagogastric junction adenocarcinomas resected from 1991 to 2003 were analyzed by immunohistochemistry for p53, cyclin D1 and Bcl-2 using streptavidin-biotin-peroxidase method. The mean follow-up time was 60 months SD = 61.5 (varying from 4 to 273 months. RESULTS: Fifty (66.7% of the tumors were intestinal type and 25 (33.3% were diffuse. Vascular, lymph node and perineural infiltration were verified in 16%, 80% and 68% of the patients, respectively. The patients were distributed according to the TNM staging in IA in 4 (5.3%, IB in 10 (13.3%, II in 15 (20%, IIA in 15 (20%, IIIB in 15 (20% and IV in 16 (21.3%. Immunohistochemical analysis was positive for p53, cyclin D1 and bcl-2 in 68%, 18.7% and 100%, respectively. There was no association between immunoexpression and vascular and/or perineural invasions, clinicopathological characteristics and patients' survival rate. CONCLUSION: In this selected population, there was no association between the immunomarkers, p53, cyclin D1 and bcl-2 and clinicopathological data and/or overall survival.CONTEXTO: O adenocarcinoma da junção esôfago-gástrica tem um comportamento agressivo e o estádio TNM não é sempre suficiente para categorizar o paciente de acordo com a evolução do mesmo. OBJETIVO: Avaliar a imunoexpressão do p53, ciclina D1 e Bcl-2 em pacientes com adenocarcinoma da junção esôfago-gástrica sem esôfago de Barrett e comparar com as características clínicas e sobrevida. MÉTODOS: Cortes histológicos de 75 adenocarcinomas da esôfago-gástrica ressecados de 1991 a

  17. Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 Cancer cells with PX-866 and Raloxifene

    Energy Technology Data Exchange (ETDEWEB)

    Peek, Gregory W. [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL (United States); Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-05-15

    Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of bodily functions and to avoidance of disease conditions, such as cancer, that are mediated in part by aberrant level and regulation of cell cycle proliferation. Value of a gene in regulation depends on its ability to both receive input from multiple sources and transmit signals to multiple effectors. The expression of hTERT and the progression of the cell cycle have been shown to be regulated by an extensive network of gene products and signaling pathways, including the PI3K/Akt and TGF-β pathways. The PI3K inhibitor PX-866 and the competitive estrogen receptor ligand raloxifene have been shown to modify progression of those pathways and, in combination, to decrease proliferation of estrogen receptor positive (ER+) MCF-7 breast cancer cells. We found that combinations of modulators of those pathways decreased not only hTERT transcription but also transcription of additional essential cell cycle regulators such as Cyclin D1. By evaluating known expression profile signatures for TGF-β pathway diversions, we confirmed additional genes such as heparin-binding epidermal growth factor-like growth factor (HB EGF) by which those pathways and their perturbations may also modify cell cycle progression. - Highlights: • PX-866 and raloxifene affect the PI3K/Akt and TGF-β pathways. • PX-866 and raloxifene down-regulate genes up-regulated in cancer. • PX-866 and raloxifene decrease transcription of hTERT and Cyclin D1. • Pathological transcription signatures can identify new defense mechanisms.

  18. The prognostic implication of the expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in primary locally advanced oral squamous cell carcinoma cases: a tissue microarray study.

    Science.gov (United States)

    Solomon, Monica Charlotte; Vidyasagar, M S; Fernandes, Donald; Guddattu, Vasudev; Mathew, Mary; Shergill, Ankur Kaur; Carnelio, Sunitha; Chandrashekar, Chetana

    2016-12-01

    Oral squamous cell carcinomas comprise a heterogeneous tumor cell population with varied molecular characteristics, which makes prognostication of these tumors a complex and challenging issue. Thus, molecular profiling of these tumors is advantageous for an accurate prognostication and treatment planning. This is a retrospective study on a cohort of primary locally advanced oral squamous cell carcinomas (n = 178) of an Indian rural population. The expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in a cohort of primary locally advanced oral squamous cell carcinomas was evaluated. A potential biomarker that can predict the tumor response to treatment was identified. Formalin-fixed paraffin-embedded tumor blocks of (n = 178) of histopathologically diagnosed cases of locally advanced oral squamous cell carcinomas were selected. Tissue microarray blocks were constructed with 2 cores of 2 mm diameter from each tumor block. Four-micron-thick sections were cut from these tissue microarray blocks. These tissue microarray sections were immunohistochemically stained for EGFR, p53, Bcl-2, cyclin D1 and p16. In this cohort, EGFR was the most frequently expressed 150/178 (84%) biomarker of the cases. Kaplan-Meier analysis showed a significant association (p = 0.038) between expression of p53 and a poor prognosis. A Poisson regression analysis showed that tumors that expressed p53 had a two times greater chance of recurrence (unadjusted IRR-95% CI 2.08 (1.03, 4.5), adjusted IRR-2.29 (1.08, 4.8) compared with the tumors that did not express this biomarker. Molecular profiling of oral squamous cell carcinomas will enable us to categorize our patients into more realistic risk groups. With biologically guided tumor characterization, personalized treatment protocols can be designed for individual patients, which will improve the quality of life of these patients.

  19. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt.

    Science.gov (United States)

    Chai, Yu-Shuang; Hu, Jun; Lei, Fan; Wang, Yu-Gang; Yuan, Zhi-Yi; Lu, Xi; Wang, Xin-Pei; Du, Feng; Zhang, Dong; Xing, Dong-Ming; Du, Li-Jun

    2013-05-15

    Berberine acted as a natural medicine with multiple pharmacological activities. In the present study, we examined the effect of berberine against cerebral ischemia damage from cell cycle arrest and cell survival. Oxygen-glucose deprivation of PC12 cells and primary neurons, and carotid artery ligation in mice were used as in vitro and in vivo cerebral ischemia models. We found that the effect of berberine on cell cycle arrest during ischemia was mediated by decreased p53 and cyclin D1, increased phosphorylation of Bad (higher expression of p-Bad and higher ratio of p-Bad to Bad) and decreased cleavage of caspase 3. Meanwhile, berberine activated the PI3K/Akt pathway during the reperfusion, especially the phosphor-activation of Akt, to promote the cell survival. The neural protective effect of berberine was remained in the presence of inhibitor of mitogen-activated protein/extracellular signal-regulated kinase (MEK), but was suppressed by the inhibitors of PI3K and Akt. We demonstrated that berberine induced cell cycle arrest and cell survival to resist cerebral ischemia injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cass, Jamaica D. [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Varma, Sonal [Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada); Day, Andrew G. [Kingston General Hospital, Kingston K7L 2V7 (Canada); Sangrar, Waheed [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Rajput, Ashish B. [Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada); Raptis, Leda H.; Squire, Jeremy [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Madarnas, Yolanda [Department of Oncology, Queen’s University, Kingston K7L 3N6 (Canada); SenGupta, Sandip K. [Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada); Elliott, Bruce E., E-mail: elliottb@queensu.ca [Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston K7L 3N6 (Canada); Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L 3N6 (Canada)

    2012-07-18

    There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status) with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC) scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA) of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H) scores (% positive tumor area x staining intensity 0–3) were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists’ scores, based on Pearson correlation coefficients (0.80–0.90) for continuous data and Kappa statistics (0.55–0.92) for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005) and lymph node negativity (p = 0.002) was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively). Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative) tumors (p = 0.0002). Thus automated quantitation of immunostaining concurs with pathologists’ scoring, and provides meaningful associations with clinico-pathological data.

  1. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  2. Automated Quantitative Analysis of p53, Cyclin D1, Ki67 and pERK Expression in Breast Carcinoma Does Not Differ from Expert Pathologist Scoring and Correlates with Clinico-Pathological Characteristics

    International Nuclear Information System (INIS)

    Cass, Jamaica D.; Varma, Sonal; Day, Andrew G.; Sangrar, Waheed; Rajput, Ashish B.; Raptis, Leda H.; Squire, Jeremy; Madarnas, Yolanda; SenGupta, Sandip K.; Elliott, Bruce E.

    2012-01-01

    There is critical need for improved biomarker assessment platforms which integrate traditional pathological parameters (TNM stage, grade and ER/PR/HER2 status) with molecular profiling, to better define prognostic subgroups or systemic treatment response. One roadblock is the lack of semi-quantitative methods which reliably measure biomarker expression. Our study assesses reliability of automated immunohistochemistry (IHC) scoring compared to manual scoring of five selected biomarkers in a tissue microarray (TMA) of 63 human breast cancer cases, and correlates these markers with clinico-pathological data. TMA slides were scanned into an Ariol Imaging System, and histologic (H) scores (% positive tumor area x staining intensity 0–3) were calculated using trained algorithms. H scores for all five biomarkers concurred with pathologists’ scores, based on Pearson correlation coefficients (0.80–0.90) for continuous data and Kappa statistics (0.55–0.92) for positive vs. negative stain. Using continuous data, significant association of pERK expression with absence of LVI (p = 0.005) and lymph node negativity (p = 0.002) was observed. p53 over-expression, characteristic of dysfunctional p53 in cancer, and Ki67 were associated with high grade (p = 0.032 and 0.0007, respectively). Cyclin D1 correlated inversely with ER/PR/HER2-ve (triple negative) tumors (p = 0.0002). Thus automated quantitation of immunostaining concurs with pathologists’ scoring, and provides meaningful associations with clinico-pathological data

  3. The Diagnostic Usefulness of HMGA2, Survivin, CEACAM6, and SFN/14-3-3 δ in Follicular Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Min Hye Jang

    2015-03-01

    Full Text Available Background: Follicular thyroid carcinoma (FTC is the second most common thyroid malignancy and its differential diagnosis includes follicular adenoma (FA and adenomatous goiter (AG. Several ancillary markers have been suggested to aid in the diagnosis of FTC, but the successful use of these methods still needs to be validated. Methods: In the present study, we verified the immunoexpression of HMGA2, CEACAM6, survivin, and SFN/14-3-3 δ in lesions including 41 AGs, 72 FAs, and 79 FTCs. We evaluated their diagnostic usefulness, combined with galectin 3, Hector Battifora mesothelial 1 (HBME1, cytokeratin 19, and cyclin D1, in diagnosing FTC. Results: The expressions of HBME1 (65.8% and HMGA2 (55.7% were significantly higher in FTCs than in FAs and AGs (p<.001 and p=.005, respectively. HBME1 was the only marker that was more frequently expressed in FTCs than in FAs (p=.021 and it was more frequently expressed in follicular neoplasms than in AGs (p<.001. Among the novel markers, the combination of HMGA2 and HBME1 showed the highest sensitivity (72.2% and specificity (76.1% for diagnosing FTC. CEACAM6, survivin, and SFN/14-3-3 δ were barely expressed in most cases. Conclusions: Our present results show that only HMGA2 can be beneficial in differentiating FTC using the novel markers.

  4. Craniopharyngioma: Survivin expression and ultrastructure

    Science.gov (United States)

    ZHU, JIANG; YOU, CHAO

    2015-01-01

    The aim of the present study was to investigate the significance of survivin protein expression levels in craniopharyngioma. Tumor samples and clinical data were obtained from 50 patients with craniopharyngioma who were admitted to the West China Hospital of Sichuan University (Chengdu, China). The morphology of the craniopharyngioma samples was observed using optical and electron microscopes, and survivin expression was investigated in the samples by immunohistochemical analysis. The immunohistochemical results revealed survivin expression in all of the craniopharyngioma samples, but not in the healthy brain tissue samples. It was identified that survivin was expressed at a higher level in cases of the adamantinomatous type compared with those of the squamous-papillary type, in male patients compared with female patients, in children compared with adults and in recurrent cases compared with non-recurrent cases. Furthermore, no significant difference was detected in survivin expression levels among the tumors of different subtypes and different disease stages. The results of the present study indicate that survivin is significant in the development of craniopharyngioma, and that survivin protein expression levels are a meaningful indicator for assessing craniopharyngioma recurrence. PMID:25435936

  5. IAP survivin regulates atherosclerotic macrophage survival

    NARCIS (Netherlands)

    Blanc-Brude, Olivier P.; Teissier, Elisabeth; Castier, Yves; Lesèche, Guy; Bijnens, Ann-Pascal; Daemen, Mat; Staels, Bart; Mallat, Ziad; Tedgui, Alain

    2007-01-01

    Inflammatory macrophage apoptosis is critical to atherosclerotic plaque formation, but its mechanisms remain enigmatic. We hypothesized that inhibitor of apoptosis protein (IAP) survivin regulates macrophage death in atherosclerosis. Western blot analysis revealed discrete survivin expression in

  6. Basaloid Squamous Cell Carcinoma of the Head and Neck: Subclassification into Basal, Ductal, and Mixed Subtypes Based on Comparison of Clinico-pathologic Features and Expression of p53, Cyclin D1, Epidermal Growth Factor Receptor, p16, and Human Papillomavirus

    Directory of Open Access Journals (Sweden)

    Kyung-Ja Cho

    2017-07-01

    Full Text Available Background Basaloid squamous cell carcinoma (BSCC is a rare variant of squamous cell carcinoma with distinct pathologic characteristics. The histogenesis of BSCC is not fully understood, and the cancer has been suggested to originate from a totipotent primitive cell in the basal cell layer of the surface epithelium or in the proximal duct of secretory glands. Methods Twenty-six cases of head and neck BSCC from Asan Medical Center, Seoul, Korea, reported during a 14-year-period were subclassified into basal, ductal, and mixed subtypes according to the expression of basal (cytokeratin [CK] 5/6, p63 or ductal markers (CK7, CK8/18. The cases were also subject to immunohistochemical study for CK19, p53, cyclin D1, epidermal growth factor receptor (EGFR, and p16 and to in situ hybridization for human papillomavirus (HPV, and the results were clinico-pathologically compared. Results Mixed subtype (12 cases was the most common, and these cases showed hypopharyngeal predilection, older age, and higher expression of CK19, p53, and EGFR than other subtypes. The basal subtype (nine cases showed frequent comedo-necrosis and high expression of cyclin D1. The ductal subtype (five cases showed the lowest expression of p53, cyclin D1, and EGFR. A small number of p16- and/or HPV-positive cases were not restricted to one subtype. BSCC was the cause of death in 19 patients, and the average follow-up period for all patients was 79.5 months. Overall survival among the three subtypes was not significantly different. Conclusions The results of this study suggest a heterogeneous pathogenesis of head and neck BSCC. Each subtype showed variable histology and immunoprofiles, although the clinical implication of heterogeneity was not determined in this study.

  7. Survivin-T34A: molecular mechanism and therapeutic potential

    Directory of Open Access Journals (Sweden)

    Jonathan R Aspe

    2010-12-01

    Full Text Available Jonathan R Aspe, Nathan R WallCenter for Health Disparities Research and Molecular Medicine, Division of Biochemistry and Microbiology, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USAAbstract: The inhibitor of apoptosis protein survivin's threonine 34 to alanine (T34A mutation abolishes a phosphorylation site for p34(cdc2–cyclin B1, resulting in initiation of the mitochondrial apoptotic pathway in cancer cells; however, it has little known direct effects on normal cells. The possibility that targeting survivin in this way may provide a novel approach for selective cancer gene therapy has yet to be fully evaluated. Although a flurry of work was undertaken in the late 1990s and early 2000s, only minor advances on this mutant have recently taken place. We recently described that cells generated to express a stable form of the mutant protein released this survivin-T34A to the conditioned medium. When this conditioned medium was collected and deposited on naive tumor cells, conditioned medium T34A was as effective as some chemotherapeutics in the induction of tumor cell apoptosis, and when combined with other forms of genotoxic stressors potentiated their killing effects. We hope with this review to revitalize the T34A field, as there is still much that needs to be investigated. In addition to determining the therapeutic dose and the duration of drug therapy required at the disease site, a better understanding of other key factors is also important. These include knowledge of target cell populations, cell-surface receptors, changes that occur in the target tissue at the molecular and cellular level with progression of the disease, and the mechanism and site of therapeutic action.Keywords: survivin, T34A, apoptosis, proliferation, therapy

  8. The Survivin −31 Snp in Human Colorectal Cancer Correlates with Survivin Splice Variant Expression and Improved Overall Survival

    Directory of Open Access Journals (Sweden)

    Anna G. Antonacopoulou

    2010-01-01

    Full Text Available Background: Survivin is involved in the regulation of cell division and survival, two key processes in cancer. The majority of studies on survivin in colorectal cancer (CRC have focused on protein expression and less is known about the expression of survivin splicing variants or survivin gene polymorphisms in CRC. In the present study, the mRNA levels of the five known isoforms of survivin as well as survivin protein were assessed in matched normal and neoplastic colorectal tissue. Moreover, the 9386C/T and −31G/C polymorphisms were investigated.

  9. Survivin as a radioresistance factor in pancreatic cancer

    International Nuclear Information System (INIS)

    Asanuma, Koichi; Moriai, Ryosuke; Yajima, Tomomi; Yagihashi, Atsuhito; Yamada, Mikako; Kobayashi, Daisuke; Watanabe, Naoki

    2000-01-01

    We examined whether survivin acts as a constitutive and inducible radioresistance factor in pancreatic cancer cells. Using a quantitative TaqMan reverse transcription-polymerase chain reaction for survivin mRNA in five pancreatic cancer cell lines, we found an inverse relationship between survivin mRNA expression and radiosensitivity. PANC-1 cells, which had the highest survivin mRNA levels, were most resistant to X-irradiation; MIAPaCa-2 cells, which showed the least survivin mRNA expression, were the most sensitive to X-irradiation. Our results suggested that survivin could act as a constitutive radioresistance factor in pancreatic cancer cells. To determine whether radioresistance is enhanced by induction of survivin expression by irradiation, PANC-1 and MIAPaCa-2 cells were subjected to sublethal doses of X-irradiation followed by a lethal dose. Survivin mRNA expression was increased significantly in both PANC-1 and MIAPaCa-2 cell lines by pretreatment with a sublethal dose of X-irradiation, as was cell survival after exposure to the lethal dose. In this system, enzymatic caspase-3 activity was significantly suppressed in cells with acquired resistance. These results suggest that survivin also acts as an inducible radioresistance factor in pancreatic cancer cells. Survivin, then, appears to enhance radioresistance in pancreatic cancer cells; inhibition of survivin mRNA expression may improve the effectiveness of radiotherapy. (author)

  10. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity

    International Nuclear Information System (INIS)

    Liu Wenjin; Sun Maoyun; Jiang Jianhai; Shen Xiaoyun; Sun Qing; Liu Weicheng; Shen Hailian; Gu Jianxin

    2004-01-01

    The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator

  11. Survivin inhibition via EZN-3042 in canine lymphoma and osteosarcoma.

    Science.gov (United States)

    Shoeneman, J K; Ehrhart, E J; Charles, J B; Thamm, D H

    2016-06-01

    Canine lymphoma (LSA) and osteosarcoma (OS) have high mortality rates and remain in need of more effective therapeutic approaches. Survivin, an inhibitor of apoptosis (IAP) family member protein that inhibits apoptosis and drives cell proliferation, is commonly elevated in human and canine cancer. Survivin expression is a negative prognostic factor in dogs with LSA and OS, and canine LSA and OS cell lines express high levels of survivin. In this study, we demonstrate that survivin downregulation in canine LSA and OS cells using a clinically applicable locked nucleic acid antisense oligonucleotide (EZN-3042, Enzon Pharmaceuticals, Piscataway Township, NJ, USA) inhibits growth, induces apoptosis and enhances chemosensitivity in vitro, and inhibits survivin transcription and protein production in orthotopic canine OS xenografts. Our findings strongly suggest that survivin-directed therapies might be effective in treatment of canine LSA and OS and support evaluation of EZN-3042 in dogs with cancer. © 2014 John Wiley & Sons Ltd.

  12. Survivin Expression in Colorectal Adenocarcinoma Using Tissue Micro array

    International Nuclear Information System (INIS)

    Abd El-Hamed, A.

    2005-01-01

    The additional prognostic information closely related to tumor cell biology is essential for the identification of patients with poor prognosis. Survivin, an identified inhibitor of apoptosis, is unique for its expression in human malignancies but not in normal adult cells. This study examined the expression, and potential prognostic value of survivin in colorectal adenocarcinoma (CRC) on tissue micro array (TMA) sections. Analysis of large numbers of tissue samples, improved tissue salvage, cost reduction, ease of interpretation, and significant time saving were realized by using the arrays. Material and Methods: Two-hundred and eighty cases of colorectal adenocarcinoma were arrayed. Immunohistochemical stains of TMA sections were performed for survivin, bcl-2, and p53. Cases were followed up for 5 years. Survivin was detected in 147 of 230 cases (63.9%). No expression of survivin was observed in normal tissues. There was no correlation between survivin immunoreactivity and age, sex, tumor site, tumor size, histopathologic subtype, tumor grade and clinical stage(ρ> 0.05). Prevalence of survivin expression was significantly higher in bcl-2 positive than in bcl-2 negative cases (88.1 % versus 42.1 %, (ρ<0.0001), but was not associated with p53 ((ρ=0.09). The 5-year disease free survival (DFS) for patients with survivin positive colorectal adenocarcinoma was significantly lower than that for patients with survivin negative tumors (46% versus 68.7%, (ρ<0.001). Survivin expression in colorectal adenocarcinoma provides an important prognostic parameter and targeted antagonists of survivin may be beneficial as apoptosis-based therapy for colon cancer

  13. A role for survivin in radioresistance of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Asanuma, Koichi; Kobayashi, Daisuke; Furuya, Daisuke; Tsuji, Naoki; Yagihashi, Atsuhito; Watanabe, Naoki

    2002-01-01

    Using gene-transduced pancreatic cancer cells, we examined whether survivin expression is directly involved in regulation of radiosensitivity. Ordinarily radiosensitive MIAPaCa-2 cells transduced with wild-type survivin gene (MS cells) proliferated more rapidly than cells transduced with control vector. MS cells were significantly less radiosensitive than control vector-transduced cells. Radiation-induced activity of caspase-3, but not caspase-7, was significantly inhibited in MS cells. On the other hand, transduction of a dominant-negative mutant survivin gene into radioresistant PANC-1 cells augmented radiosensitivity. Further, the radiation-induced increase in caspase-3 activity was enhanced, indicating that survivin function was truly inhibited. These results indicate that survivin expression directly down-regulates radiosensitivity. (author)

  14. Identification of extracellular signal-regulated kinase 3 as a new interaction partner of cyclin D3

    International Nuclear Information System (INIS)

    Sun Maoyun; Wei Yuanyan; Yao Luyang; Xie Jianhui; Chen Xiaoning; Wang Hanzhou; Jiang Jianhai; Gu Jianxin

    2006-01-01

    Cyclin D3, like cyclin D1 and D2 isoforms, is a crucial component of the core cell cycle machinery in mammalian cells. It also exhibits its unique properties in many other physiological processes. In the present study, using yeast two-hybrid screening, we identified ERK3, an atypical mitogen-activated protein kinase (MAPK), as a cyclin D3 binding partner. GST pull-down assays showed that cyclin D3 interacts directly and specifically with ERK3 in vitro. The binding of cyclin D3 and ERK3 was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Moreover, carboxy-terminal extension of ERK3 was responsible for its association with intact cyclin D3. These findings further expand distinct roles of cyclin D3 and suggest the potential activity of ERK3 in cell proliferation

  15. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma

    International Nuclear Information System (INIS)

    Greve, B.; Sheikh-Mounessi, F.; Ernst, I.; Eich, H.T.; Kemper, B.; Goette, M.

    2012-01-01

    Background and purpose: Radiotherapy constitutes an essential element in the multimodal therapy of Ewing's sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing's sarcoma in vitro. Material and methods: An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing's sarcoma cell lines with and without irradiation. Results: Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation. Conclusion: Survivin is a radiation-inducible protein in Ewing's sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing's sarcoma. (orig.)

  16. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma.

    Science.gov (United States)

    Greve, B; Sheikh-Mounessi, F; Kemper, B; Ernst, I; Götte, M; Eich, H T

    2012-11-01

    Radiotherapy constitutes an essential element in the multimodal therapy of Ewing's sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing's sarcoma in vitro. An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing's sarcoma cell lines with and without irradiation. Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation. Survivin is a radiation-inducible protein in Ewing's sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing's sarcoma.

  17. the significance of epidermal growth factor receptor and survivin

    African Journals Online (AJOL)

    2013-01-01

    Jan 1, 2013 ... SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE. CYTOLOGY OF ... Advances in molecular biology in the past three decades have .... (normal stomach) and EGFR (placenta) was run. Pressure cooking ...

  18. Oxidative stress specifically downregulates survivin to promote breast tumour formation.

    Science.gov (United States)

    Pervin, S; Tran, L; Urman, R; Braga, M; Parveen, M; Li, S A; Chaudhuri, G; Singh, R

    2013-03-05

    Breast cancer, a heterogeneous disease has been broadly classified into oestrogen receptor positive (ER+) or oestrogen receptor negative (ER-) tumour types. Each of these tumours is dependent on specific signalling pathways for their progression. While high levels of survivin, an anti-apoptotic protein, increases aggressive behaviour in ER- breast tumours, oxidative stress (OS) promotes the progression of ER+ breast tumours. Mechanisms and molecular targets by which OS promotes tumourigenesis remain poorly understood. DETA-NONOate, a nitric oxide (NO)-donor induces OS in breast cancer cell lines by early re-localisation and downregulation of cellular survivin. Using in vivo models of HMLE(HRAS) xenografts and E2-induced breast tumours in ACI rats, we demonstrate that high OS downregulates survivin during initiation of tumourigenesis. Overexpression of survivin in HMLE(HRAS) cells led to a significant delay in tumour initiation and tumour volume in nude mice. This inverse relationship between survivin and OS was also observed in ER+ human breast tumours. We also demonstrate an upregulation of NADPH oxidase-1 (NOX1) and its activating protein p67, which are novel markers of OS in E2-induced tumours in ACI rats and as well as in ER+ human breast tumours. Our data, therefore, suggest that downregulation of survivin could be an important early event by which OS initiates breast tumour formation.

  19. Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization.

    Science.gov (United States)

    Muntean, Andrew G; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F; Blobel, Gerd A; Crispino, John D

    2007-06-15

    Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1-deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1-deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity.

  20. Cyclin D–Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization

    Science.gov (United States)

    Muntean, Andrew G.; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F.; Blobel, Gerd A.

    2007-01-01

    Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1–deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1–deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity. PMID:17317855

  1. Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy.

    Science.gov (United States)

    Mahmoudabady, Maryam; Mathieu, Myrielle; Touihri, Karim; Hadad, Ielham; Da Costa, Agnes Mendes; Naeije, Robert; Mc Entee, Kathleen

    2009-10-09

    Insulin-like growth factor-1 (IGF-1), transforming growth factor beta (TGFbeta) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFbeta and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFbeta, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.

  2. Early diagnostic value of survivin and its alternative splice variants in breast cancer

    International Nuclear Information System (INIS)

    Khan, Salma; Bennit, Heather Ferguson; Turay, David; Perez, Mia; Mirshahidi, Saied; Yuan, Yuan; Wall, Nathan R

    2014-01-01

    The inhibitor of apoptosis (IAP) protein Survivin and its splice variants are differentially expressed in breast cancer tissues. Our previous work showed Survivin is released from tumor cells via small membrane-bound vesicles called exosomes. We, therefore, hypothesize that analysis of serum exosomal Survivin and its splice variants may provide a novel biomarker for early diagnosis of breast cancer. We collected sera from forty breast cancer patients and ten control patients who were disease free for 5 years after treatment. In addition, twenty-three paired breast cancer tumor tissues from those same 40 patients were analyzed for splice variants. Serum levels of Survivin were analyzed using ELISA and exosomes were isolated from this serum using the commercially available ExoQuick kit, with subsequent Western blots and immunohistochemistry performed. Survivin levels were significantly higher in all the breast cancer samples compared to controls (p < 0.05) with exosome amounts significantly higher in cancer patient sera compared to controls (p < 0.01). While Survivin and Survivin-∆Ex3 splice variant expression and localization was identical in serum exosomes, differential expression of Survivin-2B protein existed in the exosomes. Similarly, Survivin and Survivin-∆Ex3 proteins were the predominant forms detected in all of the breast cancer tissues evaluated in this study, whereas a more variable expression of Survivin-2B level was found at different cancer stages. In this study we show for the first time that like Survivin, the Survivin splice variants are also exosomally packaged in the breast cancer patients’ sera, mimicking the survivin splice variant pattern that we also report in breast cancer tissues. Differential expression of exosomal-Survivin, particularly Survivin-2B, may serve as a diagnostic and/or prognostic marker, a “liquid biopsy” if you will, in early breast cancer patients. Furthermore, a more thorough understanding of the role of this

  3. Expression and function of survivin in canine osteosarcoma.

    Science.gov (United States)

    Shoeneman, Jenette K; Ehrhart, E J; Eickhoff, Jens C; Charles, J B; Powers, Barbara E; Thamm, Douglas H

    2012-01-01

    Osteosarcoma has a high mortality rate and remains in need of more effective therapeutic approaches. Survivin is an inhibitor of apoptosis family member protein that blocks apoptosis and drives proliferation in human cancer cells where it is commonly elevated. In this study, we illustrate the superiority of a canine osteosarcoma model as a translational tool for evaluating survivin-directed therapies, owing to the striking similarities in gross and microscopic appearance, biologic behavior, gene expression, and signaling pathway alterations. Elevated survivin expression in primary canine osteosarcoma tissue correlated with increased histologic grade and mitotic index and a decreased disease-free interval (DFI). Survivin attenuation in canine osteosarcoma cells inhibited cell-cycle progression, increased apoptosis, mitotic arrest, and chemosensitivity, and cooperated with chemotherapy to significantly improve in vivo tumor control. Our findings illustrate the utility of a canine system to more accurately model human osteosarcoma and strongly suggest that survivin-directed therapies might be highly effective in its treatment. ©2011 AACR.

