WorldWideScience

Sample records for survival cellular proliferation

  1. Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity

    International Nuclear Information System (INIS)

    Catania, Annunziata; Iavarone, Carlo; Carlomagno, Stella M.; Chiariello, Mario

    2006-01-01

    Histone deacetylases (HDACs) are key regulatory enzymes involved in the control of gene expression and their inhibition by specific drugs has been widely correlated to cell cycle arrest, terminal differentiation, and apoptosis. Here, we investigated whether HDAC activity was required for PDGF-dependent signal transduction and cellular proliferation. Exposure of PDGF-stimulated NIH3T3 fibroblasts to the HDAC inhibitor trichostatin A (TSA) potently repressed the expression of a group of genes correlated to PDGF-dependent cellular growth and pro-survival activity. Moreover, we show that TSA interfered with STAT3-dependent transcriptional activity induced by PDGF. Still, neither phosphorylation nor nuclear translocation and DNA-binding in vitro and in vivo of STAT3 were affected by using TSA to interfere with PDGF stimulation. Finally, TSA treatment resulted in the suppression of PDGF-dependent cellular proliferation without affecting cellular survival of NIH3T3 cells. Our data indicate that inhibition of HDAC activity antagonizes the mitogenic effect of PDGF, suggesting that these drugs may specifically act on the expression of STAT-dependent, PDGF-responsive genes

  2. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  3. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-10-01

    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  4. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  5. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Beard, Peter

    2012-01-01

    Highlights: ► Unknown cellular mutations complement papillomavirus-induced carcinogenesis. ► Hedgehog pathway components are expressed by cervical cancer cells. ► Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. ► Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  6. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ryota Domura

    2017-06-01

    Full Text Available The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments and different stiffness of the polymeric substrates (poly(l-lactic acid and poly(ε-caprolactone, PLLA and PCL, respectively as well as collagen substrates (coat and gel to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7. The morphological spreading parameter (nucleus/cytoplasm area ratio induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC50 of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.

  7. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells.

    Science.gov (United States)

    Domura, Ryota; Sasaki, Rie; Ishikawa, Yuma; Okamoto, Masami

    2017-06-06

    The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments) and different stiffness of the polymeric substrates (poly(l-lactic acid) and poly(ε-caprolactone), PLLA and PCL, respectively) as well as collagen substrates (coat and gel) to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7). The morphological spreading parameter (nucleus/cytoplasm area ratio) induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC 50 ) of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.

  8. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+ T cells and concomitantly impairs survival and proliferation.

    Science.gov (United States)

    Gaber, Timo; Tran, Cam Loan; Schellmann, Saskia; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Radbruch, Andreas; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2013-06-01

    Inflamed areas are characterized by infiltration of immune cells, local hypoxia and alterations of cellular redox states. We investigated the impact of hypoxia on survival, proliferation, cytokine secretion, intracellular energy and redox state of human CD4(+) T cells. We found that pathophysiological hypoxia (<2% O2 ) significantly decreased CD4(+) T-cell survival after mitogenic stimulation. This effect was not due to an increased caspase-3/7-mediated apoptosis or adenosine-5'-triphosphate (ATP) consumption/depletion. However, the ability of stimulated T cells to proliferate was reduced under hypoxic conditions, despite increased expression of CD25. Pathophysiological hypoxia was also found to modify intracellular ROS (iROS) levels in stimulated T cells over time as compared with levels found in normoxia. Physiological hypoxia (5% O2 ) did not decrease CD4(+) T-cell survival and proliferation or modify iROS levels as compared with normoxia. We conclude that pathophysiological hypoxia affects T-cell proliferation and viability via disturbed IL-2R signalling downstream of STAT5a phosphorylation, but not as a result of impaired cellular energy homeostasis. We suggest iROS links early events in T-cell stimulation to the inhibition of the lymphoproliferative response under pathophysiological hypoxic conditions. The level of iROS may therefore act as a mediator of immune functions leading to down-regulation of long-term T-cell activity in inflamed tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (...... = 13) performed 3 days of treadmill running. Cellular proliferation was investigated 3 days before and 48 h after the running exercise with the use of FLT and positron emission tomography/computed tomography (PET/CT). Results were compared to a sedentary control group (n = 10). Image......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  10. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells.

    Science.gov (United States)

    Gu, Shiyan; Sun, Donglei; Dai, Huangmei; Zhang, Zunzhen

    2018-04-20

    N 6 -methyladenosine (m 6 A) modification is implicated to play an important role in cellular biological processes, but its regulatory mechanisms in arsenite-induced carcinogenesis are largely unknown. Here, human bronchial epithelial (HBE) cells were chronically treated with 2.5 μM arsenite sodium (NaAsO 2 ) for about 13 weeks and these cells were identified with malignant phenotype which was demonstrated by increased levels of cellular proliferation, percentages of plate colony formation and soft agar clone formation, and high potential of resistance to apoptotic induction. Our results firstly demonstrated that m 6 A modification on RNA was significantly increased in arsenite-transformed cells and this modification may be synergistically regulated by methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP) and Fat mass and obesity-associated protein (FTO). In addition, knocking down of METTL3 in arsenite-transformed cells can dramatically reverse the malignant phenotype, which was manifested by lower percentages of clone and colony formation as well as higher rates of apoptotic induction. Given the critical roles of miRNAs in cellular proliferation and apoptosis, miRNAs regulated by m 6 A in arsenite-transformed cells were analyzed by Venn diagram and KEGG pathway in this study. The results showed that these m 6 A-mediated miRNAs can regulate pathways which are closely associated with cellular proliferation and apoptosis, implicating that these miRNAs may be the critical bridge by which m 6 A mediates dysregulation of cell survival and apoptosis in arsenite-transformed cells. Taken together, our results firstly demonstrated the significant role of m 6 A in the prevention of tumor occurrence and progression induced by arsenite. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    Science.gov (United States)

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  12. Effects of low dose rate γ-rays on cell proliferation and survival in exponentially growing and plateau phase cultures of normal rat kidney cells

    International Nuclear Information System (INIS)

    Tsuboi, A.

    1982-01-01

    The effects of 60 Co γ-rays on cell clonogenicity and cell proliferation were examined in NRK cells in exponential and plateau growth phases during and after irradiation at various dose rates. The typical dese rate effect for the survival responses was observed between acute irradiation and continuous irradiation at dose rates of 9.6-44 rads/h. Similar dose rate effect for the perturbation of the proliferation was observed in exponentially growing cells during irradiation. Some differences were found in survival when the cells were exposed to γ-rays at 9.6 rads/h or at 13.7 rads/h. The survival curves of exponential phase cells irradiated at these dose rates showed a shape different from that observed in plateau phase cells. Namely, a steady state of survival appeared around an accumulated dose of 1000 rads (dose-rate of 9.6 rads/h) and an accumulated dose of 1500 rads (dose-rate of 13.7 rads/h) in the exponential phase cells, while such a steady state of survival was not detected in plateau phase cells after similar conditions of irradiation. Moreover, the extrapolation number of the survival curve was much larger at the lower dose rate in exponential phase cells, in contrast to a value of the unity oberved in plateau phase cells, The radiosensitivity of plateau phase cells was somewhat lower compared to exponential phase cells over the range of accumulated doses at the dose rates used. These differences in cellular responses to the radiation between the two phases could be explained by changes in cell proliferation, the redistribution of the cell cycle compartments and the repair capacity of cellular damage during irradiation. (author)

  13. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival.

    Science.gov (United States)

    Lin, Zhiqiang; Zhou, Pingzhu; von Gise, Alexander; Gu, Fei; Ma, Qing; Chen, Jinghai; Guo, Haidong; van Gorp, Pim R R; Wang, Da-Zhi; Pu, William T

    2015-01-02

    Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression. Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival. © 2014 American Heart Association, Inc.

  14. Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism.

    Science.gov (United States)

    Zhou, Weinan; Ramachandran, Deepti; Mansouri, Abdelhak; Dailey, Megan J

    2018-04-01

    The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation. © 2017 Wiley Periodicals, Inc.

  15. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  16. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  17. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-01-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  18. Inhibition of human lung cancer cell proliferation and survival by wine

    Science.gov (United States)

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  19. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    Science.gov (United States)

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  20. Inhibitory effects of OK-432 (Picibanil) on cellular proliferation and adhesive capacity of breast carcinoma cells.

    Science.gov (United States)

    Horii, Yoshio; Iino, Yuichi; Maemura, Michio; Horiguchi, Jun; Morishita, Yasuo

    2005-02-01

    We investigated the potent inhibitory effects of OK-432 (Picibanil) on both cellular adhesion and cell proliferation of estrogen-dependent (MCF-7) or estrogen-independent (MDA-MB-231) breast carcinoma cells. Cellular proliferation of both MCF-7 and MDA-MB-231 cells was markedly inhibited in a dose-dependent manner, when the carcinoma cells were exposed to OK-432. Cell attachment assay demonstrated that incubation with OK-432 for 24 h reduced integrin-mediated cellular adhesion of both cell types. However, fluorescence activated cell sorter (FACS) analysis revealed that incubation with OK-432 for 24 h did not decrease the cell surface expressions of any integrins. These results suggest that the binding avidity of integrins is reduced by OK-432 without alteration of the integrin expression. We conclude that OK-432 inhibits integrin-mediated cellular adhesion as well as cell proliferation of breast carcinoma cells regardless of estrogen-dependence, and that these actions of OK-432 contribute to prevention or inhibition of breast carcinoma invasion and metastasis.

  1. Human Homolog of Drosophila Ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies

    Energy Technology Data Exchange (ETDEWEB)

    Elmehdawi, Fatima; Wheway, Gabrielle; Szymanska, Katarzyna [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); Adams, Matthew [BioScreening Technology Group, Biomedical Health Research Center, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); High, Alec S. [Department of Histopathology, Bexley Wing, St. James' s University Hospital, Beckett Street, Leeds, LS9 7TF West Yorkshire (United Kingdom); Johnson, Colin A., E-mail: c.johnson@leeds.ac.uk [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); Robinson, Philip A. [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom)

    2013-02-01

    HHARI (also known as ARIH1) is an ubiquitin-protein ligase and is the cognate of the E2, UbcH7 (UBE2L3). To establish a functional role for HHARI in cellular proliferation processes, we performed a reverse genetics screen that identified n=86/522 (16.5%) ubiquitin conjugation components that have a statistically significant effect on cell proliferation, which included HHARI as a strong hit. We then produced and validated a panel of specific antibodies that establish HHARI as both a nuclear and cytoplasmic protein that is expressed in all cell types studied. HHARI was expressed at higher levels in nuclei, and co-localized with nuclear bodies including Cajal bodies (p80 coilin, NOPP140), PML and SC35 bodies. We confirmed reduced cellular proliferation after ARIH1 knockdown with individual siRNA duplexes, in addition to significantly increased levels of apoptosis, an increased proportion of cells in G2 phase of the cell cycle, and significant reductions in total cellular RNA levels. In head and neck squamous cell carcinoma biopsies, there are higher levels of HHARI expression associated with increased levels of proliferation, compared to healthy control tissues. We demonstrate that HHARI is associated with cellular proliferation, which may be mediated through its interaction with UbcH7 and modification of proteins in nuclear bodies. -- Highlights: ► We produce and validate new antibody reagents for the ubiquitin-protein ligase HHARI. ► HHARI colocalizes with nuclear bodies including Cajal, PML and SC35 bodies. ► We establish new functions in cell proliferation regulation for HHARI. ► Increased HHARI expression associates with squamous cell carcinoma and proliferation.

  2. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1.

    Directory of Open Access Journals (Sweden)

    Benedikta S Haflidadóttir

    Full Text Available Aberrant expression of miR-96 in prostate cancer has previously been reported. However, the role and mechanism of action of miR-96 in prostate cancer has not been determined. In this study, the diagnostic and prognostic properties of miR-96 expression levels were investigated by qRT-PCR in two well documented prostate cancer cohorts. The miR-96 expression was found to be significantly higher in prostate cancer patients and correlate with WHO grade, and decreased overall survival time; patients with low levels of miR-96 lived 1.5 years longer than patients with high miR-96 levels. The therapeutic potential was further investigated in vitro, showing that ectopic levels of miR-96 enhances growth and cellular proliferation in prostate cancer cells, implying that miR-96 has oncogenic properties in this setting. We demonstrate that miR-96 expression decreases the transcript and protein levels of FOXO1 by binding to one of two predicted binding sites in the FOXO1 3'UTR sequence. Blocking this binding site completely inhibited the growth enhancement conveyed by miR-96. This finding was corroborated in a large external prostate cancer patient cohort where miR-96 expression inversely correlated to FOXO1 expression. Taken together these findings indicate that miR-96 plays a key role in prostate cancer cellular proliferation and can enhance prostate cancer progression. This knowledge might be utilized for the development of novel therapeutic tools for prostate cancer.

  3. Retinoic acid receptor gamma impacts cellular adhesion, Alpha5Beta1 integrin expression and proliferation in K562 cells.

    Science.gov (United States)

    Kelley, Melissa D; Phomakay, Raynin; Lee, Madison; Niedzwiedz, Victoria; Mayo, Rachel

    2017-01-01

    The interplay between cellular adhesion and proliferation is complex; however, integrins, particularly the α5β1 subset, play a pivotal role in orchestrating critical cellular signals that culminate in cellular adhesion and growth. Retinoids modify the expression of a variety of adhesive/proliferative signaling proteins including α5β1 integrins; however, the role of specific retinoic acid receptors involved in these processes has not been elucidated. In this study, the effect of all-trans-retinoic acid receptor (RAR) agonists on K562 cellular adhesion, proliferation, and α5β1 integrin cell surface expression was investigated. RARγ agonist exposure increased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin and FN-120 in a time- and concentration dependent manner, while RARα or RARβ agonist treatment had no effect on cellular adhesion. Due to the novel RARγ- dependent cellular adhesion response exhibited by K562 cells, we examined α5 and β1 integrin subunit expression when K562 cells were exposed to retinoid agonists or vehicle for 24, 48, 72 or 96 hours. Our data demonstrates no differences in K562 cell surface expression of the α5 integrin subunit when cells were exposed to RARα, RARβ, or RARγ agonists for all time points tested. In contrast, RARγ agonist exposure resulted in an increase in cell surface β1 integrin subunit expression within 48 hours that was sustained at 72 and 96 hours. Finally, we demonstrate that while exposure to RARα or RARβ agonists have no effect on K562 cellular proliferation, the RARγ agonist significantly dampens K562 cellular proliferation levels in a time- and concentration- dependent manner. Our study is the first to report that treatment with a RARγ specific agonist augments cellular adhesion to α5β1 integrin substrates, increases cell surface levels of the β1 integrin subunit, and dampens cellular proliferation in a time and concentration dependent manner in a human

  4. Stimulation of Cellular Proliferation by Hepatitis B Virus X Protein

    Directory of Open Access Journals (Sweden)

    Charles R. Madden

    2001-01-01

    Full Text Available Chronic infection with the hepatitis B virus (HBV is a known risk factor in the development of human hepatocellular carcinoma (HCC. The HBV-encoded X protein, HBx, has been investigated for properties that may explain its cancer cofactor role in transgenic mouse lines. We discuss here recent data showing that HBx is able to induce hepatocellular proliferation in vitro and in vivo. This property of HBx is predicted to sensitize hepatocytes to other HCC cofactors, including exposure to carcinogens and to other hepatitis viruses. Cellular proliferation is intimately linked to the mechanism(s by which most tumor-associated viruses transform virus-infected cells. The HBx alteration of the cell cycle provides an additional mechanism by which chronic HBV infection may contribute to HCC.

  5. Radiation-induced changes in cellularity and proliferation in human oral mucosa

    International Nuclear Information System (INIS)

    Doerr, Wolfgang; Hamilton, Christopher S.; Boyd, Teresa; Reed, Barry; Denham, James W.

    2002-01-01

    Purpose: To quantify the oral mucosal cell density and proliferation rate during conventional radiotherapy of head-and-neck tumors and to compare these parameters with clinical scoring of oral mucositis. Methods and Materials: Between 1996 and 1999, 22 patients were included in this study. Mucosal biopsies were taken before or during the radiotherapy course (5 x 2 Gy/wk). Biopsies were incubated in vitro with tritiated thymidine immediately after excision to label DNA-synthesizing cells. Results: Epithelial cell density followed a biphasic radiation response. A steep decrease to about 50% of the preirradiation value (1000 cells/mm epithelium) during Week 1 was followed by a more gradual loss to about 400 cells at the end of treatment. The initial phase was based on the depression of proliferation, with 5-10 labeled cells/mm at the end of Week 1 vs. 60 labeled cells/mm in controls. Subsequently, proliferation was partially restituted at 20 labeled cells/mm. A significant difference in cell numbers was seen between Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Grade 0 (∼850 cell/mm) and Grade 2 (325/mm) or Grade 3 (370/mm). No significant differences were observed between reaction grades 1, 2, and 3. Conclusion: Conventionally fractionated radiotherapy induces a rapid suppression in cell production in Week 1, which results in a prompt reduction in cell numbers. Subsequently, a partial restoration of proliferation significantly reduces the rate of cell loss. These processes clearly precede the clinical response. Regeneration, defined as restoration of cellularity, is already under way when the maximal clinical response is observed. Clinical reaction grading corresponds poorly to cellular density measures during conventional fractionation

  6. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Science.gov (United States)

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  7. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression.

    Science.gov (United States)

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Hsieh, Ching-Liang

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABA(A)) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus.

  8. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  9. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-01-01

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  10. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  11. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Liu

    2012-01-01

    Full Text Available Uncaria rhynchophylla (UR, which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA- induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus

  12. Dissociation of Survival, Proliferation, and State Control in Human Hematopoietic Stem Cells.

    Science.gov (United States)

    Knapp, David J H F; Hammond, Colin A; Miller, Paul H; Rabu, Gabrielle M; Beer, Philip A; Ricicova, Marketa; Lecault, Véronique; Da Costa, Daniel; VanInsberghe, Michael; Cheung, Alice M; Pellacani, Davide; Piret, James; Hansen, Carl; Eaves, Connie J

    2017-01-10

    The role of growth factors (GFs) in controlling the biology of human hematopoietic stem cells (HSCs) remains limited by a lack of information concerning the individual and combined effects of GFs directly on the survival, Mitogenesis, and regenerative activity of highly purified human HSCs. We show that the initial input HSC activity of such a purified starting population of human cord blood cells can be fully maintained over a 21-day period in serum-free medium containing five GFs alone. HSC survival was partially supported by any one of these GFs, but none were essential, and different combinations of GFs variably stimulated HSC proliferation. However, serial transplantability was not detectably compromised by many conditions that reduced human HSC proliferation and/or survival. These results demonstrate the dissociated control of these three human HSC bio-responses, and set the stage for future improvements in strategies to modify and expand human HSCs ex vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    Ehrkamp, Anja; Herrmann, Christian; Stoll, Raphael; Heumann, Rolf

    2013-01-01

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  14. Ras and Rheb Signaling in Survival and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ehrkamp, Anja [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany); Herrmann, Christian [Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum (Germany); Stoll, Raphael [Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum (Germany); Heumann, Rolf, E-mail: rolf.heumann@rub.de [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany)

    2013-05-28

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.

  15. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael J. [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Longhurst, Celia M.; Baker, Benjamin [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Homayouni, Ramin [Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States); Speich, Henry E.; Kotha, Jayaprakash [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Jennings, Lisa K., E-mail: ljennings@uthsc.edu [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States)

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  16. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    Science.gov (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    Science.gov (United States)

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Science.gov (United States)

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  19. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Wang, Suna; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-01-01

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RT PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  20. Study on cellular survival adaptive response induced by low dose irradiation of 153Sm

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Xiao Dong

    1999-01-01

    The present study engages in determining whether low dose irradiation of 153 Sm could cut down the responsiveness of cellular survival to subsequent high dose exposure of 153 Sm so as to make an inquiry into approach the protective action of adaptive response by second irradiation of 153 Sm. Experimental results indicate that for inductive low dose of radionuclide 153 Sm 3.7 kBq/ml irradiated beforehand to cells has obvious resistant effect in succession after high dose irradiation of 153 Sm 3.7 x 10 2 kBq/ml was observed. Cells exposed to low dose irradiation of 153 Sm become adapted and therefore the subsequent cellular survival rate induced by high dose of 153 Sm is sufficiently higher than high dose of 153 Sm merely. It is evident that cellular survival adaptive response could be induced by pure low dose irradiation of 153 Sm only

  1. Chronic treatment with AMPA receptor potentiator Org 26576 increases neuronal cell proliferation and survival in adult rodent hippocampus.

    Science.gov (United States)

    Su, Xiaowei W; Li, Xiao-Yuan; Banasr, Mounira; Koo, Ja Wook; Shahid, Mohammed; Henry, Brian; Duman, Ronald S

    2009-10-01

    Currently available antidepressants upregulate hippocampal neurogenesis and prefrontal gliogenesis after chronic administration, which could block or reverse the effects of stress. Allosteric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators (ARPs), which have novel targets compared to current antidepressants, have been shown to have antidepressant properties in neurogenic and behavioral models. This study analyzed the effect of the ARP Org 26576 on the proliferation, survival, and differentiation of neurons and glia in the hippocampus and prelimbic cortex of adult rats. Male Sprague-Dawley rats received acute (single day) or chronic (21 day) twice-daily intraperitoneal injections of Org 26576 (1-10 mg/kg). Bromodeoxyuridine (BrdU) immunohistochemistry was conducted 24 h or 28 days after the last drug injection for the analysis of cell proliferation or survival, respectively. Confocal immunofluorescence analysis was used to determine the phenotype of surviving cells. Acute administration of Org 26576 did not increase neuronal cell proliferation. However, chronic administration of Org 26576 increased progenitor cell proliferation in dentate gyrus (approximately 40%) and in prelimbic cortex (approximately 35%) at the 10-mg/kg dosage. Cells born in response to chronic Org 26576 in dentate gyrus exhibited increased rates of survival (approximately 30%) with the majority of surviving cells expressing a neuronal phenotype. Findings suggest that Org 26576 may have antidepressant properties, which may be attributed, in part, to upregulation of hippocampal neurogenesis and prelimbic cell proliferation.

  2. In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET

    International Nuclear Information System (INIS)

    Wong, Peter K.; Lee, Sze Ting; Murone, Carmel; Eng, John; Lawrentschuk, Nathan; Berlangieri, Salvatore University; Pathmaraj, Kunthi; O’Keefe, Graeme J.; Sachinidis, John; Byrne, Amanda J.; Bolton, Damien M.; Davis, Ian D.; Scott, Andrew M.

    2014-01-01

    The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Twenty seven patients (16 male, 11 females; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. The SUVmax (maximum standardized uptake value) mean±SD for FLT in tumour was 2.59±1.27, compared to normal kidney (2.47±0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60±1.08). There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.72, P<0.0001) in RCC. Ki-67 proliferative index was mean ± SD of 13.3%±9.2 (range 2.2% - 36.3%). There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology

  3. The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jelena Markovic

    2009-07-01

    Full Text Available Glutathione is considered essential for survival in mammalian cells and yeast but not in prokaryotic cells. The presence of a nuclear pool of glutathione has been demonstrated but its role in cellular proliferation and differentiation is still a matter of debate.We have studied proliferation of 3T3 fibroblasts for a period of 5 days. Cells were treated with two well known depleting agents, diethyl maleate (DEM and buthionine sulfoximine (BSO, and the cellular and nuclear glutathione levels were assessed by analytical and confocal microscopic techniques, respectively. Both agents decreased total cellular glutathione although depletion by BSO was more sustained. However, the nuclear glutathione pool resisted depletion by BSO but not with DEM. Interestingly, cell proliferation was impaired by DEM, but not by BSO. Treating the cells simultaneously with DEM and with glutathione ethyl ester to restore intracellular GSH levels completely prevented the effects of DEM on cell proliferation.Our results demonstrate the importance of nuclear glutathione in the control of cell proliferation in 3T3 fibroblasts and suggest that a reduced nuclear environment is necessary for cells to progress in the cell cycle.

  4. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    Science.gov (United States)

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  5. TAM receptors support neural stem cell survival, proliferation and neuronal differentiation.

