WorldWideScience

Sample records for survival genes bcl2

  1. BCL2 genotypes and prostate cancer survival

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Wilfried [Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Graz (Austria); Langsenlehner, Uwe [GKK Outpatient Department, Division of Internal Medicine, Graz (Austria); Krenn-Pilko, Sabine; Langsenlehner, Tanja [Medical University of Graz, Department of Therapeutic Radiology and Oncology, Graz (Austria); Eder, Petra [University Hospital Wuerzburg, Department of Internal Medicine I, Wuerzburg (Germany)

    2017-06-15

    The antiapoptotic B-cell lymphoma 2 (BCL2) gene is a key player in cancer development and progression. A functional single-nucleotide polymorphism (c.-938C>A, rs2279115) in the inhibitory P2 BCL2 gene promoter has been associated with clinical outcomes in various types of cancer. Aim of the present study was to analyze the role of BCL2-938C>A genotypes in prostate cancer mortality. The association between BCL2-938C>A (rs2279115) genotypes and prostate cancer outcome was studied within the prospective PROCAGENE study comprising 702 prostate cancer patients. During a median follow-up time of 92 months, 120 (17.1%) patients died. A univariate Cox regression model showed a significant association of the CC genotype with reduced cancer-specific survival (CSS; hazard ratio, HR, 2.13, 95% confidence interval, CI, 1.10-4.12; p = 0.024) and overall survival (OS; HR 2.34, 95% CI 1.58-3.47; p < 0.001). In a multivariate Cox regression model including age at diagnosis, risk group, and androgen deprivation therapy, the CC genotype remained a significant predictor of poor CSS (HR 2.05, 95% CI 1.05-3.99; p = 0.034) and OS (HR 2.25, 95% CI 1.51-3.36; p < 0.001). This study provides evidence that the homozygous BCL2-938 CC genotype is associated with OS and C in prostate cancer patients. (orig.) [German] Das antiapoptotische Gen B cell lymphoma 2 (BCL2) spielt eine Schluesselrolle in der Entstehung und Progression von Krebserkrankungen. Ein funktioneller Einzelnukleotid-Polymorphismus (c.-938C>A, rs2279115) im inhibitorischen P2-BCL2-Promotor wurde mit dem klinischen Outcome verschiedener Krebserkrankungen verknuepft. Ziel der vorliegenden Studie war die Untersuchung der Rolle von BCL2-938C>A-Genotypen fuer die Mortalitaet bei Patienten mit Prostatakarzinom. Der Zusammenhang zwischen BCL2-938C>A-Genotypen (rs2279115) und dem Outcome bei Prostatakrebs wurde in der prospektiven PROCAGENE-Studie, die 702 Patienten mit Prostatakarzinom umfasste, untersucht. Waehrend der medianen

  2. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  3. [Survival of patients with primary central nervous system diffuse large B-cell lymphoma: impact of gene aberrations and protein overexpression of bcl-2 and C-MYC, and selection of chemotherapy regimens].

    Science.gov (United States)

    Yin, W J; Zhu, X; Yang, H Y; Sun, W Y; Wu, M J

    2018-01-08

    Objective: To investigate the impact of clinicopathological features, gene rearrangements and protein expression of bcl-6, bcl-2, C-MYC and chemotherapy regime on the prognosis of patients with primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). Methods: Thirty-three cases of PCNS-DLBCL diagnosed from January 2006 to December 2016 at Zhejiang Cancer Hospital were collected. The expression of CD10, bcl-6, bcl-2, MUM1 and MYC were detected by immunohistochemical staining (IHC). The presence of EB virus was detected by in situ hybridization(EBER). Copy number variation (ICN) and translocation status of bcl-6, bcl-2 and C-MYC genes were detected by fluorescence in situ hybridization (FISH). The relationship between the above indexes and the prognosis was analyzed by univariate, bivariate survival analysis and multiple Cox hazard regression analysis. Results: The study included 33 patients of PCNS-DLBCL, without evidence of primary or secondary immunodeficient disease. Male to female ratio was 1.36∶1.00, and the average age was 56 years. Twenty cases had single lesion while 13 had multiple lesions. Deep brain involvement was seen in 12 cases. All patients underwent partial or total tumor resection. Five patients received whole brain post-surgery radiotherapy, nine patients received high-dose methotrexate (HD-MTX) based chemotherapy, and 12 patients received whole-brain radiotherapy combined with HD-MTX based chemotherapy. Severn patients received no further treatment and rituximab was used in 8 patients. According to the Hans model, 27 cases were classified as non-GCB subtypes (81.8%). Bcl-2 was positive in 25 cases (75.8%, 25/33) and highly expressed in 8 (24.2%). MYC was positive in 12 cases (36.4%) and double expression of bcl-2 and MYC was seen in 6 cases. EBER positive rate was 10.0%(3/30), all of which had multiple lesions. Two bcl-6 gene translocations and 3 amplifications were found in 28 patients. Two translocations, 3 ICN or with both

  4. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    Science.gov (United States)

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  5. THE EXPRESSION AND CLINICAL VALUE OF APOPTOSIS CONTROL GENE Bcl-2 AND Bax IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun; YAO Zhen-xiang; ZHANG Jing

    1999-01-01

    Objective: To study the expression and clinical value of apoptosis control gene bcl-2 and bax in breast cancer.Methods: Protein bax and bcl-2 in 41 breast cancers obtained from operations in our hospital in 1996 were detected using ABC immunohistochemical stain assay and compared with 10 cases with normal breast tissues.Results: The positive rate of bax in normal breast tissue was 90% and in breast cancer was 59%, with a significant statistical difference between them (P<0.05), but there was no statistical difference in bcl-2 protein expression. Among the 41 breast cancer, the group with lymph node metastasis (21 cases) had obviously low bax expression (43%) and high bcl-2 expression (76%), showing significant difference to the group without lymph node metastasis (P<0.05).Conclusion: The antiapoptosis function of bcl-2 was stronger than bax in breast cancer. Protein bax and bcl-2 assay may be useful in understanding the biological behaviors of breast cancer.

  6. The regulatory BCL2 promoter polymorphism (-938C>A) is associated with relapse and survival of patients with oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Lehnerdt, G F; Franz, P; Bankfalvi, A; Grehl, S; Kelava, A; Nückel, H; Lang, S; Schmid, K W; Siffert, W; Bachmann, H S

    2009-06-01

    Expression of the antiapoptotic and antiproliferative protein B-cell lymphoma 2 (Bcl-2) has been repeatedly shown to be associated with better locoregional control and patients' survival in oropharyngeal squamous cell carcinoma (OSCC). A regulatory (-938C>A) single-nucleotide polymorphism (SNP) in the inhibitory P2 BCL2 gene promoter generates significantly different BCL2 promoter activities and has been associated with outcome in different malignancies. The aim of the present study was to analyze the possible influence of the (-938C>A) SNP on survival of patients suffering from OSCC. One hundred and thirty-three patients with primary OSCC were retrospectively investigated. Bcl-2 expression of tumor cells was demonstrated by means of immunohistochemistry. Both the Bcl-2 expression and the (-938C>A) genotypes were correlated with the patients' survival. The (-938C>A) SNP was significantly related to Bcl-2 expression (P = 0.008). Kaplan-Meier curves revealed a significant association of the -938 SNP with relapse-free (P = 0.0283) and overall survival (P = 0.0247). Multiple Cox regression identified the BCL2 (-938CC) genotype as an independent prognostic factor for relapse [hazard ratio (HR) 1.898, P = 0.021] as well as for death in OSCC patients (HR 1.897, P = 0.013). The (-938C>A) SNP represents a potential novel prognostic marker in patients with OSCC that could help to identify a group of patients at high risk for relapse and death.

  7. Characterization of vNr-13, the first alphaherpesvirus gene of the bcl-2 family

    International Nuclear Information System (INIS)

    Aouacheria, Abdel; Banyai, Michelle; Rigal, Dominique; Schmidt, Carl J.; Gillet, Germain

    2003-01-01

    The Bcl-2 family, including antiapoptotic and proapoptotic members, plays key regulating roles in programmed cell death. We report the characterization of a new member of the bcl-2 family, encoded by herpesvirus of turkeys (HVT). The product of this gene shares 80% homology with Nr-13, an apoptosis inhibitor, which is overexpressed in avian cells transformed by the v-src oncogene. This new gene, that we propose to call vnr-13, is the first member of the bcl-2 family to be isolated among α-herpesviruses. Results from cells expressing the HVT-vnr-13 gene product show that the encoded protein inhibits apoptosis and also reduces the rate of cellular proliferation. Contrary to all bcl-2 homologues found in γ-herpesvirus, which are intronless, vnr-13 has the same organization as the cellular nr-13 gene. Hence, the HVT vnr-13 gene may have been acquired from a reverse transcriptase product of an unspliced precursor RNA, or via direct recombination with the host chromosomal DNA

  8. DNA rearrangement in human follicular lymphoma can involve the 5' or the 3' region of the bcl-2 gene

    International Nuclear Information System (INIS)

    Tsujimoto, Y.; Bashir, M.M.; Givol, I.; Cossman, J.; Jaffe, E.; Croce, C.M.

    1987-01-01

    In most human lymphomas, the chromosome translocation t(14;18) occurs within two breakpoint clustering regions on chromosome 18, the major one at the 3' untranslated region of the bcl-2 gene and the minor one at 3' of the gene. Analysis of a panel of follicular lymphoma DNAs using probes for the first exon of the bcl-2 gene indicates that DNA rearrangements may also occur 5' to the involved bcl-2 gene. In this case the IgH locus and the bcl-2 gene are found in an order suggesting that an inversion also occurred during the translocation process. The coding region of the bcl-2 gene, however, are left intact in all cases of follicular lymphoma studied to date

  9. Born to be Alive: A Role for the BCL-2 Family in Melanoma Tumor Cell Survival, Apoptosis, and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Anvekar, Rina A.; Asciolla, James J.; Missert, Derek J.; Chipuk, Jerry E., E-mail: jerry.chipuk@mssm.edu [Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY (United States); Department of Dermatology, Mount Sinai School of Medicine, New York, NY (United States); The Tisch Cancer Institute, Mount Sinai Medical Center, New York, NY (United States)

    2011-10-13

    The global incidence of melanoma has dramatically increased during the recent decades, yet the advancement of primary and adjuvant therapies has not kept a similar pace. The development of melanoma is often centered on cellular signaling that hyper-activates survival pathways, while inducing a concomitant blockade to cell death. Aberrations in cell death signaling not only promote tumor survival and enhanced metastatic potential, but also create resistance to anti-tumor strategies. Chemotherapeutic agents target melanoma tumor cells by inducing a form of cell death called apoptosis, which is governed by the BCL-2 family of proteins. The BCL-2 family is comprised of anti-apoptotic proteins (e.g., BCL-2, BCL-xL, and MCL-1) and pro-apoptotic proteins (e.g., BAK, BAX, and BIM), and their coordinated regulation and function are essential for optimal responses to chemotherapeutics. Here we will discuss what is currently known about the mechanisms of BCL-2 family function with a focus on the signaling pathways that maintain melanoma tumor cell survival. Importantly, we will critically evaluate the literature regarding how chemotherapeutic strategies directly impact on BCL-2 family function and offer several suggestions for future regimens to target melanoma and enhance patient survival.

  10. Apoptosis and BCL-2 expression as predictors of survival in radiation-treated non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Hwang, Jun-Hwa; Lim, Sung-Chul; Kim, Young-Chul; Park, Kyung-Ok; Ahn, Sung-Ja; Chung, Woong-Ki

    2001-01-01

    Objectives: We assessed the role of apoptosis and the expression of bcl-2, p53, and c-myc oncoproteins in pretreatment histologic specimens as a predictor of response to radiation therapy and survival in non-small-cell lung cancer (NSCLC) patients. Methods: Pretreatment biopsy specimens of 68 patients with NSCLC (62 squamous cell carcinoma, 6 adenocarcinoma) were stained with hematoxylin and eosin. From 5 high-powered fields, the apoptotic index (AI) was calculated as the ratio of apoptotic tumor cells to the total number of tumor cells. Bcl-2, p53, and c-myc oncoprotein expression was detected by immunohistochemical staining. Results: Twenty-nine cases showed partial or complete remission, whereas 39 showed no response. AI ranged from 0.2 to 12.0% (mean ± SD; 4.3±2.6%, median 4.0%). There was no difference in AI between responders (4.0±2.3) and nonresponders (4.5±2.8, p>0.05). However, in the responders, AI was correlated with the degree of change in tumor volume (r=0.41, p<0.05). In an analysis of 53 subjects who survived more than 1 month after the completion of radiation therapy, the patients with a higher AI (n=27, MST=22.8 m) survived longer than those with a lower AI (n=26, MST=9.2, log-rank, p=0.03). Patients expressing bcl-2 had poorer survival (n=22, MST=6.0 m) than patients without bcl-2 (n=31, 22.8 m, p<0.003). According to multivariate analysis, three variables, bcl-2 expression, AI, and response to radiation, were independent prognostic factors for survival. Conclusion: A low level of spontaneous apoptosis and expression of apoptosis blocking bcl-2 protein in pretreatment histology predict a poor prognosis for radiation-treated NSCLC patients

  11. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    International Nuclear Information System (INIS)

    Shekhar, Tanmay M.; Green, Maja M.; Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M.; Hawkins, Christine J.

    2015-01-01

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  12. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Tanmay M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Green, Maja M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Department of Anatomy & Neuroscience, The University of Melbourne, Parkville 3010 (Australia); Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Hawkins, Christine J., E-mail: c.hawkins@latrobe.edu.au [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia)

    2015-07-15

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  13. Deletion of AU-rich elements within the Bcl2 3'UTR reduces protein expression and B cell survival in vivo.

    Directory of Open Access Journals (Sweden)

    Manuel D Díaz-Muñoz

    Full Text Available Post-transcriptional mRNA regulation by RNA binding proteins (RBPs associated with AU-rich elements (AREs present in the 3' untranslated region (3'UTR of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3'UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3'UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.

  14. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures

    DEFF Research Database (Denmark)

    Hu, Shimin; Xu-Monette, Zijun Y; Tzankov, Alexander

    2013-01-01

    Diffuse large B-cell lymphoma (DLBCL) is stratified into prognostically favorable germinal center B-cell (GCB)-like and unfavorable activated B-cell (ABC)-like subtypes based on gene expression signatures. In this study, we analyzed 893 de novo DLBCL patients treated with R-CHOP (rituximab, cyclo...

  15. Overexpression of the human BCL-2 gene product results in growth enhancement of Epstein-Barr virus-immortalized B cells

    International Nuclear Information System (INIS)

    Tsujimoto, Yoshihide

    1989-01-01

    The biological activity of the human BCL-2 gene product was analyzed in an Epstein-Barr virus (EBV)-infected human lymphoblastoid B-cell line transfected with BCL-2 sequences driven by the simian virus 40 promoter and enhancer. Overproduction of the BCL-2 protein conferred a selective growth advantage to the EBV-infected B cells as compared with control transfectants in low-serum medium and also after seeding at limiting dilution but did not render the cells tumorigenic in athymic nude mice. This growth enhancement was also seen in cells transfected with the BCL-2 gene with its own promoter juxtaposed to the immunoglobulin heavy chain gene enhancer, which represents the translocated form of the BCL-2 gene observed in follicular lymphomas with the t(14;18) translocation. The growth advantage of EBV-infected B cells overproducing the BCL-2 protein is neither due to the enhanced growth factor production nor due to an enhanced sensitivity of the BCL-2 transfectants to interleukins 1 or 6, although both lymphokines are known to stimulate proliferation of EBV-infected B-cell lines. The growth advantage of EBV-infected B-cell lines. The growth advantage of EBV-infected B cells by overproduction of the BCL-2 protein suggests the direct involvement of the BCL-2 gene product in the pathogenesis of follicular lymphoma

  16. Effect of Bcl-2/Bax gene expression on apoptosis of spermatogenic cells of mouse testes induced by low dose radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Wang Chunyan; Lu Zhe; Liu Shunchun; Gong Shouliang

    2003-01-01

    The different kinds of spermatogenic cells were separated using density gradient centrifugation and their apoptosis and Bcl-2 and Bax protein expression were measured with flow cytometry and immunohistochemical method, respectively. The results showed the apoptosis in all kinds of spermatogenic cells induced by low dose radiation (LDR) had a obvious regularity. When the doses were 0.025 and 0.05 Gy, spermatogonia apoptosis was dominant. With the increase of irradiation dose (0.075-0.2 Gy), spermatocytes also showed an apoptotic change, but the apoptotic percentage of spermatogonia was significantly higher than that of spermatocytes. Moreover, the apoptosis of spermatids and spermatozoa scarcely occurred after LDR. Bax protein was primarily expressed in spermatogonia and spermatocytes, and the former was significantly higher than that of the latter after LDR. With the increase of irradiation dose, Bax protein expression showed a upgrading tendency, but that of spermatids and spermatozoa scarcely occurred. Bcl-2 protein was primarily expressed in spermatids and spermatozoa, but the Bcl-2 protein expressions of spermatogonia and spermatocytes scarcely occurred after LDR. These results imply that the interacting regulation of Bcl-2 and Bax gene expression might be involved in selective apoptosis of spermatogenic cells induced by LDR, which provided an experimental evidence for further exploring the apoptotic mechanism of adaptive response of spermatogenic cells by LDR

  17. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Di [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Yuan, Yunsheng [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai (China); Chen, Li [Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou (China); Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Liu, Xin; Belani, Chandra [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Cheng, Hua, E-mail: hcheng@ihv.umaryland.edu [Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. - Highlights: • Niclosamide is a promising therapeutic candidate for adult T cell leukemia. • Niclosamide employs a novel mechanism through proteasomal degradation of Tax. • Niclosamide downregulates certain cellular pro-survival molecules.

  18. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor signaling and exhibit characteristics of altered basal energy metabolism

    Directory of Open Access Journals (Sweden)

    Monserrate Jessica P

    2012-07-01

    Full Text Available Abstract Background B cell lymphoma 2 (Bcl-2 proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an

  19. Association of the AA genotype of the BCL2 (-938C>A) promoter polymorphism with better survival in ovarian cancer.

    Science.gov (United States)

    Heubner, Martin; Wimberger, Pauline; Otterbach, Friedrich; Kasimir-Bauer, Sabine; Siffert, Winfried; Kimmig, Rainer; Nückel, Holger

    2009-01-01

    Bcl-2 plays a key role in the regulation of apoptosis. Recently, a novel regulatory single nucleotide polymorphism (-938C>A) in the inhibitory P2 BCL2 promoter was described. In this study we investigated its potential association with survival in epithelial ovarian cancer. Patients (n=110) with primary epithelial ovarian cancer were retrospectively genotyped by pyrosequencing. Genotype distribution was not significantly different between 110 ovarian cancer patients and 120 healthy controls, suggesting that genotypes of this polymorphism do not increase the susceptibility to ovarian cancer. Kaplan-Meier curves showed a significant association of the AA genotype with increased survival (p=0.002). Multivariate analysis revealed that the BCL2-938AC/CC genotype (hazard ratio 4.5; p=0.003) was an independent prognostic factor compared to other prognostic factors such as age, histological grade or tumor stage. The results suggest a role for the BCL2-938C>A polymorphism as a marker for survival in patients with epithelial ovarian cancer.

  20. Association of genetic markers in the BCL-2 family of apoptosis-related genes with endometrial cancer risk in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Tsogzolmaa Dorjgochoo

    Full Text Available In vitro studies have demonstrated the role of the BCL-2 family of genes in endometrial carcinogenesis. The role of genetic variants in BCL-2 genes and their interactions with non-genetic factors in the development of endometrial cancer has not been investigated in epidemiological studies.We examined the relationship between BCL-2 gene family variants and endometrial cancer risk among 1,028 patients and 1,922 age-matched community controls from Shanghai, China. We also investigated possible interactions between genetic variants and established risk factors (demographic, lifestyle and clinical. Individuals were genotyped for 86 tagging single nucleotide polymorphisms (SNPs in the BCL2, BAX, BAD and BAK1 genes.Significant associations with endometrial cancer risk were found for 9 SNPs in the BCL2 gene (P trend<0.05 for all. For SNPs rs17759659 and rs7243091 (minor allele for both: G, the associations were independent. The odds ratio was 1.27 (95% CI: 1.04-1.53 for women with AG genotype for the SNP rs17759659 and 1.82 (95% CI: 1.21-2.73 for women with the GG genotype for the SNP rs7243091. No interaction between these two SNPs and established non-genetic risk factors of endometrial cancer was noticed.Genetic polymorphisms in the BCL2 gene may be associated with the risk of endometrial cancer in Chinese women.

  1. Bcl-2 Protein Expression in Egyptian Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    El-Shakankiry, N.; El-Sayed, Gh.M.M.; El-Maghraby, Sh.; Moneer, M.M.

    2009-01-01

    Objective: The primary cause of treatment failure in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. The bcl-2 gene encodes a 26-kDa protein that promotes cell survival by blocking programmed cell death (apoptosis). In the present study, bcl-2 protein expression was evaluated in newly diagnosed AML patients and correlated with the induction of remission and overall survival (OS), in an attempt to define patients who might benefit from modified therapeutic strategies. Patients and methods: Pretreatment cellular bcl-2 protein expression was measured in bone marrow samples obtained from 68 patients of newly diagnosed acute myeloid leukemia and 10 healthy controls by western blotting. Results: The mean bcl-2 protein expression was significantly higher in patients (0.68610.592) compared to controls (0.313±0.016) (p=0.002). The overall survival for patients with mean bcl-2 expression of less, and more than or equal to 0.315, was 67% and 56%, respectively, with no significant difference between the two groups 0»=0.86). Conclusion: Even though we did not observe a significant difference in overall survival between patients with high and low levels of bcl-2, modulation of this protein might still be considered as an option for enhancing the effectiveness of conventional chemotherapy.

  2. CC genotype of anti-apoptotic gene BCL-2 (-938 C/A) is an independent prognostic marker of unfavorable clinical outcome in patients with non-small-cell lung cancer.

    Science.gov (United States)

    Javid, J; Mir, R; Mirza, M; Imtiyaz, A; Prasant, Y; Mariyam, Z; Julka, P K; Mohan, A; Lone, M; Ray, P C; Saxena, A

    2015-04-01

    B cell lymphoma 2 (BCL-2) gene is a well-known regulator of apoptosis and a key element in cancer development and progression. A regulatory (-938C>A, rs2279115) single-nucleotide polymorphism in the inhibitory P2 BCL-2 gene promoter generates significantly different BCL-2 promoter activities and has been associated with different clinical outcomes in various malignancies. The aim of the present study was to analyze the possible influence of the (-938C>A) SNP on the risk and survival of Indian patients suffering from NSCLC. A hospital-based case-control study of 155 age- and sex-matched patients diagnosed with NSCLC and 155 cancer-free controls was conducted and genotyped by performing PIRA-PCR to elucidate the putative association between clinical outcome and genotypes of BCL-2 (-938C>A, rs2279115). The association of the polymorphism with the survival of NSCLC patients was analyzed by Kaplan-Meier curves. In Indian NSCLC, patients increased risk of developing NSCLC was found to be associated with BCL-2 (-938) CC genotype, [OR 3.68 (1.92-6.79), RR 1.87 (1.35-2.57) and RD 31.03 (16.79-45.27) p 0.00006 for CC and OR 2.08 (1.18-3.66), RR 1.36 (1.08-1.71) and RD 17.74 (4.68-30.81) p 0.01 for AC genotype]. Patients homozygous for C allele exhibited a significant poor overall survival compared with patients displaying AC + CC or AC or AA genotype [median survival (months) 8 vs. 11 vs. 14 vs. 35.5 (p A) polymorphism. Genetic polymorphism in the inhibitory P2 promoter region of anti-apoptotic BCL-2 genes contributes to the risk of developing non-small-cell lung cancer in Indian population. BCL-2 (-938CC) genotype was an independent adverse prognostic factor for patients with NSCLC.

  3. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Rückert, Felix; Samm, Nicole; Lehner, Anne-Kathrin; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  4. Effect of doxorubicin, oxaliplatin, and methotrexate administration on the transcriptional activity of BCL-2 family gene members in stomach cancer cells.

    Science.gov (United States)

    Florou, Dimitra; Patsis, Christos; Ardavanis, Alexandros; Scorilas, Andreas

    2013-07-01

    Defective apoptosis comprises the main reason for tumor aggressiveness and chemotherapy tolerance in solid neoplasias. Among the BCL-2 family members, whose mRNA or protein expression varies considerably in different human malignancies, BCL2L12 is the one for which we have recently shown its propitious prognostic value in gastric cancer. The purpose of the current work was to investigate the expression behavior of BCL2L12, BAX, and BCL-2 in human stomach adenocarcinoma cells following their exposure to anti-tumor substances. The 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide and trypan blue methods assessed the impact of doxorubicin, oxaliplatin and methotrexate on AGS cells' viability and growth. Following isolation from cells, total RNA was reverse-transcribed to cDNA. Quantification of target genes' expression was performed with real-time PCR using SYBR Green detection system. The relative changes in their mRNA levels between drug-exposed and untreated cells were calculated with the comparative Ct method (2(-ddCt)). All three drugs, as a result of their administration to AGS cancer cells for particular time intervals, provoked substantial fluctuations in the transcriptional levels of the apoptosis-related genes studied. While BAX was principally upregulated, striking similar were the notable changes regarding BCL-2 and BCL2L12 expression in our cellular system. Our findings indicate the growth suppressive effects of doxorubicin, oxaliplatin and methotrexate treatment on stomach carcinoma cells and the implication of BCL2L12, BAX, and BCL-2 expression profiles in the molecular signaling pathways triggered by chemotherapy.

  5. Association of the CC genotype of the regulatory BCL2 promoter polymorphism (-938C>A) with better 2-year survival in patients with glioblastoma multiforme.

    Science.gov (United States)

    El Hindy, Nicolai; Bachmann, Hagen S; Lambertz, Nicole; Adamzik, Michael; Nückel, Holger; Worm, Karl; Zhu, Yuan; Sure, Ulrich; Siffert, Winfried; Sandalcioglu, I Erol

    2011-06-01

    Bcl-2 plays a key role in the downregulation of apoptosis and proliferation and leads to increased chemoresistance in glioblastoma multiforme (GBM). The authors investigated the role of a common regulatory single-nucleotide polymorphism (-938C>A), which is located in the inhibitory P2 promoter of BCL2. Data from 160 patients suffering from GBM were retrospectively evaluated. Study inclusion criteria consisted of available DNA and, in patients still alive, a follow-up of at least 24 months. Results were analyzed with respect to the basic clinical data, type of surgical intervention (gross-total resection [GTR] versus stereotactic biopsy [SB]), adjuvant therapy, MGMT promoter methylation, and survival at the 2-year follow-up. At the 2-year follow-up, 127 (79.4%) of the 160 patients had died. Kaplan-Meier curves revealed a significantly higher rate of survival for homo- and heterozygous C-allele carriers (p = 0.031). In the GTR group, the survival rate was 47.1% for homozygous C-allele carriers, 32.0% for heterozygous C-allele carriers, and only 21.4% for homozygous A-allele carriers (p = 0.024). The SB group showed no genotype-dependent differences. Multivariable Cox regression revealed that the BCL2 (-938AA) genotype was an independent negative prognostic factor for 2-year survival in the GTR group according to the BCL2 (-938CC) genotype reference group (hazard ratio 2.50, 95% CI 1.14-5.48, p = 0.022). These results suggested that the (-938C>A) polymorphism is a survival prognosticator as well as a marker for a high-risk group among patients with GBM who underwent GTR.

  6. Energetic heavy ions overcome tumor radioresistance caused by overexpression of Bcl-2

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Omura-Minamisawa, Motoko; Funayama, Tomoo; Sakashita, Tetsuya; Sora, Sakura; Yokota, Yuichiro; Nakano, Takashi

    2008-01-01

    Background and purpose: Overexpression of Bcl-2 is frequent in human cancers and has been associated with radioresistance. Here we investigated the potential impact of heavy ions on Bcl-2 overexpressing tumors. Materials and methods: Bcl-2 cells (Bcl-2 overexpressing HeLa cells) and Neo cells (neomycin resistant gene-expressing HeLa cells) exposed to γ-rays or heavy ions were assessed for the clonogenic survival, apoptosis and cell cycle distribution. Results: Whereas Bcl-2 cells were more resistant to γ-rays (0.2 keV/μm) and helium ions (16.2 keV/μm) than Neo cells, heavy ions (76.3-1610 keV/μm) yielded similar survival regardless of Bcl-2 overexpression. Carbon ions (108 keV/μm) decreased the difference in the apoptotic incidence between Bcl-2 and Neo cells, and prolonged G 2 /M arrest that occurred more extensively in Bcl-2 cells than in Neo cells. Conclusions: High-LET heavy ions overcome tumor radioresistance caused by Bcl-2 overexpression, which may be explained at least in part by the enhanced apoptotic response and prolonged G 2 /M arrest. Thus, heavy-ion therapy may be a promising modality for Bcl-2 overexpressing radioresistant tumors

  7. Codelivery for Paclitaxel and Bcl-2 Conversion Gene by PHB-PDMAEMA Amphiphilic Cationic Copolymer for Effective Drug Resistant Cancer Therapy.

    Science.gov (United States)

    Wang, Xiaoyuan; Liow, Sing Shy; Wu, Qiaoqiong; Li, Chuang; Owh, Cally; Li, Zibiao; Loh, Xian Jun; Wu, Yun-Long

    2017-11-01

    Antiapoptotic Bcl-2 protein's upregulated expression is a key reason for drug resistance leading to failure of chemotherapy. In this report, a series of biocompatible amphiphilic cationic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) copolymer, comprising hydrophobic PHB block and cationic PDMAEMA block, is designed to codeliver hydrophobic chemotherapeutic paclitaxel and Bcl-2 converting gene Nur77/ΔDBD with enhanced stability, due to the micelle formation by hydrophobic PHB segment. This copolymer shows less toxicity but similar gene transfection efficiency to polyethyenimine (25k). More importantly, this codelivery approach by PHB-PDMAEMA leads to increased drug resistant HepG2/Bcl-2 cancer cell death, by increased expression of Nur77 proteins in the Bcl-2 present intracellular mitochondria. This work signifies for the first time that cationic amphiphilic PHB-b-PDMAEMA copolymers can be utilized for the drug and gene codelivery to drug resistant cancer cells with high expression of antiapoptosis Bcl-2 protein and the positive results are encouraging for the further design of codelivery platforms for combating drug resistant cancer cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Impact of Adenosine Fast Induction of Myocardial Arrest during CABG on Myocardial Expression of Apoptosis-Regulating Genes Bax and Bcl-2

    Directory of Open Access Journals (Sweden)

    Ahmed Shalaby

    2009-01-01

    Full Text Available Background. We studied the effect of fast induction of cardiac arrest with denosine on myocardial bax and bcl-2 expression. Methods and Results. 40 elective CABG patients were allocated into two groups. The adenosine group (n=20 received 250 μg/kg adenosine into the aortic root followed by blood potassium cardioplegia. The control group received potassium cardioplegia in blood. Bcl-2 and bax were measured. Bax was reduced in the postoperative biopsies (1.38 versus 0.47, P=.002 in the control group. Bcl-2 showed a reducing tendency (0.14 versus 0.085, P=.07. After the adenosine treatment, the expression of both bax (0.52 versus 0.59, P=.4 and bcl-2 (0.104 versus 0.107, P=.4 remained unaltered after the operation. Conclusion. Open heart surgery is associated with rapid reduction in the expression of apoptosis regulating genes bax and bcl-2. Fast Adenosine induction abolished changes in their expression.

  9. Cycloheximide and actinomycin D delay death and affect bcl-2, bax, and Ice gene expression in astrocytes under in vitro ischemia.

    Science.gov (United States)

    Yu, Albert Cheung Hoi; Yung, Hon Wa; Hui, Michael Hung Kit; Lau, Lok Ting; Chen, Xiao Qian; Collins, Richard A

    2003-10-15

    An in vitro ischemia model was established and the effect of the metabolic inhibitors cycloheximide (CHX) and actinomycin D (ActD) on apoptosis in astrocytes under ischemia studied. CHX decreased by 75% the number of cells dying after 6 hr of ischemia compared with control cultures. TdT-mediated dUTP nick end labelling (TUNEL) staining of comparable cultures was reduced by 40%. ActD decreased cell death by 60% compared with controls. The number of TUNEL-positive cells was reduced by 38%. The nuclear shrinkage in TUNEL-positive astrocytes in control cultures did not occur in ActD-treated astrocytes, indicating that nuclear shrinkage and DNA fragmentation during apoptosis are two unrelated processes. Expression of bcl-2 (alpha and beta), bax, and Ice in astrocytes under similar ischemic conditions, as measured by quantitative reverse transcription-polymerase chain reaction, indicated that ischemia down-regulated bcl-2 (alpha and beta) and bax. Ice was initially down-regulated from 0 to 4 hr, before returning to control levels after 8 hr of ischemia. ActD decreased the expression of these genes. CHX reduced the expression of bcl-2 (alpha and beta) but increased bax and Ice expression. It is hypothesized that the balance of proapoptotic (Bad, Bax) and antiapoptotic (Bcl-2, Bcl-Xl) proteins determines apoptosis. The data suggest that the ratio of Bcl-2/Bad in astrocytes following ActD and CHX treatment does not decrease as much in untreated cells during ischemia. Our data indicate that it is the ratio of Bcl-2 family members that plays a critical role in determining ischemia-induced apoptosis. It is also important to note that ischemia-induced apoptosis involves the regulation of RNA and protein synthesis. Copyright 2003 Wiley-Liss, Inc.

  10. Cotton Leaf Curl Multan Betasatellite DNA as a Tool to Deliver and Express the Human B-Cell Lymphoma 2 (Bcl-2) Gene in Plants.

    Science.gov (United States)

    Kharazmi, Sara; Ataie Kachoie, Elham; Behjatnia, Seyed Ali Akbar

    2016-05-01

    The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, βC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the βC1 was deleted (β∆C1). The recombinant βΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant βΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that β∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants.

  11. Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer.

    Science.gov (United States)

    Hiraki, Masayuki; Maeda, Takahiro; Mehrotra, Neha; Jin, Caining; Alam, Maroof; Bouillez, Audrey; Hata, Tsuyoshi; Tagde, Ashujit; Keating, Amy; Kharbanda, Surender; Singh, Harpal; Kufe, Donald

    2018-01-01

    B-cell lymphoma 2-related protein A1 (BCL2A1) is a member of the BCL-2 family of anti-apoptotic proteins that confers resistance to treatment with anti-cancer drugs; however, there are presently no agents that target BCL2A1. The MUC1-C oncoprotein is aberrantly expressed in triple-negative breast cancer (TNBC) cells, induces the epithelial-mesenchymal transition (EMT) and promotes anti-cancer drug resistance. The present study demonstrates that targeting MUC1-C genetically and pharmacologically in TNBC cells results in the downregulation of BCL2A1 expression. The results show that MUC1-C activates the BCL2A1 gene by an NF-κB p65-mediated mechanism, linking this pathway with the induction of EMT. The MCL-1 anti-apoptotic protein is also of importance for the survival of TNBC cells and is an attractive target for drug development. We found that inhibiting MCL-1 with the highly specific MS1 peptide results in the activation of the MUC1-C→NF-κB→BCL2A1 pathway. In addition, selection of TNBC cells for resistance to ABT-737, which inhibits BCL-2, BCL-xL and BCL-W but not MCL-1 or BCL2A1, is associated with the upregulation of MUC1-C and BCL2A1 expression. Targeting MUC1-C in ABT-737-resistant TNBC cells suppresses BCL2A1 and induces death, which is of potential therapeutic importance. These findings indicate that MUC1-C is a target for the treatment of TNBCs unresponsive to agents that inhibit anti-apoptotic members of the BCL-2 family.

  12. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation?

    International Nuclear Information System (INIS)

    Kang, Jia; Pervaiz, Shazib

    2013-01-01

    Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.

  13. Apoptosis and the BCL-2 gene family - patterns of expression and prognostic value in STAGE I and II follicular center lymphoma

    International Nuclear Information System (INIS)

    Logsdon, Mark D.; Meyn, Raymond E.; Besa, Pelayo C.; Pugh, William C.; Stephens, L. Clifton; Peters, Lester J.; Milas, Luka; Cox, James D.; Cabanillas, Fernando; Brisbay, Shawn; Andersen, Margret; McDonnell, Timothy J.

    1999-01-01

    Purpose: The prognostic significance of spontaneous levels of apoptosis and Bcl-2, Bax, and Bcl-x protein expression in follicular center lymphoma (FCL) is unknown. The objectives of this retrospective study were (1) to investigate the relationship between pretreatment apoptosis levels and long-term treatment outcome in patients with Stage I and II FCL; (2) to define the incidence and patterns of Bax and Bcl-x protein expression in human FC; and (3) to determine the relationship of Bcl-2, Bax, and Bcl-x expression with spontaneous apoptosis levels and clinical outcome in localized FCL. Methods and Materials: Between 1974 and 1988, 144 patients with Stage I or II FCL were treated. Hematoxylin and eosin (H and E) stained tissue sections of pretreatment specimens were retrieved for 96 patients. Treatment consisted of regional radiation therapy (XRT) for 25 patients, combined modality therapy (CMT) consisting of combination chemotherapy and XRT for 57 patients, and other treatments for 14 patients. Median follow-up for living patients was nearly 12 years. The apoptotic index (AI) was calculated by dividing the number of apoptotic cells by the total number of cells counted and multiplying by 100. Expression of Bcl-2, Bax, and Bcl-x proteins was assessed using immunohistochemistry. Results: The mean and median AI values for the entire group were 0.53 and 0.4, respectively (range: 0-5.2). The AI strongly correlated with cytologic grade, with mean AI values of 0.25 for grade 1, 0.56 for grade 2, and 0.84 for grade 3 (p < 0.0005; Kendall correlation). A positive correlation was present between grouped AI and grouped mitotic index (MI) (p = 0.014). For patients treated with CMT, an AI < 0.4 correlated with improved freedom from relapse (FFR) (p = 0.0145) and overall survival (OS) (p = 0.0081). An AI < 0.4 did not correlate with clinical outcome for the entire cohort or for patients receiving XRT only. Staining of tumor follicles for the Bcl-2 protein was positive, variable

  14. N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2.

    Science.gov (United States)

    Yang, Xiao; Zhu, Fan; Yu, Chaoran; Lu, Jiaoyang; Zhang, Luyang; Lv, Yanfeng; Sun, Jing; Zheng, Minhua

    2017-07-18

    N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion,NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.

  15. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-07-01

    Full Text Available Masoumeh Falah,1,2 Mohammad Najafi,2 Massoud Houshmand,3 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran Abstract: Age-related hearing impairment (ARHI is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. Keywords: age-related hearing impairment (ARHI, presbycusis, biomarker, treatment

  16. The Effects of Lycopene and Insulin on Histological Changes and the Expression Level of Bcl-2 Family Genes in the Hippocampus of Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Soleymaninejad, Masoume; Joursaraei, Seyed Gholamali; Feizi, Farideh; Jafari Anarkooli, Iraj

    2017-01-01

    The aim of this study was to evaluate the effects of antioxidants lycopene and insulin on histological changes and expression of Bcl-2 family genes in the hippocampus of streptozotocin-induced type 1 diabetic rats. Forty-eight Wistar rats were divided into six groups of control (C), control treated with lycopene (CL), diabetic (D), diabetic treated with insulin (DI), diabetic treated with lycopene (DL), and diabetic treated with insulin and lycopene (DIL). Diabetes was induced by an injection of streptozotocin (60 mg/kg, IP), lycopene (4 mg/kg/day) was given to the lycopene treated groups as gavages, and insulin (Sc, 1-2 U/kg/day) was injected to the groups treated with insulin. The number of hippocampus neurons undergoing cell death in group D had significant differences with groups C and DIL ( p lycopene alone or together reduced the expression of Bax , but increased Bcl-2 and Bcl-x L levels in DI, DL, and DIL rats, especially when compared to group D ( p lycopene contribute to the prevention of cell death by reducing the expression of proapoptotic genes and increasing the expression of antiapoptotic genes in the hippocampus.

  17. Deregulated expression of A1, Bcl-2, Bcl-xL, and Mcl-1 antiapoptotic proteins and Bid, Bad, and Bax proapoptotic genes in polycythemia vera patients

    Directory of Open Access Journals (Sweden)

    Elainy Patricia Lino Gasparotto

    2011-12-01

    Full Text Available Apoptosis deregulation might have a role in the pathophysiology of polycythemia vera (PV. This study evaluated Bcl-2 molecule expression in CD34+ cells and leukocytes in 12 PV patients. Gene expression was investigated by real time PCR using SybrGreen Quantitect kit and protein expression was evaluated by western-blotting. JAK2 V617F mutation was detected according to Baxter et al (2005. CD34+ cells from PV patients presented higher levels of A1 and Mcl-1 expression (median: 22.6 and 5.2, respectively in comparison with controls (0.9 and 0.5, p=0.004 and p=0.020; while Bcl-2 and Bcl-xL expression decreased in PV patients (0.18 and 1.19 compared with controls (1.39 and 2.01, p=0.006 and p=0.020. CD34+ cells in PV patients showed an elevated Bid expression (14.4 in comparison with healthy subjects (1.0; p=0.002. Patients' leukocytes showed an A1 augmentation (7.41, p=0.001 and a reduced expression of Bax (0.19; p=0.040 and Bad (0.2; p=0.030. There was no correlation between JAK2 V617F allele burden and molecular expression. PV patients showed alterations in Bcl-2 members' expression, which may interfere with control of apoptotic machinery and contribute to disease pathogenesis.A desregulação da apoptose parece participar da fisiopatologia da policitemia vera (PV. Este estudo avaliou a expressão das moléculas da família Bcl-2 em células hematopoéticas CD34 + e leucócitos de 12 pacientes com PV. Foram realizados: a quantificação da expressão gênica por PCR em tempo real utilizando kit Sybrgreen Quantitect, avaliação da expressão de proteínas por western-blot e detecção da mutação JAK2 V617F segundo Baxter et al. (2005. Células CD34 + dos pacientes com PV apresentaram maior expressão de A1 e Mcl-1 (mediana: 22,6 e 5,2, respectivamente em comparação com controles (0,9 e 0,5, p = 0,004 e p = 0,020 e expressão de Bcl-2 e Bcl-xL diminuída nestes pacientes (0,18 e 1,19 em relação aos controles (1,39 e 2,01, p = 0,006 e p = 0

  18. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Woo Chul; Ham, Yong Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10`-`9M) and tamoxifen (10`-`5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  19. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    International Nuclear Information System (INIS)

    Noh, Woo Chul; Ham, Yong Ho

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10'-'9M) and tamoxifen (10'-'5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  20. Expression of Bcl-2 in canine osteosarcoma

    Science.gov (United States)

    Piro, F.; Leonardi, L.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignancy of bone. It is responsible for 80-85% of the primary bone tumors affecting dogs and it is characterized by aggressive and invasive behavior, with a high metastatic potential. Several studies on cancer and related tumorigenesis, show an involvement of the mechanisms of programmed cell death and cell survival. Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different cases of spontaneous canine osteosarcoma and the related preliminary results are described. We found Bcl-2 activity was increased in OS tissue compared to normal bone tissue. These results suggested that Bcl-2 activity may play an important role in the formation of OS and as a diagnostic for neoplastic activity. However, further research is needed to confirm the role of Bcl-2 activity in OS in canines. PMID:26623359

  1. Expression of Bcl-2 in canine osteosarcoma

    Directory of Open Access Journals (Sweden)

    F. Piro

    2015-03-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone. It is responsible for 80-85% of the primary bone tumors affecting dogs and it is characterized by aggressive and invasive behavior, with a high metastatic potential. Several studies on cancer and related tumorigenesis, show an involvement of the mechanisms of programmed cell death and cell survival. Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different cases of spontaneous canine osteosarcoma and the related preliminary results are described. We found Bcl-2 activity was increased in OS tissue compared to normal bone tissue. These results suggested that Bcl-2 activity may play an important role in the formation of OS and as a diagnostic for neoplastic activity. However, further research is needed to confirm the role of Bcl-2 activity in OS in canines.

  2. Inter- and intratumoral heterogeneity of BCL2 correlates with IgH expression and prognosis in follicular lymphoma

    International Nuclear Information System (INIS)

    Barreca, A; Martinengo, C; Annaratone, L; Righi, L; Chiappella, A; Ladetto, M; Demurtas, A; Chiusa, L; Stacchini, A; Crosetto, N; Oudenaarden, A van; Chiarle, R

    2014-01-01

    Most follicular lymphomas (FLs) are genetically defined by the t(14;18)(q32;q21) translocation that juxtaposes the BCL2 gene to the immunoglobulin heavy chain (IgH) 3' regulatory regions (IgH-3'RRs). Despite this recurrent translocation, FL cases are heterogeneous in terms of intratumoral clonal diversity for acquired mutations and variations in the tumor microenvironment. Here we describe an additional mechanism that contributes to inter- and intratumoral heterogeneity in FLs. By applying a novel single-molecule RNA fluorescence-based in situ hybridization (FISH) technique to detect mRNA molecules of BCL2 and IgH in single cells, we found marked heterogeneity in the number of BCL2 mRNA transcripts within individual lymphoma cells. Moreover, BCL2 mRNA molecules correlated with IgH mRNA molecules in individual cells both in t(14;18) lymphoma cell lines and in patient samples. Consistently, a strong correlation between BCL2 and IgH protein levels was found in a series of 205 primary FL cases by flow cytometry and immunohistochemistry. Inter- and intratumoral heterogeneity of BCL2 expression determined resistance to drugs commonly used in FL treatment and affected overall survival of FL patients. These data demonstrate that BCL2 and IgH expressions are heterogeneous and coregulated in t(14;18)-translocated cells, and determine the response to therapy in FL patients

  3. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    Science.gov (United States)

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests

  4. Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neurotoxicity in a rat model.

    Science.gov (United States)

    Sadek, Kadry; Abouzed, Tarek; Nasr, Sherif

    2016-04-01

    The effect of monosodium glutamate (MSG) on brain tissue and the relative ability of lycopene to avert these neurotoxic effects were investigated. Thirty-two male Wistar rats were distributed into 4 groups: group I, untreated (placebo); group II, injected with MSG (5 mg·kg(-1)) s.c.; group III, gastrogavaged with lycopene (10 mg·kg(-1)) p.o.; and group IV received MSG with lycopene with the same mentioned doses for 30 days. The results showed that MSG induced elevation in lipid peroxidation marker and perturbation in the antioxidant homeostasis and increased the levels of brain and serum cholinesterase (ChE), total creatine phosphokinase (CPK), creatine phosphokinase isoenzymes BB (CPK-BB), and lactate dehydrogenase (LDH). Glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities and gene expression were increased and glutathione content was reduced in the MSG-challenged rats, and these effects were ameliorated by lycopene. Furthermore, MSG induced apoptosis in brain tissues reflected in upregulation of pro-apoptotic Bax while lycopene upregulated the anti-apoptotic Bcl-2. Our results indicate that lycopene appears to be highly effective in relieving the toxic effects of MSG by inhibiting lipid peroxidation and inducing modifications in the activity of cholinesterase and antioxidant pathways. Interestingly, lycopene protects brain tissue by inhibiting apoptosis signaling induced by MSG.

  5. Bcl-2 expression during the development and degeneration of RCS rat retinae.

    Science.gov (United States)

    Sharma, R K

    2001-12-14

    In various hereditary retinal degenerations, including that in Royal College of Surgeons (RCS) rats, the photoreceptors ultimately die by apoptosis. Bcl-2 is one of the genes, which regulates apoptosis and is thought to promote survival of cells. This study has investigated the developmental expression of Bcl-2 in RCS rat, which is a well-studied animal model for hereditary retinal degeneration. An antibody against Bcl-2 was used for its immunohistochemical localization in dystrophic RCS rat retinae from postnatal (PN) days 4, 7, 13, 35, 45, 70, 202 and 14 months. Results were compared with Bcl-2 localization in congenic non-dystrophic rats from PN 4, 7, 13, 44, 202 and 14 months. Bcl-2 immunoreactivity in non-dystrophic retinae was already present in PN 4 retinae in the nerve fiber layer (presumably in the endfeet of immature Müller cells) and in the proximal parts of certain radially aligned neuroepithelial cells/immature Müller cell radial processes. With increasing age the immunoreactivity in relatively more mature Müller cell radial processes spread distally towards the outer retina and between PN 13 and 44 it reached the adult distribution. No cell bodies in the ganglion cell layer were found to be immunoreactive. Expression of Bcl-2 immunoreactivity in dystrophic RCS rat retinae closely resembled that of non-dystrophic retinae. No immunoreactivity was seen in photoreceptors or retinal pigment epithelium in dystrophic or non-dystrophic retinae. In conclusion, Bcl-2 expression is not altered, either in terms of its chronology or the cell type expressing it, during retinal degeneration in RCS rats.

  6. Silver Nanoparticles Biosynthesized Using Achillea biebersteinii Flower Extract: Apoptosis Induction in MCF-7 Cells via Caspase Activation and Regulation of Bax and Bcl-2 Gene Expression

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2015-02-01

    Full Text Available Silver nanoparticles (Ag-NPs, the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and dynamic light scattering (DLS. The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.

  7. The AA genotype of the regulatory BCL2 promoter polymorphism ( 938C>A) is associated with a favorable outcome in lymph node negative invasive breast cancer patients.

    Science.gov (United States)

    Bachmann, Hagen S; Otterbach, Friedrich; Callies, Rainer; Nückel, Holger; Bau, Maja; Schmid, Kurt W; Siffert, Winfried; Kimmig, Rainer

    2007-10-01

    Expression of the antiapoptotic and antiproliferative protein Bcl-2 has been repeatedly shown to be associated with better clinical outcome in breast cancer. We recently showed a novel regulatory (-938C>A) single-nucleotide polymorphism (SNP) in the inhibitory P2 BCL2 gene promoter generating significantly different BCL2 promoter activities. Paraffin-embedded neoplastic and nonneoplastic tissues from 274 patients (161 still alive after a follow-up period of at least 80 months) with primary unilateral invasive breast carcinoma were investigated. Bcl-2 expression of tumor cells was shown by immunohistochemistry; nonneoplastic tissues were used for genotyping. Both the Bcl-2 expression and the (-938C>A) genotypes were correlated with the patients' survival. Kaplan-Meier curves revealed a significant association of the AA genotype with increased survival (P = 0.030) in lymph node-negative breast cancer patients, whereas no genotype effect could be observed in lymph node-positive cases. Ten-year survival rates were 88.6% for the AA genotype, 78.4% for the AC genotype, and 65.8% for the CC genotype. Multivariable Cox regression identified the BCL2 (-938CC) genotype as an independent prognostic factor for cancer-related death in lymph node-negative breast carcinoma patients (hazard ratio, 3.59; P = 0.032). Immunohistochemical Bcl-2 expression was significantly associated with the clinical outcome of lymph node-positive but not of lymph node-negative breast cancer patients. In lymph node-negative cases, the (-938C>A) SNP was both significantly related with the immunohistochemically determined level of Bcl-2 expression (P = 0.044) and the survival of patients with Bcl-2-expressing carcinomas (P = 0.006). These results suggest the (-938C>A) polymorphism as a survival prognosticator as well as indicator of a high-risk group within patients with lymph node-negative breast cancer.

  8. Inhibition of oxygen-glucose deprivation-induced apoptosis of human adipose-derived stem cells by genetic modification with antiapoptotic protein bcl-2.

    Science.gov (United States)

    Cui, Ziwei; Shen, Liangyun; Lin, Yue; Wang, Shuqin; Zheng, Dongfeng; Tan, Qian

    2014-08-01

    Adipose-derived stem cells (ADSCs) have become a promising tool for a wide range of cell-based therapies. However, transplanted ADSCs do not survive well under ischemic conditions. In this study we aimed to inhibit oxygen-glucose deprivation (OGD)-induced apoptosis of human ADSCs by genetic modification with antiapoptotic protein Bcl-2. After isolation and culture, the phenotypes of human ADSCs at passage 3 were analyzed by flow cytometry. Then, genetic modification of ADSCs with Bcl-2 was carried out. Bcl-2 gene transfection was verified by Western blot analysis and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs (Bcl-2-ADSCs). Apoptosis was evaluated by a TUNEL assay under ischemic conditions induced by OGD. Apoptotic nuclei were also assessed and quantified by Hoechst staining. The cultured ADSCs expressed stem cell-associated markers CD29, CD34, CD44, and CD90, but not fibroblast marker HLA-DR or hematopoietic stem cell marker CD133. The Bcl-2 gene was transferred into ADSCs efficiently, and Bcl-2-ADSCs differentiated into adipocytes, chondrocytes, and osteoblasts. In addition, Bcl-2 overexpression reduced the percentage of apoptotic Bcl-2-ADSCs by 38 % under OGD. Our results indicate that Bcl-2 overexpression through gene transfection inhibits apoptosis of ADSCs under ischemic conditions. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. Light induced apoptosis is accelerated in transgenic retina overexpressing human EAT/mcl-1, an anti-apoptotic bcl-2 related gene.

    Science.gov (United States)

    Shinoda, K; Nakamura, Y; Matsushita, K; Shimoda, K; Okita, H; Fukuma, M; Yamada, T; Ohde, H; Oguchi, Y; Hata, J; Umezawa, A

    2001-10-01

    EAT/mcl-1 (EAT), an immediate early gene, functions in a similar way to bcl-2 in neutralising Bax mediated cytotoxicity, suggesting that EAT is a blocker of cell death. The aim of this study was to determine the effect of overexpression of the human EAT gene on light induced retinal cell apoptosis. EAT transgenic mice incorporating the EF-1alpha promoter were utilised, and expression of human EAT was detected by RT-PCR. Light damage was induced by raising mice under constant illumination. Two groups of animals, EAT transgenic mice (n=14) and littermates (n=13), were examined by ERG testing and histopathology at regular time points up to 20 weeks of constant light stimulation. Electrophysiological and histopathological findings were evaluated by established systems of arbitrary scoring as scores 0-2 and scores 0-3, respectively. The mean score (SD) of ERG response was significantly lower in EAT transgenic mice (0.79 (0.89)) than in littermates (1.69 (0.48)) (pstatistical significance (p=0.1156), the estimated incidence of electrophysiological retinal damage was higher in EAT mice (0.0495/mouse/week; 95% confidence interval (CI) 0.0347-0.0500) than in littermates (0. 0199/mouse/week; 95% CI 0.0035-0.0364). The mean scores (SD) for histopathological retinal degeneration were 2.31 (0.63) in littermates and 1.43 (1.22) in EAT transgenic mice (p=0.065). However, Kaplan-Meier curves for histopathological failure in two groups of mice showed that retinal photoreceptor cells were preserved significantly against constant light in the littermate compared with transgenic mice (p=0.0241). The estimated incidence of histopathological retinal damage was 0.0042/mouse/week in the littermates (95% CI 0-0.0120) and 0.0419/mouse/week in the EAT mice (95% CI 0.0286-0.0500). Retinal photoreceptor cell apoptosis under constant light stimulation is likely to be accelerated in transgenic retina overexpressing EAT.