  4. Survivin and chromosome instability induced by X-irradiation

    International Nuclear Information System (INIS)

    Shen Bo; Ju Guizhi; Liu Yang

    2006-01-01

    Objective: To explore the biological effect of survivin on chromosome instability induced by X-ray irradiation. Methods: Immunocytochemistry was used to detect the expression of sutvivin in HeLa cells. Carrier pSUPER-SVV was transfected into HeLa cells to interfere the expression of survivin. Flow cytometry assay was applied to detect the occurrence of polyploid at 0 h, 4 h, 12 h, and 48 h after the HeLa cells transfected with pSUPER-SVV and irradiated with 4 Gy X-rays irradiation, and compared with the group irradiated with 4 Gy X-rays but no transfection. Results: The expression of survivin was down-regulated by transfecting with small hair RNA, its depression rate was estimated to be about 32.16% at 48 h after transfection. The occurrence of polyploid giant cells was higher in the 4 Gy X-ray irradiated group at 48 h after the irradiation than the control groups (P<0.001). Being expression of survivin interfered, the occurrence at 12 h or 48 h after irradiation, however, was about two times higher than that in the control group. Conclusion: X-ray irradiation can induce chromosome instability in HeLa cells and the effect could be enhanced by interfering the expression of surviving. It was suggested that survivin plays an important role in maintaining the stability of chromosome. (authors)

  5. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R.; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  6. Activated H-Ras regulates hematopoietic cell survival by modulating Survivin

    International Nuclear Information System (INIS)

    Fukuda, Seiji; Pelus, Louis M.

    2004-01-01

    Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34 + cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G 0 /G 1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells

  7. High survivin expression as a risk factor in patients with anal carcinoma treated with concurrent chemoradiotherapy

    International Nuclear Information System (INIS)

    Fraunholz, Ingeborg; Rödel, Claus; Distel, Luitpold; Rave-Fränk, Marget; Kohler, Daniela; Falk, Stefan; Rödel, Franz

    2012-01-01

    To investigate the prognostic value of survivin expression in pretreatment specimens from patients with anal cancer treated with concurrent 5-FU and mitomycin C-based chemoradiation (CRT). Immunohistochemical staining for survivin was performed in pretreatment biopsies of 62 patients with anal carcinoma. Survivin expression was correlated with clinical and histopathological characteristics as well as local failure free- (LFFS), distant metastases free- (DMFS), cancer specific- (CSS), and overall survival (OS). Survivin staining intensity was weak in 10%, intermediate in 48% and intense in 42% of the patients. No association between survivin expression and clinicopathologic factors (tumor stage, age and HIV status) could be shown. In univariate analysis, the level of survivin staining was significantly correlated with DMFS (low survivin vs. high survivin: 94% vs. 74%, p = 0.04). T-stage, N-stage and the tumor grading were significantly associated with OS and CSS and with DMFS and LFFS, respectively. In multivariate analysis, survivin was confirmed as independent prognostic parameter for DMFS (RR, 0.04; p = 0.02) and for OS (RR, 0.27; p = 0.04). Our results demonstrated that the level of pretreatment survivin is correlated with the clinical outcome in patients with anal carcinoma treated with concurrent CRT. Further studies are warranted to elucidate the complex role of survivin for the oncologic treatment and to exploit the protein as a therapeutic target in combined modality treatment of anal cancer

  8. Survivin - an inhibitor of apoptosis and a new therapeutic target in cancer

    International Nuclear Information System (INIS)

    Pizem, J.; Coer, A.

    2003-01-01

    Survivin is a unique member of the inhibitor of apoptosis (IAP) protein family. It inhibits apoptosis by interfering with post-mitochondrial events during apoptosis, thus blocking activation of caspases. The expression of survivin is among the most tumour specific of all human genes. It is overexpressed in most human cancers but is not detected in most normal tissues. Some molecular mechanisms of survivin upregulation in cancer have been elucidated, including loss of the wild-type p53. Tumours that overexpress survivin generally bear a worse prognosis and are associated with resistance to therapy. Its differential expression in cancer versus normal tissues makes survivin detection a useful tool in cancer diagnostics and a promising therapeutic target. Survivin targeting has resulted in increased spontaneous and induced apoptosis and inhibition of tumour growth. Some anticancer drugs currently introduced into clinical practice might well act by inactivating survivin. (author)

  9. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Lin KY

    2016-05-01

    Full Text Available Kun-Yuan Lin,1 Siao Muk Cheng,2 Shing-Ling Tsai,2 Ju-Ya Tsai,1 Chun-Hui Lin,1 Chun Hei Antonio Cheung1,2 1Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC; 2Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC Abstract: Survivin is a member of the inhibitor-of-apoptosis proteins family. It is overexpressed in many different cancer types but not in the differentiated normal tissue. In addition, overexpression of survivin promotes cancer cell survival and induces chemotherapeutic drug resistance, making it an attractive target for new anticancer interventions. Despite survivin being a promising molecular target for anticancer treatment, it is widely accepted that survivin is only a “semi-druggable” target. Therefore, it is important to develop a new strategy to target survivin for anticancer treatment. In this study, we constructed a novel survivin promoter-driven full-length antisense survivin (pSur/AS-Sur expression plasmid DNA. Promoter activity assay revealed that the activity of the survivin promoter of pSur/AS-Sur correlated with the endogenous expression of survivin at the transcriptional level in the transfected A549, MDA-MB-231, and PANC-1 cancer cells. Western blot analysis showed that liposomal delivery of pSur/AS-Sur successfully downregulated the expression of survivin in A549, MBA-MB-231, and PANC-1 cells in vitro. In addition, delivery of pSur/AS-Sur induced autophagy, caspase-dependent apoptosis, and caspase-independent apoptosis as indicated by the increased LC3B-II conversion, autophagosome formation, caspase-9/-3 and poly(ADP-ribose polymerase-1 cleavage, and apoptosis-inducing factor nuclear translocation in A549, MBA-MB-231, and PANC-1 cells. Importantly, liposomal delivery of pSur/AS-Sur was also capable of decreasing the proliferation of the survivin/MDR1 coexpressing multidrug-resistant KB-TAX50 cancer cells and

  10. Survivin is a therapeutic target in Merkel cell carcinoma

    NARCIS (Netherlands)

    Arora, Reety; Shuda, Masahiro; Guastafierro, Anna; Feng, Huichen; Toptan, Tuna; Tolstov, Yanis; Normolle, Daniel; Vollmer, Laura L; Vogt, Andreas; Dömling, Alexander; Brodsky, Jeffrey L; Chang, Yuan; Moore, Patrick S

    2012-01-01

    Merkel cell polyomavirus (MCV) causes ~80% of primary and metastatic Merkel cell carcinomas (MCCs). By comparing digital transcriptome subtraction deep-sequencing profiles, we found that transcripts of the cellular survivin oncoprotein [BIRC5a (baculoviral inhibitor of apoptosis repeat-containing

  11. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  12. Rebamipide inhibits gastric cancer growth by targeting survivin and Aurora-B

    International Nuclear Information System (INIS)

    Tarnawski, A.; Pai, R.; Chiou, S.-K.; Chai, J.; Chu, E.C.

    2005-01-01

    Rebamipide accelerates healing of gastric ulcers and gastritis but its actions on gastric cancer are not known. Survivin, an anti-apoptosis protein, is overexpressed in stem, progenitor, and cancer cells. In gastric cancer, increased and sustained survivin expression provides survival advantage and facilitates tumor progression and resistance to anti-cancer drugs. Aurora-B kinase is essential for chromosome alignment and mitosis progression but surprisingly its role in gastric cancer has not been explored. We examined in human gastric cancer AGS cells: (1) survivin expression, (2) localization of survivin and Aurora-B (3) cell proliferation, and (4) effects of specific survivin siRNA and/or rebamipide (free radical scavenging drug) on survivin and Aurora-B expression and cell proliferation. Survivin and Aurora-B are strongly expressed in human AGS gastric cancer cells and co-localize during mitosis. Survivin siRNA significantly reduces AGS cell viability. Rebamipide significantly downregulates in AGS cell survivin expression, its association with Aurora-B and cell proliferation. Rebamipide-induced downregulation of survivin is at the transcription level and does not involve ubiquitin-proteasome pathway

  13. Serum Survivin Levels and Outcome of Chemotherapy in Patients with Malignant Mesothelioma

    Directory of Open Access Journals (Sweden)

    Katja Goričar

    2015-01-01

    Full Text Available Background. Survivin is an inhibitor of apoptosis protein involved in the regulation of cell proliferation that could be used as a marker for cancer diagnosis or prognosis. Our aim was to evaluate whether serum survivin levels influence the outcome of cisplatin-based chemotherapy in patients with malignant mesothelioma (MM. Methods. Serum survivin levels were determined using human survivin enzyme-linked immunosorbent assay in 78 MM patients before chemotherapy, after chemotherapy, and at disease progression. The influence on tumor response and survival was evaluated using nonparametric tests and Cox regression. Results. A median serum survivin level at diagnosis was 4.1 (0–217.5 pg/mL. Patients with a progressive disease had significantly higher survivin levels before chemotherapy (p = 0.041. A median serum survivin level after chemotherapy was 73.1 (0–346.2 pg/mL. If survivin levels increased after chemotherapy, patients had, conversely, better response (p = 0.001, OR = 5.40, 95% CI = 1.98–14.72. Unexpectedly, patients with increased survivin levels after chemotherapy also had longer progression-free (p < 0.001, HR = 0.33, 95% CI = 0.20–0.57 and overall survival (p = 0.001, HR = 0.29, 95% CI = 0.14–0.58. Conclusions. These results suggest that serum survivin levels before and during chemotherapy could serve as a biomarker predicting MM treatment response.

  14. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  15. Identification of bile survivin and carbohydrate antigen 199 in distinguishing cholangiocarcinoma from benign obstructive jaundice.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Zhang, Qiangbo; Jin, Bin; Zhu, Min; Zhang, Zongli

    2017-01-01

    To investigate whether bile survivin and carbohydrate antigen 199 (CA199) can be helpful in distinguishing cholangiocarcinoma (malignant obstructive jaundice) from benign obstructive jaundice. Receiver operating characteristic curve was used to evaluate the feasibility of bile survivin and CA199 in differentiating cholangiocarcinoma from benign obstructive jaundice. The area under the curve for survivin and CA199 in bile and serum were 0.780 (p jaundice.

  16. Down-regulation of survivin by oxaliplatin diminishes radioresistance of head and neck squamous carcinoma cells

    International Nuclear Information System (INIS)

    Khan, Zakir; Khan, Noor; Tiwari, Ram P.; Patro, Ishan K.; Prasad, G.B.K.S.; Bisen, Prakash S.

    2010-01-01

    Background: Oxaliplatin is integrated in treatment strategies against a variety of cancers including radiation protocols. Herein, as a new strategy we tested feasibility and rationale of oxaliplatin in combination with radiation to control proliferation of head and neck squamous cell carcinoma (HNSCC) cells and discussed survivin-related signaling and apoptosis induction. Methods: Cytotoxicity and apoptosis induced by radiation and/or oxaliplatin were examined in relation to survivin status using two HNSCC cell lines viz., Cal27 and NT8e, and one normal 293-cell line. Survivin gene knockdown by siRNA was also tested in relevance to oxaliplatin-mediated radiosensitization effects. Results: Survivin plays a critical role in mediating radiation-resistance in part through suppression of apoptosis via a caspase-dependent mechanism. Oxaliplatin treatment significantly decreased expression of survivin in cancer cells within 24-72 h. Apoptotic cells and caspase-3 activity were increased parallely with decrease in cell viability, if irradiated during this sensitive period. The cytotoxicity of oxaliplatin and radiation combination was greater than additive. Survivin gene knockdown experiments have demonstrated the role of survivin in radiosensitization of cancer cells mediated by oxaliplatin. Conclusions: Higher expression of survivin is a critical factor for radioresistance in HNSCC cell lines. Pre-treatment of cancer cells with oxaliplatin significantly increased the radiosensitivity through induction of apoptosis by potently inhibiting survivin.

  17. Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-09-01

    Full Text Available Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4; however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB, indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2 and tropomyosin-related kinase A (TRKA via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer.

  18. Cyclin D1 splice site variant triggers chromosomal aberrations in healthy humans

    Czech Academy of Sciences Publication Activity Database

    Hemminki, K.; Mušák, L.; Vymetálková, Veronika; Šmerhovský, Z.; Halásová, E.; Osina, O.; Letková, L.; Försti, A.; Vodičková, Ludmila; Buchancová, J.; Vodička, Pavel

    2014-01-01

    Roč. 28, č. 3 (2014), s. 721-722 ISSN 0887-6924 Institutional support: RVO:68378041 Keywords : chromosomal aberrations * DNA repair Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.431, year: 2014

  19. (BPH) by down-regulating the expression of PCNA, CyclinD1 and ...

    African Journals Online (AJOL)

    hope&shola

    2012-04-12

    Apr 12, 2012 ... important in treatments of BPH, such as Saw palmetto,. Pygeum africanum and Hypoxis rooperi (Boyle et al.,. 2000; Wilt et al., 2000, 2002) which have long been used to treat BPH successfully. Qianliening capsule (QC) is a traditional Chinese medicine formulation consisting of wine rhubarb, leech,.

  20. The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma

    Science.gov (United States)

    2016-09-01

    additional to t(11;14) and generation of a mouse model . Cancer Genet Cytogenet. 2003;143:32–38. [23] Amin HM, McDonnell TJ, Medeiros LJ, et al...12 h after drug removal. However, in CCND1 KD cells, there was 2.5-fold increase in mitosis , as detected by phosphorylation of Ser10 in histone H3...Francis Group LEUKEMIA & LYMPHOMA, 2016 http://dx.doi.org/10.1080/10428194.2016.1198958 and primary MCL cells in vitro and in a xenotransplant model

  1. DNA repair and cyclin D1 polymorphisms and styrene-induced genotoxicity and immunotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kuricová, Miroslava; Naccarati, Alessio; Kumar, R.; Koskinen, M.; Sanyal, S.; Dušinská, M.; Tulinská, J.; Vodičková, Ludmila; Lisková, A.; Jahnová, E.; Fuortes, L.; Haufroid, V.; Hemminki, K.; Vodička, Pavel

    2005-01-01

    Roč. 207, - (2005), S302-S309 ISSN 0041-008X R&D Projects: GA ČR GA310/03/0437 Institutional research plan: CEZ:AV0Z5039906 Keywords : styrene genotoxicity * immunotoxicity Subject RIV: FM - Hygiene Impact factor: 3.148, year: 2005

  2. Down-regulation of Survivin by Antisense Oligonucleotides Increases Apoptosis, Inhibits Cytokinesis and Anchorage-Independent Growth

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2000-05-01

    Full Text Available Survivin, a member of the inhibitor of apoptosis protein (IAP family, is detected in most common human cancers but not in adjacent normal cells. Previous studies suggest that survivin associates with the mitotic spindle and directly inhibits caspase activity. To further investigate the function of survivin, we used a survivin antisense (AS oligonucleotide to downregulate survivin expression in normal and cancer cells. We found that inhibition of survivin expression increased apoptosis and polyploidy while decreasing colony formation in soft agar. Immunohistochemistry showed that cells without survivin can initiate the cleavage furrow and contractile ring, but cannot complete cytokinesis, thus resulting in multinucleated cells. These findings indicate that survivin plays important roles in a late stage of cytokinesis, as well as in apoptosis.

  3. Increased spontaneous apoptosis, but not survivin expression, is associated with histomorphologic response to neoadjuvant chemoradiation in rectal cancer.

    LENUS (Irish Health Repository)

    McDowell, Dermot T

    2009-11-01

    Survivin has been shown to be an important mediator of cellular radioresistance in vitro. This study aims to compare survivin expression and apoptosis to histomorphologic responses to neoadjuvant radiochemotherapy (RCT) in rectal cancer.

  4. Targeting survivin as a potential new treatment for chondrosarcoma of bone

    Science.gov (United States)

    de Jong, Y; van Oosterwijk, J G; Kruisselbrink, A B; Briaire-de Bruijn, I H; Agrogiannis, G; Baranski, Z; Cleven, A H G; Cleton-Jansen, A-M; van de Water, B; Danen, E H J; Bovée, J V M G

    2016-01-01

    Chondrosarcomas are malignant cartilage-forming bone tumors, which are intrinsically resistant to chemo- and radiotherapy, leaving surgical removal as the only curative treatment option. Therefore, our aim was to identify genes involved in chondrosarcoma cell survival that could serve as a target for therapy. siRNA screening for 51 apoptosis-related genes in JJ012 chondrosarcoma cells identified BIRC5, encoding survivin, as essential for chondrosarcoma survival. Using immunohistochemistry, nuclear as well as cytoplasmic survivin expression was analyzed in 207 chondrosarcomas of different subtypes. Nuclear survivin has been implicated in cell-cycle regulation while cytoplasmic localization is important for its anti-apoptotic function. RT–PCR was performed to determine expression of the most common survivin isoforms. Sensitivity to YM155, a survivin inhibitor currently in phase I/II clinical trial for other tumors, was examined in 10 chondrosarcoma cell lines using viability assay, apoptosis assay and cell-cycle analysis. Survivin expression was found in all chondrosarcoma patient samples. Higher expression of nuclear and cytoplasmic survivin was observed with increasing histological grade in central chondrosarcomas. Inhibition of survivin using YM155 showed that especially TP53 mutant cell lines were sensitive, but no caspase 3/7 or PARP cleavage was observed. Rather, YM155 treatment resulted in a block in S phase in two out of three chondrosarcoma cell lines, indicating that survivin is more involved in cell-cycle regulation than in apoptosis. Thus, survivin is important for chondrosarcoma survival and chondrosarcoma patients might benefit from survivin inhibition using YM155, for which TP53 mutational status can serve as a predictive biomarker. PMID:27159675

  5. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  6. Prognostic value and targeted inhibition of survivin expression in esophageal adenocarcinoma and cancer-adjacent squamous epithelium.

    Directory of Open Access Journals (Sweden)

    Usha Malhotra

    Full Text Available Survivin is an inhibitor of apoptosis and its over expression is associated with poor prognosis in several malignancies. While several studies have analyzed survivin expression in esophageal squamous cell carcinoma, few have focused on esophageal adenocarcinoma (EAC and/or cancer-adjacent squamous epithelium (CASE. The purpose of this study was 1 to determine the degree of survivin up regulation in samples of EAC and CASE, 2 to evaluate if survivin expression in EAC and CASE correlates with recurrence and/or death, and 3 to examine the effect of survivin inhibition on apoptosis in EAC cells.Fresh frozen samples of EAC and CASE from the same patient were used for qRT-PCR and Western blot analysis, and formalin-fixed, paraffin-embedded tissue was used for immunohistochemistry. EAC cell lines, OE19 and OE33, were transfected with small interfering RNAs (siRNAs to knockdown survivin expression. This was confirmed by qRT-PCR for survivin expression and Western blot analysis of cleaved PARP, cleaved caspase 3 and survivin. Survivin expression data was correlated with clinical outcome.Survivin expression was significantly higher in EAC tumor samples compared to the CASE from the same patient. Patients with high expression of survivin in EAC tumor had an increased risk of death. Survivin expression was also noted in CASE and correlated with increased risk of distant recurrence. Cell line evaluation demonstrated that inhibition of survivin resulted in an increase in apoptosis.Higher expression of survivin in tumor tissue was associated with increased risk of death; while survivin expression in CASE was a superior predictor of recurrence. Inhibition of survivin in EAC cell lines further showed increased apoptosis, supporting the potential benefits of therapeutic strategies targeted to this marker.

  7. Survivin mRNA antagonists using locked nucleic acid, potential for molecular cancer therapy

    DEFF Research Database (Denmark)

    Fisker, Niels; Westergaard, Majken; Hansen, Henrik Frydenlund

    2007-01-01

    We have investigated the effects of different locked nucleic acid modified antisense mRNA antagonists against Survivin in a prostate cancer model. These mRNA antagonists were found to be potent inhibitors of Survivin expression at low nanomolar concentrations. Additionally there was a pronounced ...

  8. Detection of survivin mRNA in healthy oral mucosa, oral leucoplakia and oral cancer.

    Science.gov (United States)

    Lodi, G; Franchini, R; Bez, C; Sardella, A; Moneghini, L; Pellegrini, C; Bosari, S; Manfredi, M; Vescovi, P; Carrassi, A

    2010-01-01

    Survivin is involved in modulation of cell death and cell division processes. Survivin expression in normal adult tissues has not been fully understood, although it is markedly lower than in cancer, where it is over-expressed. To investigate survivin expression in normal, potentially malignant and cancerous oral mucosa. We measured survivin mRNA levels by real-time RT-PCR in specimens of oral mucosa (15 from normal mucosa, 17 from potentially malignant lesions, 17 from neoplasms). Scores were compared using Kruskal-Wallis test and post hoc according to Conover. Chi-squared test was used for dichotomous data. The median relative levels of survivin mRNA resulted six for normal mucosa, eight for potentially malignant lesions, 13 for cancers: differences among these three groups were statistically significant, as between cancer and potentially malignant lesions. Expression in normal mucosa and potentially lesions group showed no significant difference. Low, but not marginal expression of survivin in normal mucosa is a new finding, and it could be explained with the higher sensibility of our methods. Survivin expression in oral potentially malignant lesions might indicate a progressive deregulation of expression paralleling oncogenesis, particularly during the first stages of process, suggesting a putative predictive role for survivin.

  9. Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers

    Directory of Open Access Journals (Sweden)

    Hsieh Hsing-Pang

    2009-07-01

    Full Text Available Abstract Background Survivin is a dual function protein. It inhibits the apoptosis of cells by inhibiting caspases, and also promotes cell growth by stabilizing microtubules during mitosis. Over-expression of survivin has been demonstrated to induce drug-resistance to various chemo-therapeutic agents such as cisplatin (DNA damaging agent and paclitaxel (microtubule stabilizer in cancers. However, survivin-induced resistance to microtubule de-stabilizers such as Vinca alkaloids and Combretastatin A-4 (CA-4-related compounds were seldom demonstrated in the past. Furthermore, the question remains as to whether survivin plays a dominant role in processing cytokinesis or inhibiting caspases activity in cells treated with anti-mitotic compounds. The purpose of this study is to evaluate the effect of survivin on the resistance and susceptibility of human cancer cells to microtubule de-stabilizer-induced cell death. Results BPR0L075 is a CA-4 analog that induces microtubule de-polymerization and subsequent caspase-dependent apoptosis. To study the relationship between the expression of survivin and the resistance to microtubule de-stabilizers, a KB-derived BPR0L075-resistant cancer cell line, KB-L30, was generated for this study. Here, we found that survivin was over-expressed in the KB-L30 cells. Down-regulation of survivin by siRNA induced hyper-sensitivity to BPR0L075 in KB cells and partially re-stored sensitivity to BPR0L075 in KB-L30 cells. Western blot analysis revealed that down-regulation of survivin induced microtubule de-stabilization in both KB and KB-L30 cells. However, the same treatment did not enhance the down-stream caspase-3/-7 activities in BPR0L075-treated KB cells. Translocation of a caspase-independent apoptosis-related molecule, apoptosis-inducing factor (AIF, from cytoplasm to the nucleus was observed in survivin-targeted KB cells under BPR0L075 treatment. Conclusion In this study, survivin plays an important role in the

  10. Immunohistochemical Expression of Survivin in Breast Carcinoma: Relationship with Clinico pathological Parameters, Proliferation and Molecular Classification

    International Nuclear Information System (INIS)

    YOUSSEF, N.S.; HEWEDI, I.H.; ABD RABOH, N.M.

    2008-01-01

    Background and Objective: Survivin is a novel member of the inhibitor of apoptosis (IAP) gene family. It is associated with more aggressive behavior and parameters of poor prognosis in most human cancers including gastric, colorectal and bladder carcinomas. However, conflicting data exist on its prognostic effect in breast cancer. This current study is designed to assess survivin expression in breast carcinoma relating results with clinico pathological parameters, proliferation (MIB-1) and molecular classification. Material and Methods: Our retrospective study com- prised of 65 archived cases of breast carcinoma. Samples from the tumor and the adjacent normal breast tissue were immuno stained for survivin and MIB-1. Nuclear and cytoplasmic survivin expression was evaluated in normal breast tissue and carcinoma regarding both the intensity and the percentage of positive cells. ER, PR, HER2 were used as surrogate markers to classify the cases into four molecular subtypes. Results: Survivin expression was detected in 78.5% of breast carcinomas. The adjacent normal breast tissue was immuno negative. Survivin expression showed significant association with increased tumor size ( p <0.0001), high histologic grade ( p =0.04), lymph node metastases ( p <0.001), advanced tumor stage ( p <0.0001), MIB-1 expression ( p =0.02), negative estrogen receptor status ( p =0.01) and negative progesterone receptor status ( p <0.0001). The subcellular localization of survivin significantly related to histologic grade, stage and lymph node involvement. The percentage of TNP (triple negative phenotype) and HER2+/ER-PR- tumors expressing survivin were significantly higher compared to the Luminal subtypes ( p =0.01). Conclusion: Survivin expression was associated with parameters of poor prognosis in breast cancer. Moreover, the cancer-specific expression of survivin, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a potential target for novel

  11. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiguo, E-mail: weiguozhangHU@gmail.com; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-08-12

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of Rb−S780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. - Highlights: • miR-18a promotes the proliferation of ESCC cells. • miR-18a increase cyclin D1 expression in ESCC cells. • miR-18a directly targets PTEN in ESCC cells. • Inhibition of AKT-mTOR prevents miR-18a-induced cyclin D1 in ESCC cells. • miR-18a antagomir sensitizes ESCC cells to cisplatin.

  12. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    Science.gov (United States)

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  13. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    Science.gov (United States)

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  14. SU-E-T-320: The Effect of Survivin Perturbation On the Radiation Response of Breast Cancer Cell Lines

    International Nuclear Information System (INIS)

    Smith, D; Debeb, B; Woodward, W

    2014-01-01

    Purpose: Survivin is the smallest member of the inhibitor of apoptosis protein family and is well-known for its universal over-expression in human cancers. Due to its role in apoptosis and cellular proliferation, survivin is implicated in the radiation response in several cancer types, and antisurvivin treatments have had success as a radiation sensitizer in many preclinical cancer models. As no studies to date have reported survivin as a factor affecting radiation resistance in breast cancer models, we sought to evaluate the synergistic relationship between survivin function and irradiation in breast cancer cell lines. Methods: Information regarding survivin protein expression in breast cancer was retrieved from three public databases: Oncomine, Kaplan-Meier Plotter, and GOBO. For the in vitro studies, survivin function was compromised by transducing a non-functional mutant form (survivin-DN) into two breast cancer cell lines, the estrogen receptor-positive MCF7 and the triple-negative, inflammatory SUM149. Cell growth was compared in the survivin-DN and control populations with colony-formation assays. To assess how survivin affects radiation response, clonogenic assays were performed by irradiating the cell lines up to 6 Gy. Results: From the public databases, survivin is more highly expressed in triple-negative breast cancer compared to all other subtypes, and is prognostic of poor survival in all breast cancer patients. In MCF7, the survivin-DN population had decreased colony-formation potential; the opposite was true in SUM149. In the clonogenic assays, abrogation of survivin function radio-protected MCF7 cells in monolayer and 3D growth conditions, while SUM149 survivin-DN cells were radiosensitized in monolayer conditions. Conclusion: We observed synergy between survivin function and radiation, although the results between the two cell lines were disparate. Further investigation is required to identify the mechanism of this discrepancy, including evaluation

  15. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.

    Science.gov (United States)

    Brun, S N; Markant, S L; Esparza, L A; Garcia, G; Terry, D; Huang, J-M; Pavlyukov, M S; Li, X-N; Grant, G A; Crawford, J R; Levy, M L; Conway, E M; Smith, L H; Nakano, I; Berezov, A; Greene, M I; Wang, Q; Wechsler-Reya, R J

    2015-07-01

    Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease.

  16. Prognostic value of survivin expression in parotid gland cancer in consideration of different histological subtypes.

    Science.gov (United States)

    Stenner, Markus; Demgensky, Ariane; Molls, Christoph; Hardt, Aline; Luers, Jan C; Grosheva, Maria; Huebbers, Christian U; Klussmann, Jens P

    2011-05-01

    Cancer of the major salivary glands comprises a morphological diverse group of rare tumours of largely unknown cause. Survivin, an inhibitor of apoptosis has shown to be a significant prognostic indicator in various human cancers. The aim of this study was to assess the long-term prognostic value of survivin in a large group of histological different salivary gland cancers. We analysed the survivin expression in 143 patients with parotid gland cancer by means of immunohistochemistry and tissue micro array. Survivin expression was categorised into a low and a high expressing group. The experimental findings were correlated with clinicopathological and survival parameters. The mean follow-up time was 54.8 months. A positive cytoplasmic expression of survivin was found in 61.5%, a high expression in 25.9% of all specimens. In the whole group, high cytoplasmic survivin expression significantly indicated a poor 5-year disease-free and overall survival rate (p < 0.0001, p = 0.003). This applied for all adeno-, adenoid cystic and undifferentiated carcinomas whereas in mucoepidermoid carcinomas an analogical non-significant trend could be observed. A high cytoplasmic survivin expression significantly indicated a poor survival in high grade but not in low grade tumours. A multivariate analysis revealed that high cytoplasmic survivin expression was the only significant negative prognostic indicator for a poor 5-year disease-free survival rate in all patients (p = 0.042). The correlation between cytoplasmic survivin expression and survival probabilities of salivary gland cancer might make this an effective tool in patient follow-up, prognosis and targeted therapy in future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin

    Directory of Open Access Journals (Sweden)

    Eisch Amelia

    2010-01-01

    Full Text Available Abstract Background Survivin is a unique member of the inhibitor of apoptosis protein (IAP family in that it exhibits antiapoptotic properties and also promotes the cell cycle and mediates mitosis as a chromosome passenger protein. Survivin is highly expressed in neural precursor cells in the brain, yet its function there has not been elucidated. Results To examine the role of neural precursor cell survivin, we first showed that survivin is normally expressed in periventricular neurogenic regions in the embryo, becoming restricted postnatally to proliferating and migrating NPCs in the key neurogenic sites, the subventricular zone (SVZ and the subgranular zone (SGZ. We then used a conditional gene inactivation strategy to delete the survivin gene prenatally in those neurogenic regions. Lack of embryonic NPC survivin results in viable, fertile mice (SurvivinCamcre with reduced numbers of SVZ NPCs, absent rostral migratory stream, and olfactory bulb hypoplasia. The phenotype can be partially rescued, as intracerebroventricular gene delivery of survivin during embryonic development increases olfactory bulb neurogenesis, detected postnatally. SurvivinCamcre brains have fewer cortical inhibitory interneurons, contributing to enhanced sensitivity to seizures, and profound deficits in memory and learning. Conclusions The findings highlight the critical role that survivin plays during neural development, deficiencies of which dramatically impact on postnatal neural function.