    Science.gov (United States)

    Ji, Rui; Meng, Lingbin; Jiang, Xin; Cvm, Naresh Kumar; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2014-01-01

    Tyro3, Axl and Mertk (TAM) receptor tyrosine kinases play multiple functional roles by either providing intrinsic trophic support for cell growth or regulating the expression of target genes that are important in the homeostatic regulation of immune responses. TAM receptors have been shown to regulate adult hippocampal neurogenesis by negatively regulation of glial cell activation in central nervous system (CNS). In the present study, we further demonstrated that all three TAM receptors were expressed by cultured primary neural stem cells (NSCs) and played a direct growth trophic role in NSCs proliferation, neuronal differentiation and survival. The cultured primary NSCs lacking TAM receptors exhibited slower growth, reduced proliferation and increased apoptosis as shown by decreased BrdU incorporation and increased TUNEL labeling, than those from the WT NSCs. In addition, the neuronal differentiation and maturation of the mutant NSCs were impeded, as characterized by less neuronal differentiation (β-tubulin III+) and neurite outgrowth than their WT counterparts. To elucidate the underlying mechanism that the TAM receptors play on the differentiating NSCs, we examined the expression profile of neurotrophins and their receptors by real-time qPCR on the total RNAs from hippocampus and primary NSCs; and found that the TKO NSC showed a significant reduction in the expression of both nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but accompanied by compensational increases in the expression of the TrkA, TrkB, TrkC and p75 receptors. These results suggest that TAM receptors support NSCs survival, proliferation and differentiation by regulating expression of neurotrophins, especially the NGF.

  6. Effect of propolis on mitotic and cellular proliferation indices in human blood lymphocytes

    International Nuclear Information System (INIS)

    Montoro, A.; Almonacid, M.; Villaescusa, J.; Barquinero, J.; Barrios, L.; Verdu, G.; Perez, J.

    2006-01-01

    The study of the frequency of chromosomal aberrations per cell is the tool used in Biological dosimetry studies. Using dose-effect calibration curve obtained in our laboratory, we can evaluate the radioprotector effect of the EEP (ethanolic extract of propolis) in cultures in vitro. Propolis is the generic name for resinous substance collected by honeybees. The results showed a reduction in chromosomal aberrations's frequency of up to 50 %. The following study consisted of analyzing human peripheral blood lymphocytes exposed to 2 Gy γ rays, in presence and absence of EEP, the change in the frequency of chromosome aberrations was analysed with biological dosimetry. The protection against the formation of dicentric and ring was dose-dependent, but there seemed to be a maximum protection, i.e. a further increase in the concentration of EEP does not show additional protection. This work studies the effect of the EEP of the cellular cycle using the mitotic and cellular proliferation index, as an alternative for the screening cytostatic activity. The results indicate that the lymphocytes which were cultures in presence of EEP exhibited a significant and dependent-concentration decrease in mitotic index and proliferation kinetics. The possible mechanisms involved in the radioprotective influence of EEP are discussed. (authors)

  7. Effect of propolis on mitotic and cellular proliferation indices in human blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, A.; Almonacid, M.; Villaescusa, J. [Valencia Hospital Univ. la Fe, Servicio de Proteccion Radiologica (Spain); Barquinero, J. [Barcelona Univ. Autonom, Servicio de Dosimetria Biologica, Unidad de Antropologia, Dept. de Biologia Animal, Vegetal y Ecologia, barcelona (Spain); Barrios, L. [Barcelona Univ. Autonoma, Dept. de Biologia Celular y Fisiologia. Unidad de Biologia Celular (Spain); Verdu, G. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear (Spain); Perez, J. [Hospital la Fe, Seccion de Radiofisica, Servicio de Radioterapia, valencia (Spain)

    2006-07-01

    The study of the frequency of chromosomal aberrations per cell is the tool used in Biological dosimetry studies. Using dose-effect calibration curve obtained in our laboratory, we can evaluate the radioprotector effect of the EEP (ethanolic extract of propolis) in cultures in vitro. Propolis is the generic name for resinous substance collected by honeybees. The results showed a reduction in chromosomal aberrations's frequency of up to 50 %. The following study consisted of analyzing human peripheral blood lymphocytes exposed to 2 Gy {gamma} rays, in presence and absence of EEP, the change in the frequency of chromosome aberrations was analysed with biological dosimetry. The protection against the formation of dicentric and ring was dose-dependent, but there seemed to be a maximum protection, i.e. a further increase in the concentration of EEP does not show additional protection. This work studies the effect of the EEP of the cellular cycle using the mitotic and cellular proliferation index, as an alternative for the screening cytostatic activity. The results indicate that the lymphocytes which were cultures in presence of EEP exhibited a significant and dependent-concentration decrease in mitotic index and proliferation kinetics. The possible mechanisms involved in the radioprotective influence of EEP are discussed. (authors)

  8. Cellular automata model for human articular chondrocytes migration, proliferation and cell death: An in vitro validation.

    Science.gov (United States)

    Vaca-González, J J; Gutiérrez, M L; Guevara, J M; Garzón-Alvarado, D A

    2017-01-01

    Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.

  9. In-vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine (FLT) PET

    International Nuclear Information System (INIS)

    Wong, P.; Lee, S. T.; Eng, J.; Berlangieri, S. U.; Pathmaraj, K.; O'Keefe, G. J.; Lawrentschuk, N.

    2009-01-01

    Full text:Background: The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) in renal cell carcinoma, and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Methods: Twenty seven patients (16 men, 11 women; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. Results: The mean SUVmax (maximum standardized uptake value) ± SD for FLT in tumour was 2.53 ± 1.26, compared to normal kidney (2.47 ± 0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60 ± 1.08). Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.624, p=0.0008) in RCC. Ki-67 labelling index was mean ± SD of 13.3% ± 9.2 (range 2.2% to 36.3%). Conclusion: There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology.

  10. LIGHT (TNFSF14 Increases the Survival and Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available LIGHT (HVEM-L, TNFSF14, or CD258, an entity homologous to lymphotoxins, with inducible nature and the ability to compete with herpes simplex virus glycoprotein D for herpes virus entry mediator (HVEM/tumor necrosis factor (TNF-related 2, is a member of the TNF superfamily. It is expressed as a homotrimer on activated T cells and dendritic cells (DCs, and has three receptors: HVEM, LT-β receptor (LTβR, and decoy receptor 3 (DcR3. So far, three receptors with distinct cellular expression patterns are known to interact with LIGHT. Follicular DCs and stromal cells bind LIGHT through LTβR. We monitored the effects of LIGHT on human bone marrow-derived mesenchymal stem cells (BM-MSCs. At first, we checked the negative and positive differentiation markers of BM-MSCs. And we confirmed the quality of MSCs by staining cells undergoing adipogenesis (Oil Red O staining, chondrogenesis (Alcian blue staining, and osteogenesis (Alizarin red staining. After rhLIGHT treatment, we monitored the count, viability, and proliferation of cells and cell cycle distribution. PDGF and TGFβ production by rhLIGHT was examined by ELISA, and the underlying biological mechanisms were studied by immunoblotting by rhLIGHT treatment. LTβR was constitutively expressed on the surface of human BM-MSCs. Cell number and viability increased after rhLIGHT treatment. BM-MSC proliferation was induced by an increase in the S/G2/M phase. The expression of not only diverse cyclins such as cyclin B1, D1, D3, and E, but also CDK1 and CDK2, increased, while that of p27 decreased, after rhLIGHT treatment. RhLIGHT-induced PDGF and TGFβ production mediated by STAT3 and Smad3 activation accelerated BM-MSC proliferation. Thus, LIGHT and LTβR interaction increases the survival and proliferation of human BM-MSCs, and therefore, LIGHT might play an important role in stem cell therapy.

  11. MANF Is Indispensable for the Proliferation and Survival of Pancreatic β Cells

    Directory of Open Access Journals (Sweden)

    Maria Lindahl

    2014-04-01

    Full Text Available All forms of diabetes mellitus (DM are characterized by the loss of functional pancreatic β cell mass, leading to insufficient insulin secretion. Thus, identification of novel approaches to protect and restore β cells is essential for the development of DM therapies. Mesencephalic astrocyte-derived neurotrophic factor (MANF is an endoplasmic reticulum (ER-stress-inducible protein, but its physiological role in mammals has remained obscure. We generated MANF-deficient mice that strikingly develop severe diabetes due to progressive postnatal reduction of β cell mass, caused by decreased proliferation and increased apoptosis. Additionally, we show that lack of MANF in vivo in mouse leads to chronic unfolded protein response (UPR activation in pancreatic islets. Importantly, MANF protein enhanced β cell proliferation in vitro and overexpression of MANF in the pancreas of diabetic mice enhanced β cell regeneration. We demonstrate that MANF specifically promotes β cell proliferation and survival, thereby constituting a therapeutic candidate for β cell protection and regeneration.

  12. Arecoline augments cellular proliferation in the prostate gland of male Wistar rats

    International Nuclear Information System (INIS)

    Saha, Indraneel; Chatterjee, Aniruddha; Mondal, Anushree; Maiti, Bishwa Ranjan; Chatterji, Urmi

    2011-01-01

    Areca nut chewing is the fourth most popular habit in the world due to its effects as a mild stimulant, causing a feeling of euphoria and slightly heightened alertness. Areca nuts contain several alkaloids and tannins, of which arecoline is the most abundant and known to have several adverse effects in humans, specially an increased risk of oral cancer. On evaluating the effects of arecoline on the male endocrine physiology in Wistar rats, it was found that arecoline treatment led to an overall enlargement and increase in the wet weight of the prostate gland, and a two-fold increase in serum gonadotropin and testosterone levels. Since the prostate is a major target for testosterone, the consequences of arecoline consumption were studied specifically in the prostate gland. Arecoline treatment led to an increase in the number of rough endoplasmic reticulum and reduction of secretory vesicles, signifying a hyperactive state of the prostate. Increased expression of androgen receptors in response to arecoline allowed for enhanced effect of testosterone in the prostate of treated animals, which augmented cell proliferation, subsequently confirmed by an increase in the expression of Ki-67 protein. Cellular proliferation was also the outcome of concomitant over expression of the G 1 -to-S cell cycle regulatory proteins, cyclin D1 and CDK4, both at the transcriptional and translational levels. Taken together, the findings provide the first evidence that regular use of arecoline may lead to prostatic hyperplasia and hypertrophy, and eventually to disorders associated with prostate enlargement. - Highlights: → Effect of arecoline was investigated on the endocrine physiology of male Wistar rats. → Increase observed in prostate size, wet weight, serum testosterone and gonadotropins. → Arecoline increased RER, expression of androgen receptor and cellular proliferation. → Upregulation of cyclin D1 and CDK4 seen at transcriptional and translational levels. → It may cause

  13. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress.

    Science.gov (United States)

    Yu, Tao; Wang, Yong-Tao; Chen, Pan; Li, Yu-Hua; Chen, Yi-Xin; Zeng, Hang; Yu, Ai-Ming; Huang, Min; Bi, Hui-Chang

    2015-01-01

    Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress. © 2015 S. Karger AG, Basel.

  14. Effects of Nicotinamide N-Methyltransferase on PANC-1 Cells Proliferation, Metastatic Potential and Survival Under Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2015-01-01

    Full Text Available Background: Aberrant expression of Nicotinamide N-methyltransferase (NNMT has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Methods: Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. Results: NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. Conclusions: These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress.

  15. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Jin, Rong [Department of Immunology, Peking University Health Science Center, Beijing (China); Wang, Hong-Cheng [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing [Department of Immunology, Peking University Health Science Center, Beijing (China); Sun, Xiao-Hong, E-mail: sunx@omrf.org [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Zhang, Yu, E-mail: zhangyu007@bjmu.edu.cn [Department of Immunology, Peking University Health Science Center, Beijing (China)

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  16. Influence of the neural tube/notochord complex on MyoD expression and cellular proliferation in chicken embryos

    Directory of Open Access Journals (Sweden)

    H.J. Alves

    2003-02-01

    Full Text Available Important advances have been made in understanding the genetic processes that control skeletal muscle formation. Studies conducted on quails detected a delay in the myogenic program of animals selected for high growth rates. These studies have led to the hypothesis that a delay in myogenesis would allow somitic cells to proliferate longer and consequently increase the number of embryonic myoblasts. To test this hypothesis, recently segmented somites and part of the unsegmented paraxial mesoderm were separated from the neural tube/notochord complex in HH12 chicken embryos. In situ hybridization and competitive RT-PCR revealed that MyoD transcripts, which are responsible for myoblast determination, were absent in somites separated from neural tube/notochord (1.06 and 0.06 10-3 attomol MyoD/1 attomol ß-actin for control and separated somites, respectively; P<0.01. However, reapproximation of these structures allowed MyoD to be expressed in somites. Cellular proliferation was analyzed by immunohistochemical detection of incorporated BrdU, a thymidine analogue. A smaller but not significant (P = 0.27 number of proliferating cells was observed in somites that had been separated from neural tube/notochord (27 and 18 for control and separated somites, respectively. These results confirm the influence of the axial structures on MyoD activation but do not support the hypothesis that in the absence of MyoD transcripts the cellular proliferation would be maintained for a longer period of time.

  17. Heterogeneity in Fibroblast Proliferation and Survival in Idiopathic Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    David Michael Habiel

    2014-01-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is the most common form of interstitial lung disease characterized by the persistence of activated myofibroblasts resulting in excessive deposition of extracellular matrix proteins and profound tissue remodeling. Myofibroblasts have been shown to arise from interstitial fibroblasts, epithelial to mesenchymal transition of type II alveolar epithelial cells, and the differentiation of recruited fibrocytes. There are many mechanisms that are utilized by these cells for survival, proliferation and persistent activation including up-regulation of cytokines (i.e. Interlukin 6 (IL-6, cytokine receptors (i.e. Interlukin 6 Receptor 1 (IL-6R1, Glycoprotein 130 (gp130 and C-C Chemokine Receptor type 7 (CCR7 and innate pattern recognition receptors (PRRs; i.e. Toll Like Receptor 9 (TLR9. In this review, we will discuss the role of the cytokines IL-6 and CCL21, their receptors and the pattern recognition receptor (PRR, TLR9, in fibroblast recruitment, activation, survival and differentiation into myofibroblasts in IPF.

  18. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  19. Cellular proliferation in the urorectal septation complex of the human embryo at Carnegie stages 13-18: a nuclear area-based morphometric analysis.

    Science.gov (United States)

    Nebot-Cegarra, Josep; Fàbregas, Pere Jordi; Sánchez-Pérez, Inma

    2005-10-01

    In order to analyse the patterns of cellular proliferation both in the mesenchyme of the urorectal septum (URS) and in the adjacent territories (posterior urogenital mesenchyme, anterior intestinal mesenchyme and cloacal folds mesenchyme), as well as their contribution to the process of cloacal division, a computer-assisted method was used to obtain the nuclear area of 3874 mesenchymal cells from camera lucida drawings of nuclear contours of selected sections of human embryos [Carnegie stages (CSs) 13-18]. Based on changes in the size of the nucleus during the cellular cycle, we considered proliferating cells in each territory to be those with a nuclear area over the 75th percentile. The URS showed increasing cell proliferation, with proliferation patterns that coincided closely with cloacal folds mesenchyme, and with less overall proliferation than urogenital and intestinal mesenchymes. Furthermore, at CS 18, we observed the beginning of the rupture in the cloacal membrane; however, no fusion has been demonstrated either between the URS and the cloacal membrane or between the cloacal folds. The results suggest that cloacal division depends on a morphogenetic complex where the URS adjacent territories could determine septal displacement at the time that their mesenchymes could be partially incorporated within the proliferating URS.

  20. Dynamics of Cellular Proliferation during 'Acute Homologous Disease' in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, B.; Silobrcic, V.; Jurin, M.; Matosic, M.; Tomazic, Vesna [Laboratory for Transplantation and Tumour Immunology, Department of Biology, Institute Ruder Boskovic, Zagreb, Yugoslavia (Croatia)

    1968-08-15

    CBA mice, lethally irradiated and injected with 20 x 10{sup 6} bone-marrow cells derived from C57BL donors, develop a chronic form of 'homologous disease' and die between 20 and 40 days after treatment. If 10 x 10{sup 6} lymph node cells are added to the bone-marrow suspension, all recipients develop 'acute' homologous disease and die 6 to 10 days after irradiation. Different parameters of the disease were systematically observed. Among them, changes in spleen weight indicated early cell proliferation, which reached its maximum on day 4 and progressively decreased later on. Chromosomal analysis showed that all dividing cells in the spleen were of donor origin. Their number decreased concomitantly with the shrinkage and devastation of the organ, which started on day 6. The period of devastation of the spleen fully corresponds to the time in which all animals die. The use of cyclophosphamide in the treatment of 'acute' homologous disease transformed the disease into a chronic form with a mortality very similar to that obtained when only bone-marrow cells were injected. Among other effects, treatment with cyclophosphamide prevented early proliferation of donor cells in the spleen, and delayed spleen weight increase for about 10 days. After that period spleen weight increased, reaching its maximum on day 12. At first only donor type cells could be detected, but towards the end of the period in which spleen weight increase was registered host type cells appeared among the cells in mitosis. Their number gradually increased, and in some cases the majority or all of the dividing cells were of the host type. After a transitional decrease in spleen weight, another peak in cellular proliferation consisting of either host or donor or both types of cells was observed about day 30. In spite of the observed irregularities in the origin of dividing cells, all animals died by day 40 after application of cyclophosphamide. The relationship between proliferation of injected lymph node

  1. The Spalt transcription factors regulate cell proliferation, survival and epithelial integrity downstream of the Decapentaplegic signalling pathway

    Directory of Open Access Journals (Sweden)

    María F. Organista

    2012-10-01

    The expression of the spalt genes is regulated by the Decapentaplegic signalling pathway in the Drosophila wing. These genes participate in the patterning of the longitudinal wing veins by regulating the expression of vein-specific genes, and in the establishment of cellular affinities in the central region of the wing blade epithelium. The Spalt proteins act as transcription factors, most likely regulating gene expression by repression, but the identity of their target genes in the wing is still unknown. As a preliminary step to unravel the genetic hierarchy controlled by the Spalt proteins, we have analysed their requirements during wing development, and addressed to what extent they mediate all the functions of the Decapentaplegic pathway in this developmental system. We identify additional functions for Spalt in cell division, survival, and maintenance of epithelial integrity. Thus, Spalt activity is required to promote cell proliferation, acting in the G2/M transition of the cell cycle. The contribution of Spalt to cell division is limited to the central region of the wing blade, as they do not mediate the extra growth triggered by Decapentaplegic signalling in the peripheral regions of the wing disc. In addition, Spalt function is required to maintain cell viability in cells exposed to high levels of Decapentaplegic signalling. This aspect of Spalt function is related to the repression of JNK signalling in the spalt domain of expression. Finally, we further characterise the requirements of Spalt to maintain epithelial integrity by regulating cellular affinities between cells located in the central wing region. Our results indicate that Spalt function mediates most of the requirements identified for Decapentaplegic signalling, contributing to establish the cellular qualities that differentiate central versus peripheral territories in the wing blade.

  2. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    International Nuclear Information System (INIS)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-01-01

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16 INK , p21 and p19 ARF . VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI

  3. Deregulated GSK3β activity in colorectal cancer: Its association with tumor cell survival and proliferation

    International Nuclear Information System (INIS)

    Shakoori, Abbas; Ougolkov, Andrei; Yu Zhiwei; Zhang Bin; Modarressi, Mohammad H.; Billadeau, Daniel D.; Mai, Masayoshi; Takahashi, Yutaka; Minamoto, Toshinari

    2005-01-01

    Glycogen synthase kinase 3β (GSK3β) reportedly has opposing roles, repressing Wnt/β-catenin signaling on the one hand but maintaining cell survival and proliferation through the NF-κB pathway on the other. The present investigation was undertaken to clarify the roles of GSK3β in human cancer. In colon cancer cell lines and colorectal cancer patients, levels of GSK3β expression and amounts of its active form were higher in tumor cells than in their normal counterparts; these findings were independent of nuclear accumulation of β-catenin oncoprotein in the tumor cells. Inhibition of GSK3β activity by phosphorylation was defective in colorectal cancers but preserved in non-neoplastic cells and tissues. Strikingly, inhibition of GSK3β activity by chemical inhibitors and its expression by RNA interference targeting GSK3β induced apoptosis and attenuated proliferation of colon cancer cells in vitro. Our findings demonstrate an unrecognized role of GSK3β in tumor cell survival and proliferation other than its predicted role as a tumor suppressor, and warrant proposing this kinase as a potential therapeutic target in colorectal cancer

  4. Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo

    International Nuclear Information System (INIS)

    Chen, Zhihong; Forman, Lora W; Williams, Robert M; Faller, Douglas V

    2014-01-01

    A subpopulation of tumor cells with distinct stem-like properties (cancer stem-like cells, CSCs) may be responsible for tumor initiation, invasive growth, and possibly dissemination to distant organ sites. CSCs exhibit a spectrum of biological, biochemical, and molecular features that are consistent with a stem-like phenotype, including growth as non-adherent spheres (clonogenic potential), ability to form a new tumor in xenograft assays, unlimited self-renewal, and the capacity for multipotency and lineage-specific differentiation. PKCδ is a novel class serine/threonine kinase of the PKC family, and functions in a number of cellular activities including cell proliferation, survival or apoptosis. PKCδ has previously been validated as a synthetic lethal target in cancer cells of multiple types with aberrant activation of Ras signaling, using both genetic (shRNA and dominant-negative PKCδ mutants) and small molecule inhibitors. In contrast, PKCδ is not required for the proliferation or survival of normal cells, suggesting the potential tumor-specificity of a PKCδ-targeted approach. shRNA knockdown was used validate PKCδ as a target in primary cancer stem cell lines and stem-like cells derived from human tumor cell lines, including breast, pancreatic, prostate and melanoma tumor cells. Novel and potent small molecule PKCδ inhibitors were employed in assays monitoring apoptosis, proliferation and clonogenic capacity of these cancer stem-like populations. Significant differences among data sets were determined using two-tailed Student’s t tests or ANOVA. We demonstrate that CSC-like populations derived from multiple types of human primary tumors, from human cancer cell lines, and from transformed human cells, require PKCδ activity and are susceptible to agents which deplete PKCδ protein or activity. Inhibition of PKCδ by specific genetic strategies (shRNA) or by novel small molecule inhibitors is growth inhibitory and cytotoxic to multiple types of human

  5. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    Science.gov (United States)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  6. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  7. Spindle assembly checkpoint protein expression correlates with cellular proliferation and shorter time to recurrence in ovarian cancer.

    LENUS (Irish Health Repository)

    McGrogan, Barbara

    2014-07-01

    Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).