  10. Prognostic significance of MYC, BCL2, and BCL6 rearrangements in patients with diffuse large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab.

    Science.gov (United States)

    Akyurek, Nalan; Uner, Aysegul; Benekli, Mustafa; Barista, Ibrahim

    2012-09-01

    Diffuse large B-cell lymphomas (DLBCLs) are a biologically heterogeneous group in which various gene alterations have been reported. The aim of this study was to investigate the frequency and prognostic impact of BCL2, BCL6, and MYC rearrangements in cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab (R-CHOP)-treated DLBCL cases. Tissue microarrays were constructed from 239 cases of DLBCL, and the expressions of CD10, BCL6, MUM1/IRF4, and BCL2 were evaluated by immunohistochemistry. MYC, BCL2, and BCL6 rearrangements were investigated by interphase fluorescence in situ hybridization on tissue microarrays. Survival analysis was constructed from 145 R-CHOP-treated patients. MYC, BCL2, and BCL6 rearrangements were detected in 14 (6%), 36 (15%), and 69 (29%) of 239 DLBCL patients. Double or triple rearrangements were detected in 7 (3%) of 239 DLBCL cases. Of these, 4 had BCL2 and MYC, 2 had BCL6 and MYC, and 1 had BCL2, BCL6, and MYC rearrangements. The prognosis of these cases was extremely poor, with a median survival of 9 months. MYC rearrangement was associated with significantly worse overall survival (P = .01), especially for the cases with GC phenotype (P = .009). BCL6 rearrangement also predicted significantly shorter overall survival (P = .04), especially for the non-GC phenotype (P = .03). BCL2 rearrangement had no prognostic impact on outcome. International Prognostic Index (P = .004) and MYC rearrangement (P = .009) were independent poor prognostic factors. Analysis of MYC gene rearrangement along with BCL2 and BCL6 is critical in identifying high-risk patients with poor prognosis. Copyright © 2011 American Cancer Society.

  11. Bcl-2 antisense therapy in B-cell malignancies.

    Science.gov (United States)

    Chanan-Khan, Asher

    2005-07-01

    Bcl-2 is an apoptosis regulating protein, overexpression of which is associated with chemotherapy resistant disease, aggressive clinical course, and poor survival in patients with B-cell lymphoproliferative disorders. Overexpression of Bcl-2 protein results in an aberrant intrinsic apoptotic pathway that confers a protective effect on malignant cells against a death signal (e.g., chemotherapy or radiotherapy). Downregulation of this oncoprotein, thus, represents a possible new way to target clinically aggressive disease. Preclinical studies have shown that this oncoprotein can be effectively decreased by Bcl-2 antisense in malignant lymphoid cells and can reverse chemotherapy resistance, as well as enhance the anti-apoptotic potential of both chemotherapeutic and biologic agents. Ongoing clinical trials are exploring the role of Bcl-2 downregulation with oblimersen (Bcl-2 antisense) in patients with non-Hodgkin's lymphoma, chronic lymphocytic leukemia and multiple myeloma. Early results from these studies are promising and support the proof of the principle. As these studies are completed and mature data emerges, the role of Bcl-2 antisense therapy in the treatment of B-cell malignancies will become clearer.

  12. Evaluation of bax, bcl-2, p21 and p53 genes expression variations on cerebellum of BALB/c mice before and after birth under mobile phone radiation exposure.

    Science.gov (United States)

    Ghatei, Najmeh; Nabavi, Ariane Sadr; Toosi, Mohammad Hossein Bahreyni; Azimian, Hosein; Homayoun, Mansour; Targhi, Reza Ghasemnezhad; Haghir, Hossein

    2017-09-01

    The increasing rate of over using cell phones has been considerable in youths and pregnant women. We examined the effect of mobile phones radiation on genes expression variation on cerebellum of BALB/c mice before and after of the birth. In this study, a mobile phone jammer, which is an instrument to prevent receiving signals between cellular phones and base transceiver stations (two frequencies 900 and 1800 MHz) for exposure was used and twelve pregnant mice (BALB/c) divided into two groups (n=6), first group irradiated in pregnancy period (19th day), the second group did not irradiate in pregnancy period. After childbirth, offspring were classified into four groups (n=4): Group1: control, Group 2: B1 (Irradiated after birth), Group 3: B2 (Irradiated in pregnancy period and after birth), Group 4: B3 (Irradiated in pregnancy period). When maturity was completed (8-10 weeks old), mice were dissected and cerebellum was isolated. The expression level of bax , bcl-2, p21 and p53 genes examined by real-time reverse transcription polymerase chain reaction (Real-Time RT- PCR). The data showed that mobile phone radio waves were ineffective on the expression level of bcl-2 and p53 genes) P >0.05(. Also gene expression level of bax decreased and gene expression level of p21 increased comparing to the control group ( P mobile phone radiations did not induce apoptosis in cells of the cerebellum and the injured cells can be repaired by cell cycle arrest.

  13. Clusterin silencing sensitizes pancreatic cancer MIA-PaCa-2 cells to gmcitabine via regulation of NF-kB/Bcl-2 signaling.

    Science.gov (United States)

    Xu, Miao; Chen, Xiumei; Han, Yanling; Ma, Chunqing; Ma, Lin; Li, Shirong

    2015-01-01

    Clusterin (CLU) is known as a multifunctional protein involved in a variety of physiological processes including lipid transport, epithelial cell differentiation, tumorigenesis, and apoptosis. Our recent study has demonstrated that knockdown of clusterin sensitizes pancreatic cancer cell lines to gmcitabine treatment. However the details of this survival mechanism remain undefined. Of the various downstream targets of CLU, we examined activation of the NF-kB transcription factor and subsequent transcriptional regulation of BCL-2 gene in pancreatic cancer cell MIA-PaCa-2. The MIA-PaCa-2 cells were transfected with an antisense oligonucleotide (ASO) against clusterin, which led to a decreased protein level of the antiapoptotic gene BCL-2. Furthermore, inhibition of CLU decreased the function of NF-kB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway increased the apoptotic effect of gmcitabine chemotherapy. Re-activated NF-kB resulted in attenuation of ASO-induced effects, followed by the bcl-2 upregulation, and bcl-2 re-inhibition resulted in attenuation of Re-activated NF-kB -induced effects. Animals injected with ASO CLU in MIA-PaCa-2 cells combined with gmcitabine treatment had fewer tumors than gmcitabine or ASO CLU alone. These findings suggest that knockdown of CLU sensitized MIA-PaCa-2 cells to gmcitabine chemotherapy through modulating NF-Kb/bcl-2 pathway.

  14. The Role of Bcl-2 Family Proteins in Therapy Responses of Malignant Astrocytic Gliomas: Bcl2L12 and Beyond

    Directory of Open Access Journals (Sweden)

    Fotini M. Kouri

    2012-01-01

    Full Text Available Glioblastoma (GBM is a highly aggressive and lethal brain cancer with a median survival of less than two years after diagnosis. Hallmarks of GBM tumors include soaring proliferative indices, high levels of angiogenesis, diffuse invasion into normal brain parenchyma, resistance toward therapy-induced apoptosis, and pseudopallisading necrosis. Despite the recent advances in neurosurgery, radiation therapy, and the development of targeted chemotherapeutic regimes, GBM remains one of the deadliest types of cancer. Particularly, the alkylating agent temozolomide (TMZ in combination with radiation therapy prolonged patient survival only marginally, and clinical studies assessing efficacies of targeted therapies, foremost ATP mimetics inhibiting the activity of receptor tyrosine kinases (RTKs, revealed only few initial responders; tumor recurrence is nearly universal, and salvage therapies to combat such progression remain ineffective. Consequently, myriad preclinical and clinical studies began to define the molecular mechanisms underlying therapy resistance of GBM tumors, and pointed to the Bcl-2 protein family, in particular the atypical member Bcl2-Like 12 (Bcl2L12, as important regulators of therapy-induced cell death. This review will discuss the multi-faceted modi operandi of Bcl-2 family proteins, describe their roles in therapy resistance of malignant glioma, and outline current and future drug development efforts to therapeutically target Bcl-2 proteins.

  15. Effect of bcl-2 overexpression in mice on ovotoxicity caused by 4-vinylcyclohexene

    International Nuclear Information System (INIS)

    Flaws, Jodi A.; Marion, Samuel L.; Miller, Kimberly P.; Christian, Patricia J.; Babus, Janice K.; Hoyer, Patricia B.

    2006-01-01

    The occupational chemical 4-vinylcyclohexene (VCH) destroys small preantral ovarian follicles in mice following repeated daily dosing. The cell survival gene bcl-2 is thought to protect against follicular death during embryogenesis because primordial follicle numbers in newborn bcl-2 overexpressing (OE) mice are greater than in wild-type (WT) controls. Thus, this study was designed to determine if overexpression of bcl-2 protects against VCH-induced follicle loss during embryonic development. Pregnant bcl-2 OE or WT mice were dosed (p.o.) daily with VCH (500 mg/kg) or sesame oil (vehicle control) on days 8-18 of pregnancy. Ovaries were collected from moms and female pups on pup postnatal day (PND) 8. Nonpregnant OE and WT females were also treated with VCH (500 mg/kg p.o.) or vehicle and evaluated in the same manner. As previously reported, ovaries from PND8 OE female pups contained 50% more primordial follicles than WT pups (P < 0.05). Unlike WT pups, relative to vehicle controls, in utero exposure to VCH resulted in a reduction in primordial (25% of control), primary (38% of control), and secondary (33% of control) follicles in ovaries of OE pups (P < 0.05). VCH had no significant effect on follicle numbers in OE or WT moms. Conversely, in nonpregnant adults, VCH did not affect WT mice but caused loss of primordial (55% of control), primary (51% of control), and secondary (69% of control) follicles in OE mice (P < 0.05). These results demonstrate that bcl-2 overexpression does not protect against, but instead increases susceptibility to VCH-induced follicle loss in transplacentally exposed or in nonpregnant mice

  16. Effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69

    International Nuclear Information System (INIS)

    He Wenqian; Liu Zhonghua

    2007-01-01

    Objective: To study the effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69. Methods: Cultured NCI-H69 cells were derided into 4 groups: bcl-2 antisense oligodexynucleotides (ASODN) added, sense oligodexynucleotides (SODN) added, nonsense oligodexynucleotides (NSODN) added and control (no nucleotides added), the oligodexynucleotides were transfected into the cultured cells with oligofectamine. The cellular expression of Bcl-2 protein 72h later was examined with Western-Blot. The four different groups of cultured tumor cells were treated with etopside(Vp-16) at different concentrations (0, 0.25, 0.5, 1.0, 2.0 and 4.0 μg/ml) for 48hr then the cell survival fraction was assessed with MTY test. Results: The apoptotic rate of cells in the ASODN group was significantly higher than that of the control group, also, the survival fraction of cells in ASODN group was significantly lower than that of the control group. The Bcl-2 protein expression in ASODN group was significantly lower than that in the control group, but no inhibition was observed in SODN and NSODN groups. Conclusion: The bcl-2 ASODN could enhance the sensitivity to chemotherapy with Vp-16 in small cell lung cancer cell line NCI-H69 by effectively blocking bcl-2 gene expression. (authors)

  17. Effects of 2,2',4,4'-tetrabromodiphenyl ether on neurobehavior and memory change and bcl-2, c-fos, grin1b and lingo1b gene expression in male zebrafish (Danio rerio).

    Science.gov (United States)

    Zheng, Shukai; Liu, Caixia; Huang, Yanhong; Bao, Mian; Huang, Yuanni; Wu, Kusheng

    2017-10-15

    Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants in various environmental matrices and organisms and pose a threat to neural systems of organisms. However, though quite a few studies have explored the effect of PBDEs on neural behaviors such as learning and memory abilities in animals, their mechanisms are less known. We used the zebrafish model to evaluate neurotoxicity of PBDEs and observe changes in behavior and related gene expression. In behavioral testing, 50 zebrafish were divided into five groups treated with different concentrations of BDE-47. T-maze exploration was used for learning and memory testing, which was recorded by camera every 7days. After 21days, all fish were killed, and the gene expression of c-fos, bcl-2, lingo1b and grin1b in brain tissue was analyzed by RT-qPCR. The behavioral changes (latency to leave the start zone, reach the reward zone, and stay in the reward zone; accuracy in choosing the right maze arm, accumulation of freezing bouts, etc.) were related to BDE-47 concentration and had a time-effect relation with increasing exposure days, especially with 500μg/L BDE-47. BDE-47 elevated brain bcl-2, grin1b and lingo1b expression. The expression of c-fos showed an increase with 50 and 100μg/L BDE-47 exposure. The PBDE BDE-47 had a negative impact on the neurobehaviors of zebrafish and affected the expression of c-fos, bcl-2, lingo1b and grin1b in zebrafish brain tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Identification and characterization of the Bcl-2- associated ...

    African Journals Online (AJOL)

    Identification and characterization of the Bcl-2- associated athanogene (BAG) protein family in rice. ... Data obtained from real-time PCR of OsBAG genes under heat stress showed that maximum induction in the expression of all the genes occurred after one hour exposure to heat stress, while reduction in the expression ...

  19. Bcl-2 antisense therapy in B-cell malignant proliferative disorders.

    Science.gov (United States)

    Chanan-Khan, Asher; Czuczman, Myron S

    2004-08-01

    Overexpression of Bcl-2 oncogene has been clinically associated with an aggressive clinical course, chemotherapy and radiotherapy resistance, and poor survival in patients with malignant B-cell disorders. Patients with relapsed or refractory chronic lymphocytic leukemia, multiple myeloma, or non-Hodgkin's lymphoma have limited therapeutic options. Preclinical and early clinical data have shown that Bcl-2 oncoprotein can be decreased by Bcl-2 antisense therapy. Also, downregulation of Bcl-2 protein can result in reversal of chemotherapy resistance and improved antitumor activity of biologic agents. Various clinical trials are evaluating the role of targeting Bcl-2 as a mechanism to enhance the antitumor potential of chemotherapy and immunotherapy. Early results from these clinical studies are encouraging and confirm the proof of principle for antisense therapy. As current data mature, these trials will hopefully validate preliminary results and establish Bcl-2 antisense as an important addition to the current armamentarium used in the treatment of patients with B-cell neoplasms.

  20. Bcl-2 inhibitors potentiate the cytotoxic effects of radiation in Bcl-2 overexpressing radioresistant tumor cells

    International Nuclear Information System (INIS)

    Hara, Takamitsu; Omura-Minamisawa, Motoko; Chao Cheng; Nakagami, Yoshihiro; Ito, Megumi; Inoue, Tomio

    2005-01-01

    Purpose: Bcl-2, an inhibitor of apoptosis frequently shows elevated expression in human tumors, thus resulting in resistance to radiation therapy. Therefore, inhibiting Bcl-2 function may enhance the radiosensitivity of tumor cells. Tetrocarcin A (TC-A) and bcl-2 antisense oligonucleotides exhibit antitumor activity by inhibiting Bcl-2 function and transcription, respectively. We investigated whether these antitumor agents would enhance the cytotoxic effects of radiation in tumor cells overexpressing Bcl-2. Methods and materials: We used HeLa/bcl-2 cells, a stable Bcl-2-expressing cell line derived from wild-type HeLa (HeLa/wt) cells. Cells were incubated with TC-A and bcl-2 antisense oligonucleotides for 24 h after irradiation, and cell viability was then determined. Apoptotic cells were quantified by flow cytometric assay. Results: The HeLa/bcl-2 cells were more resistant to radiation than HeLa/wt cells. At concentrations that are not inherently cytotoxic, both TC-A and bcl-2 antisense oligonucleotides increased the cytotoxic effects of radiation in HeLa/bcl-2 cells, but not in HeLa/wt cells. However, in HeLa/bcl-2 cells, additional treatment with TC-A in combination with radiation did not significantly increase apoptosis. Conclusions: The present results suggest that TC-A and bcl-2 antisense oligonucleotides reduce radioresistance of tumor cells overexpressing Bcl-2. Therefore, a combination of radiotherapy and Bcl-2 inhibitors may prove to be a useful therapeutic approach for treating tumors that overexpress Bcl-2

  1. Predictive value of bcl-2 immunoreactivity in prostate cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Bylund, A.; Widmark, A.; Stattin, P.; Bergh, A.

    1998-01-01

    Background and purpose: Recent experimental evidence suggests that overexpression of bcl-2, a protein functioning by blocking apoptosis, may influence the treatment outcome in human tumours, including prostate cancer. To test the clinical implications of this hypothesis, tumours from patients with prostate cancer treated with external beam radiotherapy were investigated for bcl-2 immunoreactivity (IR) and correlated with prognosis and treatment outcome. Materials and methods: Bcl-2 IR was evaluated in archival tumour specimens obtained through transurethral resection from 42 patients with localized prostate cancer (T0-T4, N0 and M0). Bcl-2 IR expression was related to stage, grade and cancer-specific survival. Specimens were obtained prior to administrating routine radiotherapy for all patients. Results: Bcl-2 IR was present in 19/42 (45%) tumours. The bcl-2-positive patients had a significantly longer cancer-specific survival than the bcl-2-negative patients (10.3 versus 3.4 years, P<0.04). At follow-up (7-19 years), nine patients were still alive, 26 patients had died of prostate cancer and seven patients had died of other causes. Conclusions: This study indicates that pre-treatment bcl-2 overexpression is related to a favourable outcome in prostate cancer treated with radiotherapy. Low bcl-2 along with a high stage may be a predictor of poor prognosis and these patients might benefit from additional treatment. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes

    NARCIS (Netherlands)

    Vaandrager, J W; Schuuring, E; Raap, T; Philippo, K; Kleiverda, K; Kluin, P

    Rearrangement of the BCL2 gene is an important parameter for the differential diagnosis of non-Hodgkin lymphomas. Although a relatively large proportion of breakpoints is clustered, many are missed by standard PCR. A FISH assay is therefore desired. Up to now, a lack of probes flanking the BCL2 gene

  3. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens

    DEFF Research Database (Denmark)

    Straten, Per thor; Andersen, Mads Hald; Andersen, Mads Hald

    2010-01-01

    Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-ca...

  4. The effect of radiation on bcl-2 and bax in hyperplastic prostatic tissues

    International Nuclear Information System (INIS)

    Ma Qingjie; Li Yuxin; Gu Xinquan; Cao Xia; Zhao Jie; Kong Xiangbo; Cai Shanyu

    2004-01-01

    Aim: To investigate the expressions of bcl-2 and bax in benign prostatic hyperplasia (BPH) and the effect of β-rays on bcl-2 and bax. Methods: The expressions of bcl-2 and bax are studied by means of immunohistochemical method in 9 normal prostate (NP) and 15 BPH and 35 patients treated with 90Sr/90Y Prostatic Hyperplasia Applicator. Results: The expressions of bcl-2 in epithelia of NP and BPH are higher than that in stroma P<0.01=. The expressions of bcl-2 in epithelia and stroma of BPH are higher than that in NP P<0.01=. The expressions of bax in epithelia of NP are higher than that in BPH P<0.05=. However ,the expressions of bcl-2 in epithelia and stroma of BPH are higher than bax P<0.01 =. Compared with the control group, the expressions of bcl-2 in epithelia and stroma of BPH treated with 90Sr/90Y Prostatic Hyperplasia Applicator decreased and the expressions of bax increased P<0.01=. Conclusion: bcl-2 gene and bax gene play an important role in the regulation of prostatic apoptosis and the treatment of β-rays can accelerate the apoptosis of prostatic tissues. (authors)

  5. Expression of bcl-2 in the Epithelial Lining of Odontogenic Keratocysts

    Directory of Open Access Journals (Sweden)

    Gh. Jahanshahi

    2006-03-01

    Full Text Available Statement of Problem: The aggressive nature and high recurrence rate of Odontogenic Keratocysts (OKCs may be due to unknown factors inherent in the epithelium or because of enzymatic activity in the fibrous wall. Bcl-2 protein is characterized by its ability to inhibit apoptosis.Purpose: The aim of the present study was to analyze the expression of bcl-2 protein in OKCs and to compare it with the more common radicular and dentigerous cysts. The possible relationship between inflammation and bcl-2 expression was also investigated.Materials and Methods: Formalin fixed paraffin-embedded tissue sections of 20 OKCs, 20 radicular and 20 dentigerous cysts were immunohistochemically analyzed for immunoreactivity of the bcl-2 protein.Results: Bcl-2 expression was observed in 19 OKCs (95%, one radicular cyst (5%and one dentigerous cyst (5%. There was no statistically significant relationship between inflammation and the number of bcl-2 positive cells. Immunoreactivity was mainly noted in the basal or basal/supra basal layers.Conclusion: Considering the fact that bcl-2 over expression may lead to increased survival of epithelial cells, present study may demonstrate a possible relationship between the aggressive nature of OKC and the intrinsic growth potential of its lining epithelium. Furthermore a basal/supra basal distribution of bcl-2 positive cells was seen in some odontogenic keratocysts which may have a significant impact on the behavior of this cyst.

  6. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic ... Quantitative real-time polymerase chain reaction (qPCR) was performed using Taq PCR Master ... Keywords: Anti-apoptotic genes, Cervical cancer, Apoptosis, Cell viability, BCL2, .... polyclonal anti-rabbit immunoglobulin HRP-linked.

  7. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Ryu, Hoon; Smith, Karen; Camelo, Sandra I; Carreras, Isabel; Lee, Junghee; Iglesias, Antonio H; Dangond, Fernando; Cormier, Kerry A; Cudkowicz, Merit E; Brown, Robert H; Ferrante, Robert J

    2005-06-01

    Multiple molecular defects trigger cell death in amyotrophic lateral sclerosis (ALS). Among these, altered transcriptional activity may perturb many cellular functions, leading to a cascade of secondary pathological effects. We showed that pharmacological treatment, using the histone deacetylase inhibitor sodium phenylbutyrate, significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice. Phenylbutyrate administration ameliorated histone hypoacetylation observed in G93A mice and induced expression of nuclear factor-kappaB (NF-kappaB) p50, the phosphorylated inhibitory subunit of NF-kappaB (pIkappaB) and beta cell lymphoma 2 (bcl-2), but reduced cytochrome c and caspase expression. Curcumin, an NF-kappaB inhibitor, and mutation of the NF-kappaB responsive element in the bcl-2 promoter, blocked butyrate-induced bcl-2 promoter activity. We provide evidence that the pharmacological induction of NF-kappaB-dependent transcription and bcl-2 gene expression is neuroprotective in ALS mice by inhibiting programmed cell death. Phenylbutyrate acts to phosphorylate IkappaB, translocating NF-kappaB p50 to the nucleus, or to directly acetylate NF-kappaB p50. NF-kappaB p50 transactivates bcl-2 gene expression. Up-regulated bcl-2 blocks cytochrome c release and subsequent caspase activation, slowing motor neuron death. These transcriptional and post-translational pathways ultimately promote motor neuron survival and ameliorate disease progression in ALS mice. Phenylbutyrate may therefore provide a novel therapeutic approach for the treatment of patients with ALS.

  8. High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology

    International Nuclear Information System (INIS)

    Anagnostou, Valsamo K; Boffa, Daniel; Gettinger, Scott; Detterbeck, Frank; Homer, Robert J; Dougenis, Dimitrios; Rimm, David L; Syrigos, Konstantinos N; Lowery, Frank J; Zolota, Vassiliki; Tzelepi, Vassiliki; Gopinath, Arun; Liceaga, Camil; Panagopoulos, Nikolaos; Frangia, Konstantina; Tanoue, Lynn

    2010-01-01

    Bcl-2 promotes cell survival by inhibiting adapters needed for the activation and cleavage of caspases thus blocking the proteolytic cascade that ultimately dismantles the cell. Bcl-2 has been investigated as a prognostic factor in non small cell lung cancer (NSCLC) patients with conflicting results. Here, we quantitatively assessed Bcl-2 expression in two large and independent cohorts to investigate the impact of Bcl-2 on survival. AQUA ® , a fluorescent-based method for analysis of in situ protein expression, was used to measure Bcl-2 protein levels and classify tumors by Bcl-2 expression in a cohort of 180 NSCLC patients. An independent cohort of 354 NSCLC patients was used to validate Bcl-2 classification and evaluate outcome. Fifty % and 52% of the cases were classified as high expressers in training and validation cohorts respectively. Squamous cell carcinomas were more likely to be high expressers compared to adenocarcinomas (63% vs. 45%, p = 0.002); Bcl-2 was not associated with other clinical or pathological characteristics. Survival analysis showed that patients with high BCL-2 expression had a longer median survival compared to low expressers (22 vs. 17.5 months, log rank p = 0.014) especially in the subset of non-squamous tumors (25 vs. 13.8 months, log rank p = 0.04). Multivariate analysis revealed an independent lower risk for all patients with Bcl-2 expressing tumors (HR = 0.53, 95% CI 0.37-0.75, p = 0.0003) and for patients with non-squamous tumors (HR = 0.5, 95% CI 0.31-0.81, p = 0.005). Bcl-2 expression defines a subgroup of patients with a favorable outcome and may be useful for prognostic stratification of NSCLC patients

  9. BCL-2: Long and winding path from discovery to therapeutic target

    International Nuclear Information System (INIS)

    Schenk, Robyn L.; Strasser, Andreas; Dewson, Grant

    2017-01-01

    In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefit for cancer patients. - Highlights: • BCL-2 proteins control the intrinsic or mitochondrial pathway of apoptosis. • Defective apoptosis is a hallmark of cancer. • BH3-mimetics inhibit pro-survival BCL-2 proteins to induce cancer cell death. • ABT-199/venetoclax is approved for treatment of chronic lymphocytic leukaemia.

  10. Combined Targeting of JAK2 and Bcl-2/Bcl-xL to Cure Mutant JAK2-Driven Malignancies and Overcome Acquired Resistance to JAK2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Michaela Waibel

    2013-11-01

    Full Text Available To design rational therapies for JAK2-driven hematological malignancies, we functionally dissected the key survival pathways downstream of hyperactive JAK2. In tumors driven by mutant JAK2, Stat1, Stat3, Stat5, and the Pi3k and Mek/Erk pathways were constitutively active, and gene expression profiling of TEL-JAK2 T-ALL cells revealed the upregulation of prosurvival Bcl-2 family genes. Combining the Bcl-2/Bcl-xL inhibitor ABT-737 with JAK2 inhibitors mediated prolonged disease regressions and cures in mice bearing primary human and mouse JAK2 mutant tumors. Moreover, combined targeting of JAK2 and Bcl-2/Bcl-xL was able to circumvent and overcome acquired resistance to single-agent JAK2 inhibitor treatment. Thus, inhibiting the oncogenic JAK2 signaling network at two nodal points, at the initiating stage (JAK2 and the effector stage (Bcl-2/Bcl-xL, is highly effective and provides a clearly superior therapeutic benefit than targeting just one node. Therefore, we have defined a potentially curative treatment for hematological malignancies expressing constitutively active JAK2.

  11. Immunogenicity of Bcl-2 in patients with cancer

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie; Kvistborg, Pia

    2005-01-01

    patients suffering from unrelated tumor types (ie, pancreatic cancer, breast cancer, acute myeloid leukemia [AML], and chronic lymphocytic leukemia [CLL]). Additionally, we show that these Bcl-2-reactive T cells are indeed peptide-specific, cytotoxic effector cells. Thus, Bcl-2 may serve as an important......B-cell lymphoma 2 (Bcl-2) is a pivotal regulator of apoptotic cell death and it is overexpressed in many cancers. Consequently, the Bcl-2 protein is an attractive target for drug design, and Bcl-2-specific antisense oligonucleotides or small-molecule Bcl-2 inhibitors have shown broad anticancer......-2 in cancer and the fact that immune escape by down-regulation or loss of expression of this protein would impair sustained tumor growth makes Bcl-2 a very attractive target for anticancer immunotherapy. Herein, we describe spontaneous T-cell reactivity against Bcl-2 in peripheral blood from...

  12. BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth.

    Science.gov (United States)

    Deng, Jiusheng; Park, Dongkyoo; Wang, Mengchang; Nooka, Ajay; Deng, Qiaoya; Matulis, Shannon; Kaufman, Jonathan; Lonial, Sagar; Boise, Lawrence H; Galipeau, Jacques; Deng, Xingming

    2016-05-10

    Multiple myeloma (MM) is a heterogeneous plasma cell malignancy and remains incurable. B-cell lymphoma-2 (BCL2) protein correlates with the survival and the drug resistance of myeloma cells. BH3 mimetics have been developed to disrupt the binding between BCL2 and its pro-apoptotic BCL2 family partners for the treatment of MM, but with limited therapeutic efficacy. We recently identified a small molecule BDA-366 as a BCL2 BH4 domain antagonist, converting it from an anti-apoptotic into a pro-apoptotic molecule. In this study, we demonstrated that BDA-366 induces robust apoptosis in MM cell lines and primary MM cells by inducing BCL2 conformational change. Delivery of BDA-366 substantially suppressed the growth of human MM xenografts in NOD-scid/IL2Rγnull mice, without significant cytotoxic effects on normal hematopoietic cells or body weight. Thus, BDA-366 functions as a novel BH4-based BCL2 inhibitor and offers an entirely new tool for MM therapy.

  13. Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak.

    Science.gov (United States)

    Lauf, Peter K; Alqahtani, Tariq; Flues, Karin; Meller, Jaroslaw; Adragna, Norma C

    2015-01-01

    In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257-276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis. Copyright © 2015 the American Physiological Society.

  14. rno-miR-665 targets BCL2L1 (Bcl-xl) and increases vulnerability to propofol in developing astrocytes.

    Science.gov (United States)

    Sun, Wen-Chong; Pei, Ling

    2016-07-01

    Propofol exerts a cytotoxic influence over immature neurocytes. Our previous study revealed that clinically relevant doses of propofol accelerated apoptosis of primary cultured astrocytes of developing rodent brains via rno-miR-665 regulation. However, the role of rno-miR-665 during the growth spurt of neonatal rodent brains in vivo is still uncertain. Post-natal day 7 (P7) rats received a single injection of propofol 30 mg/kg intraperitoneally (i.p.), and neuroapoptosis of hippocampal astrocytes was analyzed by immunofluorescence and scanning electron microscopy. The differential expression of rno-miR-665, BCL2L1 (Bcl-xl), and cleaved caspase 3 (CC3) was surveyed by qRT-PCR and western blotting. In addition, the utility of A-1155463, a highly potent and BCL2L1-selective antagonist, was aimed to assess the contribution of BCL2L1 for neuroglial survival. Following the intraventricular injection of lentivirus rno-miR-665, neuroprotection was detected by 5-point scale measurement. The single dose of propofol 30 mg/kg triggered dose-dependent apoptosis of developing hippocampal astrocytes. Meanwhile, propofol triggered both rno-miR-665 and CC3, and depressed BCL2L1, which was predicted as one target gene of rno-miR-665. Combination treatment with A-1155463 and propofol induced lower mRNA and protein levels of BCL2L1 and more CC3 activation than propofol treatment alone in vivo. The lentivirus-mediated knockdown of rno-miR-665 elevated BCL2L1 and attenuated CC3 levels, whereas up-regulation of rno-miR-665 suppressed BCL2L1 and induced CC3 expression in vivo. More importantly, rno-miR-665 antagomir infusion improved neurological outcomes of pups receiving propofol during the brain growth spurt. Rno-miR-665, providing a potential target for alternative therapeutics for pediatric anesthesia, is susceptible to propofol by negatively targeting antiapoptotic BCL2L1. Relatively little is known about the association between exposure of astrocytes to brief propofol

  15. Mapping of the bcl-2 oncogene on mouse chromosome 1.

    Science.gov (United States)

    Mock, B A; Givol, D; D'Hoostelaere, L A; Huppi, K; Seldin, M F; Gurfinkel, N; Unger, T; Potter, M; Mushinski, J F

    1988-01-01

    Two bcl-2 alleles have been identified in inbred strains of mice by restriction fragment length polymorphism (RFLP). Analysis of a bcl-2 RFLP in a series of bilineal congenic strains (C.D2), developed as a tool for chromosomal mapping studies, revealed linkage of bcl-2 to the Idh-1/Pep-3 region of murine chromosome 1. The co-segregation of bcl-2 alleles with allelic forms of two other chromosome 1 loci, Ren-1,2 and Spna-1, in a set of back-cross progeny, positions bcl-2 7.8 cM centromeric from Ren-1,2.

  16. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes.

    Directory of Open Access Journals (Sweden)

    Mu-En Liu

    Full Text Available The anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2 gene is a major regulator of neural plasticity and cellular resilience. Recently, the Bcl-2 rs956572 single nucleotide polymorphism was proposed to be a functional allelic variant that modulates cellular vulnerability to apoptosis. Our cross-sectional study investigated the genetic effect of this Bcl-2 polymorphism on age-related decreases in gray matter (GM volume across the adult lifespan. Our sample comprised 330 healthy volunteers (191 male, 139 female with a mean age of 56.2±22.0 years (range: 21-92. Magnetic resonance imaging and genotyping of the Bcl-2 rs956572 were performed for each participant. The differences in regional GM volumes between G homozygotes and A-allele carriers were tested using optimized voxel-based morphometry. The association between the Bcl-2 rs956572 polymorphism and age was a predictor of regional GM volumes in the right cerebellum, bilateral lingual gyrus, right middle temporal gyrus, and right parahippocampal gyrus. We found that the volume of these five regions decreased with increasing age (all P<.001. Moreover, the downward slope was steeper among the Bcl-2 rs956572 A-allele carriers than in the G-homozygous participants. Our data provide convergent evidence for the genetic effect of the Bcl-2 functional allelic variant in brain aging. The rs956572 G-allele, which is associated with significantly higher Bcl-2 protein expression and diminished cellular sensitivity to stress-induced apoptosis, conferred a protective effect against age-related changes in brain GM volume, particularly in the cerebellum.

  17. Bcl-2 overexpression prevents 99mTc-MIBI uptake in breast cancer cell lines

    International Nuclear Information System (INIS)

    Aloj, Luigi; Zannetti, Antonella; Caraco, Corradina; Del Vecchio, Silvana; Salvatore, Marco

    2004-01-01

    We have previously shown a correlation between the absence of technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) uptake and overexpression of the anti-apoptotic protein Bcl-2 in human breast carcinoma. To establish a direct cause-effect relationship between Bcl-2 overexpression and reduced 99m Tc-MIBI uptake, MCF-7 and T47D breast cancer cell lines were stably transfected with the human Bcl-2 gene to increase intracellular protein levels and tested for 99m Tc-MIBI uptake. All clones overexpressing Bcl-2 showed a dramatic reduction of 99m Tc-MIBI uptake as compared with mock transfected control cells. Tracer uptake was promptly and partially restored by induction of apoptosis with staurosporine treatment. After 4.5 h of staurosporine treatment, a tenfold increase in 99m Tc-MIBI uptake was observed in treated as compared with untreated Bcl-2 overexpressing cells. Our findings provide a rational basis for the development of an in vivo test to detect Bcl-2 overexpression in human tumours. (orig.)

  18. Immunogenicity of Bcl-2 in patients with cancer

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie; Kvistborg, Pia

    2005-01-01

    activities in preclinical models and are currently in several clinical trials. The clinical application of immunotherapy against cancer is rapidly moving forward in multiple areas, including the adoptive transfer of anti-tumor-reactive T cells and the use of "therapeutic" vaccines. The overexpression of Bcl......-2 in cancer and the fact that immune escape by down-regulation or loss of expression of this protein would impair sustained tumor growth makes Bcl-2 a very attractive target for anticancer immunotherapy. Herein, we describe spontaneous T-cell reactivity against Bcl-2 in peripheral blood from......B-cell lymphoma 2 (Bcl-2) is a pivotal regulator of apoptotic cell death and it is overexpressed in many cancers. Consequently, the Bcl-2 protein is an attractive target for drug design, and Bcl-2-specific antisense oligonucleotides or small-molecule Bcl-2 inhibitors have shown broad anticancer...

  19. Multiplex PCR for the detection of BCL-1/IGH and BCL-2/IGH gene rearrangements--clinical validation in a prospective study of blood and bone marrow in 258 patients with or suspected of non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Nyvold, Charlotte G; Bendix, Knud; Brandsborg, Margrethe

    2007-01-01

    prospectively been evaluated. Eleven patients (4%) were found t(11;14)+ and 37 patients (14%) t(14;18)+. Comparing these results to standard diagnostic methods of PB and/or BM identified PCR+ samples that were normal by morphology (BCL-1/IGH: 1/11; BCL-2/IGH: 17/37). Equally important, patients who were......We have designed a multiplex PCR, which allows for fast and high throughput demonstration of the BCL-1/IGH and BCL-2/IGH fusion DNA observed primarily in mantle cell- and follicular non-Hodgkin's lymphoma (NHL). Blood (PB) and/or bone marrow (BM) from 258 patients suspected of NHL have...... not clonal in PB and/or BM by flow cytometry were identified as PCR+ (BCL-1/IGH: 3/11; BCL-2/IGH: 23/37). We conclude that this multiplex approach allows for easy and sensitive molecular determination of molecular lesions in NHL, which have diagnostic and prognostic importance. Udgivelsesdato: 2007-null...

  20. Estradiol increases the Bax/Bcl-2 ratio and induces apoptosis in the anterior pituitary gland.

    Science.gov (United States)

    Zaldivar, Verónica; Magri, María Laura; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Radl, Daniela; Ferraris, Jimena; Pisera, Daniel; Seilicovich, Adriana

    2009-01-01

    Estrogens are recognized as acting as modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals, thus participating in anterior pituitary homeostasis during the estrous cycle. The balance of pro- and antiapoptotic proteins of the Bcl-2 family is known to regulate cell survival and apoptosis. In order to understand the mechanisms underlying apoptosis during the estrous cycle, we evaluated the expression of the proapoptotic protein Bax and the antiapoptotic proteins Bcl-2 and Bcl-xL in the anterior pituitary gland in cycling female rats as well as the influence of estradiol on the expression of these proteins in anterior pituitary cells of ovariectomized rats. As determined by Western blot, the expression of Bax was higher in anterior pituitary glands from rats at proestrus than at diestrus I, Bcl-2 protein levels showed no difference and Bcl-xL expression was lower, thus increasing the Bax/Bcl-2 ratio at proestrus. Assessed by annexin V binding and flow cytometry, the percentage of apoptotic anterior pituitary cells was higher in rats at proestrus than at diestrus I. Chronic estrogen treatment in ovariectomized rats enhanced the Bax/Bcl-2 ratio and induced apoptosis. Moreover, incubation of cultured anterior pituitary cells from ovariectomized rats with 17beta-estradiol for 24 h increased the Bax/Bcl-2 ratio, decreased Bcl-xL expression and induced apoptosis. Our results demonstrate that estradiol increases the ratio between proapoptotic and antiapoptotic proteins of the Bcl-2 family. This effect could participate in the sensitizing action of estrogens to proapoptotic stimuli and therefore be involved in the high apoptotic rate observed at proestrus in the anterior pituitary gland.

  1. Bcl-2 protein level in blood of patients with acute myeloid leukaemia ...

    African Journals Online (AJOL)

    (AML), bcl-2 being an anti-apoptotic protein incriminated in cancer. ... resistant to apoptosis, defining this protein as a factor of bad prognosis in AML. Moreover, the determination ..... of the molecular mechanisms of physiological ... long term survival in breast cancer, Am. J. Pathol. ... Burkitt subtype at presentation, and is not.

  2. Regulatory effect of Bcl-2 in ultraviolet radiation-induced apoptosis of the mouse crystalline lens.

    Science.gov (United States)

    Dong, Yuchen; Zheng, Yajuan; Xiao, Jun; Zhu, Chao; Zhao, Meisheng

    2016-03-01

    The aim of the present study was to analyze the role of Bcl-2 during the process of apoptosis in the mouse crystalline lens. In total, 12 normal mice served as the control group and 12 Bcl-2 knockout (K.O) mice served as the experimental group. The mouse crystalline lens was sampled for the detection of Bcl-2 and caspase-3 expression following exposure to ultraviolet (UV) radiation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine Bcl-2 expression in the groups of normal mice receiving UV radiation or not receiving UV radiation. Samples of the murine crystalline lens were microscopically harvested and analyzed using western blotting. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore, caspase 3 activity was examined using enzyme-linked immunosorbent assay kits, and RT-qPCR was used to analyze caspase-3 expression levels. The results of the present study demonstrated that there was no statistically significant difference in the level of Bcl-2 gene transcription between the two groups. In addition, UV radiation did not change the macrostructure of the crystalline lens in the group of normal mice or the group of Bcl-2 K.O mice. The results of the TUNEL assay indicated that the normal-UV group exhibited a more significant apoptosis level compared with the Bcl-2 K.O-UV group. Furthermore, the mRNA expression level of caspase-3 in the normal-UV group was significantly higher compared with the normal-nonUV group (Plens.

  3. Induction of Protective Genes Leads to Islet Survival and Function

    Directory of Open Access Journals (Sweden)

    Hongjun Wang

    2011-01-01

    Full Text Available Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1, A20/tumor necrosis factor alpha inducible protein3 (tnfaip3, biliverdin reductase (BVR, Bcl2, and others or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free.

  4. Expression of Bcl-2 in canine osteosarcoma | Piro | Open Veterinary ...

    African Journals Online (AJOL)

    Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different ...

  5. Targeted BCL2 inhibition effectively inhibits neuroblastoma tumour growth

    NARCIS (Netherlands)

    Lamers, Fieke; Schild, Linda; den Hartog, Ilona J. M.; Ebus, Marli E.; Westerhout, Ellen M.; Ora, Ingrid; Koster, Jan; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.

    2012-01-01

    Genomic aberrations of key regulators of the apoptotic pathway have hardly been identified in neuroblastoma. We detected high BCL2 mRNA and protein levels in the majority of neuroblastoma tumours by Affymetrix expression profiling and Tissue Micro Array analysis. This BCL2 mRNA expression is

  6. The Bcl-2 Family in Host-Virus Interactions.

    Science.gov (United States)

    Kvansakul, Marc; Caria, Sofia; Hinds, Mark G

    2017-10-06

    Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.

  7. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic genes, BCL2, Bcl-xL, XIAP and Survivin), in cervical carcinoma cells. Methods: Annexin V-FITC/propidium iodide (PI) staining was used for the investigation of cell apoptosis. RNA RNeasy Kits was used to isolate RNA and Omniscript ...

  8. Prognostic Importance of Bcl-2 Expression in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Arsenal Alikanoðlu

    2012-09-01

    Full Text Available Aim: TNM classification, that had been established according to pathologic and anatomic characteristics of the lesion , is the most important factor in decision of adjuvant therapy in colon cancer. Despite curative resection, recurrence can ocur with a rate of 20-30% in early stage disease. Therefore efficieny of TNM classification is controversial. In recent years ,significance of molecular characteristics of the tumors besides their anatomic and pathologic characteristics in determining the biological behaviour and response to treatment have been discussed. In our study, relation between expression of Bcl-2 and the other known prognostic factors in colon cancer had been searched. Material and Method: Patients who had been followed up in our clinic were enrolled in this study. Expression of Bcl-2 was searched by immunohistochemical method. Results: A total of 52, 19 (%36.5 female and 33 (%63.5 male patients were enrolled in this study. Bcl-2 expression was found positive in 7 (%13.5 and negative in 45 (%86.5 patients. Statistically no significant relationship was found between Bcl-2 expression and sex, stage, regional lymph node involvement, presence of distant metastasis and histologic grade. Discussion: In our study, although not in a statistical significance, we found that Bcl-2 expression is related to early stage disease. Bcl-2 is a low-priced and easily accessible prognostic marker. We think that establishing expression of Bcl-2 by immunohistohemistry may play a role in determining prognosis of patients with colon cancer.

  9. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  10. Bcl-2 and N-Myc Coexpression Increases IGF-IR and Features of Malignant Growth in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Rama Jasty

    2001-01-01

    Full Text Available The bcl-2 and c-myc oncogenes cooperate to transform multiple cell types. In the pediatric malignancy NB2, Bcl2 is highly expressed. In tumors with a poor prognosis, N-Myc, a protein homologous to c-Myc, is overexpressed as a result of gene amplification. The present study was designed to determine whether Bcl-2 cooperates with N-Myc to bestow a tumorigenic phenotype to neuroblastoma (NB cells. NB cell lines that at baseline express neither Bcl-2 nor N-Myc were stably transfected to express these gene products. In this model, we found Bcl-2 rescues N-Myc-expressing cells from apoptosis induced by serum withdrawal. Coexpression of Bcl-2 and N-Myc supports growth in low serum conditions and anchorage-independent growth in soft agar. Similarly, in vivo tumorigenic and angiogenic activity was dependent on coexpression. Our data further suggests that the mechanism underlying these changes involves the receptor for insulin growth factor type I (IGF-IR.

  11. Bag3 promotes resistance to apoptosis through Bcl-2 family members in non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Yong; Wang, Jian-Hua; Lu, Qiang; Wang, Yun-Jie

    2012-01-01

    In non-small cell lung cancer (NSCLC) certain molecular characteristics, which are related to molecular alterations have been investigated. These are responsible for both the initiation and maintenance of the malignancy in lung cancer. The aim of this study was to evaluate the influence of Bag3 (Bcl-2 associated athanogene 3) in the regulation of apoptosis on NSCLC. Bag3 and Hsp70 expression were examined by immunohistochemistry to confirm their potential roles in the prevalence of NSCLC. We also established human normal bronchial epithelial cells and HOP-62 cell line as the model to analyze cell apoptosis and the expression of Hsp70, Bcl-XL and Bcl-2, which were affected by Bag3. In this study, we found that Bag3 and Hsp70 are highly expressed in few tissues and cell lines of NSCLC. Bag3 inhibits apoptosis in human normal bronchial epithelial cell lines and sustain the survival of NSCLC cells. Bag3, Hsp70, Bcl-XL and Bcl-2 are up-regulated in NSCLC cell lines. At the same time, the silencing of Bag3 results in diminishing protein levels of Bcl-XL and Bcl-2. The results of immunoprecipitation identified that Bag3 could interact with Hsp70, Bcl-XL and Bcl-2 NSCLC cells directly or indirectly. We conclude that NSCLC cells were protected from apoptosis through increasing Bag3 expression and consequently promoted the expression of Bcl-XL and Bcl-2.

  12. Expression of Bcl-2, Melan A and HMB-45 in Dysplastic Nevi.

    Science.gov (United States)

    Patrascu, Oana Maria; Costache, Mariana; Dumitru, Adrian Vasile; Mehotin, Corina Nicoleta; Sajin, Maria; Lazaroiu, Anca Mihaela

    2016-03-01

    From the first recognition of dysplastic nevi as a pathology per se, many debates have been raised and many histological and immunohistological studies have been conducted in order to establish the true significance of these lesions. Therefore, the aim of this study was to establish if there is a correlation between HMB-45, Melan A and Bcl-2 expression and the grade of dysplasia, as well as between the marker's staining patterns. Ten dysplastic nevi from six female patients were selected and their histological features (size, dysplasia), as well as the immunohistological staining patterns, were studied (HMB-45, Melan A, Bcl-2). The Pearson correlation coefficient and regression was calculated with Windows Excel Data Analysis. We demonstrated that there was a notable correlation between the dysplasia and the size of the lesions (r(8)= 0.62 with p-value= 0.052), and also between Melan A and Bcl-2 (a r(6)= 0.73, p0.05). We can affirm, at least in our cases, there is a correlation between the grade of dysplasia and the size of the lesion, and also, that there is a correlation between Melan A and Bcl-2 staining, explained by MITF gene. These results were only partial concordant with those in other studies, therefore a larger number of cases is recommended to be further analyzed in order to clearly draw a conclusion.

  13. Increased expression of Bcl-2 during mucous cell metaplasia induced by endotoxin and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Ray, L.M.; Hotchkiss, J.A. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1995-12-01

    Apoptosis or programmed cell death is accompanied by characteristic morphological changes that distinguish apoptosis from other forms of cell death. These changes include DNA fragmentation, chromatin condensation, cell shrinkage, cell surface pseudopodia, and finally the cellular collapse into membrane-enclosed apoptotic bodies which are rapidly engulfed by macrophages or neighboring cells. Although the morphological features of apoptotic cells are well studied, the biochemical events that control apoptosis are not understood. Programmed cell death is triggered by a variety of pathways that are initiated by different stimuli including noxious agents, DNA damage, the activation of TNF receptors, or the withdrawl of growth factors. The central process of programmed cell death involves a cascade of biochemical events that begins with the initiation of a family of cysteine proteases, including the interleukin-1-{Beta}-converting enzyme, CPP-32, and Apopain. The ratio of Bax, a death-inducer gene, to Bcl-2, an apoptosis suppressor gene, determines whether or not the main apoptotic pathyway is blocked. Apoptosis is suppressed if the ratio of Bcl-2/Bax is > 1, and cells undergo apoptosis if the ratio is < 1. The overexpression of Bcl-2 has been shown to block the apoptotic program triggered by a variety of agents. Therefore, Bcl-2 must be involved in blocking the central pathway of the cell death program. In conclusion, this study showed that high levels of Bcl-2 were detected in some mucous cells at specific time points during mucous cell metaplasia, and this expression was reduced at later time points or was absent after remodeling of this epithelium.

  14. Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

    International Nuclear Information System (INIS)

    Fang, Jun; Gu, Lubing; Zhu, Ningxi; Tang, Hao; Alvarado, Carlos S; Zhou, Muxiang

    2008-01-01

    Tissue factor (TF) is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa), initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines. Gene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry) respectively. Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2. This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting in resistance to apoptosis. We surmise that this TF

  15. Associations of Bcl-2 rs956572 genotype groups in the structural covariance network in early-stage Alzheimer's disease.

    Science.gov (United States)

    Chang, Chiung-Chih; Chang, Ya-Ting; Huang, Chi-Wei; Tsai, Shih-Jen; Hsu, Shih-Wei; Huang, Shu-Hua; Lee, Chen-Chang; Chang, Wen-Neng; Lui, Chun-Chung; Lien, Chia-Yi

    2018-02-08

    Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.

  16. Role of Apoptosis in the Development of Uterine Leiomyoma: Analysis of Expression Patterns of Bcl-2 and Bax in Human Leiomyoma Tissue With Clinical Correlations.

    Science.gov (United States)

    Csatlós, Éva; Máté, Szabolcs; Laky, Marcella; Rigó, János; Joó, József Gábor

    2015-07-01

    To describe gene expression patterns of the apoptotic regulatory genes Bcl and Bax in human uterine leiomyoma tissue. To investigate the relationship between alterations of gene expression patterns and several relevant clinical parameters. We obtained samples from 101 cases undergoing surgery for uterine leiomyoma for gene expression analysis of the Bcl-2 and Bax genes. Gene expression was quantified using RT-PCR technique. In the leiomyoma group, the Bcl-2 gene was significantly overexpressed compared with the control group although there was no such difference in the gene expression of Bax. Gene activity of Bcl-2 positively correlated with the tumor number in individual uterine leiomyoma cases. Although there was no significant correlation between the length of the cumulative lactation period before the development of uterine leiomyoma and Bcl-2 gene expression in the leiomyoma tissue, we observed a trend for a shorter cumulative lactation period to be associated with overexpression of the Bcl-2 gene. Overexpression of the antiapoptotic Bcl-2 gene appeared to be a factor in the development of uterine leiomyoma, whereas gene activity of the proapoptotic Bax gene did not seem to play a role in the process.

  17. Occupational health hazards of trichloroethylene among workers in relation to altered mRNA expression of cell cycle regulating genes (p53, p21, bax and bcl-2 and PPARA

    Directory of Open Access Journals (Sweden)

    Meenu Varshney

    2015-01-01

    Full Text Available Trichloroethylene (TCE is widely used as a metal degreaser in industrial processes. The present study reports on the effects of TCE exposure on workers employed in the lock industries. To ensure exposure of the workers to TCE, its toxic metabolites, trichloroacetic acid (TCA, dichloroacetic acid (DCA and trichloroethanol (TCEOH were detected in the plasma of the subjects through solid phase microextraction-gas chromatography-electron capture detection. TCA, DCA and TCEOH were detected in the range of 0.004–2.494 μg/mL, 0.01–3.612 μg/mL and 0.002–0.617 μg/mL, respectively. Quantitative reverse transcription polymerase chain reaction analysis revealed up-regulated expression of p53 (2.4-fold; p < 0.05, p21 (2-fold; p < 0.01, bax (2.9-fold; p < 0.01 mRNAs and down-regulated expression of bcl-2 (67%; p < 0.05 mRNAs, indicating DNA damaging potential of these metabolites. No effects were observed on the levels of p16 and c-myc mRNAs. Further, as TCA and DCA, the ligand of peroxisome proliferator activated receptor alpha (PPARA, are involved in the process of hepatocarcinogenesis in rodents, we examined expression of PPARA mRNA and let-7c miRNA in the workers. No statistically significant differences in expression of PPARA mRNA and let-7c miRNA in patients were observed as compared to values in controls. Dehydroepiandosterone sulfate (DHEAS is a reported endogenous ligand of PPARA so its competitive role was also studied. We observed decreased levels of DHEAS hormone in the subjects. Hence, its involvement in mediation of the observed changes in the levels of various mRNAs analyzed in this study appears unlikely.

  18. Evaluation of Bcl-2, Bcl-x and Cleaved Caspase-3 in Malignant Peripheral Nerve Sheath Tumors and Neurofibromas

    Directory of Open Access Journals (Sweden)

    KARIN S. CUNHA

    2013-11-01

    Full Text Available AIMS: To study the expression of Bcl-2, Bcl-x, as well the presence of cleaved caspase-3 in neurofibromas and malignant peripheral nerve sheath tumors. The expression of Bcl-2 and Bcl-x and the presence of cleaved caspase 3 were compared to clinicopathological features of malignant peripheral nerve sheath tumors and their impact on survival rates were also investigated. MATERIALS AND METHODS: The evaluation of Bcl-2, Bcl-x and cleaved caspase-3 was performed by immunohistochemistry using tissue microarrays in 28 malignant peripheral nerve sheath tumors and 38 neurofibromas. Immunoquantification was performed by computerized digital image analysis. CONCLUSIONS: Apoptosis is altered in neurofibromas and mainly in malignant peripheral nerve sheath tumors. High levels of cleaved caspase-3 are more common in tumors with more aggressive histological features and it is associated with lower disease free survival of patients with malignant peripheral nerve sheath tumors.