  18. Targeting Survivin by 3, 3'-Diindolylmethane (DIM) for Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Rahman, K. M

    2008-01-01

    ...) family, is associated with both progression of prostate carcinoma and drug resistance. Therefore, we hypothesized that survivin plays a role in the development of hormone-refractory prostate cancer (HRPC...

  19. Targeting Survivin by 3, 3'-Diindolylmethane (DIM) for Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Rahman, K. M

    2008-01-01

    ...) and resists killing by chemotherapeutic agents; thus the down-regulation of survivin by DIM, a non-toxic dietary compound formed in the stomach after consumption of Brassica vegetables like broccoli or cabbage, has been known to have cancer...

  20. A cyclin-dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer.

    Directory of Open Access Journals (Sweden)

    Shu-Fu Lin

    Full Text Available We explored the therapeutic effects of dinaciclib, a cyclin-dependent kinase (CDK inhibitor, in the treatment of thyroid cancer.Seven cell lines originating from three pathologic types of thyroid cancer (papillary, follicular and anaplastic were studied. The cytotoxicity of dinaciclib was measured using a lactate dehydrogenase assay. The expression of proteins associated with cell cycle and apoptosis was assessed using Western blot analysis and immunofluorescence microscopy. Cell cycle distribution was measured by flow cytometry and immunofluorescence microscopy. Apoptosis and caspase-3 activity were measured by flow cytometry and fluorometric assay. Mice bearing flank anaplastic thyroid cancer (ATC were treated with intraperitoneal injections of dinaciclib.Dinaciclib inhibited thyroid cancer cell proliferation in a dose-dependent manner. Dinaciclib had a low median-effect dose (≤ 16.0 nM to inhibit cell proliferation in seven thyroid cancer cell lines. Dinaciclib decreased CDK1, cyclin B1, and Aurora A expression, induced cell cycle arrest in the G2/M phase, and induced accumulation of prophase mitotic cells. Dinaciclib decreased Mcl-1, Bcl-xL and survivin expression, activated caspase-3 and induced apoptosis. In vivo, the growth of ATC xenograft tumors was retarded in a dose-dependent fashion with daily dinaciclib treatment. Higher-dose dinaciclib (50 mg/kg caused slight, but significant weight loss, which was absent with lower-dose dinaciclib (40 mg/kg treatment.Dinaciclib inhibited thyroid cancer proliferation both in vitro and in vivo. These findings support dinaciclib as a potential drug for further studies in clinical trials for the treatment of patients with refractory thyroid cancer.

  1. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Salma Khan

    Full Text Available Survivin is expressed in prostate cancer (PCa, and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment.Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively.Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six or high (nine Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls.These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.

  2. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    NARCIS (Netherlands)

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  3. Survivin expression and prognostic significance in pediatric malignant peripheral nerve sheath tumors (MPNST.

    Directory of Open Access Journals (Sweden)

    Rita Alaggio

    Full Text Available Malignant peripheral nerve sheath tumors (MPNST are very aggressive malignancies comprising approximately 5-10% of all soft tissue sarcomas. In this study, we focused on pediatric MPNST arising in the first 2 decades of life, as they represent one the most frequent non-rhabdomyosarcomatous soft tissue sarcomas in children. In MPNST, several genetic alterations affect the chromosomal region 17q encompassing the BIRC5/SURVIVIN gene. As cancer-specific expression of survivin has been found to be an effective marker for cancer detection and outcome prediction, we analyzed survivin expression in 35 tumor samples derived from young patients affected by sporadic and neurofibromatosis type 1-associated MPNST. Survivin mRNA and protein expression were assessed by Real-Time PCR and immunohistochemical staining, respectively, while gene amplification was analyzed by FISH. Data were correlated with the clinicopathological characteristics of patients. Survivin mRNA was overexpressed in pediatric MPNST and associated to a copy number gain of BIRC5; furthermore, increased levels of transcripts correlated with a higher FNCLCC tumor grade (grade 1 and 2 vs. 3, p = 0.0067, and with a lower survival probability (Log-rank test, p = 0.0038. Overall, these data support the concept that survivin can be regarded as a useful prognostic marker for pediatric MPNST and a promising target for therapeutic interventions.

  4. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sara Carpi

    Full Text Available Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes. MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.

  5. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  6. PARK2 orchestrates cyclins to avoid cancer

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 46, č. 6 (2014), s. 527-528 ISSN 1061-4036 Institutional support: RVO:68378050 Keywords : PARK2 * G1/S-phase cyclin * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.352, year: 2014

  7. Identification of Cyclin A Binders with a Fluorescent Peptide Sensor.

    Science.gov (United States)

    Pazos, Elena; Mascareñas, José L; Vázquez, M Eugenio

    2016-01-01

    A peptide sensor that integrates the 4-dimethylaminophthalimide (4-DMAP) fluorophore in a short cyclin A binding sequence displays a large fluorescence emission increase upon interacting with the cyclin A Binding Groove (CBG). Competitive displacement assays of this probe allow the straightforward identification of peptides that interact with the CBG, which could potentially block the recognition of CDK/cyclin A kinase substrates.

  8. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression

    Science.gov (United States)

    Harashima, Nanae; Takenaga, Keizo; Akimoto, Miho; Harada, Mamoru

    2017-01-01

    Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy. PMID:28476028

  9. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    Directory of Open Access Journals (Sweden)

    Maritess Gay Asumen

    2010-07-01

    Full Text Available Maritess Gay Asumen1, Tochukwu V Ifeacho2, Luke Cockerham3, Christina Pfandl4, Nathan R Wall31Touro University’s College of Osteopathic Medicine, Vallejo, CA, USA; 2University of Southern California, Los Angeles, CA, USA; 3Center for Health Disparities Research and Molecular Medicine, Loma Linda University, CA, USA; 4Green Mountain Antibodies, Burlington, VT, USAAbstract: Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light- initiated DNA damage and that its distribution may be responsible for its multifunctionality.Keywords: survivin, PIK kinases, ATM, ATR, DNA-PK

  10. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  11. Misexpression of cyclin B3 leads to aberrant spermatogenesis.

    Science.gov (United States)

    Refik-Rogers, Jale; Manova, Katia; Koff, Andrew

    2006-09-01

    Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.

  12. Geodesics in (Rn, d1

    Directory of Open Access Journals (Sweden)

    Mehmet KILIÇ

    2016-09-01

    Full Text Available The notion of geodesic, which may be regarded as an extension of the line segment in Euclidean geometry to the space we study in, has an important place in many branches of geometry, such as Riemannian geometry, Metric geometry, to name but a few. In this article, the concept of geodesic in a metric space will be introduced, then geodesics in the space (Rn, d1 will be characterized. Furthermore, some examples will be presented to demonstrate the effectiveness of the main result.

  13. Downregulation of survivin by siRNA inhibits invasion and promotes apoptosis in neuroblastoma SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Liang, H. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China); Cao, W. [Department of Obstetrics, Qingdao Central Hospital, Qingdao (China); Xu, R.; Ju, X.L. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China)

    2014-05-23

    Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.

  14. EMGWS, D1 projectile tests

    International Nuclear Information System (INIS)

    Creighton, W.J.

    1991-01-01

    This paper reports on the 90 mm EMGWS D1 Projectile which is an unguided projectile that is designed for launch from an Electromagnetic gun to achieve significant armor penetration. It is being developed under the broader program called Electromagnetic Gun Weapon System (EMGWS) which is sponsored by DARPA, DNA, and the U.S. Army. The 90 mm D1 Type II 'workhorse' Projectile is used to prove out material strength, fabrication techniques, and projectile structural integrity. The type II flight projectile is designed to allow maximum stress levels of 100-ksi when launched at 100-kilogees peak acceleration. The total weight of the projectile is 2.0 kg to attain a muzzle velocity of 3.0 km/s from a 9-Megajoule EM Gun. The Type II projectile configuration employs a tungsten nosetip plus 12 segmented tungsten penetrators, a two-piece aluminum discarding sabot, an aluminum pusher plate, and a nylon obturator. The pusher plate can incorporate either a solid or plasma armature

  15. Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin.

    Science.gov (United States)

    Stache, Christina; Bils, Christiane; Fahlbusch, Rudolf; Flitsch, Jörg; Buchfelder, Michael; Stefanits, Harald; Czech, Thomas; Gaipl, Udo; Frey, Benjamin; Buslei, Rolf; Hölsken, Annett

    2016-12-01

    OBJECTIVE In this study, the authors investigated the underlying mechanisms responsible for high tumor recurrence rates of adamantinomatous craniopharyngioma (ACP) after radiotherapy and developed new targeted treatment protocols to minimize recurrence. ACPs are characterized by the activation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR), known to mediate radioresistance in various tumor entities. The impact of tyrosine kinase inhibitors (TKIs) gefitinib or CUDC-101 on radiation-induced cell death and associated regulation of survivin gene expression was evaluated. METHODS The hypothesis that activated EGFR promotes radioresistance in ACP was investigated in vitro using human primary cell cultures of ACP (n = 10). The effects of radiation (12 Gy) and combined radiochemotherapy on radiosensitivity were assessed via cell death analysis using flow cytometry. Changes in target gene expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Survivin, identified in qRT-PCR to be involved in radioresistance of ACP, was manipulated by small interfering RNA (siRNA), followed by proliferation and vitality assays to further clarify its role in ACP biology. Immunohistochemically, survivin expression was assessed in patient tumors used for primary cell cultures. RESULTS In primary human ACP cultures, activation of EGFR resulted in significantly reduced cell death levels after radiotherapy. Treatment with TKIs alone and in combination with radiotherapy increased cell death response remarkably, assessed by flow cytometry. CUDC-101 was significantly more effective than gefitinib. The authors identified regulation of survivin expression after therapeutic intervention as the underlying molecular mechanism of radioresistance in ACP. EGFR activation promoting ACP cell survival and proliferation in vitro is consistent with enhanced survivin gene expression shown by qRT-PCR. TKI treatment, as well as the combination with

  16. Radiation induced expression of survivin in Ewing sarcoma cell-lines

    International Nuclear Information System (INIS)

    Sheikh-Mounessi, F.; Willich, N.; Greve, B.

    2009-01-01

    Full text: Introduction: Survivin belongs to the Inhibitor of Apoptosis Protein Family (IAP), is a protein of 16.5 kD and active as a homodimer. It is overexpressed in nearly all human tumors and has a vital function in cell division and apoptotic processes. Beside its role as a relevant prognostic and predictive factor it was described to be a molecular target to improve effectiveness of radiotherapy. We investigated the radiation induced survivin expression in Ewing sarcoma cell-lines. Methods: Ewing sarcoma cells were either irradiated with 10 Gy X-ray and harvested at different time points (0, 2, 4, 6, 10 and 24 h) or irradiated with different doses (0, 2, 5 and 10 Gy) and harvested 24 h later. Protein and mRNA expression was analysed by Westernblot or Real-Time PCR. Results: Directly after irradiation with 10 Gy X-ray survivin mRNA expression was increased in relation to the reference GAPDH. Protein expression was increased in a time dependent manner and reached a maximum after 24h. Three of four investigated cell-lines showed a significant dose dependent increase of survivin protein concentration 24h after irradiation. The same three cell-lines showed a LD50 of >30 Gy. The line with the lowest dose dependent survivin induction was investigated to be most radiosensitive (LD50 = 24 Gy). Discussion: Ewing sarcoma is a childhood tumor with relatively poor prognosis. This tumor often shows significant therapeutic resistance to chemo- and/or radiotherapy. It would be of high interest to find new therapeutic approaches for its treatment. We found a remarkable overexpression of survivin in untreated Ewing sarcoma and a time and dose dependent increase of survivin protein concentration after irradiation with X-ray. The cell-line with the lowest survivin induction showed the highest radiosensitivity. In conclusion, our results show that survivin is an inducible radioresistance factor in Ewing sarcoma. This may open new therapeutic options to treat this aggressive

  17. Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd. (Scion Research.)

    2005-11-30

    A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell

  18. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator

    Science.gov (United States)

    Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.

    2016-01-01

    ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243

  19. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan)

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E, a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.

  20. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    Science.gov (United States)

    2011-01-01

    Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma. PMID:21457573

  1. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    International Nuclear Information System (INIS)

    Lechler, Philipp; Renkawitz, Tobias; Campean, Valentina; Balakrishnan, Sanjeevi; Tingart, Markus; Grifka, Joachim; Schaumburger, Jens

    2011-01-01

    Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G 2 /M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma

  2. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Grifka Joachim

    2011-04-01

    Full Text Available Abstract Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma.

  3. Survivin as a potential mediator to support autoreactive cell survival in myasthenia gravis: a human and animal model study.

    Directory of Open Access Journals (Sweden)

    Linda L Kusner

    Full Text Available The mechanisms that underlie the development and maintenance of autoimmunity in myasthenia gravis are poorly understood. In this investigation, we evaluate the role of survivin, a member of the inhibitor of apoptosis protein family, in humans and in two animal models. We identified survivin expression in cells with B lymphocyte and plasma cells markers, and in the thymuses of patients with myasthenia gravis. A portion of survivin-expressing cells specifically bound a peptide derived from the alpha subunit of acetylcholine receptor indicating that they recognize the peptide. Thymuses of patients with myasthenia gravis had large numbers of survivin-positive cells with fewer cells in the thymuses of corticosteroid-treated patients. Application of a survivin vaccination strategy in mouse and rat models of myasthenia gravis demonstrated improved motor assessment, a reduction in acetylcholine receptor specific autoantibodies, and a retention of acetylcholine receptor at the neuromuscular junction, associated with marked reduction of survivin-expressing circulating CD20+ cells. These data strongly suggest that survivin expression in cells with lymphocyte and plasma cell markers occurs in patients with myasthenia gravis and in two animal models of myasthenia gravis. Survivin expression may be part of a mechanism that inhibits the apoptosis of autoreactive B cells in myasthenia gravis and other autoimmune disorders.

  4. Survivin gene levels in the peripheral blood of patients with gastric cancer independently predict survival

    Directory of Open Access Journals (Sweden)

    Scalerta Romano

    2009-12-01

    Full Text Available Abstract Background The detection of circulating tumor cells (CTC is considered a promising tool for improving risk stratification in patients with solid tumors. We investigated on whether the expression of CTC related genes adds any prognostic power to the TNM staging system in patients with gastric carcinoma. Methods Seventy patients with TNM stage I to IV gastric carcinoma were retrospectively enrolled. Peripheral blood samples were tested by means of quantitative real time PCR (qrtPCR for the expression of four CTC related genes: carcinoembryonic antigen (CEA, cytokeratin-19 (CK19, vascular endothelial growth factor (VEGF and Survivin (BIRC5. Results Gene expression of Survivin, CK19, CEA and VEGF was higher than in normal controls in 98.6%, 97.1%, 42.9% and 38.6% of cases, respectively, suggesting a potential diagnostic value of both Survivin and CK19. At multivariable survival analysis, TNM staging and Survivin mRNA levels were retained as independent prognostic factors, demonstrating that Survivin expression in the peripheral blood adds prognostic information to the TNM system. In contrast with previously published data, the transcript abundance of CEA, CK19 and VEGF was not associated with patients' clinical outcome. Conclusions Gene expression levels of Survivin add significant prognostic value to the current TNM staging system. The validation of these findings in larger prospective and multicentric series might lead to the implementation of this biomarker in the routine clinical setting in order to optimize risk stratification and ultimately personalize the therapeutic management of these patients.

  5. [Study of the relationship among expression of Survivin and MRP and the drug resistance in human nasopharyngeal carcinoma].

    Science.gov (United States)

    Yang, Ning; Zhu, Lepan; Tan, Tan; Hou, Chunyan

    2015-02-01

    This study aimed to explore the relationship among expression of Survivin and MRP and drug resistance in NPC. Expression of Survivin were detected by immunohistochemistry method in 45 cases of NPC and 24 cases of normal mucous membrane of nasopharynx (NMMN). The relationship between expression of Survivin and pathological factors in NPC were analysized. Expression of Survivin and MRP were detected in 31 patients of NPC with paclitaxel resistance and 20 patients of NPC without paclitaxel resistance. The relation- ship among the expression of Survivin or MRP and paclitaxel resistance in NPC were analysized. The paclitaxel resistance cell line, 5-8F-PTX(+); was established by a step-increased method. The expression of Survivin and MRP were detected by western blot in 5-8F-PTX(+) and 5-8F. The positive were 71. 1% (32/45) in NPC and 8.33% (2/24) in NMMN. And there were significantly differences between them (P MRP were 87.1% (27/31) in NPC patients with paclitaxel resistance and 40.0% (8/20) in NPC patients without paclitaxel resistance, respectively. There were significantly differences between them (P MRP in NPC patients with Paclitaxel resistance. The expression of Survivin and MRP were higher in 5-8F-PTX(+) than in 5-8F. The IC50 of paclitaxel, cDDP, 5-FU and Vincristine were significantly higher in 5-8F-PTX(+) than in 5-8F. There were relationship among the expression of Survivin and difference, metastasis and TNM stages of NPC. Survivin may serves as a molecular marker for development and progress in NPC. There were relationship among the high expression of Survivin and MRP and increasing of drug resistance in NPC.

  6. The small molecule survivin inhibitor YM155 may be an effective treatment modality for colon cancer through increasing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wan Lu, E-mail: lvvlchina@msn.cn [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Lee, Mi-Ra, E-mail: mira1125@yonsei.ac.kr [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Cho, Mee-Yon, E-mail: meeyon@yonsei.ac.kr [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of)

    2016-03-04

    Survivin has a known beneficial role in the survival of both cancer cells and normal cells. Therapies targeting survivin have been proposed as an alternative treatment modality for various tumors; however, finding the proper indication for this toxic therapy is critical for reducing unavoidable side effects. We recently observed that high survivin expression in CD133{sup +} cells is related to chemoresistance in Caco-2 colon cancer cells. However, the effect of survivin-targeted therapy on CD133{sup +} colon cancer is unknown. In this study, we investigated the roles of CD133 and survivin expression in colon cancer biology in vitro and comparatively analyzed the anticancer effects of survivin inhibitor on CD133{sup +} cells (ctrl-siRNA group) and small interfering RNA (siRNA)-induced CD133{sup −} cells (CD133-siRNA group) obtained from a single colon cancer cell line. CD133 knockdown via siRNA transfection did not change the tumorigenicity of cells, although in vitro survivin expression levels in CD133{sup +} cells were higher than those in siRNA-induced CD133{sup −} cells. The transfection procedure seemed to induce survivin expression. Notably, a significant number of CD133{sup −} cells (33.8%) was found in the cell colonies of the CD133-siRNA group. In the cell proliferation assay after treatment, YM155 and a combination of YM155 and 5-fluorouracil (5-FU) proved to be far more effective than 5-FU alone. A significantly increased level of apoptosis was observed with increasing doses of YM155 in all groups. However, significant differences in therapeutic effect and apoptosis among the mock, ctrl-siRNA, and CD133-siRNA groups were not detected. Survivin inhibitor is an effective treatment modality for colon cancer; however, the role of CD133 and the use of survivin expression as a biomarker for this targeted therapy must be verified.

  7. The small molecule survivin inhibitor YM155 may be an effective treatment modality for colon cancer through increasing apoptosis

    International Nuclear Information System (INIS)

    Li, Wan Lu; Lee, Mi-Ra; Cho, Mee-Yon

    2016-01-01

    Survivin has a known beneficial role in the survival of both cancer cells and normal cells. Therapies targeting survivin have been proposed as an alternative treatment modality for various tumors; however, finding the proper indication for this toxic therapy is critical for reducing unavoidable side effects. We recently observed that high survivin expression in CD133"+ cells is related to chemoresistance in Caco-2 colon cancer cells. However, the effect of survivin-targeted therapy on CD133"+ colon cancer is unknown. In this study, we investigated the roles of CD133 and survivin expression in colon cancer biology in vitro and comparatively analyzed the anticancer effects of survivin inhibitor on CD133"+ cells (ctrl-siRNA group) and small interfering RNA (siRNA)-induced CD133"− cells (CD133-siRNA group) obtained from a single colon cancer cell line. CD133 knockdown via siRNA transfection did not change the tumorigenicity of cells, although in vitro survivin expression levels in CD133"+ cells were higher than those in siRNA-induced CD133"− cells. The transfection procedure seemed to induce survivin expression. Notably, a significant number of CD133"− cells (33.8%) was found in the cell colonies of the CD133-siRNA group. In the cell proliferation assay after treatment, YM155 and a combination of YM155 and 5-fluorouracil (5-FU) proved to be far more effective than 5-FU alone. A significantly increased level of apoptosis was observed with increasing doses of YM155 in all groups. However, significant differences in therapeutic effect and apoptosis among the mock, ctrl-siRNA, and CD133-siRNA groups were not detected. Survivin inhibitor is an effective treatment modality for colon cancer; however, the role of CD133 and the use of survivin expression as a biomarker for this targeted therapy must be verified.

  8. Cytoplasmic expression of survivin is an independent predictor of poor prognosis in patients with salivary gland cancer.

    Science.gov (United States)

    Stenner, Markus; Weinell, Antje; Ponert, Tobias; Hardt, Aline; Hahn, Moritz; Preuss, Simon F; Guntinas-Lichius, Orlando; Klussmann, Jens Peter

    2010-11-01

    The expression of the inhibitor of apoptosis protein survivin has been shown to be a significant prognostic indicator in various human cancers. The aim was to assess its expression and prognostic value in salivary gland adenocarcinoma and muco-epidermoid carcinoma. Survivin expression was analysed in 48 patients with parotid gland cancer (21 muco-epidermoid, 27 adenocarcinomas) by means of immunohistochemistry. The experimental findings were correlated with clinicopathological and survival parameters. A high cytoplasmic expression of survivin was found in 30% of the examined tumours without any significant correlation with the patients' clinicopathological characteristics (P > 0.05). Within all patients, the estimated overall survival rate of muco-epidermoid carcinomas was significantly better than that of adenocarcinomas (P = 0.013). A high cytoplasmic survivin expression significantly indicated a poor 5-year disease-free survival rate compared to patients with a low cytoplasmic survivin expression in the whole group (P = 0.001) and in adenocarcinomas (P = 0.004). In a multivariate analysis, a high cytoplasmic survivin expression was the only independent prognostic indicator for a significantly poorer 5-year disease-free survival rate (P = 0.001). The correlation between cytoplasmic survivin expression and survival in salivary gland malignancies might make this an effective tool in patient follow-up, prognosis and targeted therapy in future. © 2010 Blackwell Publishing Limited.

  9. Radiosensitization by inhibiting survivin in human hepatoma HepG2 cells to high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Wu Qingfeng; Li Ping; Gong Li; Hao Jifang; Dai Zhongying; Matsumoto, Yoshitaka; Furusawa, Yoshiya

    2011-01-01

    In this study, whether survivin plays a direct role in mediating high-linear energy transfer (LET) radiation resistance in human hepatoma cells was investigated. Small interfering RNA (siRNA) targeting survivin mRNA was designed and transfected into human hepatoma HepG2 cells. Real-time polymerase chain reaction (PCR) and western blotting analyses revealed that survivin expression in HepG2 cells decreased at both transcriptional and post-transcriptional levels after treatment with survivin-specific siRNA. Caspase-3 activity was determined with a microplate reader assay as well. Following exposure to high-LET carbon ions, a reduced clonogenic survival effect, increased apoptotic rates and caspase-3 activity were observed in the cells treated with the siRNA compared to those untreated with the siRNA. The cells with transfection of the survivin-specific siRNA also increased the level of G 2 /M arrest. These results suggest that survivin definitely plays a role in mediating the resistance of HepG2 cells to high-LET radiation and depressing survivin expression might be useful to improve the therapeutic efficacy of heavy ions for radioresistant solid tumors. (author)

  10. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  11. EXPRESSION OF SURVIVIN AND E-CADHERIN IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-feng; LIU Ji-hong; WANG Li-fen; FENG XIAO-Mei; YAO Ji-hong

    2005-01-01

    Objective: Survivin is a member of the inhibitor of apoptosis (IAP) family, and is involved in the regulation of cell division. E-cadherin functionally belongs to transmembrane glycoproteins family, it is responsible for intercellular junction mechanism that is crucial for the mutual association of vertebrate cells. These genes are thought to be associated with cancer aggression. This study was to investigate the relationship between surviving gene, E-cadherin expression and invasion clinicopathological features of breast cancer. Methods: The expression of surviving gene and E-cadherin were detected by SP immunohistochemical technique in tissues of 66 breast cancer, 20 breast fibroadenoma and 20 adjacent breast tissue. Results: The positive rate of surviving gene expression in breast cancer was 42.2%, significantly higher (P=0.025) than those in breast fibroadenoma (35.0%), and adjacent breast tissue (10.0%). The positive rate of E-cadherin in the groups of adjacent breast tissue, breast fibroadenoma and breast cancer were 100%, 100% and 42.4%, there was significant difference between the group of benign and malignant tumor (P=0.005). The positive rate of surviving in breast cancer with local lymph node metastasis was significant higher than that in breast cancer without lymph node metastasis (P=0.01), and E-cadherin in breast cancer with local lymph node metastasis was significant lower than that without lymph node metastasis (P=o.o1). There was no significant difference among the groups of pathological types and TNM stages in the expression of surviving (P=0.966 & P=0.856), but there was significant difference in the expression of E-cadherin among these groups (P=0.01 & P=0.023). Conclusion: The loss or decrease of E-cadherin expression may promote the exfoliation of cancerous cells from original tissues, and surviving gene may promote the viability of the exfoliated cancer cells and the formation of new metastasis focus. These 2 factors cooperate with each other

  12. Localization and upregulation of survivin in cancer health disparities: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Khan S

    2015-07-01

    Full Text Available Salma Khan,1,2 Heather Ferguson Bennit,1,2 Malyn May Asuncion Valenzuela,1,2 David Turay,1,3 Carlos J Diaz Osterman,1,2 Ron B Moyron,1,2 Grace E Esebanmen,1,2 Arjun Ashok,1,2 Nathan R Wall1,2 1Department of Biochemistry, 2Center for Health Disparities and Molecular Medicine, 3Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA Abstract: Survivin is one of the most important members of the inhibitors of apoptosis protein family, as it is expressed in most human cancers but is absent in normal, differentiated tissues. Lending to its importance, survivin has proven associations with apoptosis and cell cycle control, and has more recently been shown to modulate the tumor microenvironment and immune evasion as a result of its extracellular localization. Upregulation of survivin has been found in many cancers including breast, prostate, pancreatic, and hematological malignancies, and it may prove to be associated with the advanced presentation, poorer prognosis, and lower survival rates observed in ethnically diverse populations. Keywords: survivin, cancer, exosomes, health disparity

  13. Increased p21ras activity in human fibroblasts transduced with survivin enhances cell proliferation

    International Nuclear Information System (INIS)

    Temme, Achim; Diestelkoetter-Bachert, Petra; Schmitz, Marc; Morgenroth, Agnieszka; Weigle, Bernd; Rieger, Michael A.; Kiessling, Andrea; Rieber, E. Peter

    2005-01-01

    Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells. When survivin was overexpressed in normal human lung fibroblasts, the characteristic track lanes of fibroblasts were disturbed and the rate of cell proliferation was increased. An enhanced level of p21 ras mRNA and protein expression and concomitant rise in levels of activated p21 ras were observed. Despite increased proliferation cell survival remained dependent on serum and cells were not able to form colonies in soft agar assays. These data suggest that overexpression of survivin increases cell growth but, despite the increase in active p21 ras , is not sufficient to transform primary cells. Yet, in addition to its anti-apoptotic function it might contribute to the accelerated growth of tumour cells by increasing p21 ras activity

  14. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  15. Analysis on the relation of pterygium with VEGF,SDF-1,Ki-67,PCNA and Survivin

    Directory of Open Access Journals (Sweden)

    Ying Song

    2015-12-01

    Full Text Available AIM:To analyze and study the relation of pterygium with vascular endothelial growth factor(VEGF,stroma cell-derived factor 1(SDF-1,tumor proliferating antigen(Ki-67,proliferating cell nuclear antigen(PCNAand survivin. METHODS:Seventy-nine patients(106 eyeswith pterygium from January 2013 to May 2015 in our hospital were selected as observation group. Seventy-nine persons with normal conjunctiva during the same period were selected as control group. Then the number of positive cells and staining intensity classification of the two groups for VEGF,SDF-1,Ki-67,PCNA and survivin were compared,and the detection results of patients with different gender,stages and types were compared too. Then the relation between pterygium and those indexes were analyzed by the Logistic analysis. RESULTS:The number of positive cells and staining intensity classification of observation group for VEGF,SDF-1,Ki-67,PCNA and survivin were all higher than those of control group,and the detection results of patients with different stages and types had certain differences too(all PP>0.05. All those indexes had close relation to pterygium by the Logistic analysis. CONCLUSION:The expression of VEGF,SDF-1,Ki-67,PCNA and survivin in tissue of patients with pterygium all show abnormal state,and those indexes all have close relation to pterygium.