  8. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  9. Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations

    International Nuclear Information System (INIS)

    Preto, Ana; Soares, Paula; Sobrinho-Simões, Manuel; Gonçalves, Joana; Rebocho, Ana P; Figueiredo, Joana; Meireles, Ana M; Rocha, Ana S; Vasconcelos, Helena M; Seca, Hugo; Seruca, Raquel

    2009-01-01

    Thyroid carcinomas show a high prevalence of mutations in the oncogene BRAF which are inversely associated with RAS or RET/PTC oncogenic activation. The possibility of using inhibitors on the BRAF pathway as became an interesting therapeutic approach. In thyroid cancer cells the target molecules, implicated on the cellular effects, mediated by inhibition of BRAF are not well established. In order to fill this lack of knowledge we studied the proliferation and survival pathways and associated molecules induced by BRAF inhibition in thyroid carcinoma cell lines harbouring distinct genetic backgrounds. Suppression of BRAF pathway in thyroid cancer cell lines (8505C, TPC1 and C643) was achieved using RNA interference (RNAi) for BRAF and the kinase inhibitor, sorafenib. Proliferation analysis was performed by BrdU incorporation and apoptosis was accessed by TUNEL assay. Levels of protein expression were analysed by western-blot. Both BRAF RNAi and sorafenib inhibited proliferation in all the cell lines independently of the genetic background, mostly in cells with BRAF V600E mutation. In BRAF V600E mutated cells inhibition of BRAF pathway lead to a decrease in ERK1/2 phosphorylation and cyclin D1 levels and an increase in p27 Kip1 . Specific inhibition of BRAF by RNAi in cells with BRAF V600E mutation had no effect on apoptosis. In the case of sorafenib treatment, cells harbouring BRAF V600E mutation showed increase levels of apoptosis due to a balance of the anti-apoptotic proteins Mcl-1 and Bcl-2. Our results in thyroid cancer cells, namely those harbouring BRAF V600E mutation showed that BRAF signalling pathway provides important proliferation signals. We have shown that in thyroid cancer cells sorafenib induces apoptosis by affecting Mcl-1 and Bcl-2 in BRAF V600E mutated cells which was independent of BRAF. These results suggest that sorafenib may prove useful in the treatment of thyroid carcinomas, particularly those refractory to conventional treatment and

  10. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration

    Directory of Open Access Journals (Sweden)

    Linda A. Villani

    2016-10-01

    Full Text Available Objective: The sodium-glucose transporter 2 (SGLT2 inhibitors Canagliflozin and Dapagliflozin are recently approved medications for type 2 diabetes. Recent studies indicate that SGLT2 inhibitors may inhibit the growth of some cancer cells but the mechanism(s remain unclear. Methods: Cellular proliferation and clonogenic survival were used to assess the sensitivity of prostate and lung cancer cell growth to the SGLT2 inhibitors. Oxygen consumption, extracellular acidification rate, cellular ATP, glucose uptake, lipogenesis, and phosphorylation of AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase, and the p70S6 kinase were assessed. Overexpression of a protein that maintains complex-I supported mitochondrial respiration (NDI1 was used to establish the importance of this pathway for mediating the anti-proliferative effects of Canagliflozin. Results: Clinically achievable concentrations of Canagliflozin, but not Dapagliflozin, inhibit cellular proliferation and clonogenic survival of prostate and lung cancer cells alone and in combination with ionizing radiation and the chemotherapy Docetaxel. Canagliflozin reduced glucose uptake, mitochondrial complex-I supported respiration, ATP, and lipogenesis while increasing the activating phosphorylation of AMPK. The overexpression of NDI1 blocked the anti-proliferative effects of Canagliflozin indicating reductions in mitochondrial respiration are critical for anti-proliferative actions. Conclusion: These data indicate that like the biguanide metformin, Canagliflozin not only lowers blood glucose but also inhibits complex-I supported respiration and cellular proliferation in prostate and lung cancer cells. These observations support the initiation of studies evaluating the clinical efficacy of Canagliflozin on limiting tumorigenesis in pre-clinical animal models as well epidemiological studies on cancer incidence relative to other glucose lowering therapies in clinical populations. Keywords: AMP

  11. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels

    International Nuclear Information System (INIS)

    Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco

    2005-01-01

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 Kip1 was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF Skp2 ubiquitin ligase has been reported to mediate p27 Kip1 degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27 Kip1 , and prevent cellular proliferation. Elevation of p27 Kip1 protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27 Kip1 with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF Skp2 ubiquitin ligase substrate p27 Kip1 , but has no concomitant effect on the level of IkBα and β-catenin, which are known substrates of a closely related SCF ligase

  12. Proliferation and clonal survival of human lung cancer cells treated with fractionated irradiation in combination with paclitaxel

    International Nuclear Information System (INIS)

    Rijn, Johannes van; Berg, Jaap van den; Meijer, Otto W.M.

    1995-01-01

    Purpose: This study was performed to determine the effects of a continuous exposure to paclitaxel (taxol) in combination with fractionated irradiation on cell proliferation and survival. Methods and Materials: Human lung carcinoma cells (SW1573) were given a daily treatment with 3 Gy of x-rays during 5 days in the continuous presence of 5 nM taxol. The surviving fraction and the total number of cells were determined every 24 h before and immediately after irradiation. Results: Irradiation with 5 x 3 Gy and 5 nM taxol cause approximately the same inhibition of cell proliferation. In combination these treatments have an additional effect and the cell population increases no further after the first 24 h. Whereas the cells become more resistant to taxol after the first 24 h with a minimum survival of 42%, taxol progressively reduces the population of surviving cells in combination with x-rays when the number of fractions increases, up to 25-fold relative to irradiation alone. The enhancement effect of 5 nM taxol is likely to be attributed to an inhibition of the repopulation during fractionated irradiation and not to an increased radiosensitivity. Only after treatment with 10 or 100 nM taxol for 24 h, which is attended with a high cytotoxicity, is moderate radiosensitization observed. Conclusion: Taxol, continuously present at a low concentration with little cytotoxicity, causes a progressive reduction of the surviving cell population in combination with fractionated irradiation, mainly by an inhibition of the repopulation of surviving cells between the dose fractions

  13. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3

    International Nuclear Information System (INIS)

    Tsuyama, Naohiro; Danjoh, Inaho; Otsuyama, Ken-ichiro; Obata, Masanori; Tahara, Hidetoshi; Ohta, Tsutomu; Ishikawa, Hideaki

    2005-01-01

    IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells

  14. The nucleolus—guardian of cellular homeostasis and genome integrity.

    Science.gov (United States)

    Grummt, Ingrid

    2013-12-01

    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  15. Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Hossein Jadvar

    2015-07-01

    Full Text Available Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and prognostic utility in the various clinical phases of this prevalent disease. Given the remarkable biological heterogeneity of prostate cancer, one major unmet clinical need that remains is the non-invasive imaging-based characterization of prostate tumors. Accurate tumor characterization allows for image-targeted biopsy and focal therapy as well as facilitates objective assessment of therapy effect. PET in conjunction with radiotracers that track the thymidine salvage pathway of DNA synthesis may be helpful to fulfill this necessity. We review briefly the preclinical and pilot clinical experience with the two major cellular proliferation radiotracers, [18F]-3’-deoxy-3’-fluorothymidine and [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil in prostate cancer.

  16. Clinical and pathologic factors associated with survival in young adult patients with fibrolamellar hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Luna, Laura E [Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición ' Salvador Zubirán' (INCMNSZ), Mexico City (Mexico); Arrieta, Oscar [Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City (Mexico); Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); García-Leiva, Jorge [Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición ' Salvador Zubirán' (INCMNSZ), Mexico City (Mexico); Martínez, Braulio [Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición ' Salvador Zubirán' (INCMNSZ), Mexico City (Mexico); Torre, Aldo; Uribe, Misael [Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición ' Salvador Zubirán' (INCMNSZ), Mexico City (Mexico); León-Rodríguez, Eucario [Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Department Hemato-Oncology, Instituto Nacional de Ciencias Médicas y Nutrición ' Salvador Zubirán' (INCMNSZ), Mexico City (Mexico)

    2005-10-31

    Fibrolamellar Carcinoma (FLC), a subtype of hepatocellular carcinoma (HCC), is a rare primary hepatic malignancy. Several aspects of the clinic features and epidemiology of FLC remain unclear because most of the literature on FLC consists of case reports and small cases series with limited information on factors that affect survival. We did a retrospective analysis of the clinical and histological characteristics of FLC. We also determined the rate of cellular proliferation in biopsies of these tumors. We assessed whether these variables were associated with survival. We found 15 patients with FLC out of 174 patients with HCC (8.6%). Between patients with these neoplasms, we found statistically significant survival, age at onset, level of alpha fetoprotein, and an earlier stage of the disease. The 1, 3 and 5 year survival in patients with FLC was of 66, 40 and 26% respectively. The factors associated with a higher survival in patients with FLC were age more than 23 years, feasibility of surgical resection, free surgical borders, absence of thrombosis or invasion to hepatic vessels and the absence of alterations in liver enzymes. The size of the tumor, gender, cellular proliferation and atypia did not affect the prognosis. We concluded that FLC patients diagnosed before 23 years of age have worse prognosis than those diagnosed after age 23. Other factors associated with worse prognosis in this study are: lack of surgical treatment, presence of positive surgical margins, vascular invasion, and altered hepatic enzymes.

  17. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-05-04

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.

  18. Atg5 Is Essential for the Development and Survival of Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Timothy E. O’Sullivan

    2016-05-01

    Full Text Available Autophagy is an essential cellular survival mechanism that is required for adaptive lymphocyte development; however, its role in innate lymphoid cell (ILC development remains unknown. Furthermore, the conditions that promote lymphocyte autophagy during homeostasis are poorly understood. Here, we demonstrate that Atg5, an essential component of the autophagy machinery, is required for the development of mature natural killer (NK cells and group 1, 2, and 3 innate ILCs. Although inducible ablation of Atg5 was dispensable for the homeostasis of lymphocyte precursors and mature lymphocytes in lymphoreplete mice, we found that autophagy is induced in both adaptive and innate lymphocytes during homeostatic proliferation in lymphopenic hosts to promote their survival by limiting cell-intrinsic apoptosis. Induction of autophagy through metformin treatment following homeostatic proliferation increased lymphocyte numbers through an Atg5-dependent mechanism. These findings highlight the essential role for autophagy in ILC development and lymphocyte survival during lymphopenia.

  19. Expanded cellular clones carrying replication-competent HIV-1 persist, wax, and wane.

    Science.gov (United States)

    Wang, Zheng; Gurule, Evelyn E; Brennan, Timothy P; Gerold, Jeffrey M; Kwon, Kyungyoon J; Hosmane, Nina N; Kumar, Mithra R; Beg, Subul A; Capoferri, Adam A; Ray, Stuart C; Ho, Ya-Chi; Hill, Alison L; Siliciano, Janet D; Siliciano, Robert F

    2018-03-13

    The latent reservoir for HIV-1 in resting CD4 + T cells is a major barrier to cure. Several lines of evidence suggest that the latent reservoir is maintained through cellular proliferation. Analysis of this proliferative process is complicated by the fact that most infected cells carry defective proviruses. Additional complications are that stimuli that drive T cell proliferation can also induce virus production from latently infected cells and productively infected cells have a short in vivo half-life. In this ex vivo study, we show that latently infected cells containing replication-competent HIV-1 can proliferate in response to T cell receptor agonists or cytokines that are known to induce homeostatic proliferation and that this can occur without virus production. Some cells that have proliferated in response to these stimuli can survive for 7 d while retaining the ability to produce virus. This finding supports the hypothesis that both antigen-driven and cytokine-induced proliferation may contribute to the stability of the latent reservoir. Sequencing of replication-competent proviruses isolated from patients at different time points confirmed the presence of expanded clones and demonstrated that while some clones harboring replication-competent virus persist longitudinally on a scale of years, others wax and wane. A similar pattern is observed in longitudinal sampling of residual viremia in patients. The observed patterns are not consistent with a continuous, cell-autonomous, proliferative process related to the HIV-1 integration site. The fact that the latent reservoir can be maintained, in part, by cellular proliferation without viral reactivation poses challenges to cure.

  20. Cellular stress-induced up-regulation of FMRP promotes cell survival by modulating PI3K-Akt phosphorylation cascades

    Directory of Open Access Journals (Sweden)

    Wells David

    2011-02-01

    Full Text Available Abstract Background Fragile X syndrome (FXS, the most commonly inherited mental retardation and single gene cause of autistic spectrum disorder, occurs when the Fmr1 gene is mutated. The product of Fmr1, fragile X linked mental retardation protein (FMRP is widely expressed in HeLa cells, however the roles of FMRP within HeLa cells were not elucidated, yet. Interacting with a diverse range of mRNAs related to cellular survival regulatory signals, understanding the functions of FMRP in cellular context would provide better insights into the role of this interesting protein in FXS. Using HeLa cells treated with etoposide as a model, we tried to determine whether FMRP could play a role in cell survival. Methods Apoptotic cell death was induced by etoposide treatment on Hela cells. After we transiently modulated FMRP expression (silencing or enhancing by using molecular biotechnological methods such as small hairpin RNA virus-induced knock down and overexpression using transfection with FMRP expression vectors, cellular viability was measured using propidium iodide staining, TUNEL staining, and FACS analysis along with the level of activation of PI3K-Akt pathway by Western blot. Expression level of FMRP and apoptotic regulator BcL-xL was analyzed by Western blot, RT-PCR and immunocytochemistry. Results An increased FMRP expression was measured in etoposide-treated HeLa cells, which was induced by PI3K-Akt activation. Without FMRP expression, cellular defence mechanism via PI3K-Akt-Bcl-xL was weakened and resulted in an augmented cell death by etoposide. In addition, FMRP over-expression lead to the activation of PI3K-Akt signalling pathway as well as increased FMRP and BcL-xL expression, which culminates with the increased cell survival in etoposide-treated HeLa cells. Conclusions Taken together, these results suggest that FMRP expression is an essential part of cellular survival mechanisms through the modulation of PI3K, Akt, and Bcl-xL signal

  1. Influence of abiotic factors on bacterial proliferation and anoxic survival of the sea mussel Mytilus edulis L.

    NARCIS (Netherlands)

    Babarro, J.M.F.; De Zwaan, A.

    2002-01-01

    The effect of several abiotic factors (salinity, temperature and pH) on bacterial proliferation and survival time of the sea mussel Mytilus edulis L. were studied under anoxic incubations. In addition, the presence in the incubation media of ammonium and the volatile fatty acids propionate and

  2. Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat.

    Directory of Open Access Journals (Sweden)

    Jorge E Castro

    Full Text Available The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA, a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test. We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals. Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and -independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants' action in hippocampal neurogenesis and in their link to depression-like behaviors.

  3. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  4. Imaging regional variation of cellular proliferation in gliomas using 3'-deoxy-3'-[18F]fluorothymidine positron-emission tomography: an image-guided biopsy study

    International Nuclear Information System (INIS)

    Price, S.J.; Fryer, T.D.; Cleij, M.C.; Dean, A.F.; Joseph, J.; Salvador, R.; Wang, D.D.; Hutchinson, P.J.; Clark, J.C.; Burnet, N.G.; Pickard, J.D.; Aigbirhio, F.I.

    2009-01-01

    Aim: To compare regional variations in uptake of 3'-deoxy-3'- [ 18 F]-fluorothymidine (FLT) images using positron-emission tomography (PET) with measures of cellular proliferation from biopsy specimens obtained by image-guided brain biopsies. Materials and methods: Fourteen patients with a supratentorial glioma that required an image-guided brain biopsy were imaged preoperatively with dynamic PET after the administration of FLT. Maps of FLT irreversible uptake rate (K i ) and standardized uptake value (SUV) were calculated. These maps were co-registered to a gadolinium-enhanced T1-weighted spoiled gradient echo (SPGR) sequence that was used for biopsy guidance, and the mean and maximum K i and SUV determined for each biopsy site. These values were correlated with the MIB-1 labelling index (a tissue marker of proliferation) from these biopsy sites. Results: A total of 57 biopsy sites were studied. Although all measures correlated with MIB-1 labelling index, K i max provided the best correlation (Pearson coefficient, r = 0.68; p i mean (±SD) was significantly higher than in normal tissue (3.3 ± 1.7 x 10 -3 ml plasma /min/ml tissue versus 1.2 ± 0.7 x 10 -3 ml plasma /min/ml tissue ; p = 0.001). High-grade gliomas showed heterogeneous uptake with a mean K i of 7.7 ± 4 x 10 -3 ml plasma /min/ml tissue . A threshold K i mean of 1.8 x 10 -3 differentiates between normal tissue and tumour (sensitivity 84%, specificity 88%); however, the latter threshold underestimated the extent of tumour in half the cases. SUV closely agreed with K i measurements. Conclusion: FLT PET is a useful marker of cellular proliferation that correlates with regional variation in cellular proliferation; however, it is unable to identify the margin of gliomas

  5. Melatonin antagonizes interleukin-18-mediated inhibition on neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Li, Zheng; Li, Xingye; Chan, Matthew T V; Wu, William Ka Kei; Tan, DunXian; Shen, Jianxiong

    2017-09-01

    Neural stem cells (NSCs) are self-renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro-inflammatory cytokine interleukin-18 (IL-18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL-18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL-18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain-derived and glial cell-derived neurotrophic factors (BDNF, GDNF) in IL-18-stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL-18 may attribute to the up-regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ

    1997-01-01

    Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...

  7. The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain

    DEFF Research Database (Denmark)

    Leone, Dino P; Srinivasan, Karpagam; Brakebusch, Cord

    2010-01-01

    family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1...... leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally...... expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead...

  8. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Background: Andrographolide (ADR, the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.

  9. Cellular uptake of 99mTcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    International Nuclear Information System (INIS)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel; Fontaine, Eric; Pasqualini, Roberto

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ( 99m TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether 99m TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of 99m TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of 99m TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG 2 M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of 99m TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of 99m TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG 2 M. The uptake of 99m TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that 99m TcN-NOET might be a marker of cell proliferation. (orig.)

  10. Total synthesis of [2-11C]thymidine from [11C]urea: A tracer of choice for measurement of cellular proliferation using PET

    International Nuclear Information System (INIS)

    Labar, D.; Vander Borght, T.

    1990-01-01

    In preliminary studies of cellular proliferation with [methyl- 11 C]thymidine, the labelled degradative products mask the progressive incorporation of the tracer into DNA. The authors have developed a procedure for the synthesis of [2- 11 C]thymidine to circumvent this difficulty, using a [ 11 C]urea precursor

  11. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Directory of Open Access Journals (Sweden)

    Tomohisa Mori

    Full Text Available The membrane of the endoplasmic reticulum (ER of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  12. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Science.gov (United States)

    Mori, Tomohisa; Hayashi, Teruo; Hayashi, Eri; Su, Tsung-Ping

    2013-01-01

    The membrane of the endoplasmic reticulum (ER) of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R) in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  13. Cellular Proliferation by Multiplex Immunohistochemistry Identifies High-Risk Multiple Myeloma in Newly Diagnosed, Treatment-Naive Patients.

    Science.gov (United States)

    Ely, Scott; Forsberg, Peter; Ouansafi, Ihsane; Rossi, Adriana; Modin, Alvin; Pearse, Roger; Pekle, Karen; Perry, Arthur; Coleman, Morton; Jayabalan, David; Di Liberto, Maurizio; Chen-Kiang, Selina; Niesvizky, Ruben; Mark, Tomer M

    2017-12-01

    Therapeutic options for multiple myeloma (MM) are growing, yet clinical outcomes remain heterogeneous. Cytogenetic analysis and disease staging are mainstays of risk stratification, but data suggest a complex interplay between numerous abnormalities. Myeloma cell proliferation is a metric shown to predict outcomes, but available methods are not feasible in clinical practice. Multiplex immunohistochemistry (mIHC), using multiple immunostains simultaneously, is universally available for clinical use. We tested mIHC as a method to calculate a plasma cell proliferation index (PCPI). By mIHC, marrow trephine core biopsy samples were costained for CD138, a plasma cell-specific marker, and Ki-67. Myeloma cells (CD138 + ) were counted as proliferating if coexpressing Ki-67. Retrospective analysis was performed on 151 newly diagnosed, treatment-naive patients divided into 2 groups on the basis of myeloma cell proliferation: low (PCPI ≤ 5%, n = 87), and high (PCPI > 5%, n = 64). Median overall survival (OS) was not reached versus 78.9 months (P = .0434) for the low versus high PCPI groups. Multivariate analysis showed that only high-risk cytogenetics (hazard ratio [HR] = 2.02; P = .023), International Staging System (ISS) stage > I (HR = 2.30; P = .014), and PCPI > 5% (HR = 1.70; P = .041) had independent effects on OS. Twenty-three (36%) of the 64 patients with low-risk disease (ISS stage 1, without high-risk cytogenetics) were uniquely reidentified as high risk by PCPI. PCPI is a practical method that predicts OS in newly diagnosed myeloma and facilitates broader use of MM cell proliferation for risk stratification. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    Science.gov (United States)

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  15. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    International Nuclear Information System (INIS)

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian; Xu, Dawei; Jia, Jihui

    2011-01-01

    Highlights: ► JMJD2B is required for cell proliferation and in vivo tumorigenesis. ► JMJD2B depletion induces apoptosis and/or cell cycle arrest. ► JMJD2B depletion activates DNA damage response and enhances p53 stabilization. ► JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21 CIP1 proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  16. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Xu, Dawei, E-mail: Dawei.Xu@ki.se [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Department of Medicine, Division of Hematology, Karolinska University Hospital, Solna and Karolinska Institutet, Stockholm (Sweden); Jia, Jihui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer JMJD2B is required for cell proliferation and in vivo tumorigenesis. Black-Right-Pointing-Pointer JMJD2B depletion induces apoptosis and/or cell cycle arrest. Black-Right-Pointing-Pointer JMJD2B depletion activates DNA damage response and enhances p53 stabilization. Black-Right-Pointing-Pointer JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21{sup CIP1} proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  17. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes.

    Science.gov (United States)

    Pu, Meng; Wang, Jianlin; Huang, Qike; Zhao, Ge; Xia, Congcong; Shang, Runze; Zhang, Zhuochao; Bian, Zhenyuan; Yang, Xishegn; Tao, Kaishan

    2017-07-01

    Hepatocellular carcinoma is one of the most prevalent neoplasms and the leading cause of cancer-related mortality worldwide. Mitochondrial ribosomal protein S23 is encoded by a nuclear gene and participates in mitochondrial protein translation. Mitochondrial ribosomal protein S23 overexpression has been found in many types of cancer. In this study, we explored mitochondrial ribosomal protein S23 expression in primary hepatocellular carcinoma tissues compared with matched adjacent non-tumoral liver tissues using mitochondrial ribosomal protein S23 messenger RNA and protein levels collected from public databases and clinical samples. Immunohistochemistry was performed to analyze the relationship between mitochondrial ribosomal protein S23 and various clinicopathological features. The results indicated that mitochondrial ribosomal protein S23 was significantly overexpressed in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 expression was correlated with the tumor size and tumor-metastasis-node stage. Moreover, patients with high mitochondrial ribosomal protein S23 expression levels presented poorer survival rates. Mitochondrial ribosomal protein S23 was an independent prognostic factor for survival, especially at the early stage of hepatocellular carcinoma. In addition, the downregulation of mitochondrial ribosomal protein S23 decreased the proliferation of hepatocellular carcinoma in vitro and in vivo. In conclusion, we verified for the first time that mitochondrial ribosomal protein S23 expression was upregulated in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 levels can predict poor clinical outcomes in hepatocellular carcinoma, and this protein plays a key role in tumor proliferation. Therefore, mitochondrial ribosomal protein S23 may be a potential therapeutic target for hepatocellular carcinoma.

  18. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    International Nuclear Information System (INIS)

    Erdmann, Kati; Ringel, Jessica; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P; Fuessel, Susanne; Hampel, Silke

    2014-01-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  19. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  20. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo.

    Science.gov (United States)

    Xie, Li; Yamamoto, Brenda; Haoudi, Abdelali; Semmes, O John; Green, Patrick L

    2006-03-01

    HTLV-1 cellular transformation and disease induction is dependent on expression of the viral Tax oncoprotein. PDZ is a modular protein interaction domain used in organizing signaling complexes in eukaryotic cells through recognition of a specific binding motif in partner proteins. Tax-1, but not Tax-2, contains a PDZ-binding domain motif (PBM) that promotes the interaction with several cellular PDZ proteins. Herein, we investigate the contribution of the Tax-1 PBM in HTLV-induced proliferation and immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. We generated several HTLV-1 and HTLV-2 Tax viral mutants, including HTLV-1deltaPBM, HTLV-2+C22(+PBM), and HTLV-2+ C18(deltaPBM). All Tax mutants maintained the ability to significantly activate the CREB/ATF or NFkappaB signaling pathways. Microtiter proliferation assays revealed that the Tax-1 PBM significantly increases both HTLV-1- and HTLV-2-induced primary T-cell proliferation. In addition, Tax-1 PBM was responsible for the micronuclei induction activity of Tax-1 relative to that of Tax-2. Viral infection and persistence were severely attenuated in rabbits inoculated with HTLV-1deltaPBM. Our results provide the first direct evidence suggesting that PBM-mediated associations between Tax-1 and cellular proteins play a key role in HTLV-induced cell proliferation and genetic instability in vitro and facilitate viral persistence in vivo.

  1. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  2. Cellular mechanisms in drug - radiation interaction

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    Some cytotoxic drugs, especially those belonging to the group of antibiotics and antimetabolites, sensitize the cells having survived drug treatment to the subsequent irradiation by either increasing the slope of the radiation dose response curves or by decreasing extrapolation number. Bleomycin was found to interact with radiation in L-cells and FM3A cells, but not in HeLa-cells. The data with EMT-6 cells suggest that the interaction depends on drug dose: no interaction occurred after the exposure to bleomycin which killed only 20 - 40% of the cells; yet the exposure to bleomycin which killed 90% of the cells in addition sensitized the surviving cells by the DMF of 1.3. The sensitization found 24 hr after the exposure of HeLa cells to methotrexate was due to cell synchronization. Other cytostatic drugs were found to synchronize proliferating cells even better. Therefore, the fluctuation of radiosensitivity has been commonly observed after the termination of exposure to these drugs. Preirradiation may lead to the change in drug dose response curves. The recruitment of resting cells into cycle occurs hours or days later, in some irradiated normal and malignant tissues. Since many cytostatic drugs are far more active in proliferating cells than in resting cells, the recruitment after irradiation may lead to the sudden increase in drug sensitivity, days after the irradiation. No single, simple theory seems to exist to classify and predict the cellular response to combined modality treatment. (Yamashita, S.)

  3. Modeling and cellular studies

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  4. Hyperthermic survival of Chinese hamster ovary cells as a function of cellular population density at the time of plating

    International Nuclear Information System (INIS)

    Highfield, D.P.; Holahan, E.V.; Holahan, P.K.; Dewey, W.C.