  19. p53-Dependent radiation-induced apoptosis in vivo: relationship to Bcl-2 and Bax expression

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Suzuki, Yoshiyuki; Furuta, Masaya; Yamakawa, Michitaka; Maebayashi, Katsuya; Hayakawa, Kayoko; Saito, Yoshihiro; Mitsuhashi, Norio; Niibe, Hideo

    1997-01-01

    Purpose: A close correlation between p53 protein expression and radiation-induced apoptosis has already been reported, however, Bcl-2 and Bax expression and the ratio of Bcl-2 to Bax have been also suggested to play an important role in the regulation of apoptotic cell death. In this study, we investigated the relationship between p53-dependent radiation-induced apoptosis and expression of Bcl-2 and Bax by using human tumors transplanted into nude mice. Materials and Methods: Three human tumors (an ependymoblastoma, a glioblastoma, and a small cell lung cancer) were subcutaneously transplanted into nude mice and irradiated with single doses of 1, 2, 5, or 10 Gy. The tumors were excised 1, 3, 6, 12, 24, and 48 hours after irradiation, fixed in 10% formalin for 24 hours, and embedded in paraffin. Slides were stained with hematoxylin and eosin for morphologic examination. Immunohistochemical studies were performed with mouse monoclonal antibodies to demonstrate p53, p21 (WAF-1), Bcl-2, and Bax expression. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) and electron microscopic studies were performed to identify apoptosis, and PCR-SSCP analysis was used to evaluate p53 gene mutation. Results: All of the tumors showed only a few cells undergoing apoptosis before irradiation. Beginning several hours after irradiation, only the ependymoblastoma showed a large increase in the number of cells undergoing apoptosis, peaking at 6 hours after irradiation, and there was a clear dose-effect relationship. In contrast, the other tumors showed much less change following irradiation, and the dose-effect relationship was not as clear as in the ependymoblastoma. Immunohistochemically, the non-irradiated ependymoblastoma was negative for p53, p21, Bcl-2, and Bax. Following irradiation, however, many of the tumor cells became positive for p53 and p21, and a few cells became positive for bcl-2. In contrast, the glioblastoma and the small cell lung cancer were positive for p53 and Bcl-2

  20. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    Science.gov (United States)

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  1. Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b and c

    International Nuclear Information System (INIS)

    Kyndi, M.; Alsner, J.; Nielsen, H.M.; Overgaard, J.; Soerensen, F.B.; Knudsen, H.; Overgaard, M.

    2008-01-01

    Purpose. To examine p53 and BCL2 expression in high-risk breast cancer patients randomized to postmastectomy radiotherapy (PMRT). Patients and methods. The present analysis included 1 000 of 3 083 high-risk breast cancer patients randomly assigned to PMRT in the DBCG82 b and c studies. Tissue microarray sections were stained with immunohistochemistry for p53 and BCL2. Median potential follow-up was 17 years. Clinical endpoints were locoregional recurrence (LRR), distant metastases (DM), overall mortality, and overall survival (OS). Statistical analyses included Kappa statistics, χ2 or exact tests, Kaplan-Meier probability plots, Log-rank test, and Cox univariate and multivariate regression analyses. Results. p53 accumulation was not significantly associated with increased overall mortality, DM or LRR probability in univariate or multivariate Cox regression analyses. Kaplan-Meier probability plots showed reduced OS and improved DM and LRR probabilities after PMRT within subgroups of both p53 negative and p53 positive patients. Negative BCL2 expression was significantly associated with increased overall mortality, DM and LRR probability in multivariate Cox regression analyses. Kaplan-Meier probability plots showed a significantly improved overall survival after PMRT for the BCL2 positive subgroup, whereas practically no survival improvement was seen after PMRT for the BCL2 negative subgroup. In multivariate analysis of OS, however, no significant interaction was found between BCL2 and randomization status. Significant reductions in LRR probability after PMRT were recorded within both the BCL2 positive and BCL2 negative subgroups. Conclusion. p53 was not associated with survival after radiotherapy in high-risk breast cancer, but BCL2 might be

  2. Promotion of Metastasis-associated Gene Expression in Survived PANC-1 Cells Following Trichostatin A Treatment.

    Science.gov (United States)

    Chen, Zongjing; Yang, Yunxiu; Liu, Biao; Wang, Benquan; Sun, Meng; Zhang, Ling; Chen, Bicheng; You, Heyi; Zhou, Mengtao

    2015-01-01

    Histone deacetylase inhibitors represent a promising class of potential anticancer agents for the treatment of human malignancies. In this study, the effects of trichostatin A (TSA) on apoptosis, metastasis-associated gene expression, and activation of the Notch pathway in human pancreatic cancer cell lines were investigated. After treatment with TSA, cell viability and apoptosis were evaluated using the MTT [3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide] assay, Hoechst 33258 staining, and flow cytometry. Moreover, RT-PCR and western blot analyses were performed to measure the expression levels of apoptosis-associated genes (Bcl-2, Bax, and caspase-3), metastasis-associated genes (E-cadherin, vimentin, and matrix metalloproteinases), and Notch pathway activation (Notch intracellular domain, NICD). The levels of matrix metalloproteinase 2 and NICD were also semi-quantified by immunoassay. Following treatment with TSA for 24 h, PANC-1, SW1990, and MIATACA-2 cells exhibited cell death. The MTT assay revealed that TSA significantly decreased cell viability in a dose-dependent manner in PANC-1 cells. The Hoechst 33258 staining and flow cytometry results evidenced a significant increase in PANC-1 cell apoptosis following TSA treatment. The expression levels of Bax and caspase-3 were increased significantly, whereas Bcl-2 was down-regulated after TSA treatment. In the PANC-1 cells that survived after TSA treatment, the expression levels of vimentin, E-cadherin, and MMP genes were altered by the promotion of potential metastasis and increased expression of NICD. TSA can induce apoptosis of pancreatic cancer cells. In addition, the up-regulation of metastasis-related genes and the activation of the Notch pathway in the survived PANC-1 cells may be associated with a too-low level of TSA or resistance to TSA.

  3. Bcl-2 overexpression: effects on transmembrane calcium movement

    International Nuclear Information System (INIS)

    Rangaswami, Arun A.; Premack, Brett; Walleczek, Jan; Killoran, Pamela; Gardner, Phyllis; Knox, Susan J.

    1996-01-01

    Purpose/Objective: High levels of expression of the proto-oncogene bcl-2 and its 26 kD protein product Bcl-2 have been correlated with the inhibition of apoptosis and the increased resistance of tumor cells to cytotoxic drugs and ionizing radiation. Unfortunately, the specific mechanism of action of Bcl-2 remains poorly understood. In the studies described here, the role of intracellular calcium fluxes and plasma membrane calcium cycling in the induction of apoptosis, and the effect of Bcl-2 expression on the modulation of transmembrane calcium fluxes following treatment of cells with cytotoxic agents were studied. The relationship between intracellular calcium release, capacitive calcium entry, and the plasma membrane potential were also investigated. Materials and Methods: Human B-cell lymphoma (PW) and human promyelocytic leukemia (HL60) cell lines were transfected with Bcl-2 and a control vector. The Bcl-2 transfectants over expressed the Bcl-2 onco-protein and were more resistant to irradiation than the control cells. Cells were loaded with fluorescent indicators indo-1 and fura-2 AM to quantify the cytosolic calcium concentration and subsequent calcium responses to a variety of cytotoxic stimuli, including the microsomal ATPase inhibitor, thapsigargin, using fluorometric measurements. Comparisons of resting and stimulated cytosolic calcium concentrations were made between the parental, neomycin control, and bcl-2 transfected cells. In order to determine the actual calcium influx rate, cells were loaded with either indo-1 or fura-2 and then exposed to 0.1 mM extracellular manganese, which enters the cells through calcium influx channels and quenches the fluorescent signal in proportion to the calcium influx rate. In order to determine the role of the membrane potential in driving calcium influx, cells were treated with either 0.1 μM Valinomycin or isotonic potassium chloride to either hyper polarize or depolarize the resting membrane potential, and the

  4. Inhibition of Bcl-2 potentiates AZD-2014-induced anti-head and neck squamous cell carcinoma cell activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Cui, Jiang-Tao, E-mail: cuijingtaopaper@126.com

    2016-09-02

    Mammalian target of rapamycin (mTOR) is a therapeutic target for head and neck squamous cell carcinoma (HNSCC). Here, we evaluated the activity of AZD-2014, a potent mTOR complex 1/2 (mTORC1/2) dual inhibitor, against HNSCC cells. We showed that AZD-2014 blocked mTORC1/2 activation in established and primary human HNSCC cells, where it was anti-proliferative and pro-apoptotic. Yet, AZD-2014 was non-cytotoxic to the human oral epithelial cells with low basal mTORC1/2 activation. In an effect to identify possible AZD-2014 resistance factors, we showed that the anti-apoptosis protein Bcl-2 was upregulated in AZD-2014-resistant SQ20B HNSCC cells. Inhibition of Bcl-2 by ABT-737 (a known Bcl-2 inhibitor) or Bcl-2 shRNA dramatically potentiated AZD-2014 lethality against HNSCC cells. On the other hand, exogenous overexpression of Bcl-2 largely attenuated AZD-2014’s activity against HNSCC cells. For the in vivo studies, we showed that oral gavage of AZD-2014 suppressed SQ20B xenograft growth in severe combined immunodeficient (SCID) mice. It also significantly improved mice survival. Importantly, AZD-2014’s anti-HNSCC activity in vivo was potentiated with co-administration of ABT-737. The preclinical results of this study suggest that AZD-2014 could be further tested as a valuable anti-HNSCC agent, either alone or in combination with Bcl-2 inhibitors. - Highlights: • AZD-2014 blocks mTORC1/2 activation in HNSCC cells. • AZD-2014 suppresses HNSCC cell proliferation. • AZD-2014 activates caspase-3 and apoptosis in HNSCC cells. • Bcl-2 is the key resistance factor of AZD-2014 in HNSCC cells. • ABT-737 sensitizes AZD-2014-induced anti-HNSCC activity in vivo.

  5. Inhibition of Bcl-2 potentiates AZD-2014-induced anti-head and neck squamous cell carcinoma cell activity

    International Nuclear Information System (INIS)

    Li, Yi; Cui, Jiang-Tao

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a therapeutic target for head and neck squamous cell carcinoma (HNSCC). Here, we evaluated the activity of AZD-2014, a potent mTOR complex 1/2 (mTORC1/2) dual inhibitor, against HNSCC cells. We showed that AZD-2014 blocked mTORC1/2 activation in established and primary human HNSCC cells, where it was anti-proliferative and pro-apoptotic. Yet, AZD-2014 was non-cytotoxic to the human oral epithelial cells with low basal mTORC1/2 activation. In an effect to identify possible AZD-2014 resistance factors, we showed that the anti-apoptosis protein Bcl-2 was upregulated in AZD-2014-resistant SQ20B HNSCC cells. Inhibition of Bcl-2 by ABT-737 (a known Bcl-2 inhibitor) or Bcl-2 shRNA dramatically potentiated AZD-2014 lethality against HNSCC cells. On the other hand, exogenous overexpression of Bcl-2 largely attenuated AZD-2014’s activity against HNSCC cells. For the in vivo studies, we showed that oral gavage of AZD-2014 suppressed SQ20B xenograft growth in severe combined immunodeficient (SCID) mice. It also significantly improved mice survival. Importantly, AZD-2014’s anti-HNSCC activity in vivo was potentiated with co-administration of ABT-737. The preclinical results of this study suggest that AZD-2014 could be further tested as a valuable anti-HNSCC agent, either alone or in combination with Bcl-2 inhibitors. - Highlights: • AZD-2014 blocks mTORC1/2 activation in HNSCC cells. • AZD-2014 suppresses HNSCC cell proliferation. • AZD-2014 activates caspase-3 and apoptosis in HNSCC cells. • Bcl-2 is the key resistance factor of AZD-2014 in HNSCC cells. • ABT-737 sensitizes AZD-2014-induced anti-HNSCC activity in vivo.

  6. Strong synergism between small molecule inhibitors of HER2, PI3K, mTOR and Bcl-2 in human breast cancer cells.

    Science.gov (United States)

    Hamunyela, Roswita H; Serafin, Antonio M; Akudugu, John M

    2017-02-01

    Targeting pro-survival cell signaling components has been promising in cancer therapy, but the benefit of targeting with single agents is limited. For malignancies such as triple-negative breast cancer, there is a paucity of targets that are amenable to existing interventions as they are devoid of the human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and estrogen receptor (ER). Concurrent targeting of cell signaling entities other than HER2, PR and ER with multiple agents may be more effective. Evaluating modes of interaction between agents can inform efficient selection of agents when used in cocktails. Using clonogenic cell survival, interaction between inhibitors of HER2 (TAK-165), phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) (NVP-BEZ235), and the pro-survival gene (Bcl-2) (ABT-263) in three human breast cell lines (MDA-MB-231, MCF-7 and MCF-12A) ranged from strong to very strong synergism. The strongest synergy was demonstrated in PR and ER negative cells. Inhibition of PI3K, mTOR and Bcl-2 could potentially be effective in the treatment of triple-negative cancers. The very strong synergy observed even at lowest concentrations of inhibitors indicates that these cocktails might be able to be used at a minimised risk of systemic toxicity. Concurrent use of multiple inhibitors can potentiate conventional interventions like radiotherapy and chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  8. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  9. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  10. Inhibitory effects of Bcl-2 on mitochondrial respiration

    Czech Academy of Sciences Publication Activity Database

    Vrbacký, M.; Krijt, J.; Drahota, Zdeněk; Mělková, Z.

    2003-01-01

    Roč. 52, č. 5 (2003), s. 545-554 ISSN 0862-8408 R&D Projects: GA ČR GA301/00/1259; GA MZd NC5463 Institutional research plan: CEZ:AV0Z5011922 Keywords : apoptosis * mitochondria * Bcl-2 Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.939, year: 2003

  11. Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b&c

    DEFF Research Database (Denmark)

    Kyndi, Marianne; Sørensen, Flemming Brandt; Knudsen, Helle

    2008-01-01

    -Meier probability plots showed a significantly improved overall survival after PMRT for the BCL2 positive subgroup, whereas practically no survival improvement was seen after PMRT for the BCL2 negative subgroup. In multivariate analysis of OS, however, no significant interaction was found between BCL2......PURPOSE: To examine p53 and BCL2 expression in high-risk breast cancer patients randomized to postmastectomy radiotherapy (PMRT). PATIENTS AND METHODS: The present analysis included 1 000 of 3 083 high-risk breast cancer patients randomly assigned to PMRT in the DBCG82 b&c studies. Tissue...... tests, Kaplan-Meier probability plots, Log-rank test, and Cox univariate and multivariate regression analyses. RESULTS: p53 accumulation was not significantly associated with increased overall mortality, DM or LRR probability in univariate or multivariate Cox regression analyses. Kaplan...

  12. Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b

    DEFF Research Database (Denmark)

    Kyndi, M.; Sorensen, F.B.; Alsner, J.

    2008-01-01

    -Meier probability plots showed a significantly improved overall survival after PMRT for the BCL2 positive subgroup, whereas practically no survival improvement was seen after PMRT for the BCL2 negative subgroup. In multivariate analysis of OS, however, no significant interaction was found between BCL2......Purpose. To examine p53 and BCL2 expression in high-risk breast cancer patients randomized to postmastectomy radiotherapy (PMRT). Patients and methods. The present analysis included 1000 of 3 083 high-risk breast cancer patients randomly assigned to PMRT in the DBCG82 b&c studies. Tissue microarray......, Kaplan-Meier probability plots, Log-rank test, and Cox univariate and multivariate regression analyses. Results. p53 accumulation was not significantly associated with increased overall mortality, DM or LRR probability in univariate or multivariate Cox regression analyses. Kaplan-Meier probability plots...

  13. Whole exome sequencing identified 1 base pair novel deletion in BCL2-associated athanogene 3 (BAG3) gene associated with severe dilated cardiomyopathy (DCM) requiring heart transplant in multiple family members.

    Science.gov (United States)

    Rafiq, Muhammad Arshad; Chaudhry, Ayeshah; Care, Melanie; Spears, Danna A; Morel, Chantal F; Hamilton, Robert M

    2017-03-01

    Dilated cardiomyopathy (DCM) is characterized by dilation and impaired contraction of the left ventricle or both ventricles. Among hereditary DCM, the genetic causes are heterogeneous, and include mutations encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. We report three severely affected males, in a four-generation pedigree, with DCM phenotype who underwent cardiac transplant. Cardiomegaly with marked biventricular dilation and fibrosis were noticeable histopathological findings. The affected males had tested negative on a 46-gene pancardiomyopathy panel. Whole Exome Sequencing (WES) was performed to reveal mutation in the gene responsible in generation of DCM phenotypes. The 1-bp (Chr10:121435979delC; c.913delC) novel heterozygous deletion in exon 4 of BAG3, was identified in three affected males, resulted in frame-shift and a premature termination codon (p.Met306-Stop) producing a truncated BAG3 protein lacking functionally important PXXP and BAG domains. WES data were further utilized to map 10 SNP markers around the discovered mutation to generate shared disease haplotype in all affected individuals encompassing 11 Mb on 10q25.3-26.2 harboring BAG3. Finally genotypes were inferred for the unavailable/deceased individuals in the pedigrees. Here we propose that Chr10:121435979delC in BAG3 is a causal mutation in these subjects. Our and earlier studies indicate that BAG3 mutations are associated with DCM phenotypes. BAG3 should be added to cardiomyopathy gene panels for screening of DCM patients, and patients previously considered gene elusive should undergo sequencing of the BAG3 gene. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Patients with diffuse large B-cell lymphoma of germinal center origin with BCL2 translocations have poor outcome, irrespective of MYC status: a report from an International DLBCL rituximab-CHOP Consortium Program Study.

    NARCIS (Netherlands)

    Visco, C.; Tzankov, A.; Xu-Monette, Z.Y.; Miranda, R.N.; Tai, Y.C.; Li, Y.; Liu, W.M.; d'Amore, E.S.; Li, Y.O.; Montes-Moreno, S.; Dybkaer, K.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Wang, H.Y.; Dunphy, C.H.; His, E.D.; Zhao, X.F.; Choi, W.W.; Krieken, J.H.J.M. van; Huang, Q.; Ai, W.; O'Neill, S.; Ponzoni, M.; Ferreri, A.J.; Kahl, B.S.; Winter, J.N.; Go, R.S.; Dirnhofer, S.; Piris, M.A.; Moller, M.B.; Wu, L.; Medeiros, L.J.; Young, K.H.

    2013-01-01

    Diffuse large B-cell lymphoma can be classified by gene expression profiling into germinal center and activated B-cell subtypes with different prognoses after rituximab-CHOP. The importance of previously recognized prognostic markers, such as Bcl-2 protein expression and BCL2 gene abnormalities, has

  15. Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Bruno Christian Koehler

    Full Text Available Despite the fact that new treatment regimes have improved overall survival of patients challenged by colorectal cancer (CRC, prognosis in the metastatic situation is still restricted. The Bcl-2 family of proteins has been identified as promising anti cancer drug target. Even though small molecules targeting Bcl-2 proteins are in clinical trials, little is known regarding their effects on CRC. The aim of this study was to preclinically investigate the value of ABT-737 and Obatoclax as anticancer drugs for CRC treatment. The effects of the BH3-mimetics ABT-737 and Obatoclax on CRC cells were assessed using viability and apoptosis assays. Wound healing migration and boyden chamber invasion assays were applied. 3-dimensional cell cultures were used for long term assessment of invasion and proliferation. Clinically relevant concentrations of pan-Bcl-2 inhibitor Obatoclax did not induce cell death. In contrast, the BH3-mimetic ABT-737 induced apoptosis in a dose dependent manner. Obatoclax caused a cell line specific slowdown of CRC cell growth. Furthermore, Obatoclax, but not ABT-737, recovered E-Cadherin expression and led to impaired migration and invasion of CRC cells. The proliferative capacity and invasiveness of CRC cells was strikingly inhibited by low dose Obatoclax in long term 3-dimensional cell cultures. Obatoclax, but not ABT-737, caused a G1-phase arrest accompanied by a downregulation of Cyclin D1 and upregulation of p27 and p21. Overexpression of Mcl-1, Bcl-xL or Bcl-2 reversed the inhibitory effect of Obatoclax on migration but failed to restore the proliferative capacity of Obatoclax-treated CRC cells. The data presented indicate broad and multifaceted antitumor effects of the pan-Bcl-2 inhibitor Obatoclax on CRC cells. In contrast to ABT-737, Obatoclax inhibited migration, invasion and proliferation in sublethal doses. In summary, this study recommends pan-Bcl-2 inhibition as a promising approach for clinical trials in CRC.

  16. Evaluation of multiple bio-pathological factors in colorectal adenocarcinomas: independent prognostic role of p53 and bcl-2.

    Science.gov (United States)

    Buglioni, S; D'Agnano, I; Cosimelli, M; Vasselli, S; D'Angelo, C; Tedesco, M; Zupi, G; Mottolese, M

    1999-12-22

    About 40% of patients with colorectal carcinoma will develop local or distant tumour recurrences. Integrated analyses of bio-pathological markers, predictive of tumour aggressiveness, may offer a more rational approach to planning adjuvant therapy. To this end, we analysed the correlation between p53 accumulation, Bcl-2 expression, DNA ploidy, cell proliferation and conventional clinico-pathological parameters by testing the prognostic significance of these variables in a series of 171 colorectal carcinoma patients with long-term follow-up. The relationships among the various bio-pathological parameters, analysed by multiple correspondence analysis, showed 2 different clinico-biological profiles. The first, characterised by p53 negativity, Bcl-2 positivity, diploidy, low percentage of cells in S-phase (%S-phase), a low Ki-67 score, is associated with Dukes' A-B stage, well differentiated tumours and lack of relapse. The second, defined by p53 positivity, Bcl-2 negativity, aneuploidy, high %S-phase and elevated Ki-67 score, correlates with Dukes' C-D stage, poorly differentiated tumours and presence of relapse. When these parameters were examined according to Kaplan-Meier's method, significantly shorter disease-free (DFS) and overall survival (OS) were also observed in patients bearing p53 positive and Bcl-2 negative tumours, in Dukes' B stage. In multivariate analysis, p53 accumulation and Bcl-2 expression emerged as independent predictors of a worse and better clinical outcome, respectively. Our results indicate that, in colorectal adenocarcinomas, a biological profile, based on the combined evaluation of p53 and Bcl-2, may be useful for identifying high risk patients to be enrolled in an adjuvant setting, mainly in an early stage of the disease. Int. J. Cancer (Pred. Oncol.) 84:545-552, 1999. Copyright 1999 Wiley-Liss, Inc.

  17. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  18. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Directory of Open Access Journals (Sweden)

    Daruka Mahadevan

    Full Text Available Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL, while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932 mouse model showed tumor growth inhibition (TGI of ∼ 10-20% (p = 0.001 for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001. M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  19. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Science.gov (United States)

    Mahadevan, Daruka; Morales, Carla; Cooke, Laurence S; Manziello, Ann; Mount, David W; Persky, Daniel O; Fisher, Richard I; Miller, Thomas P; Qi, Wenqing

    2014-01-01

    Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL), while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932) mouse model showed tumor growth inhibition (TGI) of ∼ 10-20% (p = 0.001) for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001). M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras) play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  20. Immunophenotypic and cytogenetic findings of B-lymphoblastic leukemia/lymphoma associated with combined IGH/BCL2 and MYC rearrangement.

    Science.gov (United States)

    Kelemen, Katalin; Holden, Jaclyn; Johnson, Laura J; Davion, Simone; Robetorye, Ryan S

    2017-07-01

    B-lymphoblastic leukemias (B-LBL) with combined IGH/BCL2 and MYC rearrangement are rare and their clinical, cytogenetic and immunophenotypic features are not well characterized. Here, we describe a case of a 61-year-old woman with B-LBL associated with these cytogenetic alterations and present a review of the literature of this disease. Four-color flow cytometry (FC) was performed on a BD FACSCanto II flow cytometer. Data were analyzed with BD FACSDiva software. Cytogenetic, fluorescence in situ hybridization (FISH), and molecular studies were performed by conventional methods. A review of the literature was performed by a PubMed-assisted search. Including our case, eight B-LBLs associated with a documented "double-hit" karyotype (IGH/BCL2 and 8q24/MYC rearrangement) were identified in the literature (male/female 2/6, age 15-65). Three occurred de-novo, and five had a history of a CD10+ B-cell lymphoma. The typical immunophenotype was CD10, CD19, TdT positive, and negative for CD34 and surface immunoglobulin (Ig), established either by FC or immunohistochemistry. Seven cases were CD20-, and one case was CD20+. Translocation partners of MYC varied, and included IGH, lambda light chain, and an unknown gene on chromosome 9. Prognosis was poor with median survival of five months. Patients with B-LBL associated with a combined IGH/BCL2 and MYC rearrangement often have a history of a mature B-cell lymphoma. The immunophenotype of these cases is different from that of mature "double-hit" lymphomas; FC is essential to differentiate the B-LBL cases from the leukemic phase of mature B-cell lymphomas. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  1. Bcl-2 family-regulated apoptosis in health and disease

    Directory of Open Access Journals (Sweden)

    Grant Dewson

    2010-04-01

    Full Text Available Grant Dewson, Ruth M KluckMolecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, AustraliaAbstract: Apoptotic cell death is essential for embryonic development, tissue homeostasis, and a well-functioning immune system, with aberrant apoptosis contributing to numerous disease conditions. Inadequate cell death is a major contributing factor to tumorigenesis, while excess cell death contributes to neurodegeneration and autoimmune disease. The major pathway of apoptotic cell death, the mitochondrial pathway, is controlled by the Bcl-2 family of proteins. The members of this family, more than 17 in humans, share significant sequence and structural homology, and fulfil either prosurvival or proapoptotic roles. Specific interactions between these functionally polar proteins, and their relative expression levels, govern the susceptibility of each cell to toxic insults. Here we review the current understanding on how apoptotic cell death is controlled by this important protein family. We also discuss how excessive or insufficient cell death can contribute to disease, and how targeting the Bcl-2 family offers novel therapeutic opportunities.Keywords: apoptosis, Bcl-2, cancer, cytochrome c, mitochondria

  2. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models.

    Directory of Open Access Journals (Sweden)

    Anastasia Wyce

    Full Text Available BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726, and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.

  3. The prognostic significance of the immunohistochemical expression of P53 and BCL-2 in endometrial cancer

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2012-01-01

    Full Text Available The objective of this study was to verify the frequency of P53 and BCL-2 immunohistochemical expression in 98 patients with endometrial carcinoma, and to correlate it with clinical stage and patient survival. A significant difference was found regarding the frequency of P53 expression when comparing type I and II tumors (23.7% and 54.5%, respectively; p = 0.006. A positive correlation was observed between P53 immunoexpression and patient survival in type I and II tumors (p = 0.009 and p = 0.036, respectively. BCL-2 expression was significantly more frequent in early clinical stages in both types of endometrial cancer (p < 0.001 and 0.002 and correlated with a decrease in overall survival in type I endometrial cancer (p = 0.014. Thus, the prognostic value of these biomarkers in endometrial cancer needs to be further investigated. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 631–635

  4. Analyse bioinformatique des protéines BCL-2 et développement de la base de connaissance dédiée, BCL2DB

    OpenAIRE

    Rech de Laval , Valentine

    2013-01-01

    BCL-2 proteins play an essential role in the decision of life or death of animal cells. They control the induction of apoptosis (programmed cell death) in the mitochondrial pathway via regulators having opposite functions: anti- or pro-apoptotic. Proteins containing one or more Bcl-2 homology domains (BHl-4) are systematically classified in this family. Through bioinformatics and phylogenetic analysis, we revisited the different criteria for protein inclusion in the BCL-2 group and proposed a...

  5. Targeting BCL2 Family in Human Myeloid Dendritic Cells: A Challenge to Cure Diseases with Chronic Inflammations Associated with Bone Loss

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    2013-01-01

    Full Text Available Rheumatoid arthritis (RA and Langerhans cell histiocytosis (LCH are common and rare diseases, respectively. They associate myeloid cell recruitment and survival in inflammatory conditions with tissue destruction and bone resorption. Manipulating dendritic cell (DC, and, especially, regulating their half-life and fusion, is a challenge. Indeed, these myeloid cells display pathogenic roles in both diseases and may be an important source of precursors for differentiation of osteoclasts, the bone-resorbing multinucleated giant cells. We have recently documented that the proinflammatory cytokine IL-17A regulates long-term survival of DC by inducing BCL2A1 expression, in addition to the constitutive MCL1 expression. We summarize bibliography of the BCL2 family members and their therapeutic targeting, with a special emphasis on MCL1 and BCL2A1, discussing their potential impact on RA and LCH. Our recent knowledge in the survival pathway, which is activated to perform DC fusion in the presence of IL-17A, suggests that targeting MCL1 and BCL2A1 in infiltrating DC may affect the clinical outcomes in RA and LCH. The development of new therapies, interfering with MCL1 and BCL2A1 expression, to target long-term surviving inflammatory DC should be translated into preclinical studies with the aim to increase the well-being of patients with RA and LCH.

  6. G3139, a Bcl-2 antisense oligodeoxynucleotide, induces clinical responses in VAD refractory myeloma

    NARCIS (Netherlands)

    van de Donk, N. W. C. J.; de Weerdt, O.; Veth, G.; Eurelings, M.; van Stralen, E.; Frankel, S. R.; Hagenbeek, A.; Bloem, A. C.; Lokhorst, H. M.

    2004-01-01

    Expression of Bcl-2 in multiple myeloma is associated with resistance to chemotherapeutic drugs. Conversely, suppression of Bcl-2 enhanced the chemosensitivity of myeloma cells in vitro. G3139 is an antisense oligodeoxynucleotide targeted to the first six codons of the Bcl-2 mRNA open reading frame.

  7. SPATA4 Counteracts Etoposide-Induced Apoptosis via Modulating Bcl-2 Family Proteins in HeLa Cells.

    Science.gov (United States)

    Jiang, Junjun; Li, Liyuan; Xie, Mingchao; Fuji, Ryosuke; Liu, Shangfeng; Yin, Xiaobei; Li, Genlin; Wang, Zhao

    2015-01-01

    Spermatogenesis associated 4 (SPATA4) is a testis-specific gene first cloned by our laboratory, and plays an important role in maintaining the physiological function of germ cells. Accumulated evidence suggests that SPATA4 might be associated with apoptosis. Here we established HeLa cells that stably expressed SPATA4 to investigate the function of SPATA4 in apoptosis. SPATA4 protected HeLa cells from etoposide-induced apoptosis through the mitochondrial apoptotic pathway, in the way that SPATA4 suppressed decrease of the mitochondrial membrane potential, the release of cytochrome c, and subsequent activation of caspase-9 and -3. We further demonstrated that SPATA4 upregulated anti-apoptotic members of Bcl-2 family proteins, Bcl-2, and downregulated the pro-apoptotic member of Bcl-2 family proteins, Bax. Knockdown of SPATA4 in HeLa/SPATA4 cells could partially rescue expression levels of bcl-2 and bax. In conclusion, SPATA4 protects HeLa cells against etoposide-induced apoptosis through the mitochondrial apoptotic pathway. Our findings provide further evidence that SPATA4 plays a role in regulating apoptosis.

  8. Paternal breed effects on expression of IGF-II, BAK1 and BCL2-L1 in bovine preimplantation embryos

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Tahmoorespur, Mojtaba; Joupari, Morteza Daliri

    2015-01-01

    of this study was to investigate the effects of the paternal breed on the early embryonic development and relative expression of the maternally imprinted gene, IGF-II, and the apoptosis-related genes BAK1 and BCL2-L1 in in vitro produced (IVP) bovine embryos derived from two unrelated paternal breeds (Holstein......Summary The effects of the paternal breed on early embryo and later pre- and postnatal development are well documented. Several recent studies have suggested that such paternal effects may be mediated by the paternally induced epigenetic modifications during early embryogenesis. The objective...... and Brown Swiss). The degree of correlation of IGF-II expression pattern with embryo developmental competence and apoptosis-related genes was also investigated. The relative abundance of IGF-II, BCL2-L1 and BAK1 transcripts in day 8 embryos was measured by quantitative reverse-transcription polymerase chain...

  9. Combination of Bcl-2 and MYC protein expression improves high-risk stratification in diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Wang J

    2015-09-01

    Full Text Available Jing Wang,* Min Zhou,* Jing-Yan Xu,* Bing Chen, Jian OuyangDepartment of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China*These authors contributed equally to this work and should be considered as cofirst authorsPurpose: To evaluate whether the addition of two biological markers (MYC and BCL-2 protein overexpression improves the stratification of high-risk patients with diffuse large B-cell lymphoma (DLBCL.Method: Seven risk factors were identified at diagnosis, and a maximum of 7 points were assigned to each patient. The patients were classified according to four risk groups: low (0–1, low-intermediate (2–3, high-intermediate (4, and high (5–7. Only high-risk patients with DLBCL were included in this analysis. We retrospectively examined 20 cases from 2008 to 2013 at the Nanjing Drum Tower Hospital.Results: The median expression of MYC protein was 60%, and 17 of 20 (65% evaluable cases overexpressed MYC. The median expression of BCL-2 protein was also 60%. Eighteen of 20 (90% evaluable cases showed BCL-2 overexpression. Additionally, 12 out of 20 cases (60% demonstrated coexpression of MYC and BCL-2 proteins. The percentages of overall survival and progression-free survival at the median follow-up time (36 months were 33.3%±16.1% and 16.9%±13.5%, respectively. By comparison, nine, four, and 20 patients were classified as high risk based on the International Prognostic Index (IPI, National Comprehensive Cancer Network(NCCN-IPI, and revised IPI criteria, respectively. According to the IPI and NCCN-IPI stratification, the risk groups demonstrated closely overlapping survival curves. In addition, four out of 20 cases were identified as low-intermediate risk according to the NCCN-IPI criteria.Conclusion: The addition of MYC and BCL-2 protein expression to the IPI could identify a subset of DLBCL patients with high-risk clinicopathological characteristics and

  10. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized

    OpenAIRE

    van Delft, Mark F.; Wei, Andrew H.; Mason, Kylie D.; Vandenberg, Cassandra J.; Chen, Lin; Czabotar, Peter E.; Willis, Simon N.; Scott, Clare L.; Day, Catherine L.; Cory, Suzanne; Adams, Jerry M.; Roberts, Andrew W.; Huang, David C.S.

    2006-01-01

    Since apoptosis is impaired in malignant cells overexpressing pro-survival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Of seven putative BH3 mimetics tested, only ABT-737 triggered Bax/Bak-mediated apoptosis. Despite its high affinity for Bcl-2, Bcl-xL and Bcl-w, many cell types proved refractory to ABT-737. We show that this resistance reflects its inability to target another pro-survival relative, Mcl-1. Down-regulation of Mc...

  11. Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members.

    Science.gov (United States)

    Villanova, Lidia; Careccia, Silvia; De Maria, Ruggero; Fiori, Micol E

    2018-03-23

    In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.

  12. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  13. Knock-down of NDRG2 sensitizes cervical cancer Hela cells to cisplatin through suppressing Bcl-2 expression

    International Nuclear Information System (INIS)

    Liu, Junye; Guo, Guozhen; Yang, Le; Zhang, Jian; Zhang, Jing; Chen, Yongbin; Li, Kangchu; Li, Yurong; Li, Yan; Yao, Libo

    2012-01-01

    NDRG2, a member of N-Myc downstream regulated gene family, plays some roles in cellular stress, cell differentiation and tumor suppression. We have found that NDRG2 expression in cervical cancer Hela cells increases significantly upon stimulation with cisplatin, the most popular chemotherapeutic agent currently used for the treatment of advanced cervical cancer. This interesting phenomenon drove us to evaluate the role of NDRG2 in chemosensitivity of Hela cells. In the present study, RNA interference was employed to down-regulate NDRG2 expression in Hela cells. RT-PCR and Western blot were used to detect expression of NDRG2, Bcl-2 and Bax in cancer cells. Real-time PCR was applied to detect miR-15b and miR-16 expression levels. Drug sensitivity was determined with MTT assay. Cell cloning efficiency was evaluated by Colony-forming assay. Apoptotic cells were detected with annexin V staining and flow cytometry. In vitro drug sensitivity assay revealed that suppression of NDRG2 could sensitize Hela cells to cisplatin. Down-regulation of NDRG2 didn’t influence the colony-forming ability but promoted cisplatin-induced apoptosis of Hela cells. Inhibition of NDRG2 in Hela cells was accompanied by decreased Bcl-2 protein level. However, Bcl-2 mRNA level was not changed in Hela cells with down-regulation of NDRG2. Further study indicated that miR-15b and miR-16, two microRNAs targetting Bcl-2, were significantly up-regulated in NDRG2-suppressed Hela cells. These data suggested that down-regulation of NDRG2 could enhance sensitivity of Hela cells to cisplatin through inhibiting Bcl-2 protein expression, which might be mediated by up-regulating miR-15b and miR-16

  14. Expression of beclin 1 in primary salivary adenoid cystic carcinoma and its relation to Bcl-2 and p53 and prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.C.; Huang, S.Y.; Zhang, D.S.; Zhang, S.H.; Li, W.G.; Zheng, P.H.; Chen, Z.W. [Shandong Provincial Hospital Affiliated to Shandong University, Department of Oral and Maxillofacial Surgery, Jinan, China, Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan (China)

    2014-03-03

    Beclin 1 plays a critical role in autophagy and functions as a haploinsufficient tumor suppressor. The expression and prognostic significance of beclin 1 in head and neck adenoid cystic carcinoma (ACC) are largely unexplored. Therefore, we investigated the expression of beclin 1, Bcl-2, and p53 in head and neck ACC tissue. Tissue samples from 35 cases (15 females, 20 males) of head and neck ACC were utilized for immunohistochemistry. Beclin 1 expression was observed in 32 cases (91.4%) and considered to be high in 15 cases (42.9%) and low in 20 cases (57.1%). Beclin 1 expression was significantly correlated with a histological growth pattern (P=0.046) and histological grade (P=0.037). Beclin 1 expression was inversely correlated with Bcl-2 expression (P=0.013) and significantly associated with overall survival (P=0.006). Bcl-2 and p53 expression were observed in 21 cases (60.0%) and 16 cases (45.7%). Bcl-2 expression was significantly correlated with perineural invasion (P=0.041) and not associated with overall survival (P=0.053). p53 expression was directly correlated with beclin 1 expression (P=0.044). Our results indicated that beclin 1 may be a novel, promising prognostic factor for clinical outcome in head and neck ACC patients and may play a part in the development of head and neck ACC by interacting with Bcl-2 and p53.

  15. Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas.

    Science.gov (United States)

    Menguy, Sarah; Frison, Eric; Prochazkova-Carlotti, Martina; Dalle, Stephane; Dereure, Olivier; Boulinguez, Serge; Dalac, Sophie; Machet, Laurent; Ram-Wolff, Caroline; Verneuil, Laurence; Gros, Audrey; Vergier, Béatrice; Beylot-Barry, Marie; Merlio, Jean-Philippe; Pham-Ledard, Anne

    2018-03-26

    In nodal diffuse large B-cell lymphoma, the search for double-hit with MYC and BCL2 and/or BCL6 rearrangements or for dual expression of BCL2 and MYC defines subgroups of patients with altered prognosis that has not been evaluated in primary cutaneous large B-cell lymphoma. Our objectives were to assess the double-hit and dual expressor status in a cohort of 44 patients with primary cutaneous large B-cell lymphoma according to the histological subtype and to evaluate their prognosis relevance. The 44 cases defined by the presence of more than 80% of large B-cells in the dermis corresponded to 21 primary cutaneous follicle centre lymphoma with large cell morphology and 23 primary cutaneous diffuse large B-cell lymphoma, leg type. Thirty-one cases (70%) expressed BCL2 and 29 (66%) expressed MYC. Dual expressor profile was observed in 25 cases (57%) of either subtypes (n = 6 or n = 19, respectively). Only one primary cutaneous follicle centre lymphoma, large-cell case had a double-hit status (2%). Specific survival was significantly worse in primary cutaneous diffuse large B-cell lymphoma, leg type than in primary cutaneous follicle centre lymphoma, large cell (p = 0.021) and for the dual expressor primary cutaneous large B-cell lymphoma group (p = 0.030). Both overall survival and specific survival were worse for patients belonging to the dual expressor primary cutaneous diffuse large B-cell lymphoma, leg type subgroup (p = 0.001 and p = 0.046, respectively). Expression of either MYC and/or BCL2 negatively impacted overall survival (p = 0.017 and p = 0.018 respectively). As the differential diagnosis between primary cutaneous follicle centre lymphoma, large cell and primary cutaneous diffuse large B-cell lymphoma, leg type has a major impact on prognosis, dual-expression of BCL2 and MYC may represent a new diagnostic criterion for primary cutaneous diffuse large B-cell lymphoma, leg type subtype and further identifies patients with

  16. MYC/BCL2/BCL6 triple hit lymphoma: a study of 40 patients with a comparison to MYC/BCL2 and MYC/BCL6 double hit lymphomas.

    Science.gov (United States)

    Huang, Wenting; Medeiros, L Jeffrey; Lin, Pei; Wang, Wei; Tang, Guilin; Khoury, Joseph; Konoplev, Sergej; Yin, C Cameron; Xu, Jie; Oki, Yasuhiro; Li, Shaoying

    2018-05-21

    High-grade B-cell lymphomas with MYC, BCL2, and BCL6 rearrangements (triple hit lymphoma) are uncommon. We studied the clinicopathologic features of 40 patients with triple hit lymphoma and compared them to 157 patients with MYC/BCL2 double hit lymphoma and 13 patients with MYC/BCL6 double hit lymphoma. The triple hit lymphoma group included 25 men and 15 women with a median age of 61 years (range, 34-85). Nine patients had a history of B-cell lymphoma. Histologically, 23 (58%) cases were diffuse large B-cell lymphoma and 17 cases had features of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Most cases of triple hit lymphoma were positive for CD10 (100%), BCL2 (95%), BCL6 (82%), MYC (74%), and 71% with MYC and BCL2 coexpression. P53 was overexpressed in 29% of triple hit lymphoma cases. The clinicopathological features of triple hit lymphoma patients were similar to patients with MYC/BCL2 and MYC/BCL6 double hit lymphoma, except that triple hit lymphoma cases were more often CD10 positive compared with MYC/BCL6 double hit lymphoma (p hit lymphoma and double hit lymphoma and overall survival in triple hit lymphoma patients was 17.6 months, similar to the overall survival of patients with double hit lymphoma (p = 0.67). Patients with triple hit lymphoma showing P53 overexpression had significantly worse overall survival compared with those without P53 overexpression (p = 0.04). On the other hand, double expressor status and prior history of B-cell lymphoma did not correlate with overall survival. In conclusion, most patients with triple hit lymphoma have an aggressive clinical course and poor prognosis and these tumors have a germinal center B-cell immunophenotype, similar to patients with double hit lymphomas. P53 expression is a poor prognostic factor in patients with triple hit lymphoma.

  17. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis

    International Nuclear Information System (INIS)

    Graaf, Aniek O. de; Heuvel, Lambert P. van den; Dijkman, Henry B.P.M.; Abreu, Ronney A. de; Birkenkamp, Kim U.; Witte, Theo de; Reijden, Bert A. van der; Smeitink, Jan A.M.; Jansen, Joop H.

    2004-01-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity

  18. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    Science.gov (United States)

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  19. Mito-priming as a method to engineer Bcl-2 addiction.

    Science.gov (United States)

    Lopez, Jonathan; Bessou, Margaux; Riley, Joel S; Giampazolias, Evangelos; Todt, Franziska; Rochegüe, Tony; Oberst, Andrew; Green, Douglas R; Edlich, Frank; Ichim, Gabriel; Tait, Stephen W G

    2016-02-02

    Most apoptotic stimuli require mitochondrial outer membrane permeabilization (MOMP) in order to execute cell death. As such, MOMP is subject to tight control by Bcl-2 family proteins. We have developed a powerful new technique to investigate Bcl-2-mediated regulation of MOMP. This method, called mito-priming, uses co-expression of pro- and anti-apoptotic Bcl-2 proteins to engineer Bcl-2 addiction. On addition of Bcl-2 targeting BH3 mimetics, mito-primed cells undergo apoptosis in a rapid and synchronous manner. Using this method we have comprehensively surveyed the efficacy of BH3 mimetic compounds, identifying potent and specific MCL-1 inhibitors. Furthermore, by combining different pro- and anti-apoptotic Bcl-2 pairings together with CRISPR/Cas9-based genome editing, we find that tBID and PUMA can preferentially kill in a BAK-dependent manner. In summary, mito-priming represents a facile and robust means to trigger mitochondrial apoptosis.

  20. Expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia

    Science.gov (United States)

    Li, Sheng-Mian; Yao, Shu-Kun; Yamamura, Nobuyoshi; Nakamura, Toshitsugu

    2003-01-01

    AIM: To compare the difference of expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia, and to analyze the role of Bcl-2 and Bax proteins in the progression from dysplasia to carcinoma and to evaluate the correlation of Bcl-2/Bax protein expression with the biological behaviors. METHODS: Expressions of Bcl-2 and Bax were examined immunohistochemically in 27 cases of extrahepatic biliary tract carcinomas (bile duct carcinoma: n = 21, carcinoma of ampulla of Vater: n = 6), and 10 cases of atypical dysplasia. Five cases of normal biliary epithelial tissues were used as controls. A semiquantitative scoring system was used to assess the Bcl-2 and Bax reactivity. RESULTS: The expression of Bcl-2 was observed in 10 out of 27 (37.0%) invasive carcinomas, 1 out of 10 dysplasias, none out of 5 normal epithelial tissues. Bax expression rate was 74.1% (20/27) in invasive carcinoma, 30% (3/10) in dysplasia, and 40% (2/5) in normal biliary epithelium. Bcl-2 and Bax activities were more intense in carcinoma than in dysplasia, with no significant difference in Bcl-2 expression (P = 0.110), and significant difference in Bax expression (P = 0.038). Level of Bax expression was higher in invasive carcinoma than in dysplasia and normal tissue (P = 0.012). Bcl-2 expression was correlated to Bax expression (P = 0.0059). However, Bcl-2/Bax expression had no correlation with histological subtype, grade of differentiation, or level of invasion. CONCLUSION: Increased Bcl-2/Bax expression from dysplasia to invasive tumors supports the view that this is the usual route for the development of extrahepatic biliary tract carcinoma. Bcl-2/Bax may be involved, at least in part, in the apoptotic activity in extrahepatic biliary carcinoma. PMID:14606101

  1. Hepatitis C virus positive diffuse large B-cell lymphomas have distinct molecular features and lack BCL2 translocations

    DEFF Research Database (Denmark)

    Visco, Carlo; Wang, Jinfen; Tisi, Maria Chiara

    2017-01-01

    apoptotic pathways, have higher proliferative index, and lack BCL2 translocations. CONCLUSIONS: HCV-positive DLBCL have distinct molecular and pathological features compared to the HCV-negative counterparts.British Journal of Cancer advance online publication, 26 September 2017; doi:10.1038/bjc.2017.345 www.bjcancer.com....... in lymphomagenesis, as witnessed by the curative potential of antiviral therapy in HCV-related low-grade B-cell lymphomas. METHODS: We performed a case-control study including 44 HCV-positive cases of de novo DLBCL, comparing them with 132 HCV-negative patients as controls (ratio 3 to 1). Cases and controls were...... for MYC, BCL2 and BCL6, TP53 mutations, and diagnostic specimens reviewed to exclude transformation from low-grade lymphoma. RESULTS: Compared to the HCV-negative controls, patients with HCV-positive de novo DLBCL had differential expression of genes that regulate innate immune response and modulate...

  2. Real world data on young patients with high-risk diffuse large B-cell lymphoma treated with R-CHOP or R-CHOEP - MYC, BCL2 and BCL6 as prognostic biomarkers

    DEFF Research Database (Denmark)

    Pedersen, Mette Ølgod; Gang, Anne Ortved; Brown, Peter

    2017-01-01

    BACKGROUND: Double expression of MYC and BCL2 proteins (DE) and double-hit MYC+BCL2/BCL6 translocations (DH) were established as important biomarkers in patients with diffuse large B-cell lymphoma (DLBCL) by the 2016 revision of the World Health Organization classification of lymphoid neoplasms...... in situ hybridization (FISH). RESULTS: DE with MYC>75% and BCL2>85% was an independent negative prognostic marker of progression free survival (PFS) in patients treated with R-CHOP but not R-CHOEP (peffect of DE for response (PFS) to R...

  3. The role of BIM-EL and BCL2-α on the efficacy of erlotinib and gefitinib in lung cancer.

    Science.gov (United States)

    Simasi, Jacinta; Oelkrug, Christopher; Schubert, Andreas; Nieber, Karen; Gillissen, Adrian

    2015-04-01

    Tyrosine kinase inhibitors (TKI), erlotinib and gefitinib are small molecule inhibitors which are used for the treatment of lung cancer. But, the development of drug resistance has been reported as one of the major setbacks in oncology. This study focused on the mechanisms leading to secondary resistance by assessing the gene expression of BCL2 family proteins which are associated with the intrinsic apoptotic signaling pathway. 8 genes were investigated in erlotinib and gefitinib treated cells by real time PCR and protein analysis by western blotting. The cells were exposed to the test drugs 48h prior to RNA or protein isolation. It was observed that BIM-EL, a pro-apoptotic protein was up-regulated in cells sensitive to the drugs but not in the resistant cells. On the other hand BCL2-α, an anti-apoptotic protein was up-regulated in the resistant cells and not in the sensitive cells. BCL2-α revealed a counter-regulation effect on BIM-EL and this effect is probably one of the causes of secondary resistance to erlotinib and gefitinib. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hypoxia-response plasmid vector producing bcl-2 shRNA enhances the apoptotic cell death of mouse rectum carcinoma.

    Science.gov (United States)

    Fujioka, Takashi; Matsunaga, Naoya; Okazaki, Hiroyuki; Koyanagi, Satoru; Ohdo, Shigehiro

    2010-01-01

    Hypoxia-induced gene expression frequently occurs in malignant solid tumors because they often have hypoxic areas in which circulation is compromised due to structurally disorganized blood vessels. Hypoxia-response elements (HREs) are responsible for activating gene transcription in response to hypoxia. In this study, we constructed a hypoxia-response plasmid vector producing short hairpin RNA (shRNA) against B-cell leukemia/lymphoma-2 (bcl-2), an anti-apoptotic factor. The hypoxia-response promoter was made by inserting tandem repeats of HREs upstream of cytomegalovirus (CMV) promoter (HRE-CMV). HRE-CMV shbcl-2 vector consisted of bcl-2 shRNA under the control of HRE-CMV promoter. In hypoxic mouse rectum carcinoma cells (colon-26), the production of bcl-2 shRNA driven by HRE-CMV promoter was approximately 2-fold greater than that driven by CMV promoter. A single intratumoral (i.t.) injection of 40 microg HRE-CMV shbcl-2 to colon-26 tumor-bearing mice caused apoptotic cell death, and repetitive treatment with HRE-CMV shbcl-2 (40 microg/mouse, i.t.) also significantly suppressed the growth of colon-26 tumor cells implanted in mice. Apoptotic and anti-tumor effects were not observed in tumor-bearing mice treated with CMV shbcl-2. These results reveal the ability of HRE-CMV shbcl-2 vector to suppress the expression of bcl-2 in hypoxic tumor cells and suggest the usefulness of our constructed hypoxia-response plasmid vector to treat malignant tumors. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10054FP].

  5. Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy

    International Nuclear Information System (INIS)

    Lee, Kyung-Hun; Noh, Dong-Young; Heo, Dae Seog; Ha, Sung Whan; Bang, Yung-Jue; Im, Seock-Ah; Oh, Do-Youn; Lee, Se-Hoon; Chie, Eui Kyu; Han, Wonshik; Kim, Dong-Wan; Kim, Tae-You; Park, In Ae

    2007-01-01

    Bcl-2 is positively regulated by hormonal receptor pathways in breast cancer. A study was conducted to assess the prognostic significances of clinico-pathologic variables and of ER, PR, p53, c-erbB2, bcl-2, or Ki-67 as markers of relapse in breast cancer patients who had received the identical adjuvant therapy at a single institution. A cohort of 151 curatively resected stage III breast cancer patients (M:F = 3:148, median age 46 years) who had 4 or more positive lymph nodes and received doxorubicin and cyclophosphamide followed by paclitaxel (AC/T) as adjuvant chemotherapy was analyzed for clinico-pathologic characteristics including disease-free survival (DFS) and overall survival (OS). Patients with positive ER and/or PR expression received 5 years of tamoxifen following AC/T. The protein expressions of biomarkers were assessed immunohistochemically. The median follow-up duration was 36 months, and 37 patients (24.5%) experienced a recurrence. Univariate analyses indicated that the tumor size (P = 0.038) and the number of involved lymph nodes (P < 0.001) significantly affected the recurrences. However, the type of surgery, the histology, histologic grade, the presence of endolymphatic emboli, and a close resection margin did not. Moreover, ER positivity (P = 0.013), bcl-2 positivity (P = 0.002) and low p53 expression (P = 0.032) were found to be significantly associated with a prolonged DFS. Furthermore, multivariate analysis identified 10 or more involved lymph nodes (HR 7.366; P < 0.001), negative bcl-2 expression (HR 2.895; P = 0.030), and c-erbB2 over-expression (HR 3.535; P = 0.001) as independent indicators of poorer DFS. In addition, bcl-2 expression was found to be significantly correlated with the expressions of ER and PR, and inversely correlated with the expressions of p53, c-erbB2 and Ki-67. Patients with bcl-2 expression had a significantly longer DFS than those without, even in the ER (+) subgroup. Moreover, OS was significantly affected by ER, bcl

  6. Expression of p53, Bcl-2, VEGF, Ki67 and PCNA and prognostic significance in hepatocellular carcinoma.

    Science.gov (United States)

    Stroescu, Cezar; Dragnea, Adrian; Ivanov, Bogdan; Pechianu, Catalin; Herlea, Vlad; Sgarbura, Olivia; Popescu, Andra; Popescu, Irinel

    2008-12-01

    Hepatocellular carcinoma is one of the most common malignant tumors that carry a poor prognosis. To improve the long-term outlook for HCC, an accurate prognosis is important. To study the immunohistochemical expressions of p53, Ki67, Bcl-2, VEGF and PCNA and their potential role as prognostic factors in patients with radical resection of hepatocellular carcinoma. Forty-seven formalin-fixed paraffin-embedded tumor samples from patients with HCC receiving liver resection were investigated immunohistochemically for the expression of cellular proliferation markers PCNA, Ki67, p53, Bcl-2 and VEGF and their correlation with tumor characteristics and survival time after resection. p53 was expressed in a higher percentage (85.7 vs. 42.1%) in undifferentiated histological tumor grades (Edmondson Steiner G3/G4 vs. G1/G2). Patients with p53 accumulating tumors showed a worse survival than patients with p53 non-accumulating tumors (median 9.5 vs. 16.5 months). Over-expression of VEGF was found in 38.3% of all HCCs. VEGF expression was significantly correlated with p53 expression and recurrence rates. The results showed that the labeling index of PCNA and expression of p53 are correlated. The high labeling index of PCNA or over-expression of p53 resulted in high risk of tumor recurrence, more aggressive growth and poor survival. High labeling index of PCNA, p53 nuclear accumulation and VEGF high expression are associated with poor survival in patients with HCC.