  16. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  17. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    Science.gov (United States)

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  18. Immunohistochemical study of p16 INK4A and survivin expressions in cervical squamous neoplasm

    Directory of Open Access Journals (Sweden)

    Tan Geok

    2010-01-01

    Full Text Available Introduction:Cervical cancer is the second most common cancer affecting Malaysian women. Despite the implementation of pap smear screening, many women are still diagnosed only in the advanced stage of cervical cancer. This could partly be due to failure of detection of its precursor lesions; hence the need to search for novel biomarkers to assist in the screening and diagnosis of cervical neoplasia. This study aims to determine the expression of p16INK4A and survivin as possible predictive biomarkers in cervical squamous neoplasm. Material and Methods: This is a retrospective study on 201 cases of cervical neoplasm comprising of 129 cervical intraepithelial neoplasia (CIN and 72 squamous cell carcinoma (SCC. All samples were evaluated by two independent observers using p16INK4A and survivin monoclonal antibodies. The p16 INK4A expression was graded as negative, focal and diffuse positivity. The intensity for survivin expression was graded as weak, moderate and intense. Results: It is seen that p16 INK4A expression in CIN 1, CIN 2 and CIN 3 were 25.4%, 42.9% and 95.9% respectively. Majority of SCC (98.6% showed p16 INK4A expression. Survivin expressions in CIN 1, CIN 2, CIN 3 and SCC were 56.7%, 33.4%, 87.5% and 98.6%. There was a linear relationship between increasing grade of CIN and p16 INK4A expressions. Conclusion: Our study showed that p16 INK4A expressions correlate well with the increasing grade of CIN. Although survivin does not correlate well to the increasing grade of CIN, it could be useful in differentiating CIN 3 from SCC.

  19. Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex.

    Directory of Open Access Journals (Sweden)

    Jingxiao Zhang

    Full Text Available Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD simulations were performed on six inhibitors, chrysin (M01, fisetin (M03, galangin (M04, genistein (M05, quercetin (M06 and kaempferol (M07, complexed with CDK6/cyclin D. For all six flavonoids, the 3'-OH and 4'-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3', 4', 7-trihydroxyflavone (M15. The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.

  20. The Role of Cyclins and Cyclins Inhibitors in the Multistep Process of HPV-Associated Cervical Carcinoma

    International Nuclear Information System (INIS)

    Bahnassy, A.A.; Mokhtar, N.M.; Zekri, A.; Alam El-Din, H.M.; Aboubaker, A.A.; Kamel, K.; El-Sabah, M.T.

    2006-01-01

    Background: Human papillomavirus (HPV) types 16 and 18 are associated with cervical carcinogenesis. This is possibly achieved through an interaction between HPV oncogenic proteins and some cell cycle regulatory genes. However, the exact pathogenetic mechanisms are not well defined yet. Methods: We investigated 110 subjects (43 invasive squamous cell carcinoma [ISCC], 38 CIN Ill, II CIN II, 18 CIN I) confirmed to be positive for HPV 16 and/or 18 as well as 20 normal cervical tissue (NCT) samples for abnormal expression of cyclin DJ, cyclin E, CDK4, cyclin inhibitors (p2Jwa/; p27, pI6/NK4A) and Ki-67 using immunohistochemistry and differential PCR techniques. Results: There was a significant increase in the expression of Ki-67, cyclin E, CDK4, pJ6/NK4A (p=0003, 0.001,0.001) and a significant decrease in p27K1P/ from NCT to ISCC (p=0.003). There was a significant correlation between altered expression of p27K1P I and p 161NK4A (p KIpl (ρ=0.011) in all studied groups In ISCC, there was significant relationship between standard clinico-pathological prognostic factors and high Ki-67 index, increased cyclin D J and cyclin E, reduced p2 7Kip / and p21 waf Conclusion: I) Aberrations involving p27K/P 1, cyclin E, CDK4 and pJ6/NK4A are considered early events in HPV 16 and IS-associated cervical carcinogenesis (CINI and lI), whereas cyclin DI aberrations are late events (CINIII and ISCC). 2) immunohistochemical tests for pJ61NK4A and cyclin E could help in early diagnosis of cervical carcinoma. 3) Only FIGO stage, cyclin DI, p27K1P1 and Ki-67 are independent prognostic factors that might help in predicting outcome of cervical cancer palients

  1. Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer

    DEFF Research Database (Denmark)

    Als, Anne B; Dyrskjøt, Lars; von der Maase, Hans

    2007-01-01

    in an independent material of 124 patients receiving cisplatin-containing therapy. RESULTS: Fifty-five differentially expressed genes correlated significantly to survival time. Two of the protein products (emmprin and survivin) were validated using immunohistochemistry. Multivariate analysis identified emmprin...... metastases, both markers showed significant discriminating power as supplemental risk factors (P emmprin and survivin) had estimated 5-year survival rates of 44.......0%, 21.1%, and 0%, respectively. Response to chemotherapy could also be predicted with an odds ratio of 4.41 (95% confidence interval, 1.91-10.1) and 2.48 (95% confidence interval, 1.1-5.5) for emmprin and survivin, respectively. CONCLUSIONS: Emmprin and survivin proteins were identified as strong...

  2. Double targeting of Survivin and XIAP radiosensitizes 3D grown human colorectal tumor cells and decreases migration

    International Nuclear Information System (INIS)

    Hehlgans, Stephanie; Petraki, Chrysi; Reichert, Sebastian; Cordes, Nils; Rödel, Claus; Rödel, Franz

    2013-01-01

    Background and purpose: In the present study, we aimed to investigate the effect of single and double knockdown of the inhibitor of apoptosis proteins (IAP) Survivin and X-linked IAP (XIAP) on three-dimensional (3D) clonogenic survival, migration capacity and underlying signaling pathways. Materials and methods: Colorectal cancer cell lines (HCT-15, SW48, SW480, SW620) were subjected to siRNA-mediated single or Survivin/XIAP double knockdown followed by 3D colony forming assays, cell cycle analysis, Caspase activity assays, migration assays, matrigel transmigration assays and Western blotting (Survivin, XIAP, Focal adhesion kinase (FAK), p-FAK Y397, Akt1, p-Akt1 S473, Extracellular signal-regulated kinase (ERK1/2), p-ERK1/2 T202/Y204, Glycogen synthase kinase (GSK)3β, p-GSK3β S9, nuclear factor (NF)-κB p65). Results: While basal cell survival was altered cell line-dependently, Survivin or XIAP single and Survivin/XIAP double knockdown enhanced cellular radiosensitivity of all tested cancer cell lines grown in 3D. Particularly double knockdown conditions revealed accumulation of cells in G2/M, increased subG1 fraction, elevated Caspase 3/7 activity, and reduced migration. Intracellular signaling showed dephosphorylation of FAK and Akt1 upon Survivin and/or Survivin/XIAP silencing. Conclusions: Our results strengthen the notion of Survivin and XIAP to act as radiation resistance factors and further indicate that these apoptosis-regulating proteins are also functioning in cell cycling and cell migration

  3. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  4. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  5. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    International Nuclear Information System (INIS)

    Wierstra, Inken; Alves, Juergen

    2008-01-01

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27

  6. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Cyclin G2 is an unconventional cyclin which might have a potential negative role in carcinogenesis. In this study, the effect of cyclin G2 overexpression on gastric cell proliferation and expression levels of cyclin G2 in normal gastric cells and gastric cancer cells were investigated. Moreover, mutation analysis was performed ...

  7. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression.

    Science.gov (United States)

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The influence of survivin shRNA on the cell cycle and the invasion of SW480 cells of colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Jin

    2008-07-01

    Full Text Available Abstract Background The objective was to understand the influence of Survivin plasmid with short hairpin RNA (shRNA on the cell cycle, invasion, and the silencing effect of Survivin gene in the SW480 cell of colorectal carcinoma. Methods A eukaryotic expression vector, PGCH1/Survivin shRNA, a segment sequence of Survivin as target, was created and transfected into colorectal carcinoma cell line SW480 by the non-lipid method. The influence on the Survivin protein was analyzed by Western blotting, while the cell cycle, cell apoptosis were analyzed by flow cytometry, and invasion of the cell was analyzed by Transwell's chamber method. Results After the transfection of PGCH1/Survivin shRNA, the expression of Survivin protein in SW480 cells was dramatically decreased by 60.68%, in which the cells were stopped at G2/M phase, even though no apoptosis was detected. The number of transmembranous cells of the experimental group, negative control group, and blank control group were 14.46 ± 2.11, 25.12 ± 8.37, and 25.86 ± 7.45, respectively (P 0.05. Conclusion Survivin shRNA could significantly reduce the expression of Survivin protein and invasion of SW480 cells. Changes in cell cycle were observed, but no apoptosis was induced.

  9. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Motarab [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States); Banik, Naren L. [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States); Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-{kappa}B), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  10. Rational design of a cyclin A fluorescent peptide sensor.

    Science.gov (United States)

    Pazos, Elena; Pérez, Miguel; Gutiérrez-de-Terán, Hugo; Orzáez, Mar; Guevara, Tatiana; Mascareñas, José L; Vázquez, M Eugenio

    2011-10-26

    We report the design and development of a fluorescent sensor specifically designed to target cyclin A, a protein that plays a key role in the regulation of the cell cycle. Computational studies provide a molecular picture that explains the observed emission increase, suggesting that the 4-DMAP fluorophore in the peptide is protected from the bulk solvent when inserted into the hydrophobic binding groove of cyclin A.

  11. Role of cyclins in controlling progression of mammalian spermatogenesis

    OpenAIRE

    WOLGEMUTH, DEBRA J.; MANTEROLA, MARCIA; VASILEVA, ANA

    2013-01-01

    Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique ...

  12. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    Directory of Open Access Journals (Sweden)

    John Davies

    2012-01-01

    Full Text Available Canine osteosarcoma (OS is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs combine with retinoid receptor (RXR forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p=0.316 between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ=−0.466, a positive correlation between survivin and RXR expression was found (p=0.374. A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS.

  13. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah [Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju (Korea, Republic of); Cho, Mee-Yon, E-mail: meeyon@yonsei.ac.kr [Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju (Korea, Republic of); Institute of Genomic Cohort, Yonsei University, Wonju College of Medicine, Wonju (Korea, Republic of)

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  14. Study of the Expression of Survivin & Its Splice Variants; ΔEx3, 2b and 3b as Diagnostic Molecular Markers in Breast Cancer

    Directory of Open Access Journals (Sweden)

    E Babaei

    2009-07-01

    Full Text Available Introduction: Survivin is a new member of the Inhibitor Apotosis Protein family (IAP which plays an important role in the regulation of both cell cycle and apoptosis. Its distinct expression in tumor cells as compared to normal adult cells introduces Survivin as the fourth transcriptom demonstrated in tumors. Breast cancer is the most common malignancy among women and scientist`s efforts to classify it has lead to various molecular subtypes and controversial results. Because of the high prevalence of these tumors and lack of suitable molecular markers for diagnosis and prognosis, there are ongoing efforts to find molecular markers which can distinguish nontumoral from tumor tissues. In this study we evaluate the potential usefulness of Survivin and its splice variants ΔEx3, 2b and 3b as molecular markers in breast cancer. Methods: We studied 18 tumor and 17 non tumor adjacent tissues. Transcription levels were measured by Semiquantitative Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR and normalized by ß2m as an internal control. Results: 1Survivin and its splice variants; Δex3, 2b and 3b showed differentially higher expression levels in tumors than adjacent normal tissues. 2 The expression levels of Survivin, Survivin-ΔEx3 and Survivin-3b were significantly correlated with the type of tumors. 3 Survivin-2b was expressed in a few samples. 4 Survivin-3b was detected only in tumor samples. Also, our results showed that ΔEx3 variant can be introduced as a dominant expressed variant in breast cancer. Conclusion: Our data indicated that the expression of Survivin, Survivin ∆Ex3 and especially, Survivin-3b were correlated with cancerous nature of tumors and Survivin-∆Ex3 was the most common expressed variant in breast carcinomas. These results besides confirming the potential usefulness of Survivin and its splice variants as molecular markers in breast cancer, demonstrated the role of the gene and its splice variants, especially 3b

  15. Survivin -31 G/C polymorphism might contribute to colorectal cancer (CRC) risk: a meta-analysis.

    Science.gov (United States)

    Yao, Linhua; Hu, Yi; Deng, Zhongmin; Li, Jingjing

    2015-01-01

    Published data has shown inconsistent findings about the association of survivin -31 G/C polymorphism with the risk of colorectal cancer (CRC). This meta-analysis quantitatively assesses the results from published studies to provide a more precise estimate of the association between survivin -31 G/C polymorphism as a possible predictor of the risk of CRC. We conducted a literature search in the PubMed, Web of Science, and Cochrane Library databases. Stata 12 software was used to calculate the pooled odds ratios (ORs) with 95% confidence intervals (CIs) based on the available data from each article. Six studies including 1840 cases with CRC and 1804 controls were included in this study. Survivin -31 G/C polymorphism was associated with a significantly increased risk of CRC (OR = 1.78; 95% CI, 1.53-2.07; I(2) = 0%). In the race subgroup analysis, both Asians (OR = 1.72; 95% CI, 1.44-2.05; I(2) = 0%) and Caucasians (OR = 1.93; 95% CI, 1.46-2.55; I(2) = 0%) with survivin -31 G/C polymorphism had increased CRC risk. In the subgroup analysis according to site of CRC, survivin -31 G/C polymorphism was not associated with colon cancer risk (OR = 2.02; 95% CI, 0.79-5.22; I(2) = 82%). However, this polymorphism was significantly associated with rectum cancer risk (OR = 1.98; 95% CI, 1.42-2.74; I(2) = 0%). In the subgroup analysis by clinical stage, both early stage (I+II) and advanced stage (III+IV) were associated with survivin -31 G/C polymorphism (OR = 1.61; 95% CI, 1.20-2.16; I(2) = 0% and OR = 2.30; 95% CI, 1.70-3.13; I(2) = 0%, respectively). In the subgroup analysis by smoke status, both smokers and non-smokers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.47; 95% CI, 1.01-2.13; I(2) = 60% and OR = 1.71; 95% CI, 1.28-2.30; I(2) = 0%, respectively). In the subgroup analysis by drink status, both drinkers and non-drinkers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.58; 95% CI, 1.06-2.37; I(2) = 8% and OR = 1.61; 95% CI, 1

  16. Targeting of Survivin Pathways by YM155 Inhibits Cell Death and Invasion in Oral Squamous Cell Carcinoma Cells.

    Science.gov (United States)

    Zhang, Wei; Liu, Yuan; Li, Yu Feng; Yue, Yun; Yang, Xinghua; Peng, Lin

    2016-01-01

    Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells. SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-x03BA;B. YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-x03BA;B and downregulation of NF-x03BA;B downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro. YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed

  17. Validation of cytoplasmic-to-nuclear ratio of survivin as an indicator of improved prognosis in breast cancer

    International Nuclear Information System (INIS)

    Rexhepaj, Elton; Jirstrom, Karin; O'Connor, Darran P; O'Brien, Sallyann L; Landberg, Goran; Duffy, Michael J; Brennan, Donal J; Gallagher, William M

    2010-01-01

    Conflicting data exist regarding the prognostic and predictive impact of survivin (BIRC5) in breast cancer. We previously reported survivin cytoplasmic-to-nuclear ratio (CNR) as an independent prognostic indicator in breast cancer. Here, we validate survivin CNR in a separate and extended cohort. Furthermore, we present new data suggesting that a low CNR may predict outcome in tamoxifen-treated patients. Survin expression was assessed using immunhistochemistry on a breast cancer tissue microarray (TMA) containing 512 tumours. Whole slide digital images were captured using an Aperio XT scanner. Automated image analysis was used to identify tumour from stroma and then to quantify tumour-specific nuclear and cytoplasmic survivin. A decision tree model selected using a 10-fold cross-validation approach was used to identify prognostic subgroups based on nuclear and cytoplasmic survivin expression. Following optimisation of the staining procedure, it was possible to evaluate survivin protein expression in 70.1% (n = 359) of the 512 tumours represented on the TMA. Decision tree analysis predicted that nuclear, as opposed to cytoplasmic, survivin was the most important determinant of overall survival (OS) and breast cancer-specific survival (BCSS). The decision tree model confirmed CNR of 5 as the optimum threshold for survival analysis. Univariate analysis demonstrated an association between a high CNR (>5) and a prolonged BCSS (HR 0.49, 95% CI 0.29-0.81, p = 0.006). Multivariate analysis revealed a high CNR (>5) was an independent predictor of BCSS (HR 0.47, 95% CI 0.27-0.82, p = 0.008). An increased CNR was associated with ER positive (p = 0.045), low grade (p = 0.007), Ki-67 (p = 0.001) and Her2 (p = 0.026) negative tumours. Finally, a high CNR was an independent predictor of OS in tamoxifen-treated ER-positive patients (HR 0.44, 95% CI 0.23-0.87, p = 0.018). Using the same threshold as our previous study, we have validated survivin CNR as a marker of good prognosis in

  18. Validation of cytoplasmic-to-nuclear ratio of survivin as an indicator of improved prognosis in breast cancer

    LENUS (Irish Health Repository)

    Rexhepaj, Elton

    2010-11-23

    Abstract Background Conflicting data exist regarding the prognostic and predictive impact of survivin (BIRC5) in breast cancer. We previously reported survivin cytoplasmic-to-nuclear ratio (CNR) as an independent prognostic indicator in breast cancer. Here, we validate survivin CNR in a separate and extended cohort. Furthermore, we present new data suggesting that a low CNR may predict outcome in tamoxifen-treated patients. Methods Survin expression was assessed using immunhistochemistry on a breast cancer tissue microarray (TMA) containing 512 tumours. Whole slide digital images were captured using an Aperio XT scanner. Automated image analysis was used to identify tumour from stroma and then to quantify tumour-specific nuclear and cytoplasmic survivin. A decision tree model selected using a 10-fold cross-validation approach was used to identify prognostic subgroups based on nuclear and cytoplasmic survivin expression. Results Following optimisation of the staining procedure, it was possible to evaluate survivin protein expression in 70.1% (n = 359) of the 512 tumours represented on the TMA. Decision tree analysis predicted that nuclear, as opposed to cytoplasmic, survivin was the most important determinant of overall survival (OS) and breast cancer-specific survival (BCSS). The decision tree model confirmed CNR of 5 as the optimum threshold for survival analysis. Univariate analysis demonstrated an association between a high CNR (>5) and a prolonged BCSS (HR 0.49, 95% CI 0.29-0.81, p = 0.006). Multivariate analysis revealed a high CNR (>5) was an independent predictor of BCSS (HR 0.47, 95% CI 0.27-0.82, p = 0.008). An increased CNR was associated with ER positive (p = 0.045), low grade (p = 0.007), Ki-67 (p = 0.001) and Her2 (p = 0.026) negative tumours. Finally, a high CNR was an independent predictor of OS in tamoxifen-treated ER-positive patients (HR 0.44, 95% CI 0.23-0.87, p = 0.018). Conclusion Using the same threshold as our previous study, we have

  19. Quantitative Analysis of Survivin Protein Expression and Its Therapeutic Depletion by an Antisense Oligonucleotide in Human Lung Tumors

    Directory of Open Access Journals (Sweden)

    Anna L Olsen

    2012-01-01

    Full Text Available RNA-directed antisense and interference therapeutics are a promising treatment option for cancer. The demonstration of depletion of target proteins within human tumors in vivo using validated methodology will be a key to the application of this technology. Here, we present a flow cytometric-based approach to quantitatively determine protein levels in solid tumor material derived by fiber optic brushing (FOB of non-small cell lung cancer (NSCLC patients. Focusing upon the survivin protein, and its depletion by an antisense oligonucleotide (ASO (LY2181308, we show that we can robustly identify a subpopulation of survivin positive tumor cells in FOB samples, and, moreover, detect survivin depletion in tumor samples from a patient treated with LY2181308. Survivin depletion appears to be a result of treatment with this ASO, because a tumor treated with conventional cytotoxic chemotherapy did not exhibit a decreased percentage of survivin positive cells. Our approach is likely to be broadly applicable to, and useful for, the quantification of protein levels in tumor samples obtained as part of clinical trials and studies, facilitating the proof-of-principle testing of novel targeted therapies.

  20. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    Directory of Open Access Journals (Sweden)

    Shiwang Li

    Full Text Available Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  1. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  2. The 3' untranslated region of the cyclin B mRNA is not sufficient to enhance the synthesis of cyclin B during a mitotic block in human cells.

    Directory of Open Access Journals (Sweden)

    Dominik Schnerch

    Full Text Available Antimitotic agents are frequently used to treat solid tumors and hematologic malignancies. However, one major limitation of antimitotic approaches is mitotic slippage, which is driven by slow degradation of cyclin B during a mitotic block. The extent to which cyclin B levels decline is proposed to be governed by an equilibrium between cyclin B synthesis and degradation. It was recently shown that the 3' untranslated region (UTR of the murine cyclin B mRNA contributes to the synthesis of cyclin B during mitosis in murine cells. Using a novel live-cell imaging-based technique allowing us to study synthesis and degradation of cyclin B simultaneously at the single cell level, we tested here the role of the human cyclin B 3'UTR in regulating cyclin B synthesis during mitosis in human cells. We observed that the cyclin B 3'UTR was not sufficient to enhance cyclin B synthesis in human U2Os, HeLa or hTERT RPE-1 cells. A better understanding of how the equilibrium of cyclin B is regulated in mitosis may contribute to the development of improved therapeutic approaches to prevent mitotic slippage in cancer cells treated with antimitotic agents.

  3. BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori.

    Science.gov (United States)

    Pan, Minhui; Hong, Kaili; Chen, Xiangyun; Pan, Chun; Chen, Xuemei; Kuang, Xiuxiu; Lu, Cheng

    2013-04-01

    Cyclin B is an important regulator of the cell cycle G2 to M phase transition. The silkworm genomic database shows that there are two Cyclin B genes in the silkworm (Bombyx mori), BmCyclin B and BmCyclin B3. Using silkworm EST data, the cyclin B3 (EU074796) gene was cloned. Its complete cDNA was 1665 bp with an ORF of 1536 bp derived from seven exons and six introns. The BmCyclin B3 gene encodes 511 amino acids, and the predicted molecular weight is 57.8 kD with an isoelectric point of 9.18. The protein contains one protein damage box and two cyclin boxes. RNA interference-mediated reduction of BmCyclin B and BmCyclin B3 expression induced cell cycle arrest in G2 or M phase in BmN-SWU1 cells, thus inhibiting cell proliferation. These results suggest that BmCyclin B and BmCyclin B3 are necessary for completing the cell cycle in silkworm cells.

  4. Foci of cyclin A2 interact with actin and RhoA in mitosis.

    Science.gov (United States)

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-06-09

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis.

  5. D=1 supergravity and spinning particles

    International Nuclear Information System (INIS)

    Holten, J.W. van.

    1995-01-01

    In this paper I review the multiplet calculus of N-1, D=1 local supersymmetry with applications to the construction of models for spinning particles in background fields, and models with space-time supersymmetry. New features include a non-linear realization of the local supersymmetry algebra and the coupling to anti-symmetric tensor fields of both odd and even rank. The non-linear realization allows the construction of a D=1 cosmological-constant term, which provides a mass term in the equations of motion. (orig.)

  6. Nuclear interaction of Smac/DIABLO with Survivin at G2/M arrest prompts docetaxel-induced apoptosis in DU145 prostate cancer cells

    International Nuclear Information System (INIS)

    Kim, Ji Young; Chung, Jin-Yong; Lee, Seung Gee; Kim, Yoon-Jae; Park, Ji-Eun; Yoo, Ki Soo; Yoo, Young Hyun; Park, Young Chul; Kim, Byeong Gee; Kim, Jong-Min

    2006-01-01

    Smac/DIABLO is released by mitochondria in response to apoptotic stimuli and is thought to antagonize the function of inhibitors of apoptosis proteins. Recently, it has been shown that, like XIAP, Survivin can potentially interact with Smac/DIABLO. However, the precise mechanisms and cellular location of their action have not been determined. We report for the first time that Smac/DIABLO translocates to the nucleus and is colocalized with Survivin at mitotic spindles during apoptosis resulting from G2/M arrest due to docetaxel treatment of DU145 prostate cancer cells. Our data demonstrate that the nuclear interaction of Smac/DIABLO with Survivin is an important step for suppressing the anti-apoptotic function of Survivin in Doc-induced apoptosis. This suggests that the balance between cellular Smac/DIABLO and Survivin levels could be critical for cellular destiny in taxane-treated cancer cells

  7. Detection of survivin, carcinoembryonic antigen and ErbB2 level in oral squamous cell carcinoma patients.

    Science.gov (United States)

    Li, Shu-Xia; Yang, Yan-Qi; Jin, Li-Jian; Cai, Zhi-Gang; Sun, Zheng

    2016-01-01

    The aim of this study was to detect the survivin, carcinoembryonic antigen (CEA) and ErbB2 in the saliva, serum and local tumor-exfoliated cells of oral squamous cell carcinoma (OSCC) patients, for providing reliable tumor markers for the early detection of oral malignant cancer. The saliva, serum, and local tumor-exfoliated cell samples of 26 OSCC patients without chemotherapy and 10 non-cancer patients were collected in Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University. The contents of survivin, CEA and ErbB2 using were detected usingenzyme-linked immunosorbent assay. The survivin and CEA levels in saliva and local tumor-exfoliated cells of OSCC patients were significantly higher than those in the non-cancer patients (P oral malignant cancer.

  8. Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection

    Science.gov (United States)

    Yang, Jiang-Yan; Widmann, Christian

    2013-01-01

    Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response. PMID:23826368

  9. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Evaluation of tissue metalloproteinase inhibitor TIMP-1 and Survivin levels during third trimester pregnancy - a preliminary report.

    Science.gov (United States)

    Karowicz-Bilińska, Agata; Kowalska-Koprek, Urszula; Estemberg, Dorota; Sikora-Szubert, Anita

    2017-01-01

    A proper implantation of trophoblastic cells and an appropriate metalloproteinases activity is required to cause disintegration of basal membranes of cells. The activity of tissue matrix metaloproteinases can be inhibited by their matrix inhibitors - TIMP-s. Survivin is a member of inhibitor of apoptosis proteins family (IAP), that suppresses caspase activation, influences VEGF expression and promotes proliferative action of endothelial cells. The aim of the study was to assess concentrations of two independent anti-apoptotic factors. TIMP-1 and survivin in serum of women in their third trimester of pregnancy and in umbilical cord blood of neonates - drawn separately from veins and arteries. The study group consisted of 29 pregnant women in physiological pregnancy and with correct fetal development, in gestational age between 37 to 40 weeks of gestation. Blood used in the study was collected from maternal cubital fossa veins and from neonatal umbilical cords (from veins and from arteries separately). The research was conducted using TIMP-1 and Survivin ELISA kits from R & D Systems according to manufacturers' recommendations and protocols. The concentrations of TIMP-1 were similar and independent of the source of blood samples. Arterial values of TIMP-1 in umbilical cord compared to maternal and fetal veins were slightly lower, but no statistical difference was found. The mean concentrations of Survivin were comparable but we found that in some cases the results in cord blood serum in both vessels-vein and arteries were almost negative. Arterial values of Survivin in umbilical cord compared to maternal blood were higher, but no statistical difference was found. In III-rd trimester of pregnancy parameters of Timp-1 and Survivin - anti-apoptotic substances concentration were similar in maternal and cord blood in both artery and vein. We found no increased activity of selected antiapoptotic factors.

  11. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array.

    Directory of Open Access Journals (Sweden)

    Songliu Hu

    Full Text Available To investigate the predictive role and association of nuclear survivin and the DNA double-strand breaks repair genes in non-small cell lung cancer (NSCLC: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, Ku heterodimeric regulatory complex 70-KD subunit (Ku70 and ataxia-telangiectasia mutated (ATM.The protein expression of nuclear survivin, DNA-PKcs, Ku70 and ATM were investigated using immunohistochemistry in tumors from 256 patients with surgically resected NSCLC. Furthermore, we analyzed the correlation between the expression of nuclear survivin, DNA-PKcs, Ku70 and ATM. Univariate and multivariate analyses were performed to determine the prognostic factors that inuenced the overall survival and disease-free survival of NSCLC.The expression of nuclear survivin, DNA-PKcs, Ku70 and ATM was significantly higher in tumor tissues than in normal tissues. By dichotomizing the specimens as expressing low or high levels of nuclear survivin, nuclear survivin correlated significantly with the pathologic stage (P = 0.009 and lymph node status (P = 0.004. The nuclear survivin levels were an independent prognostic factor for both the overall survival and the disease-free survival in univariate and multivariate analyses. Patients with low Ku70 and DNA-PKcs expression had a greater benefit from radiotherapy than patients with high expression of Ku70 (P = 0.012 and DNA-PKcs (P = 0.02. Nuclear survivin expression positively correlated with DNA-PKcs (P<0.001 and Ku70 expression (P<0.001.Nuclear survivin may be a prognostic factor for overall survival in patients with resected stage I-IIIA NSCLC. DNA-PKcs and Ku70 could predict the effect of radiotherapy in patients with NSCLC. Nuclear survivin may also stimulates DNA double-strand breaks repair by its interaction with DNA-PKcs and Ku70.

  12. EGFR signaling promotes β-cell proliferation and survivin expression during pregnancy.

    Directory of Open Access Journals (Sweden)

    Elina Hakonen

    Full Text Available Placental lactogen (PL induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor -receptor (EGFR function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation. Islets were isolated from wild-type and β-cell-specific EGFR-dominant negative mice (E1-DN, stimulated with PL and analyzed for β-cell proliferation and expression of genes involved in gestational β-cell growth. β-cell mass dynamics were analyzed both with traditional morphometrical methods and three-dimensional optical projection tomography (OPT of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5 when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5. PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5 mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of β-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.

  13. 42 CFR 52d.1 - Applicability.