    1984-01-01

    The survival of synchronous G 1 or asynchronous Chinese hamster ovary cells in vitro to heat treatment may depend on the cellular population density at the time of heating and/or as the cells are cultured after heating. The addition of lethally irradiated feeder cells may increase survival at 10 -3 by as much as 10- to 100-fold for a variety of conditions when cells are heated either in suspension culture or as monolayers with or without trypsinization. The protective effect associated with feeder cells appears to be associated with close cell-to-cell proximity. However, when cells are heated without trypsinization about 24 hr or later after plating, when adaptation to monolayer has occurred, the protective effect is reduced; i.e., addition of feeder cells enhances survival much less, for example, about 2- to 3-fold at 10 -2 -10 -3 survival. Also, the survival of a cell to heat is independent of whether the neighboring cell in a microcolony is destined to live or die. Finally, if protective effects associated with cell density do occur and are not controlled, serious artifacts can result as the interaction of heat and radiation is studied; for example, survival curves can be moved upward, and thus changed in shape as the number of cells plated is increased with an increase in the hyperthermic treatment or radiation dose following hyperthermia. Therefore, to understand mechanisms and to obtain information relevant to populations of cells in close proximity, such as those in vivo, these cellular population density effects should be considered and understood

  5. CCN2/CTGF is required for matrix organization and to protect growth plate chondrocytes from cellular stress.

    Science.gov (United States)

    Hall-Glenn, Faith; Aivazi, Armen; Akopyan, Lusi; Ong, Jessica R; Baxter, Ruth R; Benya, Paul D; Goldschmeding, Roel; van Nieuwenhoven, Frans A; Hunziker, Ernst B; Lyons, Karen M

    2013-08-01

    CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

  6. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat

    Directory of Open Access Journals (Sweden)

    Pascoe MC

    2015-01-01

    Full Text Available Michaela C Pascoe,1 David W Howells, 2David P Crewther,1 Leeanne M Carey,2,3 Sheila G Crewther4 1Brain Sciences Institute, Swinburne University, ²Florey Institute of Neuroscience and Mental Health, University of Melbourne, 3Department of Occupational Therapy, School of Allied Health La Trobe University, 4School of Psychological Science, La Trobe University, Melbourne, VIC, Australia Abstract: Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo–associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes. Keywords: apoptosis, polyunsaturated fatty acids

  7. The Tumorigenic Roles of the Cellular REDOX Regulatory Systems

    Directory of Open Access Journals (Sweden)

    Stéphanie Anaís Castaldo

    2016-01-01

    Full Text Available The cellular REDOX regulatory systems play a central role in maintaining REDOX homeostasis that is crucial for cell integrity, survival, and proliferation. To date, a substantial amount of data has demonstrated that cancer cells typically undergo increasing oxidative stress as the tumor develops, upregulating these important antioxidant systems in order to survive, proliferate, and metastasize under these extreme oxidative stress conditions. Since a large number of chemotherapeutic agents currently used in the clinic rely on the induction of ROS overload or change of ROS quality to kill the tumor, the cancer cell REDOX adaptation represents a significant obstacle to conventional chemotherapy. In this review we will first examine the different factors that contribute to the enhanced oxidative stress generally observed within the tumor microenvironment. We will then make a comprehensive assessment of the current literature regarding the main antioxidant proteins and systems that have been shown to be positively associated with tumor progression and chemoresistance. Finally we will make an analysis of commonly used chemotherapeutic drugs that induce ROS. The current knowledge of cancer cell REDOX adaptation raises the issue of developing novel and more effective therapies for these tumors that are usually resistant to conventional ROS inducing chemotherapy.

  8. Effects of recombinant human epidermal growth factor on the proliferation and radiation survival of human fibroblast cell lines in vitro

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Kang, Ki Mun; Na, Jae Boem; Chai, Gyu Young; Lee, Sang Wook

    2006-01-01

    To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. Number of fibroblast was significant more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing

  9. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Science.gov (United States)

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  10. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Directory of Open Access Journals (Sweden)

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  11. Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in HepG2 cells.

    Science.gov (United States)

    Rosenmai, Anna Kjerstine; Ahrens, Lutz; le Godec, Théo; Lundqvist, Johan; Oskarsson, Agneta

    2018-02-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a molecular target for perfluoroalkyl substances (PFASs). Little is known about the cellular uptake of PFASs and how it affects the PPARα activity. We investigated the relationship between PPARα activity and cellular concentration in HepG2 cells of 14 PFASs, including perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates and perfluorooctane sulfonamide (FOSA). Cellular concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry and PPARα activity was determined in transiently transfected cells by reporter gene assay. Cellular uptake of the PFASs was low (0.04-4.1%) with absolute cellular concentrations in the range 4-2500 ng mg -1 protein. Cellular concentration of PFCAs increased with perfluorocarbon chain length up to perfluorododecanoate. PPARα activity of PFCAs increased with chain length up to perfluorooctanoate. The maximum induction of PPARα activity was similar for short-chain (perfluorobutanoate and perfluoropentanoate) and long-chain PFCAs (perfluorododecanoate and perfluorotetradecanoate) (approximately twofold). However, PPARα activities were induced at lower cellular concentrations for the short-chain homologs compared to the long-chain homologs. Perfluorohexanoate, perfluoroheptanoate, perfluorooctanoate, perfluorononanoate (PFNA) and perfluorodecanoate induced PPARα activities >2.5-fold compared to controls. The concentration-response relationships were positive for all the tested compounds, except perfluorooctane sulfonate PFOS and FOSA, and were compound-specific, as demonstrated by differences in the estimated slopes. The relationships were steeper for PFCAs with chain lengths up to and including PFNA than for the other studied PFASs. To our knowledge, this is the first report establishing relationships between PPARα activity and cellular concentration of a broad range of PFASs. Copyright © 2017 John Wiley & Sons, Ltd.

  12. The effects of exposure route on DNA adduct formation and cellular proliferation by 1,2,3-trichloropropane.

    Science.gov (United States)

    La, D K; Schoonhoven, R; Ito, N; Swenberg, J A

    1996-09-01

    1,2,3-Trichloropropane (TCP) induces high incidences of tumors at multiple sites in mice and rats when administered chronically by gavage. The animal tumor data are being used to predict human risk from potential exposure to TCP in drinking water. Risk assessment may be affected by differences in the route of exposure. Gavage administration, which results in high bolus concentrations compared to drinking water exposure, may quantitatively affect toxicokinetics, cytotoxicity, and genotoxicity. We have examined the effects of TCP exposure by the two routes on the formation of DNA adducts and the induction of cellular proliferation. Male B6C3F1 mice were administered [14C]TCP for 1 week by gavage or in drinking water at the low dose (6 mg/kg) used in the NTP carcinogenesis bioassay. Two target organs (forestomach and liver) and two nontarget organs (glandular stomach and kidney) were examined for DNA adduct formation. Adducts were hydrolyzed from DNA, isolated by HPLC, and quantitated by measuring HPLC fractions for radioactivity. In the forestomach, liver, and kidney, gavage administration of TCP resulted in 1.4-to 2.4-fold greater yields of the major DNA adduct, previously identified as S-[1-(hydroxymethyl)-2-(N7-guanyl)ethyl]glutathione. Significant differences in cell proliferation, as determined by incorporation of bromodeoxyuridine into DNA, were also observed for the two routes. Gavage administration of TCP for 2 weeks resulted in up to a threefold greater cell proliferation rate relative to administration in drinking water. Our findings of exposure-related differences in TCP-induced DNA adduct formation and cell proliferation suggest that a risk assessment based on the existing gavage study may overestimate human risk.

  13. Cellular uptake of {sup 99m}TcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel [Universite de Grenoble, Radiopharmaceutiques Biocliniques, La Tronche (France); Fontaine, Eric [Universite de Grenoble, Laboratoire de Bioenergetique Fondamentale et Appliquee, Grenoble (France); Pasqualini, Roberto [Cis Bio International Schering SA, Gif-sur-Yvette (France)

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ({sup 99m}TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether {sup 99m}TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of {sup 99m}TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of {sup 99m}TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG{sub 2}M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of {sup 99m}TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of {sup 99m}TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG{sub 2}M. The uptake of {sup 99m}TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that {sup 99m}TcN-NOET might be a marker of cell proliferation. (orig.)

  14. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts.

    Science.gov (United States)

    Gupta, Manoj K; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F; Windmueller, Rebecca; Wagers, Amy J; Kulkarni, Rohit N

    2015-10-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. ©AlphaMed Press.

  15. Prostaglandin receptor EP3 regulates cell proliferation and migration with impact on survival of endometrial cancer patients.

    Science.gov (United States)

    Zhu, Junyan; Trillsch, Fabian; Mayr, Doris; Kuhn, Christina; Rahmeh, Martina; Hofmann, Simone; Vogel, Marianne; Mahner, Sven; Jeschke, Udo; von Schönfeldt, Viktoria

    2018-01-02

    Prostaglandin E2 (PGE2) receptor 3 (EP3) regulates tumor cell proliferation, migration, and invasion in numerous cancers. The role of EP3 as a prognostic biomarker in endometrial cancer remains unclear. The primary aim of this study was to analyze the prognostic significance of EP3 expression in endometrial cancer. We analyzed the EP3 expression of 140 endometrial carcinoma patients by immunohistochemistry. RL95-2 endometrial cancer cell line was chosen from four endometrial cancer cell lines (RL95-2, Ishikawa, HEC-1-A, and HEC-1-B) according to EP3 expression level. Treated with PGE2 and EP3 antagonist, RL95-2 cells were investigated by MTT, BrdU, and wound healing assay for functional assessment of EP3. EP3 staining differed significantly according to WHO tumor grading in both whole cohort (p = 0.01) and the subgroup of endometrioid carcinoma (p = 0.01). Patients with high EP3 expression in their respective tumors had impaired progression-free survival as well as overall survival in both cohorts above. EP3 expression in the overall cohort was identified as an independent prognostic marker for progression-free survival (HR 1.014, 95%CI 1.003-1.024, p = 0.01) when adjusted for age, stage, grading, and recurrence. Treatment with EP3 antagonists induced upregulation of estrogen receptor β and decreased activity of Ras and led to attenuated proliferation and migration of RL95-2 cells. EP3 seems to play a crucial role in endometrial cancer progression. In the context of limited systemic treatment options for endometrial cancer, this explorative analysis identifies EP3 as a potential target for diagnostic workup and therapy.

  16. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival.

    Directory of Open Access Journals (Sweden)

    De He

    Full Text Available microRNAs (miRNAs play a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. To date, scientists have obtained a substantial amount of knowledge with regard to miRNAs in pancreatic cancer. However, the expression and function of miR-371-5p in pancreatic cancer has not been clearly elucidated. The aim of this study was to investigate the roles of miR-371-5p in pancreatic cancer and its association with the survival of patients with pancreatic cancer.The expression of miR-371-5p was examined in pancreatic duct adenocarcinoma (PDAC and their adjacent normal pancreatic tissues (ANPT or in pancreatic cancer cell lines by qRT-PCR. The association of miR-371-5p expression with overall survival was determined. The proliferation and apoptosis of SW-1990 and Panc-1 cells, transfected with miR-371-5p mimics or inhibitor, were assessed using MTT assay and flow cytometry, respectively. The tumorigenicity was evaluated via mice xenograft experiments. miR-371-5p promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP. Protein expression was analyzed by Western blot.The expression level of miR-371-5p was dramatically upregulated in clinical PDAC tissues compared with ANPT. Patients with high miR-371-5p expression had a significantly shorter survival than those with low miR-371-5p expression. The in vitro and in vivo assays showed that overexpression of miR-371-5p resulted in cell proliferation and increased tumor growth, which was associated with inhibitor of growth 1 (ING1 downregulation. Interestingly, we also found that ING1, in turn, inhibited expression of miR-371-5p in the promoter region.our study demonstrates a novel ING1-miR-371-5p regulatory feedback loop, which may have a critical role in PDAC. Thus miR-371-5p can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.

  17. Intratumoral heterogeneity of 18F-FLT uptake predicts proliferation and survival in patients with newly diagnosed gliomas

    International Nuclear Information System (INIS)

    Mitamura, Katsuya; Yamamoto, Yuka; Kudomi, Nobuyuki; Norikane, Takashi; Miyake, Keisuke; Nishiyama, Yoshihiro; Maeda, Yukito

    2017-01-01

    The nucleoside analog 3'-deoxy-3'- 18 F-fluorothymidine (FLT) has been investigated for evaluating tumor proliferating activity in brain tumors. We evaluated FLT uptake heterogeneity using textural features from the histogram analysis in patients with newly diagnosed gliomas and examined correlation of the results with proliferative activity and patient prognosis, in comparison with the conventional PET parameters. FLT PET was investigated in 37 patients with newly diagnosed gliomas. The conventional parameters [tumor-to-contralateral normal brain tissue (T/N) ratio and metabolic tumor volume (MTV)] and textural parameters (standard deviation, skewness, kurtosis, entropy, and uniformity) were derived from FLT PET images. Linear regression analysis was used to compare PET parameters and the proliferative activity as indicated by the Ki-67 index. The associations between parameters and overall survival (OS) were tested by Cox regression analysis. Median OS was 662 days. For the conventional parameters, linear regression analysis indicated a significant correlation between T/N ratio and Ki-67 index (p = 0.02) and MTV and Ki-67 index (p = 0.02). Among textural parameters, linear regression analysis indicated a significant correlation for kurtosis (p = 0.003), entropy (p < 0.001), and uniformity (p < 0.001) as compared to Ki-67 index, exceeding those of the conventional parameters. The results of univariate analysis suggested that skewness and kurtosis were associated with OS (p = 0.03 and 0.02, respectively). Mean survival for patients with skewness values less than 0.65 was 1462 days, compared with 917 days for those with values greater than 0.65 (p = 0.02). Mean survival for patients with kurtosis values less than 6.16 was 1616 days, compared with 882 days for those with values greater than 6.16 (p = 0.006). Based on the results of this preliminary study in a small patient population, textural features reflecting heterogeneity on FLT PET images seem to be

  18. The growth hormone-releasing hormone (GHRH) antagonist JV-1-36 inhibits proliferation and survival of human ectopic endometriotic stromal cells (ESCs) and the T HESC cell line.

    Science.gov (United States)

    Annunziata, Marta; Grande, Cristina; Scarlatti, Francesca; Deltetto, Francesco; Delpiano, Elena; Camanni, Marco; Ghigo, Ezio; Granata, Riccarda

    2010-08-01

    To determine the effect of the GHRH antagonist JV-1-36 on proliferation and survival of primary ectopic human endometriotic stromal cells (ESCs) and the T HESC cell line. Prospective laboratory study. University hospital. 22 women with endometriosis (aged 34.8+/-5.7 years) undergoing therapeutic laparoscopy. Eutopic (n=10) and ectopic (n=22) endometrial tissues were collected from women who underwent therapeutic laparoscopic surgery for endometriosis (stage III/IV). Expression of GHRH, GHRH receptor (GHRH-R) and GHRH-R splice variant (SV) 1 mRNA was determined by reverse-transcription polymerase chain reaction (RT-PCR). The ESC proliferation was assessed by 5-bromo-2-deoxyuridine incorporation, cell survival by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Trypan blue assay. The T HESC survival was evaluated by MTT, cyclic adenosine monophosphate (cAMP) levels by ELISA, extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation by Western blot, and insulin-like growth factor (IGF)-2 mRNA by real-time PCR. The ESCs and T HESCs, but not normal endometrial tissues, expressed GHRH-R mRNA; SV1 mRNA was determined in normal endometrial tissues, ESCs, and T HESCs; GHRH mRNAwas found in T HESCs; JV-1-36 inhibited ESC proliferation and ESC and T HESC survival. In T HESCs, JV-1-36 reduced cAMP production and ERK1/2 phosphorylation but had no effect on IGF-2 mRNA expression. The GHRH antagonist JV-1-36 inhibits endometriotic cell proliferation and survival, suggesting that GHRH antagonist may represent promising tools for treatment of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Whole lesion histogram analysis of meningiomas derived from ADC values. Correlation with several cellularity parameters, proliferation index KI 67, nucleic content, and membrane permeability.

    Science.gov (United States)

    Surov, Alexey; Hamerla, Gordian; Meyer, Hans Jonas; Winter, Karsten; Schob, Stefan; Fiedler, Eckhard

    2018-09-01

    To analyze several histopathological features and their possible correlations with whole lesion histogram analysis derived from ADC maps in meningioma. The retrospective study involved 36 patients with primary meningiomas. For every tumor, the following histogram analysis parameters of apparent diffusion coefficient (ADC) were calculated: ADC mean , ADC max , ADC min , ADC median , ADC mode , ADC percentiles: P10, P25, P75, P90, as well kurtosis, skewness, and entropy. All measures were performed by two radiologists. Proliferation index KI 67, minimal, maximal and mean cell count, total nucleic area, and expression of water channel aquaporin 4 (AQP4) were estimated. Spearman's correlation coefficient was used to analyze associations between investigated parameters. A perfect interobserver agreement for all ADC values (0.84-0.97) was identified. All ADC values correlated inversely with tumor cellularity with the strongest correlation between P10, P25 and mean cell count (-0.558). KI 67 correlated inversely with all ADC values except ADC min . ADC parameters did not correlate with total nucleic area. All ADC values correlated statistically significant with expression of AQP4. ADC histogram analysis is a valid method with an excellent interobserver agreement. Cellularity parameters and proliferation potential are associated with different ADC values. Membrane permeability may play a greater role for water diffusion than cell count and proliferation activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Cellular Glycolysis and The Differential Survival of Lung Fibroblast and Lung Carcinoma Cell Lines.

    Science.gov (United States)

    Farah, Ibrahim O

    2016-04-01

    Tumor growth and abnormal cell survival were shown to be associated with a number of cellular metabolic abnormalities revealed by impaired oral glucose tolerance, depressed lipoprotein lipase activity leading to hypertriglyceridemia, and changes in amino acid profile as evidenced by increased plasma free tryptophan levels in patients with breast, lung, colon, stomach, and other cancers from various origins. The above findings seem to relate to or indicate a shift to non-oxidative metabolic pathways in cancer. In contrast to normal cells, cancer cells may lose the ability to utilize aerobic respiration due to either defective mitochondria or hypoxia within the tumor microenvironments. Glucose was shown to be the major energy source in cancer cells where it utilizes aerobic /anaerobic glycolysis with the resultant lactic acid formation. The role of energetic modulations and use of glycolytic inhibitors on cancer/normal cell survival is not clearly established in the literature. We hypothesize that natural intermediates of glycolysis and the citric acid cycle will differentially and negatively impact the cancer phenotype in contrast to their no effects on the normal cell phenotype. Therefore, the purpose of this study was to evaluate six potential glycolytic modulators namely, Pyruvic acid, oxalic acid, Zn acetate, sodium citrate, fructose diphosphate (FDP) and sodium bicarbonate at μM concentrations on growing A549 (lung cancer) and MRC-5 (normal; human lung fibroblast) cell lines with the objective of determining their influence on visual impact, cell metabolic activity, cell viability and end-point cell survival. Exposed and non-exposed cells were tested with phase-contrast micro-scanning, survival/death and metabolic activity trends through MTT-assays, as well as death end-point determinations by testing re-growth on complete media and T4 cellometer counts. Results showed that oxalic acid and Zn acetate both influenced the pH of the medium and resulted in

  1. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    International Nuclear Information System (INIS)

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2012-01-01

    Highlights: ► Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. ► DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. ► We produced in vitro and in vivo model to better understand the role of DDR2. ► DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but the functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2’s molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates. Taken together, our data demonstrated that DDR2 might play a local and essential role in the

  2. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji; Naito, Kunihiko [Laboratory of Applied Genetics, Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo 113-8657 (Japan); Kano, Kiyoshi, E-mail: kanokiyo@yamaguchi-u.ac.jp [Laboratory of Developmental Biology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan. (Japan); Biomedical Science Center for Translational Research (BSCTR), The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515 (Japan)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but the functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates

  3. Leptin Regulates Proliferation and Apoptosis in Human Prostate

    Directory of Open Access Journals (Sweden)

    Eduardo Leze

    2012-01-01

    Full Text Available This paper aimed to evaluate the leptin role on the cellular proliferation and the expression of fibroblast growth factor 2, aromatase enzyme, and apoptotic genes in the human prostate tissue. Methods. Fifteen samples of hyperplasic prostate tissue were divided in four symmetric parts maintained in RPMI medium supplemented with 10% fetal bovine serum, 1 ng/mL of gentamicin, and added with 50 ng/mL leptin (L or not (C. After 3 hours of incubation, gene expression was evaluated by real time RT-PCR. Cellular proliferation was evaluated by immunohistochemistry for PCNA. Results. The leptin treatment led to an increase cellular proliferation (C=21.8±0.5; L=64.8±0.9; P<0.0001 and in the expression of Bax (C=0.4±0.1; L=0.9±0.2; P<0.05 while Bcl-2 (C=19.9±5.6; L=5.6±1.8; P<0.05, Bcl-x (C=0.2±0.06; L=0.07±0.02; P<0.05, and aromatase expressions (C=1.9±0.6; L=0.4±0.1; P<0.04 were significantly reduced. Conclusion. Leptin has an important role in maintaining the physiological growth of the prostate since it stimulates both cellular proliferation and apoptosis, with the decrement in the aromatase gene expression.

  4. Hepatitis Bx Antigen Stimulates Expression of a Novel Cellular Gene, URG4, that Promotes Hepatocellular Growth and Survival

    Directory of Open Access Journals (Sweden)

    N. Lale Satiroglu Tufan

    2002-01-01

    Full Text Available Hepatitis B virus encoded X antigen (HBxAg may contribute to the development of hepatocellular carcinoma (HCC by up-or downregulating the expression of cellular genes that promote cell growth and survival. To test this hypothesis, HBxAg-positive and-negative HepG2 cells were constructed, and the patterns of cellular gene expression compared by polymerase chain reaction select cDNA subtraction. The full-length clone of one of these upregulated genes (URG, URG4, encoded a protein of about 104 kDa. URG4 was strongly expressed in hepatitis 13-infected liver and in HCC cells, where it costained with HBxAg, and was weakly expressed in uninfected liver, suggesting URG4 was an effector of HBxAg in vivo. Overexpression of URG4 in HepG2 cells promoted hepatocellular growth and survival in tissue culture and in soft agar, and accelerated tumor development in nude mice. Hence, URG4 may be a natural effector of HBxAg that contributes importantly to multistep hepatocarcinogenesis.

  5. Effects of Redox Modulation on Cell Proliferation, Viability, and Migration in Cultured Rat and Human Tendon Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Yuk Wa Lee

    2017-01-01

    Full Text Available Tendon healing is slow and usually results in inferior fibrotic tissue formation. Recently, application of tendon derived stem cells (TDSCs improved tendon healing in animal studies. In a chicken model, local injection of antioxidants reduced tendon adhesion after tendon injury. An in vitro study demonstrated that supplementation of H2O2 reduced tenogenic marker expression in TDSCs. These findings suggested that the possibility of TDSCs is involved in tendon healing and the cellular activities of TDSCs might be affected by oxidative stress of the local environment. After tendon injury, oxidative stress is increased. Redox modulation might affect healing outcomes via affecting cellular activities in TDSCs. To study the effect of oxidative stress on TDSCs, the cellular activities of rat/human TDSCs were measured under different dosages of vitamin C or H2O2 in this study. Lower dose of vitamin C increased cell proliferation, viability and migration; H2O2 affected colony formation and suppressed cell migration, cell viability, apoptosis, and proliferation. Consistent with previous studies, oxidative stresses (H2O2 affect both recruitment and survival of TDSCs, while the antioxidant vitamin C may exert beneficial effects at low doses. In conclusion, redox modulation affected cellular activities of TDSCs and might be a potential strategy for tendon healing treatment.

  6. Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation.

    Science.gov (United States)

    Zorin, Vadim; Zorina, Alla; Smetanina, Nadezhda; Kopnin, Pavel; Ozerov, Ivan V; Leonov, Sergey; Isaev, Artur; Klokov, Dmitry; Osipov, Andreyan N

    2017-05-16

    Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.

  7. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  8. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    Science.gov (United States)

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  9. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.

    Science.gov (United States)

    Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-12-05

    The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness

    NARCIS (Netherlands)

    Zakrzewska, A.; van Eikenhorst, G.; Burggraaff, J.E.C.; Vis, D.J.; Hoefsloot, H.; Delneri, D.; Oliver, S.G.; Brul, S.; Smits, G.J.