  7. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo

    Directory of Open Access Journals (Sweden)

    Rafal Goraczniak

    2013-01-01

    Full Text Available U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2 and metabotropic glutamate receptor 1 (GRM1, in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6 indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases.

  8. The role of the acidity of N-heteroaryl sulfonamides as inhibitors of bcl-2 family protein-protein interactions.

    Science.gov (United States)

    Touré, B Barry; Miller-Moslin, Karen; Yusuff, Naeem; Perez, Lawrence; Doré, Michael; Joud, Carol; Michael, Walter; DiPietro, Lucian; van der Plas, Simon; McEwan, Michael; Lenoir, Francois; Hoe, Madelene; Karki, Rajesh; Springer, Clayton; Sullivan, John; Levine, Kymberly; Fiorilla, Catherine; Xie, Xiaoling; Kulathila, Raviraj; Herlihy, Kara; Porter, Dale; Visser, Michael

    2013-02-14

    Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.

  9. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Bing; Xiao, Bo [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Liang, Desheng [State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078 (China); Xia, Jian; Li, Ye [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Yang, Huan, E-mail: yangh69@yahoo.cn [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)

    2011-06-24

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the

  10. Effects of Helicobacter pylori infection on the expressions of Bax and Bcl-2 in patients with chronic gastritis and gastric cancer.

    Science.gov (United States)

    Bartchewsky, Waldemar; Martini, Mariana R; Squassoni, Aline C; Alvarez, Marisa C; Ladeira, Marcelo S P; Salvatore, Daisy M F; Trevisan, Miriam A; Pedrazzoli, José; Ribeiro, Marcelo L

    2010-01-01

    The aim of the present study is to evaluate the influence of Helicobacter pylori on Bax and Bcl-2 mRNA and protein levels in patients with chronic gastritis and gastric cancer. The study included 217 patients, of which 26 were uninfected; 127 had chronic gastritis and were H. pylori-positive, and 64 had gastric cancer. Bacterial genotypes were evaluated by PCR, and the expression values were determined by quantitative real-time PCR and immunohistochemistry. Our data showed that the up-regulationary effects of H. pylori infection on the pro-apoptotic gene, Bax, were stronger than its induction of Bcl-2; this effect may increase apoptosis in patients with chronic gastritis. In patients with gastric cancer, the up-regulation of the anti-apoptotic gene, Bcl-2, counteracted the pro-apoptotic effects of Bax, leading to a deregulation of apoptosis-associated gene expression, favoring cell proliferation. Thus, the disturbance in Bax and Bcl-2 balance, induced by H. pylori, might be important in gastric cancer development.

  11. Identification of an HLA-A*0201 restricted Bcl2-derived epitope expressed on tumors

    DEFF Research Database (Denmark)

    Wang, Mingjun; Johansen, Britta; Nissen, Mogens H

    2006-01-01

    A large number of human tumor-associated antigen-derived peptides have been identified that are recognized by CTLs in a MHC-I restricted fashion. The apoptosis inhibitory protein Bcl2 is overexpressed in many human cancers as part of their neoplastic phenotype. Since inhibition or loss of Bcl2...... from the amino acid sequence of the Bcl2 protein and its binding affinity for HLA-A*0201 was confirmed using a biochemical binding assay. We here demonstrate that the 9-mer peptide Bcl2(85-93) induces specific CTL reactivity in immunized C57-A2K(b) or -A2D(b) tg mice. These Bcl2(85-93) specific CTLs...... react with and lyse Bcl2-expressing human colon carcinoma CCL220 cells which have been transfected with a chimeric HLA-A*0201/H2-K(b) DNA construct similar to that expressed in the transgenic mice. Based on these observations, we suggest that Bcl2(85-93) may be a target for immune therapy....

  12. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Directory of Open Access Journals (Sweden)

    Ohlemiller Kevin K

    2010-07-01

    Full Text Available Abstract Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family.

  13. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells.

    Science.gov (United States)

    Lian, Jiqin; Karnak, David; Xu, Liang

    2010-11-01

    Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.

  14. Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy

    Directory of Open Access Journals (Sweden)

    Kim Dong-Wan

    2007-04-01

    Full Text Available Abstract Background Bcl-2 is positively regulated by hormonal receptor pathways in breast cancer. A study was conducted to assess the prognostic significances of clinico-pathologic variables and of ER, PR, p53, c-erbB2, bcl-2, or Ki-67 as markers of relapse in breast cancer patients who had received the identical adjuvant therapy at a single institution. Methods A cohort of 151 curatively resected stage III breast cancer patients (M:F = 3:148, median age 46 years who had 4 or more positive lymph nodes and received doxorubicin and cyclophosphamide followed by paclitaxel (AC/T as adjuvant chemotherapy was analyzed for clinico-pathologic characteristics including disease-free survival (DFS and overall survival (OS. Patients with positive ER and/or PR expression received 5 years of tamoxifen following AC/T. The protein expressions of biomarkers were assessed immunohistochemically. Results The median follow-up duration was 36 months, and 37 patients (24.5% experienced a recurrence. Univariate analyses indicated that the tumor size (P = 0.038 and the number of involved lymph nodes (P P = 0.013, bcl-2 positivity (P = 0.002 and low p53 expression (P = 0.032 were found to be significantly associated with a prolonged DFS. Furthermore, multivariate analysis identified 10 or more involved lymph nodes (HR 7.366; P P = 0.030, and c-erbB2 over-expression (HR 3.535; P = 0.001 as independent indicators of poorer DFS. In addition, bcl-2 expression was found to be significantly correlated with the expressions of ER and PR, and inversely correlated with the expressions of p53, c-erbB2 and Ki-67. Patients with bcl-2 expression had a significantly longer DFS than those without, even in the ER (+ subgroup. Moreover, OS was significantly affected by ER, bcl-2 and c-erbB2. Conclusion Bcl-2 is an independent prognostic factor of DFS in curatively resected stage III breast cancer patients and appears to be a useful prognostic factor in combination with c-erbB2 and the

  15. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats.

    Science.gov (United States)

    Liu, Qi; Si, Tianlei; Xu, Xiaoyun; Liang, Fuqiang; Wang, Lufeng; Pan, Siyi

    2015-08-04

    The decreased reproductive capacity of men is an important factor contributing to infertility. Accumulating evidence has shown that Electromagnetic radiation potentially has negative effects on human health. However, whether radio frequency electromagnetic radiation (RF-EMR) affects the human reproductive system still requires further investigation. Therefore, The present study investigates whether RF-EMR at a frequency of 900 MHz can trigger sperm cell apoptosis and affect semen morphology, concentration, and microstructure. Twenty four rats were exposed to 900 MHz electromagnetic radiation with a special absorption rate of 0.66 ± 0.01 W/kg for 2 h/d. After 50d, the sperm count, morphology, apoptosis, reactive oxygen species (ROS), and total antioxidant capacity (TAC), representing the sum of enzymatic and nonenzymatic antioxidants, were investigated. Western blotting and reverse transcriptase PCR were used to determine the expression levels of apoptosis-related proteins and genes, including bcl-2, bax, cytochrome c, and capase-3. In the present study, the percentage of apoptotic sperm cells in the exposure group was significantly increased by 91.42% compared with the control group. Moreover, the ROS concentration in exposure group was increased by 46.21%, while the TAC was decreased by 28.01%. Radiation also dramatically decreased the protein and mRNA expression of bcl-2 and increased that of bax, cytochrome c, and capase-3. RF-EMR increases the ROS level and decreases TAC in rat sperm. Excessive oxidative stress alters the expression levels of apoptosis-related genes and triggers sperm apoptosis through bcl-2, bax, cytochrome c and caspase-3 signaling pathways.

  16. Effect of low dose ionizing radiation on Bcl-2 transcription level of Peyer's patches in mouse

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Dong; Zheng Yongchen; Liu Shuzheng

    2001-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-rays on apoptosis in cells of mouse Peyer's patches and its molecular mechanism. Methods: RT-PCR was used to detect the changes of Bcl-2 transcription level. Agarose electrophoresis and flow cytometry were used to detect the changes of DNA and apoptotic bodies in Peyer's patches after WBI with different doses of X-rays. Results: The apoptotic was increased and Bcl-2 transcription level was decreased in Peyer's patches after 2 Gy X-rays. The apoptotic rate was decreased and Bcl-2 transcription level was increased in Peyer's patches after 75 mGy X-rays. Conclusion: Bcl-2 participates in the regulation of radiation-induced apoptosis in Peyer's patches

  17. Therapeutic Silencing of Bcl-2 by Systemically Administered siRNA Nanotherapeutics Inhibits Tumor Growth by Autophagy and Apoptosis and Enhances the Efficacy of Chemotherapy in Orthotopic Xenograft Models of ER (− and ER (+ Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ibrahim Tekedereli

    2013-01-01

    Full Text Available Bcl-2 is overexpressed in about a half of human cancers and 50–70% of breast cancer patients, thereby conferring resistance to conventional therapies and making it an excellent therapeutic target. Small interfering RNA (siRNA offers novel and powerful tools for specific gene silencing and molecularly targeted therapy. Here, we show that therapeutic silencing of Bcl-2 by systemically administered nanoliposomal (NL-Bcl-2 siRNA (0.15 mg siRNA/kg, intravenous twice a week leads to significant antitumor activity and suppression of growth in both estrogen receptor-negative (ER(− MDA-MB-231 and ER-positive (+ MCF7 breast tumors in orthotopic xenograft models (P < 0.05. A single intravenous injection of NL-Bcl-2-siRNA provided robust and persistent silencing of the target gene expression in xenograft tumors. NL-Bcl-2-siRNA treatment significantly increased the efficacy of chemotherapy when combined with doxorubicin in both MDA-MB-231 and MCF-7 animal models (P < 0.05. NL-Bcl-2-siRNA treatment-induced apoptosis and autophagic cell death, and inhibited cyclin D1, HIF1α and Src/Fak signaling in tumors. In conclusion, our data provide the first evidence that in vivo therapeutic targeting Bcl-2 by systemically administered nanoliposomal-siRNA significantly inhibits growth of both ER(− and ER(+ breast tumors and enhances the efficacy of chemotherapy, suggesting that therapeutic silencing of Bcl-2 by siRNA is a viable approach in breast cancers.

  18. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  19. Increase of bcl-2 Protein Expression in Aggressive Basal Cell Carcinoma of Head and Neck

    OpenAIRE

    Cláudia CAZAL; Mariana Roesch ELY; Ana Paula Veras SOBRAL; Wilton Wilney Nascimento PADILHA

    2006-01-01

    Objective: The aim of this study was to verify the bcl-2 protein expression in 22 cutaneous basal cell carcinomas (BCC) of the head and neck, and to compare it with its aggressive behavior. Method: Tumors were histologically classified in non-aggressive (BCC 1) and aggressive (BCC 2) and then submitted to the immunohistochemistry technique with the streptavidin-biotin peroxidase method using the anti-bcl-2 antibody. Results: After proceeding to morphological analysis, sixteen tumors (72.7%) w...

  20. EGFR and Bcl-2 in gastric mucosa of children infected with Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Ewa Ryszczuk

    2016-03-01

    Full Text Available Aim: The aim of the study was to evaluate the expression of EGFR and Bcl-2 proteins as inhibitory markers of apoptosis in surface epithelial cells and gland cells of antral gastric mucosa in children infected with Helicobacter pylori according to the severity and activity of antral gastritis and to assess the correlation between the number of cells expressing EGFR and the number of cells expressing Bcl-2 in H. pylori infected children.Materials and methods: The study included 44 children: 68.2% with chronic gastritis and positive IgG against H. pylori, and 31.8% with functional disorders of the gastrointestinal tract and with normal IgG against H. pylori. The evaluation of EGFR expression in gastric mucosa was performed immunohistochemically using monoclonal mouse anti-EGFR antibody. The polyclonal antibody was used to determine the expression of anti-Bcl-2.Results: A significant increase in the number of cells expressing EGFR and Bcl-2 protein was found in the epithelial cells in severe as well as mild and moderate gastritis in the group of children infected with H. pylori. An increase in the number of cells expressing EGFR and Bcl-2 protein was also found in the epithelial cells in group I according to the activity of gastritis. There was a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children.Conclusion: Increased expression of EGFR and Bcl-2 proteins in the epithelial cells and a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children could suggest increased regeneration abilities of gastric mucosa.

  1. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    OpenAIRE

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial ou...

  2. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    International Nuclear Information System (INIS)

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [ 60 Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [ 60 Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [ 60 Co] γ-rays; Group C included cells treated with 8 Gy of [ 60 Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [ 60 Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with

  3. Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.

    Science.gov (United States)

    Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald

    2017-06-01

    p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.

  4. Original Article: Investigation of Bcl-2 and PCNA in Hepatocellular Carcinoma: Relation to Chronic HCV

    International Nuclear Information System (INIS)

    ALENZI, F.Q.Ph.; ABBAS, M.Y.Ph.; HAMAD, A.M.; EL-SAEED, O.M.; EL-NASHAR, E.M.; AL-GHAMDI, S.S.; WYSE, R.K.H.; LOTFY, M.

    2010-01-01

    Bcl-2 family members can be functionally divided into anti-apoptotic and pro-apoptotic groups. The balance between these two groups may determine the fate of tumor cells. In hepatocellular carcinoma (HCC), this balance is often tilted towards the anti-apoptotic members in tumor cells, leading to resistance to cell death and rapid proliferation. Material and Methods: In the current study, we in-vestigated Bcl-2 and proliferating cell nuclear antigen (PCNA) immunohistochemically, using specific mono-clonal antibodies in liver tissues obtained from two patient groups. The first group included fifty patients infected with hepatitis C virus (HCV) without hepatocellular carcinoma, the other group included twenty five HCV-infected patients but with confirmed HCC. Serum Bcl-2 was assayed using enzyme immunoassay. Results: Results showed serum Bcl-2 was elevated in 82% versus 100% in HCC-free and HCC patients, respectively. Moreover, cytoplasmic staining of Bcl-2 was found in only 16% of chronic HCV patients without HCC, versus 8% in HCC patients. On the other hand, nuclear staining of PCNA was detected in 100% of HCC patients, but in none of the HCV patients without HCC. Conclusion: The results collectively suggest that in HCV-infected patients with and without HCC, apoptosis is dysregulated and proliferation activity perturbed. There may be prognostic and/or diagnostic potential in estimating Bcl-2 and PCNA proteins in these patient groups

  5. Diagnostic value of CD10 and Bcl2 expression in distinguishing cutaneous basal cell carcinoma from squamous cell carcinoma and seborrheic keratosis.

    Science.gov (United States)

    Gaballah, Mohammad A; Ahmed, Rehab-Allah

    2015-12-01

    The distinction between cutaneous basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and seborrheic keratosis (SK), which are common entities in clinical practice, can be difficult clinically and histologically. CD10 and Bcl2 antigens are important factors in tumor growth, survival and spread. The aim of the present study is to define the frequency of CD10 and Bcl2 expression in such cutaneous tumors and its relation to the clinicopathological characteristics as well as their possible diagnostic utility. CD10 and Bcl2 immunohistochemistry was performed on 30 BCC, 20 SCC and 15 SK. 93.3% of SK cases and 53.3% of BCC cases showed significant expression of CD10 in tumor cells when compared either with each other or with SCC cases (100% negative). Stromal CD10 expression was positive in 50% of BCC cases and 75% of SCC cases. Stromal CD10 expression was significantly higher in high risk BCC and BCC with infiltrating deep margins; furthermore, it showed a significant positive correlation with grade of SCC. A significant inverse correlation between CD10 expression in stromal and tumor cells of BCC was present. Bcl2 was significantly expressed in 93.3% of SK cases and 80% of BCC cases when compared with SCC cases (100% negative). It was found that for distinguishing BCC from SK, only CD10 expression in tumor cells provided a high diagnostic value with positive likelihood ratio (PLR) was 7.00. In addition, CD10 and Bcl2 expression in tumor cells could give convincing diagnostic value to distinguish SCC from SK (PLR=15.00 for each marker). Moreover, for differentiating BCC from SCC, only Bcl2 in the tumor cells could provide a high diagnostic value (PLR=5.5). In conclusion, CD10 and Bcl2 can help in differentiating cutaneous BCC from SK and SCC. The overexpression of CD10 in the stromal cells of SCC and some variants of BCC suggests the invasive properties of such tumors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. A gene expression signature associated with survival in metastatic melanoma

    Science.gov (United States)

    Mandruzzato, Susanna; Callegaro, Andrea; Turcatel, Gianluca; Francescato, Samuela; Montesco, Maria C; Chiarion-Sileni, Vanna; Mocellin, Simone; Rossi, Carlo R; Bicciato, Silvio; Wang, Ena; Marincola, Francesco M; Zanovello, Paola

    2006-01-01

    Background Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. Methods Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM) to identify genes associated with patient survival, and supervised principal components (SPC) to determine survival prediction. Results SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. Conclusion The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells. PMID:17129373

  7. A gene expression signature associated with survival in metastatic melanoma

    Directory of Open Access Journals (Sweden)

    Rossi Carlo R

    2006-11-01

    Full Text Available Abstract Background Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. Methods Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM to identify genes associated with patient survival, and supervised principal components (SPC to determine survival prediction. Results SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. Conclusion The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells.

  8. Correlation and role of nitric oxide (NO) and BCL-2 in duchenne muscular dystrophy (DMD) patients

    International Nuclear Information System (INIS)

    Moawed, F.S.M.

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease caused by a genetic mutation that leads to the complete absence of the cytoskeletal protein dystrophin in muscle fibers. Although the mechanisms underlying muscle degeneration are still uncertain, oxidative-damage and regenerating aging have been proposed to play a key role. The aim of the present study was to test for these two theories, and to evaluate the possible ameliorative effect of He;Ne laser on them. Subjects and Methods: twenty-two duchenne muscular dystrophy boys (7-15 years old ) with proven dystrophin gene mutation, together with twenty-two normal males, who served as controls, were enrolled for this study. Initial blood samples were taken for the determinations of creatine kinase (CK), markers of replicative aging; in terms of plasma and lymphocyte Bcl-2 protein and apoptosis percentage in circulating mononuclear cells, along with those of oxidative stress in terms of lipid peroxidation (as plasma malondialdehyde MDA), catalase activity, cholesterol, triacylglycerol and nitric oxide. Whole blood samples were then irradiated with 2.5 j/cm 2 by He-Ne laser at wave length 632.8 nm and power output 10 MW.

  9. Bcl-2 protein expression in mucoepidermoid carcinoma of salivary glands: a single institution experience.

    Science.gov (United States)

    Janjua, Omer Sefvan; Qureshi, Sana Mehmood; Khan, Tariq Sarfraz; Alamgir, Wajiha

    2012-01-01

    Mucoepidermoid carcinoma is the most common salivary gland tumor with varying behavior among different histopathological grades. The objective of this study was to determine the expression of Bcl-2 protein in mucoepidermoid carcinoma (MEC) and to correlate with histological grades. The records of 40 cases of MEC were collected from the histopathology department. Fresh slides were prepared and fresh diagnoses were made using the grading criteria for MEC. Immunohistochemical markers for Bcl-2 were applied and the results analyzed using the chi-square test. Of 40 cases, 20 were males and 20 were females. The range in age of the patients was 6 to 67 years mean (SD) was 42.6 (1.85) years. Twenty-two were low grade (55%), 11 high grade (27.5%) and 7 (17.5%) were intermediate grade MEC. Among these 40 cases, Bcl-2 expression was positive in 24 cases and negative in 16 cases. In 22 cases of low-grade MEC, 19 were positive while only 3 were negative. In high-grade tumors, all 11 cases were found to have a negative expression of Bcl-2 protein. In intermediate-grade MEC, 5 cases showed positive expression while only 2 cases showed negative expression. Bcl-2 protein expression showed positive expression in low-grade and negative expression in high-grade MEC. Intermediate grade showed more than 50% positive results for Bcl-2. Correlation between grades of MEC and expression of Bcl-2 is statistically significant and can be used for the depicting the prognosis of MEC along with other prognostic and clinico-pathological parameters.

  10. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    Science.gov (United States)

    Schoneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad. PMID:24129924

  11. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    Science.gov (United States)

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  12. EFFECT OF AURICULAR ACUPUNCTURE ON THE LEARNING AND MEMORY AND bcl-2 EXPRESSION IN VASCULAR DEMENTIA RATS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuezhao; XIAO Maolei; SUN Guojie

    2002-01-01

    Objective: To study the effect of auricular acupuncture on dysmnesia and the relationship between the memory improvement and bcl-2 protein expression in vascular dementia (VD) rats. Methods: Forty Wistar rats were randomized into control group, VD group, acupuncture+ VD group and pseudo-operation group, with 10 cases in each group. Rat VD model was established by using 4-vessel occlusion method. Otopoint "Nao"-point and "Shen"(MA-SC)were punctured, once daily continuously for 15 days. The rats' memory capability was tested with Y-maze method and bcl-2 expression of the brain tissues displayed by immunohistochemical method and measured using MIAS-2000 Image Analyzer. Results: Results showed that the scores of control group, VD group and acupuncture+ VD group before operation were 5.68±1.29, 6.07±1.67 and 5.86±1.74 respectively, while following auricular acupuncture treatment,the scores of the 3 groups were 5.81±1.51, 18.06±2.68 and 8.31 ± 1.85 separately, suggesting that the VD rat's learning and memory abilities in acupuncture+ VD group were raised apparently in comparison with those of VD group (P < 0.01 ). In control, VD and acupuncture+VD group, bcl-2 immuno-reaction positive neurons in CA1 area of the hippocampus were 14.31 ± 4.87, 28.67 ± 5.63 and 65.74 ± 8.19 respectively, displaying that the improvement of learning and memory abilities caused by auricular acupuncture treatment may be related to the up-regulation of bcl-2expression (an inhibitory gene of apoptosis). In comparison with control group, the loss of neurons in the pyramidal cell layer of the hippocampal CA1 area of VD group was more severe, while that of acupuncture group was markedly lighter. Conclusion: Auricular acupuncture of otopoint "Nao"-point and "Shen" (MA-SC) can raise the learning and memory abilities of VD rats, which may be realized by its inhibitory effect on apoptosis and the protection action on ischemic hippocampal neurons.

  13. The studies on thyrocyte apoptosis and expression of Bcl-2 and Bax in Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Zhao Yaping; Wang Jialing; Fan Zhiyong; Liu Zehong; Wu HeJun; Zhou Wei; Jia Meizhai

    2003-01-01

    To investigate the thyrocyte apoptosis, the expression of Bcl-2, Bax and the relationship between apoptosis and the pathogenesis in Hashimoto's thyroiditis (HT), 41 HT thyroid and 10 normal thyroid specimens were selected. The level of apoptosis was detected by TUNEL methods. The expression and distribution of Bcl-2 and Bax were detected using immunohistochemical methods and analyzed by Mias99 pathological image system. Immunohistochemical staining was carried out using S-P kit. The Result showed that an increased level of apoptosis was observed in Hashimoto's glands. The apoptosis mainly distributed in thyroid follicles destruction area. This was associated with increased Bax expression. The strongly positive Bcl-2 staining was observed in the thyrocyte of intact thyroid follicles. The ratios of positive granule area and total light density of Bcl-2 to those of Bax in HT thyroid follicle area were lower than those in normal thyroid. The apoptosis of thyrocyte induced by dysregulation of Bcl-2 and Bax may be involved in the pathogeneses of HT

  14. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis

    International Nuclear Information System (INIS)

    Bruchmann, Anja; Roller, Corinna; Walther, Tamara Vanessa; Schäfer, Georg; Lehmusvaara, Sara; Visakorpi, Tapio; Klocker, Helmut; Cato, Andrew C B; Maddalo, Danilo

    2013-01-01

    The Bag (Bcl-2 associated athanogene) family of proteins consists of 6 members sharing a common, single-copied Bag domain through which they interact with the molecular chaperone Hsp70. Bag5 represents an exception in the Bag family since it consists of 5 Bag domains covering the whole protein. Bag proteins like Bag1 and Bag3 have been implicated in tumor growth and survival but it is not known whether Bag5 also exhibits this function. Bag5 mRNA and protein expression levels were investigated in prostate cancer patient samples using real-time PCR and immunoblot analyses. In addition immunohistological studies were carried out to determine the expression of Bag5 in tissue arrays. Analysis of Bag5 gene expression was carried out using one-way ANOVA and Bonferroni’s Multiple Comparison test. The mean values of the Bag5 stained cells in the tissue array was analyzed by Mann-Whitney test. Functional studies of the role of Bag5 in prostate cancer cell lines was performed using overexpression and RNA interference analyses. Our results show that Bag5 is overexpressed in malignant prostate tissue compared to benign samples. In addition we could show that Bag5 levels are increased following endoplasmic reticulum (ER)-stress induction, and Bag5 relocates from the cytoplasm to the ER during this process. We also demonstrate that Bag5 interacts with the ER-resident chaperone GRP78/BiP and enhances its ATPase activity. Bag5 overexpression in 22Rv.1 prostate cancer cells inhibited ER-stress induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 activity while enhancing the IRE1-Xbp1 axis of this pathway. Cells expressing high levels of Bag5 showed reduced sensitivity to apoptosis induced by different agents while Bag5 downregulation resulted in increased stress-induced cell death. We have therefore shown that Bag5 is overexpressed in prostate cancer and plays a role in ER-stress induced apoptosis. Furthermore we have identified GRP78/BiP as a novel

  15. Role of P53 and BCL-2 in high-risk breast cancer patients treated with adjuvant anthracycline-based chemotherapy.

    Science.gov (United States)

    Mottolese, M; Benevolo, M; Del Monte, G; Buglioni, S; Papaldo, P; Nisticò, C; Di Filippo, F; Vasselli, S; Vici, P; Botti, C

    2000-12-01

    Adjuvant therapy has become an integral component of the managment of primary high-risk breast cancer patients. However, a considerable fraction of women receive no benefit from this treatment. This study investigates whether a number of biopathological factors can influence the outcome of patients submitted to adjuvant chemotherapy involving the use of high-dose epirubicin and cyclophosphamide. One hundred and fifty-seven primary breast cancer patients, considered at high risk according to the St. Gallen Meeting Consensus Conference, were evaluated immunohistochemically for estrogen, progesterone receptors, p53, bcl-2, HER-2/neu, and Ki-67, of which the results were correlated with patient outcome. Results obtained demonstrated that p53 is a significant predictor of disease-free survival (DFS P < 0.0001) and overall survival (OS P = 0.0002) both in ductal and lobular carcinomas, whereas bcl-2 expression seems to be of prognostic value only in lobular carcinomas (DFS P = 0.01; OS P = 0.02). This data indicates that in high-risk breast cancer patients the immunohistochemical evaluation of p53 and bcl-2 may be of clinical value in distinguishing different responses to adjuvant anthracycline-based chemotherapy.

  16. A Review on Structures and Functions of Bcl-2 Family Proteins from Homo sapiens.

    Science.gov (United States)

    Sivakumar, Dakshinamurthy; Sivaraman, Thirunavukkarasu

    2016-01-01

    Cancer cells evade apoptosis, which is regulated by proteins of Bcl-2 family in the intrinsic pathways. Numerous experimental three-dimensional (3D) structures of the apoptotic proteins and the proteins bound with small chemical molecules/peptides/proteins have been reported in the literature. In this review article, the 3D structures of the Bcl-2 family proteins from Homo sapiens and as well complex structures of the anti-apoptotic proteins bound with small molecular inhibitors reported in the literature to date have been comprehensively listed out and described in detail. Moreover, the molecular mechanisms by which the Bcl-2 family proteins modulate the apoptotic processes and strategies for designing antagonists to anti-apoptotic proteins have been concisely discussed.

  17. RBP2 Promotes Adult Acute Lymphoblastic Leukemia by Upregulating BCL2.

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    Full Text Available Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL, adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2 was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression.

  18. Mechanism of effect of ionizing radiation on bcl-2 protein expression and apoptosis in mouse thymus

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Aijun; Chen Dong; Liu Shuzheng

    2002-01-01

    Objective: To study the mechanism of effect of ionizing radiation in varied doses of X-rays on bcl-2 express and apoptosis in mouse thymus. Methods: Immunohistochemistry, image analysis and transmission electron microscope were used in the study. Results: The expression of bcl-2 protein was limited within thymic medulla, decreased with 2 Gy, however, increased with 0.075 Gy after whole-body irradiation. Some typical apoptotic cells were found in thymic cortex after 2 Gy irradiation. The apoptotic cells decreased and mitotic metaphase increased after 0.075 Gy irradiation. Conclusion: The mechanism of effect of ionizing radiation on apoptosis of thymus was related with the expression of bcl-2 proteins

  19. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    Science.gov (United States)

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  20. Prognostic significances of overexpression MYC and/or BCL2 in R-CHOP-treated diffuse large B-cell lymphoma: A Systematic review and meta-analysis.

    Science.gov (United States)

    Li, Lu; Li, Yanyan; Que, Ximei; Gao, Xue; Gao, Qian; Yu, Mingxing; Ma, Kaili; Xi, Yanfeng; Wang, Tong

    2018-04-19

    Numerous studies have investigated the prognostic values of MYC and/or BCL2 protein overexpression in diffuse large B-cell lymphoma (DLBCL). However, the results still demonstrate discrepancies among different studies. We aimed to do a systematic review and meta-analysis on the relationships between overexpression MYC and/or BCL2 and DLBCLs treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). This study followed the guidelines of PRISMA and Cochrane handbook. The hazard ratios (HRs) for overall survival (OS) were pooled to estimate the main effect size. Twenty studies recruited a total of 5576 patients were available for this meta-analysis. The results showed that MYC (HR = 1.96, 95%CI (confidence interval) = 1.69-2.27)without heterogeneity(I 2  = 17.2%, P = 0.280), BCL2 (HR = 1.65, 95%CI = 1.43-1.89, I 2  = 20.7%, P = 0.234) protein overexpression, and co-overexpression (HR = 2.58, 95%CI = 2.19-3.04, I 2  = 17.2%, P = 0.275) had a poor prognosis in R-CHOP treated DLBCL patients, respectively. The current analysis indicated that MYC and/or BCL2 protein overexpression, and particularly co-overexpression was related to short overall survival in R-CHOP treated DLBCL patients, showing that application of the two new biomarkers can help to better stratify DLBCL patients and guide targeted treatment.

  1. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  2. Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family.

    Science.gov (United States)

    Gonzalez, Laura E; Juknat, A Ana; Venosa, Andrea J; Verrengia, Noemi; Kotler, Mónica L

    2008-12-01

    Manganese induces the central nervous system injury leading to manganism, by mechanisms not completely understood. Chronic exposure to manganese generates oxidative stress and induces the mitochondrial permeability transition. In the present study, we characterized apoptotic cell death mechanisms associated with manganese toxicity in rat cortical astrocytes and demonstrated that (i) Mn treatment targets the mitochondria and induces mitochondrial membrane depolarization followed by cytochrome c release to the cytoplasm, (ii) Mn induces both effector caspases 3/7 and 6 as well as PARP-1 cleavage and (iii) Mn shifts the balance of cell death/survival of Bcl-2 family proteins to favor the apoptotic demise of astrocytes. Our model system using cortical rat astrocytes treated with Mn would emerge as a good tool for investigations aimed to elucidate the role of apoptosis in manganism.

  3. Gene expression in Catla catla (Hamilton) subjected to acute and protracted doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Anbumani, S., E-mail: aquatox1982@gmail.com; Mohankumar, Mary N., E-mail: marynmk@gmail.com

    2016-09-15

    Highlights: • Gamma radiation induced up- and down- regulation of cell cycle genes. • Protracted dose-rate induced gene up-regulation to facilitate cell survival. • bcl-2 gene facilitates repair at protracted dose and cell death at acute exposures. • gadd45α, cdk1 and bcl-2 genes work in concert to promote ‘repair’ and ‘death’ circuitries in fish blood cells. - Abstract: Studies on transcriptional modulation after gamma radiation exposure in fish are limited. Cell cycle perturbations and expression of apoptotic genes were investigated in the fish, Catla catla after acute and protracted exposures to gamma radiation over a 90 day period. Significant changes in gene expression were observed between day 1 and 90 post-exposure. Gamma radiation induced a significant down-regulation of target genes gadd45α, cdk1 and bcl-2 from day 1 to day 3 after protracted exposure, whereas it persists till day 6 upon acute exposure. From day 12 onwards, Gadd45α, cdk1 and bcl-2 genes were up-regulated following protracted exposure, indicating DNA repair, cell-cycle arrest and apoptosis. There exists a linear correlation between these genes (gadd45α – r = 0.85, p = 0.0073; cdk1 – r = 0.86, p = 0.0053; bcl-2 – r = 0.89, p = 0.0026) at protracted exposures. This is the first report on the dual role of bcl-2 gene in fish exposed to acute and protracted radiation and correlation among the aforementioned genes that work in concert to promote ‘repair’ and ‘death’ circuitries in fish blood cells.

  4. Gene expression in Catla catla (Hamilton) subjected to acute and protracted doses of gamma radiation

    International Nuclear Information System (INIS)

    Anbumani, S.; Mohankumar, Mary N.

    2016-01-01

    Highlights: • Gamma radiation induced up- and down- regulation of cell cycle genes. • Protracted dose-rate induced gene up-regulation to facilitate cell survival. • bcl-2 gene facilitates repair at protracted dose and cell death at acute exposures. • gadd45α, cdk1 and bcl-2 genes work in concert to promote ‘repair’ and ‘death’ circuitries in fish blood cells. - Abstract: Studies on transcriptional modulation after gamma radiation exposure in fish are limited. Cell cycle perturbations and expression of apoptotic genes were investigated in the fish, Catla catla after acute and protracted exposures to gamma radiation over a 90 day period. Significant changes in gene expression were observed between day 1 and 90 post-exposure. Gamma radiation induced a significant down-regulation of target genes gadd45α, cdk1 and bcl-2 from day 1 to day 3 after protracted exposure, whereas it persists till day 6 upon acute exposure. From day 12 onwards, Gadd45α, cdk1 and bcl-2 genes were up-regulated following protracted exposure, indicating DNA repair, cell-cycle arrest and apoptosis. There exists a linear correlation between these genes (gadd45α – r = 0.85, p = 0.0073; cdk1 – r = 0.86, p = 0.0053; bcl-2 – r = 0.89, p = 0.0026) at protracted exposures. This is the first report on the dual role of bcl-2 gene in fish exposed to acute and protracted radiation and correlation among the aforementioned genes that work in concert to promote ‘repair’ and ‘death’ circuitries in fish blood cells.

  5. Normal Hematopoietic Progenitor Subsets Have Distinct Reactive Oxygen Species, BCL2 and Cell-Cycle Profiles That Are Decoupled from Maturation in Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Naeem Khan

    Full Text Available In acute myeloid leukemia (AML quiescence and low oxidative state, linked to BCL2 mitochondrial regulation, endow leukemic stem cells (LSC with treatment-resistance. LSC in CD34+ and more mature CD34- AML have heterogeneous immunophenotypes overlapping with normal stem/progenitor cells (SPC but may be differentiated by functional markers. We therefore investigated the oxidative/reactive oxygen species (ROS profile, its relationship with cell-cycle/BCL2 for normal SPC, and whether altered in AML and myelodysplasia (MDS. In control BM (n = 24, ROS levels were highest in granulocyte-macrophage progenitors (GMP and CD34- myeloid precursors but megakaryocyte-erythroid progenitors had equivalent levels to CD34+CD38low immature-SPC although they were ki67high. BCL2 upregulation was specific to GMPs. This profile was also observed for CD34+SPC in MDS-without-excess-blasts (MDS-noEB, n = 12. Erythroid CD34- precursors were, however, abnormally ROS-high in MDS-noEB, potentially linking oxidative stress to cell loss. In pre-treatment AML (n = 93 and MDS-with-excess-blasts (MDS-RAEB (n = 14, immunophenotypic mature-SPC had similar ROS levels to co-existing immature-SPC. However ROS levels varied between AMLs; Flt3ITD+/NPM1wild-type CD34+SPC had higher ROS than NPM1mutated CD34+ or CD34- SPC. An aberrant ki67lowBCL2high immunophenotype was observed in CD34+AML (most prominent in Flt3ITD AMLs but also in CD34- AMLs and MDS-RAEB, suggesting a shared redox/pro-survival adaptation. Some patients had BCL2 overexpression in CD34+ ROS-high as well as ROS-low fractions which may be indicative of poor early response to standard chemotherapy. Thus normal SPC subsets have distinct ROS, cell-cycle, BCL2 profiles that in AML /MDS-RAEB are decoupled from maturation. The combined profile of these functional properties in AML subpopulations may be relevant to differential treatment resistance.

  6. Is upregulation of BCL2 a determinant of tumor development driven by inactivation of CDH1/E-cadherin?

    Directory of Open Access Journals (Sweden)

    Inga Karch

    Full Text Available Inactivation of CDH1, encoding E-cadherin, promotes cancer initiation and progression. According to a newly proposed molecular mechanism, loss of E-cadherin triggers an upregulation of the anti-apoptotic oncoprotein BCL2. Conversely, reconstitution of E-cadherin counteracts overexpression of BCL2. This reciprocal regulation is thought to be critical for early tumor development. We determined the relevance of this new concept in human infiltrating lobular breast cancer (ILBC, the prime tumor entity associated with CDH1 inactivation. BCL2 expression was examined in human ILBC cell lines (IPH-926, MDA-MB-134, SUM-44 harboring deleterious CDH1 mutations. To test for an intact regulatory axis between E-cadherin and BCL2, wild-type E-cadherin was reconstituted in ILBC cells by ectopic expression. Moreover, BCL2 and E-cadherin were evaluated in primary invasive breast cancers and in synchronous lobular carcinomas in situ (LCIS. MDA-MB-134 and IPH-926 showed little or no BCL2 expression, while SUM-44 ILBC cells were BCL2-positive. Reconstitution of E-cadherin failed to impact on BCL2 expression in all cell lines tested. Primary ILBCs were almost uniformly E-cadherin-negative (97% and were frequently BCL2-negative (46%. When compared with an appropriate control group, ILBCs showed a trend towards an increased frequency of BCL2-negative cases (P = 0.064. In terminal duct-lobular units affected by LCIS, the E-cadherin-negative neoplastic component showed a similar or a reduced BCL2-immunoreactivity, when compared with the adjacent epithelium. In conclusion, upregulation of BCL2 is not involved in lobular breast carcinogenesis and is unlikely to represent an important determinant of tumor development driven by CDH1 inactivation.

  7. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer

    International Nuclear Information System (INIS)

    Zerp, Shuraila F.; Stoter, T. Rianne; Hoebers, Frank J. P.; Brekel, Michiel W. M. van den; Dubbelman, Ria; Kuipers, Gitta K.; Lafleur, M. Vincent M.; Slotman, Ben J.; Verheij, Marcel

    2015-01-01

    Pro-survival Bcl-2 family members can promote cancer development and contribute to treatment resistance. Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. Inhibition of anti-apoptotic Bcl-2 family members therefore represents an appealing strategy to overcome resistance to anti-cancer therapies. The aim of this study was to evaluate combined effects of radiation and the pan-Bcl-2 inhibitor AT-101 in HNSCC in vitro. In addition, we determined human plasma levels of AT-101 obtained from a phase I/II trial, and compared these with the effective in vitro concentrations to substantiate therapeutic opportunities. We examined the effect of AT-101, radiation and the combination on apoptosis induction and clonogenic survival in two HNSCC cell lines that express the target proteins. Apoptosis was assessed by bis-benzimide staining to detect morphological nuclear changes and/or by propidium iodide staining and flow-cytometry analysis to quantify sub-diploid apoptotic nuclei. The type of interaction between AT-101 and radiation was evaluated by calculating the Combination Index (CI) and by performing isobolographic analysis. For the pharmacokinetic analysis, plasma AT-101 levels were measured by HPLC in blood samples collected from patients enrolled in our clinical phase I/II study. These patients with locally advanced HNSCC were treated with standard cisplatin-based chemoradiotherapy and received dose-escalating oral AT-101 in a 2-weeks daily schedule every 3 weeks. In vitro results showed that AT-101 enhances radiation-induced apoptosis with CI’s below 1.0, indicating synergy. This effect was sequence-dependent. Clonogenic survival assays demonstrated a radiosensitizing effect with a DEF 37 of 1.3 at sub-apoptotic concentrations of AT-101. Pharmacokinetic analysis

  8. Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules.

    Science.gov (United States)

    Yap, Jeremy L; Chen, Lijia; Lanning, Maryanna E; Fletcher, Steven

    2017-02-09

    A hallmark of cancer is the evasion of apoptosis, which is often associated with the upregulation of the antiapoptotic members of the Bcl-2 family of proteins. The prosurvival function of the antiapoptotic Bcl-2 proteins is manifested by capturing and neutralizing the proapoptotic Bcl-2 proteins via their BH3 death domains. Accordingly, strategies to antagonize the antiapoptotic Bcl-2 proteins have largely focused on the development of low-molecular-weight, synthetic BH3 mimetics ("magic bullets") to disrupt the protein-protein interactions between anti- and proapoptotic Bcl-2 proteins. In this way, apoptosis has been reactivated in malignant cells. Moreover, several such Bcl-2 family inhibitors are presently being evaluated for a range of cancers in clinical trials and show great promise as new additions to the cancer armamentarium. Indeed, the selective Bcl-2 inhibitor venetoclax (Venclexta) recently received FDA approval for the treatment of a specific subset of patients with chronic lymphocytic leukemia. This review focuses on the major developments in the field of Bcl-2 inhibitors over the past decade, with particular emphasis on binding modes and, thus, the origins of selectivity for specific Bcl-2 family members.

  9. Stress Hormone Cortisol Enhances Bcl2 Like-12 Expression to Inhibit p53 in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing

    2017-12-01

    The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.

  10. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    Full Text Available AS1411 binds nucleolin (NCL and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA. AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  11. Concurrent inhibition of MYC and BCL2 is a potentially effective treatment strategy for double hit and triple hit B-cell lymphomas.

    Science.gov (United States)

    Cinar, Munevver; Rosenfelt, Fred; Rokhsar, Sepehr; Lopategui, Jean; Pillai, Raju; Cervania, Melissa; Pao, Andy; Cinar, Bekir; Alkan, Serhan

    2015-07-01

    Double hit lymphoma or triple hit lymphoma (DHL/THL) is a rare form of aggressive B-Cell Lymphoma. Overexpression of MYC, BCL2 or/and BCL6 due to genomic rearrangements are the key molecular features of DHL/THL. Patients with DHL/THL show very aggressive disease course and poor survival due to the lack of effective treatment modalities. Here, we established new THL cell model and assessed its in vitro growth characteristics along with the DHL cell line in response to potent MYC inhibitors, 10058-F4 and JQ-1, and a BCL2 inhibitor, ABT-199, with or without chemotherapeutic agent vincristine or doxorubicin. We found that 10058-F4, JQ-1 or ABT-199 exposure as a single agent inhibited the growth of DHL/THL cells in a dose-dependent manner. Combined exposure of 10058-F4 or JQ-1 and ABT-199 as well as vincristine or doxorubicin markedly suppressed the growth of DHL/THL cells compared with the single treatment. As assessed by multiple approaches, apoptosis induced by ABT-199, 10058-F4 or JQ-1 was underlying cause of the observed growth suppression. These findings suggest that co-inhibition of MYC and BCL2 signaling is a promising therapeutic strategy for patients with DHL/THL lymphomas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. BCL-2, in combination with MVP and IGF-1R expression, improves prediction of clinical outcome in complete response cervical carcinoma patients treated by radiochemotherapy.

    Science.gov (United States)

    Henríquez-Hernández, Luis Alberto; Lloret, Marta; Pinar, Beatriz; Bordón, Elisa; Rey, Agustín; Lubrano, Amina; Lara, Pedro Carlos

    2011-09-01

    To investigate whether BCL-2 expression would improve MVP/IGF-1R prediction of clinical outcome in cervix carcinoma patients treated by radiochemotherapy, and suggest possible mechanisms behind this effect. Fifty consecutive patients, who achieved complete response to treatment, from a whole series of 60 cases suffering from non-metastatic localized cervical carcinoma, were prospectively included in this study from July 1999 to December 2003. Follow-up was closed in January 2011. All patients received pelvic radiation (45-64.80 Gy in 1.8-2 Gy fractions) with concomitant cisplatin at 40 mg/m2/week doses followed by brachytherapy. Oncoprotein expression was studied by immunohistochemistry in paraffin-embedded tumour tissue. No relation was found between BCL-2 and clinicopathological variables. High MVP/IGF-1R/BCL-2 tumour expression was strongly related to poor local and regional disease-free survival (PMVP, and IGF-1R overexpression were related to poorer clinical outcome in cervical cancer patients who achieved clinical complete response to radiochemotherapy. The NHEJ repair protein Ku70/80 expression could be involved in the regulation of these oncoproteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. B cell lymphoma-2 (BCL-2) homology domain 3 (BH3) mimetics demonstrate differential activities dependent upon the functional repertoire of pro- and anti-apoptotic BCL-2 family proteins.

    Science.gov (United States)

    Renault, Thibaud T; Elkholi, Rana; Bharti, Archana; Chipuk, Jerry E

    2014-09-19

    The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these "BH3 mimetics" in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy

    Directory of Open Access Journals (Sweden)

    Hosein Azimian

    2018-03-01

    Full Text Available Objective(s: Radiotherapy is one of the most effective modalities of cancer therapy, but clinical responses of individual patients varies considerably. To enhance treatment efficiency it is essential to implement an individual-based treatment. The aim of present study was to identify the mechanism of intrinsic apoptosis pathway on radiosensitivity and normal tissue complications caused by the radiotherapy. Materials and Methods: Peripheral blood mononuclear cells from ten breast cancer patients were exposed to 6MV X-rays to deliver 1 and 2 Gy. Expression levels of Bax, Bcl-2, and Bax/Bcl-2 ratio were examined by relative quantitative RT-PCR. All the patients received similar tangential irradiation of the whole breast and conventional fractionation. Skin dosimetry was done by GAFChromic EBT-3 film and clinical radiosensitivity was determined using the acute reactions to radiotherapy of the skin according to Radiation Therapy Oncology Group score. All statistical analyses were performed using GraphPad Prism, version 7.01. Results: In the in-vitro experiment, Bax and Bax/Bcl-2 ratios were significantly increased with 1 and 2 Gy doses (PP0.05 for all patients. Conclusion: Significant correlation between Bax/Bcl-2 ratio determined before radiation therapy and clinical response in the patients, can be used as a biomarker to identify radiosensitive individuals. However, further studies are required to validate radiation-induced apoptotic biomarkers.

  15. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes.

    Science.gov (United States)

    Lee, Erinna F; Clarke, Oliver B; Evangelista, Marco; Feng, Zhiping; Speed, Terence P; Tchoubrieva, Elissaveta B; Strasser, Andreas; Kalinna, Bernd H; Colman, Peter M; Fairlie, W Douglas

    2011-04-26

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.

  16. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    Science.gov (United States)

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with “BH3 mimetic” drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment. PMID:21444803

  17. Mutational analysis of Bax and Bcl-2 in childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Salomons, G. S.; Buitenhuis, C. K.; Martínez Muñoz, C.; Verwijs-Jassen, M.; Behrendt, H.; Zsiros, J.; Smets, L. A.

    1998-01-01

    In childhood acute lymphoblastic leukaemia there are large interpatient variations in levels of the apoptosis-regulating proteins Bax and Bcl-2, but the molecular basis for this variation is unknown. Point-mutations in bax have been reported in cell lines derived from haematological malignancies.

  18. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.

    Science.gov (United States)

    Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P

    2001-05-01

    We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.

  19. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway.

    Science.gov (United States)

    Pan, Yundan; Wang, Na; Xia, Pingping; Wang, E; Guo, Qulian; Ye, Zhi

    2018-02-01

    Although the neuroprotective effects of Rac1 inhibition have been reported in various cerebral ischemic models, the molecular mechanisms of action have not yet been fully elucidated. In this study, we investigated whether the inhibition of Rac1 provided neuroprotection in a diabetic rat model of focal cerebral ischemia and hyperglycemia-exposed PC-12 cells. Intracerebroventricular administration of lentivirus expressing the Rac1 small hairpin RNA (shRNA) and specific Rac1 inhibitor NSC23766 not only decreased the infarct volumes and improved neurologic deficits with a correlated significant activation of mitochondrial DNA specific proteins, such as OGG1 and POLG, but also elevated Bcl-2 S70 phosphorylation in mitochondria. Furthermore, the levels of p-PI3K, p-Akt and p-mTOR increased, while 8-OHdG, ROS production and Bcl-2/Rac1 complex formation in mitochondria reduced in both Rac1-shRNA- and NSC23766-treated rats. Moreover, to confirm our in vivo observations, inhibition of Rac1 activity by NSC23766 suppressed the interactions between Bcl-2 and Rac1 in the mitochondria of PC-12 cells cultured in high glucose conditions and protected PC-12 cells from high glucose-induced neurotoxicity. More importantly, these beneficial effects of Rac1 inhibition were abolished by PI3K inhibitor LY294002. In contrast to NSC23766 treatment, LY294002 had little effect on the decrement of p-PTEN level. Taken together, these findings revealed novel neuroprotective roles of Rac1 inhibition against cerebral ischemic reperfusion injury in vivo and high glucose-induced neurotoxicity in PC-12 cells in vitro, by reducing Bcl-2/Rac1 complex formation in mitochondria through the activation of PI3K/Akt/mTOR survival pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. XIAP impairs mitochondrial function during apoptosis by regulating the Bcl-2 family in renal cell carcinoma.

    Science.gov (United States)

    Chen, Chao; Liu, Tian Shu; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-05-01

    Efficient apoptosis requires Bcl-2 family-mediated mitochondrial outer membrane permeabilization (MOMP), which releases pro-apoptotic proteins to the cytosol, activating apoptosis and inhibiting X-linked inhibitor of apoptosis protein (XIAP). XIAP is a member of the inhibitors of apoptosis protein family whose expression is elevated in many cancer types and participates in the release of pro-apoptotic proteins. To explore the association between XIAP and the Bcl-2 family, and the influence of XIAP on mitochondria, RNA interference of XIAP was performed in Caki-1 cells and the dynamic change in the levels of related proteins was compared with the original Caki-1 cells upon induction of apoptosis. Upon knockdown of XIAP, the release of cytochrome c (Cyt-c), second mitochondria-derived activator of caspase (Smac) and apoptotic protease activating factor 1 (Apaf-1) from mitochondria proceeded normally, whereas in Caki-1 cells, the release of these pro-apoptotic proteins was significantly prolonged, and incomplete. Downregulation of XIAP through small interfering RNA resulted in an increase of apoptosis and a marked decrease in Bcl-2 and Bcl-xl levels at 3 h. Additionally, the regulation of the level of XIAP protein affected the specific ratios of Bcl-2/Bax and Bcl-xl/Bax, which play decisive roles in cell death. In the present study, it was revealed that XIAP can feed back to mitochondria, delaying Cyt-c and Apaf-1 release. Furthermore, XIAP can limit the release of its inhibitor Smac with the involvement of Bcl-2 family proteins.

  1. PPAR-γ Silencing Inhibits the Apoptosis of A549 Cells by Upregulating Bcl-2

    Directory of Open Access Journals (Sweden)

    Jingyu YANG

    2013-03-01

    Full Text Available Background and objective Drug resistance is the one of primary causes of death in patients with lung cancer, PPAR-γ could induce the apoptosis and reverse drug resistance. The aim of this study is to investigate the expression of PPAR-γ on cisplatin sensitivity and apoptosis response of human lung cancer cell line A549. Methods Reconstruction of PPAR-γ silencing A549 cells (A549/PPAR-γ(- by siRNA. MTT assay was employed to determine the effect of cisplatin on the proliferation of A549/PPAR-γ(-, flow cytometry to determine the effect of cisplatin on the cell apoptosis, Western blot to determine the change of phosphorylation of Akt, caspase-3 and expression of bcl-2/bax. Finally, RT-PCR was employed to determine the transcriptional level of bcl-2. Results Two PPAR-γ silencing A549 cell clones were established successfully, and the expression of PPAR-γ was downregulated significantly as confirmed by RT-PCR and Western blot. After PPAR-γ silencing, the resistance of these two A549 clones to cisplatin was increased by 1.29-fold and 1.60-fold respectively. Flow cytometry showed that the apoptosis rate was decreased, and Western Blot showed that the phosphorylation of Akt and expression of bcl-2/bax were upregulated, caspase-3 was downregulated. Finally, RT-PCR showed that the transcriptional level of bcl-2 was upregulated as well. Conclusion Downregulation of PPAR-γ in A549 cells led to increase of cisplatin resistance. One of the mechanisms was upregulatin of phosphorylation of Akt and expression of bcl-2, which inhibited the apoptosis of cells. The downregulation of PPAR-γ is a possible mechanism that leads to the clinical drug resistance of cancer.

  2. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Yadav, Santosh; Shi Yongli; Wang Feng; Wang He

    2010-01-01

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs III ) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs III induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs III in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs III can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  3. Targeting of BCL2 Family Proteins with ABT-199 and Homoharringtonine Reveals BCL2- and MCL1-Dependent Subgroups of Diffuse Large B-Cell Lymphoma

    Czech Academy of Sciences Publication Activity Database

    Klanova, M.; Anděra, Ladislav; Bražina, Jan; Švadlenka, Jan; Benešová, Simona; Soukup, J.; Průková, D.; Vejmelkova, D.; Jaksa, R.; Helman, K.; Vockova, P.; Lateckova, L.; Molinsky, J.; Maswabi, B.C.; Alam, M.; Kodet, R.; Pytlik, R.; Trneny, M.; Klener, P.

    2016-01-01

    Roč. 22, č. 5 (2016), s. 1138-1149 ISSN 1078-0432 R&D Projects: GA ČR GA14-19590S Institutional support: RVO:68378050 Keywords : NON-HODGKINS-LYMPHOMA * PROGNOSTIC-SIGNIFICANCE * OMACETAXINE MEPESUCCINATE * GENE-EXPRESSION * APOPTOSIS * REARRANGEMENT * SURVIVAL * LEUKEMIA * CANCER * AGENTS Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 9.619, year: 2016

  4. Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells

    Science.gov (United States)

    Patzelt, Thomas; Keppler, Selina J.; Gorka, Oliver; Thoene, Silvia; Wartewig, Tim; Reth, Michael; Förster, Irmgard; Lang, Roland; Buchner, Maike; Ruland, Jürgen

    2018-01-01

    The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1. Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma. PMID:29507226

  5. Bcl2-independent chromatin cleavage is a very early event during induction of apoptosis in mouse thymocytes after treatment with either dexamethasone or ionizing radiation.