    Science.gov (United States)

    2010-10-01

    ... CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act, to... neoplastic disease and the preventive measures and diagnostic and therapeutic skills necessary to the...

  14. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    Science.gov (United States)

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  15. Importance of serum levels of angiopoietin-2 and survivin biomarkers in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Fawzy, A.; Gaafar, R.; Kasem, F.; Ali, Sh.S.; Elshafei, M.; Eldeib, M.

    2012-01-01

    Angio genesis is an essential process in cancer growth maintenance, and Lung cancer; metastasis. Appointing-2 promotes tumor angio genesis by priming the vasculature and potentiating the effects of cytokines at the front of active neovascularization. Enhanced expression of Angiopoietin-2 has been reported in lung cancer tissue. Survivin is one of the inhibitors of apoptosis Survivin; protein that has been shown to play a key role in cancer progression, and in tumor angio genesis. Also plays a key role in tumor cell resistance to anticancer agents and ionizing radiation. Aim: To measure the serum levels of angiopoietin-2 and survivin as possible angiogenic factors in lung cancer patients with the assessment of their interrelationships and clinical significance. Patients and methods: Patients with lung cancer as NSCLC (n = 70) and healthy volunteers (n = 10) were enrolled. Serum angiopoietin-2 and survivin concentrations were measured using enzyme-linked immunosorbent assay (ELIZA). Results: Median serum angiopoietin-2 levels with lung cancer (2730 pg/mL) ranged from 1171 to 6541 pg/mL was higher than the median of the control group (1795 pg/mL) ranged from 1076 to 2730/mL, p < 0.001. Median serum survivin levels were also higher in patients with lung cancer (53.0 pg/mL) ranged from 39.3 to 96.3 pg/mL than the median of the control group (48.8 pg/mL) ranged from 38.0 to 74.6pg/mL, but did not reach statistical significance p = 0.206. In all patients with lung cancer, serum angiopoietin-2 was not significantly correlated with survivin (r = 0.073, p = 0.657). Neither serum angiopoietin-2 nor survivin showed significant relation with the serum angiopoietin-2 or survivin levels depending on the cell types, stage progression, and metastasis among the patients with NSCLC. Conclusions: Our study suggests that serum angiopoietin-2 is a useful marker for the diagnosis of NSCLC by ELIZA technique

  16. Expression of NgBR Is Highly Associated with Estrogen Receptor Alpha and Survivin in Breast Cancer

    Science.gov (United States)

    North, Paula; Kong, Amanda; Huang, Jian; Miao, Qing Robert

    2013-01-01

    NgBR is a type I receptor with a single transmembrane domain and was identified as a specific receptor for Nogo-B. Our recent findings demonstrated that NgBR binds farnesylated Ras and recruits Ras to the plasma membrane, which is a critical step required for the activation of Ras signaling in human breast cancer cells and tumorigenesis. Here, we first use immunohistochemistry and real-time PCR approaches to examine the expression patterns of Nogo-B and NgBR in both normal and breast tumor tissues. Then, we examine the relationship between NgBR expression and molecular subtypes of breast cancer, and the roles of NgBR in estrogen-dependent survivin signaling pathway. Results showed that NgBR and Nogo-B protein were detected in both normal and breast tumor tissues. However, the expression of Nogo-B and NgBR in breast tumor tissue was much stronger than in normal breast tissue. The statistical analysis demonstrated that NgBR is highly associated with ER-positive/HER2-negative breast cancer. We also found that the expression of NgBR has a strong correlation with the expression of survivin, which is a well-known apoptosis inhibitor. The correlation between NgBR and survivin gene expression was further confirmed by real-time PCR. In vitro results also demonstrated that estradiol induces the expression of survivin in ER-positive T47D breast tumor cells but not in ER-negative MDA-MB-468 breast tumor cells. NgBR knockdown with siRNA abolishes estradiol-induced survivin expression in ER-positive T47D cells but not in ER-negative MDA-MB-468 cells. In addition, estradiol increases the expression of survivin and cell growth in ER-positive MCF-7 and T47D cells whereas knockdown of NgBR with siRNA reduces estradiol-induced survivin expression and cell growth. In summary, these results indicate that NgBR is a new molecular marker for breast cancer. The data suggest that the expression of NgBR may be essential in promoting ER-positive tumor cell proliferation via survivin induction

  17. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells.

    Science.gov (United States)

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  18. BAFF induces spleen CD4+ T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    International Nuclear Information System (INIS)

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-01-01

    Highlights: ► Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4 + T cells. ► Carrying out siRNA technology to study FOXO3A protein function. ► Helpful to understand the T cell especially CD4 + T cell‘s role in immunological reaction. -- Abstract: The TNF ligand family member “B cell-activating factor belonging to the TNF family” (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4 + spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4 + T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4 + spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4 + T cell proliferation.

  19. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  20. High expression of nuclear survivin and Aurora B predicts poor overall survival in patients with head and neck squamous cell cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erpolat, O.P.; Akmansu, M. [Medical School of Gazi Univ., Besevler-Ankara (Turkey). Dept. of Radiation Oncology; Gocun, P.U.; Karakus, E.; Akyol, G. [Medical School of Gazi Univ., Besevler-Ankara (Turkey). Dept. of Pathology

    2012-03-15

    Survivin is one of the apoptosis inhibitor proteins. Together with Aurora B, it also plays a role in regulating several aspects of mitosis. High expression of these markers is correlated with malignant behavior of various cancers and resistance to therapy. Our aim was to evaluate the prognostic role of these markers in head and neck cancers. We evaluated the expression of Aurora B and survivin in tissue specimens of 58 patients with head and neck squamous cell carcinoma using immunohistochemistry. Patients who showed high expression of cytoplasmic and nuclear survivin and Aurora B had significantly shorter overall survival (p = 0.036, p < 0.000, p = 0.032, respectively). In multivariate analysis, high expression of nuclear survivin was the only independent negative prognostic factor (p = 0.024). Moreover, it was found that high co-expression of nuclear survivin and Aurora B had a negative effect on survival in univariate (p < 0.000) and multivariate (p < 0.000) analyses. The negative prognostic values of high expression of Aurora B and high co-expression of nuclear survivin and Aurora B on survival were shown. These findings suggest that co-expression of nuclear survivin and Aurora B can be useful diagnostic markers and therapeutic targets for head and neck squamous cell carcinoma. However, further studies with a larger number of patients in a more homogeneous disease group are needed to confirm the conclusion.

  1. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant

    Directory of Open Access Journals (Sweden)

    Jonathan R. Aspe

    2014-02-01

    Full Text Available Background: Current therapeutic options for advanced pancreatic cancer have been largely disappointing with modest results at best, and though adjuvant therapy remains controversial, most remain in agreement that Gemcitabine should stand as part of any combination study. The inhibitor of apoptosis (IAP protein Survivin is a key factor in maintaining apoptosis resistance, and its dominant-negative mutant (Survivin-T34A has been shown to block Survivin, inducing caspase activation and apoptosis. Methods: In this study, exosomes, collected from a melanoma cell line built to harbor a tetracycline-regulated Survivin-T34A, were plated on the pancreatic adenocarcinoma (MIA PaCa-2 cell line. Evaluation of the presence of Survivin-T34A in these exosomes followed by their ability to induce Gemcitabine-potentiative cell killing was the objective of this work. Results: Here we show that exosomes collected in the absence of tetracycline (tet-off from the engineered melanoma cell do contain Survivin-T34A and when used alone or in combination with Gemcitabine, induced a significant increase in apoptotic cell death when compared to Gemcitabine alone on a variety of pancreatic cancer cell lines. Conclusion: This exosomes/Survivin-T34A study shows that a new delivery method for anticancer proteins within the cancer microenvironment may prove useful in targeting cancers of the pancreas.

  2. Control of cyclin C levels during development of Dictyostelium.

    Directory of Open Access Journals (Sweden)

    David M Greene

    2010-05-01

    Full Text Available Cdk8 and its partner cyclin C form part of the mediator complex which links the basal transcription machinery to regulatory proteins. The pair are required for correct regulation of a subset of genes and have been implicated in control of development in a number of organisms including the social amoeba Dictyostelium discoideum. When feeding, Dictyostelium amoebae are unicellular but upon starvation they aggregate to form a multicellular structure which develops into a fruiting body containing spores. Cells in which the gene encoding Cdk8 has been deleted fail to enter aggregates due to a failure of early gene expression.We have monitored the expression levels of cyclin C protein during development and find levels decrease after the multicellular mound is formed. This decrease is triggered by extracellular cAMP that, in turn, is working in part through an increase in intracellular cAMP. The loss of cyclin C is coincident with a reduction in the association of Cdk8 with a high molecular weight complex in the nucleus. Overexpression of cyclin C and Cdk8 lead to an increased rate of early development, consistent with the levels being rate limiting.Overall these results show that both cyclin C and Cdk8 are regulated during development in response to extracellular signals and the levels of these proteins are important in controlling the timing of developmental processes. These findings have important implications for the role of these proteins in controlling development, suggesting that they are targets for developmental signals to regulate gene expression.

  3. NY-ESO-1- and survivin-specific T-cell responses in the peripheral blood from patients with glioma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Poiret, Thomas; Persson, Oscar

    2018-01-01

    The prognosis for patients with glioblastoma is grim. Ex vivo expanded tumor-associated antigen (TAA)-reactive T-cells from patients with glioma may represent a viable source for anticancer-directed cellular therapies. Immunohistochemistry was used to test the survivin (n = 40 samples) and NY-ESO...

  4. Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling.

    Directory of Open Access Journals (Sweden)

    Jun Yu

    Full Text Available Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/- is associated with activation of the platelet derived growth factor (PDGF signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/- mice. Moreover, nitric oxide (NO negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.

  5. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    Science.gov (United States)

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  6. Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Yenkejeh, R A; Sam, M R; Esmaeillou, M

    2017-04-01

    Abnormal activation of the Wnt/β-catenin signaling pathway increases survivin expression that is involved in hepatocarcinogenesis. Therefore, downregulation of survivin may provide an attractive strategy for treatment of hepatocellular carcinoma. In this regard, little is known about the anticancer effects of prodigiosin isolated from cell wall of Serratia marcescens on the survivin expression and induction of apoptosis in hepatocellular carcinoma cells. Human hepatocellular carcinoma (HepG2) cells were treated with 100-, 200-, 400-, and 600-nM prodigiosin after which morphology of cells, cell number, growth inhibition, survivin expression, caspase-3 activation, and apoptotic rate were evaluated by inverted microscope, hemocytometer, MTT assay, RT-PCR, fluorometric immunosorbent enzyme assay, and flow cytometric analysis, respectively. Prodigiosin changed morphology of cells to apoptotic forms and disrupted cell connections. This compound significantly increased growth inhibition rate and decreased metabolic activity of HepG2 cells in a dose- and time-dependent manner. After 24-, 48-, and 72-h treatments with prodigiosin at concentrations ranging from 100 nM to 600 nM, growth inhibition rates were measured to be 1.5-10%, 24-47.5%, and 55.5-72.5%, respectively, compared to untreated cells. At the same conditions, metabolic activities were measured to be 91-83%, 74-53%, and 47-31% for indicated concentrations of prodigiosin, respectively, compared to untreated cells. We also found that treatment of HepG2 cells for 48 h decreased significantly cell number and survivin expression and increased caspase-3 activation in a dose-dependent manner. Specifically, treatment with 600-nM prodigiosin resulted in 77% decrease in cell number, 88.5% decrease in survivin messenger RNA level, and 330% increase in caspase-3 activation level compared to untreated cells. An increase in the number of apoptotic cells (late apoptosis) ranging from 36.9% to 97.4% was observed with increasing

  7. The relationship among human papilloma virus infection, survivin, and p53 gene in lung squamous carcinoma tissue

    International Nuclear Information System (INIS)

    Yue-Hua Wang; De-jie Chen; Tie-Nan Yi

    2010-01-01

    To study the relationship between the infection of human papillomavirus (HPV) type 16, type 18, the expression of survivin, and the mutation of p53 gene in lung squamous carcinoma tissue for the research of pathogenesis of lung carcinoma.This study was carried out at the Laboratory of Molecular Biology, Xiangfan Central Hospital of Hubei Province, China from September 2008 to May 2010. Forty-five specimens of lung squamous carcinoma tissue confirmed by histopathology were the excisional specimens taken by the Thoracic Surgery of Xiangfan Central Hospital. Normal tissue, closely adjacent to the fresh carcinoma specimens, was used as the control group for p53 gene mutation analysis. Sixteen surgical excisional specimens of benign lung disease were used as a control group of non-carcinomatous diseases. Human papillomavirus DNA were detected by polymerase chain reaction (PCR), and we used the PCR-single-strand conformation polymorphism-ethidium bromide (PCR-SSCP-EB) method to detect the mutations of the p53 gene. The expression of the survivin gene was detected by immunohistochemistry methods. Approximately 68.9% of 45 lung squamous carcinoma tissue had p53 gene mutations. The mutation rate of exon 5-8 p53 were 15.6%, 17.8%, 15.6% and 20%. Approximately 42.2% of lung squamous cell carcinoma samples were shown to be positive for HPV DNA expression and 62.2% were positive for survivin expression. There was an inverse correlation between the presence of HPV infections and mutations of p53 gene; and the mutations of p53 gene and expression of survivin had a positive relationship. Mutation of p53 gene and HPV infection may facilitate each other in the generation of lung squamous cell carcinoma. Abnormal expression of the survivin gene may take part in the onset and progression of lung squamous cell carcinoma (Author).

  8. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  9. Correlation of Merkel cell polyomavirus positivity with PDGFRα mutations and survivin expression in Merkel cell carcinoma.

    Science.gov (United States)

    Batinica, M; Akgül, B; Silling, S; Mauch, C; Zigrino, P

    2015-07-01

    Merkel cell carcinoma (MCC) is a neuroendocrine cancer of the skin postulated to originate through Merkel cell polyomavirus (MCPyV) oncogenesis and/or by mutations in molecules implicated in the regulation of cell growth and survival. Despite the fact that MCPvV is detected more broadly within the population, only a part of the infected people also develop MCC. It is thus conceivable that together, virus and for example mutations, are necessary for disease development. However, apart from a correlation between MCPyV positivity or mutations and MCC development, less is known about the association of these factors with progressive disease. To analyze MCPyV positivity, load and integration in MCC as well as presence of mutations in PDGFRα and TP53 genes and correlate these with clinical features and disease progression to identify features with prognostic value for clinical progression. This is a study on a MCC population group of 64 patients. MCPyV positivity, load and integration in parallel to mutations in the PDGFRα and TP53 were analyzed on genomic DNA from MCC specimens. In addition, expression of PDGFRα, survivin and p53 proteins was analyzed by immunodetection in tissues specimens. All these parameters were analyzed as function of patient's disease progression status. 83% of MCCs were positive for the MCPyV and among these 36% also displayed virus-T integration. Viral load ranged from 0.006 to 943 viral DNA copies/β-globin gene and was highest in patients with progressive disease. We detected more than one mutation within the PDGFRα gene and identified two new SNPs in 36% of MCC patients, whereas no mutations were found in TP53 gene. Survivin was expressed in 78% of specimens. We could not correlate either mutations in PDGFR or expression of PDGFR, p53 and surviving either to the disease progression or to the MCPyV positivity. In conclusion, our data indicate that the viral positivity when associated with high viral load, correlates with poor disease

  10. SKIP and BIR-1/Survivin have potential to integrate proteome status with gene expression

    Czech Academy of Sciences Publication Activity Database

    Kostrouchová, V.; Kostrouch, Z.; Kostrouch, D.; Kostrouchová, M.; Yilma, P.; Chughtai, Ahmed A.; Novotný, Jan P.; Novák, Petr

    2014-01-01

    Roč. 110, č. 4 (2014), s. 93-106 ISSN 1874-3919 R&D Projects: GA MŠk(CZ) cz.1.07/2.3.00/20.0055; GA MŠk ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0003; GA MŠk ED0012/01/01 Grant - others:Masaryk University, Brno(CZ) MUNI/A/1012/2009; Universita Karlova(CZ) UNCE 204022; Universita Karlova(GB) UNCE204011; Univesita Karlova(CZ) PRVOUK-P24/LF/1/3 Institutional support: RVO:61388971 Keywords : Survivin * proteomics * gene expression Subject RIV: EE - Microbiology, Virology Impact factor: 3.888, year: 2014

  11. Diabetes tipo II e resolvinas D1

    OpenAIRE

    Silva, Isabel Alexandra Marques Batista da

    2015-01-01

    Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz A diabetes é um problema de saúde pública crescente com o envelhecimento da população, os maus hábitos alimentares e o sedentarismo. A obesidade poderá ser causa ou consequência da diabetes tipo II, sendo também um problema crescente de saúde pública. Esta monografia tem como objetivo estudar, com base no conhecimento atual, se as resolvinas D1 são uma alternativa viável na terapêutica da diab...

  12. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor

    DEFF Research Database (Denmark)

    Pedersen, U B; Norby, B; Jensen, Anders A.

    1994-01-01

    Human dopamine D1a and D1b receptors were stably expressed in Baby Hamster Kidney (BHK) or Chinese Hamster Ovary (CHO) cells. [3H]SCH23390 saturation experiments indicated the presence of only a single binding site in the D1a expressing cell line with a Kd of 0.5 nM. In D1b expressing cell lines...

  13. Therapeutic Strategies Against Cyclin E1 Amplified Ovarian Cancers

    Science.gov (United States)

    2017-10-01

    13-14 ( References ) 1. INTRODUCTION: Approximately 20% of high grade serous ovarian cancers harbor Cyclin E1 (CCNE1) amplification and are associated... Harvard Medical School and was named Director of Translational Research in the Gynecologic Oncology Program at Dana-Farber Cancer Institute. How...on HDAC6 activity. Nat Cell Biol 19:962-973. PMID: 28737768. PMC5541905. Books or other non-periodical, one-time publications. “Nothing to Report

  14. Novel arylazopyrazole inhibitors of cyclin-dependent kinases

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Schütznerová, E.; Cankař, P.; Brychtová, Veronika; Navrátilová, Jana; Kryštof, Vladimír

    2015-01-01

    Roč. 23, č. 9 (2015), s. 1975-1981 ISSN 0968-0896 R&D Projects: GA ČR GAP305/12/0783; GA ČR GA14-19590S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cyclin-dependent kinases * Inhibitor * Cell cycle Subject RIV: CE - Biochemistry Impact factor: 2.923, year: 2015

  15. A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy

    Directory of Open Access Journals (Sweden)

    Kanwar Jagat R

    2010-10-01

    Full Text Available Abstract Background Survivin is a member of the inhibitor-of-apoptosis (IAP family which is widely expressed by many different cancers. Overexpression of survivin is associated with drug resistance in cancer cells, and reduced patient survival after chemotherapy and radiotherapy. Agents that antagonize the function of survivin hold promise for treating many forms of cancer. The purpose of this study was to investigate whether a cell-permeable dominant-negative survivin protein would demonstrate bioactivity against prostate and cervical cancer cells grown in three dimensional culture. Results A dominant-negative survivin (C84A protein fused to the cell penetrating peptide poly-arginine (R9 was expressed in E. coli and purified by affinity chromatography. Western blot analysis revealed that dNSurR9-C84A penetrated into 3D-cultured HeLa and DU145 cancer cells, and a cell viability assay revealed it induced cancer cell death. It increased the activities of caspase-9 and caspase-3, and rendered DU145 cells sensitive to TNF-α via by a mechanism involving activation of caspase-8. Conclusions The results demonstrate that antagonism of survivin function triggers the apoptosis of prostate and cervical cancer cells grown in 3D culture. It renders cancer cells sensitive to the proapoptotic affects of TNF-α, suggesting that survivin blocks the extrinsic pathway of apoptosis. Combination of the biologically active dNSurR9-C84A protein or other survivin antagonists with TNF-α therapy warrants consideration as an approach to cancer therapy.

  16. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer

    Directory of Open Access Journals (Sweden)

    Minamida Hidetoshi

    2004-06-01

    Full Text Available Abstract Survivin is a member of the inhibitor of apoptosis protein (IAP family containing a single baculovirus IAP repeat domain. It is expressed during fetal development but becomes undetectable in terminally differentiated normal adult tissues. We previously reported that survivin and its splicing variant survivin-2B was expressed abundantly in various types of tumor tissues as well as tumor cell lines and was suitable as a target antigen for active-specific anti-cancer immunization. Subsequently, we identified an HLA-A24-restricted antigenic peptide, survivin-2B80-88 (AYACNTSTL recognized by CD8+ cytotoxic T lymphocytes (CTLs. We, therefore, started a phase I clinical study assessing the efficacy of survivin-2B peptide vaccination in patients with advanced or recurrent colorectal cancer expressing survivin. Vaccinations with survivin-2B peptide were given subcutaneously six times at 14-day intervals. Of 15 patients who finished receiving the vaccination schedule, three suffered slight toxicities, including anemia (grade 2, general malaise (grade 1, and fever (grade 1. No severe adverse events were observed in any patient. In 6 patients, tumor marker levels (CEA and CA19-9 decreased transiently during the period of vaccination. Slight reduction of the tumor volume was observed in one patient, which was considered a minor responder. No changes were noted in three patients while the remaining eleven patients experienced tumor progression. Analysis of peripheral blood lymphocytes of one patient using HLA-A24/peptide tetramers revealed an increase in peptide-specific CTL frequency from 0.09% to 0.35% of CD8+ T cells after 4 vaccinations. This phase I clinical study indicates that survivin-2B peptide-based vaccination is safe and should be further considered for potential immune and clinical efficacy in HLA-A24-expression patients with colorectal cancer.

  17. THE SIGNIFICANCE OF EPIDERMAL GROWTH FACTOR RECEPTOR AND SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE CYTOLOGY OF PATIENTS WITH TRANSITIONAL CELL CARCINOMA OF THE URINARY BLADDER.

    Science.gov (United States)

    Kehinde, E O; Al-Maghrebi, M; Anim, J T; Kapila, K; George, S S; Al-Juwaiser, A; Memon, A

    2013-01-01

    To assess whether epidermal growth factor receptor (EGFR) and survivin immunostaining of tumour cells in urinary cytology and tissue of patients with bladder cancer has a prognostic significance. Prospective study Department of Surgery (Division of Urology), Mubarak Al-Kabeer Teaching Hospital and Faculty of Medicine, Kuwait University, Kuwait Urine cytology smears obtainedpriorto cystoscopy in patients with transitional cell carcinoma (TCC) of the bladder were immunostained for EGFR and survivin. Bladder cancer tissue resected at surgery was also immunostained for EGFR and survivin expression. Tissue expression of EGFR and survivin in TCC of the bladder was compared to their expression in urine cytology and relationship to tumour grade and stage. 178 patients were studied (43 newly diagnosed bladder cancer, 58 with recurrent TCC and 77 in disease remission). Twenty five patients with normal urothelium served as controls. The mean sensitivity of urine cytology, tissue survivin immunohistochemistry (IHC) and tissue EGFR IHC was 30.5%, 62% and 59% respectively. The corresponding mean specificity was 95%, 79% and 38% respectively. For grades 1, 2 and 3 bladder tumors, tissue expression positivity for EGFR was 47.8%, 92.9%, 100% and for tissue survivin it was 27.8%, 18.2% and 33.3% respectively. For grades 1, 2 and 3 bladder tumors, urine expression positivity for EGFR was 35.7%, 40% and 67.7% and for urine survivin it was 8.3%, 42.9% and 33.3% respectively. Positive EGFR immunostaining of urine cytology specimen or tumour tissue increases with histological grade of TCC of the bladder. Survivin expression is less consistent in both urine cytology specimen and tissue samples. EGFR immunostaining may provide a useful tool in the grading of bladder TCC and aid in the selection of patients that may benefit from administration of EGFR inhibitors.

  18. Survivin Expression as a Predictive Marker for Local Control in Patients With High-Risk T1 Bladder Cancer Treated With Transurethral Resection and Radiochemotherapy

    International Nuclear Information System (INIS)

    Weiss, Christian; Roemer, Felix von; Capalbo, Gianni; Ott, Oliver J.; Wittlinger, Michael; Krause, Steffen F.; Sauer, Rolf; Roedel, Claus; Roedel, Franz

    2009-01-01

    Purpose: The objectives of this study were to investigate the expression of survivin in tumor samples from patients with high-risk T1 bladder cancer and to correlate its expression with clinicopathologic features as well as clinical outcomes after initial transurethral resection (TURBT) followed by radiotherapy (RT) or radiochemotherapy (RCT). Methods and Materials: Survivin protein expression was evaluated by immunohistochemistry on tumor specimen (n = 48) from the initial TURBT, and was correlated with clinical and histopathologic characteristics as well as with 5-year rates of local failure, tumor progression, and death from urothelial cancer after primary bladder sparring treatment with RT/RCT. Results: Survivin was not expressed in normal bladder urothelium but was overexpressed in 67% of T1 tumors. No association between survivin expression and clinicopathologic factors (age, gender, grading, multifocality, associated carcinoma in situ) could be shown. With a median follow-up of 27 months (range, 3-140 months), elevated survivin expression was significantly associated with an increased probability of local failure after TURBT and RCT/RT (p = 0.003). There was also a clear trend toward a higher risk of tumor progression (p = 0.07) and lower disease-specific survival (p = 0.10). Conclusions: High survivin expression is a marker of tumor aggressiveness and may help to identify a subgroup of patients with T1 bladder cancer at a high risk for recurrence when treated with primary organ-sparing approaches such as TURBT and RCT.

  19. Testing the FPS approach in d=1

    International Nuclear Information System (INIS)

    Bellucci, S.; Krivonos, S.; Sutulin, A.

    2015-01-01

    We apply the approach of S. Ferrara, M. Porrati and A. Sagnotti http://dx.doi.org/10.1007/JHEP12(2014)065 to the one dimensional system described by the N=2,d=1 supersymmetric action for two particles in which one of N=1 supersymmetries is spontaneously broken. Using the nonlinear realization approach we reconsider the system in the basis where only one superfield has the Goldstone nature while the second superfield can be treated as the matter one, being invariant under transformations of the spontaneously broken N=1 supersymmetry. We establish the transformations relating the two selected FPS-like cases with our more general one, and find the field redefinitions which relate these two cases. Thus we demonstrate, at least in one dimension, that the only difference between two FPS cases lies in the different choice of the actions, while the supermultiplets specified by the FPS-like constraints are really the same. Going further with the nonlinear realization approach, we construct the most general action for the system of two N=1 superfields possessing one additional hidden spontaneously broken N=1 supersymmetry. The constructed action contains two arbitrary functions and reduces to the FPS actions upon specification of these functions. Unfortunately, the exact form of these functions corresponding to FPS actions is not very informative and gives no explanation on why the FPS cases are selected.

  20. Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression.

    Science.gov (United States)

    Wang, Huan-qin; Jin, Jian-jun; Wang, Jing

    2014-01-01

    Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treated non-small-cell lung cancer (NSCLC) H460 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin-V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose-dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin-induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P arctigenin (P arctigenin has a therapeutic potential in combina-tion with chemotherapeutic agents for NSLC. © 2013 Wiley Periodicals, Inc.

  1. Limited prognostic value of tissue protein expression levels of cyclin E in Danish ovarian cancer patients

    DEFF Research Database (Denmark)

    Heeran, Mel C; Høgdall, Claus K; Kjaer, Susanne K

    2012-01-01

    The primary objective of this study was to assess the expression of cyclin E in tumour tissues from 661 patients with epithelial ovarian tumours. The second was to evaluate whether cyclin E tissue expression levels correlate with clinico-pathological parameters and prognosis of the disease. Using...... tissue arrays (TA), we analysed the cyclin E expression levels in tissues from 168 women with borderline ovarian tumours (BOT) (147 stage I, 4 stage II, 17 stage III) and 493 Ovarian cancer (OC) patients (127 stage I, 45 stage II, 276 stage III, 45 stage IV). Using a 10% cut-off level for cyclin E......-off value showed that cyclin E had no independent prognostic value. In conclusion, we found cyclin E expression in tumour tissue to be of limited prognostic value to Danish OC patients....

  2. Immunohistochemical investigation of cell cycle and apoptosis regulators (Survivin, β-Catenin, P53, Caspase 3 in canine appendicular osteosarcoma

    Directory of Open Access Journals (Sweden)

    Bongiovanni Laura

    2012-06-01

    Full Text Available Abstract Background Osteosarcoma (OSA represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53 involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI and overall survival (OS. Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells was significantly associated with the development of metastasis (P = 0.014; moderate/high nuclear p53 expression (≥10% positive cells was significantly associated with moderate/high histological grade (P = 0.017 and shorter OS (P = 0.049. Moderate/high nuclear survivin expression (≥15% positive cells showed a tendency toward a longer OS (P = 0,088. Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies

  3. Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium

    Directory of Open Access Journals (Sweden)

    Rojas-Catagena Carmencita

    2010-11-01

    Full Text Available Abstract Background The proper balance of cell division and cell death is of crucial importance for all kinds of developmental processes and for maintaining tissue homeostasis in mature tissues. Dysregulation of this balance often results in severe pathologies, such as cancer. There is a growing interest in understanding the factors that govern the interplay between cell death and proliferation under various conditions. Survivin and mortalin are genes that are known to be implicated in both mitosis and apoptosis and are often expressed in tumors. Results The present study takes advantage of the ability of the sea cucumber Holothuria glaberrima Selenka, 1867 (Holothuroidea, Aspidochirota to discard its viscera and completely regrow them. This visceral regeneration involves an extensive expression of survivin and mortalin transcripts in the gut mesothelium (the outer tissue layer of the digestive tube, which coincides in time with drastic de-differentiation and a burst in cell division and apoptosis. Double labeling experiments (in situ hybridization combined with TUNEL assay or with BrdU immunohistochemistry suggest that both genes support cell proliferation, while survivin might also be involved in suppression of the programmed cell death. Conclusions Visceral regeneration in the sea cucumber H. glaberrima is accompanied by elevated levels of cell division and cell death, and, moreover, involves expression of pro-cancer genes, such as survivin and mortalin, which are known to support proliferation and inhibit apoptosis. Nevertheless, once regeneration is completed and the expression pattern of both genes returns to normal, the regrown digestive tube shows no anomalies. This strongly suggests that sea cucumbers must possess some robust cancer-suppression mechanisms that allow rapid re-growth of the adult tissues without leading to runaway tumor development.