    2011-01-01

    All organisms have evolved to cope with changes in environmental conditions, ensuring the optimal combination of proliferation and survival. In yeast, exposure to a mild stress leads to an increased tolerance for other stresses. This suggests that yeast uses information from the environment to

  11. Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts

    Directory of Open Access Journals (Sweden)

    Oberland Julia

    2010-11-01

    Full Text Available Abstract Background It is well known that focal ischemia increases neurogenesis in the adult dentate gyrus of the hippocampal formation but the cellular mechanisms underlying this proliferative response are only poorly understood. We here investigated whether precursor cells which constitutively proliferate before the ischemic infarct contribute to post-ischemic neurogenesis. To this purpose, transgenic mice expressing green fluorescent protein (GFP under the control of the nestin promoter received repetitive injections of the proliferation marker bromodeoxyuridine (BrdU prior to induction of cortical infarcts. We then immunocytochemically analyzed the fate of these BrdU-positive precursor cell subtypes from day 4 to day 28 after the lesion. Results Quantification of BrdU-expressing precursor cell populations revealed no alteration in number of radial glia-like type 1 cells but a sequential increase of later precursor cell subtypes in lesioned animals (type 2a cells at day 7, type 3 cells/immature neurons at day 14. These alterations result in an enhanced survival of mature neurons 4 weeks postinfarct. Conclusions Focal cortical infarcts recruit dentate precursor cells generated already before the infarct and significantly contribute to an enhanced neurogenesis. Our findings thereby increase our understanding of the complex cellular mechanisms of postlesional neurogenesis.

  12. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  13. Serratia marcescens Is Able to Survive and Proliferate in Autophagic-Like Vacuoles inside Non-Phagocytic Cells

    Science.gov (United States)

    Colombo, María Isabel; García Véscovi, Eleonora

    2011-01-01

    Serratia marcescens is an opportunistic human pathogen that represents a growing problem for public health, particularly in hospitalized or immunocompromised patients. However, little is known about factors and mechanisms that contribute to S. marcescens pathogenesis within its host. In this work, we explore the invasion process of this opportunistic pathogen to epithelial cells. We demonstrate that once internalized, Serratia is able not only to persist but also to multiply inside a large membrane-bound compartment. This structure displays autophagic-like features, acquiring LC3 and Rab7, markers described to be recruited throughout the progression of antibacterial autophagy. The majority of the autophagic-like vacuoles in which Serratia resides and proliferates are non-acidic and have no degradative properties, indicating that the bacteria are capable to either delay or prevent fusion with lysosomal compartments, altering the expected progression of autophagosome maturation. In addition, our results demonstrate that Serratia triggers a non-canonical autophagic process before internalization. These findings reveal that S. marcescens is able to manipulate the autophagic traffic, generating a suitable niche for survival and proliferation inside the host cell. PMID:21901159

  14. Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells

    International Nuclear Information System (INIS)

    Hu, Jiang-Tian; Li, Yan; Yu, Bing; Gao, Guo-Jie; Zhou, Ting; Li, Song

    2015-01-01

    To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression under stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces

  15. Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiang-Tian; Li, Yan; Yu, Bing; Gao, Guo-Jie; Zhou, Ting; Li, Song, E-mail: song_li59@126.com

    2015-08-21

    To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression under stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces.

  16. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  17. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    International Nuclear Information System (INIS)

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR −/− ) and wild-type (AhR +/+ ) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR −/− cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR −/− compared to AhR +/+ cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR +/+ fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR +/+ lung fibroblasts in response to serum, corresponding to a decrease in p27 KIP1 protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27 KIP1 in AhR −/− fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the expression of the microRNA miR-196a independent of

  18. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  19. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Rafael Zúñiga

    2018-03-01

    Full Text Available TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.

  20. Proliferation equivalent of 'accelerated repopulation' in mouse oral mucosa

    International Nuclear Information System (INIS)

    Doerr, W.; Emmendoerfer, H.; Haide, E.; Kummermehr, J.

    1994-01-01

    The proliferation response and changes in cellularity of mouse tongue epithelium were studied after single doses of X-rays and during 3 weeks of daily irradiation. A single dose of 13 Gy resulted in minimum cellularity (70% of control values) on days 3-5 and complete restoration on day 7. Mitotic activity ceased for 1 day followed by normal-to-supranormal values until day 15. A wave of abnormal mitoses was observed with a peak at days 4-7. Daily irradiation with 3 or 4 Gy induced neither major structural nor visible cellular damage. Cellularity decreased to ∼ 60% during week 1 and subsequently remained at 60-70%. The proliferation activity was reduced to ∼ 8% by day 2. Mitotic activity during weeks 2 and 3 was subnormal-to-normal, with dose-dependent increase to normal counts during the first weekend and a distinct overshoot over the second weekend respectively. A proliferation model is presented to explain the present findings and previous functional measurements of changes in tissue tolerance. Its major features are accelerated symmetrical stem cell divisions and abortive divisions of sterilized cells. (author)

  1. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity

    International Nuclear Information System (INIS)

    Lee, Cheol-Jung; Lee, Mee-Hyun; Lee, Ji-Young; Song, Ji Hong; Lee, Hye Suk; Cho, Yong-Yeon

    2013-01-01

    Highlights: •We demonstrated a novel function of RSK2 in stress tolerance. •RSK2 deficiency enhanced apoptosis by calcium stress. •RSK2-mediated GSK3β phosphorylation at serine 9 increased calcium-induced stress tolerance. •Calcium stress-induced apoptosis inhibited by adding back of RSK2 into RSK2 −/− MEFs. -- Abstract: Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2 −/− MEFs compared with RSK2 +/+ MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2 +/+ MEFs. In contrast, GSK3β −/− MEFs induced the cell proliferation compared with GSK3β +/+ MEFs. Importantly, RSK2 −/− MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2 +/+ MEFs. The sub-G1 induction in RSK2 −/− MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2 +/+ MEFs. Notably, return back of RSK2 into RSK2 −/− MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2 −/− /mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development

  2. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  3. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    Science.gov (United States)

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  4. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells.

    Science.gov (United States)

    Miro, Caterina; Ambrosio, Raffaele; De Stefano, Maria Angela; Di Girolamo, Daniela; Di Cicco, Emery; Cicatiello, Annunziata Gaetana; Mancino, Giuseppina; Porcelli, Tommaso; Raia, Maddalena; Del Vecchio, Luigi; Salvatore, Domenico; Dentice, Monica

    2017-04-01

    Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated

  5. A high ratio of apoptosis to proliferation correlates with improved survival after radiotherapy for cervical adenocarcinoma

    International Nuclear Information System (INIS)

    Sheridan, Mary T.; Cooper, Rachel A.; West, Catharine M.L.

    1999-01-01

    Purpose: A retrospective study was made of the role of apoptosis in determining radiotherapy outcome in 39 adenocarcinoma of the cervix. A comparison was also made of the detection of apoptosis by morphology and the TdT dUtp nick end-labeling (TUNEL) assay. Methods and Materials: The level of apoptosis was assessed in paraffin-embedded sections by cell morphology, the TUNEL assay, and a combination of the two. A total of 2,000 cells were counted per section, to obtain apoptotic (AI) and mitotic (MI) indices. Results: Patients with a high AI had a higher survival rate than those with a low AI, however, the difference was not significant. Using a ratio of apoptosis to proliferation indices, patients with an AI:MI > median had significantly better survival than those with AI:MI < median. This was true where the AI was quantified by morphology alone (p = 0.030) or in combination with the TUNEL assay (p = 0.008). Where the AI was quantified by a combination of morphology and TUNEL, the 5-year survival rates for women with AI:MI greater or less than the median were 81% and 25%, respectively. Conclusion: A high ratio of AI:MI in adenocarcinoma of the cervix indicates a good prognosis. A combination of the TUNEL assay and morphology provided the best discrimination between outcome groups

  6. Cellular observations enabled by microculture: paracrine signaling and population demographics†

    Science.gov (United States)

    Domenech, Maribella; Yu, Hongmei; Warrick, Jay; Badders, Nisha M.; Meyvantsson, Ivar; Alexander, Caroline M.; Beebe, David J.

    2009-01-01

    The cellular microenvironment plays a critical role in shaping and directing the process of communication between the cells. Soluble signals are responsible for many cellular behaviors such as cell survival, proliferation and differentiation. Despite the importance of soluble signals, canonical methods are not well suited to the study of soluble factor interactions between multiple cell types. Macro-scale technology often puts cells into a convective environment that can wash away and dilute soluble signals from their targets, minimizing local concentrations of important factors. In addition, current methods such as transwells, require large numbers of cells and are limited to studying just two cell types. Here, we present data supporting the use of microchannels to study soluble factor signaling providing improved sensitivity as well as the ability to move beyond existing co-culture and conditioned medium paradigms. In addition, we present data suggesting that microculture can be used to unmask effects of population demographics. In this example the data support the hypothesis that a growth promoting subpopulation of cells exists in the mouse mammary gland. PMID:20011455

  7. Cellular observations enabled by microculture: paracrine signaling and population demographics.

    Science.gov (United States)

    Domenech, Maribella; Yu, Hongmei; Warrick, Jay; Badders, Nisha M; Meyvantsson, Ivar; Alexander, Caroline M; Beebe, David J

    2009-03-01

    The cellular microenvironment plays a critical role in shaping and directing the process of communication between the cells. Soluble signals are responsible for many cellular behaviors such as cell survival, proliferation and differentiation. Despite the importance of soluble signals, canonical methods are not well suited to the study of soluble factor interactions between multiple cell types. Macro-scale technology often puts cells into a convective environment that can wash away and dilute soluble signals from their targets, minimizing local concentrations of important factors. In addition, current methods such as transwells, require large numbers of cells and are limited to studying just two cell types. Here, we present data supporting the use of microchannels to study soluble factor signaling providing improved sensitivity as well as the ability to move beyond existing co-culture and conditioned medium paradigms. In addition, we present data suggesting that microculture can be used to unmask effects of population demographics. In this example the data support the hypothesis that a growth promoting subpopulation of cells exists in the mouse mammary gland.

  8. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors

    International Nuclear Information System (INIS)

    Zhao Lanjuan; Wang Lu; Ren Hao; Cao Jie; Li Li; Ke Jinshan; Qi Zhongtian

    2005-01-01

    Dysregulation of mitogen-activated protein kinase (MAPK) signaling pathways by various viruses has been shown to be responsible for viral pathogenicity. The molecular mechanism by which hepatitis C virus (HCV) infection caused human liver diseases has been investigated on the basis of abnormal intracellular signal events. Current data are very limited involved in transmembrane signal transduction triggered by HCV E2 protein. Here we explored regulation of the MAPK/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway by E2 expressed in Chinese hamster oval cells. In human hepatoma Huh-7 cells, E2 specifically activated the MAPK/ERK pathway including downstream transcription factor ATF-2 and greatly promoted cell proliferation. CD81 and low density lipoprotein receptor (LDLR) on the cell surface mediated binding of E2 to Huh-7 cells. The MAPK/ERK activation and cell proliferation driven by E2 were suppressed by blockage of CD81 as well as LDLR. Furthermore, pretreatment with an upstream kinase MEK1/2 inhibitor U0126 also impaired the MAPK/ERK activation and cell proliferation induced by E2. Our results suggest that the MAPK/ERK signaling pathway triggered by HCV E2 via its receptors maintains survival and growth of target cells

  9. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maravillas Mellado-López

    2017-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  10. XIAP antagonist embelin inhibited proliferation of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Cody J Wehrkamp

    Full Text Available Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL. However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis.

  11. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer.

    Science.gov (United States)

    Cascione, Luciano; Gasparini, Pierluigi; Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways.Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.

  12. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Di [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Yuan, Yunsheng [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai (China); Chen, Li [Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou (China); Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Liu, Xin; Belani, Chandra [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Cheng, Hua, E-mail: hcheng@ihv.umaryland.edu [Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. - Highlights: • Niclosamide is a promising therapeutic candidate for adult T cell leukemia. • Niclosamide employs a novel mechanism through proteasomal degradation of Tax. • Niclosamide downregulates certain cellular pro-survival molecules.

  13. microRNA-10b Is Overexpressed and Critical for Cell Survival and Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Rekha Pal

    Full Text Available This study demonstrates the effects of miRNA-10b on medulloblastoma proliferation through transcriptional induction of the anti-apoptotic protein BCL2. Using a cancer specific miRNA-array, high expression of miRNA-10b in medulloblastoma cell lines compared to a normal cerebellar control was shown, and this was confirmed with real time PCR (RT-PCR. Two medulloblastoma cell lines (DAOY and UW228 were transiently transfected with control miRNA, miRNA-10b inhibitor or miRNA-10b mimic and subjected to RT-PCR, MTT, apoptosis, clonogenic assay and western blot analysis. Transfection of miRNA-10b inhibitor induced a significant down-regulation of miRNA-10b expression, inhibited proliferation, and induced apoptosis, while miRNA-10b mimic exerted an opposite effect. Inhibition of miRNA-10b abrogated the colony-forming capability of medulloblastoma cells, and markedly down-regulated the expression of BCL2. Down-regulation of BCL2 by antisense oligonucleotides or siRNA also significantly down-regulated miRNA-10b, suggesting that BCL2 is a major mediator of the effects of miRNA-10b. ABT-737 and ABT-199, potent inhibitors of BCL2, downregulated the expression of miRNA-10b and increased apoptosis. Analysis of miRNA-10b levels in 13 primary medulloblastoma samples revealed that the 2 patients with the highest levels of miRNA-10b had multiple recurrences (4.5 and died within 8 years of diagnosis, compared with the 11 patients with low levels of miRNA-10b who had a mean of 1.2 recurrences and nearly 40% long-term survival. The data presented here indicate that miRNA-10b may act as an oncomir in medulloblastoma tumorigenesis, and reveal a previously unreported mechanism with Bcl-2 as a mediator of the effects of miRNA-10b upon medulloblastoma cell survival.

  14. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse

    NARCIS (Netherlands)

    Demaria, Marco; O'Leary, Monique N.; Chang, Jianhui; Shao, Lijian; Liu, Su; Alimirah, Fatouma; Koenig, Kristin; Le, Catherine; Mitin, Natalia; Deal, Allison M.; Alston, Shani; Academia, Emmeline C.; Kilmarx, Sumner; Valdovinos, Alexis; Wang, Boshi; de Bruin, Alain; Kennedy, Brian K.; Melov, Simon; Zhou, Daohong; Sharpless, Norman E.; Muss, Hyman; Campisi, Judith

    Cellular senescence suppresses cancer by irreversibly arresting cell proliferation. Senescent cells acquire a proinfl ammatory senescence-associated secretory phenotype. Many genotoxic chemotherapies target proliferating cells nonspecifi cally, often with adverse reactions. In accord with prior

  15. ΔNp63α is an oncogene that induces Lsh expression and promotes stem-like proliferation

    Science.gov (United States)

    Keyes, William M.; Pecoraro, Matteo; Aranda, Victoria; Vernersson-Lindahl, Emma; Li, Wangzhi; Vogel, Hannes; Guo, Xuecui; Garcia, Elvin L.; Michurina, Tatyana V.; Enikolopov, Grigori; Muthuswamy, Senthil K.; Mills, Alea A.

    2014-01-01

    SUMMARY The p53 homolog p63 is essential for development, yet its role in cancer is not clear. We discovered that p63 deficiency evokes the tumor suppressive mechanism of cellular senescence, causing a striking absence of stratified epithelia such as the skin. Here we identify the predominant p63 isoform, ΔNp63α, as a protein that bypasses oncogene induced senescence to drive tumorigenesis in vivo. Interestingly, bypass of senescence promotes stem-like proliferation and maintains survival of the keratin 15-positive stem cell population. Furthermore, we identify the chromatin remodeling protein Lsh as a new target of ΔNp63α that is an essential mediator of senescence bypass. These findings indicate that ΔNp63α is an oncogene that cooperates with Ras to promote tumor-initiating stem-like proliferation, and suggest that Lsh-mediated chromatin remodeling events are critical to this process. PMID:21295273

  16. Proliferation kinetics and survival of mammal cells after treatment with radiation of various ionization densities and with hyperthermia

    International Nuclear Information System (INIS)

    Schlag, H.

    1977-01-01

    Survival and proliferation kinetics of chinese hamster cells after Co-γ-, π - -meson irradiation, hyperthermia (40 - 43 0 C), and a combination of Co-γ irradiation and hyperthermia were studied in this paper. After γ-irradiation, exponential-phase and stationary-phase cells showed equal survival rates for equal doses. Cytofluorometric analysis showed that there was a dose-dependent delay in the synthesis phase with subsequent cell blocking in the G 2 +M phase. After irradiation with π - mesons, there is a dose-dependent accumulation in the G 2 +M phase, with a RBE of 2.2. The different response of S-phase cells to radiations of different LET may be explained with the inactivation kinetics typical of each type of radiation. The effectiveness of hyperthermal treatment depends on the stage of growth of the cells. A temperature of 40 0 C does not induce cell killing, not even after prolonged exposure. After 7 hours' exposure to 41 0 C, on the other hand, 80% of the cells are killed after blocking in G 2 +M. Exposure to 42 0 C for 1-2 h induces a synchronisation effect which is induced by a block in S and G 2 +M. After exposure to 42 0 C for 4 h, however, the cells blocked in S are killed in this phase. Combination of Co-γ radiation leads to increased cells killing and also to sensitization, especially of cells in the exponential growth stage. The proliferation kinetics effects of this combined treatment are the same as after pion irradiation. (orig.) [de

  17. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  18. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young; Park, Joo-In; Yun, Jeanho; Bae, Yoe-Sik

    2006-01-01

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P 2 , S1P 3 , S1P 4 , but not S1P 1 . When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P 1 - and S1P 4 -selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G i protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process

  19. Predicting cellular growth from gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Edoardo M Airoldi

    2009-01-01

    Full Text Available Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  20. Cellular senescence and organismal aging.

    Science.gov (United States)

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  1. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  2. An extinction-survival-type phase transition in the probabilistic cellular automaton p182-q200

    International Nuclear Information System (INIS)

    Mendonca, J R G; Oliveira, M J de

    2011-01-01

    We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram's enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.

  3. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    International Nuclear Information System (INIS)

    Latonen, Leena; Jaervinen, Paeivi M.; Laiho, Marikki

    2008-01-01

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  4. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  5. Increased cellular immune responses and CD4+ T-cell proliferation correlate with reduced plasma viral load in SIV challenged recombinant simian varicella virus - simian immunodeficiency virus (rSVV-SIV vaccinated rhesus macaques

    Directory of Open Access Journals (Sweden)

    Pahar Bapi

    2012-08-01

    Full Text Available Abstract Background An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV vector – simian immunodeficiency virus (SIV envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. Findings The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. Conclusions Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.

  6. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    Science.gov (United States)

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  7. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  8. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling.

    Science.gov (United States)

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong Hun; Kim, Young Soo; Shin, Jong Wook; Kim, Tae Yoon; Ye, Sang Kyu

    2011-05-31

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.

  9. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells.

    Science.gov (United States)

    Sheng, Chenyi; Qiu, Jian; Wang, Yingying; He, Zhixian; Wang, Hua; Wang, Qingqing; Huang, Yeqing; Zhu, Lianxin; Shi, Feng; Chen, Yingying; Xiong, Shiyao; Xu, Zhen; Ni, Qichao

    2018-05-03

    Breast cancer is the second leading cause of cancer‑associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin‑fixed paraffin‑embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki‑67 expression (a marker of cell proliferation). Kaplan‑Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA‑MB‑231 cancer cells treated with Ran‑si‑RNA (si‑Ran), which knocked down expression of Ran, exhibited decreased motility in trans‑well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA‑MB‑231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re‑feeding (CCK‑8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.

  10. Cellular metabolism

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Walters, R.A.

    1977-01-01

    Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals

  11. p53/Surviving Ratio as a Parameter for Chemotherapy Induction Response in Children with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Rinaldi Lenggana

    2016-11-01

    Full Text Available Acute myeloid leukemia (AML is a malignancy that is often found in children. Many studies into the failure of apoptosis function, or programmed cell death, is one of the most important regulatory mechanisms of cellular hemostasis which is closely linked to the development of cancer, are important. Also, regulation of the apoptotic (p53 and anti-apoptotic (surviving proteins influence treatment outcome. One role of p53 is to monitor cellular stress necessary to induce apoptosis. Surviving (BIRC5 is a group of proteins in the apoptosis inhibitor which works by inhibiting caspase-3. The role of surviving is considered very important in oncogenesis proliferation and cell growth regulation. Chemotherapy in childhood AML can inhibit cell growth and induce slowing as well as stopping the cell cycle. Thus, the aim of this study was to compare p53 and surviving before and after receiving induction chemotherapy in children with AML and also to determine the p53/surviving ratio. Peripheral blood mononuclear cells were collected from AML children before treatment and three months after starting their induction therapy. p53 and surviving were measured by flowcytometry using monoclonal antibodies. Data were analyzed by t-test for comparison between groups and Spearman’s test to find out the correlation between variables with a significant value of p < 0.05. A total of 8 children were evaluated. The intensity of p53 expression was not significantly increased after induction phase chemotherapy (p = 0.224, but surviving expression and the ratio of p53/surviving were significantly increased in the treatment group compared with the levels prior to chemotherapy (p = 0.002, p = 0.034, and there was a strong negative correlation between p53 and surviving after chemotherapy (r = −0.63, p = 0.049.

  12. An extinction-survival-type phase transition in the probabilistic cellular automaton p182-q200

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J R G; Oliveira, M J de, E-mail: jricardo@usp.br, E-mail: oliveira@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, Travessa R 187, Cidade Universitaria 05508-090, Sao Paulo (Brazil)

    2011-04-15

    We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram's enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.

  13. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis.

    Science.gov (United States)

    Carroll, Bernadette; Korolchuk, Viktor I; Sarkar, Sovan

    2015-10-01

    Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.

  14. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation

    International Nuclear Information System (INIS)

    Khalil, A.A.; Jameson, M.J.; Broaddus, W.C.; Lin, P.S.; Chung, T.D.

    2013-01-01

    It has been suggested that continued tobacco use during radiation therapy contributes to maintenance of neoplastic growth despite treatment with radiation. Nicotine is a cigarette component that is an established risk factor for many diseases, neoplastic and otherwise. The hypothesis of this work is that nicotine promotes the proliferation, migration, and radioresistance of human malignant glioma cells. The effect of nicotine on cellular proliferation, migration, signaling, and radiation sensitivity were evaluated for malignant glioma U87 and GBM12 cells by use of the AlamarBlue, scratch healing, and clonogenic survival assays. Signal transduction was assessed by immunoblotting for activated EGFR, extracellular regulated kinase (ERK), and AKT. At concentrations comparable with those found in chronic smokers, nicotine induced malignant glioma cell migration, growth, colony formation, and radioresistance. Nicotine increased phosphorylation of EGFR tyr992 , AKT ser473 , and ERK. These molecular effects were reduced by pharmacological inhibitors of EGFR, PI3K, and MEK. It was therefore concluded that nicotine stimulates the malignant behavior of glioma cells in vitro by activation of the EGFR and downstream AKT and ERK pathways. (author)

  15. Survival and Adaptation of the Thermophilic Species Geobacillus thermantarcticus in Simulated Spatial Conditions

    Science.gov (United States)

    Di Donato, Paola; Romano, Ida; Mastascusa, Vincenza; Poli, Annarita; Orlando, Pierangelo; Pugliese, Mariagabriella; Nicolaus, Barbara

    2018-03-01

    Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA's integrity.

  16. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Wolff Natascha A

    2010-05-01

    Full Text Available Abstract Background The class 1 carcinogen cadmium (Cd2+ disrupts the E-cadherin/β-catenin complex of epithelial adherens junctions (AJs and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/β-catenin signaling are known to contribute to carcinogenesis. Results We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC. Cd2+ (25 μM, 3-9 h caused nuclear translocation of β-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of β-catenin with AJ components (E-cadherin, α-catenin and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1 were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability. Conclusions Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.

  17. Time lapse microscopy observation of cellular structural changes and image analysis of drug treated cancer cells to characterize the cellular heterogeneity.