    Science.gov (United States)

    Hahn, Peter J; Lai, Zhi-Wei; Nevaldine, Barbara; Schiff, Ninel; Fiore, Nancy C; Silverstone, Allen E

    2003-11-01

    We have quantified the emergence of early chromatin breaks during the signal transduction phase of apoptosis in mouse thymocytes after treatment with either ionizing radiation or dexamethasone. Dexamethasone at 1 microM can induce significant levels of DNA breaks (equivalent to the amount induced directly by 7.5 Gy ionizing radiation) within 0.5 h of treatment. The execution phase of apoptosis was not observed until 4-6 h after the same treatment. The presence of the Bcl2 transgene under the control of the p56lck promoter almost completely inhibited apoptosis up to 24 h after treatment, but it had virtually no effect on the early chromatin cleavage occurring in the first 6 h. Ionizing radiation induced chromatin cleavage both directly by damaging DNA and indirectly with kinetics similar to the induction of chromatin cleavage by dexamethasone. The presence of the Bcl2 transgene had no effect on the direct or indirect radiation-induced cleavage in the first 6 h, but after the first 6 h, the Bcl2 gene inhibited further radiation-induced chromatin cleavage. These results suggest that endonucleases are activated within minutes of treatment with either dexamethasone or ionizing radiation as part of the very early signal transduction phase of apoptosis, and prior to the irreversible commitment to cell death.

  6. MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2

    Science.gov (United States)

    Werner, Tamara V.; Hart, Martin; Nickels, Ruth; Kim, Yoo-Jin; Menger, Michael D.; Bohle, Rainer M.; Keller, Andreas; Ludwig, Nicole; Meese, Eckart

    2017-01-01

    Micro (mi)RNAs are short, noncoding RNAs and deregulation of miRNAs and their targets are implicated in tumor generation and progression in many cancers. Meningiomas are mostly benign, slow growing tumors of the central nervous system with a small percentage showing a malignant phenotype. Following in silico prediction of potential targets of miR-34a-3p, SMAD4, FRAT1, and BCL2 have been confirmed as targets by dual luciferase assays with co-expression of miR-34a-3p and reporter gene constructs containing the respective 3'UTRs. Disruption of the miR-34a-3p binding sites in the 3'UTRs resulted in loss of responsiveness to miR-34a-3p overexpression. In meningioma cells, overexpression of miR-34a-3p resulted in decreased protein levels of SMAD4, FRAT1 and BCL2, while inhibition of miR-34a-3p led to increased levels of these proteins as confirmed by Western blotting. Furthermore, deregulation of miR-34a-3p altered cell proliferation and apoptosis of meningioma cells in vitro. We show that SMAD4, FRAT1 and BCL2 are direct targets of miR-34a-3p and that deregulation of miR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro. As part of their respective signaling pathways, which are known to play a role in meningioma genesis and progression, deregulation of SMAD4, FRAT1 and BCL2 might contribute to the aberrant activation of these signaling pathways leading to increased proliferation and inhibition of apoptosis in meningiomas. PMID:28340489

  7. Adenocarcinoma of the esophagogastric junction: relationship between clinicopathological data and p53, cyclin D1 and Bcl-2 immunoexpressions Adenocarcinoma da junção esôfago-gástrica: relação entre os dados cllnipatológicos e a imunoexpressão de p53, ciclina D1 e Bcl-2

    Directory of Open Access Journals (Sweden)

    Dárcio Matenhauer Lehrbach

    2009-12-01

    Full Text Available CONTEXT: Esophagogastric junction adenocarcinoma has an aggressive behavior, and TNM (UICC staging is not always accurate enough to categorize patient's outcome. OBJECTIVES: To evaluated p53, cyclin D1 and Bcl-2 immunoexpressions in esophagogastric junction adenocarcinoma patients, without Barrett's esophagus, and to compared to clinicopathological characteristics and survival rate. METHODS: Tissue sections from 75 esophagogastric junction adenocarcinomas resected from 1991 to 2003 were analyzed by immunohistochemistry for p53, cyclin D1 and Bcl-2 using streptavidin-biotin-peroxidase method. The mean follow-up time was 60 months SD = 61.5 (varying from 4 to 273 months. RESULTS: Fifty (66.7% of the tumors were intestinal type and 25 (33.3% were diffuse. Vascular, lymph node and perineural infiltration were verified in 16%, 80% and 68% of the patients, respectively. The patients were distributed according to the TNM staging in IA in 4 (5.3%, IB in 10 (13.3%, II in 15 (20%, IIA in 15 (20%, IIIB in 15 (20% and IV in 16 (21.3%. Immunohistochemical analysis was positive for p53, cyclin D1 and bcl-2 in 68%, 18.7% and 100%, respectively. There was no association between immunoexpression and vascular and/or perineural invasions, clinicopathological characteristics and patients' survival rate. CONCLUSION: In this selected population, there was no association between the immunomarkers, p53, cyclin D1 and bcl-2 and clinicopathological data and/or overall survival.CONTEXTO: O adenocarcinoma da junção esôfago-gástrica tem um comportamento agressivo e o estádio TNM não é sempre suficiente para categorizar o paciente de acordo com a evolução do mesmo. OBJETIVO: Avaliar a imunoexpressão do p53, ciclina D1 e Bcl-2 em pacientes com adenocarcinoma da junção esôfago-gástrica sem esôfago de Barrett e comparar com as características clínicas e sobrevida. MÉTODOS: Cortes histológicos de 75 adenocarcinomas da esôfago-gástrica ressecados de 1991 a

  8. Combining Gene Signatures Improves Prediction of Breast Cancer Survival

    Science.gov (United States)

    Zhao, Xi; Naume, Bjørn; Langerød, Anita; Frigessi, Arnoldo; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lingjærde, Ole Christian

    2011-01-01

    Background Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123) and test set (n = 81), respectively. Gene sets from eleven previously published gene signatures are included in the study. Principal Findings To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014). Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001). The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. Conclusion Combining the predictive strength of multiple gene signatures improves prediction of breast

  9. Combining gene signatures improves prediction of breast cancer survival.

    Directory of Open Access Journals (Sweden)

    Xi Zhao

    Full Text Available BACKGROUND: Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123 and test set (n = 81, respectively. Gene sets from eleven previously published gene signatures are included in the study. PRINCIPAL FINDINGS: To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014. Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001. The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. CONCLUSION: Combining the predictive strength of multiple gene signatures improves

  10. Canonical Bcl-2 motifs of the Na+/K+ pump revealed by the BH3 mimetic chelerythrine: early signal transducers of apoptosis?

    Science.gov (United States)

    Lauf, Peter K; Heiny, Judith; Meller, Jarek; Lepera, Michael A; Koikov, Leonid; Alter, Gerald M; Brown, Thomas L; Adragna, Norma C

    2013-01-01

    Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss) in human lens epithelial cells [LECs]. K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. CET inhibited NKP and NKCC by >90% (IC50 values ~35 and ~15 μM, respectively) without significant KCC activity change, and stimulated K+ loss by ~35% at 10-30 μM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN) was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet unrecognized signal transducers in the initial phases of apoptosis. CET

  11. Canonical Bcl-2 Motifs of the Na+/K+ Pump Revealed by the BH3 Mimetic Chelerythrine: Early Signal Transducers of Apoptosis?

    Directory of Open Access Journals (Sweden)

    Peter K. Lauf

    2013-02-01

    Full Text Available Background/Aims: Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss in human lens epithelial cells [LECs]. Methods: K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. Results: CET inhibited NKP and NKCC by >90% (IC50 values ∼35 and ∼15 µM, respectively without significant KCC activity change, and stimulated K+ loss by ∼35% at 10-30 µM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Conclusion: Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet

  12. The role of BCL-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Meyn, Raymond E.

    1997-01-01

    Objective: The expression of the bcl-2 gene has been associated with resistance to radiation induced apoptosis. There is evidence that the bcl-2 protein acts in the antioxidant pathways to block the effects of reactive oxygen spieces that mediate apoptosis possibly by increasing the levels of intracellular glutathione. Our hypothesis is that pretreatment of radiation-sensitive cells, known to lack bcl-2 expression, with antioxidants will reduce radiation-induced apoptosis. For this purpose, the apoptotic response to radiation and the intracellular levels of glutathione were tested before and after pretreatment with antioxidants in two murine lymphoma cell lines, a radiation resistant-bcl-2 expressing (Ly-ar) line and a radiation sensitive (Ly-as) line. Methods and Materials: Ly-ar and Ly-as cells were irradiated at 0,1,2,3 and 4 hours before collection. The intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were determined by the use of the fluorescent dye ophthalaldehyde. Ly-as cells were pretreated with dihydrolipoic acid and lipoamide for 1 hour before irradiation. Apoptosis response was measured by the DNA fragmentation assay. The radiation dose was 2.5 Gy. Results: After irradiation, the apoptotic rate of Ly-ar and Ly-as cells is 11-19% and 66-87% respectively. Ly-ar cells have higher intracellular GSH and GSSG levels compared to Ly-as cells by 69.9% and 91.9% respectively and the GSH/GSSG ratio in Ly-ar and Ly-as cells is 17.09 and 15.09 respectively (a difference of 13.25%). GSH levels do not change during the first three hours after irradiation; however there is a 46% reduction at four hours after irradiation, a time at which the Ly-as cells have already fragmented their DNA. Pretreatment of cells with dihydrolipoic acid or lipoamide at concentrations of 4mM and 2mM respectively was toxic and resulted in cell death in the absence of irradiation. Conclusions: GSH and GSSG levels are elevated in radiation-resistant murine lymphoma cells

  13. Influence of p53 and bcl-2 on chemosensitivity in benign and malignant prostatic cell lines.

    Science.gov (United States)

    Serafin, Antonio M; Bohm, Lothar

    2005-01-01

    The administration of cancer chemotherapeutic agents results in an increase in the apoptotic cells in the tumor: therefore, it has been assumed that anticancer drugs exhibit their cytotoxic effects via apoptotic signaling pathways. Characteristics that confer sensitivity to drug-induced apoptosis are, a functional p53 protein and expression of the apoptosis-promoting protein, bax. The role of p53 and bax/bcl-2 in drug-induced apoptosis was assessed in six prostate cell lines, 1532T, 1535T, 1542T, 1542N, BPH-1 and LNCaP using TD(50) concentrations of etoposide, vinblastine and estramustine. Cell death was monitored morphologically by fluorescent microscopy, and by flow cytometry (Annexin-V assay). Apoptotic morphology was rather low and ranged from 0.1% to 12.1%, 3.0% to 6.0% and 0.1% to 8.5% for etoposide, estramustine and vinblastine, respectively. Annexin-V binding and flow cytometry indicated apoptotic propensities of 0% to 4%, 0% to 3% and 0% to 5%, respectively. The percentage of cells responding to drug-induced apoptosis was, on average, higher in the tumor cell lines than in the normal cell lines, but showed no correlation with p53 status. The percentage of cells showing necrosis, assessed by Annexin binding and Propidium Iodide permeability in aqueous medium, tended to be much higher, and was found to be at the level of 5% to 30%. Immunoblotting demonstrated that bax and bcl-2 proteins were expressed at a basal level in all cell lines, but did not increase after exposure to TD(50) doses of the three drugs. The ratio of bax and bcl-2, measured by laser scanning densitometry, was not altered by the drug-induced DNA damage. The results suggest that apoptosis is not a major mechanism of drug-induced cell death in prostate cell lines and appears to be independent of p53 status and bax/bcl-2 expression.

  14. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production

    International Nuclear Information System (INIS)

    Jauharoh, Siti Nur Aisyah; Saegusa, Jun; Sugimoto, Takeshi; Ardianto, Bambang; Kasagi, Shimpei; Sugiyama, Daisuke; Kurimoto, Chiyo; Tokuno, Osamu; Nakamachi, Yuji; Kumagai, Shunichi; Kawano, Seiji

    2012-01-01

    Highlights: ► Ro52 low HeLa cells are resistant to apoptosis upon various stimulations. ► Ro52 is upregulated by IFN-α, etoposide, or IFN-γ and anti-Fas Ab. ► Ro52-mediated apoptosis is independent of p53. ► Ro52 selectively regulates Bcl-2 expression. -- Abstract: SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52’s role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52 low HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H 2 O 2 - or diamide-induced oxidative stress, IFN-α, IFN-γ and anti-Fas antibody, etoposide, or γ-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.

  15. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Jauharoh, Siti Nur Aisyah [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Faculty of Medicine and Health Science, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Saegusa, Jun; Sugimoto, Takeshi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Ardianto, Bambang [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Child Health, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55282 (Indonesia); Kasagi, Shimpei; Sugiyama, Daisuke; Kurimoto, Chiyo [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Tokuno, Osamu; Nakamachi, Yuji [Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan); Kumagai, Shunichi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Kawano, Seiji, E-mail: sjkawano@med.kobe-u.ac.jp [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Ro52{sup low} HeLa cells are resistant to apoptosis upon various stimulations. Black-Right-Pointing-Pointer Ro52 is upregulated by IFN-{alpha}, etoposide, or IFN-{gamma} and anti-Fas Ab. Black-Right-Pointing-Pointer Ro52-mediated apoptosis is independent of p53. Black-Right-Pointing-Pointer Ro52 selectively regulates Bcl-2 expression. -- Abstract: SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjoegren's syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52's role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52{sup low} HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H{sub 2}O{sub 2}- or diamide-induced oxidative stress, IFN-{alpha}, IFN-{gamma} and anti-Fas antibody, etoposide, or {gamma}-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.

  16. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation.

    Science.gov (United States)

    Wride, M A; Parker, E; Sanders, E J

    1999-09-01

    The optical clarity of the lens is ensured by the programmed removal of nuclei and other organelles from the lens fibre cells during development. The morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. Proteins encoded by the bcl-2 proto-oncogene family are important in either promoting or inhibiting apoptosis, and caspases are involved in downstream proteolytic events. Here, the expression of bcl-2 family members (bcl-2, bax, bad, and bcl-x(s/l)) and caspases-1, -2, -3, -4, and -6 was investigated through a range of stages of chick lens development using immunocytochemistry, Western blotting, and affinity labelling for caspases using biotinylated caspase inhibitors. Using differentiating lens epithelial cell cultures, it was demonstrated that the addition to cultures of synthetic peptide inhibitors of caspases -1, -2, -4, -6, and -9 brought about a 50-70% reduction in the number of degenerating nuclei per unit area of culture, as assessed by image analysis. These effects were comparable to those seen when general inhibitors of caspases were added to cultures. On the other hand, inhibitors of caspases-3 and -8 were not effective in significantly reducing the number of TUNEL-labelled nuclei. Expression of the caspase substrates poly(ADP-ribose) polymerase (PARP) and the 45-kDa subunit of DNA fragmentation factor (DFF 45) was also observed in the developing lens. Western blots of cultures to which caspase inhibitors were added revealed alterations in the PARP cleavage pattern, but not in that of DFF. These results demonstrate a role for members of the bcl-2 family and caspases in the degeneration of lens fibre cell nuclei during chick secondary lens fibre development and support the proposal that this process has many characteristics in common with apoptosis. Copyright 1999 Academic Press.

  17. In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas

    OpenAIRE

    Mason, Kylie D.; Vandenberg, Cassandra J.; Scott, Clare L.; Wei, Andrew H.; Cory, Suzanne; Huang, David C. S.; Roberts, Andrew W.

    2008-01-01

    Deregulated Myc expression drives many human cancers, including Burkitt's lymphoma and a highly aggressive subset of diffuse large cell lymphomas. Myc-driven tumors often display resistance to chemotherapeutics because of acquisition of mutations that impair the apoptosis pathway regulated by the Bcl-2 protein family. Given the need to identify new therapies for such lymphomas, we have evaluated the efficacy of ABT-737, a small molecule that mimics the action of the BH3-only proteins, natural...

  18. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    Science.gov (United States)

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  19. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  20. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  1. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.

    Science.gov (United States)

    Cadet, J L; Ordonez, S V; Ordonez, J V

    1997-02-01

    Methamphetamine (METH) is an amphetamine analog that produces degeneration of the dopaminergic system in mammals. The neurotoxic effects of the drug are thought to be mediated by oxygen-based free radicals. In the present report, we have used immortalized neural cells obtained from rat mesencephalon in order to further assess the role of oxidative stress in METH-induced neurotoxicity. We thus tested if the anti-death proto-oncogene, bcl-2 could protect against METH-induced cytotoxicity. METH caused dose-dependent loss of cellular viability in control cells while bcl-2-expressing cells were protected against these deleterious effects. Using flow cytometry, immunofluorescent staining, and DNA electrophoresis, we also show that METH exposure can cause DNA strand breaks, chromatin condensation, nuclear fragmentation, and DNA laddering. All these changes were prevented by bcl-2 expression. These observations provide further support for the involvement of oxidative stress in the toxic effects of amphetamine analogs. They also document that METH-induced cytotoxicity is secondary to apoptosis. These findings may be of relevance to the cause(s) of Parkinson's disease which involves degeneration of the nigrostriatal dopaminergic pathway.

  2. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chunlan [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Oh, Joon Seok; Yoo, Seung Hee; Lee, Jee Suk [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoon, Young Geol [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Department of Biomedical Science, Institute for Biomedical and Health Sciences, Jungwon University, Chungbuk, 367-805 (Korea, Republic of); Oh, Yoo Jin; Jang, Min Seok [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Lee, Sang Yeob [Department of Rheumatology, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Yang, Jun [Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang, 310036 China (China); Lee, Sang Hwa [Department of Microbiology and, Dong-A University College of Medicine, Busan, 602-714 (Korea, Republic of); Kim, Hye Young [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of); Yoo, Young Hyun, E-mail: yhyoo@dau.ac.kr [Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714 (Korea, Republic of)

    2013-01-01

    Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantly inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1-independent

  3. Effect of polysaccharides from Angelica sinensis on Bcl-2 and Bax protein expression of irradiated liver cells

    International Nuclear Information System (INIS)

    Sun Yuanlin; Tang Jian; Gu Xiaohong; Li Deyuan

    2009-01-01

    Objective: To investigate the effect of polysaccharides from Angelica sinensis (ASP3) on Bcl-2 and Bax protein expression of irradiated liver cells from mice. Methods: Bcl-2 and Bax protein expression of liver cells in vitro exposed to 2.0 Gy rays were examined by using immunohistochemistry method. Results: The expression of apoptosis-accelerating protein Bax in the irradiation group was enhanced obviously (70.83%), while apoptosis inhibiting protein Bcl-2 tended to decline (55.60%), with the statistically significant difference (P <0.01) compared with that of the control. ASP3 pretreatment could regulate Bcl-2 and Bax protein expression of liver cells, inhibiting Bax protein expression(64.14/58.37%) and increasing Bcl-2 protein expression(59.21%/ 67.45%). The differences between the high dosage (100 mg/L of ASP3) and the irradiation group were statistically significant (P<0.05). Conclusions: ASP3 pretreatment could prohibit the apoptosis of radiation- damaged liver cells due to abnormal expression of Bcl-2 and Bax, and reduce the cell apoptosis by increasing Bcl-2/Bax protein expression so as to enhance the radiation endurance of liver cells. (authors)

  4. Real world data on young patients with high-risk diffuse large B-cell lymphoma treated with R-CHOP or R-CHOEP - MYC, BCL2 and BCL6 as prognostic biomarkers.

    Directory of Open Access Journals (Sweden)

    Mette Ølgod Pedersen

    Full Text Available Double expression of MYC and BCL2 proteins (DE and double-hit MYC+BCL2/BCL6 translocations (DH were established as important biomarkers in patients with diffuse large B-cell lymphoma (DLBCL by the 2016 revision of the World Health Organization classification of lymphoid neoplasms. Whether this applies to the subgroup of young patients with high risk DLBCL is not known. We previously found that in a uniform retrospective population-based cohort of patients aged 18-60 years with high-risk DLBCL, the addition of etoposide to R-CHOP chemotherapy (R-CHOEP resulted in improved survival mainly in patients with germinal center B-cell like (GCB immunophenotype. The aim of this study was to investigate the prognostic and predictive value of DE and DH in this patient cohort.Data on all young Danish patients diagnosed with de novo high-risk DLBCL 2004-2008 and treated with R-CHOP or R-CHOEP were obtained from the Danish Lymphoma database (n = 159. Tumor samples were available from 103 patients. MYC and BCL2 proteins were analyzed with quantitative immunohistochemistry (IHC using different cut off values. MYC-, BCL2- and BCL6-translocations were examined with fluorescent in situ hybridization (FISH.DE with MYC>75% and BCL2>85% was an independent negative prognostic marker of progression free survival (PFS in patients treated with R-CHOP but not R-CHOEP (p<0.001, also after exclusion of patients with DH. A predictive effect of DE for response (PFS to R-CHOEP vs. R-CHOP was almost significant (p = 0.07. DH was not prognostic in this patient cohort.In young patients with high-risk DLBCL, treatment with R-CHOEP may overcome the negative prognostic impact of DE observed in patients treated with R-CHOP.

  5. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  6. Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc expression in acute and subchronic exposure to benzo(a)pyrene in cervix.

    Science.gov (United States)

    Gao, Meili; Li, Yongfei; Ji, Xiaoying; Xue, Xiaochang; Chen, Lan; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Shah, Walayat; Hou, Zhanwu; Kong, Yu

    2016-03-01

    Epidemiological studies have demonstrated that cigarette smoking is an important cofactor or an independent risk factor for the development of cervical cancer. Benzo(a)pyrene (BaP) is one of the most potent tobacco smoke carcinogens in tobacco smoke. BaP induced DNA damage and over expression in p53 cervical tissue of mice as demonstrated in our previous study. Here we present the findings of exposure to BaP on the expression of Bcl-2, C-myc, Ki-67, Caspase-3 and Bax genes in mouse cervix. Acute intraperitoneal administration of BaP (12.5, 25, 50, 100mg/kg body weight) to ICR female mice induced a significant increase in Bcl-2, C-myc, Ki-67 mRNA and protein level till 72h except in Bcl-2 at 24h with 12.5, 25, 50mg/kg as well as at 48h with 12.5mg/kg body weight post treatment. A significant increase was also seen in Caspase-3 and Bax mRNA and protein level with peak level at 24h and gradual decrease till 72h, however, the expression of caspase-3 increased while that of Bax decreased with increasing dose of Bap after 24h. In sub chronic intraperitoneal and oral gavage administration of BaP (2.5, 5, 10mg/kg body weight), similar significant increase was observed for all the examined genes as compared to the control and vehicle groups, however the expression of Bax decreased in a dose dependent manner. The findings of this study will help in further understanding the molecular mechanism of BaP induced carcinogenesis of cervical cancer. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Combinatorial gene therapy renders increased survival in cirrhotic rats

    Directory of Open Access Journals (Sweden)

    Armendáriz-Borunda Juan S

    2010-05-01

    Full Text Available Abstract Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively or with Ad-beta-Gal (4.5 × 1011 and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8 showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis.

  8. The small-molecule Bcl-2 inhibitor HA14-1 sensitizes cervical cancer cells, but not normal fibroblasts, to heavy-ion radiation

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Kataoka, Keiko; Sora, Sakura; Hara, Takamitsu; Omura-Minamisawa, Motoko; Funayama, Tomoo; Sakashita, Tetsuya; Nakano, Takashi; Kobayashi, Yasuhiko

    2008-01-01

    This is the first study to demonstrate that the small-molecule Bcl-2 inhibitor HA14-1 renders human cervical cancer cells and their Bcl-2 overexpressing radioresistant counterparts, but not normal fibroblasts, more susceptible to heavy ions. Thus, Bcl-2 may be an attractive target for improving the efficacy of heavy-ion therapy

  9. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    Science.gov (United States)

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  10. Immunohistochemical study of integrin α₅β₁, fibronectin, and Bcl-2 in normal oral mucosa, inflammatory fibroepithelial hyperplasia, oral epithelial dysplasia, and oral squamous cell carcinoma.

    Science.gov (United States)

    Núñez, Manuel Antonio Gordón; de Matos, Felipe Rodrigues; Freitas, Roseana de Almeida; Galvão, Hébel Cavalcanti

    2013-07-01

    The objective of this study was to compare the immunoexpression of integrin α₅β₁, fibronectin, and the Bcl-2 protein in normal oral mucosa (NOM), inflammatory fibroepithelial hyperplasia (IFH), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC). Eleven cases of NOM, 16 IFH, 20 OED, and 27 OSCC were selected for analysis of the immunoexpression of integrin α₅β₁, fibronectin, and bcl-2 protein. There was an association between the intensity and location of the integrin α₅β₁ expression, especially in the OSCC, that 48.1% of cases showed weak immunoreactivity and 40.7% in the suprabasal layer (P < 0.05). There was an association between the pattern and distribution of fibronectin expression in basement membrane, where 90% of NOM showed a pattern of linear continuous and 80% of OED exhibited focal distribution (P < 0.05). The fibronectin expression in connective tissue was predominantly intense with an association of staining pattern among the different specimens, where 37% of OSCC showed a reticular pattern (P < 0.05). There was an association of bcl-2 protein among the types of specimens, especially in IFH and OSCC, where 100% of the cases exhibited scores 1 of staining (P < 0.05). Within this context, the interaction of integrin α₅β₁ with its main ligand in the extracellular matrix, fibronectin, is suggested to influence the survival of tumor cells and to favor their proliferation by modulating apoptosis through the upregulation of antiapoptotic proteins or the suppression of apoptotic mediators.

  11. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  12. Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio

    Directory of Open Access Journals (Sweden)

    Azimahtol Hawariah LP

    2007-04-01

    Full Text Available Abstract Background Zerumbone is a cytotoxic component isolated from Zingiber zerumbet Smith, a herbal plant which is also known as lempoyang. This new anticancer bioactive compound from Z. zerumbet was investigated for its activity and mechanism in human liver cancer cell lines. Results Zerumbone significantly showed an antiproliferative activity upon HepG2 cells with an IC50 of 3.45 ± 0.026 μg/ml. Zerumbone was also found to inhibit the proliferation of non-malignant Chang Liver and MDBK cell lines. However the IC50 obtained was higher compared to the IC50 for HepG2 cells (> 10 μg/ml. The extent of DNA fragmentation was evaluated by the Tdt-mediated dUTP nick end labelling assay which showed that, zerumbone significantly increased apoptosis in HepG2 cells in a time-course manner. In detail, the apoptotic process triggered by zerumbone involved the up-regulation of pro-apoptotic Bax protein and the suppression of anti-apoptotic Bcl-2 protein expression. The changes that occurred in the levels of this antagonistic proteins Bax/Bcl-2, was independent of p53 since zerumbone did not affect the levels of p53 although this protein exists in a functional form. Western blotting analysis for Bax protein was further confirmed qualitatively with an immunoassay that showed the distribution of Bax protein in zerumbone-treated cells. Conclusion Therefore, zerumbone was found to induce the apoptotic process in HepG2 cells through the up and down regulation of Bax/Bcl-2 protein independently of functional p53 activity.

  13. Homologous recombination in mammalian cells: effect of p53 and Bcl-2 proteins, replication inhibition and ionizing radiations

    International Nuclear Information System (INIS)

    Saintigny, Yannick

    1999-01-01

    The control of cell cycle, associated with the mechanisms of replication, DNA repair/recombination allows the cells to maintain their genetic integrity. The p53 protein ensures the control of G1/S transition. Its inactivation would allow to initial replication on damaged matrix and lead to the block of replication forks followed by DNA strand breaks, good substrates for recombination. This work shows that the expression of mutant p53 protein stimulates both spontaneous and radio-induced homologous recombination, independently of the control of cell cycle. Moreover, the use of a set of replication inhibitors show that inhibition of the replication elongation stimulates recombination more strongly than the initiation inhibition. Replication arrest by these inhibitors also significantly increases the number of DNA strand breaks. These results highlighted a point of action of p53 protein on the ultimate stages of the homologous recombination mechanism. Lastly, the expression of Bcl-2 protein inhibits apoptosis and increases survival, but specifically inhibits conservative recombination, after radiation as well as in absence of apoptotic stress. The extinction of this mechanism of DNA repair is associated with an increase of mutagenesis. Taken together, these results allow ta consider the maintenance of the genetic stability as a cellular network involving different pathways. A multiple stages model for tumoral progression can be deduced. (author) [fr

  14. Homologous recombination control by the anti-apoptotic onco-protein Bcl-2

    International Nuclear Information System (INIS)

    Dumay, A.

    2003-12-01

    This research thesis deals with the different biological mechanisms, notably the repair and apoptosis mechanisms induced by irradiation in cells. After a presentation of the genotoxic stress and DNA repair mechanisms, the author discusses the cellular response to a DNA double-strand break, and the regulation of these response mechanisms (how a cellular response emerges: life or death). The next part deals with the apoptosis (cell death by necrosis or apoptosis), and presents the BCL-2 protein family. Results are then reported on laboratory studies of the effect of this protein family

  15. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    OpenAIRE

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Ramsey, Frederick V.; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.; Feldman, Arthur M.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expre...

  16. Immunohistochemical study of p21 and Bcl-2 in leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma.

    Science.gov (United States)

    Sutariya, Rakesh V; Manjunatha, Bhari Sharanesha

    2016-11-01

    Oral Squamous cell carcinoma (OSCC) results from genetic damage, leading to uncontrolled cell proliferation of damaged cells and the cell death. In the course of its progression, visible changes are taking place at the cellular level (atypical) and the resultant at the tissue level (epithelial dysplasia). The Aim of the present study was to evaluate and compare the expressions of intensity of p21 and Bcl-2 in Leukoplakia, oralsubmucous fibrosis (OSMF) and oral squamous cell carcinoma. Total 60 cases, 30 cases of oral squamous cell carcinoma, 15 cases of oral submucous fibrosis and 15 cases of Leukoplakia were evaluated immunohistochemically for p21 and Bcl-2 expression. p21 showed positive expression in 13 (86.67%) cases out of 15 cases of OSMF, 12 (80%) cases of leukoplakia out of 15 cases and 24 (80%) cases out of 30 cases of OSCC. The Bcl-2 expression was positive in 13 (86.67%) cases of OSMF, all cases of Leukoplakia and 25 (83.33%) cases of OSCC. No statistical significance was noted in the expression of p21 and Bcl-2 positive expression between OSMF, Leukoplakia and OSCC. Statistical analysis for comparison of intensity of p21 expression in different grades of OSCC showed no significance. Statistical significance difference was found between the expressions of Bcl-2 in moderately and poorly differentiated SCC. The intensity of p21 and Bcl-2 expressions in different grades of OSCC indicates a key role in progression of oral neoplasia.

  17. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hwa; Ha, Ji-Hyang [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Kim, Yul [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Bae, Kwang-Hee [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Park, Jae-Yong [Department of Physiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Choi, Wan Sung [Department of Anatomy and Neurobiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Yoon, Ho Sup [Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637511 (Singapore); Park, Sung Goo; Park, Byoung Chul [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Yi, Gwan-Su, E-mail: gsyi@kaist.ac.kr [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Chi, Seung-Wook, E-mail: swchi@kribb.re.kr [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.

  18. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    Science.gov (United States)

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  19. Antagonizing Bcl-2 family members sensitizes neuroblastoma and Ewing's sarcoma to an inhibitor of glutamine metabolism.

    Directory of Open Access Journals (Sweden)

    Rachelle R Olsen

    Full Text Available Neuroblastomas (NBL and Ewing's sarcomas (EWS together cause 18% of all pediatric cancer deaths. Though there is growing interest in targeting the dysregulated metabolism of cancer as a therapeutic strategy, this approach has not been fully examined in NBL and EWS. In this study, we first tested a panel of metabolic inhibitors and identified the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON as the most potent chemotherapeutic across all NBL and EWS cell lines tested. Myc, a master regulator of metabolism, is commonly overexpressed in both of these pediatric malignancies and recent studies have established that Myc causes cancer cells to become "addicted" to glutamine. We found DON strongly inhibited tumor growth of multiple tumor lines in mouse xenograft models. In vitro, inhibition of caspases partially reversed the effects of DON in high Myc expressing cell lines, but not in low Myc expressing lines. We further showed that induction of apoptosis by DON in Myc-overexpressing cancers is via the pro-apoptotic factor Bax. To relieve inhibition of Bax, we tested DON in combination with the Bcl-2 family antagonist navitoclax (ABT-263. In vitro, this combination caused an increase in DON activity across the entire panel of cell lines tested, with synergistic effects in two of the N-Myc amplified neuroblastoma cell lines. Our study supports targeting glutamine metabolism to treat Myc overexpressing cancers, such as NBL and EWS, particularly in combination with Bcl-2 family antagonists.

  20. The immunoprofile of odontogenic keratocyst (keratocystic odontogenic tumor) that includes expression of PTCH, SMO, GLI-1 and bcl-2 is similar to ameloblastoma but different from odontogenic cysts.

    Science.gov (United States)

    Vered, M; Peleg, O; Taicher, S; Buchner, A

    2009-08-01

    The aggressive biological behavior of odontogenic keratocysts (OKCs), unlike that of other odontogenic cysts, has argued for its recent re-classification as a neoplasm, 'keratocystic odontogenic tumor'. Identification of mutations in the PTCH gene in some of the OKCs that were expected to produce truncated proteins, resulting in loss of control of the cell cycle, provided additional support for OKCs having a neoplastic nature. We investigated the immunohistochemical expression of the sonic hedgehog (SHH) signaling pathway-related proteins, PTCH, smoothened (SMO) and GLI-1, and of the SHH-induced bcl-2 oncoprotein in a series of primary OKC (pOKC), recurrent OKC (rOKC) and nevoid basal cell carcinoma syndrome-associated OKCs (NBCCS-OKCs), and compared them to solid ameloblastomas (SAMs), unicystic ameloblastomas (UAMs), 'orthokeratinized' OKCs (oOKCs), dentigerous cysts (DCs) and radicular cysts (RCs). All studied lesions expressed the SHH pathway-related proteins in a similar pattern. The expression of bcl-2 in OKCs (pOKCs and NBCCS-OKCs) and SAMs was significantly higher than in oOKCs, DCs and RCs (P < 0.001). The present results of the immunoprofile of OKCs (that includes the expression of the SHH-related proteins and the SHH-induced bcl-2 oncoprotein) further support the notion of OKC having a neoplastic nature. As OKCs vary considerably in their biologic behavior, it is suggested that the quality and quantity of interactions between the SHH and other cell cycle regulatory pathways are likely to work synergistically to define the individual phenotype and corresponding biological behavior of this lesion.

  1. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats.

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-02-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10 th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.

  2. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  3. Association of MTHFR gene polymorphisms with breast cancer survival

    International Nuclear Information System (INIS)

    Martin, Damali N; Boersma, Brenda J; Howe, Tiffany M; Goodman, Julie E; Mechanic, Leah E; Chanock, Stephen J; Ambs, Stefan

    2006-01-01

    Two functional single nucleotide polymorphisms (SNPs) in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, C677T and A1298C, lead to decreased enzyme activity and affect chemosensitivity of tumor cells. We investigated whether these MTHFR SNPs were associated with breast cancer survival in African-American and Caucasian women. African-American (n = 143) and Caucasian (n = 105) women, who had incident breast cancer with surgery, were recruited between 1993 and 2003 from the greater Baltimore area, Maryland, USA. Kaplan-Meier survival and multivariate Cox proportional hazards regression analyses were used to examine the relationship between MTHFR SNPs and disease-specific survival. We observed opposite effects of the MTHFR polymorphisms A1298C and C677T on breast cancer survival. Carriers of the variant allele at codon 1298 (A/C or C/C) had reduced survival when compared to homozygous carriers of the common A allele [Hazard ratio (HR) = 2.05; 95% confidence interval (CI), 1.05–4.00]. In contrast, breast cancer patients with the variant allele at codon 677 (C/T or T/T) had improved survival, albeit not statistically significant, when compared to individuals with the common C/C genotype (HR = 0.65; 95% CI, 0.31–1.35). The effects were stronger in patients with estrogen receptor-negative tumors (HR = 2.70; 95% CI, 1.17–6.23 for A/C or C/C versus A/A at codon 1298; HR = 0.36; 95% CI, 0.12–1.04 for C/T or T/T versus C/C at codon 677). Interactions between the two MTHFR genotypes and race/ethnicity on breast cancer survival were also observed (A1298C, p interaction = 0.088; C677T, p interaction = 0.026). We found that the MTHFR SNPs, C677T and A1298C, were associated with breast cancer survival. The variant alleles had opposite effects on disease outcome in the study population. Race/ethnicity modified the association between the two SNPs and breast cancer survival

  4. Association of Ki-67, p53, and bcl-2 expression of the primary non-small-cell lung cancer lesion with brain metastatic lesion

    International Nuclear Information System (INIS)

    Bubb, Robbin S.; Komaki, Ritsuko; Hachiya, Tsutomu; Milas, Ivan; Ro, Jae Y.; Langford, Lauren; Sawaya, Raymond; Putnam, Joe B.; Allen, Pamela; Cox, James D.; McDonnell, Timothy J.; Brock, William; Hong, Waun K.; Roth, Jack A.; Milas, Luka

    2002-01-01

    Purpose: The study was conducted to determine whether immunohistochemical analysis of Ki-67, p53, and bcl-2 in patients with non-small-cell lung cancer is associated with a higher rate of brain metastases and whether the intrapatient expression of these biomarkers (in the primary tumors vs. brain lesions) is similar. Methods and Materials: At the M. D. Anderson Cancer Center, tumors from 29 case patients with primary lung tumor and brain metastasis and 29 control patients with primary lung tumor but no brain metastasis were resected and examined for immunohistochemical expression. Ki-67, p53, and bcl-2 were analyzed in resected primary lung, lymph node, and metastatic brain tumors. Each control patient was matched by age, gender, and histology to a patient with brain metastasis. Results: No significant differences in patient survival characteristics were detected between the case group and control group. Also, difference in patient outcome between the two groups was not generally predicted by biomarker analysis. However, when the groups were combined, the biomarker analysis was predictive for certain patient outcome end points. Using median values as cutoff points between low and high expression of biomarkers, it was observed that high expression of Ki-67 (>40%) in lung primaries was associated with poorer disease-free survival (p=0.04), whereas low expression of p53 in lung primaries was associated with poorer overall survival (p=0.04), and these patients had a higher rate of nonbrain distant metastases (p=0.02). The patients with brain metastases were particularly prone to developing nonbrain distant metastases if the percentage of p53-positive cells in brain metastases was low (p=0.01). There was a positive correlation in the expression of Ki-67 (p=0.02) (r 2 =0.1608), as well as p53 (p 2 =0.7380), between lung primaries and brain metastases. Compared to Ki-67 and p53, bcl-2 was the least predictive. Conclusion: Differences in biomarker expression between the

  5. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia.

    Science.gov (United States)

    Chen, Shengcai; Wang, Mengdie; Yang, Hang; Mao, Ling; He, Quanwei; Jin, Huijuan; Ye, Zi-Ming; Luo, Xue-Ying; Xia, Yuan-Peng; Hu, Bo

    2017-03-25

    Emerging studies have illustrated that LncRNAs TUG1 play critical roles in multiple biologic processes. However, the LncRNA TUG1 expression and function in ischemic stroke have not been reported yet. In this study, we found that LncRNA TUG1 expression was significantly up-regulated in brain ischemic penumbra from rat middle carotid artery occlusion (MCAO) model, while similar results were also observed in cultured neurons under oxygen-glucose deprivation (OGD) insult. Knockdown of TUG1 decreased the ratio of apoptotic cells and promoted cells survival in vitro, which may be regulated by the elevated miRNA-9 expression and decreased Bcl2l11 protein. Furthermore, TUG1 could directly interact with miR-9 and down-regulating miR-9 could efficiently reverse the function of TUG1 on the Bcl2l11 expression. In summary, our result sheds light on the role of LncRNA TUG1 as a miRNA sponge for ischemic stroke, possibly providing a new therapeutic target in stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    International Nuclear Information System (INIS)

    Bougras, Gwenola; Cartron, Pierre-François; Gautier, Fabien; Martin, Stéphane; LeCabellec, Marité; Meflah, Khaled; Gregoire, Marc; Vallette, François M

    2004-01-01

    The relative role of anti apoptotic (i.e. Bcl-2) or pro-apoptotic (e.g. Bax) proteins in tumor progression is still not completely understood. The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5) exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5). However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i) huBax A15A5 cells were tumorogenic in nude mice, ii) an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii) BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune response

  7. A preliminary study on action mechanisms of surviving expression in cell apoptosis induced by high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Gong Li; Wu Qingfeng; Li Ping; Dai Zhongying; Liu Xinguo; Tao Jiajun

    2010-01-01

    It has been proven that over-expression of surviving in cancerous cell lines is related to the radioresistance of cells to high-LET radiation in previous work. In this study, action mechanisms of surviving gene in apoptosis induced by high-LET radiation were investigated. We found that inhibiting surviving by siRNA had no notable influence on Bcl-2 and Bax expressions induced by carbon ions. Surviving depressed cell apoptosis through the inhibition of the activities of caspase-3 and -9 possibly in cell apoptosis induced by high-LET radiation. (authors)

  8. Propofol-induced rno-miR-665 targets BCL2L1 and influences apoptosis in rodent developing hippocampal astrocytes.

    Science.gov (United States)

    Sun, Wen-Chong; Liang, Zuo-Di; Pei, Ling

    2015-12-01

    Propofol exerts neurotoxic effects on the developing mammalian brains, but the underlying molecular mechanism remains unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate gene expression at the post-transcriptional level. However, in specific types of neurocytes, the detailed functions of miRNAs were not entirely understood. We investigated the potential role of miRNAs in astrocyte pathogenesis caused by propofol. We performed genome-wide microRNA expression profiling in immature cultured hippocampal astrocytes by microarray analysis and predicted their targets and functions using bioinformatics tools. The functional effects of one differentially expressed miRNA were examined experimentally in relation to astrocyte viability. The results showed that 13 miRNAs were significantly differentially expressed after both short-term exposure to high-concentration propofol (10 μg/ml for 1h) and long-term exposure to low-concentration propofol (0.9 μg/ml for 48 h), including rno-miR-665, differing significantly between the 2. Bioinformatics predicted putative binding sites for rno-miR-665 existing in the 3'-untranslated region of Bcl-2-like protein 1 BCL2L1 (Bcl-xl) mRNA. Moreover, such relationship was assessed by luciferase reporter assay, qRT-PCR and western blot. Rno-miR-665 which was significantly up-regulated by propofol can suppress BCL2L1 and elevate cleaved caspase-3 expression in immature astrocytes in vitro. Apoptosis of developing hippocampal astrocytes was thus significantly influenced by propofol or rno-miR-665, or both. Taken together, rno-miR-665 is involved in the neurotoxicity induced by propofol via a caspase-3 mediated mechanism by negatively regulating BCL2L1. It might act as an alternative therapeutic target for treatment of neurological disorders in peadiatric prolonged anesthesia or sedation with propofol clinically. Copyright © 2015. Published by Elsevier B.V.

  9. Correlation Among Six Biologic Factors (p53, p21WAF1, MIB-1, EGFR, HER2, and Bcl-2) and Clinical Outcomes After Curative Chemoradiation Therapy in Squamous Cell Cervical Cancer

    International Nuclear Information System (INIS)

    Yamashita, Hideomi; Murakami, Naoya; Asari, Takao; Okuma, Kae; Ohtomo, Kuni; Nakagawa, Keiichi

    2009-01-01

    Purpose: The expressions of six cell-cycle-associated proteins were analyzed in cervical squamous cell carcinomas in correlation in a search for prognostic correlations in tumors treated with concurrent chemoradiation therapy (cCRT). Methods and Materials: The expressions of p53, p21/waf1/cip1, molecular immunology borstel-1 (MIB-1), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor type 2 (HER2), and Bcl-2 were studied using an immunohistochemical method in 57 cases of cervical squamous cell carcinoma treated with cCRT. Patients received cCRT between 1998 and 2005. The mean patient age was 61 years (range, 27-82 years). The number of patients with Stage II, III, and IVA disease was 18, 29, and 10, respectively. Results: The number of patients with tumors positive for p53, p21/waf1/cip1, MIB-1, EGFR, HER2, and Bcl-2 was 26, 24, 49, 26, 13, and 11, respectively; no significant correlation was noted. The 5-year overall survival rates of HER2-positive and -negative patients was 76% vs. 44%, which was of borderline significance (p = 0.0675). No significant correlation was noted between overall survival and expressions of p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2. No correlation was observed between local control and expression of any of the proteins. Conclusion: Expression of HER2 protein had a weak impact of borderline significance on overall survival in squamous cell carcinoma of the uterine cervix treated with cCRT. However, no clinical associations could be established for p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2 protein expressions.

  10. Combination of erlotinib and EGCG induces apoptosis of head and neck cancers through posttranscriptional regulation of Bim and Bcl-2.

    Science.gov (United States)

    Haque, Abedul; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Saba, Nabil F; Khuri, Fadlo R; Shin, Dong M; Ruhul Amin, A R M

    2015-07-01

    Combinatorial approaches using two or more compounds are gaining increasing attention for cancer therapy. We have previously reported that the combination of the EGFR-TKI erlotinib and epigallocatechin-3-gallate (EGCG) exhibited synergistic chemopreventive effects in head and neck cancers by inducing the expression of Bim, p21, p27, and by inhibiting the phosphorylation of ERK and AKT and expression of Bcl-2. In the current study, we further investigated the mechanism of regulation of Bim, Bcl-2, p21 and p27, and their role in apoptosis. shRNA-mediated silencing of Bim significantly inhibited apoptosis induced by the combination of erlotinib and EGCG (p = 0.005). On the other hand, overexpression of Bcl-2 markedly protected cells from apoptosis (p = 0.003), whereas overexpression of constitutively active AKT only minimally protected cells from apoptosis induced by the combination of the two compounds. Analysis of mRNA expression by RT-PCR revealed that erlotinib, EGCG and their combination had no significant effects on the mRNA expression of Bim, p21, p27 or Bcl-2 suggesting the post-transcriptional regulation of these molecules. Furthermore, we found that erlotinib or the combination of EGCG and erlotinib inhibited the phosphorylation of Bim and stabilized Bim after inhibition of protein translation by cycloheximide. Taken together, our results strongly suggest that the combination of erlotinib and EGCG induces apoptosis of SCCHN cells by regulating Bim and Bcl-2 at the posttranscriptional level.

  11. Detection of bcl-2 translocation in patients with chronic hepatitis C and its possible relation to antiviral therapy: preliminary study

    International Nuclear Information System (INIS)

    Ibrahim, N.S.; Hanna, M.O.F.; Farid, R.J.; Zayed, N.A.; Hunter, S.S.; Esmat, J.

    2007-01-01

    It has been suggested that t(14; 18) translocation of bcl-2 to the immunoglobulin heavy chain (IgH) locus may contribute to the pathogenesis of lymphoproliferative disorders (LPD) related to hepatitis C virus (HCV) infection. The present study aimed to assess the prevalence of bcl-2 translocation in Egyptian chronic HCV patients and to investigate the effect of combination antiviral therapy of interferon a and ribavirin on t(14;18). Fifty five chronic HCV patients were studied for the prevalence of t(l4; 18). These patients were classified into 2 groups, 33 non treated HCV patients and 22 treated HCV patients with antiviral therapy as well as control group of age and sex matched individuals. The bcl-2/IgH rearrangement was detected in peripheral blood mononuclear cells (PBMCs) by nested polymerase chain reaction. All patients have undergone HCV viral determination by real time PCR. Bcl-2/IgH translocation was detected in 21 (38.2%) of all 55 chronically infected HCV patients. Considering all patients with chronic HCV-infection, bcl-2 rearrangement was slightly more frequent in the non treated group than in those who underwent treatment with interferon plus ribavirin but the difference was not statistically significant, although treated patients showed biochemical and virologic response at the end of 6 months of antiviral therapy. In conclusion, t(l4;18) in PBMCs is a frequent finding in chronic HCV infection

  12. Correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer

    International Nuclear Information System (INIS)

    Zhang Yili; Du Hongwen; Zhang Yun; Zhang Yuelang; Kuang Fangjun; Guo Zuomin

    2004-01-01

    Objective: To discuss the correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer for early diagnosis and forecast of its prognoses. Methods: Fifty-four breast cancers and 26 benign diseases were proved by pathologic methods and all cases underwent mammography. Immunohistochemical technique was used to measure the expression of bcl-2 and bax proteins in these tissues. The correlation of imaging signs with the expression of bcl-2 and bax proteins in breast cancer and benign lesion was analyzed. Results: The expression of bcl-2 or bax protein in the breast cancer was higher than that in breast benign diseases (χ 2 =15.116, 11.361, P 2 =10.358, 12.818, P 2 =10.996, 10.667, P 2 =10.405, P 2 =6.841, P<0.05). Conclusion: Some imaging signs of breast cancer were closely related to the expression of bcl-2 and bax proteins and these signs could reflect the biological behavior of tumor cells and prognoses. Therefore it could be helpful to the early diagnosis and treatment of breast cancer. (authors)

  13. Xanthurenic acid translocates proapoptotic Bcl-2 family proteins into mitochondria and impairs mitochondrial function

    Directory of Open Access Journals (Sweden)

    Hess Otto M

    2004-04-01

    Full Text Available Abstract Background Xanthurenic acid is an endogenous molecule produced by tryptophan degradation, produced in the cytoplasm and mitochondria. Its accumulation can be observed in aging-related diseases, e.g. senile cataract and infectious disease. We previously reported that xanthurenic acid provokes apoptosis, and now present a study of the response of mitochondria to xanthurenic acid. Results Xanthurenic acid at 10 or 20 μM in culture media of human aortic smooth muscle cells induces translocation of the proteins Bax, Bak, Bclxs, and Bad into mitochondria. In 20 μM xanthurenic acid, Bax is also translocated to the nucleus. In isolated mitochondria xanthurenic acid leads to Bax and Bclxs oligomerization, accumulation of Ca2+, and increased oxygen consumption. Conclusion Xanthurenic acid interacts directly with Bcl-2 family proteins, inducing mitochondrial pathways of apoptosis and impairing mitochondrial functions.

  14. Double-hit lymphoma demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-hit translocations, MYC/BCL-2 and IRF4/BCL-2.

    Science.gov (United States)

    Tabata, Rie; Yasumizu, Ryoji; Tabata, Chiharu; Kojima, Masaru

    2013-01-01

    Here, we report a rare case of double-hit lymphoma, demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2. The present case had a rare abnormal chromosome, t(6;14;18)(p25;q32;q21), independently, in addition to known dual-hit chromosomal abnormalities, t(14;18)(q32;q21) and t(8;22)(q24;q11.2). Lymph node was characterized by a follicular and diffuse growth pattern with variously sized neoplastic follicles. The intrafollicular area was composed of centrocytes with a few centroblasts and the interfollicular area was occupied by uniformly spread medium- to large-sized lymphocytes. CD23 immunostaining demonstrated a disrupted follicular dendritic cell meshwork. The intrafollicular tumor cells had a germinal center phenotype with the expression of surface IgM, CD10, Bcl-2, Bcl-6, and MUM1/IRF4. However, the interfollicular larger cells showed plasmacytic differentiation with diminished CD20, Bcl-2, Bcl-6, and positive intracytoplasmic IgM, and co-expression of MUM1/IRF4 and CD138 with increased Ki-67-positive cells (> 90%). MUM1/IRF4 has been found to induce c-MYC expression, and in turn, MYC transactivates MUM1/IRF4, creating a positive autoregulatory feedback loop. On the other hand, MUM1/IRF4 functions as a tumor suppressor in c-MYC-induced B-cell leukemia. The present rare case arouses interest in view of the possible "dual" activation of both c-MYC and MUM1/IRF4 through two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2.

  15. Activation of mitochondrial promoter PH-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2

    International Nuclear Information System (INIS)

    Roychoudhury, Paromita; Ghosh, Utpal; Bhattacharyya, Nitai P.; Chaudhuri, Keya

    2006-01-01

    The cellular response to ionizing radiation is mediated by a complex interaction of number of proteins involving different pathways. Previously, we have shown that up regulation of mitochondrial genes ND1, ND4, and COX1 transcribed from the heavy strand promoter (P H ) has been increased in a radio-resistant cell strain designated as M5 in comparison with the parental Chinese hamster V79 cells. These genes are also up regulated in Chinese hamster V79 cells VB13 that express exogenous human Bcl2. In the present study, the expression of the gene ND6 that is expressed from the light strand promoter (P L ) was found to be similar in both the cell lines, as determined by RT-PCR. To test the possibility that this differential expression of mitochondrial genes under these two promoters was mediated by differences in proteins' affinity to interact with these promoters, we have carried out electrophoretic mobility shift assay (EMSA) using mitochondrial cell extracts from these two cell lines. Our result of these experiments revealed that two different proteins formed complex with the synthetic promoters and higher amount of protein from M5 cell extracts interacted with the P H promoter in comparison to that observed with cell extracts from Chinese hamster V79 cells. The promoter-specific differential binding of proteins was also observed in VB13. These results showed that differential mitochondrial gene expression observed earlier in the radio-resistant M5 cells was due to enhanced interaction proteins with the promoters P H and mediated by the expression of Bcl2

  16. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199)

    International Nuclear Information System (INIS)

    Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D

    2015-01-01

    As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2 High ) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2 High cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-X L -selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2 High NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2 Low NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-X L inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2 Low ) that could benefit from BCL-X L (navitoclax)-driven combination therapy

  17. Mcl-1 is essential for the survival of plasma cells

    NARCIS (Netherlands)

    Peperzak, Victor; Vikström, Ingela; Walker, Jennifer; Glaser, Stefan P.; LePage, Melanie; Coquery, Christine M.; Erickson, Loren D.; Fairfax, Kirsten; Mackay, Fabienne; Strasser, Andreas; Nutt, Stephen L.; Tarlinton, David M.

    2013-01-01

    The long-term survival of plasma cells is entirely dependent on signals derived from their environment. These extrinsic factors presumably induce and sustain the expression of antiapoptotic proteins of the Bcl-2 family. It is uncertain whether there is specificity among Bcl-2 family members in the

  18. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  19. E1(-)E4(+) adenoviral gene transfer vectors function as a "pro-life" signal to promote survival of primary human endothelial cells.

    Science.gov (United States)

    Ramalingam, R; Rafii, S; Worgall, S; Brough, D E; Crystal, R G

    1999-05-01

    Although endothelial cells are quiescent and long-lived in vivo, when they are removed from blood vessels and cultured in vitro they die within days to weeks. In studies of the interaction of E1(-)E4(+) replication-deficient adenovirus (Ad) vectors and human endothelium, the cells remained quiescent and were viable for prolonged periods. Evaluation of these cultures showed that E1(-)E4(+) Ad vectors provide an "antiapoptotic" signal that, in association with an increase in the ratio of Bcl2 to Bax levels, induces the endothelial cells to enter a state of "suspended animation," remaining viable for at least 30 days, even in the absence of serum and growth factors. Although the mechanisms initiating these events are unclear, the antiapoptoic signal requires the presence of E4 genes in the vector genome, suggesting that one or more E4 open reading frames of subgroup C Ad initiate a "pro-life" program that modifies cultured endothelial cells to survive for prolonged periods.