  4. Expression of survivin and p53 in oral lichen planus, lichenoid reaction and lichenoid dysplasia: An immunohistochemical study

    Science.gov (United States)

    Basheer, Shaini; Shameena, PM; Sudha, S; Varma, Sujatha; Vidyanath, S; Varekar, Aniruddha

    2017-01-01

    Context: The malignant transformation potential of oral lichen planus (OLP) and related lesions is a subject of great controversy. Aim: The aim of this study was to compare the expression of proteins related to apoptosis and tumour suppressor gene processes in OLP, oral lichenoid reaction (OLR) and oral lichenoid dysplasia (OLD). Materials and Methods The immunohistochemical study was carried out to investigate the expressions of survivin and p53 in a total of 30 lesional biopsy specimens - 10 cases each of OLP, OLR and OLD. The expression rates were further compared with 10 control specimens of normal oral mucosa (NORM). Results: Immunoreactivity for p53 was seen in 7 cases (70%) of OLD, 4 cases (40%) of OLP and 2 cases (20%) of OLR and none of NORM. We obtained a significant difference (P = 0.01) in mean p53 expression between the different entities. The positive staining rate of survivin was found to be significantly different between OLD (50%), OLP (10%), OLR (0%), and normal mucosa (0%) (P = 0.004). There was a positive correlation between p53 and survivin expression in OLP and OLD using Pearson's correlation coefficient. Conclusion: Lichenoid dysplasia has shown p53 and survivin expression in the range of not OLP, but leukoplakia. On the other hand, OLR seems to be an innocuous lesion. The study results with OLP are inconclusive but points toward a small but important malignant potential in OLP. This kind of comparative study highlights the importance of biopsying OLP and related lesions for proper diagnosis and appropriate management. PMID:29391729

  5. Survivin knockdown increased anti-cancer effects of (−)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    International Nuclear Information System (INIS)

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-01-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (−)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  6. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  7. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Androic, Ilija; Krämer, Andrea; Yan, Ruilan; Rödel, Franz; Gätje, Regine; Kaufmann, Manfred; Strebhardt, Klaus; Yuan, Juping

    2008-01-01

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  8. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients.

    Science.gov (United States)

    Widenmeyer, Melanie; Griesemann, Heinrich; Stevanović, Stefan; Feyerabend, Susan; Klein, Reinhild; Attig, Sebastian; Hennenlotter, Jörg; Wernet, Dorothee; Kuprash, Dmitri V; Sazykin, Alexei Y; Pascolo, Steve; Stenzl, Arnulf; Gouttefangeas, Cécile; Rammensee, Hans-Georg

    2012-07-01

    CD4(+) T cells have been shown to be crucial for the induction and maintenance of cytotoxic T cell responses and to be also capable of mediating direct tumor rejection. Therefore, the anticancer therapeutic efficacy of peptide-based vaccines may be improved by addition of HLA class II epitopes to stimulate T helper cells. Survivin is an apoptosis inhibiting protein frequently overexpressed in tumors. Here we describe the first immunological evaluation of a survivin-derived CD4(+) T cell epitope in a multipeptide immunotherapy trial for prostate carcinoma patients. The survivin peptide is promiscuously presented by several human HLA-DRB1 molecules and, most importantly, is naturally processed by dendritic cells. In vaccinated patients, it was able to induce frequent, robust and multifunctional CD4(+) T cell responses, as monitored by IFN-γ ELISPOT and intracellular cytokine staining. Thus, this HLA-DR restricted epitope is broadly immunogenic and should be valuable for stimulating T helper cells in patients suffering from a wide range of tumors. Copyright © 2011 UICC.

  9. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  10. Emodin downregulates cell proliferation markers during DMBA ...

    African Journals Online (AJOL)

    Background: Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate ...

  11. Thimerosal-induced apoptosis in mouse C2C12 myoblast cells occurs through suppression of the PI3K/Akt/survivin pathway.

    Directory of Open Access Journals (Sweden)

    Wen-Xue Li

    Full Text Available BACKGROUND: Thimerosal, a mercury-containing preservative, is one of the most widely used preservatives and found in a variety of biological products. Concerns over its possible toxicity have reemerged recently due to its use in vaccines. Thimerosal has also been reported to be markedly cytotoxic to neural tissue. However, little is known regarding thimerosal-induced toxicity in muscle tissue. Therefore, we investigated the cytotoxic effect of thimerosal and its possible mechanisms on mouse C2C12 myoblast cells. METHODOLOGY/PRINCIPAL FINDINGS: The study showed that C2C12 myoblast cells underwent inhibition of proliferation and apoptosis after exposure to thimerosal (125-500 nM for 24, 48 and 72 h. Thimerosal caused S phase arrest and induced apoptosis as assessed by flow cytometric analysis, Hoechst staining and immunoblotting. The data revealed that thimerosal could trigger the leakage of cytochrome c from mitochondria, followed by cleavage of caspase-9 and caspase-3, and that an inhibitor of caspase could suppress thimerosal-induced apoptosis. Thimerosal inhibited the phosphorylation of Akt(ser473 and survivin expression. Wortmannin, a PI3K inhibitor, inhibited Akt activity and decreased survivin expression, resulting in increased thimerosal-induced apoptosis in C2C12 cells, while the activation of PI3K/Akt pathway by mIGF-I (50 ng/ml increased the expression of survivin and attenuated apoptosis. Furthermore, the inhibition of survivin expression by siRNA enhanced thimerosal-induced cell apoptosis, while overexpression of survivin prevented thimerosal-induced apoptosis. Taken together, the data show that the PI3K/Akt/survivin pathway plays an important role in the thimerosal-induced apoptosis in C2C12 cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that in C2C12 myoblast cells, thimerosal induces S phase arrest and finally causes apoptosis via inhibition of PI3K/Akt/survivin signaling followed by activation of the mitochondrial apoptotic

  12. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  13. Expression of antiapoptosis gene survivin in luteinized ovarian granulosa cells of women undergoing IVF or ICSI and embryo transfer: clinical correlations

    Directory of Open Access Journals (Sweden)

    Varras Michail

    2012-09-01

    Full Text Available Abstract Background The purpose of the study was to determine the incidence of survivin gene expression in human granulosa cells during ovarian stimulation in Greek women with normal FSH levels, undergoing IVF or ICSI and to discover any correlation between levels of gene expression and clinical parameters, efficacy of ovulation or outcomes of assisted reproduction. Methods Twenty nine women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded and the granulosa cells were analyzed for each patient separately using quantitative reverse transcription polymerase chain reaction analysis for survivin gene expression with internal standard the ABL gene. Results The ABL and survivin mRNA were detected in granulosa cells in 93.1%. The expression levels of survivin were significantly lower in normal women (male infertility factor compared to women with tubal infertility factor (p = 0.007. There was no additional statistically significant correlation between levels of survivin expression and estradiol levels or dosage of FSH for ovulation induction or number of dominant follicles aspirated or number of retrieved oocytes or embryo grade or clinical pregnancy rates respectively. Conclusions High levels of survivin mRNA expression in luteinized granulosa cells in cases with tubal infertility seem to protect ovaries from follicular apoptosis. A subpopulation of patients with low levels of survivin mRNA in granulosa cells might benefit with ICSI treatment to bypass possible natural barriers of sperm-oocyte interactions.

  14. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  15. Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Li Hui

    2011-03-01

    Full Text Available Abstract Background To elucidate whether rapamycin, the inhibitor of mTOR (mammalian target of rapamycin, can potentiate the cytotoxic effect of docetaxel in lung cancer cells and to probe the mechanism underlying such enhancement. Methods Lung cancer cells were treated with docetaxel and rapamycin. The effect on the proliferation of lung cancer cells was evaluated using the MTT method, and cell apoptosis was measured by flow cytometry. Protein expression and level of phosphorylation were assayed using Western Blot method. Results Co-treatment of rapamycin and docetaxel was found to favorably enhance the cytotoxic effect of docetaxel in four lung cancer cell lines. This tumoricidal boost is associated with a reduction in the expression and phosphorylation levels of Survivin and ERK1/2, respectively. Conclusion The combined application of mTOR inhibitor and docetaxel led to a greater degree of cancer cell killing than that by either compound used alone. Therefore, this combination warrants further investigation in its suitability of serving as a novel therapeutic scheme for treating advanced and recurrent lung cancer patients.

  16. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies

    International Nuclear Information System (INIS)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cufi, Silvia; Torres-Garcia, Violeta Zenobia; Sauri-Nadal, Tamara; Barco, Sonia Del; Lopez-Bonet, Eugeni; Brunet, Joan; Martin-Castillo, Begona; Menendez, Javier A.

    2011-01-01

    Highlights: → Intrinsic trastuzumab resistance occurs in ∼70% of metastatic HER2 + breast carcinomas (BC). → Approximately 15% of early HER2 + BC relapse in spite of treatment with trastuzumab-based therapies. → HER2-independent downstream pro-survival pathways might underlie trastuzumab refractoriness. → Survivin is indispensable for proliferation and survival of HER2 + BC unresponsive to HER2-targeted therapies ab initio. → Survivin antagonists may clinically circumvent the occurrence of de novo resistance to HER2-directed drugs. -- Abstract: Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC 50 values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naive SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ∼4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ∼10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may

  17. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies

    Energy Technology Data Exchange (ETDEWEB)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cufi, Silvia; Torres-Garcia, Violeta Zenobia [Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Sauri-Nadal, Tamara; Barco, Sonia Del [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Medical Oncology, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Lopez-Bonet, Eugeni [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Department of Anatomical Pathology, Dr. Josep Trueta University Hospital, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Brunet, Joan [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Medical Oncology, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Martin-Castillo, Begona [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Unit of Clinical Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Menendez, Javier A., E-mail: jmenendez@idibgi.org [Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain)

    2011-04-08

    Highlights: {yields} Intrinsic trastuzumab resistance occurs in {approx}70% of metastatic HER2 + breast carcinomas (BC). {yields} Approximately 15% of early HER2 + BC relapse in spite of treatment with trastuzumab-based therapies. {yields} HER2-independent downstream pro-survival pathways might underlie trastuzumab refractoriness. {yields} Survivin is indispensable for proliferation and survival of HER2 + BC unresponsive to HER2-targeted therapies ab initio. {yields} Survivin antagonists may clinically circumvent the occurrence of de novo resistance to HER2-directed drugs. -- Abstract: Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC{sub 50} values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naive SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed {approx}4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated {approx}10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely

  18. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2001-01-01

    Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G(1)/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits...... the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, the issue of which cyclin-CDK complexes are involved has been a matter of debate, and the mechanism...... of how cyclin-CDKs interact with APC subunits remains unresolved. Here we substantiate the evidence that mammalian cyclin A-Cdk2 prevents unscheduled APC reactivation during S phase by demonstrating its periodic interaction with Cdh1 at the level of endogenous proteins. Moreover, we identified...

  19. [Effect of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes].

    Science.gov (United States)

    Chen, Wei-qiang; Feng, Feng-lan; Gu, Hong-biao; Pan, De-shun

    2010-07-01

    To examine the effects of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes. The inhibition effects of sodium phenylbutyrate on Tca8113 and human tongue squamous cell carcinoma (TCSSA) cell lines were detected by methyl thiazoly terazolium (MTT) and the apoptosis of the cancer cells after being induced by sodium phenylbutyrate examined by flow cytometry (FCM). The expression of p21 and survivin genes were observed with Western blotting and RT-PCR. Compared with control group, the level of p21 mRNA and protein of Tca8113 cellline increased to 0.09 ± 0.08 and increased 0.72 ± 0.10, that of TCSSA cellline increased 1.34 ± 0.12 and 1.56 ± 0.09 (P Sodium phenylbutyrate inhibited the cell proliferation, promoted cell apoptosis and arrested the cells in G₁/G₀ phase. The amount of p21 mRNA and protein were increased, and the expression of survivin gene was decreased. Sodium phenylbutyrate exhibited remarkable inhibitory effects on human tongue squamous cancer cell proliferation and induced cancer cell apoptosis. The mechanism may be due to up-regulation of p21 gene and down-regulation of survivin gene. The mRNA level of p21 gene and survivin gene showed a strong correlation.

  20. E-type cyclins modulate telomere integrity in mammalian male meiosis.

    Science.gov (United States)

    Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J

    2016-06-01

    We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.

  1. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes

    NARCIS (Netherlands)

    Beijersbergen, R.L.; Carlée, L.; Kerkhoven, R.M.; Bernards, R.A.

    1995-01-01

    The orderly progression through the cell cycle is mediated by the sequential activation of several cyclin/cyclin-dependent kinase (cdk) complexes. These kinases phosphorylate a number of cellular substrates, among which is the product of the retinoblastoma gene, pRb. Phosphorylation of pRb in late

  2. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    Using chromatin immunoprecipitation assays, we demonstrated that expression of cyclin D3 in undifferentiated myoblasts altered histone epigenetic marks at promoters of muscle-specific genes like MyoD, Pax7, myogenin and muscle creatine kinase but not non-muscle genes. Cyclin D3 expression also reduced the mRNA ...

  3. Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    International Nuclear Information System (INIS)

    Akli, Said; Keyomarsi, Khandan

    2004-01-01

    Cyclin E, a key mediator of transition during the G 1 /S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

  4. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  5. Production of Cyclin D1 specific siRNAs by double strand processing for gene therapy of esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Negar Mottaghi-Dastjerdi

    2013-02-01

    Conclusion: dsRNA digestion method includes several steps which the product of each step is used as the precursor for the next step. So optimization and increasing the specificity and product yield should be in the most important goals of the study, because the yield of each step has a direct relationship with the final product yield which is siRNA. Optimizing and increasing the yield, dsRNA digestion method could be a rapid, available and profitable method for siRNA generation, providing large amounts of siRNA.

  6. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers

    DEFF Research Database (Denmark)

    French, Juliet D; Ghoussaini, Maya; Edwards, Stacey L

    2013-01-01

    Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causativ...

  7. Differential expression of peroxisome proliferator activated receptor gamma and cyclin D1 does not affect proliferation of asthma- and non-asthma-derived airway smooth muscle cells

    NARCIS (Netherlands)

    Lau, Justine Y; Oliver, Brian G; Moir, Lyn M; Black, Judith L; Burgess, Janette K

    UNLABELLED: PPARgamma levels in asthma- and non-asthma-derived airway smooth muscle cells and PPARgamma activation-induced cell proliferation were investigated. In the presence of FBS, PPARgamma levels were higher in subconfluent asthma-derived cells but lower in confluent cells compared with

  8. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics

    Directory of Open Access Journals (Sweden)

    Randy Strich

    2014-09-01

    Full Text Available Following exposure to cytotoxic agents, cellular damage is first recognized by a variety of sensor mechanisms. Thenceforth, the damage signal is transduced to the nucleus to install the correct gene expression program including the induction of genes whose products either detoxify destructive compounds or repair the damage they cause. Next, the stress signal is disseminated throughout the cell to effect the appropriate changes at organelles including the mitochondria. The mitochondria represent an important signaling platform for the stress response. An initial stress response of the mitochondria is extensive fragmentation. If the damage is prodigious, the mitochondria fragment (fission and lose their outer membrane integrity leading to the release of pro-apoptotic factors necessary for programmed cell death (PCD execution. As this complex biological process contains many moving parts, it must be exquisitely coordinated as the ultimate decision is life or death. The conserved C-type cyclin plays an important role in executing this molecular Rubicon by coupling changes in gene expression to mitochondrial fission and PCD. Cyclin C, along with its cyclin dependent kinase partner Cdk8, associates with the RNA polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8 repress many stress responsive genes. To relieve this repression, cyclin C is destroyed in cells exposed to pro-oxidants and other stressors. However, prior to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor (Med13, translocates from the nucleus to the cytoplasm where it interacts with the fission machinery and is both necessary and sufficient to induce extensive mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD indicating that it mediates both mitochondrial fission and cell death pathways. This review will summarize the role cyclin C plays in regulating stress-responsive transcription. In addition, we will detail

  9. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zheng [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao Bei, Guangzhou 510515 (China); Zhou, Yuning [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Wang, Qingding, E-mail: qingding.wang@uky.edu [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  10. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    International Nuclear Information System (INIS)

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-01-01

    Highlights: ► Rictor associates with FBXW7 to form an E3 complex. ► Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. ► Knockdown of rictor increases protein levels of c-Myc and cylin E. ► Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. ► Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor–FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  11. Survivin protein expression is involved in the progression of non-small cell lung cancer in Asians: a meta-analysis

    International Nuclear Information System (INIS)

    Duan, Liang; Hu, Xuefei; Jin, Yuxing; Liu, Ruijun; You, Qingjun

    2016-01-01

    Surviving expression might serve as a prognostic biomarker predicting the clinical outcome of non-small cell lung cancer (NSCLC). The study was conducted to explore the potential correlation of survivin protein expression with NSCLC and its clinicopathologic characteristics. PubMed, Medline, Cochrane Library, CNKI and Wanfang database were searched through January 2016 with a set of inclusion and exclusion criteria. Data was extracted from these articles and all statistical analysis was conducted by using Stata 12.0. A total of 28 literatures (14 studies in Chinese and 14 studies in English) were enrolled in this meta-analysis, including 3206 NSCLC patients and 816 normal controls. The result of meta-analysis demonstrated a significant difference of survivin positive expression between NSCLC patients and normal controls (RR = 7.16, 95 % CI = 4.63-11.07, P < 0.001). To investigate the relationship of survivin expression and clinicopathologic characteristics, we performed a meta-analysis in NSCLC patients. Our results indicates survivin expression was associated with histological differentiation, tumor-node-metastasis (TNM) stage and lymph node metastasis (LNM) (RR = 0.80, 95 % CI = 0.73-0.87, P < 0.001; RR = 0.75, 95 % CI = 0.67-0.84, P < 0.001; RR = 1.14, 95 % CI = 1.01-1.29, P = 0.035, respectively), but not pathological type and tumor size. (RR = 1.00, 95 % CI = 0.93-1.07, P = 0.983; RR = 0.95, 95 % CI = 0.86-1.05, P = 0.336, respectively). Higher expression of survivin in NSCLC patients was found when compared to normal controls. Survivin expression was associated with the clinicopathologic characteristics of NSCLC and may serves as an important biomarker for NSCLC progression

  12. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression.

    Science.gov (United States)

    Feuerborn, Renata; Becker, Susen; Potì, Francesco; Nagel, Petra; Brodde, Martin; Schmidt, Harmut; Christoffersen, Christina; Ceglarek, Uta; Burkhardt, Ralph; Nofer, Jerzy-Roch

    2017-02-01

    Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages. Mitochondrial or endoplasmic reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively. Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression of the inhibitor of apoptosis protein (IAP) family proteins cIAP1, cIAP2 and survivin, but only the inhibitor of survivin expression YM155 and not the cIAP1/2 blocker GDC0152 reversed the inhibitory effect of S1P on apoptosis. Moreover, S1P activated signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL lipids, and apolipoprotein (apo) M-containing HDL, but not by apoA-I or HDL deprived of S1P or apoM. In addition, JTE013 and CAY10444, S1P receptor 2 and 3 antagonists, respectively, compromised the S1P and HDL capacities to stimulate STAT3 activation and survivin expression, and to inhibit apoptosis. HDL-associated S1P inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. The suppression of macrophage apoptosis may represent a novel mechanism utilized by HDL to exert its anti-atherogenic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  14. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions.

    Science.gov (United States)

    Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran

    2018-06-01

    Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    International Nuclear Information System (INIS)

    Tao, Yan-Fang; Wu, Dong; Wang, Na; Feng, Xing; Li, Yan-Hong; Ni, Jian; Wang, Jian; Pan, Jian; Lu, Jun; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Xuan; Peng, Liang; Cao, Lan; Xiao, Pei-Fang; Pang, Li

    2012-01-01

    Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm 3 ; YM155 10 mg/kg: 0.95 ± 0.55 cm 3 ) compared to DMSO group (DMSO: 3.70 ± 2.4 cm 3 ) or PBS group cells (PBS: 3.78 ± 2.20 cm 3 , ANOVA P < 0.01). YM155 treatment decreased weight of tumors (YM155 5 mg/kg: 1.05 ± 0.24 g; YM155 10 mg/kg: 0.72 ± 0.17 g) compared to DMSO group (DMSO: 2.06 ± 0.38 g) or PBS group cells (PBS: 2.36 ± 0.43 g, ANOVA P < 0.01). Real-time PCR array analysis showed between Test group and control group there are 32 genes significantly up-regulated and 54 genes were significantly down-regulated after YM155 treatment. Ingenuity pathway analysis (IPA) showed cell death was the highest rated network with 65 focus molecules and the significance score of 44. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to cell

  16. [X-linked inhibitor of apoptosis protein (XIAP) and Survivin suppression on human pancreatic cancer cells Panc-1 proliferation and chemosensitivety].

    Science.gov (United States)

    Zai, Hong-yan; Yi, Xiao-ping; Li, Yi-xiong; You, Xue-ying; Cao, Li-ping; Liu, Hui

    2013-04-18

    To investigate the effect on cell proliferation and chemosensitivity of human pancreatic cancer cells Panc-1 after X-linked inhibitor of apoptosis protein (XIAP) and Survivin are inhibited simultaneously, and to compare it with the separate gene suppression strategy by which expression of XIAP or Survivin is inhibited respectively. Panc-1 (Panc-1-X, Panc-1-S and Panc-1-XS) in which expression of XIAP and/or Survivin was inhibited, was established by using XIAP-shRNA lentiviral and Survivin-shRNA lentiviral we had built. The expressions of XIAP and Survivin mRNA and protein were evaluated by Real-time PCR and Semi-quantitatively Western blot analysis; cell proliferation was investigated by cell counting and colony formation assay; cell apoptosis was investigated by Caspase-3/7 activity assay kit and flow cytometry; gemcitabine (Gem) chemosensitivity was investigated by MTT assay. The pancreatic cell line Panc-1 in which the expression of XIAP and/or Survivin was stablely inhibited was successfully established. The cell proliferation of Panc-1-XS cells decreased significantly. The colony formation rate of Panc-1-XS cells (10.12%± 1.33%), was significantly lower than that of Panc-1-XncSnc cells (96.61% ± 7.89%) and Panc-1 cells (100.28% ± 8.97%) respectively (PPanc-1-XS cells (15.02 ± 0.57) was significantly higher than that of Panc-1 cells and Panc-1-XncSnc cells (8.87 ± 0.19 and 9.05 ± 0.23, respectively; PPanc-1-XS cells (24.09% ± 2.75%) was significantly higher than that of Panc-1-XncSnc cells and Panc-1 cells (12.09% ± 1.97% and 12.06% ± 1.22%, respectively; PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-XncSnc cells [(2.18 ± 0.13) mg/L] and Panc-1 cells [(2.13 ± 0.18) mg/L, PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-X cells [(0.76 ± 0.07) mg/L] and Panc-1-S cells [(0.87 ± 0.09) mg/L, PPanc-1 cells was significantly suppressed and the Gem chemosensitivity was significantly

  17. Clinical and immunological evaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer

    Directory of Open Access Journals (Sweden)

    Asanuma Hiroko

    2008-05-01

    Full Text Available Abstract Background We previously reported that survivin-2B, a splicing variant of survivin, was expressed in various types of tumors and that survivin-2B peptide might serve as a potent immunogenic cancer vaccine. The objective of this study was to examine the toxicity of and to clinically and immunologically evaluate survivin-2B peptide in a phase I clinical study for patients with advanced or recurrent breast cancer. Methods We set up two protocols. In the first protocol, 10 patients were vaccinated with escalating doses (0.1–1.0 mg of survivin-2B peptide alone 4 times every 2 weeks. In the second protocol, 4 patients were vaccinated with the peptide at a dose of 1.0 mg mixed with IFA 4 times every 2 weeks. Results In the first protocol, no adverse events were observed during or after vaccination. In the second protocol, two patients had induration at the injection site. One patient had general malaise (grade 1, and another had general malaise (grade 1 and fever (grade 1. Peptide vaccination was well tolerated in all patients. In the first protocol, tumor marker levels increased in 8 patients, slightly decreased in 1 patient and were within the normal range during this clinical trial in 1 patient. With regard to tumor size, two patients were considered to have stable disease (SD. Immunologically, in 3 of the 10 patients (30%, an increase of the peptide-specific CTL frequency was detected. In the second protocol, an increase of the peptide-specific CTL frequency was detected in all 4 patients (100%, although there were no significant beneficial clinical responses. ELISPOT assay showed peptide-specific IFN-γ responses in 2 patients in whom the peptide-specific CTL frequency in tetramer staining also was increased in both protocols. Conclusion This phase I clinical study revealed that survivin-2B peptide vaccination was well tolerated. The vaccination with survivin-2B peptide mixed with IFA increased the frequency of peptide-specific CTL more

  18. The relationship between the expression of TAM, survivin and the degree of necrosis of the tumor after cisplatin treatment in osteosarcoma.

    Science.gov (United States)

    Chen, G

    2017-02-01

    To explore the relationship between the expression of TAM, survivin and the degree of necrosis of the tumor after cisplatin treatment in osteosarcoma. The mice model of osteosarcoma S180 were injected with 6 mg/kg/day of cisplatin (observation group) or the same amount of normal saline (control group) for 4 weeks. Mice were sacrificed at days 1, 4, 9, 14, 18, 22 and 28, respectively, 24 h before administration of the drug or saline, and tumor tissues were collected. The size of the tumor samples was measured and the correlation of TAM, survivin expression in osteosarcoma and necrosis degree of tumor tissue after cisplatin treatment was studied using various methods including fluorescence quantitative PCR, enzyme linked immunosorbent assay (ELISA), Western blotting and immunohistochemistry. Fluorescence quantitative PCR showed that the expression of TAM, survivin mRNA in the control group was significantly higher than that in the observation group. Also, the ELISA monitoring showed that the expression of mice TAM, survivin protein in vivo was significantly lower than TAM, survivin protein expression of mice in vivo in the observation group (2.3 µg/l, 1.6 µg/l) relatively to the control group (9.7 mg/l, 10.3 µg/l). Consistent with the Western blot data, ELISA results showed that the expression of survivin and TAM protein decreased gradually with the prolongation of drug treatment along the time in the observation group. The volume and weight of the tumor in the observation group were significantly less than that of the control group. Additionally, the tumor necrosis of mice in the observation group was more significant, suggesting that the meant of the size of tumor tissue decreased significantly with the extension of the time of drug treatment. Immunohistochemical results showed that the rate of the positive cell of TAM and survivin in the observation group (82.3%) was significantly higher (pTAM gradually declined at the level of the trend with the extension of

  19. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    Science.gov (United States)

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  20. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali; Wall, Richard J.; Douglass, Alexander P.; Ramaprasad, Abhinay; Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, ‍ Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  1. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity

    International Nuclear Information System (INIS)

    Jian Yongzhi; Yan Jun; Wang Hanzhou; Chen Chen; Sun Maoyun; Jiang Jianhai; Lu Jieqiong; Yang Yanzhong; Gu Jianxin

    2005-01-01

    D-type cyclins are essential for the progression through the G1 phase of the cell cycle. Besides serving as cell cycle regulators, D-type cyclins were recently reported to have transcription regulation functions. Here, we report that cyclin D3 is a new interacting partner of vitamin D receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid hormone, and the fat-soluble vitamins A and D. The interaction was confirmed with methods of yeast two-hybrid system, in vitro binding analysis and in vivo co-immunoprecipitation. Cyclin D3 interacted with VDR in a ligand-independent manner, but treatment of the ligand, 1,25-dihydroxyvitamin D3, strengthened the interaction. Confocal microscopy analysis showed that ligand-activated VDR led to an accumulation of cyclin D3 in the nuclear region. Cyclin D3 up-regulated transcriptional activity of VDR and this effect was counteracted by overexpression of CDK4 and CDK6. These findings provide us a new clue to understand the transcription regulation functions of D-type cyclins

  2. Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1.

    Directory of Open Access Journals (Sweden)

    Anna Pakula

    Full Text Available OBJECTIVES: Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD. METHODS: Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. RESULTS: cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. CONCLUSIONS: In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.

  3. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    Science.gov (United States)

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  4. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  5. Selective induction of cyclin B protein abrogates the G2 delay after irradiation

    International Nuclear Information System (INIS)

    Kao, G.; Muschel, R.J.; Maity, A.; Kunig, A.; McKenna, W.G.

    1996-01-01

    Purpose/Objective: Irradiation of tumor cells commonly results in G2 delay, which has been postulated to allow DNA repair and cell survival. The G2 delay after irradiation is also often marked in some cell lines by delayed expression of cyclin B protein, suggesting a role for cyclin B regulation. Investigations of these hypotheses however has been hampered by the inability to selectively perturb the G2 delay in a physiologic manner. Materials and Methods: We have devised a system, with which we are able to selectively induce cyclin B protein expression in vivo at specific points in the cell cycle, by transfecting Hela cells with an expression vector under control of a dexamethasone-inducible promoter. Experiments were subsequently performed by synchronizing, releasing, irradiating, inducing, and harvesting these cells through the cell cycle. Results: Irradiation with 5 Gy led to a pronounced G2 delay, reflected by markedly slowed progression into mitosis, concomitant with reduced expression of cyclin B protein. Induction of cyclin B after radiation in these cells abrogated the G2 delay by approximately doubling the rate at which the cells re-enter mitosis. Treatment of irradiated untransfected control cells with dexamethasone, in which cyclin B is not induced, led to minimal changes. Studies of effects of cyclin B induction on cyclin B localization (using immunofluorescence), cdc2 phosphorylation and activation will also be presented. Conclusion: This system should allow further investigations into fundamental mechanisms of cell cycle regulation after irradiation and DNA damage. This also provides direct evidence for the first time that cyclin B protein regulation may play a role in the G2 delay following irradiation in Hela cells, perhaps complementing phosphorylation events

  6. Survivin knockdown increased anti-cancer effects of (−)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N- BE2 and SH-SY5Y cells

    Science.gov (United States)

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-01-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (−)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in expression of NFP, NSE, and e-cadherin and also decreases in expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro network

  7. 26 CFR 1.678(d)-1 - Renunciation of power.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) INCOME TAXES Grantors and Others Treated As Substantial Owners § 1.678(d)-1 Renunciation of power. Section 678(a) does not apply to a power which has been renounced or disclaimed within a reasonable time... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Renunciation of power. 1.678(d)-1 Section 1.678...