    Science.gov (United States)

    Vaiyapuri, Periasamy S; Ali, Alshatwi A; Mohammad, Akbarsha A; Kandhavelu, Jeyalakshmi; Kandhavelu, Meenakshisundaram

    2015-01-01

    The effect of Calotropis gigantea latex (CGLX) on human mammary carcinoma cells is not well established. We present the results of this drug activity at total population and single cell level. CGLX inhibited the growth of MCF7 cancer cells at lower IC50 concentration (17 µL/mL). Microscopy of IC50 drug treated cells at 24 hr confirming the appearance of morphological characteristics of apoptotic and necrotic cells, associated with 70% of DNA damage. FACS analysis confirmed that, 10 and 20% of the disruption of cellular mitochondrial nature by at 24 and 48 h, respectively. Microscopic image analysis of total population level proved that MMP changes were statistically significant with P values. The cell to cell variation was confirmed by functional heterogeneity analysis which proves that CGLX was able to induce the apoptosis without the contribution of mitochondria. We conclude that CGLX inhibits cell proliferation, survival, and heterogeneity of pathways in human mammary carcinoma cells. © 2014 Wiley Periodicals, Inc.

  18. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  19. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    Science.gov (United States)

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  20. LXR signaling couples sterol metabolism to proliferation in the acquired immune response

    NARCIS (Netherlands)

    Bensinger, Steven J.; Bradley, Michelle N.; Joseph, Sean B.; Zelcer, Noam; Janssen, Edith M.; Hausner, Mary Ann; Shih, Roger; Parks, John S.; Edwards, Peter A.; Jamieson, Beth D.; Tontonoz, Peter

    2008-01-01

    Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and

  1. Profile of cell proliferation and apoptosis activated by the intrinsic and extrinsic pathways in the prostate of aging rats.

    Science.gov (United States)

    Gonzaga, Amanda C R; Campolina-Silva, Gabriel H; Werneck-Gomes, Hipácia; Moura-Cordeiro, Júnia D; Santos, Letícia C; Mahecha, Germán A B; Morais-Santos, Mônica; Oliveira, Cleida A

    2017-06-01

    Estrogens acting through the receptors ERα and ERβ participate in prostate normal growth and cancer. ERβ is highly expressed in the prostate epithelium, playing pro-apoptotic, anti-proliferative, and pro-differentiation roles. Apoptosis is activated by the intrinsic pathway after castration and by the extrinsic pathway after ERβ agonist treatment. This differential activation of apoptotic pathways is important since a major problem in the treatment of prostate cancer is the recurrence of tumors after androgen withdrawal. However, a comprehensive study about the pattern of apoptosis in the aging prostate is lacking, a knowledge gap that we aimed to address herein. Cellular age-related proliferative and apoptotic profiles of prostate tissue obtained from aging Wistar rats were evaluated. Cell death (caspase-3, -8, -9, TNFα) was assessed by immunohistochemistry, immunofluorescence, and TUNEL. Cell proliferation (MCM7) and cell survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) were determined by immunohistochemistry. As the rats aged, the number of proliferating cells gradually reduced in the normal epithelium of all prostate lobes, while increasing in focal areas of intraepithelial proliferation. Interestingly, in areas of intraepithelial proliferation, we observed a reduction in the number of cells positive for caspase-3, -8, and -9. Regardless the animal's age, few prostate epithelial cells were positive for caspase-3, caspase-9, and TUNEL. In contrast, a progressive increase was seen in the positivity for caspase-8, especially in the atrophic epithelium of ventral prostate, which coincided with a reduction in TNFα immunoreaction. However, morphology of most caspase-8 positive cells suggests that they were not apoptotic. We also found reduced ERβ expression in the same areas. Possibly, low levels of the pro-apoptotic inductors TNFα and ERβ direct caspase-8 activity to an alternative pro-survival role in the atrophic epithelium. This hypothesis is

  2. In vitro studies of ante-mortem proliferation kinetics

    International Nuclear Information System (INIS)

    McBride, W.H.; Withers, H.R.

    1986-01-01

    Using K562 human erythroblastoid cells, it was concluded that dose fractionation has no discrepant effect on the ante-mortem proliferation kinetics of doomed cells as opposed to clonogenic cell survival and that effects on ante-mortem proliferation kinetics cannot be solely responsible for the differences in fractionation response between early and late responding tissues. (UK)

  3. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    International Nuclear Information System (INIS)

    Poulsen, Raewyn C.; Carr, Andrew J.; Hulley, Philippa A.

    2015-01-01

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  4. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Raewyn C., E-mail: raewyn.poulsen@gmail.com; Carr, Andrew J.; Hulley, Philippa A.

    2015-06-19

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  5. Uncertainties in Nuclear Proliferation Modeling

    International Nuclear Information System (INIS)

    Kim, Chul Min; Yim, Man-Sung; Park, Hyeon Seok

    2015-01-01

    There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. Such systematic approaches have shown the possibility to provide warning for the international community to prevent nuclear proliferation activities. However, there are still large debates for the robustness of the actual effect of determinants and projection results. Some studies have shown that several factors can cause uncertainties in previous quantitative nuclear proliferation modeling works. This paper analyzes the uncertainties in the past approaches and suggests future works in the view of proliferation history, analysis methods, and variable selection. The research community still lacks the knowledge for the source of uncertainty in current models. Fundamental problems in modeling will remain even other advanced modeling method is developed. Before starting to develop fancy model based on the time dependent proliferation determinants' hypothesis, using graph theory, etc., it is important to analyze the uncertainty of current model to solve the fundamental problems of nuclear proliferation modeling. The uncertainty from different proliferation history coding is small. Serious problems are from limited analysis methods and correlation among the variables. Problems in regression analysis and survival analysis cause huge uncertainties when using the same dataset, which decreases the robustness of the result. Inaccurate variables for nuclear proliferation also increase the uncertainty. To overcome these problems, further quantitative research should focus on analyzing the knowledge suggested on the qualitative nuclear proliferation studies

  6. Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival

    International Nuclear Information System (INIS)

    Mi Jing; Zhang Xiuwu; Giangrande, Paloma H.; McNamara, James O.; Nimjee, Shahid M.; Sarraf-Yazdi, Shiva; Sullenger, Bruce A.; Clary, Bryan M.

    2005-01-01

    αvβ3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. αvβ3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of αvβ3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-αvβ3 that binds recombinant αvβ3 integrin, for its ability to bind endogenous αvβ3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-αvβ3 binds αvβ3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-αvβ3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-αvβ3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-αvβ3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation

  7. Effects of nicotine on cellular proliferation, cell cycle phase distribution, and macromolecular synthesis in human promyelocytic HL-60 leukaemia cells

    International Nuclear Information System (INIS)

    Konno, S.; Wu, J.M.; Chiao, J.W.

    1986-01-01

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in the human promyelocytic HL-60 leukemia cells, with 4 mM nicotine resulting in a 50% inhibition of cellular proliferation after 48-50h. Accompanying the anticellular effect of nicotine is a significant change in the cell cycle distribution of HL-60 cells. For example, treatment with 4 mM nicotine for 20h causes an increase in the proportion of G1-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes partial cell arrest in the G-1 phase which may in part account for its effects on cell growth. To determine whether nicotine changes the cellular uptake/transport to macromolecular precursors, HL-60 cells were treated with 216 mM nicotine for 30h, at the end of which time cells were labelled with ( 3 H)thymidine, ( 3 H)uridine, ( 14 C)lysine and( 35 S)methionine, the trichloroacetic acid soluble and insoluble radioactivities from each of the labelling conditions were determined. These studies show that nicotine mainly affects the ''de novo synthesis'' of proteins. (author)

  8. In Vivo Bystander Effect: Cranial X-Irradiation Leads to Elevated DNA Damage, Altered Cellular Proliferation and Apoptosis, and Increased p53 Levels in Shielded Spleen

    International Nuclear Information System (INIS)

    Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga

    2008-01-01

    Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis

  9. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions

    International Nuclear Information System (INIS)

    Jain, Suneil; Coulter, Jonathan A.; Butterworth, Karl T.; Hounsell, Alan R.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; Hirst, David G.; O’Sullivan, Joe M.

    2014-01-01

    Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored. Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions. Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred. Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy

  10. Analysis of FOXO transcriptional networks

    NARCIS (Netherlands)

    van der Vos, K.E.

    2010-01-01

    The PI3K-PKB-FOXO signalling module plays a pivotal role in a wide variety of cellular processes, including proliferation, survival, differentiation and metabolism. Inappropriate activation of this network is frequently observed in human cancer and causes uncontrolled proliferation and survival. In

  11. P44/WDR77 restricts the sensitivity of proliferating cells to TGFβ signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Pengfei [Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei 430022 (China); Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Gao, Shen [Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Gu, Zhongping [Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038 (China); Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Huang, Tao [Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei 430022 (China); Wang, Zhengxin, E-mail: zhenwang@mdanderson.org [Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-07-18

    Highlights: • P44/WDR77 causes proliferating cells to become non-responsive to TGFβ signaling. • P44/WDR77 down-regulates TβRII and TβR2 expression. • P44/WDR77 down-regulated TGFβ signaling correlates with lung tumorigenesis. - Abstract: We previously reported that a novel WD-40 domain-containing protein, p44/WDR77, drives quiescent epithelial cells to re-enter the cell cycle and plays an essential role for growth of lung and prostate cancer cells. Transforming growth factor beta (TGFβ) signaling is important in the maintenance of non-transformed cells in the quiescent or slowly cycling stage. However, both non-transformed proliferating cells and human cancer cells are non-responsive to endogenous TGFβ signaling. The mechanism by which proliferating cells become refractory to TGFβ inhibition is not well established. Here, we found that silencing p44/WDR77 increased cellular sensitivity to TGFβ signaling and that this was inversely correlated with decreased cell proliferation. Smad2 or 3 phosphorylation, TGFβ-mediated transcription, and TGFβ2 and TGFβ receptor type II (TβRII) expression were dramatically induced by silencing of p44/WDR77. These data support the hypothesis that p44/WDR77 down-regulates the expression of the TGFβ ligand and its receptor, thereby leading to a cellular non-response to TGFβ signaling. Finally, we found that p44/WDR77 expression was correlated with cell proliferation and decreased TGFβ signaling during lung tumorigenesis. Together, these results suggest that p44/WDR77 expression causes the non-sensitivity of proliferating cells to TGFβ signaling, thereby contributing to cellular proliferation during lung tumorigenesis.

  12. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  13. Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Mandayam O. Nandan

    2015-01-01

    Full Text Available Krüppel-like factor 5 (KLF5 is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5fl/fl were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112 days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC cells that express Lgr5. By 11 days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14 days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112 days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells.

  14. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E. [Cambridge Centre for Medical Materials, Materials Science and Metallurgy Department, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Wardale, R. J., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk [Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 2QQ (United Kingdom)

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  15. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  16. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival

    International Nuclear Information System (INIS)

    Micale, Lucia; Fusco, Carmela; Fontana, Andrea; Barbano, Raffaela; Augello, Bartolomeo; De Nittis, Pasquelena; Copetti, Massimiliano; Pellico, Maria Teresa; Mandriani, Barbara; Cocciadiferro, Dario; Parrella, Paola; Fazio, Vito Michele; Dimitri, Lucia Maria Cecilia; D’Angelo, Vincenzo; Novielli, Chiara; Larizza, Lidia; Daga, Antonio; Merla, Giuseppe

    2015-01-01

    Human gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma. TRIM8 transcriptional level was profiled in our own glioma cases collection by qPCR and confirmed in the independent TCGA glioma cohort. The association between TRIM8 expression and Overall Survival and Progression-free Survival in TCGA cohort was determined by using uni-multivariable Cox regression analysis. The effect of TRIM8 on patient glioma cell proliferation was evaluated by performing MTT and clonogenic assays. The mechanisms causing the reduction of TRIM8 expression were explored by using qPCR and in vitro assays. We showed that TRIM8 expression correlates with unfavorable clinical outcome in glioma patients. We found that a restored TRIM8 expression induced a significant reduction of clonogenic potential in U87MG and patient’s glioblastoma cells. Finally we provide experimental evidences showing that miR-17 directly targets the 3′ UTR of TRIM8 and post-transcriptionally represses the expression of TRIM8. Our study provides evidences that TRIM8 may participate in the carcinogenesis and progression of glioma and that the transcriptional repression of TRIM8 might have potential value for predicting poor prognosis in glioma patients. The online version of this article (doi:10.1186/s12885-015-1449-9) contains supplementary material, which is available to authorized users

  17. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  18. Biologically-equivalent dose and long-term survival time in radiation treatments

    International Nuclear Information System (INIS)

    Zaider, Marco; Hanin, Leonid

    2007-01-01

    Within the linear-quadratic model the biologically-effective dose (BED)-taken to represent treatments with an equal tumor control probability (TCP)-is commonly (and plausibly) calculated according to BED(D) = -log[S(D)]/α. We ask whether in the presence of cellular proliferation this claim is justified and examine, as a related question, the extent to which BED approximates an isoeffective dose (IED) defined, more sensibly, in terms of an equal long-term survival probability, rather than TCP. We derive, under the assumption that cellular birth and death rates are time homogeneous, exact equations for the isoeffective dose, IED. As well, we give a rigorous definition of effective long-term survival time, T eff . By using several sets of radiobiological parameters, we illustrate potential differences between BED and IED on the one hand and, on the other, between T eff calculated as suggested here or by an earlier recipe. In summary: (a) the equations currently in use for calculating the effective treatment time may underestimate the isoeffective dose and should be avoided. The same is the case for the tumor control probability (TCP), only more so; (b) for permanent implants BED may be a poor substitute for IED; (c) for a fractionated treatment schedule, interpreting the observed probability of cure in terms of a TCP formalism that refers to the end of the treatment (rather than T eff ) may result in a miscalculation (underestimation) of the initial number of clonogens

  19. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold.

    Science.gov (United States)

    Luyckx, Valérie; Dolmans, Marie-Madeleine; Vanacker, Julie; Legat, Camille; Fortuño Moya, Cristina; Donnez, Jacques; Amorim, Christiani Andrade

    2014-04-01

    To create an artificial ovary to provide an alternative way of restoring fertility in patients who cannot benefit from transplantation of cryopreserved ovarian tissue due to the threat of reintroducing malignant cells. In vivo experimental study. Gynecology research unit in a university hospital. Six-week-old female NMRI mice. Autografting of isolated preantral follicles and ovarian cells (OCs) encapsulated in two fibrin matrices containing low concentrations of fibrinogen (F; mg/mL) and thrombin (T; IU/mL): F12.5/T1 and F25/T4. Follicular density and development, OC survival and proliferation, inflammatory response, and vascularization. After 1 week, the follicle recovery rate ranged from 30.8% (F25/T4) to 31.8% (F12.5/T1). With both fibrin formulations, all follicles were found to be alive or minimally damaged, as demonstrated by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay, and at the growing stage (primary, secondary, and antral follicles), confirmed by Ki67 immunostaining. Isolated OCs also survived and proliferated after grafting, as evidenced by <1% apoptotic cells and a high proportion of Ki67-positive cells. Vessels were found in both fibrin formulations, and the global vascular surface area varied from 1.35% (F25/T4) to 1.88% (F12.5/T1). Numerous CD45-positive cells were also observed in both F25/T4 and F12.5/T1 combinations. The present study is the first to show survival and growth of isolated murine ovarian follicles 1 week after autotransplantation of isolated OCs in a fibrin scaffold. The results indicate that fibrin is a promising candidate as a matrix for the construction of an artificial ovary. Xenotransplantation of isolated human follicles and OCs is the necessary next step to validate these findings. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Stefan Wohrer

    2014-06-01

    Full Text Available Hematopoietic stem cells (HSCs are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion.

  1. The thorny path linking cellular senescence to organismalaging

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Christopher K.; Mian, Saira; Campisi, Judith

    2005-08-09

    Half a century is fast approaching since Hayflick and colleagues formally described the limited ability of normal human cells to proliferate in culture (Hayflick and Moorhead, 1961). This finding--that normal somatic cells, in contrast to cancer cells, cannot divide indefinitely--challenged the prevailing idea that cells from mortal multicellular organisms were intrinsically ''immortal'' (Carrell, 1912). It also spawned two hypotheses, essential elements of which persist today. The first held that the restricted proliferation of normal cells, now termed cellular senescence, suppresses cancer (Hayflick, 1965; Sager, 1991; Campisi, 2001). The second hypothesis, as explained in the article by Lorenzini et al., suggested that the limited proliferation of cells in culture recapitulated aspects of organismal aging (Hayflick, 1965; Martin, 1993). How well have these hypotheses weathered the ensuing decades? Before answering this question, we first consider current insights into the causes and consequences of cellular senescence. Like Lorenzini et al., we limit our discussion to mammals. We also focus on fibroblasts, the cell type studied by Lorenzini et al., but consider other types as well. We suggest that replicative capacity in culture is not a straightforward assessment, and that it correlates poorly with both longevity and body mass. We speculate this is due to the malleable and variable nature of replicative capacity, which renders it an indirect metric of qualitative and quantitative differences among cells to undergo senescence, a response that directly alters cellular phenotype and might indirectly alter tissue structure and function.

  2. Culture of normal human blood cells in diffusion chamber systems. I. Granulocyte survival and proliferation. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1978-01-01

    Blood cells from four normal volunteers were cultured in diffusion chambers (DC), made of Millipore (MDC) or Nuclepore (NDC) filters, in the peritoneal cavities of whole body X-irradiated (700 rad) mice. The total nucleated cell recovery from the two types of DC over 18 days indicates that the cells in DC persist and proliferate. The mature neutrophilic cells, metamyelocytes (M/sub 5/) + band forms (M/sub 6/) + segmented forms (M/sub 7/), survived with T/sup 1///sub 2/ of 29 and 34 h in MDC and NDC, respectively. The reduction of the cells in the DC was surmised to be due to degeneration and death of the M/sub 7/. The /sup 3/H-diisopropylfluorophosphate (/sup 3/HDFP) labeled M/sub /sub 6/+/sub 7// survival in MDC was slightly shorter than that of unlabeled cells, which may be explained on the basis of the loss of /sup 3/HDFP (5.1%/day) from the cells. The eosinophils survived with an average T/sup 1///sub 2/ of 7.2 days (range 4.8 to 9.6), and the results were comparable in both types of DC. Formation of myeloblasts, promyelocytes, and neutrophilic, eosinophilic and basophilic myelocytes, occasional megakaryocytes and rare normoblasts in DC indicated that the normal human blood contains progenitors (pluripotent and/or committed stem cells) of hemopoietic cells. The neutrophilic cell recovery pattern was similar from both types of DC, but the total number recovered was always greater from NDC than from MDC.

  3. Hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    International Nuclear Information System (INIS)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin

    2014-01-01

    Highlights: • Inhibition of H 2 S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H 2 S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H 2 S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H 2 S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H 2 S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H 2 S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction

  4. Association of Sphingosine-1-phosphate (S1P)/S1P Receptor-1 Pathway with Cell Proliferation and Survival in Canine Hemangiosarcoma.

    Science.gov (United States)

    Rodriguez, A M; Graef, A J; LeVine, D N; Cohen, I R; Modiano, J F; Kim, J-H

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a key biolipid signaling molecule that regulates cell growth and survival, but it has not been studied in tumors from dogs. S1P/S1P1 signaling will contribute to the progression of hemangiosarcoma (HSA). Thirteen spontaneous HSA tissues, 9 HSA cell lines, 8 nonmalignant tissues, including 6 splenic hematomas and 2 livers with vacuolar degeneration, and 1 endothelial cell line derived from a dog with splenic hematoma were used. This was a retrospective case series and in vitro study. Samples were obtained as part of medically necessary diagnostic procedures. Microarray, qRT-PCR, immunohistochemistry, and immunoblotting were performed to examine S1P1 expression. S1P concentrations were measured by high-performance liquid chromatography/mass spectrometry. S1P signaling was evaluated by intracellular Ca(2+) mobilization; proliferation and survival were evaluated using the MTS assay and Annexin V staining. Canine HSA cells expressed higher levels of S1P1 mRNA than nonmalignant endothelial cells. S1P1 protein was present in HSA tissues and cell lines. HSA cells appeared to produce low levels of S1P, but they selectively consumed S1P from the culture media. Exogenous S1P induced an increase in intracellular calcium as well as increased proliferation and viability of HSA cells. Prolonged treatment with FTY720, an inhibitor of S1P1 , decreased S1P1 protein expression and induced apoptosis of HSA cells. S1P/S1P1 signaling pathway functions to maintain HSA cell viability and proliferation. The data suggest that S1P1 or the S1P pathway in general could be targets for therapeutic intervention for dogs with HSA. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    International Nuclear Information System (INIS)

    Lin, Chunlong; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-01-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  6. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunlong, E-mail: lclmd@sina.com; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-02-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  7. Regulation of proliferation of embryonic heart mesenchyme: Role of transforming growth factor-beta 1 and the interstitial matrix

    International Nuclear Information System (INIS)

    Choy, M.; Armstrong, M.T.; Armstrong, P.B.

    1990-01-01

    Proliferation of atrioventricular cushion mesenchyme of the embryonic avian heart maintained in three-dimensional aggregate culture is stimulated by interaction with the interstitial matrix. Chicken serum or transforming growth factor-beta 1, which stimulates proliferation, induces matrix deposition in regions of the aggregate showing high labeling indices with tritiated thymidine. Dispersed heart mesenchyme interstitial matrix introduced into serum-free culture is incorporated into the aggregate and stimulates cellular proliferation similar to serum or transforming growth factor-beta 1. Proliferation is reversibly inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro. It is suggested that transforming growth factor-beta 1 stimulates the production of interstitial matrix and that a sufficient stimulus for proliferation in this system is the presence of the matrix, which acts as the adhesive support for cellular anchorage

  8. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  9. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Sweeny, Larissa; Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L.

    2012-01-01

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: ► We investigated AGR2 in head and neck squamous cell carcinoma for the first time. ► We explored the relationship between AGR2 and CD147 for the first time. ► AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. ► Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. ► Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  10. Prognostic value of proliferating cell nuclear antigen in parotid gland cancer.

    Science.gov (United States)

    Stenner, Markus; Demgensky, Ariane; Molls, Christoph; Hardt, Aline; Luers, Jan C; Grosheva, Maria; Huebbers, Christian U; Klussmann, Jens P

    2012-04-01

    Although cell proliferation is related to tumour aggressiveness and prognosis, there are few studies describing the expression of proliferative markers in salivary gland cancer. Our aim was to assess the long-term prognostic value of the proliferating cell nuclear antigen (PCNA) in a large group of histologically different salivary gland cancers. We analysed the expression of PCNA in 159 patients with parotid gland cancer by means of immunohistochemistry. The mean follow-up time was 56.6 months. A high expression of PCNA showed a significant correlation to the patients' pathological lymph node stage (p = 0.004). A high PCNA expression significantly indicated a poor 5-year disease-free (p = 0.046) and overall survival rate (p = 0.018). The PCNA expression was the only prognostic factor for a worse 5-year disease-free and overall survival in acinic cell carcinomas (p = 0.004, p = 0.022). The correlation between PCNA expression and survival probabilities of salivary gland cancer might make proliferation markers helpful tools in patient follow-up, prognosis and targeted therapy in salivary gland cancer in future.

  11. The importance of the nuclear glutathione in the Cell Proliferation

    OpenAIRE

    Markovic, Jelena

    2009-01-01

    The present thesis offers an insight in the importance of nuclear GSH in cell proliferation. The research was performed in three different cellular models of diverse proliferating activity: immortalized mouse embryonic fibroblasts 3T3, mammary adenocarcinoma cell line MCF7 and primary embryonic neuralonal culture. The results presented here provide evidence that suggest that the relationship between GSH level and telomerase activity, previously described by our group for 3T3 fibroblasts is a ...

  12. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis.

    Science.gov (United States)

    Stromberg, Paul E; Woolsey, Cheryl A; Clark, Andrew T; Clark, Jessica A; Turnbull, Isaiah R; McConnell, Kevin W; Chang, Katherine C; Chung, Chun-Shiang; Ayala, Alfred; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2009-06-01

    Lymphocytes help determine whether gut epithelial cells proliferate or differentiate but are not known to affect whether they live or die. Here, we report that lymphocytes play a controlling role in mediating gut epithelial apoptosis in sepsis but not under basal conditions. Gut epithelial apoptosis is similar in unmanipulated Rag-1(-/-) and wild-type (WT) mice. However, Rag-1(-/-) animals have a 5-fold augmentation in gut epithelial apoptosis following cecal ligation and puncture (CLP) compared to septic WT mice. Reconstitution of lymphocytes in Rag-1(-/-) mice via adoptive transfer decreases intestinal apoptosis to levels seen in WT animals. Subset analysis indicates that CD4(+) but not CD8(+), gammadelta, or B cells are responsible for the antiapoptotic effect of lymphocytes on the gut epithelium. Gut-specific overexpression of Bcl-2 in transgenic mice decreases mortality following CLP. This survival benefit is lymphocyte dependent since gut-specific overexpression of Bcl-2 fails to alter survival when the transgene is overexpressed in Rag-1(-/-) mice. Further, adoptively transferring lymphocytes to Rag-1(-/-) mice that simultaneously overexpress gut-specific Bcl-2 results in improved mortality following sepsis. Thus, sepsis unmasks CD4(+) lymphocyte control of gut apoptosis that is not present under homeostatic conditions, which acts as a key determinant of both cellular survival and host mortality.