  20. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim.

    Science.gov (United States)

    Haftmann, Claudia; Stittrich, Anna-Barbara; Zimmermann, Jakob; Fang, Zhuo; Hradilkova, Kristyna; Bardua, Markus; Westendorf, Kerstin; Heinz, Gitta A; Riedel, René; Siede, Julia; Lehmann, Katrin; Weinberger, Esther E; Zimmel, David; Lauer, Uta; Häupl, Thomas; Sieper, Joachim; Backhaus, Marina; Neumann, Christian; Hoffmann, Ute; Porstner, Martina; Chen, Wei; Grün, Joachim R; Baumgrass, Ria; Matz, Mareen; Löhning, Max; Scheffold, Alexander; Wittmann, Jürgen; Chang, Hyun-Dong; Rajewsky, Nikolaus; Jäck, Hans-Martin; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2015-04-01

    Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. THE EXPRESSION OF Bcl-2 AND PRO-CASPASE 3 IN HEAD AND NECK SQUAMOUS CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Andrej Cör

    2002-12-01

    Full Text Available Background. Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and accounts for 6% of cancers worldwide. A better understanding of its biology could lead to improved treatment options. Generally, the goal of cancer treatment is to abolish cell proliferation and to induce necrotic or aptoptotic cell death. Apoptosis has been recognized as a key mechanism of tumour cell elimination. Different apoptotic signals converge to induce caspase cascade activation. Caspase 3 is the central executioner caspase and is necessary for effective apoptotic cell death. Bcl-2 protein family regulates apoptosis. The Bcl-2 protein itself is a product of a proto-oncogene and has an antiapoptotic action.Methods. In our study, the expression of Bcl-2 and pro-caspase 3 by immunohistochemistry in 28 HNSCC graded into well, moderately and poorly differentiated cancers were investigated.Results. Our results of Bcl-2 expression confirm and extend previous reports in which Bcl-2 over-expression has been recognised as an important parameter in HNSCC biological behaviour. Three of 28 tumours (11% showed significant Bcl-2 expression. Two of them were poorly and one was moderately differentiated. Pro-caspase 3 immunoreactivity was confined mainly to the cytoplasm. Absent or low pro-caspase 3 immunoreactivity was found only in 1 of 6 well differentiated and in 1of 10 moderately differentiated tumours in contrast to 5 of 12 poorly differentiated tumours. In six of 12 poorly differentiated tumours procasapse 3 immunoreactivity was strongly positive. In two cases hyperplastic epithelium was strongly positive in contrast to adjacent HNSCC in the same slide which was completely negative for pro-caspase 3.Conclusions. Our results indicate downregulation of pro-caspase 3 expression, especially in poorly differentiated HNSCC. Further studies are needed to test whether this is related to HNSCC behaviour and predict treatment outcome.

  2. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  3. Alpha-helical destabilization of the Bcl-2-BH4-domain peptide abolishes its ability to inhibit the IP3 receptor.

    Directory of Open Access Journals (Sweden)

    Giovanni Monaco

    Full Text Available The anti-apoptotic Bcl-2 protein is the founding member and namesake of the Bcl-2-protein family. It has recently been demonstrated that Bcl-2, apart from its anti-apoptotic role at mitochondrial membranes, can also directly interact with the inositol 1,4,5-trisphosphate receptor (IP3R, the primary Ca(2+-release channel in the endoplasmic reticulum (ER. Bcl-2 can thereby reduce pro-apoptotic IP3R-mediated Ca(2+ release from the ER. Moreover, the Bcl-2 homology domain 4 (Bcl-2-BH4 has been identified as essential and sufficient for this IP3R-mediated anti-apoptotic activity. In the present study, we investigated whether the reported inhibitory effect of a Bcl-2-BH4 peptide on the IP 3R1 was related to the distinctive α-helical conformation of the BH4 domain peptide. We therefore designed a peptide with two glycine "hinges" replacing residues I14 and V15, of the wild-type Bcl-2-BH4 domain (Bcl-2-BH4-IV/GG. By comparing the structural and functional properties of the Bcl-2-BH4-IV/GG peptide with its native counterpart, we found that the variant contained reduced α-helicity, neither bound nor inhibited the IP 3R1 channel, and in turn lost its anti-apoptotic effect. Similar results were obtained with other substitutions in Bcl-2-BH4 that destabilized the α-helix with concomitant loss of IP3R inhibition. These results provide new insights for the further development of Bcl-2-BH4-derived peptides as specific inhibitors of the IP3R with significant pharmacological implications.

  4. Reconstitution of the anti-apoptotic Bcl-2 protein into lipid membranes and biophysical evidence for its detergent-driven association with the pro-apoptotic Bax protein.

    Directory of Open Access Journals (Sweden)

    Marcus Wallgren

    Full Text Available The anti-apoptotic B-cell CLL/lymphoma-2 (Bcl-2 protein and its counterpart, the pro-apoptotic Bcl-2-associated X protein (Bax, are key players in the regulation of the mitochondrial pathway of apoptosis. However, how they interact at the mitochondrial outer membrane (MOM and there determine whether the cell will live or be sentenced to death remains unknown. Competing models have been presented that describe how Bcl-2 inhibits the cell-killing activity of Bax, which is common in treatment-resistant tumors where Bcl-2 is overexpressed. Some studies suggest that Bcl-2 binds directly to and sequesters Bax, while others suggest an indirect process whereby Bcl-2 blocks BH3-only proteins and prevents them from activating Bax. Here we present the results of a biophysical study in which we investigated the putative interaction of solubilized full-length human Bcl-2 with Bax and the scope for incorporating the former into a native-like lipid environment. Far-UV circular dichroism (CD spectroscopy was used to detect direct Bcl-2-Bax-interactions in the presence of polyoxyethylene-(23-lauryl-ether (Brij-35 detergent at a level below its critical micelle concentration (CMC. Additional surface plasmon resonance (SPR measurements confirmed this observation and revealed a high affinity between the Bax and Bcl-2 proteins. Upon formation of this protein-protein complex, Bax also prevented the binding of antimycin A2 (a known inhibitory ligand of Bcl-2 to the Bcl-2 protein, as fluorescence spectroscopy experiments showed. In addition, Bcl-2 was able to form mixed micelles with Triton X-100 solubilized neutral phospholipids in the presence of high concentrations of Brij-35 (above its CMC. Following detergent removal, the integral membrane protein was found to have been fully reconstituted into a native-like membrane environment, as confirmed by ultracentrifugation and subsequent SDS-PAGE experiments.

  5. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway.

    Science.gov (United States)

    Yang, X-C; Wang, X; Luo, L; Dong, D-H; Yu, Q-C; Wang, X-S; Zhao, K

    2013-06-01

    S100A4 is a well established marker and mediator of metastatic disease, but the exact mechanisms responsible for the metastasis promoting effects are less well defined. We tested a hypothesis that the S100A4 gene plays a role in the proliferation and invasiveness of human renal cancer cells (RCC) and may be associated with its metastatic spread. The small interference RNA vector pcDNA3.1-S100A4 siRNA was transfected in to the human renal cancer cell lines ACHN, Ketr-3, OS-RC-2, CaKi-2 and HTB-47, then treated with ABT-737 or BB94. Cell apoptosis and cell viability was detected by flow cytometry and MTT assay. Matrigel was used for cell motility and invasion assay. MMP-2, bcl-2 and S100A4 was detected by RT-PCR and western blot assay. NF-kB subunit p65 activity was detected by confocal microscopy assay. We then determine the effect S100A4 sliencing on tumor growth, lung metastasis development in vivo. Immunohistochemistry was used to detected the expression of S100A4, bcl-2, MMP-2, p65 and CD31. S100A4 silencing in ACHN cells by RNA interference significantly inhibited NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and cellular migration, proliferation, and promoted apoptosis. Furthermore, re-expression of S100A4 in S100A4-siRNA-transfected ACHN cells by transient S100A4 cDNA transfection restored the NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and their high migratory and cellular proliferative ability. An inhibitor ABT-737 (the Bcl-2 antagonist targets Bcl-2) against Bcl-2 suppressed cellular proliferation and promoted apoptosis induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. A inhibitor BB94 against MMPs to neutralize MMP-2 protein suppressed cellular invasion and migration induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. In the prevention model, S100A4 silencing inhibited primary tumor growth by (tumor weight) (76 ± 8%) and (tumor volum) (78 ± 4%) respectively and promoted apoptosis and the formation

  6. Genes involved in yeast survival after irradiation with fast neutrons

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M.J.

    2001-01-01

    Life on the Earth has evolved against a continuous background of ionizing radiation. It would be expected, therefore, that all possible mutations have been produced at some time or another; man-made radiation from medical or industrial sources will not result in any new types of mutation but will simply increase the whole spectrum of mutations that occur spontaneously. Any such lesion can be mutagenic and, in principle, lethal. To counteract the consequences of DNA damage, evolution has equipped all living cells with an intricate network of defense and repair systems. Together, these systems act as a kind of nuclear 'immune system' that is able to recognize and eliminate many types of DNA lesions. In the case of the yeast Saccharomyces cerevisiae, in these processes over 30 RAD genes participate. We tested the survival of haploid and diploid rad1 yeast mutant strains at a dose of 15 Gy of γ or fast neutron radiation. We demonstrated that the lethality of rad1 mutants both haploid and diploid are significantly higher after fast neutron irradiation. The results indicate to the role and position of these genes in the DNA repair of damages specifically induced by fast neutrons. (authors)

  7. Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

    Directory of Open Access Journals (Sweden)

    Mohammad Zamani

    2012-09-01

    Full Text Available Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-reperfusion. Experimental design includes four groups:  intact, ischemic control, sham control and treatment group with CoQ10. The mice were pre-treated with CoQ10 for a week, then ischemia was induced by common carotid artery ligation and following the reduction in in.ammation (a week the mice was treated with CoQ10.  Nissl staining was applied for counting the necrotic cells of hippocampus and the western blot was performed to measure the Bax and Bcl2 expression.Results: Cell death was signi.cantly lower when mice were treated with CoQ10. Bax expression was signi.cantly high in the ischemic group but low in the treatment group, and the bcl2 expression was lower in the ischemic group than the treatment and the vehicle groups.Discussion: Ischemia for 15 minutes induced cell death in hippocampus with more potent effect on CA1. CoQ10 intake signi.cantly reduced cell death and prevented the expression of Bax while inducing an increase in expression of bcl2.

  8. Coenzyme Q10 Protects Hippocampal Neurons Against Ischemia/Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

    Directory of Open Access Journals (Sweden)

    M Zamani

    2012-12-01

    Full Text Available Introduction : Preliminary studies confirmed reduction in cell death following treatment with antioxidants. According to this finding we study the relationship between consumption of CoQ10 and expression of bax and bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis.Material & methods : We studied the protective role of CoQ10 against Ischemia-Reperfusion. Experimental design includes four groups: intact, ischemic control, sham control and treatment groups with CoQ10. The mice treated with CoQ10 as Pre - Treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction in inflammation (a week the mice post-treated with CoQ10.Nissl staining applied to counting necrotic cells of hippocampus and the western blotting performed to measurement the bax and bcl2 expression.Results :. Cell death was significantly lower when mice treated with CoQ10. Bax expression was significantly high in ischemic group but in treatment group was less and reversely the bcl2 expression in ischemic group was lower than treatment and vehicle groups.Conclusion : Ischemia for 15 minutes induced cell death in hippocampus with more potent effect on CA1. CoQ10 intake significantly reduced cell death and prevented the expression of bax while inducing an increase in expression of bcl2.

  9. Bcl-2 protects against apoptosis induced by antimycin A and bongkrekic acid without restoring cellular ATP levels.

    NARCIS (Netherlands)

    Graaf, A.O. de; Meijerink, J.P.P.; Heuvel, L.P.W.J. van den; Abreu, R.A. de; Witte, T.J.M. de; Jansen, J.H.; Smeitink, J.A.M.

    2002-01-01

    Several studies indicate that mitochondrial ATP production as well as ADP/ATP exchange across mitochondrial membranes are impaired during apoptosis. We investigated whether Bcl-2 could protect against cell death under conditions in which ATP metabolism is inhibited. Inhibition of ATP production

  10. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    2016-01-01

    Full Text Available ABSTRACT Gastric cancer is one of the most common malignancies worldwide; however, the molecular mechanism in tumorigenesis still needs exploration. BCL2L11 belongs to the BCL-2 family, and acts as a central regulator of the intrinsic apoptotic cascade and mediates cell apoptosis. Although miRNAs have been reported to be involved in each stage of cancer development, the role of miR-24 in GC has not been reported yet. In the present study, miR-24 was found to be up-regulated while the expression of BCL2L11 was inhibited in tumor tissues of GC. Studies from both in vitro and in vivo shown that miR-24 regulates BCL2L11 expression by directly binding with 3′UTR of mRNA, thus promoting cell growth, migration while inhibiting cell apoptosis. Therefore, miR-24 is a novel onco-miRNA that can be potential drug targets for future clinical use.

  11. The role of apoptosis in the development of AGM hematopoietic stem cells revealed by Bcl-2 overexpression

    NARCIS (Netherlands)

    C. Orelio; K.N. Harvey; C. Miles; R.A. Oostendorp (Robert); K. van der Horn; E.A. Dzierzak (Elaine)

    2004-01-01

    textabstractApoptosis is an essential process in embryonic tissue remodeling and adult tissue homeostasis. Within the adult hematopoietic system, it allows for tight regulation of hematopoietic cell subsets. Previously, it was shown that B-cell leukemia 2 (Bcl-2) overexpression in

  12. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-10-01

    Full Text Available Background/Aims: Endothelial cell injury and subsequent apoptosis play a key role in the development and pathogenesis of atherosclerosis, which is hallmarked by dysregulated lipid homeostasis, aberrant immunity and inflammation, and plaque-instability-associated coronary occlusion. Nevertheless, our understanding of the mechanisms underlying endothelial cell apoptosis is still limited. MicroRNA-429 (miR-29 is a known cancer suppressor that promotes cancer cell apoptosis. However, it is unknown whether miR-429 may be involved in the development of atherosclerosis through similar mechanisms. We addressed these questions in the current study. Methods: We examined the levels of endothelial cell apoptosis in ApoE (-/- mice suppled with high-fat diet (HFD, a mouse model for atherosclerosis (simplified as HFD mice. We analyzed the levels of anti-apoptotic protein Bcl-2 and the levels of miR-429 in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-429 and 3'-UTR of Bcl-2 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-429 were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL-treated human aortic endothelial cells (HAECs. Results: HFD mice developed atherosclerosis in 12 weeks, while the control ApoE (-/- mice that had received normal diet (simplified as NOR mice did not. HFD mice had significantly lower percentage of endothelial cells and significantly higher percentage of mesenchymal cells in the aorta than NOR mice. Significantly higher levels of endothelial cell apoptosis were detected in HFD mice, resulting from decreases in Bcl-2 protein, but not mRNA. The decreases in Bcl-2 in endothelial cells were due to increased levels of miR-429, which suppressed the translation of Bcl-2 mRNA via 3'-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Conclusion: Atherosclerosis

  13. The effect of nickel as a nickel chromium restoration corrosion product on gingival fibroblast through analysis of BCl-2

    Directory of Open Access Journals (Sweden)

    FX Ady Soesetijo

    2012-12-01

    Full Text Available Background: Restoration of NiCr may undergo corrosion process in artificial saliva. Corrosion product is soluble Ni substances in salivary electrolytes. Ni2+ may freely enter the cells through passive transport DMT-1. Ni2+ in the cell causes initiation of the ROS formation,which subsequently can conduct the redoxs reactions leading to DNA damage. The damage DNA affects the genetic expression, especially bcl-2, and even triggers apoptosis. Purpose: The aim of this study was to reveal the mechanism of Ni toxicity as a corrosion product of NiCr restoration on gingival fibroblasts through expression analysis of Bcl-2. Methods: Cells with a density of 105 planted on each coverslip in 72 wells to the treatment group and 24 wells to the control group (24 hours incubation. In the treatment groups, each well exposed with 20 μL artificial saliva containing Ni concentration results immerse each restoration, whereas the control group was exposed to 20 μL artificial saliva (incubation 1, 3, and 7 days. The data collected were subsequently analyzed using two-ways ANOVA, followed by one-way ANOVA. Comparing between experimental groups after one-way ANOVA was conducted using Fisher’s LSD. Whereas, the calculation and documentation of Bcl-2 expression was performed camera of Olympus Microscope BX-50 Japan. Results: Statistical analysis of two-ways ANOVA showed the presence of interaction between the increasing Ni concentration and exposure duration on the expression of Bcl-2 gingival fibroblasts (p=0.021Bcl-2 expression.Latar belakang: Restorasi NiCr dapat mengalami proses korosi di dalam saliva artificial. Produk korosi yang dihasilkan adalah substansi Ni yang terlarut di dalam elektrolit saliva. Ni2+ bebas dapat memasuki sel (fibroblas gingiva melalui transport pasif DMT-1. Ni2+ di dalam sel

  14. A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance

    Directory of Open Access Journals (Sweden)

    Mehdi Kabbage

    2016-04-01

    Full Text Available The Bcl-2-associated athanogene (BAG family is a multifunctional group of proteins involved in numerous cellular functions ranging from apoptosis to tumorigenesis. These proteins are evolutionarily conserved and encode a characteristic region known as the BAG domain. BAGs function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in tumor growth, HIV infection, and neurodegenerative diseases; as a result, the BAGs are attractive targets for therapeutic interventions, and their expression in cells may serve as a predictive tool for disease development. The Arabidopsis genome contains seven homologs of BAG family proteins (Figure 1, including four with a domain organization similar to animal BAGs (BAG1-4. The remaining three members (BAG5-7 contain a predicted calmodulin-binding motif near the BAG domain, a feature unique to plant BAG proteins that possibly reflects divergent mechanisms associated with plant-specific functions. As reported for animal BAGs, plant BAGs also regulate several stress and developmental processes (Figure 2. The recent article by Li et al. focuses on the role of BAG6 in plant innate immunity. This study shows that BAG6 plays a key role in basal plant defense against fungal pathogens. Importantly, this work further shows that BAG6 is proteolytically activated to induce autophagic cell death and resistance in plants. This finding underscores the importance of proteases in the execution of plant cell death, yet little is known about proteases and their substrates in plants.

  15. Pokemon reduces Bcl-2 expression through NF-κ Bp65: A possible mechanism of hepatocellular carcinoma.

    Science.gov (United States)

    Zhao, Xinkai; Ning, Qiaoming; Sun, Xiaoning; Tian, De'an

    2011-06-01

    To investigate the relationship among Pokemon, NF-κ B p65 and Bcl-2 in hepatoma cells. HCC cell HepG2, SMMC7721 and human fetal liver cell line LO2 cells were used, and expression of Pokemon, NF-κ B p65 and Bcl-2 in three cells were detected by real-time PCR and western blot. Then siRNA of Pokemon was applied to inhibit the expression of Pokemon and NF-κ B p65 and apoptotic rate was determined by flow cytometric analysis. Expressions of Pokemon, NF-κ B p65 and Bcl-2 in human hepatoma cell HepG2, SMMC7721 expression were significantly higher than those in human embryonic stem cells LO2. siRNA of Pokemon inhibited the expression of Pokemon, NF-κ B p65 and Bcl-2 in liver cancer cells, and significantly increased apoptosis of liver cells. While siRNA of NF-κ B p65 inhibited the expression of NF-κ B p65 and Bcl-2, but Pokemon expression in hepatoma cells had no significant change. The proto-oncogene Pokemon can inhibit P14ARF by specific transcription regulation of cell cycle and can induce tumors. In addition, Pokemon can regulate NF-κ B p65 through the expression of apoptosis repressor, and promote the development of liver cancer. It suggests signal network in the liver include the regulation of new non-classical NF-κ B regulatory pathway. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. A leukemic double-hit follicular lymphoma associated with a complex variant translocation, t(8;14;18)(q24;q32;q21), involving BCL2, MYC, and IGH.

    Science.gov (United States)

    Minakata, Daisuke; Sato, Kazuya; Ikeda, Takashi; Toda, Yumiko; Ito, Shoko; Mashima, Kiyomi; Umino, Kento; Nakano, Hirofumi; Yamasaki, Ryoko; Morita, Kaoru; Kawasaki, Yasufumi; Sugimoto, Miyuki; Yamamoto, Chihiro; Ashizawa, Masahiro; Hatano, Kaoru; Oh, Iekuni; Fujiwara, Shin-Ichiro; Ohmine, Ken; Kawata, Hirotoshi; Muroi, Kazuo; Miura, Ikuo; Kanda, Yoshinobu

    2018-01-01

    Double-hit lymphoma (DHL) is defined as lymphoma with concurrent BCL2 and MYC translocations. While the most common histological subtype of DHL is diffuse large B-cell lymphoma, the present patient had leukemic follicular lymphoma (FL). A 52-year-old man was admitted to our hospital due to general fatigue and cervical and inguinal lymph node swelling. The patient was leukemic and the pathological diagnosis of the inguinal lymph node was FL grade 1. Chromosomal analysis revealed a complex karyotype including a rare three-way translocation t(8;14;18)(q24;q32;q21) involving the BCL2, MYC, and IGH genes. Based on a combination of fluorescence in situ hybridization (FISH), using BCL2, MYC and IGH, and spectral karyotyping (SKY), the karyotype was interpreted as being the result of a multistep mechanism in which the precursor B-cell gained t(14;18) in the bone marrow and acquired a translocation between der(14)t(14;18) and chromosome 8 in the germinal center, resulting in t(8;14;18). The pathological diagnosis was consistently FL, not only at presentation but even after a second relapse. The patient responded well to standard chemotherapies but relapsed after a short remission. This patient is a unique case of leukemic DH-FL with t(8;14;18) that remained in FL even at a second relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Induction of Bim and Bid gene expression during accelerated apoptosis in severe sepsis.

    Science.gov (United States)

    Weber, Stefan U; Schewe, Jens-Christian; Lehmann, Lutz E; Müller, Stefan; Book, Malte; Klaschik, Sven; Hoeft, Andreas; Stüber, Frank

    2008-01-01

    In transgenic animal models of sepsis, members of the Bcl-2 family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro-apoptotic and anti-apoptotic members of the Bcl-2 family of proteins in patients with early stage severe sepsis. In this prospective case-control study, patients were recruited from three intensive care units (ICUs) in a university hospital. Sixteen patients were enrolled when they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and 11 healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine externalisation in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed using flow cytometry. Specific mRNAs of Bcl-2 family members were quantified from whole blood by real-time PCR. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc analysis was performed. In all lymphocyte populations caspase-3 (p < 0.05) was activated, which was reflected in an increased phosphatidylserine externalisation (p < 0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p < 0.05) and B-cells (p < 0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared with critically ill patients (p < 0.001) and 51.6-fold as compared with healthy controls (p < 0.05). Bid was increased 12.9-fold compared with critically ill patients (p < 0.001). In the group of mitochondrial apoptosis inducers, Bak was upregulated 5.6-fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p < 0.001 and p < 0.05, respectively). In early severe sepsis a gene expression pattern with

  18. Immunohistological expression of HIF-1α, GLUT-1, Bcl-2 and Ki-67 in consecutive biopsies during chemoradiotherapy in patients with rectal cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Sørensen, Flemming Brandt; Pløen, John

    2013-01-01

    receiving preoperative CRT (>50.4 Gy and Uracil/Tegafur). Immunohistological expressions of HIF-1α, GLUT-1, Bcl-2 and Ki-67 were investigated in biopsies taken before treatment, after 2, 4 and 6 weeks of CRT and in specimens from the operation. Decreasing expressions of HIF-1α, Bcl-2 and Ki-67 were observed...

  19. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    Science.gov (United States)

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354

  20. [From dualism to multiplicity: seeing BCL-2 family proteins and cell death with new eyes].

    Science.gov (United States)

    Aouacheria, Abdel

    2015-01-01

    The concept of cell death has many links to the concept of death itself, defined as the opposite of life. Achievements obtained through research on apoptosis have apparently allowed us to transcend this Manichean view. Death is no longer outside, but rather inside living systems, as a constitutive force at work within the living matter. Whereas the death of cells can be positive and breed "creation" (e.g. during morphogenesis), its dysregulation can also cause or contribute to fatal diseases including cancer. It is tempting to apply this biological discourse to illuminate the relations between life and death, taken in general terms, but does this generalization actually hold? Is this discourse not essentially a metaphor? If cell death is considered as a vital aspect of various biological processes, then are we not faced with some vitalistic conception of death? Are there one or more meanings to the word "death"? Does the power to self-destruct act in opposition to other key features of living entities, or rather in juxtaposition to them? In this article, we first describe how the field of cell death has been developed on the basis of perceived and built dichotomies, mirroring the original opposition between life and death. We detail the limitations of the current paradigm of apoptosis regulation by BCL-2 family proteins, which nicely illustrate the problem of binary thinking in biology. Last, we try to show a way out of this dualistic matrix, by drawing on the notions of multiplicity, complexity, diversity, evolution and contingency. © Société de Biologie, 2016.

  1. PENGARUH EKSTRAK ETHANOL PROPOLIS TERHADAP EKSPRESI PROTEIN Bcl2, CYCLIN D1 DAN INDUKSI APOPTOSIS PADA KULTUR SEL KANKER KOLON

    Directory of Open Access Journals (Sweden)

    Haryono Yuniarto

    2017-06-01

    Full Text Available Kanker kolorektal menempati urutan kejadian kanker ketiga di seluruh dunia, dengan lebih dari 1 juta angka kejadian tiap tahunnya. Berbagai strategi terapi pengobatan kanker kolorektal tetapi relatif belum optimal. Oleh karena itu, terdapat kebutuhan mengembangkan terapi alternatif sebagai pendamping. Propolis menunjukkan aktivitas proapoptosis pada berbagai jenis sel kanker. Mengetahui pengaruh pemberian propolis yang berasal dari Kerjo, Karanganyar, Indonesia terhadap induksi proses apoptosis dan aktivitas antiproliferasi, terutama terkait dengan penekanan ekspresi protein Bcl 2 dan cyclin D1 pada kultur sel WiDr (cell line kanker kolon. Penelitian eksperimental laboratorik menggunakan post test with control group design. Penelitian dilakukan pada kultur sel WiDr (sel kanker kolon dengan pemberian propolis. Pengamatan ekspresi protein Cyclin D1 dan Bcl2 dilakukan dengan metode imunositokimia, sedangkan pengamatan induksi apoptosis dilakukan dengan flowcytometry. Analisis statistik dengan uji Kruskal-Wallis, signifikan bila p <0,05. Rata-rata ekspresi Bcl2 pada kelima kelompok yaitu kontrol 83.40 ± 0.69 μg/ml, EEP 1/2 IC50 60.63 ± 0.40, EEP IC50 33.77 ± 1.08 μg/ml, EEP 2 IC50 24.28 ± 1.91 μg/ml, 5fluorouracil 12.74 ± 2.19 μg/ml. Terdapat perbedaan bermakna ekspresi Bcl2 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Rata-rata ekspresi cyclin D1 pada kelima kelompok yaitu kontrol 83.77 ± 0.39 μg/ml, EEP 1/2 IC50 61.44 ± 0.41, EEP IC50 36.67 ± 1.18 μg/ml, EEP 2 IC50 24.50 ± 0.38 μg/ml, 5fluorouracil 13.42 ± 1.04μg/ml. Terdapat perbedaan bermakna ekspresi cyclin D1 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Pemberian ekstrak etanol propolis mempunyai pengaruh menekan ekspresi Bcl2, cyclin D1, dan menginduksi apoptosis pada kultur sel kanker kolon (WiDr Cell Line.   Kata Kunci: Ekstrak Ethanol Propolis, Bcl2, cyclin D1, Sel WiDr

  2. Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus.

    Science.gov (United States)

    Del Puerto, H L; Martins, A S; Moro, L; Milsted, A; Alves, F; Braz, G F; Vasconcelos, A C

    2010-01-26

    Canine distemper is an immunosuppressive disease caused by the canine distemper virus (CDV). Pathogenesis mainly involves the central nervous system and immunosuppression. Dogs naturally infected with CDV develop apoptotic cells in lymphoid tissues and the cerebellum, but this apoptotic mechanism is not well characterized. To better understand this process, we evaluated the expression of Bax, Bcl-2, and caspase-3, -8 and -9, by evaluating mRNA levels in the peripheral blood, lymph nodes and cerebellum of CDV-infected (CDV+) and uninfected (CDV-) dogs by real-time polymerase chain reaction (PCR). Blood samples from 12 CDV+ and 8 CDV- dogs, diagnosed by reverse transcription-PCR, were subjected to hematological analysis and apoptotic gene expression was evaluated using real-time-PCR. Tissues from the cerebellum and lymph nodes of four CDV+ and three CDV-dogs were also subjected to real time-PCR. No significant differences were found between CDV+ and CDV- dogs in the hemotological results or in the expression of caspase-3, -8, -9, Bax, and Bcl-2 in the peripheral blood. However, expression of Bax, caspase-3, -8 and -9 was significantly higher in the cerebellum of CDV+ compared to CDV- dogs. Expression of caspase-3 and -8 was significantly higher in the lymph nodes of CDV+ compared to CDV- dogs. We concluded that infection with CDV induces apoptosis in the cerebellum and lymph nodes in different ways. Lymph node apoptosis apparently occurs via caspase-3 activation, through the caspase-8 pathway, and cerebellum apoptosis apparently occurs via caspase-3 activation, through the caspase-8 and mitochondrial pathways.

  3. Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: An application for photoprotection.

    Science.gov (United States)

    Verma, Ankit; Kushwaha, Hari N; Srivastava, Ajeet K; Srivastava, Saumya; Jamal, Naseem; Srivastava, Kriti; Ray, Ratan Singh

    2017-07-01

    Chronic ultraviolet radiation (UV-R) exposure causes skin disorders like erythema, edema, hyperpigmentation, photoaging and photocarcinogenesis. Recent research trends of researchers have focused more attention on the identification and use of photo stable natural agents with photoprotective properties. Piperine (PIP), as a plant alkaloid, is an important constituent present in black pepper (Piper nigrum), used widely in ayurvedic and other traditional medicines and has broad pharmacological properties. The study was planned to photoprotective efficacy of PIP in human keratinocyte (HaCaT) cell line. We have assessed the UV-R induced activation of transcription factor NF-κB in coordination with cell death modulators (Bax/Bcl-2 and p21). The LC-MS/MS analysis revealed that PIP was photostable under UV-A/UV-B exposure. PIP (10μg/ml) attenuates the UV-R (A and B) induced phototoxicity of keratinocyte cell line through the restoration of cell viability, inhibition of ROS, and malondialdehyde generation. Further, PIP inhibited UV-R mediated DNA damage, prevented micronuclei formation, and reduced sub-G1 phase in cell cycle, which supported against photogenotoxicity. This study revealed that PIP pretreatment strongly suppressed UV-R induced photodamages. Molecular docking studies suggest that PIP binds at the active site of NF-κB, and thus, preventing its translocation to nucleus. In addition, transcriptional and translational analysis advocate the increased expression of NF-κB and concomitant decrease in IkB-α expression under UV-R exposed cells, favouring the apoptosis via Bax/Bcl-2 and p21 pathways. However, PIP induced expression of IkB-α suppress the NF-κB activity which resulted in suppression of apoptotic marker genes and proteins that involved in photoprotection. Therefore, we suggest the applicability of photostable PIP as photoprotective agent for human use. Copyright © 2017. Published by Elsevier B.V.

  4. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L).

    Science.gov (United States)

    Maiuri, Maria Chiara; Criollo, Alfredo; Tasdemir, Ezgi; Vicencio, José Miguel; Tajeddine, Nicolas; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-01-01

    Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.

  5. Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes.

    Science.gov (United States)

    Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W

    2016-01-01

    The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.

  6. Integrative analysis of survival-associated gene sets in breast cancer.

    Science.gov (United States)

    Varn, Frederick S; Ung, Matthew H; Lou, Shao Ke; Cheng, Chao

    2015-03-12

    Patient gene expression information has recently become a clinical feature used to evaluate breast cancer prognosis. The emergence of prognostic gene sets that take advantage of these data has led to a rich library of information that can be used to characterize the molecular nature of a patient's cancer. Identifying robust gene sets that are consistently predictive of a patient's clinical outcome has become one of the main challenges in the field. We inputted our previously established BASE algorithm with patient gene expression data and gene sets from MSigDB to develop the gene set activity score (GSAS), a metric that quantitatively assesses a gene set's activity level in a given patient. We utilized this metric, along with patient time-to-event data, to perform survival analyses to identify the gene sets that were significantly correlated with patient survival. We then performed cross-dataset analyses to identify robust prognostic gene sets and to classify patients by metastasis status. Additionally, we created a gene set network based on component gene overlap to explore the relationship between gene sets derived from MSigDB. We developed a novel gene set based on this network's topology and applied the GSAS metric to characterize its role in patient survival. Using the GSAS metric, we identified 120 gene sets that were significantly associated with patient survival in all datasets tested. The gene overlap network analysis yielded a novel gene set enriched in genes shared by the robustly predictive gene sets. This gene set was highly correlated to patient survival when used alone. Most interestingly, removal of the genes in this gene set from the gene pool on MSigDB resulted in a large reduction in the number of predictive gene sets, suggesting a prominent role for these genes in breast cancer progression. The GSAS metric provided a useful medium by which we systematically investigated how gene sets from MSigDB relate to breast cancer patient survival. We used

  7. An Optically Pure Apogossypolone Derivative as Potent Pan-Active Inhibitor of Anti-Apoptotic Bcl-2 Family Proteins

    International Nuclear Information System (INIS)

    Wei, Jun; Stebbins, John L.; Kitada, Shinichi; Dash, Rupesh; Zhai, Dayong; Placzek, William J.; Wu, Bainan; Rega, Michele F.; Zhang, Ziming; Barile, Elisa; Yang, Li; Dahl, Russell; Fisher, Paul B.; Reed, John C.; Pellecchia, Maurizio

    2011-01-01

    Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2) derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and evaluation on its optically pure (−) and (+) atropisomers. Compound (−) BI97D6 potently inhibits the binding of BH3 peptides to Bcl-X L , Bcl-2, Mcl-1, and Bfl-1 with IC 50 values of 76 ± 5, 31 ± 2, 25 ± 8, and 122 ± 28 nM, respectively. In a cellular assay, compound (−) BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human lung cancer cell lines with EC 50 values of 0.22 ± 0.08 and 0.14 ± 0.02 μM, respectively. Similarly, compound (−) BI97D6 effectively induces apoptosis in the BP3 human lymphoma cell line in a dose-dependent manner. The compound also shows little cytotoxicity against bax −/− /bak −/− cells, suggesting that it kills cancers cells predominantly via a Bcl-2 pathway. Moreover, compound (−) BI97D6 displays in vivo efficacy in both a Bcl-2-transgenic mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (−) BI97D6 represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.

  8. [Effects of blueberry on apoptosis and expression of Bcl-2 and Bax in HSC-T6].

    Science.gov (United States)

    Lu, Shuang; Cheng, Mingliang; Yang, Demeng; Liu, Yang; Guan, Li; Wu, Jun

    2015-08-18

    To investigate the effects of blueberry on the apoptosis, expression of Bcl-2 and Bax in rat hepatic stellate cell (HSC-T6). 10% blueberry serum at low, middle and high dose, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum were prepared by method of serum pharmacology. Subcultured HSC-T6 was divided into saline serum control group, blueberry serum at low, middle, high dose and Fu-Fang-Bie-Jia-Ruan-Gan tablet serum group, and then was respectively incubated at different dose of 10% blueberry serum, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum for 72 hours.Apoptosis of HSC-T6 was detected using flow cytometry with annexin V FITC/PI double staining. The expression of Bcl-2 and Bax in HSC-T6 were examined using immunocytochemistry and Western blotting, respectively. There was no significant difference for HSC-T6 Bax protein expression in the low, middle and high dose blueberry serum groups, compared with saline serum control group, respectively.In the high-dose blueberry serum group HSC-T6 early and total apoptosis rate increased significantly compared with the saline serum control group (5.55% ± 0.98% vs 2.53% ± 0.46%, 7.01% ± 1.05% vs 2.96% ± 0.81%, both Pblueberry serum group showed no significant difference with the saline serum control group. Blueberry can induce HSC-T6 apoptosis by down-regulating Bcl-2 expression and decreasing the ratio of Bcl-2/Bax in HSC-T6 cells, so it may have potential interference effects on hepatic fibrosis.

  9. Role of reactive oxygen species and Bcl-2 family proteins in TNF-α-induced apoptosis of lymphocytes.

    Science.gov (United States)

    Ryazanceva, N V; Novickiy, V V; Zhukova, O B; Biktasova, A K; Chechina, O E; Sazonova, E V; Belkina, M V; Chasovskih, N Yu; Khaitova, Z K

    2010-08-01

    We studied the in vitro apoptosis-inducing effect of recombinant TNF-α (rTNF-α) on blood lymphocytes from healthy donors. rTNF-α-induced apoptosis was accompanied by an increase in the number of cells with low mitochondrial transmembrane potential, increased intracellular content of reactive oxygen species, reduced content of Bcl-2, Bcl-xL, and Bax proteins, and elevated Bad content. The molecular mechanisms of these changes are discussed.

  10. Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members.

    Directory of Open Access Journals (Sweden)

    Ali Hosseini

    Full Text Available Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.

  11. A light-up probe targeting for Bcl-2 2345 G-quadruplex DNA with carbazole TO

    Science.gov (United States)

    Gu, Yingchun; Lin, Dayong; Tang, Yalin; Fei, Xuening; Wang, Cuihong; Zhang, Baolian; Zhou, Jianguo

    2018-02-01

    As its significant role, the selective recognition of G-quadruplex with specific structures and functions is important in biological and medicinal chemistry. Carbazole derivatives have been reported as a kind of fluorescent probe with many excellent optical properties. In the present study, the fluorescence of the dye (carbazole TO) increased almost 70 fold in the presence of bcl-2 2345 G4 compared to that alone in aqueous buffer condition with almost no fluorescence and 10-30 fold than those in the presence of other DNAs. The binding study results by activity inhibition of G4/Hemin peroxidase experiment, NMR titration and molecular docking simulation showed the high affinity and selectivity to bcl-2 2345 G4 arises from its end-stacking interaction with G-quartet. It is said that a facile approach with excellent sensitive, good selectivity and quick response for bcl-2 2345 G-quadruplex was developed and may be used for antitumor recognition or antitumor agents.

  12. Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence.

    Directory of Open Access Journals (Sweden)

    Yannis Guillemin

    Full Text Available BACKGROUND: The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. METHODOLOGY/PRINCIPAL FINDINGS: Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. CONCLUSION/SIGNIFICANCE: BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.

  13. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  14. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    Science.gov (United States)

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-06-21

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2.

  15. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    Science.gov (United States)

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach. © 2014 Society for Laboratory Automation and Screening.

  16. Ellagic acid protects against neuron damage in ischemic stroke through regulating the ratio of Bcl-2/Bax expression.

    Science.gov (United States)

    Liu, Qing-Shan; Deng, Ran; Li, Shuran; Li, Xu; Li, Keqin; Kebaituli, Gulibanumu; Li, Xueli; Liu, Rui

    2017-08-01

    An oxygen-glucose deprivation and reoxygenation model in primary cultured rat cortical neurons was developed for this study to investigate the effects of ellagic acid (EA), a low-molecular-weight polyphenol, on neuron cells and their function, and to evaluate whether EA can be safely utilized by humans as a functional food or therapeutic agent. Administration of EA significantly decreased the volume of cerebrum infarction and the neurological deficit scores of the rats; EA treatment also increased the number of Bcl-2-positive cells and the ratio of Bcl-2-positive to Bax-positive neurons in the semidarkness zone near the brain ischemic focus in the photothrombotic cerebral ischemia model. Treatment of EA resulted in increased neuron viability, cell nuclear integrity, and the ratio of Bcl-2/Bax expression in the primary cultured neuron model; EA treatment also lead to a decrease in the number of apoptotic cells. Our results therefore suggest a specific mechanism for the beneficial effects of EA, providing new insights into how it provides neuroprotection. To the best of our knowledge, these results represent new insights on the mechanisms of the brain cell protective activity of EA. Thus, EA may be used in functional foods or medicines to help treat nerve dysfunction, neurodegenerative disease, and aging.

  17. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22phox expression

    International Nuclear Information System (INIS)

    Wang, Chaoyun; He, Yanhao; Yang, Ming; Sun, Hongliu; Zhang, Shuping; Wang, Chunhua

    2013-01-01

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22 phox , increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22 phox . • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression

  18. Ortholog-based screening and identification of genes related to intracellular survival.

    Science.gov (United States)

    Yang, Xiaowen; Wang, Jiawei; Bing, Guoxia; Bie, Pengfei; De, Yanyan; Lyu, Yanli; Wu, Qingmin

    2018-04-20

    Bioinformatics and comparative genomics analysis methods were used to predict unknown pathogen genes based on homology with identified or functionally clustered genes. In this study, the genes of common pathogens were analyzed to screen and identify genes associated with intracellular survival through sequence similarity, phylogenetic tree analysis and the λ-Red recombination system test method. The total 38,952 protein-coding genes of common pathogens were divided into 19,775 clusters. As demonstrated through a COG analysis, information storage and processing genes might play an important role intracellular survival. Only 19 clusters were present in facultative intracellular pathogens, and not all were present in extracellular pathogens. Construction of a phylogenetic tree selected 18 of these 19 clusters. Comparisons with the DEG database and previous research revealed that seven other clusters are considered essential gene clusters and that seven other clusters are associated with intracellular survival. Moreover, this study confirmed that clusters screened by orthologs with similar function could be replaced with an approved uvrY gene and its orthologs, and the results revealed that the usg gene is associated with intracellular survival. The study improves the current understanding of intracellular pathogens characteristics and allows further exploration of the intracellular survival-related gene modules in these pathogens. Copyright © 2018. Published by Elsevier B.V.

  19. Astro research fellowship: the role of bcl-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Meyn, Raymond E.

    1998-01-01

    Purpose: The expression of the bcl-2 proto-oncogene has been associated with resistance to radiation-induced apoptosis. There is evidence that the bcl-2 protein acts in an antioxidant pathway to block the effects of reactive oxygen species that mediate apoptosis possibly by increasing the levels of intracellular glutathione. Our hypothesis is that pretreatment of radiation-sensitive cells, known to lack bcl-2 expression, with antioxidants will reduce radiation-induced apoptosis. For this purpose, the apoptotic response to radiation and the intracellular levels of GSH were tested before and after pretreatment with antioxidants in two murine lymphoma cell lines, a radiation-resistant, bcl-2- expressing (LY-ar) line and a radiation-sensitive, non-bcl-2-expressing (LY-as) line. Methods and Materials: LY-ar and LY-as cells were irradiated at 0,1,2,3, and 4 hours before collection. The intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were determined by the use of the fluorescent dye o-phthalaldehyde. LY-as cells were treated with GSH ethyl-ester for 1 and 2 hours after irradiation. Apoptotic response was measured by the DNA fragmentation assay. The radiation dose was 2.5 Gy. Results: After irradiation, the apoptotic rate of LY-ar and LY-as cells was 10-20% and 50-70% respectively. LY-ar cells had higher intracellular GSH and GSSG levels compared to LY-as cells by 69.9% and 91.9% respectively and the GSH/GSSG ratio in LY-ar and LY-as cells was 15.09 and 17.09 respectively. GSH levels did not change during the first 2 hours after irradiation; however, there was a 49% and 84% reduction at 3 and 4 hours after irradiation, respectively, times at which the LY-as cells have already fragmented their DNA. Treatment of LY-as cells with GSH ethyl-ester at a concentration of 7 mM for 1 and 2 hours resulted in 70% and 231% increases in the intracellular GSH levels respectively. Treatment of LY-as cells with GSH ethyl-ester for 1 and 2 hours also conferred a 25

  20. The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner*

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.

    2011-01-01

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306

  1. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner.

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D; Wang, Hong-Gang; Sebti, Saïd M

    2011-03-18

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.

  2. Immunohistochemical expression of p53, BCL-2, BAX and VEGFR1 proteins in nephroblastomas A expressão imuno-histoquímica das proteínas p53, BCL-2, BAX e VEGFR1 em nefroblastomas

    Directory of Open Access Journals (Sweden)

    Ana Paula Percicote

    2013-02-01

    Full Text Available INTRODUCTION: Nephroblastoma or Wilms' tumor is the most frequent renal cancer in children. Although its prognosis is favorable for most patients, it may relapse or have a fatal outcome. The characterization of risk groups by applying immunohistochemical biomarkers aims to adapt the treatment to its corresponding group as well as to reduce relapses and fatal outcome. p53, B-cell lymphoma 2 (BCL-2, BCL-2 associated protein X (BAX and vascular endothelial growth factor receptor 1 (VEGFR1 are among the most widely studied biomarkers, which are related to the apoptotic pathway, DNA repair and neovascularization. OBJECTIVE: The objective of this study is to assess the immunohistochemical expression of p53, BCL-2, BAX and VEGFR1 in samples of human nephroblastoma and to correlate them with clinicopathological prognostic factors. MATERIAL AND METHODS: Twenty-nine surgical specimens of nephroblastoma diagnosed from 1994 to 2007 were selected from the Anatomopathological Service of two hospitals in Curitiba. The immunohistochemical analysis of tissue microarrays was performed through immunoperoxidase staining and the yielded results were compared with clinicopathological prognostic factors. RESULTS: The major immunohistochemical expression of VEGFR1 in blastema and epithelium presented positive association with the risk group. Hence this may be related to higher vascular neoplastic invasion apparently caused by the endothelial growth factor, which maximizes the chances of metastasis and ultimately changes tumor staging, risk group and clinical evolution. CONCLUSIONS: The immunohistochemical expression of VEGFR1 substantiated a directly proportional association with the nephroblastoma risk group.INTRODUÇÃO: O nefroblastoma, ou tumor de Wilms, é a neoplasia renal mais frequente na infância. Embora o prognóstico seja favorável para a maioria dos pacientes, muitos evoluem para recidiva ou óbito. A caracterização de grupos de risco por meio de

  3. A Combinatory Approach for Selecting Prognostic Genes in Microarray Studies of Tumour Survivals

    Directory of Open Access Journals (Sweden)

    Qihua Tan

    2009-01-01

    Full Text Available Different from significant gene expression analysis which looks for genes that are differentially regulated, feature selection in the microarray-based prognostic gene expression analysis aims at finding a subset of marker genes that are not only differentially expressed but also informative for prediction. Unfortunately feature selection in literature of microarray study is predominated by the simple heuristic univariate gene filter paradigm that selects differentially expressed genes according to their statistical significances. We introduce a combinatory feature selection strategy that integrates differential gene expression analysis with the Gram-Schmidt process to identify prognostic genes that are both statistically significant and highly informative for predicting tumour survival outcomes. Empirical application to leukemia and ovarian cancer survival data through-within- and cross-study validations shows that the feature space can be largely reduced while achieving improved testing performances.

  4. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae to survive thermal stress and bleaching.

    Directory of Open Access Journals (Sweden)

    Hagit Kvitt

    Full Text Available Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like cloned in this study. In corals exposed to thermal stress (32 or 34°C, caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  5. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas

    DEFF Research Database (Denmark)

    Berntsson, Shala Ghaderi; Wibom, Carl; Sjöström, Sara

    2011-01-01

    different DNA repair genes (ATM, NEIL1, NEIL2, ERCC6 and RPA4) which were associated with survival. Finally, these eight genetic variants were adjusted for treatment, malignancy grade, patient age and gender, leaving one variant, rs4253079, mapped to ERCC6, with a significant association to survival (OR 0...

  6. Câncer de boca: expressão imuno-histoquímica de c-erbB-2, Bcl-2 e EGFR - estudo comparativo com leucoplasia e hiperplasia inflamatória = Oral cancer: immunohistochemical expression of c-erbB-2, Bcl-2 and EGFR – study with leukoplakia and inflammatory hyperplasia

    Directory of Open Access Journals (Sweden)

    Barros, Rosana M. G.

    2005-01-01

    Full Text Available Anormalidades em genes que regulam a proliferação e morte celular podem provocar inúmeras doenças entre elas o carcinoma epidermóide de boca. Tem sido relatado que alterações genéticas nas células tumorais predizem a agressividade biológica dos tumores. Marcadores genéticos como c-erbB-2, Bcl-2 e EGFR são considerados indicadores promissores de prognósticos para as lesões cancerizáveis e as neoplasias. Objetivo: Avaliar a expressão imunohistoquímica das proteínas c-erbB-2, Bcl-2 e EGFR (oncoproteínas envolvidas nas vias de proliferação celular Material e Métodos: cento e cinco blocos e parafina contendo fragmentos de biopsias incisionais, sendo 54 de carcinomas epidermóides, 25 blocos de leucoplasias e 26 blocos de hiperlasias obtidos do Laboratório de Patologia de Boca da Universidade Federal de Mato Grosso do Sul (UFSM. A expressão das proteínas foi verificada através da técnica imunohistoquímica utilizando a estreptoavidina-biotina-peroxidase no Laboratório de Patologia da Universidade de Brasília (UNB. Resultados: Os resultados revelaram diferença estatisticamente significante da proteína EGFR para os carcinomas epidermóides de boca e para as demais proteínas não houve diferença estatisticamente significante entre as lesões. Conclusões: Os resultados sugerem que o EGFR pode ser utilizado como marcador em carcinoma de boca podendo contribuir para a progressão da neoplasia, porém sendo insuficiente na predição da carcinogênese. Abnormalities in genes that regulate the proliferation and cell death can provoke many lesions as oral epidermal carcinoma. It has been related that genetic alterations in tumoral cells predict the biologic agressivity in the tumors. Genetic markers as cerbB-2, Bcl-2 and EGFR are considered indicators of prognostic to the pre-malignant lesions and neoplasias. Objective: to study in the fragments of incisional biopsy the expression of c-erbB-2, Bcl-2 and EGFR proteins

  7. Immunohistochemical study of ki-67 and bcl-2 expression in some odontogenic cystic lesions with different clinical behaviors

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Tabatabaei

    2016-11-01

    Full Text Available Background: Cystic lesions with odontogenic epithelial origin and similar clinicoradiographic appearance, show different clinical behaviors. Objective: To compare some factors related to cell proliferation and escape from apoptosis in epithelium covering two groups of odontogenic cystic lesions with different clinical behaviors. Methods: In this cross-sectional study 11 paraffin-embedded samples were selected of each lesions radicular cyst, dentigerous cyst, odontogenic keratocyst, and unicystic ameloblastoma. The sample underwent immunohistochemical staining for investigating the expression of ki-67 antigen and bcl-2 protein. Data analyzed with SPSS17 software and Kruskal–Wallis and chi-square statistical tests. Findings: Most of ki-67 positive cells were observed in parabasal layer of odontogenic keratocyst [35.50±26.29%; P=0.001]. The average of ki-67-LI was more in parabasal layer of aggressive group (26.80±37.79% compared to non-aggressive group (4.04±3.38%, was not being statistically significant. The highest average of bcl-2-LI was 95±6.70% in basal layer of odontogenic keratocyst (P=0.001. In all layers, the average of bcl-2-LI was more in aggressive lesions compared to non-aggressive ones and the highest amount was found in basal layer (72.45±3.94×10% which was statistically significant (P=0.001. Conclusion: According to the results of this study, more expression of the markers related to escape from apoptosis in aggressive lesions group compared to non-aggressive group, suggests that escape from apoptosis had a more critical role in aggressive behavior of odontogenic cystic lesions.

  8. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions.

    Science.gov (United States)

    Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran

    2018-06-01

    Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. [Apoptosis-modulating effects of heat shock proteins: the influence of Hsp27 chaperone on TBA Bcl-2 family proteins in Jurkat cell line].

    Science.gov (United States)

    Riazantseva, N V; Kaĭgorodova, E V; Maroshkina, A N; Belkina, M V; Novitskiĭ, V V

    2012-01-01

    The in vitro phosphorylated and non-phosphorylated Hsp27 forms concentrations and Bcl-2 proteins affected by Hsp27 inhibition were studied in Jurkat-line tumor cells and healthy donor mononuclear lymphocytes by Western blotting technique. The Hsp27 inhibition causes the increase of intracellular Bax protein concentration and the decrease of Bcl-2 level leading to an increase of apoptotic changes in Jurkat line cells.

  10. Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 mimetics.

    Directory of Open Access Journals (Sweden)

    Dennie T Frederick

    Full Text Available While response rates to BRAF inhibitiors (BRAFi are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA, significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720 and BCL2 (navitoclax inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance. Trial registrations: ClinicalTrials.gov NCT01006980; ClinicalTrials.gov NCT01107418; ClinicalTrials.gov NCT01264380; ClinicalTrials.gov NCT01248936; ClinicalTrials.gov NCT00949702; ClinicalTrials.gov NCT01072175.