  8. The D1 parameter for the equatorial F1 region

    International Nuclear Information System (INIS)

    Adeniyi, J.O.; Radicella, S.M.

    2002-01-01

    This work is a contribution to the effort at improving the representation of the F1 equatorial ionospheric region in the International Reference Ionosphere (IRI) model. The D1 parameter has been proposed for describing the F1 layer. We have therefore produced a maiden table of D1 parameter for an equatorial station. Diurnal and seasonal effects were considered. (author)

  9. Waiting time distribution in M/D/1 queueing systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Staalhagen, Lars

    1999-01-01

    The well-known formula for the waiting time distribution of M/D/1 queueing systems is numerically unsuitable when the load is close to 1.0 and/or the results for a large waiting time are required. An algorithm for any load and waiting time is presented, based on the state probabilities of M/D/1...

  10. Development of specific dopamine D-1 agonists and antagonists

    International Nuclear Information System (INIS)

    Sakolchai, S.

    1987-01-01

    To develop potentially selective dopamine D-1 agonists and to investigate on the structural requirement for D-1 activity, the derivatives of dibenzocycloheptadiene are synthesized and pharmacologically evaluated. The target compounds are 5-aminomethyl-10,11-dihydro-1,2-dihydroxy-5H-dibenzo[a,d]cycloheptene hydrobromide 10 and 9,10-dihydroxy-1,2,3,7,8,12b-hexahydrobenzo[1,2]cyclohepta[3,4,5d,e]isoquinoline hydrobromide 11. In a dopamine-sensitive rat retinal adenylate cyclase assay, a model for D-1 activity, compound 10 is essentially inert for both agonist and antagonist activity. In contrast, compound 11 is approximately equipotent to dopamine in activation of the D-1 receptor. Based on radioligand and binding data, IC 50 of compound 11 for displacement of 3 H-SCH 23390, a D-1 ligand, is about 7 fold less than that for displacement of 3 H-spiperone, a D-2 ligand. These data indicate that compound 11 is a potent selective dopamine D-1 agonist. This study provides a new structural class of dopamine D-1 acting agent: dihydroxy-benzocycloheptadiene analog which can serve as a lead compound for further drug development and as a probe for investigation on the nature of dopamine D-1 receptor

  11. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  12. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  13. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  14. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    International Nuclear Information System (INIS)

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-01-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  15. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells

    NARCIS (Netherlands)

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P; Cristobal, Alba; Prinsen, Martine B W; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J R; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-01

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases,

  16. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  17. Iodoacetyl-functionalized pullulan: A supplemental enhancer for single-domain antibody-polyclonal antibody sandwich enzyme-linked immunosorbent assay for detection of survivin.

    Science.gov (United States)

    Matsushita, Takahiko; Arai, Hidenao; Koyama, Tetsuo; Hatano, Ken; Nemoto, Naoto; Matsuoka, Koji

    2017-11-01

    Survivin, an inhibitor of the apoptosis protein family, is a potent tumor marker for diagnosis and prognosis. The enzyme-linked immunosorbent assay (ELISA) is one of the methods that has been used for detection of survivin. However, ELISA has several disadvantages caused by the use of conventional antibodies, and we have therefore been trying to develop a novel ELISA system using camelid single-domain antibodies (VHHs) as advantageous replacements. Here we report a supplemental approach to improve the VHH-polyclonal antibody sandwich ELISA for survivin detection. Iodoacetyl-functionalized pullulan was synthesized, and its thiol reactivity was characterized by a model reaction with l-cysteine. The thiophilic pullulan was applied to an immunoassay asan additive upon coating of standard assay plates with an anti-survivin VHH fusion protein with C-terminal cysteine. The results showed that the mole ratio of the additive to VHH had a significant effect on the consequent response. Mole ratios of 0.07, 0.7, and 7 led to 90% lower, 15% higher, and 69% lower responses, respectively, than the response of a positive control in which no additive was used. The background levels observed in any additive conditions were as low as that of a negative control lacking both VHH and the additive. These results indicate the applicability of the thiol-reactive pullulan as a response enhancer to VHH-based ELISA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Drosophila PNG kinase complex regulates the translation of cyclin B.

    Science.gov (United States)

    Vardy, Leah; Orr-Weaver, Terry L

    2007-01-01

    The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.

  19. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... Key words: Cyclin G2, gastric cancer, negative regulator, mutation screen. INTRODUCTION ... cerebellum, thymus, spleen, prostate, kidney and the immune ..... and B cell antigen receptor-mediated cell cycle arrest. J. Biol.

  20. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7

    Directory of Open Access Journals (Sweden)

    Bi YZ

    2016-11-01

    Full Text Available Yanzhao Bi, Yifan Zhang, Chunying Cui, Lulu Ren, Xueyun Jiang School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China Abstract: Nanodiamond (ND is a renowned material in nonviral small interfering RNA (siRNA carrier field due to its unique physical, chemical, and biological properties. In our previous work, it was proven that ND could deliver siRNA into cells efficiently and downregulate the expression of desired protein. However, synthesizing a high-efficient tumor-targeting carrier using ND is still a challenge. In this study, a novel carrier, NDCONH(CH22NH-VDGR, was synthesized for siRNA delivery, and its properties were characterized with methods including Fourier transform infrared spectrometry, transmission electron microscopy, scanning electron microscopy, gel retardation assay, differential scanning calorimetry, confocal microscopy, releasing test, real-time polymerase chain reaction (PCR assay, enzyme-linked immunosorbent assay (ELISA, flow cytometry, cytotoxicity assay, and gene-silencing efficacy assay in vitro and in vivo. The mechanism of NDCONH(CH22NH-VDGR/survivin-siRNA-induced tumor apoptosis was evaluated via flow cytometer assay using Annexin V–fluorescein isothiocyanate/propidium iodide staining method. The NDCONH(CH22NH-VDGR/survivin-siRNA nanoparticle with 60–110 nm diameter and 35.65±3.90 mV zeta potential was prepared. For real-time PCR assay, the results showed that the expression of survivin mRNA was reduced to 46.77%±6.3%. The expression of survivin protein was downregulated to 48.49%±2.25%, as evaluated by ELISA assay. MTT assay showed that NDCONH(CH22NH-VDGR/survivin-siRNA had an inhibitory effect on MCF-7 cell proliferation. According to these results, the survivin-siRNA could be delivered, transported, and released stably, which benefits in increasing the gene-silencing effect. Therefore, as an siRNA carrier, NDCONH(CH22NH-VDGR was suggested

  1. Transarterial chemoembolization of hepatocellular carcinoma in a rat model: the effect of additional injection of survivin siRNA to the treatment protocol

    International Nuclear Information System (INIS)

    Vogl, Thomas J.; Oppermann, Elsie; Qian, Jun; Imlau, Ulli; Tran, Andreas; Hamidavi, Yousef; Korkusuz, Huedayi; Bechstein, Wolf Otto; Nour-Eldin, Nour-Eldin Abdel-Rehim; Gruber-Rouh, Tatjana; Hammerstingl, Renate; Naguib, Nagy Naguib Naeem

    2016-01-01

    Transarterial chemoembolization is one of the most widely accepted interventional treatment options for treatment of hepatocellular carcinoma. Still there is a lack of a standard protocol regarding the injected chemotherapeutics. Survivin is an inhibitor of Apoptosis protein that functions to inhibit apoptosis, promote proliferation, and enhance invasion. Survivin is selectively up-regulated in many human tumors. Small interfering RNA (siRNA) can trigger an RNA interference response in mammalian cells and induce strong inhibition of specific gene expression including Survivin. The aim of the study is to assess the effectiveness of the additional injection of Survivin siRNA to the routine protocol of Transarterial Chemoembolization (TACE) for the treatment of hepatocellular carcinoma in a rat model. The study was performed on 20 male ACI rats. On day 0 a solid Morris Hepatoma 3924A was subcapsullary implanted in the liver. On day 12 MRI measurement of the initial tumor volume (V1) was performed. TACE was performed on day 13. The rats were divided into 2 groups; Group (A, n = 10) in which 0.1 mg mitomycin, 0.1 ml lipiodol and 5.0 mg degradable starch microspheres were injected in addition 2.5 nmol survivin siRNA were injected. The same agents were injected in Group (B,=10) without Survivin siRNA. MRI was repeated on day 25 to assess the tumor volume (V2). The tumor growth ratio (V2/V1) was calculated. Western blot and immunohistochemical analysis were performed. For group A the mean tumor growth ratio (V2/V1) was 1.1313 +/− 0.1381, and was 3.1911 +/− 0.1393 in group B. A statistically significant difference between both groups was observed regarding the inhibition of tumor growth (P < 0.0001) where Group A showed more inhibition compared to Group B. Similarly immunohistochemical analysis showed significantly lower (p < 0.002) VEGF staining in group A compared to group B. Western Blot analysis showed a similar difference in VEGF expression (P < 0.0001). The

  2. Cyclin C influences the timing of mitosis in fission yeast.

    Science.gov (United States)

    Banyai, Gabor; Szilagyi, Zsolt; Baraznenok, Vera; Khorosjutina, Olga; Gustafsson, Claes M

    2017-07-01

    The multiprotein Mediator complex is required for the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator contains the Cdk8 regulatory subcomplex, which directs periodic transcription and influences cell cycle progression in fission yeast. Here we investigate the role of CycC, the cognate cyclin partner of Cdk8, in cell cycle control. Previous reports suggested that CycC interacts with other cellular Cdks, but a fusion of CycC to Cdk8 reported here did not cause any obvious cell cycle phenotypes. We find that Cdk8 and CycC interactions are stabilized within the Mediator complex and the activity of Cdk8-CycC is regulated by other Mediator components. Analysis of a mutant yeast strain reveals that CycC, together with Cdk8, primarily affects M-phase progression but mutations that release Cdk8 from CycC control also affect timing of entry into S phase. © 2017 Banyai et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Involvement of cyclin K posttranscriptional regulation in the formation of Artemia diapause cysts.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available BACKGROUND: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. PRINCIPAL FINDING: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2 in the C-terminal domain (CTD of the largest subunit (Rpb1 of RNA polymerase II (RNAP II. Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK survival signaling pathway. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role was identified for cyclin K in regulating the control of cell survival during embryogenesis through ERK signaling pathways.

  4. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  5. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    Science.gov (United States)

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells.

    Directory of Open Access Journals (Sweden)

    Laetitia Kurzawa

    Full Text Available Cyclin-dependant kinases play a central role in coordinating cell growth and division, and in sustaining proliferation of cancer cells, thereby constituting attractive pharmacological targets. However, there are no direct means of assessing their relative abundance in living cells, current approaches being limited to antigenic and proteomic analysis of fixed cells. In order to probe the relative abundance of these kinases directly in living cells, we have developed a fluorescent peptide biosensor with biligand affinity for CDKs and cyclins in vitro, that retains endogenous CDK/cyclin complexes from cell extracts, and that bears an environmentally-sensitive probe, whose fluorescence increases in a sensitive fashion upon recognition of its targets. CDKSENS was introduced into living cells, through complexation with the cell-penetrating carrier CADY2 and applied to assess the relative abundance of CDK/Cyclins through fluorescence imaging and ratiometric quantification. This peptide biosensor technology affords direct and sensitive readout of CDK/cyclin complex levels, and reports on differences in complex formation when tampering with a single CDK or cyclin. CDKSENS further allows for detection of differences between different healthy and cancer cell lines, thereby enabling to distinguish cells that express high levels of these heterodimeric kinases, from cells that present decreased or defective assemblies. This fluorescent biosensor technology provides information on the overall status of CDK/Cyclin complexes which cannot be obtained through antigenic detection of individual subunits, in a non-invasive fashion which does not require cell fixation or extraction procedures. As such it provides promising perspectives for monitoring the response to therapeutics that affect CDK/Cyclin abundance, for cell-based drug discovery strategies and fluorescence-based cancer diagnostics.

  7. Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A.

    Science.gov (United States)

    Dong, X; Zavitz, K H; Thomas, B J; Lin, M; Campbell, S; Zipursky, S L

    1997-01-01

    In the developing eye of Drosophila melanogaster, cells become synchronized in the G1 phase of the cell cycle just prior to the onset of cellular differentiation and morphogenesis. In roughex (rux) mutants, cells enter S phase precociously because of ectopic activation of a Cyclin A/Cdk complex in early G1. This leads to defects in cell fate and pattern formation, and results in abnormalities in the morphology of the adult eye. A screen for dominant suppressors of the rux eye phenotype led to the identification of mutations in cyclin A, string (cdc25), and new cell cycle genes. One of these genes, regulator of cyclin A (rca1), encodes a novel protein required for both mitotic and meiotic cell cycle progression. rca1 mutants arrest in G2 of embryonic cell cycle 16 with a phenotype very similar to cyclin A loss of function mutants. Expression of rca1 transgenes in G1 or in postmitotic neurons promotes Cyclin A protein accumulation and drives cells into S phase in a Cyclin A-dependent fashion.

  8. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  9. The pathophysiological functions mediated by D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Goldstein, M.; Kuga, S.; Meller, E.; SHimizu, Y.

    1986-01-01

    This chapter describes some behavioral responses which might be mediated by D 1 and D 2 DA receptors, and the authors discuss their clinical relevance. It was of considerable interest to determine whether a selective D 1 DA antagonist, such as SCH 23390, will induce catalepsy and whether this behavior is mediated by D 1 , or by both D 1 and D 2 DA receptors. Rats were used in the experiments. The authors examined whether the addition of the S 2 antagonist ketanserin affects the displacement of 3 H-Spi by SCH 23390. Induction of self-mutilating biting (SMB) behavior in monkeys with unilateral ventromedial tegmental (VMT) lesions by DA agonists and its prevention by DA antagonists is examined. The authors also discuss the possible relationships between abnormal guanine nucleotide metabolism and dopaminergic neuronal function through the implications in LeschNyhan syndrome and in some mental disorders

  10. 26 CFR 1.1402(d)-1 - Employee and wages.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Employee and wages. 1.1402(d)-1 Section 1.1402... (CONTINUED) INCOME TAXES Tax on Self-Employment Income § 1.1402(d)-1 Employee and wages. For the purpose of the tax on self-employment income, the term “employee” and the term “wages” shall have the same...

  11. Underground storage tank 291-D1U1: Closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  12. Induced ICER Iγ down-regulates cyclin A expression and cell proliferation in insulin-producing β cells

    International Nuclear Information System (INIS)

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan

    2005-01-01

    We have previously found that cyclin A expression is markedly reduced in pancreatic β-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER Iγ) in transgenic mice. Here we further examined regulatory effects of ICER Iγ on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER Iγ directly repressed cyclin A gene transcription. In addition, upon ICER Iγ overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER Iγ on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER Iγ expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER Iγ in pancreatic β cells. Since ICER Iγ is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting β-cell proliferation

  13. Hairpin-Hairpin Molecular Beacon Interactions for Detection of Survivin mRNA in Malignant SW480 Cells.

    Science.gov (United States)

    Ratajczak, Katarzyna; Krazinski, Bartlomiej E; Kowalczyk, Anna E; Dworakowska, Beata; Jakiela, Slawomir; Stobiecka, Magdalena

    2018-05-07

    Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed

  14. Cyclin E-Mediated Human Proopiomelanocortin Regulation as a Therapeutic Target for Cushing Disease.

    Science.gov (United States)

    Liu, Ning-Ai; Araki, Takako; Cuevas-Ramos, Daniel; Hong, Jiang; Ben-Shlomo, Anat; Tone, Yukiko; Tone, Masahide; Melmed, Shlomo

    2015-07-01

    Cushing disease, due to pituitary corticotroph tumor ACTH hypersecretion, drives excess adrenal cortisol production with adverse morbidity and mortality. Loss of glucocorticoid negative feedback on the hypothalamic-pituitary-adrenal axis leads to autonomous transcription of the corticotroph precursor hormone proopiomelanocortin (POMC), consequent ACTH overproduction, and adrenal hypercortisolism. We previously reported that R-roscovitine (CYC202, seliciclib), a 2,6,9-trisubstituted purine analog, suppresses cyclin-dependent-kinase 2/cyclin E and inhibits ACTH in mice and zebrafish. We hypothesized that intrapituitary cyclin E signaling regulates corticotroph tumor POMC transcription independently of cell cycle progression. The aim was to investigate whether R-roscovitine inhibits human ACTH in corticotroph tumors by targeting the cyclin-dependent kinase 2/cyclin E signaling pathway. Primary cell cultures of surgically resected human corticotroph tumors were treated with or without R-roscovitine, ACTH measured by RIA and quantitative PCR, and/or Western blot analysis performed to investigate ACTH and lineage-specific transcription factors. Cyclin E and E2F transcription factor 1 (E2F1) small interfering RNA (siRNA) transfection was performed in murine corticotroph tumor AtT20 cells to elucidate mechanisms for drug action. POMC gene promoter activity in response to R-roscovitine treatment was analyzed using luciferase reporter and chromatin immunoprecipitation assays. R-roscovitine inhibits human corticotroph tumor POMC and Tpit/Tbx19 transcription with decreased ACTH expression. Cyclin E and E2F1 exhibit reciprocal positive regulation in corticotroph tumors. R-roscovitine disrupts E2F1 binding to the POMC gene promoter and suppresses Tpit/Tbx19 and other lineage-specific POMC transcription cofactors via E2F1-dependent and -independent pathways. R-roscovitine inhibits human pituitary corticotroph tumor ACTH by targeting the cyclin E/E2F1 pathway. Pituitary cyclin E

  15. Sangivamycin-Like Molecule 6 (SLM6) exhibits potent anti-multiple myeloma activity through inhibition of cyclin-dependent kinase-9 (CDK9)

    Science.gov (United States)

    Dolloff, Nathan G.; Allen, Joshua E.; Dicker, David T.; Aqui, Nicole; Vogl, Dan; Malysz, Jozef; Talamo, Giampaolo; El-Deiry, Wafik S.

    2012-01-01

    Despite significant treatment advances over the past decade, multiple myeloma (MM) remains largely incurable. In this study we found that MM cells were remarkably sensitive to the death-inducing effects of a new class of sangivamycin-like molecules (SLMs). A panel of structurally related SLMs selectively induced apoptosis in MM cells but not other tumor or non-malignant cell lines at sub-micromolar concentrations. SLM6 was the most active compound in vivo, where it was well-tolerated and significantly inhibited growth and induced apoptosis of MM tumors. We determined that the anti-MM activity of SLM6 was mediated by direct inhibition of cyclin-dependent kinase 9 (CDK9), which resulted in transcriptional repression of oncogenes that are known to drive MM progression (c-Maf, cyclin D1, and c-Myc). Furthermore, SLM6 demonstrated superior in vivo anti-MM activity over the CDK inhibitor flavopiridol, which is currently in clinical trials for MM. These findings demonstrate that SLM6 is a novel CDK9 inhibitor with promising preclinical activity as an anti-MM agent. PMID:22964485

  16. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils.

    Science.gov (United States)

    Odemuyiwa, Solomon O; Ilarraza, Ramses; Davoine, Francis; Logan, Michael R; Shayeganpour, Anooshirvan; Wu, Yingqi; Majaesic, Carina; Adamko, Darryl J; Moqbel, Redwan; Lacy, Paige

    2015-04-01

    Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation. © 2014 John Wiley & Sons Ltd.

  17. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    Science.gov (United States)

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.

  18. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    Science.gov (United States)

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  19. Cyclin G1 inhibits the proliferation of mouse endometrial stromal cell in decidualization

    Directory of Open Access Journals (Sweden)

    Xu Qian

    2017-01-01

    Full Text Available Uterine stromal cell decidualization is a dynamic physiological process in which cell proliferation, differentiation and apoptosis are orchestrated and occur in a temporal and cell-specific manner. This process is important for successful embryo implantation. Many cell-cycle regulators are involved in decidualization. The protein cyclin G1 is a unique regulator of the cell cycle with dual functions in cell proliferation. It was reported that cyclin G1 is expressed in mouse uterine stromal cells during the period of peri-implantation. To prove the function of cyclin G1 in mouse uterine stromal cells during this period, immunohistochemistry was used to stain mouse uterine tissues on days 4-8 of pregnancy. The results showed obvious spatial and temporal expression of cyclin G1 in uterine stromal cells, and that it is expressed in the cells of the primary decidual zone (PDZ on day 5 and secondary decidual zone (SDZ on days 6 and 7, when the stromal cells experienced active proliferation and differentiation was initiated. Applying the decidualization model of cultured primary stromal cells in vitro, we further revealed that the expression of cyclin G1 is associated with decidualization of stromal cells induced by medroxyprogesterone acetate (MPA and estradiol-17β (E2. RNA interference was used for the knockdown of cyclin G1 in the induced decidual cells. Flow cytometry analysis indicated that the proportion of cells in the S stage was increased, and decreased in the G2/M phase. Our study indicates that cyclin G1, as a negative regulator of the cell cycle, plays an important role in the process of decidualization in mouse uterine stromal cells by inhibiting cell-cycle progression.

  20. Expression of cyclin A in A549 cell line after treatment with arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Agnieszka Żuryń

    2015-12-01

    Full Text Available Background: Arsenic trioxide (ATO is an effective drug used in acute promyelocytic leukemia (AML. Many reports suggest that ATO can also be applied as an anticancer agent for solid tumors in the future. The influence of arsenic trioxide on the expression of different cell cycle regulators is poorly recognized. The purpose of the current study is to investigate how arsenic trioxide affects cyclin A expression and localization in the A549 cell line.Materials and methods: Morphological and ultrastructural changes in A549 cells were observed using light and transmission electron microscopes. Cyclin A localization was determined by immunofluorescence. Image-based cytometry was applied to evaluate the effect of arsenic trioxide on apoptosis and the cell cycle. Expression of cyclin A mRNA was quantified by real-time PCR.Results: After treatment with arsenic trioxide, increased numbers of cells with cytoplasmic localization of cyclin A were observed. The doses of 10 and 15 μM ATO slightly reduced expression of cyclin A mRNA. The apoptotic phenotype of cells was poorly represented, and the Tali imagebased cytometry analysis showed low percentages of apoptotic cells. The A549 population displayed an enriched fraction of cells in G0/G1 phase in the presence of 5μM ATO, whereas starting from the higher concentrations of the drug, i.e. 10 and 15 μM ATO, the G2/M fraction was on the increase.Discussion: Low expression of cyclin A in the A549 cell line may constitute a potential factor determining arsenic trioxide resistance. It could be hypothesized that the observed alterations in cyclin A expression/distribution may correlate well with changes in cell cycle regulation in our model, which in turn determines the outcome of the treatment.

  1. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

    Directory of Open Access Journals (Sweden)

    Zhang L

    2011-10-01

    Full Text Available Ling Zhang1,*, Xiang Gao1,2,*, Ke Men1, BiLan Wang1, Shuang Zhang1, Jinfeng Qiu1, Meijuan Huang1, MaLing Gou1, Ning Huang2, ZhiYong Qian1, Xia Zhao1, YuQuan Wei11State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China*These authors contributed equally to this workBackground: Gene therapy provides a novel method for the prevention and treatment of cancer, but the clinical application of gene therapy is restricted, mainly because of the absence of an efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, ie, heparin-polyethyleneimine (HPEI nanoparticles for this purpose.Methods and results: HPEI nanoparticles were used to deliver plasmid-expressing mouse survivin-T34A (ms-T34A to treat C-26 carcinoma in vitro and in vivo. According to the in vitro studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of angiogenesis.Conclusion: This research suggests that HPEI nanoparticle-mediated ms-T34A may have a promising role in C-26 colon carcinoma therapy.Keywords: gene therapy, mouse survivin-T34A, colon cancer, polyethyleneimine, nanoparticles, cancer therapy

  2. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7.

    Science.gov (United States)

    Bi, Yanzhao; Zhang, Yifan; Cui, Chunying; Ren, Lulu; Jiang, Xueyun

    Nanodiamond (ND) is a renowned material in nonviral small interfering RNA (siRNA) carrier field due to its unique physical, chemical, and biological properties. In our previous work, it was proven that ND could deliver siRNA into cells efficiently and downregulate the expression of desired protein. However, synthesizing a high-efficient tumor-targeting carrier using ND is still a challenge. In this study, a novel carrier, NDCONH(CH 2 ) 2 NH-VDGR, was synthesized for siRNA delivery, and its properties were characterized with methods including Fourier transform infrared spectrometry, transmission electron microscopy, scanning electron microscopy, gel retardation assay, differential scanning calorimetry, confocal microscopy, releasing test, real-time polymerase chain reaction (PCR) assay, enzyme-linked immunosorbent assay (ELISA), flow cytometry, cytotoxicity assay, and gene-silencing efficacy assay in vitro and in vivo. The mechanism of NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA-induced tumor apoptosis was evaluated via flow cytometer assay using Annexin V-fluorescein isothiocyanate/propidium iodide staining method. The NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA nanoparticle with 60-110 nm diameter and 35.65±3.90 mV zeta potential was prepared. For real-time PCR assay, the results showed that the expression of survivin mRNA was reduced to 46.77%±6.3%. The expression of survivin protein was downregulated to 48.49%±2.25%, as evaluated by ELISA assay. MTT assay showed that NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA had an inhibitory effect on MCF-7 cell proliferation. According to these results, the survivin-siRNA could be delivered, transported, and released stably, which benefits in increasing the gene-silencing effect. Therefore, as an siRNA carrier, NDCONH(CH 2 ) 2 NH-VDGR was suggested to be used in siRNA delivery system and in cancer treatments.

  3. Differential expression of cyclin Dl in human pituitary tumors: relation to MIB-1 and p27/Kipl labeling indices

    International Nuclear Information System (INIS)

    Hewedi, I.H.; Osman, W.M.; El Mahdy, M.M.

    2011-01-01

    Pituitary tumors are a common form of endocrine neoplasia. However few studies assessed the expression of the principal cyclin regulating checkpoint exit, cyclin Dl. Cyclin Dl expression in pituitary tumors and its possible relation to MIB-1 and p27/K.ipl labeling indices (Us) was explored. Design: We studied a total of 199 pituitaries, including normal pituitaries (n = 7), pituitary adenomas (n = 187), and pituitary carcinoma (n = 5). All tissues were tested as cores of archived tissue microarrays that were immuno stained for cyclin Dl, MIB-1 and p27 using a standard technique. Tissue cores were subjected to automated analysis to evaluate the staining LIs, Results: No cyclin Dl positive cells in the normal anterior pituitary gland was found. Sparse nuclear staining was noted in pituitary tumors. Higher expression of cyclin Dl was noted in pituitary carcinomas compared to adenomas (p < 0.001), in non-functioning adenomas compared to functioning ones (p < 0.001) in macroadenomas versus micro adenomas (p — 0.017) and in recurrent non recurrent adenomas (p < 0.001). Cyclin Dl LI and MIB-1 LI were related among adenomas (p < 0.001) and carcinomas (p = 0.041). p27 LI was neither related to pituitary adenoma recurrence nor invasion. Conclusions: Expression of cyclin Dl in pituitary tumors is related to cell proliferation, recurrence, and metastatic potential. Nuclear cyclin Dl expression is a good marker of aggressive behavior in pituitary tumors

  4. Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells Through Glycolysis and Calcium Channels

    Science.gov (United States)

    Salpeter, Seth J.; Klochendler, Agnes; Weinberg-Corem, Noa; Porat, Shay; Granot, Zvi; Shapiro, A. M. James; Magnuson, Mark A.; Eden, Amir; Grimsby, Joseph; Glaser, Benjamin

    2011-01-01

    Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication. PMID:21521747

  5. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  6. Requirements of cyclin a for mitosis are independent of its subcellular localization.

    Science.gov (United States)

    Dienemann, Axel; Sprenger, Frank

    2004-06-22

    Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.

  7. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    Science.gov (United States)

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  8. 26 CFR 25.2522(d)-1 - Additional cross references.

    Science.gov (United States)

    2010-04-01

    ...) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2522(d)-1 Additional...) for provisions relating to the claim and allowance of the value of certain easements as a gift under... Housing and Urban Development Act (42 U.S.C. 3535), as added by section 905 of Pub. L. 91-609 (84 Stat...

  9. 26 CFR 25.2523(d)-1 - Joint interests.

    Science.gov (United States)

    2010-04-01

    ...)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2523(d)-1 Joint interests. Section..., if the donor purchased real property in the name of the donor and the donor's spouse as tenants by...