  13. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer

    Directory of Open Access Journals (Sweden)

    Yang F

    2017-09-01

    Full Text Available Fei Yang,1,* Jun-Yi Gao,2,* Hua Chen,1 Zhen-Hua Du,1 Xue-Qun Zhang,3 Wei Gao4 1Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 2Department of Clinical Medicine, Weifang Medical College, Weifang, 3Graduate School, Taishan Medical University, Xintai, 4Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Background: Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. Methods: In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim were also detected. Results: We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 µM and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Conclusion: Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer. Keywords: human colon cancer, PI3K/Akt/mTOR pathway, BEZ235, PI3KCA knockdown

  14. CD1d-dependent expansion of NKT follicular helper cells in vivo and in vitro is a product of cellular proliferation and differentiation.

    Science.gov (United States)

    Rampuria, Pragya; Lang, Mark L

    2015-05-01

    NKT follicular helper cells (NKTfh cells) are a recently discovered functional subset of CD1d-restricted NKT cells. Given the potential for NKTfh cells to promote specific antibody responses and germinal center reactions, there is much interest in determining the conditions under which NKTfh cells proliferate and/or differentiate in vivo and in vitro. We confirm that NKTfh cells expressing the canonical semi-invariant Vα14 TCR were CXCR5(+)/ICOS(+)/PD-1(+)/Bcl6(+) and increased in number following administration of the CD1d-binding glycolipid α-galactosylceramide (α-GC) to C57Bl/6 mice. We show that the α-GC-stimulated increase in NKTfh cells was CD1d-dependent since the effect was diminished by reduced CD1d expression. In vivo and in vitro treatment with α-GC, singly or in combination with IL-2, showed that NKTfh cells increased in number to a greater extent than total NKT cells, but proliferation was near-identical in both populations. Acquisition of the NKTfh phenotype from an adoptively transferred PD-1-depleted cell population was also evident, showing that peripheral NKT cells differentiated into NKTfh cells. Therefore, the α-GC-stimulated, CD1d-dependent increase in peripheral NKTfh cells is a result of cellular proliferation and differentiation. These findings advance our understanding of the immune response following immunization with CD1d-binding glycolipids. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Liwei; Zhao, Wenting; Zheng, Quanhui; Chen, Tianda; Qi, Ji; Li, Guodong; Tong, Tanjun, E-mail: tztong@bjmu.edu.cn

    2016-01-15

    The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. The data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.

  16. Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence

    International Nuclear Information System (INIS)

    Ma, Liwei; Zhao, Wenting; Zheng, Quanhui; Chen, Tianda; Qi, Ji; Li, Guodong; Tong, Tanjun

    2016-01-01

    The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. The data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.

  17. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

    Science.gov (United States)

    Calderón, Aingeru; Ortiz-Espín, Ana; Iglesias-Fernández, Raquel; Carbonero, Pilar; Pallardó, Federico Vicente; Sevilla, Francisca; Jiménez, Ana

    2017-04-01

    Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA

  18. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    Science.gov (United States)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  19. Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Vetreno, Ryan P; Klintsova, Anna; Savage, Lisa M

    2011-05-19

    Alcohol-induced Wernicke-Korsakoff syndrome (WKS) culminates in bilateral diencephalic lesion and severe amnesia. Using the pyrithiamine-induced thiamine deficiency (PTD) animal paradigm of WKS, our laboratory has demonstrated hippocampal dysfunction in the absence of gross anatomical pathology. Extensive literature has revealed reduced hippocampal neurogenesis following a neuropathological insult, which might contribute to hippocampus-based learning and memory impairments. Thus, the current investigation was conducted to determine whether PTD treatment altered hippocampal neurogenesis in a stage-dependent fashion. Male Sprague-Dawley rats were assigned to one of 4 stages of thiamine deficiency based on behavioral symptoms: pre-symptomatic stage, ataxic stage, early post-opisthotonus stage, or the late post-opisthotonus stage. The S-phase mitotic marker 5'-bromo-2'-deoxyuridine (BrdU) was administered at the conclusion of each stage following thiamine restoration and subjects were perfused 24 hours or 28 days after BrdU to assess cellular proliferation or neurogenesis and survival, respectively. Dorsal hippocampal sections were immunostained for BrdU (proliferating cell marker), NeuN (neurons), GFAP (astrocytes), Iba-1 (microglia), and O4 (oligodendrocytes). The PTD treatment increased progenitor cell proliferation and survival during the early post-opisthotonus stage. However, levels of neurogenesis were reduced during this stage as well as the late post-opisthotonus stage where there was also an increase in astrocytogenesis. The diminished numbers of newly generated neurons (BrdU/NeuN co-localization) was paralleled by increased BrdU cells that did not co-localize with any of the phenotypic markers during these later stages. These data demonstrate that long-term alterations in neurogenesis and gliogenesis might contribute to the observed hippocampal dysfunction in the PTD model and human WKS. Published by Elsevier B.V.

  20. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    Science.gov (United States)

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  1. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  2. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  3. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.

    Science.gov (United States)

    Minge, Cadence E; Bennett, Brenton D; Norman, Robert J; Robker, Rebecca L

    2008-05-01

    Obesity and its physiological consequences are increasingly prevalent among women of reproductive age and are associated with infertility. To investigate, female mice were fed a high-fat diet until the onset of insulin resistance, followed by assessments of ovarian gene expression, ovulation, fertilization, and oocyte developmental competence. We report defects to ovarian function associated with diet-induced obesity (DIO) that result in poor oocyte quality, subsequently reduced blastocyst survival rates, and abnormal embryonic cellular differentiation. To identify critical cellular mediators of ovarian responses to obesity induced insulin resistance, DIO females were treated for 4 d before mating with an insulin-sensitizing pharmaceutical: glucose and lipid-lowering AMP kinase activator, 5-aminoimidazole 4-carboxamide-riboside, 30 mg/kg.d; sodium salicylate, IkappaK inhibitor that reverses insulin resistance, 50 mg/kg.d; or peroxisome proliferator activated receptor-gamma agonist rosiglitazone, 10 mg/kg.d. 5-aminoimidazole 4-carboxamide-riboside or sodium salicylate treatment did not have significant effects on the reproductive parameters examined. However, embryonic development to the blastocyst stage was significantly improved when DIO mice were treated with rosiglitazone, effectively repairing development rates. Rosiglitazone also normalized DIO-associated abnormal blastomere allocation to the inner cell mass. Such improvements to oocyte quality were coupled with weight loss, improved glucose metabolism, and changes in ovarian mRNA expression of peroxisome proliferator activated receptor-regulated genes, Cd36, Scarb1, and Fabp4 cholesterol transporters. These studies demonstrate that peri-conception treatment with select insulin-sensitizing pharmaceuticals can directly influence ovarian functions and ultimately exert positive effects on oocyte developmental competence. Improved blastocyst quality in obese females treated with rosiglitazone before mating

  4. Cellular intrinsic mechanism affecting the outcome of AML treated with Ara-C in a syngeneic mouse model.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    Full Text Available The mechanisms underlying acute myeloid leukemia (AML treatment failure are not clear. Here, we established a mouse model of AML by syngeneic transplantation of BXH-2 derived myeloid leukemic cells and developed an efficacious Ara-C-based regimen for treatment of these mice. We proved that leukemic cell load was correlated with survival. We also demonstrated that the susceptibility of leukemia cells to Ara-C could significantly affect the survival. To examine the molecular alterations in cells with different sensitivity, genome-wide expression of the leukemic cells was profiled, revealing that overall 366 and 212 genes became upregulated or downregulated, respectively, in the resistant cells. Many of these genes are involved in the regulation of cell cycle, cellular proliferation, and apoptosis. Some of them were further validated by quantitative PCR. Interestingly, the Ara-C resistant cells retained the sensitivity to ABT-737, an inhibitor of anti-apoptosis proteins, and treatment with ABT-737 prolonged the life span of mice engrafted with resistant cells. These results suggest that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C. Incorporation of apoptosis inhibitors, such as ABT-737, into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C. This work provided direct in vivo evidence that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C, suggesting that incorporation of apoptosis inhibitors into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C.

  5. Cellular bases of radiation-induced residual insufficiency in the haematopoietic system

    International Nuclear Information System (INIS)

    Wangenheim, K.H. v.; Peterson, H.P.; Feinendegen, L.E.

    1984-01-01

    Following radiation exposure, man's survival and further well-being largely depends on the degree of damage to his heamatopietic system. Stem cells are particualarly sensitive to radiation. Over and beyond acute radiation damge, residual radiation damage is of significance since it reduces the performance of the haematopietic system and enhances the risk of leukaemia. Knowledge concerning cellular bases may be important for preventive and therapeutic measures. The measurement method presented is based on the fact that stem cells from transfused bone marrow will settle in the spleen of highly irradiated mice and be able to reconstruct the haematopietic system. Initally individual colonies can be observed which originate from a single stem cell and the proliferation of its descendants. Counting these colonies will give the number of stem cells. The reduction of the proliferation factor measured in the stem-cell quality test apparently is not due to a shift in the age structure of the stem cell compartment but to a damage which is located within a more or less substantial proportion of the stem cells themselves. This damage is the cause of stem cell descendant growth retarded on an average. It is probable that recovery observed after irradiation is brought about by less-damaged or undamaged stem cells replacing damaged ones. Initial results point to the fact that this replacement can be influenced by treatment after irradiation. (orig./MG) [de

  6. Effect of gamma irradiation on proliferation and survival of Sf9 cells: radioresistance in a Lepidopteran insect cell line

    International Nuclear Information System (INIS)

    Seth, R.K.; Lovell, K.V.; Reynolds, S.E.

    2003-01-01

    Sf9 cells of Spodoptera frugiperda, when exposed to gamma-irradiation from a 60 Co source, were found markedly less sensitive to ionising radiation than mammalian cells in terms of both growth kinetics and survival. Following irradiation at 1.2 Gy S -1 there was a dose-dependent delay in Sf9 cell proliferation and plateau cell density was reduced. These effects were dependent on dose rate too. In the range 0.3 - 1.2 Gy s -1 , growth was delayed longer and reached a lower plateau with increasing dose rate. Exposure to radiation caused a decrease in adherence of cells to the substrate, and an increase in number of enlarged ('giant') cells. Analysis of colony formation after irradiation at 1.2 Gy s -1 gave a survival curve of conventional shape but with a very large D o value of 24 Gy. Extrapolation number (N) was 2.9, a value within the normal range for mammalian cells. At 0.12 Gy s -1 N had a similar value of 3.2, but D o was higher (30 Gy) than at the higher dose rate. This study indicates that the relative insensitivity of lepidoptera insects may be attributed to some extent to the intrinsic properties of their constituent cells. (author)

  7. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    International Nuclear Information System (INIS)

    Alao, John P; Sunnerhagen, Per

    2009-01-01

    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles

  8. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  9. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  10. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    International Nuclear Information System (INIS)

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-01-01

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL

  11. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Han, Sangwoo [Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Kamberos, Natalie L. [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  12. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sweeny, Larissa, E-mail: larissasweeny@gmail.com [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Zhou, Tong [Department of Medicine, Division of Immunology and Rheumatology, 1825 University Boulevard, Shelby Biomedical Research Building 302, Birmingham, Alabama (United States); Rosenthal, Eben L., E-mail: oto@uab.edu [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States)

    2012-08-15

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: Black-Right-Pointing-Pointer We investigated AGR2 in head and neck squamous cell carcinoma for the first time. Black-Right-Pointing-Pointer We explored the relationship between AGR2 and CD147 for the first time. Black-Right-Pointing-Pointer AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  13. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest.

    Science.gov (United States)

    Sapieha, Przemyslaw; Mallette, Frédérick A

    2018-04-25

    In mitotic cells, cellular senescence is a permanent state of G1 arrest, that may have evolved in parallel to apoptosis, to limit proliferation of damaged cells and oncogenesis. Recent studies have suggested that postmitotic cells are also capable of entering a state of senescence, although the repercussions of postmitotic cellular senescence (PoMiCS) on tissue health and function are currently ill-defined. In tissues made largely of post-mitotic cells, it is evolutionary advantageous to preserve cellular integrity and cellular senescence of post-mitotic cells may prevent stressor-induced tissue degeneration and promote tissue repair. Paradoxically, PoMiCS may also contribute to disease progression through the generation of inflammatory mediators, termed the senescence-associated secretory phenotype. Here, we discuss the potential roles of PoMiCS and propose to enlarge the current definition of cellular senescence to postmitotic terminally differentiated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The role of hormones and growth factors in the cellular proliferation control in mammals

    International Nuclear Information System (INIS)

    Armelin, H.A.

    1978-01-01

    A review is done about fibroblast proliferation, its control by classic hormones and hormonal growth factors, showing their main implications and the stage of this research at present. The control exerted on fibronlast proliferation by hormonal growth factors and classic hormones is demonstrated. The existence of basic mechanisms valid for all types of cells is suggested. Experiences are carried out with the aim of finding growth mutants useful in the elucidation of the biochemical mechanisms involved in growth regulation. Radiactive precursors and autoradiographic techniques are used in the research. (M.A.) [pt

  15. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    International Nuclear Information System (INIS)

    Choi, Joon-Seok; Lee, Cheol-Koo

    2013-01-01

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA

  16. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  17. Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-15

    Highlights: • Inhibition of H{sub 2}S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H{sub 2}S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H{sub 2}S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H{sub 2}S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H{sub 2}S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H{sub 2}S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction.

  18. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen-Yu [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, No.250 Changgang East Road, Guangzhou 510260, Guangdong Province (China); Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China); Zhang, Wei-Xi, E-mail: weixizhang@qq.com [Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province (China)

    2016-03-18

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  19. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro

    International Nuclear Information System (INIS)

    Ma, Zhen-Yu; Zhong, Zhi-Gang; Qiu, Meng-Yao; Zhong, Yu-Hua; Zhang, Wei-Xi

    2016-01-01

    Activated fibroblasts continue to proliferate at injury sites, leading to progressive muscular fibrosis in Duchenne muscular dystrophy (DMD). TGF-β1 is a dominant profibrotic mediator thought to play a critical role in muscle fibrosis; however, the implicated mechanisms are not fully understood. Here we showed that TGF-β1 increased the resistance to apoptosis and stimulated cell cycle progression in dystrophic muscle fibroblasts under serum deprivation conditions in vitro. TGF-β1 treatment activated the canonical NF-κB pathway; and we found that pharmacological inhibition of IKKβ with IMD-0354 and RelA gene knockdown with siRNA attenuated these effects of TGF-β1 on dystrophic muscle fibroblasts. Collectively, our data suggest that TGF-β1 prevents apoptosis and cell cycle arrest in dystrophic muscle fibroblasts through the canonical NF-κB signaling pathway. - Highlights: • TGF-β1 promotes survival and proliferation in dystrophic muscle fibroblasts. • TGF-β1 activated the canonical NF-κB pathway in dystrophic muscle fibroblasts. • Canonical NF-κB pathway mediates these effects of TGF-β1.

  20. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin; Choi, Peter  S.; Casey, Stephanie  C.; Dill, David  L.; Felsher, Dean  W.

    2014-01-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  1. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin

    2014-08-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  2. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina

    2007-01-01

    the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...

  3. p62 modulates Akt activity via association with PKCζ in neuronal survival and differentiation

    International Nuclear Information System (INIS)

    Joung, Insil; Kim, Hak Jae; Kwon, Yunhee Kim

    2005-01-01

    p62 is a ubiquitously expressed phosphoprotein that interacts with a number of signaling molecules and a major component of neurofibrillary tangles in the brain of Alzheimer's disease patients. It has been implicated in important cellular functions such as cell proliferation and anti-apoptotic pathways. In this study, we have addressed the potential role of p62 during neuronal differentiation and survival using HiB5, a rat neuronal progenitor cell. We generated a recombinant adenovirus encoding T7-epitope tagged p62 to reliably transfer p62 cDNA into the neuronal cells. The results show that an overexpression of p62 led not only to neuronal differentiation, but also to decreased cell death induced by serum withdrawal in HiB5 cells. In this process p62-dependent Akt phosphorylation occurred via the release of Akt from PKCζ by association of p62 and PKCζ, which is known as a negative regulator of Akt activation. These findings indicate that p62 facilitates cell survival through novel signaling cascades that result in Akt activation. Furthermore, we found that p62 expression was induced during neuronal differentiation. Taken together, the data suggest p62 is a regulator of neuronal cell survival and differentiation

  4. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    International Nuclear Information System (INIS)

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank

    2006-01-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology

  5. Oncogenic functions of the cancer-testis antigen SSX on the proliferation, survival, and signaling pathways of cancer cells.

    Directory of Open Access Journals (Sweden)

    Padraig D'Arcy

    Full Text Available SSX is a transcription factor with elusive oncogenic functions expressed in a variety of human tumors of epithelial and mesenchymal origin. It has raised substantial interest as a target for cancer therapy since it elicits humoral responses and displays restricted expression to cancer, spermatogonia and mesenchymal stem cells. Here, we investigated the oncogenic properties of SSX by employing a RNA interference to knock-down the endogenous expression of SSX in melanoma and osteosarcoma cell lines. Depletion of SSX expression resulted in reduced proliferation with cells accumulating in the G1 phase of the cell cycle. We found that the growth promoting and survival properties of SSX are mediated in part though modulation of MAPK/Erk and Wnt signaling pathways, since SSX silencing inhibited Erk-mediated signaling and transcription of cMYC and Akt-1. We also found that SSX forms a transient complex with β-catenin at the G1-S phase boundary resulting in the altered expression of β-catenin target genes such as E-cadherin, snail-2 and vimentin, involved in epithelial-mesenchymal transitions. Importantly the silencing of SSX expression in in vivo significantly impaired the growth of melanoma tumor xenografts. Tumor biopsies from SSX silenced tumors displayed reduced cyclin A staining, indicative of low proliferation and predominantly cycloplasmic β-catenin compared to SSX expressing tumors. The present study demonstrates a previously unknown function of SSX, that as an oncogene and as a tumor target for the development of novel anti-cancer drugs.

  6. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation.

    Science.gov (United States)

    Mih, Justin D; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S; Tschumperlin, Daniel J

    2012-12-15

    The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate.

  7. TIG3 - AN IMPORTANT REGULATOR OF KERATINOCYTE PROLIFERATION AND SURVIVAL

    OpenAIRE

    Scharadin, Tiffany M.; Eckert, Richard L.

    2014-01-01

    Tazarotene induced gene 3 (TIG3) is a tumor suppressor protein. In normal human epidermis, TIG3 is present in the differentiated, suprabasal layers and regulates terminal differentiation. TIG3 level is reduced in hyperproliferative diseases, including psoriasis and skin cancer, suggesting that loss of TIG3 is associated with enhanced cell proliferation. Moreover, transient expression of TIG3 leads to terminal differentiation in normal keratinocytes and apoptosis in skin cancer cells. In both ...

  8. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  9. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  10. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  11. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.

    Science.gov (United States)

    Kulkarni, Shreya; Goel-Bhattacharya, Surbhi; Sengupta, Sejuti; Cochran, Brent H

    2018-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as CDK4, KIF11 , and RAN , the screen also identified new genes that have not been previously implicated in GBM stem cell biology. The importance of the serum and glucocorticoid-regulated kinase 1 (SGK1) for cellular survival was validated in multiple patient-derived GBM stem cell lines using shRNA, CRISPR, and pharmacologic inhibitors. However, SGK1 depletion and inhibition has little effect on traditional serum grown glioma lines and on differentiated GBM-SCs indicating its specific importance in GBM stem cell survival. Implications: This study identifies genes required for the growth and survival of GBM stem cells under both normoxic and hypoxic conditions and finds SGK1 as a novel potential drug target for GBM. Mol Cancer Res; 16(1); 103-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Molecular mechanisms of radiation-induced cell proliferation in human carcinoma cells

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, R.K.; Mikkelsen, R.; Valerie, K.; Todd, D.; Kavanagh, B.; Contessa, J.; Rorrer, K.; Chen, P.

    1996-01-01

    Purpose: At therapeutically applied ionizing radiation (IR) doses of 0.5 to 5 Gy, a certain proportion of cells will undergoes radiation-induced death while a varied proportion of cells will survive and be able of furnishing adaptive responses. One of these adaptive responses has been experimentally and clinically described as repopulation. Despite description of this phenomenon more than 20 years ago, the mechanisms of this response have remained relatively unknown until modern experimental techniques have been applied to studies on cellular radiation responses. materials and Methods: Human mammary, MCF-7 and MDA-MB-231, and squamous, A431, carcinoma cells (MCC and SCC), expressing epidermal growth factor-receptor (EGF-R) at widely varied levels, have been exposed under defined culture conditions to single and repeated IR at doses between 0.5 and 5 Gy. Cellular IR responses of activation and expression changes of growth regulatory genes and activation of signal transduction pathways were linked to IR-induced proliferation responses. Specifically, EGF-R activation and expression were assessed by levels of Tyr phosphorylation (Y p ) of the receptor protein and mRNA, respectively. Phospholipase (PL-C) activation was quantified by Y p levels and production of inositol-triphosphate (IP 3 ), elevation of cytoplasmic Ca 2+ by video-intensified florescence microscopy after Fura-2 loading. Mitogen-activated protein (MAP) kinase activation was measured by a MBP receptor assay. The EGF-R and signal transduction activation events were correlated with a proliferation response of irradiated cells as quantified by MTT assay. Results: The cell lines tested showed an about 3-fold stimulation of EGF-R Y p levels within 5 min of IR which was associated with a 2.5-fold upregulation of EGF-R after 24 hr. Repeated daily 2 Gy exposures of MCF-7 and MDA-cells resulted in up to 9-fold increases in EGF-R mRNA. EGF-R downstream signal transduction was evidenced by activation of the

  13. DNA supercoiling: changes during cellular differentiation and activation of chromatin transcription

    International Nuclear Information System (INIS)

    Luchnik, A.N.; Bakayev, V.V.; Glaser, V.M.; Moscow State Univ., USSR)

    1983-01-01

    In this paper it is reported that elastic DNA torsional tension has been observed in a fraction of isolated SV40 minichromosomes, which are shown to be transcriptionally active, and that the number of DNA topological (titratable superhelical) turns in closed superhelical loops of nuclear DNA decreases during cellular differentiation, which, we propose, may be responsible for the coordinate switch in transcription of genes controlling cellular proliferation. 37 references, 6 figures, 2 tables

  14. Cellular proliferation and infiltration following interstitial irradiation of normal dog brain is altered by an inhibitor of polyamine synthesis

    International Nuclear Information System (INIS)

    Fike, John R.; Gobbel, Glenn T.; Chou, Dean; Wijnhoven, Bas P. L.; Bellinzona, Mattia; Nakagawa, Minoru; Seilhan, Theresa M.

    1995-01-01

    Purpose: The objectives of this study were to quantitatively define proliferative and infiltrative cell responses after focal 125 I irradiation of normal brain, and to determine the effects of an intravenous infusion of α-difluoromethylornithine (DFMO) on those responses. Methods and Materials: Adult beagle dogs were irradiated using high activity 125 I sources. Saline (control) or DFMO (150 mg/kg/day) was infused for 18 days starting 2 days before irradiation. At varying times up to 8 weeks after irradiation, brain tissues were collected and the cell responses in and around the focal lesion were quantified. Immunohistochemical stains were used to label astrocytes (GFAP), vascular endothelial cells (Factor VIII), polymorphonuclear leukocytes (PMNs; MAC 387) and cells synthesizing deoxyribonucleic acid (DNA) (BrdU). Cellular responses were quantified using a histomorphometric analysis. Results: After radiation alone, cellular events included a substantial acute inflammatory response followed by increased BrdU labeling and progressive increases in numbers of capillaries and astrocytes. α-Difluoromethylornithine treatment significantly affected the measured cell responses. As in controls, an early inflammatory response was measured, but after 2 weeks there were more PMNs/unit area than in controls. The onset of measurable BrdU labeling was delayed in DFMO-treated animals, and the magnitude of labeling was significantly reduced. Increases in astrocyte and vessel numbers/mm 2 were observed after a 2-week delay. At the site of implant, astrocytes from DFMO-treated dogs were significantly smaller than those from controls. Conclusions: There is substantial cell proliferation and infiltration in response to interstitial irradiation of normal brain, and these responses are significantly altered by DFMO treatment. Although the precise mechanisms by which DFMO exerts its effects in this model are not known, the results from this study suggest that modification of radiation

  15. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model.