  11. Bcl-2 and bax expression and prostate cancer outcome in men treated with radiotherapy in Radiation Therapy Oncology Group protocol 86-10

    International Nuclear Information System (INIS)

    Khor, L.-Y.; De Silvio, Michelle; Li, Rile; McDonnell, Timothy J.; Hammond, M. Elizabeth H.; Sause, William T.; Pilepich, Miljenko V.; Okunieff, Paul; Sandler, Howard M.; Pollack, Alan

    2006-01-01

    Purpose: Bcl-2 and bax are proteins with opposing roles in apoptosis regulation; yet abnormal expression of either has been associated with failure after radiotherapy (RT). In this study we examined bcl-2 and bax expression as predictive markers in men treated with radiotherapy ± androgen deprivation on Radiation Therapy Oncology Group (RTOG) protocol 86-10. Experimental Design: Suitable archival diagnostic tissue was obtained from 119 (26%) patients for bcl-2 analysis and 104 (23%) patients for bax analysis. Cox proportional hazards multivariate analysis was used to determine the relationship of abnormal bcl-2 and bax expression to the end points of local failure, distant metastasis, cause-specific mortality, and overall mortality. Bcl-2 overexpression was classified as any tumor cell cytoplasmic staining and altered bax expression was classified as greater or lesser cytoplasmic staining intensity of tumor cells as compared with adjacent normal prostate epithelium. Results: The study cohort exhibited bcl-2 overexpression in 26% (n = 30) of cases and abnormal bax expression in 47% (n = 49) of cases. A borderline significant relationship was observed between abnormal bax expression and higher Gleason score (p = 0.08). In univariate and multivariate analyses, there was no statistically significant relationship seen between abnormal bcl-2 or bax expression and outcome. Conclusions: Abnormal bcl-2 and bax expression were not related to any of the end points tested. The cohort examined was comprised of patients with locally advanced disease and it is possible that these markers may be of greater value in men with earlier-stage prostate cancer

  12. Expression of Bcl-2, p53, and MDM2 in Localized Prostate Cancer With Respect to the Outcome of Radical Radiotherapy Dose Escalation

    International Nuclear Information System (INIS)

    Vergis, Roy; Corbishley, Catherine M.; Thomas, Karen

    2010-01-01

    Purpose: Established prognostic factors in localized prostate cancer explain only a moderate proportion of variation in outcome. We analyzed tumor expression of apoptotic markers with respect to outcome in men with localized prostate cancer in two randomized controlled trials of radiotherapy dose escalation. Methods and Materials: Between 1995 and 2001, 308 patients with localized prostate cancer received neoadjuvant androgen deprivation and radical radiotherapy at our institution in one of two dose-escalation trials. The biopsy specimens in 201 cases were used to make a biopsy tissue microarray. We evaluated tumor expression of Bcl-2, p53, and MDM2 by immunohistochemistry with respect to outcome. Results: Median follow-up was 7 years, and 5-year freedom from biochemical failure (FFBF) was 70.4% (95% CI, 63.5-76.3%). On univariate analysis, expression of Bcl-2 (p < 0.001) and p53 (p = 0.017), but not MDM2 (p = 0.224), was significantly associated with FFBF. Expression of Bcl-2 remained significantly associated with FFBF (p = 0.001) on multivariate analysis, independently of T stage, Gleason score, initial prostate-specific antigen level, and radiotherapy dose. Seven-year biochemical control was 61% vs. 41% (p = 0.0122) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-positive tumors and 87% vs. 81% (p = 0.423) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-negative tumors. There was no statistically significant interaction between dose and Bcl-2 expression. Conclusions: Bcl-2 expression was a significant, independent determinant of biochemical control after neoadjuvant androgen deprivation and radical radiotherapy for prostate cancer. These data generate the hypothesis that Bcl-2 expression could be used to inform the choice of radiotherapy dose in individual patients.

  13. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity.

    Directory of Open Access Journals (Sweden)

    Ryan C Thompson

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a genetically heterogeneous disease and this variation can often be used to explain the response of individual patients to chemotherapy. One cancer therapeutic approach currently in clinical trials uses histone deacetylase inhibitors (HDACi's as monotherapy or in combination with other agents. METHODOLOGY/PRINCIPAL FINDINGS: We have used a variety of cell-based and molecular/biochemical assays to show that two pan-HDAC inhibitors, trichostatin A and vorinostat, induce apoptosis in seven of eight human DLBCL cell lines. Consistent with previous reports implicating the BCL-2 family in regulating HDACi-induced apoptosis, ectopic over-expression of anti-apoptotic proteins BCL-2 and BCL-XL or pro-apoptotic protein BIM in these cell lines conferred further resistance or sensitivity, respectively, to HDACi treatment. Additionally, BCL-2 family antgonist ABT-737 increased the sensitivity of several DLBCL cell lines to vorinostat-induced apoptosis, including one cell line (SUDHL6 that is resistant to vorinostat alone. Moreover, two variants of the HDACi-sensitive SUDHL4 cell line that have decreased sensitivity to vorinostat showed up-regulation of BCL-2 family anti-apoptotic proteins such as BCL-XL and MCL-1, as well as decreased sensitivity to ABT-737. These results suggest that the regulation and overall balance of anti- to pro-apoptotic BCL-2 family protein expression is important in defining the sensitivity of DLBCL to HDACi-induced apoptosis. However, the sensitivity of DLBCL cell lines to HDACi treatment does not correlate with expression of any individual BCL-2 family member. CONCLUSIONS/SIGNIFICANCE: These studies indicate that the sensitivity of DLBCL to treatment with HDACi's is dependent on the complex regulation of BCL-2 family members and that BCL-2 antagonists may enhance the response of a subset of DLBCL patients to HDACi treatment.

  14. BCL2-like 11 intron 2 deletion polymorphism is not associated with non-small cell lung cancer risk and prognosis.

    Science.gov (United States)

    Cho, Eun Na; Kim, Eun Young; Jung, Ji Ye; Kim, Arum; Oh, In Jae; Kim, Young Chul; Chang, Yoon Soo

    2015-10-01

    BCL2-Like 11(BIM), which encodes a BH3-only protein, is a major pro-apoptotic molecule that facilitates cell death. We hypothesized that a BIM intron 2 deletion polymorphism increases lung cancer risk and predicts poor prognosis in non-small lung cancer (NSCLC) patients. We prospectively recruited 450 lung cancer patients and 1:1 age, sex, and smoking status matched control subjects from February 2013 to April 2014 among patients treated at Severance, Gangnam Severance, and Chonnam Hwasoon Hospital. The presence of a 2903-bp genomic DNA deletion polymorphism of intron 2 of BIM was analyzed by PCR and validated by sequencing. Odds ratios were calculated by chi-square tests and survival analysis with Kaplan-Meier estimation. Sixty-nine out of 450 (15.3%) lung cancer patients carried the BIM deletion polymorphism, while 66 out of 450 (14.7%) control subjects carried the BIM deletion polymorphism, with an odds ratio of for lung cancer of 1.054 (95% CI; 0.731-1.519). We categorized 406 NSCLC patients according to the presence of the polymorphism and found that there were no statistically significant differences in age, sex, histologic type, or stage between subjects with and without the deletion polymorphism. The BIM deletion polymorphism did not influence overall survival (OS) or progression free survival (PFS) in our sample (OS; 37.6 vs 34.4 months (P=0.759), PFS; 49.6 vs 26.0 months (P=0.434)). These findings indicate that the BIM deletion polymorphism is common in Korean NSCLC patients but does not significantly affect the intrinsic biologic function of BH3-only protein. Furthermore, the BIM deletion polymorphism did not predict clinical outcomes in patients with NSCLC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. BH3-only protein Bim inhibits activity of antiapoptotic members of Bcl-2 family when expressed in yeast.

    Science.gov (United States)

    Juhásová, Barbora; Mentel, Marek; Bhatia-Kiššová, Ingrid; Zeman, Igor; Kolarov, Jordan; Forte, Michael; Polčic, Peter

    2011-09-02

    Proteins of the Bcl-2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3-only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report that cell death promoting activity of BH3-only protein Bim can be reconstituted in yeast when both Bax and antiapoptotic protein Bcl-X(L) are present, suggesting that Bim likely activates Bax indirectly by inhibiting antiapoptotic proteins. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Prognostic significance of CD95, P53, and BCL2 expression in extranodal non-Hodgkin's lymphoma

    OpenAIRE

    Chatzitolios , Anastasios; Venizelos , Ioannis; Tripsiannis , Gregory; Anastassopoulos , George; Papadopoulos , Nikolaos

    2010-01-01

    Abstract Apoptosis-related proteins play an important role in lymphoma cell death during chemotherapy. In our study, we investigated the prognostic significance of CD95, BCL2, and P53 expression in extranodal non-Hodgkin?s lymphoma (NHL). We examined 71 patients with extranodal NHL [45 diffuse large B-cell lymphomas (DLBCLs) and 26 mucosa-associated lymphoid tissue lymphomas (MALTLs)], 35 male and 36 female, with a median age of 65.8 years. The most common site of origin was the st...

  17. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection

    International Nuclear Information System (INIS)

    Thoulouze, Maria-Isabel; Lafage, Mireille; Yuste, Victor J.; Baloul, Leiela; Edelman, Lena; Kroemer, Guido; Israel, Nicole; Susin, Santos A.; Lafon, Monique

    2003-01-01

    We report here that rabies virus strains, currently used to immunize wildlife against rabies, induce not only caspase-dependent apoptosis in the human lymphoblastoid Jurkat T cell line (Jurkat-vect), but also a caspase-independent pathway involving the apoptosis-inducing factor (AIF). In contrast, a strain of neurotropic RV that does not induce apoptosis did not activate caspases or induce AIF translocation. Bcl-2 overproduction in Jurkat T cells (Jurkat-Bcl-2) abolished both pathways. ERA infection and production were similar in Jurkat-vect and Jurkat-Bcl-2 cells, indicating Bcl-2 has no direct antiviral effects. Bcl-2 production is naturally upregulated by day 3 in ERA-infected Jurkat-vect cultures. The increase in Bcl-2 levels seems to be controlled by the virus infection itself and results in the establishment of long-term, persistently infected cultures that continue to produce virus. Thus, in infections with live RV vaccine strains, infected cells may be productive reservoirs of virus in the long term. This may account for the high efficacy of live rabies vaccines

  18. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins.

    Science.gov (United States)

    Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc

    2012-11-01

    Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.

  19. TP53 gene status affects survival in advanced mycosis fungoides

    Directory of Open Access Journals (Sweden)

    Gitte Wooler

    2016-11-01

    Full Text Available TP53 is frequently mutated in different types of neoplasms including leukemia and lymphomas. Mutations of TP53 have also been reported in mycosis fungoides (MF, the most common type of cutaneous lymphoma. However, little is known about the frequency, spectrum of mutations and their prognostic significance in MF. In this study we have optimized the protocol for Sanger sequencing of TP53 using DNA extracted from archival paraffin-embedded biopsies. Of 19 samples from patients with stage IIB MF or higher, 31% harboured mutations in TP53. Overall survival of the patients with mutated TP53 was significantly shorter than median survival in the age- and stage-matched patients treated in our Institution. Distribution of mutations was heterogenous in TP53 exons, however C>T transitions were common suggesting the causal role of ultraviolet radiation. We propose that TP53 mutation status would be useful for risk stratification of patients with advanced MF.

  20. Sustainability of keratinocyte gene transfer and cell survival in vivo.

    Science.gov (United States)

    Choate, K A; Khavari, P A

    1997-05-20

    The epidermis is an attractive site for therapeutic gene delivery because it is accessible and capable of delivering polypeptides to the systemic circulation. A number of difficulties, however, have emerged in attempts at cutaneous gene delivery, and central among these is an inability to sustain therapeutic gene production. We have examined two major potential contributing factors, viral vector stamina and involvement of long-lived epidermal progenitor cells. Human keratinocytes were either untreated or transduced with a retroviral vector for beta-galactosidase (beta-Gal) at > 99% efficiency and then grafted onto immunodeficient mice to regenerate human epidermis. Human epidermis was monitored in vivo after grafting for clinical and histologic appearance as well as for gene expression. Although integrated vector sequences persisted unchanged in engineered epidermis at 10 weeks post-grafting, retroviral long terminal repeat (LTR)-driven beta-Gal expression ceased in vivo after approximately 4 weeks. Endogenous cellular promoters, however, maintained consistently normal gene expression levels without evidence of time-dependent decline, as determined by immunostaining with species-specific antibodies for human involucrin, filaggrin, keratinocyte transglutaminase, keratin 10, type VII collagen, and Laminin 5 proteins out to week 14 post-grafting. Transduced human keratinocytes generated multilayer epidermis sustained through multiple epidermal turnover cycles; this epidermis demonstrated retention of a spatially appropriate pattern of basal and suprabasal epidermal marker gene expression. These results confirm previous findings suggesting that viral promoter-driven gene expression is not durable and demonstrate that keratinocytes passaged in vitro can regenerate and sustain normal epidermis for prolonged periods.

  1. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  2. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells

    International Nuclear Information System (INIS)

    Guan Fuqin; Zhang Dongmei; Wang Xinchang; Chen Junhui

    2007-01-01

    Although effects of nickel(II) on the immune system have long been recognized, little is known about the effects of nickel(II) on the induction of apoptosis and related signaling events in T cells. In the present study, we investigated the roles and signaling pathways of nickel(II) in the induction of apoptosis in a human T cell line jurkat. The results showed that the cytotoxic effects of Ni involved significant morphological changes and chromosomal condensation (Hoechst 33258 staining). Analyses of hypodiploid cells and FITC-Annexin V and PI double staining showed significant increase of apoptosis in jurkat cells 6, 12 and 24 h after nickel(II) treatment. Flow cytometry analysis also revealed that the loss of mitochondrial membrane potential (MMP) occurred concomitantly with the onset of NiCl 2 -induced apoptosis. Induction of apoptotic cell death by nickel was mediated by reduction of bcl-2 expression. Furthermore, nickel stimulated the generation of nitric oxide (NO). These results suggest that nickel(II) chloride induces jurkat cells apoptosis via nitric oxide generation, mitochondrial depolarization and bcl-2 suppression

  3. Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin

    DEFF Research Database (Denmark)

    Liang, Y G; Jorgensen, A G; Kaestel, C G

    2000-01-01

    PURPOSE. The aim of this study was to determine the role of Bcl-2, Bcl-X L, Bax, and c-Fos in regulation of apoptosis, induced by ultraviolet-light A (UV-A) and daunorubicin (DNR), in retinal pigment epithelium (RPE) cells grown on bovine extracellular matrix (ECM)-coated or uncoated plastic dishes....... METHODS. Apoptosis in confluent RPE cells cultured on ECM-coated or uncoated dishes was induced by UV-A or DNR. Apoptosis was detected by 7-amino-actinomycin D labeling followed by flow cytometry and by terminal deoxy-transferase mediated X-dUTP nick end labeling (TUNEL). Cellular expression of Bcl-2, Bcl......-X L, Bax, and c-Fos was determined by the use of antibodies and flow cytometry, Western blot analysis, and immunocytochemical staining. RESULTS. Both UV-A and DNR induce apoptosis in human RPE cells in vitro. Human fetal RPE cells grown on ECM-coated dishes were significantly more resistant to UV...

  4. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  5. Flavanols from evening primrose (Oenothera paradoxa) defatted seeds inhibit prostate cells invasiveness and cause changes in Bcl-2/Bax mRNA ratio.

    Science.gov (United States)

    Lewandowska, Urszula; Szewczyk, Karolina; Owczarek, Katarzyna; Hrabec, Zbigniew; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta

    2013-03-27

    In this study, we assessed the influence of an evening primrose flavanol preparation (EPFP) on proliferation and invasiveness of human prostate cancer cells (DU 145) and immortalized prostate epithelial cells (PNT1A). We report for the first time that EPFP reduces DU 145 cell proliferation (IC50 = 97 μM GAE for 72 h incubation) and invasiveness (by 24% versus control at 75 μM GAE). EPFP strongly inhibited PNT1A invasiveness in a concentration-dependent manner (by 67% versus control at 75 μM GAE) and did not cause a reduction in their proliferation. Furthermore, EPFP inhibited the activities of MMP-2 and MMP-9 secreted to culture medium by PNT1A cells by 84% and 34% versus control at 100 μM GAE, respectively. In the case of DU 145, MMP-9 activity at 100 μM GAE was reduced by 37% versus control. Moreover, the evening primrose seed flavanols suppressed the expression of selected genes (MMP-1, MMP-9, MMP-14, c-Fos, c-Jun, and VEGF) and also caused favorable changes in Bcl-2/Bax mRNA ratio which render DU 145 cells more sensitive to apoptosis-triggering agents. An additional confirmation of the proapoptotic activity of EPFP toward DU 145 was visualization of characteristic apoptotic bodies by DAPI staining. In conclusion, this study suggests that EPFP may increase apoptosis and reduce angiogenesis of prostate cancer cells.

  6. Increase in Bcl2 expression of penile and prostate cells of Sprague Dawley male rats following treatment with buceng (combination of Pimpinella alpina molk with Eurycoma longifolia Jack

    Directory of Open Access Journals (Sweden)

    Taufiqurrachman Nasihun

    2015-04-01

    Full Text Available Background: Treatment with buceng combination of Eurycoma longifolia Jack and Pimpinella alpine Molk has been proven to increase testosterone level, decrease apoptosis and caspase3 expression. Bcl2 is an antiapoptotic protein found in cytoplasm which inhibits cells apoptosis. This study was aimed to investigate the effect of buceng on Bcl2 expression on penile and prostate tissues of the rats. Methods: In this experimental study, 24 male Sprague Dawley rats of 90 days old, weighing ± 300 grams, were randomly assigned into four groups. Group A, normal rats. Group B, castrated rats and treated with buceng 100 mg/day, per oral (Cast-Bcg; Group C, castrated rats and treated with 2 ml of water as placebo against buceng (Cast-Plac. Group D, castrated rats, treated with mesterolone 6.75 mg/day, per oral, as exogenous testosterone (Cast-Mest. All rats were treated for 30 days. Manova test was used to analyze the different expression of Bcl2 among groups with significance level at p ≤ 0.05. Results: Castration was associated with significant decrease of Bcl2 expression in the penile and prostate tissues (53.0 and 50.9%, respectively compared to normal rats (82.6 and 84.2%, respectively, p < 0.001. Treatment with mesterolone reversed Bcl2 expression (77.1 and 78.1% to a near normal level. The same level of Bcl2 expression was also observed with buceng treatment (73.8 and 78.2%.Conclusion: The treatment with buceng could enhance Bcl2 expression in penile and prostate tissues, comparable to normal rats and mesterolone treated rats.

  7. Assessment of the relationship between ACE I/D gene polymorphism and renal allograft survival.

    Science.gov (United States)

    Yang, Chun-Hua; Lu, Yi; Chen, Xue-Xia; Xian, Wen-Feng; Tu, Wei-Feng; Li, Hong-Yan

    2015-12-01

    The relationship between the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene polymorphism and renal allograft survival after renal transplantation from the published reports are still debatable. This study was performed to evaluate the relationship between the ACE I/D gene polymorphism and renal allograft survival after renal transplantation using meta-analysis. Eligible studies were identified from PubMed and Cochrane Library on 1 November 2014, and eligible studies were recruited and synthesized using a meta-analysis methodology. Twelve investigations were included in this meta-analysis for the assessment of the relationship between the ACE I/D gene polymorphism and renal allograft survival. In this meta-analysis, the ACE I/D gene polymorphism was not associated with renal allograft survival after renal transplantation for overall populations, Caucasians, Brazilians and Africans. Interestingly, the ACE D allele and DD genotype were associated with renal allograft survival after renal transplantation in the Asian population. ACE D allele and DD genotype were associated with renal allograft survival after renal transplantation in the Asian population. However, more studies should be performed to confirm this association. © The Author(s) 2015.

  8. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  9. A hemocyte gene expression signature correlated with predictive capacity of oysters to survive Vibrio infections

    Directory of Open Access Journals (Sweden)

    Rosa Rafael

    2012-06-01

    Full Text Available Abstract Background The complex balance between environmental and host factors is an important determinant of susceptibility to infection. Disturbances of this equilibrium may result in multifactorial diseases as illustrated by the summer mortality syndrome, a worldwide and complex phenomenon that affects the oysters, Crassostrea gigas. The summer mortality syndrome reveals a physiological intolerance making this oyster species susceptible to diseases. Exploration of genetic basis governing the oyster resistance or susceptibility to infections is thus a major goal for understanding field mortality events. In this context, we used high-throughput genomic approaches to identify genetic traits that may characterize inherent survival capacities in C. gigas. Results Using digital gene expression (DGE, we analyzed the transcriptomes of hemocytes (immunocompetent cells of oysters able or not able to survive infections by Vibrio species shown to be involved in summer mortalities. Hemocytes were nonlethally collected from oysters before Vibrio experimental infection, and two DGE libraries were generated from individuals that survived or did not survive. Exploration of DGE data and microfluidic qPCR analyses at individual level showed an extraordinary polymorphism in gene expressions, but also a set of hemocyte-expressed genes whose basal mRNA levels discriminate oyster capacity to survive infections by the pathogenic V. splendidus LGP32. Finally, we identified a signature of 14 genes that predicted oyster survival capacity. Their expressions are likely driven by distinct transcriptional regulation processes associated or not associated to gene copy number variation (CNV. Conclusions We provide here for the first time in oyster a gene expression survival signature that represents a useful tool for understanding mortality events and for assessing genetic traits of interest for disease resistance selection programs.

  10. Genes required for Lactococcus garvieae survival in a fish host.

    Science.gov (United States)

    Menéndez, Aurora; Fernández, Lucia; Reimundo, Pilar; Guijarro, José A

    2007-10-01

    Lactococcus garvieae is considered an emergent pathogen in aquaculture and it is also associated with mastitis in domestic animals as well as human endocarditis and septicaemia. In spite of this, the pathogenic mechanisms of this bacterium are poorly understood. Signature-tagged mutagenesis was used to identify virulence factors and to establish the basis of pathogen-host interactions. A library of 1250 L. garvieae UNIUD074-tagged Tn917 mutants in 25 pools was screened for the ability to grow in fish. Among them, 29 mutants (approx. 2.4 %) were identified which could not be recovered from rainbow trout following infection. Sequence analysis of the tagged Tn917-interrupted genes in these mutants indicated the participation in pathogenesis of the transcriptional regulatory proteins homologous to GidA and MerR; the metabolic enzymes asparagine synthetase A and alpha-acetolactate synthase; the ABC transport system of glutamine and a calcium-transporting ATPase; the dltA locus involved in alanylation of teichoic acids; and hypothetical proteins containing EAL and Eis domains, among others. Competence index experiments in several of the selected mutants confirmed the relevance of the Tn917-interrupted genes in the development of the infection process. The results suggested some of the metabolic routes and enzymic systems necessary for the complete virulence of this bacterium. This work is believed to represent the first report of a genome-wide scan for virulence factors in L. garvieae. The identified genes will further our understanding of the pathogenesis of L. garvieae infections and may provide targets for intervention or lead to the development of novel therapies.

  11. Low-Dose Radiation Induces Genes Promoting Cell Survival

    International Nuclear Information System (INIS)

    Liu, Shu-Zheng; Chen, Dong; Mu, Ying

    1999-01-01

    Apoptosis is an important process controlling homeostasis of the body. It is influenced by stimuli constantly arising from the external and internal environment of the organism. It is well known that radiation could induce apoptosis of cells in vitro and in vivo. However, the dose-effect relationship of apoptosis extending to the low-dose range has scarcely been studied. Here, the molecular basis of the phenomenon is explored by examining the changes in expression of some of the proapoptotic and antiapoptotic genes

  12. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Mirza, Muhammad Sajjad; Khan, Qaiser M

    2013-04-01

    Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Jin Fan

    2016-03-01

    Full Text Available Background/Aims: The purpose of this study was to investigate the role of autophagy in oxygen-glucose-deprivation/reoxygenation (OGD/R injury in rat neurons. Methods and results: Cortical neurons were isolated from Sprague-Dawley rats and identified by immunofluorescence. The cortical neurons were randomly assigned to one of four groups: control group (I, experimental group (OGD/R group, II, JNK inhibitor pretreatment group (III and JNK inhibitor pretreatment + OGD/R group (IV. Neuronal cell viability significantly decreased after 6h and 12h of reoxygenation in Group IV (P P Conclusion: The regulation of the JNK/Bcl-2/Beclin-1 signaling pathway may be one of the mechanisms underlying the OGD/R-induced autophagic cell death of neurons.

  14. Metronomic Small Molecule Inhibitor of Bcl-2 (TW-37) Is Antiangiogenic and Potentiates the Antitumor Effect of Ionizing Radiation

    International Nuclear Information System (INIS)

    Zeitlin, Benjamin D.; Spalding, Aaron C.; Campos, Marcia S.; Ashimori, Naoki; Dong Zhihong; Wang Shaomeng; Lawrence, Theodore S.; Noer, Jacques E.

    2010-01-01

    Purpose: To investigate the effect of a metronomic (low-dose, high-frequency) small-molecule inhibitor of Bcl-2 (TW-37) in combination with radiotherapy on microvascular endothelial cells in vitro and in tumor angiogenesis in vivo. Methods and Materials: Primary human dermal microvascular endothelial cells were exposed to ionizing radiation and/or TW-37 and colony formation, as well as capillary sprouting in three-dimensional collagen matrices, was evaluated. Xenografts vascularized with human blood vessels were engineered by cotransplantation of human squamous cell carcinoma cells (OSCC3) and human dermal microvascular endothelial cells seeded in highly porous biodegradable scaffolds into the subcutaneous space of immunodeficient mice. Mice were treated with metronomic TW-37 and/or radiation, and tumor growth was evaluated. Results: Low-dose TW-37 sensitized primary endothelial cells to radiation-induced inhibition of colony formation. Low-dose TW-37 or radiation partially inhibited endothelial cell sprout formation, and in combination, these therapies abrogated new sprouting. Combination of metronomic TW-37 and low-dose radiation inhibited tumor growth and resulted in significant increase in time to failure compared with controls, whereas single agents did not. Notably, histopathologic analysis revealed that tumors treated with TW-37 (with or without radiation) are more differentiated and showed more cohesive invasive fronts, which is consistent with less aggressive phenotype. Conclusions: These results demonstrate that metronomic TW-37 potentiates the antitumor effects of radiotherapy and suggest that patients with head and neck cancer might benefit from the combination of small molecule inhibitor of Bcl-2 and radiation therapy.

  15. Involvement of ERK, Bcl-2 family and caspase 3 in recombinant human activin A-induced apoptosis in A549

    International Nuclear Information System (INIS)

    Wang Baiding; Feng Yuling; Song Xingbo; Liu Qingqing; Ning Yunye; Ou Xuemei; Yang Jie; Zhang Xiaohong; Wen, Fuqiang

    2009-01-01

    Background: Activins are members of the transforming growth factor-β (TGF-β) superfamily. Previous studies have shown that activin A may have a central role in regulating both apoptosis and proliferation. However, direct studies of recombination human activin A on human NSCLC A549 cells have not yet been reported. The purpose of this study was to investigate whether activin A could induce apoptosis in A549 cells and the possible mechanisms via which it worked. Methods: Cellular apoptosis induced by activin A was detected by TUNEL assay and the levels of protein expression were detected by western blot. Results: Recombination human activin A induced apoptosis in human NSCLC A549 cells in a concentrate-dependent manner. Activin A-induced A549 apoptosis was accompanied by the up-regulation of Bax, Bad and Bcl-Xs and down-regulation of Bcl-2. Moreover, activin A treatment increased the expression of its typeII receptors, activated ERK and caspase 3 in A549. These results clearly demonstrate that the induction of apoptosis by activin-A involves multiple cellular/molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family proteins and caspase 3 participate in activin A-induced apoptotic process in A549 cells. On the other hand, activin A treatment had little effect on primary human small airway epithelial cells (SAECs). Conclusion: Recombination human activin A induced apoptosis in A549 cells, at least partially, through ERK and mitochondrial pathway. The result that activin A did not affect the normal SAEC revealed activin A might be considered as a potential anticancer agent and worthy of further studies

  16. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoyou [Department of Organ Transplantation, Zhujiang Hospital, Guangzhou 510282 (China); Dong, Changgui [Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai 200062 (China); Jiang, Zhengyao [Department of Organ Transplantation, Zhujiang Hospital, Guangzhou 510282 (China); Wu, William K.K. [Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Chan, Matthew T.V. [Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Zhang, Jie [Department of Organ Transplantation, Zhujiang Hospital, Guangzhou 510282 (China); Li, Haibin; Qin, Ke [Guangxi Key Laboratory for Transplantation Medicine Department of Organ Transplantation in Guangzhou Military Region, Institute of Transplant Medicine, 303 Hospital of People' s Liberation Army, Nanning, Guangxi 530021 (China); Sun, Xuyong, E-mail: sunxuyong0528@163.com [Guangxi Key Laboratory for Transplantation Medicine Department of Organ Transplantation in Guangzhou Military Region, Institute of Transplant Medicine, 303 Hospital of People' s Liberation Army, Nanning, Guangxi 530021 (China)

    2015-04-10

    Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, and chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11.

  17. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11

    International Nuclear Information System (INIS)

    Liu, Xiaoyou; Dong, Changgui; Jiang, Zhengyao; Wu, William K.K.; Chan, Matthew T.V.; Zhang, Jie; Li, Haibin; Qin, Ke; Sun, Xuyong

    2015-01-01

    Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, and chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11

  18. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  19. Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats

    Science.gov (United States)

    Choudhary, Arbind Kumar; Devi, Rathinasamy Sheela

    2016-01-01

    Abstract Aspartame, a “first generation sweetener”, is widely used in a variety of foods, beverages, and medicine. The FDA has determined the acceptable daily intake (ADI) value of aspartame to be 50 mg/kg·day, while the JECFA (Joint FAO/WHO Expert Committee on Food Additives) has set this value at 40 mg/kg of body weight/day. Safety issues have been raised about aspartame due to its metabolites, specifically toxicity from methanol and/or its systemic metabolites formaldehyde and formic acid. The immune system is now recognized as a target organ for many xenobiotics, such as drugs and chemicals, which are able to trigger unwanted apoptosis or to alter the regulation of apoptosis. Our previous studies has shown that oral administration of aspartame [40 mg/(kg·day)] or its metabolites for 90 days increased oxidative stress in immune organs of Wistar albino rats. In this present study, we aimed to clarify whether aspartame consumption over a longer period (90-days) has any effect on the expression of hsp70, bcl-2 and bax at both mRNA transcript and protein expression levels in immune organs. We observed that oral administration of aspartame for 90 days did not cause any apparent DNA fragmentation in immune organs of aspartame treated animals; however, there was a significant increase in hsp70 expression, apart from significant alteration in bcl-2 and bax at both mRNA transcript and protein expression level in the immune organs of aspartame treated animals compared to controls. Hence, the results indicated that hsp70 levels increased in response to oxidative injury induced by aspartame metabolites; however, these metabolites did not induce apoptosis in the immune organs. Furthermore, detailed analyses are needed to elucidate the precise molecular mechanisms involved in these changes. PMID:27845306

  20. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Bin; Chen, Linfeng; Ni, Zhenhong; Dai, Xufang; Qin, Liyan; Wu, Yaran; Li, Xinzhe; Xu, Liang; Lian, Jiqin; He, Fengtian

    2014-11-01

    Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. 18α-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis.

    Science.gov (United States)

    Rahman, Md Ataur; Bishayee, Kausik; Habib, Khadija; Sadra, Ali; Huh, Sung-Oh

    2016-10-01

    18α-Glycyrrhetinic acid (18-GA) is a known gap-junction inhibitor with demonstrated anticancer effects. However, the different modes of cell cytotoxicity for 18-GA remain to be characterized. In this study, 18-GA reduced the expression of cell-cell interaction proteins (N- and VE-cadherin), and led to a dose-dependent increase in cytotoxicity of the neuroblastoma cells tested, but was less toxic toward actively dividing human embryonic kidney cells. We found that 18-GA could induce both autophagy and apoptosis. 18-GA mediated autophagy was due to accumulation of Atg5, Atg7 and LC3II and degradation of p62. Individual siRNAs against Atg5 and Atg7 prevented autophagy and resulted in a further loss of viability with 18-GA. In addition, combination of 18-GA with autophagy inhibitor chloroquine produced a more significant cell death. This implied a pro-survival function for autophagy induction with 18-GA. 18-GA also led to the destabilization of Bcl-2/Beclin-1 interaction and cleavage of Beclin-1, a protein known to play role in apoptosis and autophagy induction. Treatment of cells by a pan-caspase inhibitor or a caspase-3 siRNA prevented a large portion of 18-GA mediated cytotoxicity, demonstrating that caspase-dependent apoptosis induction was responsible for most of the observed cytotoxicity. In terms of signaling, 18-GA led to reduced phosphorylation of all three classes of MAP kinases. Taken together, 18-GA or its pathways may lead to more effective, targeted therapeutics against neuroblastoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival

    DEFF Research Database (Denmark)

    Thomassen, Mads; Jochumsen, Kirsten M; Mogensen, Ole

    2009-01-01

    the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1...... using death (P = 0.015) and recurrence (P = 0.002) as outcome. The combined mutation score is strongly associated to upregulation of several growth factor pathways....

  3. Analysis of the immunohistochemical expressions of p53, bcl-2 and Ki-67 in colorectal adenocarcinoma and their correlations with the prognostic factors Análise das expressões imunoistoquímicas da p53, bcl-2 e Ki-67 no adenocarcinoma colorretal e suas correlações com os fatores prognósticos

    Directory of Open Access Journals (Sweden)

    Hunaldo Lima de Menezes

    2010-06-01

    Full Text Available CONTEXT: Search of tumors markers that allow treatment with higher survival rates, and indicate the response to treatment and recurrence of cancer OBJECTIVE: To analyze the immunoexpression of the proteins p53, bcl-2 and Ki-67 in colorectal adenocarcinoma and correlate them with the clinical-pathological prognostic factors. METHOD: Tissue microarray paraffin blocks were made from colorectal adenocarcinoma tissue resected from 82 patients who had undergone surgery but not chemotherapy or radiotherapy, at "Hospital São Paulo", São Paulo, SP, Brazil, between 2002 and 2005. Thin sections (4 µm were subjected to immunohistochemical reactions, and immunoexpression staining scores were obtained. The scores were correlated with the degree of cell differentiation, staging, disease-free interval, recurrence, survival and specific mortality. The study variables were analyzed using the chi-square and Kaplan-Meier tests to investigate associations with the markers. The significance of the differences between the curves of the disease-free interval and survival was analyzed using the Logrank and Wilcoxon tests. RESULTS: The immunohistochemical expression of p53 was positive in 70 tumors (85.4% and negative in 12 (14.6%. The expression of bcl-2 was positive in 26 (31.7% and negative in 56 (68.3%. The expression of Ki-67 was positive in 62 (75.6% and negative in 20 (24.4%. There was no statistically significant correlation between the expressions of these markers separately or in conjunction, in relation to the degree of cell differentiation, staging, disease-free interval, survival and specific mortality. In relation to recurrence, there was a statistically significant correlation with positive expression of Ki-67 (P = 0.035. CONCLUSION: The immunohistochemical expression of Ki-67 in colorectal cancer is associated with recurrence of this disease.CONTEXTO: Pesquisa de marcadores tumorais que permitam tratamento com maiores índices de sobrevida, além de

  4. Correlation and Role of Nitric Oxide (NO) and BCL-2 in Duchenne Muscular Dystrophy (DMD) Patients

    International Nuclear Information System (INIS)

    Moawed, F.S.M.

    2009-01-01

    The dystrophin protein is located beneath the cell membrane (sarcolemma) of the muscle cell (myofiber) and serves to link the contractile machinery (sarcomere) and associated cytoskeleton to the extracellular matrix where collagens transmit the muscle force (Grounds, 2008). Absent or defective dystrophin results in myofiber fragility leading to breakdown (necrosis) that is repeated over time until formation of new muscle (regeneration) fails and the amaged skeletal muscle is replaced by fibrous or fatty connective tissue (Cyrulnik and Hinton, 2008; Matsumura et al., 2009). Skeletal muscle is capable of complete regeneration due to stem cells that reside in skeletal muscle and non-muscle (circulating) stem cell populations (Narciso et al., 2007). However, in severe myopathic diseases such as DMD, this regenerative capacity is exhausted (Shi and Garry, 2006). This exhaustion could be explained by two plausible theories: oxidative stress (Sato et al., 2008) and replicative aging, that lead to increased rate of myofiber death (Abdel et al., 2007). If a physician suspects DMD after examining the boy, he will use the creatine phosphokinase (CPK) test to determine Introduction xiv if the muscles are damaged. This test measures the amount of CPK in the blood. In DMD patients, CPK leaks out of the muscle cell into the bloodstream, so a high level (nearly 50 to 100 times more) confirms that there is muscle damage (Burdi et al., 2009). During the 1990s and through the early years of the 21st century, many promising, sophisticated genetic techniques have been designed to ameliorate the devastating impact of muscular dystrophy on the structure and function of skeletal muscles. There is no known cure for Duchenne muscular dystrophy, although recent stem-cell research is showing promising vectors that may replace damaged muscle tissue (Faulkner et al., 2008). Meanwhile, the use of low energy laser irradiation, is a promising means to enhance both the survival and functionality of

  5. Double-hit BCL2/MYC translocations in a consecutive cohort of patients with large B-cell lymphoma - a single centre's experience

    DEFF Research Database (Denmark)

    Pedersen, Mette Ø; Gang, Anne O; Poulsen, Tim S

    2012-01-01

    Concurrent BCL2 and MYC translocations, so called double hit (DH), are a rare finding in large B-cell lymphoma (LBCL). Based on data from retrospective series, DH has been correlated with aggressive clinical behaviour and poor outcome. We conducted a consecutive study of DH incidence and correlat......Concurrent BCL2 and MYC translocations, so called double hit (DH), are a rare finding in large B-cell lymphoma (LBCL). Based on data from retrospective series, DH has been correlated with aggressive clinical behaviour and poor outcome. We conducted a consecutive study of DH incidence...

  6. Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death

    Directory of Open Access Journals (Sweden)

    Belka Claus

    2009-10-01

    Full Text Available Abstract Background Programmed cell death (PCD is essential for development and homeostasis of multicellular organisms and can occur by caspase-dependent apoptosis or alternatively, by caspase-independent PCD (ciPCD. Bcl-2, a central regulator of apoptosis, localizes to both mitochondria and the endoplasmic reticulum (ER. Whereas a function of mitochondrial and ER-specific Bcl-2 in apoptosis has been established in multiple studies, corresponding data for ciPCD do not exist. Methods We utilized Bcl-2 constructs specifically localizing to mitochondria (Bcl-2 ActA, the ER (Bcl-2 cb5, both (Bcl-2 WT or the cytosol/nucleus (Bcl-2 ΔTM and determined their protective effect on ceramide-mediated ciPCD in transiently and stably transfected Jurkat cells. Expression of the constructs was verified by immunoblots. Ceramide-mediated ciPCD was induced by treatment with human recombinant tumor necrosis factor and determined by flow cytometric measurement of propidium iodide uptake as well as by optical analysis of cell morphology. Results Only wildtype Bcl-2 had the ability to efficiently protect from ceramide-mediated ciPCD, whereas expression of Bcl-2 solely at mitochondria, the ER, or the cytosol/nucleus did not prevent ceramide-mediated ciPCD. Conclusion Our data suggest a combined requirement for both mitochondria and the ER in the induction and the signaling pathways of ciPCD mediated by ceramide.

  7. Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death

    International Nuclear Information System (INIS)

    Deerberg, Andrea; Sosna, Justyna; Thon, Lutz; Belka, Claus; Adam, Dieter

    2009-01-01

    Programmed cell death (PCD) is essential for development and homeostasis of multicellular organisms and can occur by caspase-dependent apoptosis or alternatively, by caspase-independent PCD (ciPCD). Bcl-2, a central regulator of apoptosis, localizes to both mitochondria and the endoplasmic reticulum (ER). Whereas a function of mitochondrial and ER-specific Bcl-2 in apoptosis has been established in multiple studies, corresponding data for ciPCD do not exist. We utilized Bcl-2 constructs specifically localizing to mitochondria (Bcl-2 ActA), the ER (Bcl-2 cb5), both (Bcl-2 WT) or the cytosol/nucleus (Bcl-2 ΔTM) and determined their protective effect on ceramide-mediated ciPCD in transiently and stably transfected Jurkat cells. Expression of the constructs was verified by immunoblots. Ceramide-mediated ciPCD was induced by treatment with human recombinant tumor necrosis factor and determined by flow cytometric measurement of propidium iodide uptake as well as by optical analysis of cell morphology. Only wildtype Bcl-2 had the ability to efficiently protect from ceramide-mediated ciPCD, whereas expression of Bcl-2 solely at mitochondria, the ER, or the cytosol/nucleus did not prevent ceramide-mediated ciPCD. Our data suggest a combined requirement for both mitochondria and the ER in the induction and the signaling pathways of ciPCD mediated by ceramide

  8. Apoptosis, proliferation, Bax, Bcl-2 and p53 status prior to and after preoperative radiochemotherapy for locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Tannapfel, Andrea; Nuesslein, Siegfried; Fietkau, Rainer; Katalinic, Alexander; Koeckerling, Ferdinand; Wittekind, Christian

    1998-01-01

    Purpose: To investigate the relationship between apoptotic cell death, proliferative activity, and the expression of apoptosis regulating proteins in rectal cancer prior to and after radiochemotherapy. Materials and Methods: In 32 patients dispositioned to receive preoperative radiochemotherapy for locally advanced rectal carcinoma, pretherapy biopsies and the final resected specimen after radiochemotherapy were available for analyses. Apoptotic cells were identified and quantified using in situ end labeling (ISEL) technique. The expression of the bax protein was assessed immunohistochemically. Additionally, double immunostaining was performed for apoptotic cells and bax expression. The proliferative activity was determined by immunohistochemical assessment of the Ki67 (MIB-1) and the proliferating cell nuclear antigen (PCNA). p53- and bcl-2 expression was analyzed immunohistochemically. A clinical-to-pathologic downstaging after radiochemotherapy was achieved in 25 of 32 patients (78%). During follow-up, tumor recurrence was observed in six cases. In one case, no residual tumor was detected after radiochemotherapy. Results: After radiochemotherapy, the apoptotic index increased significantly in almost every case examined. In contrast, the proliferative activity was significantly decreased in resected specimens as compared to biopsies. Bax immunostaining was detected in 12/31 (39%) biopsies and in 26/31 (84%) resected specimens. In the resected specimen, significantly more apoptotic cells that were bax-positive were found than in biopsies. Bcl-2 immunostaining occurred in 15/31 biopsies and 12/31 resected specimens, respectively. Tumors that were immunohistochemically negative for p53 (20/31 [65%]) generally exhibited a higher apoptotic index and a high expression level of bax than p53-positive tumors (11/31 [35%]). However, we did not find any correlation between the (pre- and post-therapeutic) rate of apoptosis or the level of bax expression and the degree of

  9. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy.

    Science.gov (United States)

    McClung, Joseph M; McCord, Timothy J; Ryan, Terence E; Schmidt, Cameron A; Green, Tom D; Southerland, Kevin W; Reinardy, Jessica L; Mueller, Sarah B; Venkatraman, Talaignair N; Lascola, Christopher D; Keum, Sehoon; Marchuk, Douglas A; Spangenburg, Espen E; Dokun, Ayotunde; Annex, Brian H; Kontos, Christopher D

    2017-07-18

    Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1 , that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6- Lsq1-3 ). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3 Ile81 , but not BAG3 Met81 , improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3 Ile81 (n=9), but not BAG3 Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3 Met81 , BAG3 Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle

  10. Expression of Fas and Bcl-2 and their relationship to apoptosis in spleen lymphocytes of mice irradiated with large dose 60Co γ-rays

    International Nuclear Information System (INIS)

    Gao Linlu; Cui Yufang; Yang Hong; Xia Guowei; Peng Ruiyun; Gao Yabin; Wang Dewen

    2000-01-01

    Objective: To investigate the expressions of Fas and Bcl-2 and their significance in apoptosis of spleen lymphocyte of mice after large dose γ-ray irradiation. Methods: At 3,6,12,24 h, 3, 7, 14 and 28 d after 6-20 Gy γ-ray irradiation mice were sacrificed and their spleens were removed. The expressions of Fas and Bcl-2 oncoprotein were analysed by LSAB immunohistochemical method. Results: The expression of Fas was strongly positive at 6 h after irradiation, especially in 6-12 Gy groups. It become less obvious along with prolongation of time after irradiation and almost disappeared on d 7 after irradiation. The expression of Bcl-2 was nearly negative at 6 h after irradiation, especially in 12-20 Gy groups, and did not recover on d 28 after irradiation. Conclusion: After large dose γ-ray irradiation the expression of Fas in mouse spleen lymphocytes shows a better relationship to lymphocyte apoptosis; in other words, Fas can prompt apoptosis. On the other hand, the action of Bcl-2 is reduced or even disappeared. Both of them play an important role in spleen lymphocyte apoptosis after large dose of γ-irradiation

  11. Effects of low dose radiation on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2003-01-01

    Objective: To study the effect of low dose radiation (LDR) on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice. Methods: Kunming stain male mice were implanted with S180 sarcoma cells in the left inguen subcutaneously as an in situ experimental animal model. Seven days after implantation, the mice were given 75 mGy whole-body γ-irradiation. At 24 and 48 h after irradiation, all mice were sacrificed to measure the tumor volume, and tumor cell apoptosis, cell cycle progression were analyzed by flow cytometry. The expression of apoptosis-related protein bcl-2 and the apoptotic rate of tumor cells were observed by immunohistochemistry and electron microscopy. Results: Tumor growth was significantly slowed down after LDR (P 1 phase and the expression of bcl-2 protein decreased at 24 h. Apoptotic rate of tumor cells increased significantly at 48 h after LDR. Conclusion: LDR could cause a G 1 -phase arrest and increase the apoptosis of tumor cells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. The organized immune function and anti-tumor ability are markedly increased after LDR. The study provides practical evidence of clinical application to cancer treatment

  12. Prognostic value of Bcl-2 in two independent populations of estrogen receptor positive breast cancer patients treated with adjuvant endocrine therapy

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Bjerre, Karsten; Giobbie-Hurder, Anita

    2012-01-01

    Estrogen receptor (ER) status is not an optimal marker for response to adjuvant endocrine therapy since approximately 30% of patients with ER-positive tumors eventually relapse. Bcl-2 is regulated by ER and may thus be considered as an indicator of ER activity and a candidate supplementary marker...

  13. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor.

    Science.gov (United States)

    Ziedan, Noha I; Hamdy, Rania; Cavaliere, Alessandra; Kourti, Malamati; Prencipe, Filippo; Brancale, Andrea; Jones, Arwyn T; Westwell, Andrew D

    2017-07-01

    A new series of oxadiazoles were designed to act as inhibitors of the anti-apoptotic Bcl-2 protein. Virtual screening led to the discovery of new hits that interact with Bcl-2 at the BH3 binding pocket. Further study of the structure-activity relationship of the most active compound of the first series, compound 1, led to the discovery of a novel oxadiazole analogue, compound 16j, that was a more potent small-molecule inhibitor of Bcl-2. 16j had good in vitro inhibitory activity with submicromolar IC 50 values in a metastatic human breast cancer cell line (MDA-MB-231) and a human cervical cancer cell line (HeLa). The antitumour effect of 16j is concomitant with its ability to bind to Bcl-2 protein as shown by an enzyme-linked immunosorbent assay (IC 50  = 4.27 μm). Compound 16j has a great potential to develop into highly active anticancer agent. © 2017 John Wiley & Sons A/S.

  14. Estrous cycle dependent changes in expression and distribution of Fas, Fas ligand, Bcl-2, Bax, and pro- and active caspase-3 in the rat ovary

    NARCIS (Netherlands)

    Slot, K.A.; Voorendt, M.; Boer-Brouwer, de M.; Vugt, van H.H.; Teerds, K.J.

    2006-01-01

    In the present investigation, the localization of proteins involved in ovarian apoptosis were studied throughout the estrous cycle in the presence of fluctuating hormone levels. Fas, Fas ligand, Bcl-2, Bax and caspase-3 mRNA expression and proteins were detected in all ovarian tissue extracts,

  15. Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFβ as potential targets

    DEFF Research Database (Denmark)

    van Oosterwijk, Jolieke G; Meijer, Danielle; van Ruler, Maayke A J H

    2013-01-01

    . As in conventional chondrosarcoma, antiapoptotic proteins (Bcl-2, and/or Bcl-xl) were highly expressed in all subtypes. Inhibition with the BH-3 mimetic ABT-737 rendered dedifferentiated chondrosarcoma cell lines sensitive to doxorubicin or cisplatin. Our data indicate that antiapoptotic proteins may play...

  16. Involvement of Bax and Bcl2 in Neuroprotective Effect of Curcumin in Kainic Acid-Induced Model of Temporal Lobe Epilepsy in Male Rat

    Directory of Open Access Journals (Sweden)

    zahra Kiasalari

    2016-04-01

    Full Text Available Background & objectives: Temporal lobe epilepsy is associated with neuronal apoptosis. Curcumin has antioxidant and anticonvulsant activities, therefore this study was conducted to assess involvement of Bax and Bcl2 in protective effect of curcumin in epileptic rats. Methods: 28 rats were divided into sham, curcumin-pretreated sham, epileptic (kainate, and curcumin-pretreated epileptic groups. Experimental model of epilepsy was induced by intrahippocampal administration of kainic acid. Rats received curcumin at a dose of 100 mg/kg. Finally, Nissl staining and Bax and Bcl2 immunohistochemistry were conducted on hippocampal sections and data were analyzed using one-way ANOVA and unpaired t-test. The p-value less than 0.05was considered statistically significant. Results: Induction of epilepsy was followed by a significant seizure and curcumin pretreatment significantly reduced seizure intensity (p<0.01. In addition, there were no significant differences between the groups in Nissl staining of CA3 area neurons. In addition, Bax positive neurons were observed in CA3 area in kainate group and significantly decreased in curcumin pretreated rats (p<0.05. Meanwhile, Bcl2 positive neurons were also moderately observed in kainate group and curcumin pretreatment significantly increased it (p<0.05. Conclusion: Curcumin pretreatment exhibits anticonvulsant activity in epileptic rats. It also decreases the expression of pro-apoptotic protein Bax and significantly enhances the expression of anti-apoptotic protein Bcl2 and hence could reduce neuronal apoptosis.

  17. Screen for genes involved in radiation survival of Escherichia coli and construction of a reference database

    Energy Technology Data Exchange (ETDEWEB)

    Sargentini, Neil J., E-mail: nsargentini@atsu.edu; Gularte, Nicholas P.; Hudman, Deborah A.

    2016-11-15

    Highlights: • 3907 Keio knockout mutants of E. coli screened for UV and X-radiation sensitivity. • 76 mutants showed significantly increased radiation sensitivity. • A database of 9 screening studies listed 352 genes only once; 103 genes, 2–7 times. • 33 genes from this study are uncommon and potentially novel. • Common and uncommon genes differ in gene function profile. - Abstract: A set of 3907 single-gene knockout (Keio collection) strains of Escherichia coli K-12 was examined for strains with increased susceptibility to killing by X- or UV-radiation. After screening with a high-throughput resazurin-based assay and determining radiation survival with triplicate clonogenic assays, we identified 76 strains (and associated deleted genes) showing statistically-significant increased radiation sensitivity compared to a control strain. To determine gene novelty, we constructed a reference database comprised of genes found in nine similar studies including ours. This database contains 455 genes comprised of 103 common genes (found 2–7 times), and 352 uncommon genes (found once). Our 76 genes includes 43 common genes and 33 uncommon (potentially novel) genes, i.e., appY, atoS, betB, bglJ, clpP, cpxA, cysB, cysE, ddlA, dgkA, dppF, dusB, elfG, eutK, fadD, glnA, groL, guaB, intF, prpR, queA, rplY, seqA, sufC,yadG, yagJ, yahD, yahO, ybaK, ybfA, yfaL, yhjV, and yiaL. Of our 33 uncommon gene mutants, 4 (12%) were sensitive only to UV-radiation, 10 (30%) only to X-radiation, and 19 (58%) to both radiations. Our uncommon mutants vs. our common mutants showed more radiation specificity, i.e., 12% vs. 9% (sensitive only to UV-); 30% vs. 16% (X-) and 58% vs. 74% (both radiations). Considering just our radiation-sensitive mutants, the median UV-radiation survival (75 J m{sup −2}) for 23 uncommon mutants was 6.84E-3 compared to 1.85E-3 for 36 common mutants (P = 0.025). Similarly, the average X-radiation survival for 29 uncommon mutants was 1.08E-2, compared to 6.19E

  18. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Science.gov (United States)

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  19. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Directory of Open Access Journals (Sweden)

    Alfeu Zanotto-Filho

    Full Text Available Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair, DNA-mRNA-protein metabolism (transcription/translation and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress/Unfolded Protein Responses (UPR in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  20. Relationship between bcl-2, bax, beclin-1, and cathepsin-D proteins during postovulatory follicular regression in fish ovary.

    Science.gov (United States)

    Morais, Roberto D V S; Thomé, Ralph G; Santos, Hélio B; Bazzoli, Nilo; Rizzo, Elizete

    2016-04-01

    In fish ovaries, postovulatory follicles (POFs) are key biomarkers of breeding and provide an interesting model for studying the relationship between autophagy and apoptosis. In this study, we investigated the immunohistochemical expression of autophagic and apoptotic proteins to improve the knowledge on the mechanisms regulating ovarian remodeling after spawning. Females from three neotropical fish species kept in captivity were submitted to hormonal induction. After ova stripping, ovarian sections were sampled daily until 5 days postspawning (dps). Similar events of POF regression were detected by histology, terminal transferase-mediated dUTP nick-end labeling (TUNEL), and electron microscopy in the three species: follicular cells hypertrophy, progressive disintegration of the basement membrane, gradual closing of the follicular lumen, theca thickening, and formation of large autophagic vacuoles preceding apoptosis of the follicular cells. Autophagic and apoptotic proteins were assessed by immunohistochemistry. Morphometric analysis of the immunolabeling revealed a more intense reaction for bcl-2 and beclin-1 (BECN1) in POFs at 0 to 1 dps and for bax at 2 to 3 dps (P family, BECN1, and cathepsin-D can be involved in the regulation of ovarian remodeling in teleost fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Breastfeeding and Immunohistochemical Expression of ki-67, p53 and BCL2 in Infiltrating Lobular Breast Carcinoma.

    Directory of Open Access Journals (Sweden)

    Angel Gonzalez-Sistal

    Full Text Available Invasive lobular breast carcinoma is the second most common type of breast cancer after invasive ductal carcinoma. According to the American Cancer Society, more than 180,000 women in the United States find out they have invasive breast cancer each year. Personal history of breast cancer and certain changes in the breast are correlated with an increased breast cancer risk. The aim of this work was to analyze breastfeeding in patients with infiltrating lobular breast carcinoma, in relation with: 1 clinicopathological parameters, 2 hormonal receptors and 3 tissue-based tumor markers.The study included 80 women with ILC, 46 of which had breastfeed their children. Analyzed parameters were: age, tumor size, axillary lymph node (N, distant metastasis (M, histological grade (HG, estrogen receptor (ER, progesterone receptor (PR, androgen receptor (AR, Ki-67, p53 and BCL2.ILC of non-lactating women showed a larger (p = 0.009, lymph node involvement (p = 0.051 and distant metastasis (p = 0.060. They were also more proliferative tumors measured by Ki-67 (p = 0.053. Breastfeeding history did not influence the subsequent behavior of the tumor regardless of histological subtype.Lactation seems to influence the biological characteristics of ILC defining a subgroup with more tumor size, axillary lymph node involvement, distant metastasis and higher proliferation measured by ki-67 expression.

  2. Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression

    Directory of Open Access Journals (Sweden)

    Maryam Mosadegh

    2017-02-01

    Full Text Available Objective(s: Present study was performed in order to uncover new aspects for nicotine-induced damages on spermatogenesis cell lineage. Materials and Methods: For this purpose, 36 mature male Wistar rats were divided into three groups as; control-sham (0.2 ml, saline normal, IP, low dose (0.2 mg/kg BW-1, IP nicotine-received and high dose (0.4 mg/kg BW-1, IP nicotine-received groups. Following 7 weeks, the expression of bcl-2, p53 and caspase-3 at mRNA and protein levels were investigated by using reverse-transcriptase PCR (RT-PCR and immunohistochemical (IHC analyses, respectively. Moreover, the serum level of FSH, LH and testosterone were evaluated. Finally, the mRNA damage was analyzed by using special fluorescent staining. Results: Nicotine, at both dose levels, decreased tubular differentiation, spermiogenesis and repopulation indices and enhanced cellular depletion. Animals in nicotine-received groups exhibited a significant (P

  3. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models

    Directory of Open Access Journals (Sweden)

    Christian Lehmann

    2016-06-01

    Full Text Available Abstract Background Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML. In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. Methods The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Results Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that

  4. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gresham, David; Boer, Viktor M; Caudy, Amy; Ziv, Naomi; Brandt, Nathan J; Storey, John D; Botstein, David

    2011-01-01

    An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.