  10. D1.5 WEKIT Framework and Training Methodology

    NARCIS (Netherlands)

    Limbu, Bibeg

    2017-01-01

    The document reports on the status of the WEKIT framework. Building up on the methodologies described in D1.3, it outlines the work done and progress made so far in the Task 1.3. The WEKIT framework was drafted to guide and support the development and implementation of the project. It aims to

  11. P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines

    Directory of Open Access Journals (Sweden)

    Shirsath Nitesh P

    2012-10-01

    Full Text Available Abstract Background Mantle cell lymphoma (MCL is a well-defined aggressive lymphoid neoplasm characterized by proliferation of mature B-lymphocytes that have a remarkable tendency to disseminate. This tumor is considered as one of the most aggressive lymphoid neoplasms with poor responses to conventional chemotherapy and relatively short survival. Since cyclin D1 and cell cycle control appears as a natural target, small-molecule inhibitors of cyclin-dependent kinases (Cdks and cyclins may play important role in the therapy of this disorder. We explored P276-00, a novel selective potent Cdk4-D1, Cdk1-B and Cdk9-T1 inhibitor discovered by us against MCL and elucidated its potential mechanism of action. Methods The cytotoxic effect of P276-00 in three human MCL cell lines was evaluated in vitro. The effect of P276-00 on the regulation of cell cycle, apoptosis and transcription was assessed, which are implied in the pathogenesis of MCL. Flow cytometry, western blot, immunoflourescence and siRNA studies were performed. The in vivo efficacy and effect on survival of P276-00 was evaluated in a Jeko-1 xenograft model developed in SCID mice. PK/PD analysis of tumors were performed using LC-MS and western blot analysis. Results P276-00 showed a potent cytotoxic effect against MCL cell lines. Mechanistic studies confirmed down regulation of cell cycle regulatory proteins with apoptosis. P276-00 causes time and dose dependent increase in the sub G1 population as early as from 24 h. Reverse transcription PCR studies provide evidence that P276-00 treatment down regulated transcription of antiapoptotic protein Mcl-1 which is a potential pathogenic protein for MCL. Most importantly, in vivo studies have revealed significant efficacy as a single agent with increased survival period compared to vehicle treated. Further, preliminary combination studies of P276-00 with doxorubicin and bortezomib showed in vitro synergism. Conclusion Our studies thus provide

  12. Expression and clinical implication of Beclin1, HMGB1, p62, survivin, BRCA1 and ERCC1 in epithelial ovarian tumor tissues.

    Science.gov (United States)

    Ju, L-L; Zhao, C Y; Ye, K-F; Yang, H; Zhang, J

    2016-05-01

    The aim of the present study is to investigate the differential expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 protein in epithelial ovarian cancer (EOC) and to evaluate the relationship between autophagy and platinum resistance of EOC patients during platinum-based chemotherapy with the protein expression. Expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 were detected with immunohistochemistry in 60 patients, including 39 with epithelial ovarian cancer (EOC), 13 benign epithelial ovarian tumor tissue (BET) and 8 borderline ovarian tumor tissue. Beclin, p62 and ERCC1 expression was significantly higher in the EOC than the BET (p0.05). BRCA1 expression was lower in EOC than BET (pepithelial ovarian cancer.

  13. Cyclin H expression is increased in GIST with very-high risk of malignancy

    International Nuclear Information System (INIS)

    Dorn, Julian; Spatz, Hanno; Schmieder, Michael; Barth, Thomas FE; Blatz, Annette; Henne-Bruns, Doris; Knippschild, Uwe; Kramer, Klaus

    2010-01-01

    Risk estimation of gastrointestinal stromal tumours (GIST) is based on tumour size and mitotic rate according to the National Institutes of Health consensus classification. The indication for adjuvant treatment of patients with high risk GIST after R 0 resection with small molecule inhibitors is still a controversial issue, since these patients represent a highly heterogeneous population. Therefore, additional prognostic indicators are needed. Here, we evaluated the prognostic value of cyclin H expression in GIST. In order to identify prognostic factors of GIST we evaluated a single centre cohort of ninety-five GIST patients. First, GISTs were classified with regard to tumour size, mitotic rate and localisation according to the NIH consensus and to three additional suggested risk classifications. Second, Cyclin H expression was analysed. Of ninety-five patients with GIST (53 female/42 male; median age: 66.78a; range 17-94a) risk classification revealed: 42% high risk, 20% intermediate risk, 23% low risk and 15% very low risk GIST. In patients with high risk GIST, the expression of cyclin H was highly predictive for reduced disease-specific survival (p = 0.038). A combination of cyclin H expression level and high risk classification yielded the strongest prognostic indicator for disease-specific and disease-free survival (p ≤ 0.001). Moreover, in patients with tumour recurrence and/or metastases, cyclin H positivity was significantly associated with reduced disease-specific survival (p = 0.016) regardless of risk-classification. Our data suggest that, in addition to high risk classification, cyclin H expression might be an indicator for 'very-high risk' GIST

  14. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer

    International Nuclear Information System (INIS)

    Kitkumthorn, Nakarin; Mutirangura, Apiwat; Yanatatsanajit, Pattamawadee; Kiatpongsan, Sorapop; Phokaew, Chureerat; Triratanachat, Surang; Trivijitsilp, Prasert; Termrungruanglert, Wichai; Tresukosol, Damrong; Niruthisard, Somchai

    2006-01-01

    The aim of this study was to evaluate epigenetic status of cyclin A1 in human papillomavirus-associated cervical cancer. Y. Tokumaru et al., Cancer Res 64, 5982-7 (Sep 1, 2004)demonstrated in head and neck squamous-cell cancer an inverse correlation between cyclin A1 promoter hypermethylation and TP53 mutation. Human papillomavirus-associated cervical cancer, however, is deprived of TP53 function by a different mechanism. Therefore, it was of interest to investigate the epigenetic alterations during multistep cervical cancer development. In this study, we performed duplex methylation-specific PCR and reverse transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers. Furthermore, the incidence of cyclin A1 methylation was studied in 43 samples of white blood cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant, microinvasive and invasive cervical lesions, respectively. We demonstrated cyclin A1 methylation to be commonly found in cervical cancer, both in vitro and in vivo, with its physiological role being to decrease gene expression. More important, this study demonstrated that not only is cyclin A1 promoter hypermethylation strikingly common in cervical cancer, but is also specific to the invasive phenotype in comparison with other histopathological stages during multistep carcinogenesis. None of the normal cells and low-grade squamous intraepithelial lesions exhibited methylation. In contrast, 36.6%, 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and invasive cancers, respectively, showed methylation. This methylation study indicated that cyclin A1 is a potential tumor marker for early diagnosis of invasive cervical cancer

  15. Elucidating respective functions of two domains BIR and C-helix of human IAP survivin for precise targeted regulating mitotic cycle, apoptosis and autophagy of cancer cells.

    Science.gov (United States)

    Hu, Fabiao; Pan, Daxia; Zheng, Wenyun; Yan, Ting; He, Xiujuan; Ren, Fuzheng; Lu, Yiming; Ma, Xingyuan

    2017-12-26

    Survivin was the smallest member of the IAP family, which was over expressed in many different cancers, and considered to be a promising hot target for cancer therapy, and our previous study demonstrated that multiple dominant negative mutants from full-length survivin could have many complex effects on cancer cells, such as cell cycle, apoptosis, and autophagy. But it was not yet known what role the two main domains played in those functions, which would be very important for the design of targeted anticancer drugs and for the interpretation of their molecular mechanisms. In this study, based on preparation the two parts (BIR domain and CC domain) of survivin by genetic engineering and cell characterization assay, we discovered that BIR (T34A)-domain peptide could inhibit Bcap-37 cells growth in a dose- and time-dependent manner, increase the proportion of G2/M phase, and induce caspase-dependent apoptosis via the mitochondrial pathway. While CC (T117A)-domain peptide increased the proportion of S-phase cells and increased the level of the autophagy marker protein LC3B significantly. These further experiments confirmed that TAT-BIR (T34A) peptide could be used to inhibit cell proliferation, promote apoptosis, and block mitosis, and TAT-CC (T117A) peptide showed mainly to promote autophagy, process of DNA replication, and mitosis to breast cancer cells. This research will lay the foundation for interpreting the multifunction mechanism of survivin in cell fates, further make senses in developing the anticancer drugs targeting it precisely and efficiently.

  16. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells.

    Science.gov (United States)

    Adinolfi, Barbara; Pellegrino, Mario; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Sotgiu, Giovanna; Varchi, Greta; Ballestri, Marco; Posati, Tamara; Carpi, Sara; Nieri, Paola; Baldini, Francesco

    2017-02-15

    One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm 2 ), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm 2 ). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Immunohistochemical assessment of Survivin and Bcl3 expression as potential biomarkers for NF-κB activation in the Barrett metaplasia-dysplasia-adenocarcinoma sequence.

    Science.gov (United States)

    Puccio, Ignazio; Khan, Saif; Butt, Adil; Graham, David; Sehgal, Vinay; Patel, Dominic; Novelli, Marco; Lovat, Laurence B; Rodriguez-Justo, Manuel; Hamoudi, Rifat A

    2018-02-01

    Non-dysplastic Barrett's oesophagus (NDBE) occurs as a consequence of an inflammatory response triggered through prolonged gastro-oesophageal reflux and it may precede the development of oesophageal adenocarcinoma. NF-κB activation as a result of the inflammatory response has been shown in NDBE, but the possible mechanism involved in the process is unknown. The aim of this study was to assess, using immunohistochemistry, Survivin and Bcl3 expression as potential biomarkers for NF-κB activation along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Survivin is an NF-κB-inducible anti-apoptotic protein, and Bcl3 is a negative regulator of NF-κB. There was progressive upregulation of Survivin expression along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Bcl3 expression was upregulated in non-dysplastic Barrett's oesophagus, low-grade, high-grade dysplasia and oesophageal adenocarcinoma when compared to squamous group. The study shows the differential expression of Bcl3 between the squamous and Barrett's stage, suggesting that Bcl3 could be a surrogate marker for early event involving constitutive NF-κB activation. In addition, the study suggests that NF-κB activation may infer resistance to apoptosis through the expression of anti-apoptotic genes such as Survivin, which showed progressive increase in expression throughout the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. This ability to avoid apoptosis may underlie the persistence and malignant predisposition of Barrett's metaplasia. © 2018 The Authors. International Journal of Experimental Pathology © 2018 International Journal of Experimental Pathology.

  18. EFFECT OF STRESS ON THE PERCENT BODY WEIGHT CHANGE AND MRNA EXPRESSION OF IGF-1, SURVIVINE AND HSP-70 GENE IN THE HIERARCHIAL FOLLICLES OF JAPANESE QUAIL

    Directory of Open Access Journals (Sweden)

    N Shit

    2014-12-01

    Full Text Available The present study was carried out to explore the effect of stress on body weight and the mRNA expression of IGF-1, Survivine and HSP-70 gene in the hierarchial follicles of Japanese quail. A total 24 birds (10 weeks were taken and stress was induced by immobilization daily for 2hrs (between 9.00 - 11.00 AM throughout the study (10 days. Four birds were sacrificed on 1, 2, 4, 6, 8 and 10 days of the treatment. Hierarchial follicles (F1, F2 & F3 were aseptically collected to quantify the expression of IGF-1, Survivine and HSP-70 gene using real-time PCR technique. The percent body weight reduction increased and reached highest (21.30% on 10th day. The fold expression of IGF-1 gene was significantly ((P=0.05 down regulated in advance to the time of experiment. However, the fold expression of survivine gene was significantly (P=0.05 up regulated and the intensity was highest (17 fold in F-3 follicle on 4th day of experiment. No significant change in the mRNA expression of HSP-70 gene was evident in this study. From this study it may be concluded that stress brings physio-molecular change through HPA activation, which not only causes tissue regression also modifies the cellular mechanism.

  19. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...

  20. Cyclin E-induced S phase without activation of the pRb/E2F pathway

    DEFF Research Database (Denmark)

    Lukas, J; Herzinger, T; Hansen, Klaus

    1997-01-01

    In cells of higher eukaryotes, cyclin D-dependent kinases Cdk4 and Cdk6 and, possibly, cyclin E-dependent Cdk2 positively regulate the G1- to S-phase transition, by phosphorylating the retinoblastoma protein (pRb), thereby releasing E2F transcription factors that control S-phase genes. Here we...

  1. SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication

    DEFF Research Database (Denmark)

    Walter, David; Hoffmann, Saskia; Komseli, Eirini-Stavroula

    2016-01-01

    interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCF(Cyclin F...

  2. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  3. A nonperturbative solution of D=1 string theory

    International Nuclear Information System (INIS)

    Gross, D.J.; Miljkovic, N.

    1990-01-01

    We derive a nonperturbative solution of D=1 string theory, based on a double scaling limit of the one dimensional random matrix model. We derive an exact expression for the partition function in terms of the string coupling constant. The weak coupling expansion suffers from infrared divergences, which we attribute to massless tadpoles. The continuum limit seems to be well defined, however, in a strong coupling expansion. This could correspond to a different stable nonperturbative vacuum. (orig.)

  4. Efficient inhibition of murine breast cancer growth and metastasis by gene transferred mouse survivin Thr34→Ala mutant

    Directory of Open Access Journals (Sweden)

    Chen li-Juan

    2008-09-01

    Full Text Available Abstract Background Metastasis in breast cancer is a vital concern in treatment because most women with primary breast cancer have micrometastases to distant sites at diagnosis. As a member of the inhibitor of apoptosis protein (IAP family, survivin has been proposed as an attractive target for new anticancer interventions. In this study, we investigated the role of the plasmid encoding the phosphorylation-defective mouse survivin threonine 34→alanine mutant (Msurvivin T34A plasmid in suppressing both murine primary breast carcinomas and pulmonary metastases. Methods In vitro study, induction of apoptosis by Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was examined by PI staining fluorescence microscopy and flow cytometric analysis. The anti-tumor and anti-metastases activity of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was evaluated in female BALB/c mice bearing 4T1 s.c. tumors. Mice were treated twice weekly with i.v. administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol, PORF-9 null plasmid complexed with cationic liposome (DOTAP/Chol, 0.9% NaCl solution for 4 weeks. Tumor volume was observed. After sacrificed, tumor net weight was measured and Lung metastatic nodules of each group were counted. Assessment of apoptotic cells by TUNEL assay was conducted in tumor tissue. Microvessel density within tumor tissue was determined by CD31 immunohistochemistry. Alginate-encapsulated tumor cells test was conducted to evaluate the effect on angiogenesis. By experiment of cytotoxicity T lymphocytes, we test whether Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol can induce specific cell immune response. Results Administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol resulted in significant inhibition in the growth and metastases of 4T1 tumor model. These anti-tumor and anti-metastases responses were associated with

  5. A novel small molecule FL118 that selectively inhibits survivin, Mcl-1, XIAP and cIAP2 in a p53-independent manner, shows superior antitumor activity.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Drug/radiation resistance to treatment and tumor relapse are major obstacles in identifying a cure for cancer. Development of novel agents that address these challenges would therefore be of the upmost importance in the fight against cancer. In this regard, studies show that the antiapoptotic protein survivin is a central molecule involved in both hurdles. Using cancer cell-based survivin-reporter systems (US 7,569,221 B2 via high throughput screening (HTS of compound libraries, followed by in vitro and in vivo analyses of HTS-derived hit-lead compounds, we identified a novel anticancer compound (designated FL118. FL118 shows structural similarity to irinotecan. However, while the inhibition of DNA topoisomerase 1 activity by FL118 was no better than the active form of irinotecan, SN-38 at 1 µM, FL118 effectively inhibited cancer cell growth at less than nM levels in a p53 status-independent manner. Moreover, FL118 selectively inhibited survivin promoter activity and gene expression also in a p53 status-independent manner. Although the survivin promoter-reporter system was used for the identification of FL118, our studies revealed that FL118 not only inhibits survivin expression but also selectively and independently inhibits three additional cancer-associated survival genes (Mcl-1, XIAP and cIAP2 in a p53 status-independent manner, while showing no inhibitory effects on control genes. Genetic silencing or overexpression of FL118 targets demonstrated a role for these targets in FL118's effects. Follow-up in vivo studies revealed that FL118 exhibits superior antitumor efficacy in human tumor xenograft models in comparison with irinotecan, topotecan, doxorubicin, 5-FU, gemcitabine, docetaxel, oxaliplatin, cytoxan and cisplatin, and a majority of mice treated with FL118 showed tumor regression with a weekly × 4 schedule. FL118 induced favorable body-weight-loss profiles (temporary and reversible and was able to eliminate large tumors. Together

  6. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes.

    Science.gov (United States)

    Jin, Mingji; Jin, Guangming; Kang, Lin; Chen, Liqing; Gao, Zhonggao; Huang, Wei

    2018-01-01

    The co-delivery of chemotherapeutic agents and small interfering RNA (siRNA) within one cargo can enhance the anticancer outcomes through its synergistic therapeutic effects. We prepared smart polymeric nanoparticles (NPs) with pH-responsive and poly(ethylene glycol) (PEG)-detachable properties to systemically co-deliver paclitaxel (PTX) and siRNA against survivin gene for lung cancer therapy. The cationic polyethyleneimine-block-polylactic acid (PEI-PLA) was first synthesized and characterized, with good biocompatibility. PTX was encapsulated into the hydrophobic core of the PEI-PLA polymers by dialysis, and then the survivin siRNA was loaded onto the PTX-loaded NPs (PEI-PLA/PTX) through electrostatic interaction between siRNA and PEI block. Finally, the negatively charged poly(ethylene glycol)-block-poly(L-aspartic acid sodium salt) (PEG-PAsp) was coated onto the surface of NPs by electrostatic interaction to form final smart polymeric NPs with mean particle size of 82.4 nm and zeta potential of 4.1 mV. After uptake of NPs by tumor cells, the PEG-PAsp segments became electrically neutral owing to the lower endosome pH and consequently detached from the smart NPs. This process allowed endosomal escape of the NPs through the proton-sponge effect of the exposed PEI moiety. The resulting NPs achieved drug loading of 6.04 wt% and exhibited good dispersibility within 24 h in 10% fetal bovine serum (FBS). At pH 5.5, the NPs presented better drug release and cellular uptake than at pH 7.4. The NPs with survivin siRNA effectively knocked down the expression of survivin mRNA and protein owing to enhanced cell uptake of NPs. Cell counting kit-8 (CCK-8) assay showed that the NPs presented low systemic toxicity and improved antiproliferation effect of PTX on A549 cells. Moreover, in vivo studies demonstrated that accumulated NPs in the tumor site were capable of inhibiting the tumor growth and extending the survival rate of the mice by silencing the survivin gene and

  7. Cyclin A degradation by primate cytomegalovirus protein pUL21a counters its innate restriction of virus replication.

    Directory of Open Access Journals (Sweden)

    Nicolas Caffarelli

    Full Text Available Cyclin A is critical for cellular DNA synthesis and S phase progression of the cell cycle. Human cytomegalovirus (HCMV can reduce cyclin A levels and block cellular DNA synthesis, and cyclin A overexpression can repress HCMV replication. This interaction has only been previously observed in HCMV as murine CMV does not downregulate cyclin A, and the responsible viral factor has not been identified. We previously reported that the HCMV protein pUL21a disrupted the anaphase-promoting complex (APC, but a point mutant abrogating this activity did not phenocopy a UL21a-deficient virus, suggesting that pUL21a has an additional function. Here we identified a conserved arginine-x-leucine (RxL cyclin-binding domain within pUL21a, which allowed pUL21a to interact with cyclin A and target it for proteasome degradation. Homologous pUL21a proteins from both chimpanzee and rhesus CMVs also contained the RxL domain and similarly degraded cyclin A, indicating that this function is conserved in primate CMVs. The RxL point mutation disabled the virus' ability to block cellular DNA synthesis and resulted in a growth defect similar to pUL21a-deficient virus. Importantly, knockdown of cyclin A rescued growth of UL21a-deficient virus. Together, these data show that during evolution, the pUL21a family proteins of primate CMVs have acquired a cyclin-binding domain that targets cyclin A for degradation, thus neutralizing its restriction on virus replication. Finally, the combined proteasome-dependent degradation of pUL21a and its cellular targets suggests that pUL21a may act as a novel suicide protein, targeting its protein cargos for destruction.

  8. MicroRNA-16 Modulates HuR Regulation of Cyclin E1 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xun Guo

    2015-03-01

    Full Text Available RNA binding protein (RBPs and microRNAs (miRNAs or miRs are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC. Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.

  9. Oncolytic adenovirus targeting cyclin E overexpression repressed tumor growth in syngeneic immunocompetent mice

    International Nuclear Information System (INIS)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Wechman, Stephen L.; Li, Xiao-Feng; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Clinical trials have indicated that preclinical results obtained with human tumor xenografts in mouse models may overstate the potential of adenovirus (Ad)-mediated oncolytic therapies. We have previously demonstrated that the replication of human Ads depends on cyclin E dysregulation or overexpression in cancer cells. ED-1 cell derived from mouse lung adenocarcinomas triggered by transgenic overexpression of human cyclin E may be applied to investigate the antitumor efficacy of oncolytic Ads. Ad-cycE was used to target cyclin E overexpression in ED-1 cells and repress tumor growth in a syngeneic mouse model for investigation of oncolytic virotherapies. Murine ED-1 cells were permissive for human Ad replication and Ad-cycE repressed ED-1 tumor growth in immunocompetent FVB mice. ED-1 cells destroyed by oncolytic Ads in tumors were encircled in capsule-like structures, while cells outside the capsules were not infected and survived the treatment. Ad-cycE can target cyclin E overexpression in cancer cells and repress tumor growth in syngeneic mouse models. The capsule structures formed after Ad intratumoral injection may prevent viral particles from spreading to the entire tumor. The online version of this article (doi:10.1186/s12885-015-1731-x) contains supplementary material, which is available to authorized users

  10. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells

    Science.gov (United States)

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-01-01

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797

  11. Isolation of a dinoflagellate mitotic cyclin by functional complementation in yeast

    International Nuclear Information System (INIS)

    Bertomeu, Thierry; Morse, David

    2004-01-01

    Dinoflagellates are parasite with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with ∼5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68 kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms

  12. Problem-Solving Test: Analysis of the Role of Cyclin B

    Science.gov (United States)

    Szeberenyi, Jozsef

    2011-01-01

    An experiment is described in this test that was designed to study the role of the cyclin B protein in a cell-free system. The work was performed in the lab of Tim Hunt who, together with Hartwell and Nurse, received the Nobel Prize in Physiology or Medicine in 2001 "for their discoveries of key chemicals that regulate the cell division cycle." It…

  13. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy

    DEFF Research Database (Denmark)

    Hinrichsen, Rebecca; Hansen, A.H.; Haunsø, S.

    2008-01-01

    /6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4...

  14. D-type cyclins in adult human testis and testicular cancer

    DEFF Research Database (Denmark)

    Bartkova, J; Rajpert-de Meyts, E; Skakkebaek, N E

    1999-01-01

    D-type cyclins are proto-oncogenic components of the 'RB pathway', a G1/S regulatory mechanism centred around the retinoblastoma tumour suppressor (pRB) implicated in key cellular decisions that control cell proliferation, cell-cycle arrest, quiescence, and differentiation. This study focused...

  15. The inhibitor of cyclin-dependent kinases, olomoucine II, exhibits potent antiviral properties

    Czech Academy of Sciences Publication Activity Database

    Holčáková, J.; Tomašec, P.; Burget, J. J.; Wang, E. C. Y.; Wilkinson, G. W. G.; Hrstka, R.; Kryštof, Vladimír; Strnad, Miroslav; Vojtešek, B.

    2010-01-01

    Roč. 20, č. 3 (2010), s. 133-142 ISSN 0956-3202 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cyclin-dependent Kinase * Olomoucine II * vaccinia Subject RIV: EE - Microbiology, Virology

  16. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  17. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Denise A.; Fifield, Bre-Anne; Marceau, Aimee H.; Tripathi, Sarvind; Porter, Lisa A.; Rubin, Seth M. (UCSC); (Windsor)

    2017-06-30

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.

  18. Evaluation of D-1 tape and cassette characteristics: Moisture content of Sony and Ampex D-1 tapes when delivered

    Science.gov (United States)

    Ashton, Gary

    Commercial D-1 cassette tapes and their associated recorders were designed to operate in broadcast studios and record in accordance with the International Radio Consultative Committee (CCIR) 607 digital video standards. The D-1 recorder resulted in the Society of Motion Picture and Television Engineers (SMPTE) standards 224 to 228 and is the first digital video recorder to be standardized for the broadcast industry. The D-1 cassette and associated media are currently marketed for broadcast use. The recorder was redesigned for data applications and is in the early stages of being evaluated. The digital data formats used are specified in MIL-STD-2179 and the American National Standards Institute (ANSI) X3.175-190 standard. In early 1990, the National Media Laboratory (NML) was asked to study the effects of time, temperature, and relative humidity on commercial D-1 cassettes. The environmental range to be studied was the one selected for the Advanced Tactical Air Reconnaissance System (ATARS) program. Several discussions between NML personnel, ATARS representatives, recorder contractors, and other interested parties were held to decide upon the experimental plan to be implemented. Review meetings were held periodically during the course of the experiment. The experiments were designed to determine the dimensional stability of the media and cassette since this is one of the major limiting factors of helical recorders when the media or recorders are subjected to non-broadcasting environments. Measurements were also made to characterize each sample of cassettes to give preliminary information on which purchase specifications could be developed. The actual tests performed on the cassettes and media before and after aging fall into the general categories listed.

  19. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Rückert, Felix; Samm, Nicole; Lehner, Anne-Kathrin; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  20. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    Science.gov (United States)

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  1. D1/D5 systems in N=4 string theories

    International Nuclear Information System (INIS)

    Gava, Edi; Hammou, Amine B.; Morales, Jose F.; Narain, Kumar S.

    2001-01-01

    We propose CFT descriptions of the D1/D5 system in a class of freely acting Z 2 orbifolds/orientifolds of type IIB theory, with sixteen unbroken supercharges. The CFTs describing D1/D5 systems involve N=(4,4) or N=(4,0) sigma models on (R 3 xS 1 xT 4 x(T 4 ) N /S N )/Z 2 , where the action of Z 2 is diagonal and its precise nature depends on the model. We also discuss D1(D5)-brane states carrying non-trivial Kaluza-Klein charges, which correspond to excitations of two-dimensional CFTs of the type (R 3 xS 1 xT 4 ) N /S N xZ 2 N . The resulting multiplicities for two-charge bound states are shown to agree with the predictions of U-duality. We raise a puzzle concerning the multiplicities of three-charge systems, which is generically present in all vacuum configurations with sixteen unbroken supercharges studied so far, including the more familiar type IIB on K3 case: the constraints put on BPS counting formulae by U-duality are apparently in contradiction with any CFT interpretation. We argue that the presence of RR backgrounds appearing in the symmetric product CFT may provide a resolution of this puzzle. Finally, we show that the whole tower of D-instanton corrections to certain 'BPS saturated couplings' in the low energy effective actions match with the corresponding one-loop threshold corrections on the dual fundamental string side

  2. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    Science.gov (United States)

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  3. An activation domain within the walleye dermal sarcoma virus retroviral cyclin protein is essential for inhibition of the viral promoter

    International Nuclear Information System (INIS)

    Rovnak, Joel; Hronek, Brett W.; Ryan, Sean O.; Cai, Sumin; Quackenbush, Sandra L.

    2005-01-01

    Walleye dermal sarcoma virus (WDSV) is a complex retrovirus associated with seasonal dermal sarcomas. Developing tumors have low levels of accessory gene transcripts, A1 and B, and regressing tumors have high levels of full-length and spliced transcripts. Transcript A1 encodes a retroviral cyclin (rv-cyclin) with limited homology to host cyclins. The rv-cyclin is physically linked to components of the transcriptional co-activator complex, Mediator, and regulates transcription. In walleye fibroblasts, it inhibits the WDSV promoter independently of cis-acting DNA sequences. The rv-cyclin activates transcription from GAL4 promoters when fused to the GAL4 DNA binding domain. A 30 a.a. activation domain in the carboxy region can be inactivated by single point mutations, and these mutations diminish the ability of the rv-cyclin to inhibit the WDSV promoter. When fused to glutathione S-transferase, the rv-cyclin, its carboxy region, and the activation domain pull down components of transcription complexes from nuclear extracts, and pulldown is lost by mutation of the activation domain

  4. Mutation at the Human D1S80 Minisatellite Locus

    Directory of Open Access Journals (Sweden)

    Kuppareddi Balamurugan

    2012-01-01

    Full Text Available Little is known about the general biology of minisatellites. The purpose of this study is to examine repeat mutations from the D1S80 minisatellite locus by sequence analysis to elucidate the mutational process at this locus. This is a highly polymorphic minisatellite locus, located in the subtelomeric region of chromosome 1. We have analyzed 90,000 human germline transmission events and found seven (7 mutations at this locus. The D1S80 alleles of the parentage trio, the child, mother, and the alleged father were sequenced and the origin of the mutation was determined. Using American Association of Blood Banks (AABB guidelines, we found a male mutation rate of 1.04×10-4 and a female mutation rate of 5.18×10-5 with an overall mutation rate of approximately 7.77×10-5. Also, in this study, we found that the identified mutations are in close proximity to the center of the repeat array rather than at the ends of the repeat array. Several studies have examined the mutational mechanisms of the minisatellites according to infinite allele model (IAM and the one-step stepwise mutation model (SMM. In this study, we found that this locus fits into the one-step mutation model (SMM mechanism in six out of seven instances similar to STR loci.

  5. ECRH launching scenario in FFHR-d1

    Science.gov (United States)

    Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei

    2016-10-01

    ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.

  6. Fbw7α and Fbw7γ Collaborate To Shuttle Cyclin E1 into the Nucleolus for Multiubiquitylation

    Science.gov (United States)

    Bhaskaran, Nimesh; van Drogen, Frank; Ng, Hwee-Fang; Kumar, Raman; Ekholm-Reed, Susanna; Peter, Matthias

    2013-01-01

    Cyclin E1, an activator of cyclin-dependent kinase 2 (Cdk2) that promotes replicative functions, is normally expressed periodically within the mammalian cell cycle, peaking at the G1-S-phase transition. This periodicity is achieved by E2F-dependent transcription in late G1 and early S phases and by ubiquitin-mediated proteolysis. The ubiquitin ligase that targets phosphorylated cyclin E is SCFFbw7 (also known as SCFCdc4), a member of the cullin ring ligase (CRL) family. Fbw7, a substrate adaptor subunit, is expressed as three