  5. Photobiomodulation on Bax and Bcl-2 Proteins and SIRT1/PGC-1α Axis mRNA Expression Levels of Aging Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2014-01-01

    Full Text Available Objective. This study aimed to analyze the effects of low level laser irradiation (LLLI on Bax and IGF-1 and Bcl-2 protein contents and SIRT1/PGC-1α axis mRNA expression levels to prevent sarcopenia in aged rats. Material and Methods. Twenty female Sprague Dawley rats (18 months old were randomly divided into two groups (n=10 per group: control (CON and LLLI groups. The gallium-aluminum-arsenium (GaAlAs laser irradiation at 810 nm was used in the single point contact mode (3.75 J/cm2; 0.4 cm2; 125 mW/cm2; 30 s. Bax, Bcl-2, and IGF-1 proteins and SIRT1/PGC-1α axis mRNA expression were assessed 24 h after LLLI on gastrocnemius in aged rat. Results. Gastrocnemius muscle weights, gastrocnemius mass/body mass, Bcl-2/BAX ratio, Bcl-2 protein, IGF-1 protein, and the mRNA contents in SIRT1, PGC-1α, NRF1, TMF, and SOD2 were significantly (P<0.05 increased by LLLI compared to CON group without LLLI. However, levels of BAX protein and caspase 3 mRNA were significantly attenuated by LLLI compared to CON group (P<0.05. Conclusion. LLLI at 810 nm inhibits sarcopenia associated with upregulation of Bcl-2/BAX ratio and IGF-1 and SIRT1/PGC-1α axis mRNA expression in aged rats. This indicates that LLLI has potential to decrease progression of myocyte apoptosis in sarcopenic muscles.

  6. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    International Nuclear Information System (INIS)

    Mohseni, Mehran; Mihandoost, Ehsan; Shirazi, Alireza; Sepehrizadeh, Zargham; Bazzaz, Javad Tavakkoly; Ghazi-khansari, Mahmoud

    2012-01-01

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT 2 qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  7. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehran [Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan (Iran, Islamic Republic of); Mihandoost, Ehsan, E-mail: mihandoost.e@gmail.com [Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shirazi, Alireza [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sepehrizadeh, Zargham [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bazzaz, Javad Tavakkoly [Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghazi-khansari, Mahmoud [Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2012-10-15

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT{sup 2}qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  8. The gene dosage effect of the rad52 mutation on X-ray survival curves of tetraploid yeast strains

    International Nuclear Information System (INIS)

    Ho, K.S.Y.

    1975-01-01

    The mutation rad52 in the yeast Saccharomyces cerevisiae confers sensitivity to X-rays. The gene dosage effect of this mutation on X-ray survival curves of tetraploid yeast strains is shown. With increasing number of rad52 alleles, both a decrease in the survival for a given dose and a decrease in the survival curve shoulder width are observed. The generation of such a family of survival curves using three different mathematical models is discussed

  9. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    Science.gov (United States)

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal

  10. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Jeran K Stratford

    2010-07-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC remains a lethal disease. For patients with localized PDAC, surgery is the best option, but with a median survival of less than 2 years and a difficult and prolonged postoperative course for most, there is an urgent need to better identify patients who have the most aggressive disease.We analyzed the gene expression profiles of primary tumors from patients with localized compared to metastatic disease and identified a six-gene signature associated with metastatic disease. We evaluated the prognostic potential of this signature in a training set of 34 patients with localized and resected PDAC and selected a cut-point associated with outcome using X-tile. We then applied this cut-point to an independent test set of 67 patients with localized and resected PDAC and found that our signature was independently predictive of survival and superior to established clinical prognostic factors such as grade, tumor size, and nodal status, with a hazard ratio of 4.1 (95% confidence interval [CI] 1.7-10.0. Patients defined to be high-risk patients by the six-gene signature had a 1-year survival rate of 55% compared to 91% in the low-risk group.Our six-gene signature may be used to better stage PDAC patients and assist in the difficult treatment decisions of surgery and to select patients whose tumor biology may benefit most from neoadjuvant therapy. The use of this six-gene signature should be investigated in prospective patient cohorts, and if confirmed, in future PDAC clinical trials, its potential as a biomarker should be investigated. Genes in this signature, or the pathways that they fall into, may represent new therapeutic targets. Please see later in the article for the Editors' Summary.

  11. Anti-inflammatory heat shock protein 70 genes are positively associated with human survival

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvraa, Steen; Bross, Peter Gerd

    2010-01-01

    A positive relationship between stress tolerance and longevity has been observed in several model systems. That the same correlation is applicable in humans and that it may be open to experimental manipulation for extending human lifespan requires studies on association of stress genes with longe......A positive relationship between stress tolerance and longevity has been observed in several model systems. That the same correlation is applicable in humans and that it may be open to experimental manipulation for extending human lifespan requires studies on association of stress genes...... the opportunity to perform survival analysis on these subjects. Haplotype relative risk, and genotype relative risk were calculated to measure the effects of haplotypes and genotypes on human survival in a sex-specific manner. A significant association of HSPA1A-AA (RR=3.864; p=0.016) and HSPA1B-AA (RR=2.764; p=0...

  12. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Landi

    2008-02-01

    Full Text Available Tobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations induced by smoking in lung that develop into cancer and impact survival have remained obscure.We performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle formation (e.g., NEK2, TTK, PRC1. Expression of these genes strongly differentiated both smokers from non-smokers in lung tumors and early stage tumor tissue from non-tumor tissue (p1.5, for each comparison, consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted many years after smoking cessation. NEK2 (p<0.001 and TTK (p = 0.002 expression in the noninvolved lung tissue was also associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers.Our work provides insight into the smoking-related mechanisms of lung neoplasia, and shows that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These genes are candidate targets for chemoprevention and treatment of lung cancer in smokers.

  13. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Jose C Garcia-Garcia

    2009-06-01

    Full Text Available Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1 expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease.

  14. Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery

    International Nuclear Information System (INIS)

    Sergeant, Gregory; Eijsden, Rudy van; Roskams, Tania; Van Duppen, Victor; Topal, Baki

    2012-01-01

    Most cancer deaths are caused by metastases, resulting from circulating tumor cells (CTC) that detach from the primary cancer and survive in distant organs. The aim of the present study was to develop a CTC gene signature and to assess its prognostic relevance after surgery for pancreatic ductal adenocarcinoma (PDAC). Negative depletion fluorescence activated cell sorting (FACS) was developed and validated with spiking experiments using cancer cell lines in whole human blood samples. This FACS-based method was used to enrich for CTC from the blood of 10 patients who underwent surgery for PDAC. Total RNA was isolated from 4 subgroup samples, i.e. CTC, haematological cells (G), original tumour (T), and non-tumoural pancreatic control tissue (P). After RNA quality control, samples of 6 patients were eligible for further analysis. Whole genome microarray analysis was performed after double linear amplification of RNA. ‘Ingenuity Pathway Analysis’ software and AmiGO were used for functional data analyses. A CTC gene signature was developed and validated with the nCounter system on expression data of 78 primary PDAC using Cox regression analysis for disease-free (DFS) and overall survival (OS). Using stringent statistical analysis, we retained 8,152 genes to compare expression profiles of CTC vs. other subgroups, and found 1,059 genes to be differentially expressed. The pathway with the highest expression ratio in CTC was p38 mitogen-activated protein kinase (p38 MAPK) signaling, known to be involved in cancer cell migration. In the p38 MAPK pathway, TGF-β1, cPLA2, and MAX were significantly upregulated. In addition, 9 other genes associated with both p38 MAPK signaling and cell motility were overexpressed in CTC. High co-expression of TGF-β1 and our cell motility panel (≥ 4 out of 9 genes for DFS and ≥ 6 out of 9 genes for OS) in primary PDAC was identified as an independent predictor of DFS (p=0.041, HR (95% CI) = 1.885 (1.025 – 3.559)) and OS (p=0.047, HR

  15. Gene expression in triple-negative breast cancer in relation to survival.

    Science.gov (United States)

    Wang, Shuyang; Beeghly-Fadiel, Alicia; Cai, Qiuyin; Cai, Hui; Guo, Xingyi; Shi, Liang; Wu, Jie; Ye, Fei; Qiu, Qingchao; Zheng, Ying; Zheng, Wei; Bao, Ping-Ping; Shu, Xiao-Ou

    2018-05-10

    The identification of biomarkers related to the prognosis of triple-negative breast cancer (TNBC) is critically important for improved understanding of the biology that drives TNBC progression. We evaluated gene expression in total RNA isolated from formalin-fixed paraffin-embedded tumor samples using the NanoString nCounter assay for 469 TNBC cases from the Shanghai Breast Cancer Survival Study. We used Cox regression to quantify Hazard Ratios (HR) and corresponding confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS) in models that included adjustment for breast cancer intrinsic subtype. Of 302 genes in our discovery analysis, 22 were further evaluated in relation to OS among 134 TNBC cases from the Nashville Breast Health Study and the Southern Community Cohort Study; 16 genes were further evaluated in relation to DFS in 335 TNBC cases from four gene expression omnibus datasets. Fixed-effect meta-analysis was used to combine results across data sources. Twofold higher expression of EOMES (HR 0.90, 95% CI 0.83-0.97), RASGRP1 (HR 0.89, 95% CI 0.82-0.97), and SOD2 (HR 0.80, 95% CI 0.66-0.96) was associated with better OS. Twofold higher expression of EOMES (HR 0.89, 95% CI 0.81-0.97) and RASGRP1 (HR 0.87, 95% CI 0.81-0.95) was also associated with better DFS. On the contrary, a doubling of FA2H (HR 1.14, 95% CI 1.06-1.22) and GSPT1 (HR 1.33, 95% CI 1.14-1.55) expression was associated with shorter DFS. We identified five genes (EOMES, FA2H, GSPT1, RASGRP1, and SOD2) that may serve as potential prognostic biomarkers and/or therapeutic targets for TNBC.

  16. Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival

    International Nuclear Information System (INIS)

    Sung, Hyuna; Ahn, Sei-Hyun; Kang, Daehee; Jeon, Sujee; Lee, Kyoung-Mu; Han, Sohee; Song, Minkyo; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Noh, Dong-Young

    2012-01-01

    Although the role of microRNA’s (miRNA’s) biogenesis pathway genes in cancer development and progression has been well established, the association between genetic variants of this pathway genes and breast cancer survival is still unknown. We used genotype data available from a previously conducted case–control study to investigate association between common genetic variations in miRNA biogenesis pathway genes and breast cancer survival. We investigated the possible associations between 41 germ-line single-nucleotide polymorphisms (SNPs) and both disease free survival (DFS) and overall survival (OS) among 488 breast cancer patients. During the median follow-up of 6.24 years, 90 cases developed disease progression and 48 cases died. Seven SNPs were significantly associated with breast cancer survival. Two SNPs in AGO2 (rs11786030 and rs2292779) and DICER1 rs1057035 were associated with both DFS and OS. Two SNPs in HIWI (rs4759659 and rs11060845) and DGCR8 rs9606250 were associated with DFS, while DROSHA rs874332 and GEMIN4 rs4968104 were associated with only OS. The most significant association was observed in variant allele of AGO2 rs11786030 with 2.62-fold increased risk of disease progression (95% confidence interval (CI), 1.41-4.88) and in minor allele homozygote of AGO2 rs2292779 with 2.94-fold increased risk of death (95% CI, 1.52-5.69). We also found cumulative effects of SNPs on DFS and OS. Compared to the subjects carrying 0 to 2 high-risk genotypes, those carrying 3 or 4–6 high-risk genotypes had an increased risk of disease progression with a hazard ratio of 2.16 (95% CI, 1.18- 3.93) and 4.47 (95% CI, 2.45- 8.14), respectively (P for trend, 6.11E-07). Our results suggest that genetic variants in miRNA biogenesis pathway genes may be associated with breast cancer survival. Further studies in larger sample size and functional characterizations are warranted to validate these results

  17. Herpesvirus pan encodes a functional homologue of BHRF1, the Epstein-Barr virus v-Bcl-2

    Directory of Open Access Journals (Sweden)

    Williams Tracey

    2005-02-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV latently infects about 90% of the human population and is associated with benign and malignant diseases of lymphoid and epithelial origin. BHRF1, an early lytic cycle antigen, is an apoptosis suppressing member of the Bcl-2 family. In vitro studies imply that BHRF1 is dispensable for both virus replication and transformation. However, the fact that BHRF1 is highly conserved not only in all EBV isolates studied to date but also in the analogous viruses Herpesvirus papio and Herpesvirus pan that infect baboons and chimpanzees respectively, suggests BHRF1 may play an important role in vivo. Results Herpesvirus papio BHRF1 has been shown to function in an analogous manner to EBV BHRF1 in response to DNA damaging agents in human keratinocytes. In this study we show that the heterologous expression of the previously uncharacterised Herpesvirus pan BHRF1 in the human Burkitt's lymphoma cell line Ramos-BL provides similar anti-apoptotic functions to that of EBV BHRF1 in response to apoptosis triggered by serum withdrawal, etoposide treatment and ultraviolet (UV radiation. We also map the amino acid changes onto the recently solved structure of the EBV BHRF1 and reveal that these changes are unlikely to alter the 3D structure of the protein. Conclusions These findings show that the functional conservation of BHRF1 extends to a lymphoid background, suggesting that the primate virus proteins interact with cellular proteins that are themselves highly conserved across the higher primates. Further weight is added to this suggestion when we show that the difference in amino acid sequences map to regions on the 3D structure of EBV BHRF1 that are unlikely to change the conformation of the protein.

  18. Description and physical localization of the bovine survival of motor neuron gene (SMN).

    Science.gov (United States)

    Pietrowski, D; Goldammer, T; Meinert, S; Schwerin, M; Förster, M

    1998-01-01

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disease in humans and other mammals, characterized by degeneration of anterior horn cells of the spinal cord. In humans, the survival of motor neuron gene (SMN) has been recognized as the SMA-determining gene and has been mapped to 5q13. In cattle, SMA is a recurrent, inherited disease that plays an important economic role in breeding programs of Brown Swiss stock. Now we have identified the full- length cDNA sequence of the bovine SMN gene. Molecular analysis and characterization of the sequence documents 85% identity to its human counterpart and three evolutionarily conserved domains in different species. Physical mapping data reveals that bovine SMN is localized to chromosome region 20q12-->q13, supporting the conserved synteny of this chromosomal region between humans and cattle.

  19. Role of X-ray-inducible genes and proteins in adaptive survival responses

    International Nuclear Information System (INIS)

    Meyers, M.; Schea, R.A.; Petrowski, A.E.; Seabury, H.; McLaughlin, P.W.; Lee, I.; Lee, S.W.; Boothman, D.A.

    1992-01-01

    Certain X-ray-inducible genes and their corresponding protein products, appearing following low priming doses of ionizing radiation may subsequently give rise to an adaptive survival response, ultimately leading to increased radioresistance. Further, this adaptive radioresistance may be due to increased DNA repair (or misrepair) processes. Ultimately, the function of low-dose-induced cDNA clones within the cell is hoped to elucidate to follow the effects of specific gene turn-off on adaptive responses. Future research must determine the various functions of adaptive response gene products so that the beneficial or deleterious consequences of adaptive responses, which increases resistance to ionizing radiation, can be determined. (author). 19 refs., 1 fig

  20. Efficacy of In Vivo Electroporation-Mediated IL-10 Gene Delivery on Survival of Skin Flaps.

    Science.gov (United States)

    Seyed Jafari, S Morteza; Shafighi, Maziar; Beltraminelli, Helmut; Weber, Benedikt; Schmid, Ralph A; Geiser, Thomas; Gazdhar, Amiq; Hunger, Robert E

    2018-04-01

    Despite advances in understanding the underlying mechanisms of flap necrosis and improvement in surgical techniques, skin flap necrosis after reconstructive surgery remains a crucial issue. We investigated the efficacy of electroporation-mediated IL-10 gene transfer to random skin flap with an aim to accelerate wound healing and improve skin flap survival. Nine male Wistar rats (300-330 g) were divided in two groups (a) control group (n = 5), only surgery no gene transfer, and (b) experimental group, received electroporation-mediated IL-10 gene transfer 24 h before the surgery as prophylaxis (n = 4). Random skin flap (McFarlane) was performed in both groups. Planimetry, Laser Doppler imaging, and immunohistochemistry were used to evaluate the effect of IL-10 gene transfer between study groups at day 7. Electroporation-mediated IL-10 gene transfer decreased percentage of flap necrosis (p value = 0.0159) and increased cutaneous perfusion compared to the control group (p value = 0.0159). In addition, Spearman's rank correlation showed a significant negative correlation between percentage of flap necrosis and Laser Index (p value = 0.0083, r -0.83, respectively). Furthermore, significantly higher mean CD31 + vessel density was detected in the experimental group compared to the control group (p value = 0.0159). Additionally, semi-quantitative image analysis showed lower inflammatory cell count in experimental group compared to control group (p value = 0.0317). In vivo electroporation-mediated IL-10 gene transfer reduced necrosis, enhanced survival and vascularity in the ischemic skin flap.

  1. Exploring gene expression signatures for predicting disease free survival after resection of colorectal cancer liver metastases.

    Directory of Open Access Journals (Sweden)

    Nikol Snoeren

    Full Text Available BACKGROUND AND OBJECTIVES: This study was designed to identify and validate gene signatures that can predict disease free survival (DFS in patients undergoing a radical resection for their colorectal liver metastases (CRLM. METHODS: Tumor gene expression profiles were collected from 119 patients undergoing surgery for their CRLM in the Paul Brousse Hospital (France and the University Medical Center Utrecht (The Netherlands. Patients were divided into high and low risk groups. A randomly selected training set was used to find predictive gene signatures. The ability of these gene signatures to predict DFS was tested in an independent validation set comprising the remaining patients. Furthermore, 5 known clinical risk scores were tested in our complete patient cohort. RESULT: No gene signature was found that significantly predicted DFS in the validation set. In contrast, three out of five clinical risk scores were able to predict DFS in our patient cohort. CONCLUSIONS: No gene signature was found that could predict DFS in patients undergoing CRLM resection. Three out of five clinical risk scores were able to predict DFS in our patient cohort. These results emphasize the need for validating risk scores in independent patient groups and suggest improved designs for future studies.

  2. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients.

    Science.gov (United States)

    Lee, Unjin; Frankenberger, Casey; Yun, Jieun; Bevilacqua, Elena; Caldas, Carlos; Chin, Suet-Feung; Rueda, Oscar M; Reinitz, John; Rosner, Marsha Rich

    2013-01-01

    Although triple negative breast cancers (TNBC) are the most aggressive subtype of breast cancer, they currently lack targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS), based upon a metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP). We have now generated a new BACH1 Pathway Metastasis gene signature (BPMS) that utilizes targets of the metastasis regulator BACH1. Specifically, we substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified patients identified as having a good or poor prognosis by other signatures including the Mammaprint® and Oncotype® clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients. We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development.

  3. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Directory of Open Access Journals (Sweden)

    Southey Bruce R

    2011-06-01

    Full Text Available Abstract Background Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. Methods A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. Results A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively or with other cancers (10, 19, and 15 genes, respectively and the rest (16, 4, and 10 genes, respectively are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events. Most genes (from 90 to 96% were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations

  4. Association between manganese superoxide dismutase promoter gene polymorphism and breast cancer survival

    Science.gov (United States)

    Martin, Robert CG; Ahn, Jiyoung; Nowell, Susan A; Hein, David W; Doll, Mark A; Martini, Benjamin D; Ambrosone, Christine B

    2006-01-01

    Background Manganese superoxide dismutase (MnSOD) plays a critical role in the detoxification of mitochondrial reactive oxygen species, constituting a major cellular defense mechanism against agents that induce oxidative stress. A genetic polymorphism in the mitochondrial targeting sequence of this gene has been associated with increased cancer risk and survival in breast cancer. This base pair transition (-9 T > C) leads to a valine to alanine amino acid change in the mitochondrial targeting sequence. A polymorphism has also been identified in the proximal region of the promoter (-102 C>T) that alters the recognition sequence of the AP-2 transcription factor, leading to a reduction in transcriptional activity. The aim of our study was to investigate possible associations of the -102 C>T polymorphism with overall and relapse-free breast cancer survival in a hospital-based case-only study. Materials and methods The relationship between the MnSOD -102 C>T polymorphism and survival was examined in a cohort of 291 women who received chemotherapy and/or radiotherapy for incident breast cancer. The MnSOD -102 C>T genotype was determined using a TaqMan allele discrimination assay. Patient survival was evaluated according to the MnSOD genotype using Kaplan–Meier survival functions. Hazard ratios were calculated from adjusted Cox proportional hazards modeling. All statistical tests were two-sided. Results In an evaluation of all women, there was a borderline significant reduction in recurrence-free survival with either one or both variant alleles (CT + TT) when compared with patients with wild-type alleles (CC) (odds ratio, 0.65; 95% confidence interval, 0.42–1.01). When the analysis was restricted to patients receiving radiation therapy, there was a significant reduction in relapse-free survival in women who were heterozygous for the MnSOD -102 genotype (relative risk, 0.40; 95% confidence interval, 0.18–0.86). Similarly, when the homozygous and heterozygous variant

  5. Association study of genetic variants in estrogen metabolic pathway genes and colorectal cancer risk and survival.

    Science.gov (United States)

    Li, Shuwei; Xie, Lisheng; Du, Mulong; Xu, Kaili; Zhu, Lingjun; Chu, Haiyan; Chen, Jinfei; Wang, Meilin; Zhang, Zhengdong; Gu, Dongying

    2018-05-16

    Although studies have investigated the association of genetic variants and the abnormal expression of estrogen-related genes with colorectal cancer risk, the evidence remains inconsistent. We clarified the relationship of genetic variants in estrogen metabolic pathway genes with colorectal cancer risk and survival. A case-control study was performed to assess the association of single-nucleotide polymorphisms (SNPs) in ten candidate genes with colorectal cancer risk in a Chinese population. A logistic regression model and Cox regression model were used to calculate SNP effects on colorectal cancer susceptibility and survival, respectively. Expression quantitative trait loci (eQTL) analysis was conducted using the Genotype-Tissue Expression (GTEx) project dataset. The sequence kernel association test (SKAT) was used to perform gene-set analysis. Colorectal cancer risk and rs3760806 in SULT2B1 were significantly associated in both genders [male: OR = 1.38 (1.15-1.66); female: OR = 1.38 (1.13-1.68)]. Two SNPs in SULT1E1 were related to progression-free survival (PFS) [rs1238574: HR = 1.24 (1.02-1.50), P = 2.79 × 10 -2 ; rs3822172: HR = 1.30 (1.07-1.57), P = 8.44 × 10 -3 ] and overall survival (OS) [rs1238574: HR = 1.51 (1.16-1.97), P = 2.30 × 10 -3 ; rs3822172: HR = 1.53 (1.67-2.00), P = 2.03 × 10 -3 ]. Moreover, rs3760806 was an eQTL for SULT2B1 in colon samples (transverse: P = 3.6 × 10 -3 ; sigmoid: P = 1.0 × 10 -3 ). SULT2B1 expression was significantly higher in colorectal tumor tissues than in normal tissues in the Cancer Genome Atlas (TCGA) database (P colorectal cancer susceptibility and survival.

  6. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside.

    Science.gov (United States)

    Vela, Laura; Marzo, Isabel

    2015-08-01

    Bcl-2 proteins are key determinants in the life-death balance. In recent years, proteins in this family have been identified as drug targets in the design of new anti-tumor therapies. Advances in the knowledge of the mechanism of action of anti-apoptotic and pro-apoptotic members of the Bcl-2 family have enabled the development of the so-called 'BH3 mimetics'. These compounds act by inhibiting anti-apoptotic proteins of the family, imitating the function of the BH3-only subset of pro-apoptotic members. Combinations of BH3-mimetics with anti-tumor drugs are being evaluated in both preclinical models and clinical trials. Recent advances in these approaches will be reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats.

    Science.gov (United States)

    Nahas, Ziad; Jiang, Yan; Zeidan, Youssef H; Bielawska, Alicja; Szulc, Zdzislaw; Devane, Lindsay; Kalivas, Peter; Hannun, Yusuf A

    2009-01-30

    Evidence from in situ studies supports the role of anti-apoptotic factors in the antidepressant responses of certain psychotropics. The availability of anti-ceramidase pro-apoptocic compound (LCL385) provides an opportunity to test in vivo the relation between hippocampal apopotosis and learned helplessness. 40 Sprague-Dawley male rodents underwent an FST after a treatment with LCL385, desipramine (DMI), or placebo (SAL) over 3 days. Behavioral responses, including immobility, swimming and climbing were counted during the 6min test. Western blot labeling was used to detect anti-apoptosis in hippocampus. DMI alone was associated with reduced immobility and increased climbing whereas LCL385 alone showed a decrease in Bcl-2/beta-actin ratio. Direct modulation of Bcl-2 expression in the hippocampus is not associated with learned helplessness in stressed rats. Three-day administration of DMI and LCL385 show divergent effects on behavioral and anti-apoptotic measures.

  8. Distribution of 99Tcm-rh-Annexin vin tumor and expression relationship of bcl-2, bax after a single dose of chemotherapy

    International Nuclear Information System (INIS)

    Zhang Xin; Li Yaming; Zhang Yanjun; Tao Li; Zhu Yi; Yang Chun; Ji Xiaopeng; Zhao Ming; Tian Aijuan; Zhang Jianying; Zhao Zhenzhen

    2007-01-01

    The expression of bcl-2 and bax after the single dose of chemotherapy with 99 Tc m -rh-Annexin V as the tracer of tumor apoptosis imaging is studied. tumor cell apoptosis is examined by TUNEL methods, and the expression of bcl-2 and bax in tumor are determined by immunohistochemical methods. Single dose of chemotherapy significantly increased the tumor uptake of 99 Tc m -rh-annexin V and the positive number of TUNEL, as well as the expression of bax (P 99 Tc m -rh-annexin V in tumor reflectes not only the degree of apoptosis of tumor cells, but also the change of bax expression after the single dose of chemotherapy. (authors)

  9. Metastatic Breast Cancer Survival according to HER2 and Topo2a Gene Status

    Directory of Open Access Journals (Sweden)

    N. Todorović-Raković

    2009-01-01

    Full Text Available The aim of this study was to determine the relationship between amplification of HER2 (Human epidermal growth factor receptor 2 and Topo2a (topoisomerase 2a and their influence on prognosis in metastatic breast cancer (MBC patients. Amplification of both HER2 and Topo2a genes was determined by chromogenic in situ hybridization (CISH in primary tumor tissue of 71 MBC patients. Starting point for follow-up was the time of diagnosis of metastatic disease. Although there was significant correlation between HER2 amplification and Topo2a alterations, Topo2a amplification was not strictly related to HER2 amplification. Follow-up of patients showed that there was no difference in MBC survival between HER2-nonamplified and HER2-amplified patients for subgroup as whole, but there was significant difference in MBC survival between patients with and without Topo2a amplification. HER2 amplification showed prognostic value in subgroups of patients, as well as Topo2a. Combination of these two genes with different status (nonamplified, amplified, coamplified indicated that they might have additive effect. Also, it has been shown that Topo2a-amplified cases have poorer survival than Topo2a-nonamplified, when treated with CMF therapy.

  10. Burden of rare variants in ALS genes influences survival in familial and sporadic ALS.

    Science.gov (United States)

    Pang, Shirley Yin-Yu; Hsu, Jacob Shujui; Teo, Kay-Cheong; Li, Yan; Kung, Michelle H W; Cheah, Kathryn S E; Chan, Danny; Cheung, Kenneth M C; Li, Miaoxin; Sham, Pak-Chung; Ho, Shu-Leong

    2017-10-01

    Genetic variants are implicated in the development of amyotrophic lateral sclerosis (ALS), but it is unclear whether the burden of rare variants in ALS genes has an effect on survival. We performed whole genome sequencing on 8 familial ALS (FALS) patients with superoxide dismutase 1 (SOD1) mutation and whole exome sequencing on 46 sporadic ALS (SALS) patients living in Hong Kong and found that 67% had at least 1 rare variant in the exons of 40 ALS genes; 22% had 2 or more. Patients with 2 or more rare variants had lower probability of survival than patients with 0 or 1 variant (p = 0.001). After adjusting for other factors, each additional rare variant increased the risk of respiratory failure or death by 60% (p = 0.0098). The presence of the rare variant was associated with the risk of ALS (Odds ratio 1.91, 95% confidence interval 1.03-3.61, p = 0.03), and ALS patients had higher rare variant burden than controls (MB, p = 0.004). Our findings support an oligogenic basis with the burden of rare variants affecting the development and survival of ALS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. An Assay of Bax and Bcl2 Expression in Mice Hippocampus Following Ischemia-Reperfusion Treatment with CoQ10

    Directory of Open Access Journals (Sweden)

    Jalal Hassanshahi

    2013-10-01

    Full Text Available Introduction: Preliminary studies confirmed reduction of cell death following treatment with antioxidants. According to this finding we investigated the relationship between consumption of CoQ10 and expression of bax and bcl2 in hippocampus ischemia that this expression related to cell programmed death.Material and Methods: We studied the protective role of CoQ10 against ischemia-reperfusion. Experimental design includes four groups: intact (N=7, ischemic control (N=7, sham control (N=7 and treatment groups with CoQ10 (N=7. The mice (treatment group treated with CoQ10 as Pre-Treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction in inflammation (a week the treatment group post-treated with CoQ10 for a week. Nissl staining applied to counting necrotic cells of hippocampus and the western blotting performed to measurement the bax and bcl2 expression. Tunnel kit was used to quantify apoptotic cell death while to short term memory scale, we apply Y-maze.Results: Cell death was significantly lower when mice treated with CoQ10. Bax expression was significantly high in ischemic group but in treatment group was less and reversely the bcl2 expression in ischemic group was lower than treatment and vehicle groups. The memory test results were consistent with cell death results. Conclusion: Ischemia for 15 minutes induced cell death in hippocampus with more potent effect on CA1. CoQ10 intake significantly reduced cell death and decreased memory loss. with prevent of expression of bax and increase in expression of bcl2.

  12. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression--a pilot study.

    Science.gov (United States)

    Zalata, Khaled Refaat; Elshal, Mohamed Farouk; Foda, Abd AlRahman Mohammad; Shoma, Ashraf

    2015-08-01

    The current paradigm of metastasis proposes that rare cells within primary tumors acquire metastatic capability via sequential mutations, suggesting that metastases are genetically dissimilar from their primary tumors. This study investigated the changes in the level of expression of a well-defined panel of cell proliferation, differentiation, and apoptosis markers between the primary colorectal cancer (CRC) and the corresponding synchronous lymph node (LN) metastasis from the same patients. DNA flow cytometry and immunostaining of p53, bcl-2, and c-myc were carried out on 36 cases of CRC radical resection specimens with their corresponding LN metastases. There was very low probability that the histological patterns of primary tumors and LN metastases are independent (p < 0.001). Metastatic tumors were significantly more diffusely positive for p53 than the primary tumors (p < 0.001). Conversely, primary tumors were significantly more diffusely positive for c-myc than metastatic tumors (p = 0.011). No significant difference was found between the LNs and the primary tumors in bcl-2 positivity (p = 0.538) and DNA aneuploidy (p = 0.35), with a tendency towards negative bcl-2 and less aneuploidy in LN metastases than primary tumors. In conclusion, LN metastatic colorectal carcinomas have a tendency of being less differentiated, with a higher incidence of diffuse p53 staining, lower incidence of bcl-2 staining, and less aneuploidy in comparison to their primary counterparts suggesting a more aggressive biological behavior, which could indicate the necessity for more aggressive adjuvant therapy.

  13. p53 and bcl2 expression in malignant and premalignant lesions of uterine cervix and their correlation with human papilloma virus 16 and 18

    OpenAIRE

    Shailaja Shukla; Jasmita Dass; Mukta Pujani

    2014-01-01

    Background and Objective: Persistent high risk human papilloma virus (HPV) infection is probably the best predictor of increased risk of cervical cancer, but expression of certain markers of cell proliferation and apoptosis have been studied. The present study was conducted to evaluate the expression of p53 and bcl2 in premalignant and malignant lesions of cervix and its correlation with HPV type 16 and 18. Materials and Methods: The study comprised of 35 cases (including 24 prospective cases...

  14. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2

    Science.gov (United States)

    Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin

    2015-01-01

    Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043

  15. A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer.

    Science.gov (United States)

    Yang, Ting; Xu, Feifei; Sheng, Yuan; Zhang, Wen; Chen, Yun

    2016-10-01

    Apoptosis suppression caused by overexpression of anti-apoptotic proteins is a central factor to the acquisition of multi-drug resistance (MDR) in breast cancer. As a highly conserved anti-apoptotic protein, Bcl-2 can initiate an anti-apoptosis response via an ERK1/2-mediated pathway. However, the details therein are still far from completely understood and a quantitative description of the associated proteins in the biological context may provide more insights into this process. Following our previous attempts in the quantitative analysis of MDR mechanisms, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics was continually employed here to describe ERK/Bcl-2-mediated anti-apoptosis. A targeted proteomics assay was developed and validated first for the simultaneous quantification of ERK1/2 and Bcl-2. In particular, ERK isoforms (i.e., ERK1 and ERK2) and their differential phosphorylated forms including isobaric ones were distinguished. Using this assay, differential protein levels and site-specific phosphorylation stoichiometry were observed in parental drug-sensitive MCF-7/WT cancer cells and drug-resistant MCF-7/ADR cancer cells and breast tissue samples from two groups of patients who were either suspected or diagnosed to have drug resistance. In addition, quantitative analysis of the time course of both ERK1/2 and Bcl-2 in doxorubicin (DOX)-treated MCF-7/WT cells confirmed these findings. Overall, we propose that targeted proteomics can be used generally to resolve more complex cellular events.

  16. Inhibition of early 99mTc-MIBI uptake by Bcl-2 anti-apoptotic protein overexpression in untreated breast carcinoma

    International Nuclear Information System (INIS)

    Del Vecchio, Silvana; Zannetti, Antonella; Aloj, Luigi; Caraco, Corradina; Ciarmiello, Andrea; Salvatore, Marco

    2003-01-01

    Lack of technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) uptake is consistently reported to predict poor response to subsequent chemotherapy in a variety of human malignant tumours. Since 99m Tc-MIBI accumulates within mitochondria, which also play a central role in apoptosis through the integration of death signals by Bcl-2 family members, we tested whether early 99m Tc-MIBI uptake is affected by alterations of the apoptotic pathway. Forty-two breast cancer patients were intravenously injected with 740 MBq of 99m Tc-MIBI and planar images were obtained 10 min post injection with the patients in the prone lateral position. Ten carcinomas failed to accumulate 99m Tc-MIBI and could not be visualised on scintigraphic images despite being larger than 1.8 cm (MIBI negative). Thirty-two of the 42 breast carcinomas showed focal uptake of 99m Tc-MIBI (MIBI positive), and 10 min tumour-to-background ratios (T/B) varied between 1.14 and 6.93. The apoptotic index, the rate of proliferation, and the expression of the anti-apoptotic Bcl-2 protein and pro-apoptotic Bax protein were assessed in surgically excised tumours. All MIBI-negative carcinomas showed a dramatic and statistically significant reduction in the apoptotic index as compared with MIBI-positive lesions (mean±SD, 0.14±0.15 vs 1.28±0.83, P 99m Tc-MIBI in breast carcinomas is affected by alterations of apoptotic pathway. High levels of Bcl-2, despite the stabilisation of mitochondrial membrane potentials, prevent accumulation of 99m Tc-MIBI in tumour cells. In conclusion, absent or reduced early 99m Tc-MIBI uptake in large tumours may indicate a Bcl-2-mediated resistance to chemo- and radiotherapy. (orig.)

  17. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    OpenAIRE

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic indu...

  18. Abberent expression of oncogenic and tumor-suppressive microRNAs and their target genes in human adenocarcinoma alveolar basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Elham Tafsiri

    2016-01-01

    Conclusion: The significant differential expression level of these miRNAs made them as candidate biomarkers in NSCLC tumor tissues of patients. Perhaps Bcl-2 down-regulation and Akt-3 up-regulation can be linked with survival signals in A549 cell line. We can conclude that Bcl-2 and Akt-3 might be therapeutic targets to inhibit cell proliferation in NSCLC.

  19. Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Directory of Open Access Journals (Sweden)

    Lincoln Douglas

    2006-06-01

    Full Text Available Abstract Background Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. Methods Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by Kaplan-Meier survival curves. Results Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p Conclusion These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis.

  20. Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Han Mingbo

    2006-08-01

    Full Text Available Abstract Background Cognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2 in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR positive neurons in the mouse dentate gyrus during aging. Result In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line. Conclusion These data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.

  1. IAP antagonists Birinapant and AT-406 efficiently synergise with either TRAIL, BRAF, or BCL-2 inhibitors to sensitise BRAFV600E colorectal tumour cells to apoptosis.

    Science.gov (United States)

    Perimenis, Philippos; Galaris, Apostolos; Voulgari, Alexandra; Prassa, Margarita; Pintzas, Alexander

    2016-08-12

    High expression levels of Inhibitors of Apoptosis Proteins (IAPs) have been correlated with poor cancer prognosis and block the cell death pathway by interfering with caspase activation. SMAC-mimetics are small-molecule inhibitors of IAPs that mimic the endogenous SMAC and promote the induction of cell death by neutralizing IAPs. In this study, anti-tumour activity of new SMAC-mimetics Birinapant and AT-406 is evaluated against colorectal adenocarcinoma cells and IAP cross-talk with either oncogenic BRAF or BCL-2, or with the TRAIL are further exploited towards rational combined protocols. It is shown that pre-treatment of SMAC-mimetics followed by their combined treatment with BRAF inhibitors can decrease cell viability, migration and can very efficiently sensitize colorectal tumour cells to apoptosis. Moreover, co-treatment of TRAIL with SMAC-mimetics can efficiently sensitize resistant tumour cells to apoptosis synergistically, as shown by median effect analysis. Finally, Birinapant and AT-406 can synergise with BCL-2 inhibitor ABT-199 to reduce viability of adenocarcinoma cells with high BCL-2 expression. Proposed synergistic rational anticancer combined protocols of IAP antagonists Birinapant and AT-406 in 2D and 3D cultures can be later further exploited in vivo, from precision tumour biology to precision medical oncology.

  2. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL.

    Science.gov (United States)

    Cui, Yunxi; Koirala, Deepak; Kang, HyunJin; Dhakal, Soma; Yangyuoru, Philip; Hurley, Laurence H; Mao, Hanbin

    2014-05-01

    Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  3. Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection

    International Nuclear Information System (INIS)

    Carthy, Christopher M.; Yanagawa, Bobby; Luo Honglin; Granville, David J.; Yang, Decheng; Cheung, Paul; Cheung, Caroline; Esfandiarei, Mitra; Rudin, Charles M.; Thompson, Craig B.; Hunt, David W.C.; McManus, Bruce M.

    2003-01-01

    Coxsackievirus B3, a cytopathic virus in the family Picornaviridae, induces degenerative changes in host cell morphology. Here we demonstrate cytochrome c release and caspases-2, -3, -6, -7, -8, and -9 processing. Enforced Bcl-2 and Bcl-xL expression markedly reduced release of cytochrome c, presentation of the mitochondrial epitope 7A6, and depressed caspase activation following infection. In comparison, cell death using TRAIL ligand caused caspase-8 processing prior to cytochrome c release and executioner caspases and cell death was only partially rescued by Bcl-2 and Bcl-xL overexpression. Disruption of the mitochondrial inner membrane potential following CVB3 infection was not inhibited by zVAD.fmk treatment. Bcl-2 or Bcl-xL overexpression or zVAD.fmk treatment delayed the loss of host cell viability and decreased progeny virus release following infection. Our data suggest that mitochondrial release of cytochrome c may be an important early event in caspase activation in CVB3 infection, and, as such, may contribute to the loss of host-cell viability and progeny virus release

  4. Influence of intra-tumoral heterogeneity on the evaluation of BCL2, E-cadherin, EGFR, EMMPRIN, and Ki-67 expression in tissue microarrays from breast cancer

    DEFF Research Database (Denmark)

    Tramm, Trine; Kyndi, Marianne; Sørensen, Flemming B

    2018-01-01

    -tumoral heterogeneity as well as inter-observer variability on the evaluation of various IHC markers with potential prognostic impact in breast cancer (BCL2, E-cadherin, EGFR, EMMPRIN and Ki-67). MATERIAL AND METHODS: From each of 27 breast cancer patients, two tumor-containing paraffin blocks were chosen. Intra...... was found. EMMPRIN and Ki-67 showed a more heterogeneous expression with moderate to substantial intra-block agreements. For both stainings, there was a moderate inter-block agreement that improved slightly for EMMPRIN, when using WS instead of TMA cores. Inter-observer agreements were found to be almost...... perfect for BCL2, E-cadherin and EGFR (WS: κ > 0.82, TMAs: κ > 0.90), substantial for EMMPRIN (κ > 0.63), but only fair to moderate for Ki-67 (WS: κ = 0.54, TMAs: κ = 0.33). CONCLUSIONS: BCL2, E-cadherin and EGFR were found to be homogeneously expressed, whereas EMMPRIN and Ki-67 showed a more pronounced...

  5. Survival of Listeria monocytogenes in simulated gastrointestinal system and transcriptional profiling of stress- and adhesion-related genes

    DEFF Research Database (Denmark)

    Jiang, Lingli; Olesen, Inger; Andersen, Thomas

    2010-01-01

    -related genes after exposure to the conditions similar to those encountered in the mouth, stomach, and small intestine. None of the L. monocytogenes strains investigated could survive in the gastric juice at pH 2.5 or 3.0. Their survival increased at higher pH (3.5 and 4.0) in the gastric stress. Relative...... afterpassing through the simulated gastrointestinal tract, whereas that of the adhesion-related gene ami was downregulated. Taken together, this study revealed that L. monocytogenes strains enhanced the expression of stressrelated genes and decreased the transcription of adhesion-related gene in order...

  6. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    Science.gov (United States)

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-07

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. © 2016 by The American Society of Hematology.

  7. Comparative analysis of the survival and gene expression of pathogenic strains Vibrio harveyi after starvation.

    Science.gov (United States)

    Sun, Jingjing; Gao, Xiaojian; Qun, Jiang; Du, Xuedi; Bi, Keran; Zhang, Xiaojun; Lin, Li

    2016-11-01

    This study aimed to evaluate the survival and gene expression of Vibrio harveyi under starvation conditions. The microcosms V. harveyi were incubated in sterilized seawater for 4 weeks at room temperature. Overall, the cell numeration declined rapidly about 10 3 CFU/ml during starvation, with a tiny rebound at day 21. Scanning electron microscopy revealed that rod-shaped cells became sphere with a rippled cell surface. By polymerase chain reaction (PCR) assay, nine genes, named luxR, toxR, vhhB, flaA, topA, fur, rpoS, mreB and ftsZ, were detected in the non-starved cells. In the starved cells, the expression levels of the detected genes declined substantially ranging from 0.005-fold to 0.028-fold compared to the non-starved cells performed by reverse transcription quantitative real-time PCR with 16S rRNA as the internal control. In the recovering cells, the expression levels of the detected genes, except luxR and mreB, were upregulated dramatically compared to the wild, especially topA (23.720-fold), fur (39.400-fold) and toxR (9.837-fold), validating that the expressions of both the metabolism and virulence genes were important for growth and survival of V. harveyi. The results may shed a new light on understanding of stress adaptation in bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Association of a Locus in the CAMTA1 Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis

    NARCIS (Netherlands)

    Fogh, Isabella; Lin, Kuang; Tiloca, Cinzia; Rooney, James; Gellera, Cinzia; Diekstra, Frank P; Ratti, Antonia; Shatunov, Aleksey; van Es, Michael A; Proitsi, Petroula; Jones, Ashley; Sproviero, William; Chiò, Adriano; McLaughlin, Russell Lewis; Sorarù, Gianni; Corrado, Lucia; Stahl, Daniel; Del Bo, Roberto; Cereda, Cristina; Castellotti, Barbara; Glass, Jonathan D; Newhouse, Steven; Dobson, Richard; Smith, Bradley N; Topp, Simon; van Rheenen, Wouter; Meininger, Vincent; Melki, Judith; Morrison, Karen E; Shaw, Pamela J; Leigh, P Nigel; Andersen, Peter M; Comi, Giacomo P; Ticozzi, Nicola; Mazzini, Letizia; D'Alfonso, Sandra; Traynor, Bryan J; Van Damme, Philip; Robberecht, Wim; Brown, Robert H; Landers, John E; Hardiman, Orla; Lewis, Cathryn M; van den Berg, Leonard H; Shaw, Christopher E; Veldink, Jan H; Silani, Vincenzo; Al-Chalabi, Ammar; Powell, John

    Importance: Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disorder with a poor prognosis and a median survival of 3 years. However, a significant proportion of patients survive more than 10 years from symptom onset. Objective: To identify gene variants

  9. Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes.

    Science.gov (United States)

    Cobleigh, Melody A; Tabesh, Bita; Bitterman, Pincas; Baker, Joffre; Cronin, Maureen; Liu, Mei-Lan; Borchik, Russell; Mosquera, Juan-Miguel; Walker, Michael G; Shak, Steven

    2005-12-15

    This study, along with two others, was done to develop the 21-gene Recurrence Score assay (Oncotype DX) that was validated in a subsequent independent study and is used to aid decision making about chemotherapy in estrogen receptor (ER)-positive, node-negative breast cancer patients. Patients with >or=10 nodes diagnosed from 1979 to 1999 were identified. RNA was extracted from paraffin blocks, and expression of 203 candidate genes was quantified using reverse transcription-PCR (RT-PCR). Seventy-eight patients were studied. As of August 2002, 77% of patients had distant recurrence or breast cancer death. Univariate Cox analysis of clinical and immunohistochemistry variables indicated that HER2/immunohistochemistry, number of involved nodes, progesterone receptor (PR)/immunohistochemistry (% cells), and ER/immunohistochemistry (% cells) were significantly associated with distant recurrence-free survival (DRFS). Univariate Cox analysis identified 22 genes associated with DRFS. Higher expression correlated with shorter DRFS for the HER2 adaptor GRB7 and the macrophage marker CD68. Higher expression correlated with longer DRFS for tumor protein p53-binding protein 2 (TP53BP2) and the ER axis genes PR and Bcl2. Multivariate methods, including stepwise variable selection and bootstrap resampling of the Cox proportional hazards regression model, identified several genes, including TP53BP2 and Bcl2, as significant predictors of DRFS. Tumor gene expression profiles of archival tissues, some more than 20 years old, provide significant information about risk of distant recurrence even among patients with 10 or more nodes.

  10. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Alan Lopez-Lopez

    Full Text Available The objective of this study was to investigate the association of functional variants of the human CX3CR1 gene (Fractalkine receptor with the risk of Amyotrophic Lateral Sclerosis (ALS, the survival and the progression rate of the disease symptoms in a Spanish ALS cohort. 187 ALS patients (142 sporadic [sALS] and 45 familial and 378 controls were recruited. We investigated CX3CR1 V249I (rs3732379 and T280M (rs3732378 genotypes and their haplotypes as predictors of survival, the progression rate of the symptoms (as measured by ALSFRS-R and FVC decline and the risk of suffering ALS disease. The results indicated that sALS patients with CX3CR1 249I/I or 249V/I genotypes presented a shorter survival time (42.27 ± 4.90 than patients with 249V/V genotype (67.65 ± 7.42; diff -25.49 months 95%CI [-42.79,-8.18]; p = 0.004; adj-p = 0.018. The survival time was shorter in sALS patients with spinal topography and CX3CR1 249I alleles (diff =  -29.78 months; 95%CI [-49.42,-10.14]; p = 0.003. The same effects were also observed in the spinal sALS patients with 249I-280M haplotype (diff =  -27.02 months; 95%CI [-49.57, -4.48]; p = 0.019. In the sALS group, the CX3CR1 249I variant was associated with a faster progression of the disease symptoms (OR = 2.58; 95IC% [1.32, 5.07]; p = 0.006; adj-p = 0.027. There was no evidence for association of these two CX3CR1 variants with ALS disease risk. The association evidenced herein is clinically relevant and indicates that CX3CR1 could be a disease-modifying gene in sALS. The progression rate of the disease's symptoms and the survival time is affected in patients with one or two copies of the CX3CR1 249I allele. The CX3CR1 is the most potent ALS survival genetic factor reported to date. These results reinforce the role of the immune system in ALS pathogenesis.

  11. Endometrial Polyps and Benign Endometrial Hyperplasia Present Increased Prevalence of DNA Fragmentation Factors 40 and 45 (DFF40 and DFF45) Together With the Antiapoptotic B-Cell Lymphoma (Bcl-2) Protein Compared With Normal Human Endometria.

    Science.gov (United States)

    Banas, Tomasz; Pitynski, Kazimierz; Mikos, Marcin; Cielecka-Kuszyk, Joanna

    2017-09-13

    DNA fragmentation factor 40 (DFF40) is a key executor of apoptosis. It localizes to the nucleus together with DNA fragmentation factor 45 (DFF45), which acts as a DFF40 inhibitor and chaperone. B-cell lymphoma (Bcl-2) protein is a proven antiapoptotic factor present in the cytoplasm. In this study, we aimed to investigate DFF40, DFF45, and Bcl-2 immunoexpression in endometrial polyps (EPs) and benign endometrial hyperplasia (BEH) tissue compared with that in normal proliferative endometrium (NPE) and normal secretory endometrium (NSE) as well as normal post menopausal endometrium (NAE). This study used archived samples from 65 and 62 cases of EPs and BEH, respectively. The control group consisted of 52 NPE, 54 NSE, and 54 NAE specimens. Immunohistochemistry was used to detect DFF40, DFF45, and Bcl-2. DFF40, DFF45, and Bcl-2 were more highly expressed in the glandular layer of EPs and BEH compared with the stroma, and this was not influenced by menopausal status. Both glandular and stromal expression of DFF40, DFF45, and Bcl-2 were significantly higher in EPs compared with NPE, NSE, and NAE. Glandular BEH tissue showed significantly higher DFF40, DFF45, and Bcl-2 expression than in NPE, NSE, and NAE. No differences in the glandular expression of DFF40, DFF45, and Bcl-2 were observed between EP and BEH tissues, while Bcl-2 stromal expression in BEH was significantly lower than in EPs. Glandular, menopause-independent DFF40, DFF45, and Bcl-2 overexpression may play an important role in the pathogenesis of EPs and BEH.

  12. Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival

    Directory of Open Access Journals (Sweden)

    Noha Sharafeldin

    2017-09-01

    Full Text Available Characterization of gene-environment interactions (GEIs in cancer is limited. We aimed at identifying GEIs in rectal cancer focusing on a relevant biologic process involving the angiogenesis pathway and relevant environmental exposures: cigarette smoking, alcohol consumption, and animal protein intake. We analyzed data from 747 rectal cancer cases and 956 controls from the Diet, Activity and Lifestyle as a Risk Factor for Rectal Cancer study. We applied a 3-step analysis approach: first, we searched for interactions among single nucleotide polymorphisms on the pathway genes; second, we searched for interactions among the genes, both steps using Logic regression; third, we examined the GEIs significant at the 5% level using logistic regression for cancer risk and Cox proportional hazards models for survival. Permutation-based test was used for multiple testing adjustment. We identified 8 significant GEIs associated with risk among 6 genes adjusting for multiple testing: TNF (OR = 1.85, 95% CI: 1.10, 3.11, TLR4 (OR = 2.34, 95% CI: 1.38, 3.98, and EGR2 (OR = 2.23, 95% CI: 1.04, 4.78 with smoking; IGF1R (OR = 1.69, 95% CI: 1.04, 2.72, TLR4 (OR = 2.10, 95% CI: 1.22, 3.60 and EGR2 (OR = 2.12, 95% CI: 1.01, 4.46 with alcohol; and PDGFB (OR = 1.75, 95% CI: 1.04, 2.92 and MMP1 (OR = 2.44, 95% CI: 1.24, 4.81 with protein. Five GEIs were associated with survival at the 5% significance level but not after multiple testing adjustment: CXCR1 (HR = 2.06, 95% CI: 1.13, 3.75 with smoking; and KDR (HR = 4.36, 95% CI: 1.62, 11.73, TLR2 (HR = 9.06, 95% CI: 1.14, 72.11, EGR2 (HR = 2.45, 95% CI: 1.42, 4.22, and EGFR (HR = 6.33, 95% CI: 1.95, 20.54 with protein. GEIs between angiogenesis genes and smoking, alcohol, and animal protein impact rectal cancer risk. Our results support the importance of considering the biologic hypothesis to characterize GEIs associated with cancer outcomes.

  13. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  14. Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor.

    Science.gov (United States)

    Vasselli, James R; Shih, Joanna H; Iyengar, Shuba R; Maranchie, Jodi; Riss, Joseph; Worrell, Robert; Torres-Cabala, Carlos; Tabios, Ray; Mariotti, Andra; Stearman, Robert; Merino, Maria; Walther, McClellan M; Simon, Richard; Klausner, Richard D; Linehan, W Marston

    2003-06-10

    To identify potential molecular determinants of tumor biology and possible clinical outcomes, global gene-expression patterns were analyzed in the primary tumors of patients with metastatic renal cell cancer by using cDNA microarrays. We used grossly dissected tumor masses that included tumor, blood vessels, connective tissue, and infiltrating immune cells to obtain a gene-expression "profile" from each primary tumor. Two patterns of gene expression were found within this uniformly staged patient population, which correlated with a significant difference in overall survival between the two patient groups. Subsets of genes most significantly associated with survival were defined, and vascular cell adhesion molecule-1 (VCAM-1) was the gene most predictive for survival. Therefore, despite the complex biological nature of metastatic cancer, basic clinical behavior as defined by survival may be determined by the gene-expression patterns expressed within the compilation of primary gross tumor cells. We conclude that survival in patients with metastatic renal cell cancer can be correlated with the expression of various genes based solely on the expression profile in the primary kidney tumor.

  15. Tax Protein-induced Expression of Antiapoptotic Bfl-1 Protein Contributes to Survival of Human T-cell Leukemia Virus Type 1 (HTLV-1)-infected T-cells*♦

    Science.gov (United States)

    Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène

    2012-01-01

    Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204

  16. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Directory of Open Access Journals (Sweden)