    Science.gov (United States)

    Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong

    2013-07-01

    NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.

  16. Irradiations of human melanoma cells by 14 MeV neutrons; survival curves interpretation; physical simulation of neutrons interactions in the cellular medium

    International Nuclear Information System (INIS)

    Bodez, Veronique

    2000-01-01

    14 MeV neutrons are used to irradiate human melanoma cells in order to study survival curves at low dose and low dose rate. We have simulated with the MCNP code, transport of neutrons through the experimental setup to evaluate the contamination of the primary beam by gamma and electrons, for the feasibility of our experiments. We have shown a rapid decrease of the survival curve in the first cGy followed by a plateau for doses up to 30 cGy; after we observed an exponential decrease. This results are observed for the first time, for neutrons at low dose rate (5 cGy/h). In parallel with this experimental point, we have developed a simulation code which permitted the study of neutrons interactions with the cellular medium for individual cells defined as in our experimental conditions. We show that most of the energy is deposited by protons from neutron interactions with external medium, and by heavy ions for interactions into the cell. On the other hand the code gives a good order of magnitude of the dose rate, compared to the experimental values given by silicon diodes. The first results show that we can, using a theory based on induced repair of cells, give an interpretation of the observed experimental plateau. We can give an estimation of the radial distribution of dose for the tracks of charged ions, we show the possibility of calculate interaction cross sections with cellular organelles. Such a work gives interesting perspectives for the future in radiobiology, radiotherapy or radioprotection. (author) [fr

  17. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee

    2018-04-01

    Full Text Available This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2 treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis, and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential. Keywords: Bone marrow stromal cells, Hypoxia, Fibroblast growth factor, Tissue regeneration, Microenvironment interactions

  18. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    Science.gov (United States)

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  19. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    OpenAIRE

    Chung-Hsiang Liu; Yi-Wen Lin; Nou-Ying Tang; Hsu-Jan Liu; Ching-Liang Hsieh

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treat...

  20. Correlation between proliferative activity and cellular thickness of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Katsube, Yoshihiro; Hirose, Motohiro; Nakamura, Chikashi; Ohgushi, Hajime

    2008-01-01

    A cell's shape is known to be related to its proliferative activity. In particular, large and flat mammalian adult stem cells seem to show slow proliferation, however using quantitative analysis to prove the phenomenon is difficult. We measured the proliferation and cellular thickness of human mesenchymal stem cells (MSCs) by atomic force microscopy and found that MSCs with high proliferative activity were thick while those with low proliferative activity were thin, even though these MSCs were early passage cells. Further, low proliferative MSCs contained many senescence-associated β-galactosidase positive cells together with high senescence-associated gene expression. These findings suggest that the measurement of cellular thickness is useful for estimating the proliferative activity of human MSCs and is expected to be a practical tool for MSC applications in regenerative medicine

  1. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  2. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    Science.gov (United States)

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  3. Protein kinase CK2 and its role in cellular proliferation, development and pathology

    DEFF Research Database (Denmark)

    Guerra, B; Issinger, O G

    1999-01-01

    , signaling, proliferation and in various steps of development. The tetrameric holoenzyme (alpha2beta2) consists of two catalytic alpha-subunits and two regulatory beta-subunits. The structure of the catalytic subunit with the fixed positioning of the activation segment in the active conformation through its...

  4. Interaction of Proliferating Cell Nuclear Antigen With DNA at the Single Molecule Level

    KAUST Repository

    Raducanu, Vlad-Stefan

    2016-01-01

    Proliferating cell nuclear antigen (PCNA) is a key factor involved in Eukaryotic DNA replication and repair, as well as other cellular pathways. Its importance comes mainly from two aspects: the large numbers of interacting partners

  5. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  6. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    Science.gov (United States)

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of

  7. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells

    Directory of Open Access Journals (Sweden)

    Andrew Parker

    2015-12-01

    Full Text Available Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182 in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss.

  8. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    Science.gov (United States)

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  9. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy.

    Science.gov (United States)

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S; Corey, Eva; Snyder, Linda A; Vessella, Robert L; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.

  10. Cellular and molecular biology of the prostate: stem cell biology.

    NARCIS (Netherlands)

    Schalken, J.A.; Leenders, G.J.L.H. van

    2003-01-01

    The normal prostate shows a high degree of cellular organization. The basal layer is populated by prostate epithelial stem cells and a population of transiently proliferating/amplifying (TP/A) cells intermediate to the stem cells and fully differentiated cells. The luminal layer is composed of fully

  11. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    Directory of Open Access Journals (Sweden)

    Natalie J Groves

    Full Text Available Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD deficiency in BALB/c mice was associated with (a adult hippocampal neurogenesis at baseline, b following 6 weeks of voluntary wheel running and (c a depressive-like phenotype on the forced swim test (FST, which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX, and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.

  12. Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo.

    Science.gov (United States)

    Fernández, María Celia; Venara, Marcela; Nowicki, Susana; Chemes, Héctor E; Barontini, Marta; Pennisi, Patricia A

    2012-08-01

    IGFs are involved in malignant transformation and growth of several tissues, including the adrenal medulla. The present study was designed to evaluate the impact of IGF-I on pheochromocytoma development. We used a murine pheochromocytoma (MPC) cell line (MPC4/30) and an animal model with a reduction of 75% in circulating IGF-I levels [liver-IGF-I-deficient (LID) mice] to perform studies in vitro and in vivo. We found that, in culture, IGF-I stimulation increases proliferation, migration, and anchorage-independent growth, whereas it inhibits apoptosis of MPC cells. When injected to control and to LID mice, MPC cells grow and form tumors with features of pheochromocytoma. Six weeks after cell inoculation, all control mice developed sc tumors. In contrast, in 73% of LID mice, tumor development was delayed to 7-12 wk, and the remaining 27% did not develop tumors up to 12 wk after inoculation. LID mice harboring MPC cells and treated with recombinant human IGF-I (LID+) developed tumors as controls. Tumors developed in control, LID, and LID+ mice had similar histology and were similarly positive for IGF-I receptor expression. The apoptotic index was higher in tumors from LID mice compared with those from control mice, whereas vascular density was decreased. In summary, our work demonstrates that IGF-I has a critical role in maintaining tumor phenotype and survival of already transformed pheochromocytoma cells and is required for the initial establishment of these tumors, providing encouragement to carry on research studies to address the IGF-I/IGF-I receptor system as a target of therapeutic strategies for pheochromocytoma treatment in the future.

  13. The BTK Inhibitor Ibrutinib (PCI-32765) Blocks Hairy Cell Leukaemia Survival, Proliferation and BCR Signalling: A New Therapeutic Approach

    Science.gov (United States)

    Sivina, Mariela; Kreitman, Robert J.; Arons, Evgeny; Ravandi, Farhad; Burger, Jan A.

    2014-01-01

    B cell receptor (BCR) signalling plays a critical role in the progression of several B-cell malignancies, but its role in hairy cell leukaemia (HCL) is ambiguous. Bruton tyrosine kinase (BTK), a key player in BCR signalling, migration and adhesion, can be targeted with ibrutinib, a selective, irreversible BTK inhibitor. We analysed BTK expression and function in HCL and analysed the effects of ibrutinib on HCL cells. We demonstrated uniform BTK protein expression in HCL cells. Ibrutinib significantly inhibited HCL proliferation and cell cycle progression. Accordingly, ibrutinib also reduced HCL cell survival after BCR triggering with anti-immunoglobulins (A, G, and M) and abrogated the activation of kinases downstream of the BCR (PI3K and MAPK). Ibrutinib also inhibited BCR-dependent secretion of the chemokines CCL3 and CCL4 by HCL cells. Interestingly, ibrutinib inhibited CXCL12-induced signalling, a key pathway for bone marrow homing. Collectively, our data support the clinical development of ibrutinib in patients with HCL. PMID:24697238

  14. Thalidomide increases human keratinocyte migration and proliferation.

    Science.gov (United States)

    Nasca, M R; O'Toole, E A; Palicharla, P; West, D P; Woodley, D T

    1999-11-01

    Thalidomide is reported to have therapeutic utility in the treatment of pyoderma gangrenosum, Behçet's disease, aphthous ulcers, and skin wounds. We investigated the effect of thalidomide on human keratinocyte proliferation and migration, two early and critical events in the re-epithelialization of skin wounds. Thalidomide at concentrations less than 1 microM did not affect keratinocyte viability. Using a thymidine incorporation assay, we found that thalidomide, at therapeutic concentrations, induced more than a 2. 5-fold increase in the proliferative potential of the cells. Keratinocyte migration was assessed by two independent motility assays: a colloidal gold assay and an in vitro scratch assay. At optimal concentrations, thalidomide increased keratinocyte migration on a collagen matrix more than 2-fold in the colloidal gold assay and more than 3-fold in the scratch assay over control. Although pro-migratory, thalidomide did not alter the level of metalloproteinase-9 secreted into culture medium. Thalidomide did, however, induce a 2-4-fold increase in keratinocyte-derived interleukin-8, a pro-migratory cellular autocrine factor. Human keratinocyte migration and proliferation are essential for re-epithelialization of skin wounds. Interleukin-8 increases human keratinocyte migration and proliferation and is chemotactic for keratinocytes. Therefore, thalidomide may modulate keratinocyte proliferation and motility by a chemokine-dependent pathway.

  15. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J N; Platt, Jesse M; Johnson, F Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C; June, Carl H

    2015-04-01

    This study compared second-generation chimeric antigen receptors (CAR) encoding signaling domains composed of CD28, ICOS, and 4-1BB (TNFRSF9). Here, we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T cells with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to 3 months following a single stimulation through the T-cell receptor (TCR). Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet (TBX21), EOMES, and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-κB, AKT, ERK, and NFAT. The propagated CAR T cells retained a diverse TCR repertoire, and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore, the design of CARs that have a nonconstitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or nonconstitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials. ©2015 American Association for Cancer Research.

  16. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  17. Investigating the role of c-Jun N-terminal kinases in the proliferation of Werner syndrome fibroblasts using diaminopyridine inhibitors

    Directory of Open Access Journals (Sweden)

    Davis Terence

    2011-12-01

    Full Text Available Abstract Fibroblasts derived from the progeroid Werner syndrome show reduced replicative lifespan and a "stressed" morphology, both alleviated using the MAP kinase inhibitor SB203580. However, interpretation of these data is problematical because although SB203580 has the stress-activated kinases p38 and JNK1/2 as its preferred targets, it does show relatively low overall kinase selectivity. Several lines of data support a role for both p38 and JNK1/2 activation in the control of cellular proliferation and also the pathology of diseases of ageing, including type II diabetes, diseases to which Werner Syndrome individuals are prone, thus making the use of JNK inhibitors attractive as possible therapeutics. We have thus tested the effects of the widely used JNK inhibitor SP600125 on the proliferation and morphology of WS cells. In addition we synthesised and tested two recently described aminopyridine based inhibitors. SP600125 treatment resulted in the cessation of proliferation of WS cells and resulted in a senescent-like cellular phenotype that does not appear to be related to the inhibition of JNK1/2. In contrast, use of the more selective aminopyridine CMPD 6o at concentrations that fully inhibit JNK1/2 had a positive effect on cellular proliferation of immortalised WS cells, but no effect on the replicative lifespan of primary WS fibroblasts. In addition, CMPD 6o corrected the stressed WS cellular morphology. The aminopyridine CMPD 6r, however, had little effect on WS cells. CMDP 6o was also found to be a weak inhibitor of MK2, which may partially explain its effects on WS cells, since MK2 is known to be involved in regulating cellular morphology via HSP27 phosphorylation, and is thought to play a role in cell cycle arrest. These data suggest that total JNK1/2 activity does not play a substantial role in the proliferation control in WS cells.

  18. Activated H-Ras regulates hematopoietic cell survival by modulating Survivin

    International Nuclear Information System (INIS)

    Fukuda, Seiji; Pelus, Louis M.

    2004-01-01

    Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34 + cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G 0 /G 1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells

  19. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  20. Dedifferentiation and proliferation of mammalian cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2010-09-01

    Full Text Available It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1 cardiomyocyte purification from rat hearts, and 2 genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs, while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+.Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness

  1. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    Science.gov (United States)

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018

  2. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting.

    Science.gov (United States)

    Nune, Krishna C; Misra, R Devesh K; Gaytan, Sara M; Murr, Lawrence E

    2015-05-01

    The cellular activity, biological response, and consequent integration of scaffold-cell construct in the physiological system are governed by the ability of cells to adhere, proliferate, and biomineralize. In this regard, we combine cellular biology and materials science and engineering to fundamentally elucidate the interplay between cellular activity and interconnected three-dimensional foamed architecture obtained by a novel process of electron beam melting and computational tools. Furthermore, the organization of key proteins, notably, actin, vinclulin, and fibronectin, involved in cellular activity and biological functions and relationship with the structure was explored. The interconnected foamed structure with ligaments was favorable to cellular activity that includes cell attachment, proliferation, and differentiation. The primary rationale for favorable modulation of cellular functions is that the foamed structure provided a channel for migration and communication between cells leading to highly mineralized extracellular matrix (ECM) by the differentiating osteoblasts. The filopodial interaction amongst cells on the ligaments was a governing factor in the secretion of ECM, with consequent influence on maturation and mineralization. © 2014 Wiley Periodicals, Inc.

  3. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Thijssen, R; Ter Burg, J; van Bochove, G G W; de Rooij, M F M; Kuil, A; Jansen, M H; Kuijpers, T W; Baars, J W; Virone-Oddos, A; Spaargaren, M; Egile, C; van Oers, M H J; Eldering, E; Kersten, M J; Kater, A P

    2016-02-01

    The phosphoinositide 3-kinases (PI3Ks) are critical components of the B-cell receptor (BCR) pathway and have an important role in the pathobiology of chronic lymphocytic leukemia (CLL). Inhibitors of PI3Kδ block BCR-mediated cross-talk between CLL cells and the lymph node microenvironment and provide significant clinical benefit to CLL patients. However, the PI3Kδ inhibitors applied thus far have limited direct impact on leukemia cell survival and thus are unlikely to eradicate the disease. The use of inhibitors of multiple isoforms of PI3K might lead to deeper remissions. Here we demonstrate that the pan-PI3K/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) was more pro-apoptotic to CLL cells--irrespective of their ATM/p53 status--than PI3Kα or PI3Kδ isoform selective inhibitors. Furthermore, SAR245409 blocked CLL survival, adhesion and proliferation. Moreover, SAR245409 was a more potent inhibitor of T-cell-mediated production of cytokines, which support CLL survival. Taken together, our in vitro data provide a rationale for the evaluation of a pan-PI3K inhibitor in CLL patients.

  4. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation.

    Directory of Open Access Journals (Sweden)

    Anna Chikova

    Full Text Available Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR. BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.

  5. Equine peripheral blood mononuclear cells proliferate in response to tetanus toxoid antigen.

    Science.gov (United States)

    McKelvie, J; Little, S; Foster, A P; Cunningham, F M; Hamblin, A

    1998-01-01

    It has been reported that equine peripheral blood mononuclear cells (PBMNs) do not proliferate in response to tetanus toxoid (TT) (Frayne and Stokes 1995, Research in Veterinary Science 59, 79-81). Here we demonstrate that lymphocyte proliferation responses to TT, which are characteristic of a recall antigen, may be achieved under certain culture conditions. Given that TT vaccination is routinely applied to many horses, TT is a suitable antigen for the investigation of cellular immune responses by peripheral blood mononuclear cells in the horse.

  6. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  7. Histone gene expression remains coupled to DNA synthesis during in vitro cellular senescence

    International Nuclear Information System (INIS)

    Zambetti, G.; Stein, G.; Stein, J.; Dell'Orco, R.

    1987-01-01

    Despite a decrease in the extent to which confluent monolayers of late compared to early passage CF3 human diploid fibroblasts can be stimulated to proliferate, the time course of DNA synthesis onset is similar regardless of the in vitro age of the cells. A parallel and stoichiometric relationship is maintained between the rate of DNA synthesis and the cellular levels of histone mRNA independent of the age of the cell cultures. Furthermore, DNA synthesis and cellular histone mRNA levels decline in a coordinate manner after inhibition of DNA replication by hydroxyurea treatment. These results indicate that while the proliferative activity of human diploid fibroblasts decreases with passage in culture, those cells that retain the ability to proliferate continue to exhibit a tight coupling of DNA replication and histone gene expression

  8. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells.

    Science.gov (United States)

    Sabarwal, Akash; Agarwal, Rajesh; Singh, Rana P

    2017-02-01

    The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Long noncoding RNA HOTAIR is relevant to cellular proliferation, invasiveness, and clinical relapse in small-cell lung cancer

    International Nuclear Information System (INIS)

    Ono, Hiroshi; Motoi, Noriko; Nagano, Hiroko; Miyauchi, Eisaku; Ushijima, Masaru; Matsuura, Masaaki; Okumura, Sakae; Nishio, Makoto; Hirose, Tetsuro; Inase, Naohiko; Ishikawa, Yuichi

    2014-01-01

    Small-cell lung cancer (SCLC) is a subtype of lung cancer with poor prognosis. To identify accurate predictive biomarkers and effective therapeutic modalities, we focus on a long noncoding RNA, Hox transcript antisense intergenic RNA (HOTAIR), and investigated its expression, cellular functions, and clinical relevance in SCLC. In this study, HOTAIR expression was assessed in 35 surgical SCLC samples and 10 SCLC cell lines. The efficacy of knockdown of HOTAIR by siRNA transfection was evaluated in SBC-3 cells in vitro, and the gene expression was analyzed using microarray. HOTAIR was expressed highly in pure, rather than combined, SCLC (P = 0.012), that the subgroup with high expression had significantly more pure SCLC (P = 0.04), more lymphatic invasion (P = 0.03) and more relapse (P = 0.04) than the low-expression subgroup. The knockdown of HOTAIR in SBC-3 cells led to decreased proliferation activity and decreased invasiveness in vitro. Gene expression analysis indicated that depletion of HOTAIR resulted in upregulation of cell adhesion-related genes such as ASTN1, PCDHA1, and mucin production-related genes such as MUC5AC, and downregulation of genes involved in neuronal growth and signal transduction including NTM and PTK2B. Our results suggest that HOTAIR has an oncogenic role in SCLC and could be a prognostic biomarker and therapeutic target

  10. Leading research on artificial techniques controlling cellular function; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Advanced research and its applicability were surveyed to apply the advanced functional cells to industry. The basic target was set to develop, produce, control and utilize the functional cells, such as intelligent materials and self-regulation bioreactors. The regulation factors regarding apotosis, which is a process of cell suicide programmed within the cell itself of multicellular organisms, cell cycle and aging/ageless were investigated. Furthermore, the function of regulatory factors was investigated at the protein level. Injection of factors regulating cellular function and tissue engineering required for the regulation of cell proliferation were investigated. Tissue engineering is considered to be the intracellular regulation by gene transduction and the extracellular regulation by culture methods, such as coculture. Analysis methods for cell proliferation and function of living cells were investigated using the probes recognizing molecular structure. Novel biomaterials, artificial organ systems, cellular therapy and useful materials were investigated for utilizing the regulation techniques of cell proliferation. 425 refs., 85 figs., 9 tabs.

  11. The modified high-density survival assay is the useful tool to predict the effectiveness of fractionated radiation exposure

    International Nuclear Information System (INIS)

    Kuwahara, Yoshikazu; Mori, Miyuki; Oikawa, Toshiyuki; Shimura, Tsutomu; Fukumoto, Manabu; Ohtake, Yosuke; Ohkubo, Yasuhito; Mori, Shiro

    2010-01-01

    The high-density survival (HDS) assay was originally elaborated to assess cancer cell responses to therapeutic agents under the influence of intercellular communication. Here, we simplified the original HDS assay and studied its applicability for the detection of cellular radioresistance. We have recently defined clinically relevant radioresistant (CRR) cells, which continue to proliferate with daily exposure to 2 gray (Gy) of X-rays for more than 30 days in vitro. We established human CRR cell lines, HepG2-8960-R from HepG2, and SAS-R1 and -R2 from SAS, respectively. In an attempt to apply the HDS assay to detect radioresistance with clinical relevance, we simplified the original HDS assay by scoring the total number of surviving cells after exposure to X-rays. The modified HDS assay successfully detected radioresistance with clinical relevance. The modified HDS assay detected CRR phenotype, which is not always detectable by clonogenic assay. Therefore, we believe that the modified HDS assay presented in this study is a powerful tool to predict the effectiveness of fractionated radiotherapy against malignant tumors. (author)

  12. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae.

    Directory of Open Access Journals (Sweden)

    Johan Panek

    Full Text Available Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi and 8 days post-infection (dpi. A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras and reduction of the translation activity (EIF3 confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.

  13. Spheroid Culture of Head and Neck Cancer Cells Reveals an Important Role of EGFR Signalling in Anchorage Independent Survival.

    Science.gov (United States)

    Braunholz, Diana; Saki, Mohammad; Niehr, Franziska; Öztürk, Merve; Borràs Puértolas, Berta; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2016-01-01

    In solid tumours millions of cells are shed into the blood circulation each day. Only a subset of these circulating tumour cells (CTCs) survive, many of them presumable because of their potential to form multi-cellular clusters also named spheroids. Tumour cells within these spheroids are protected from anoikis, which allows them to metastasize to distant organs or re-seed at the primary site. We used spheroid cultures of head and neck squamous cell carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining the role of the epidermal growth factor receptor (EGFR) in cluster formation ability and cell survival after detachment from the extra-cellular matrix. The HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab (CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-independent manner by coating culture dishes with the anti-adhesive polymer poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis, clonogenic survival and EGFR signalling under such culture conditions was evaluated. The potential of spheroid formation in suspension culture was found to be positively correlated with the proliferation rate of HNSCC cell lines as well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas the addition of EGFR ligands promoted anchorage-independent cell survival and spheroid formation. Increased spheroid formation and growth were associated with persistent activation of EGFR and its downstream signalling component (MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained their clonogenic potential in the absence of cell-matrix contact. Addition of CTX under these conditions strongly inhibited colony formation in CTX-sensitive cell lines but not their resistant subclones. Altogether, EGFR activation was identified as crucial factor for anchorage-independent survival of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an attractive anti

  14. Duration of senescent cell survival in vitro as a characteristic of organism longevity, an additional to the proliferative potential of fibroblasts.

    Science.gov (United States)

    Yegorov, Yegor E; Zelenin, Alexander V

    2003-04-24

    More than 40 years have passed since the original publication by Hayflick and Moorhead led to the concept of the 'Hayflick limit' of the maximum number of divisions which somatic cells undergo in vitro. This concept is still regarded as a fundamental characteristic of species longevity. Here we want to emphasize another characteristic of somatic cells, namely, the duration of their survival in vitro in the non-dividing state after cessation of proliferation. This is suggested on the basis of results of recent experiments with so-called Japanese accelerated senescent mice. Results of these experiments reveal a good correlation between the longevity of the mice, the number of duplications of their fibroblasts in vitro, and the survival time of these cells in the non-dividing state. In routine culture conditions, cell survival time may be very long, as much as a few years. However, when the cells are grown under conditions of oxidative stress, cellular longevity is markedly shortened. This new test may serve as an additional marker of organismic longevity. The comparative value of both tests, the classical 'Hayflick limit' and the new test, is discussed.

  15. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  16. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  17. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  18. Polyamines and post-irradiation cell proliferation

    International Nuclear Information System (INIS)

    Rosiek, O.; Wronowski, T.; Lerozak, K.; Kopec, M.

    1978-01-01

    The results of three sets of experiments will be presented. Firstly polyamines and DNA content was determined in bone marrow, mesenteric lymph nodes, spleen, liver and kidney of rabbits at the 1, 5, 10 and 20th day after exposure to 600 R of X-irradiation. Polyamine concentration in bone marrow, spleen and lymph nodes was found to be markedly increased during the period of postirradiation recovery. Secondly, effect of 10 -5 M methyl glyoxalbis, guanylhydrazone (MGBG), an inhibitor of spermidine and spermine synthesis, on multiplication of X-irradiated cultures of murine lymphoblaste L5178Y-S was assessed. MGBG-induced inhibition of cell proliferation could be prevented by concurrent administration of 10 -4 M spermidine. Thirdly the influence of putrescine on bone marrow cellularity and 3 H-thymidine incorporation into bone marrow cells was investigated in X-irradiated mice. The results obtained indicate close relation of polyamines to cell proliferation processes after irradiation. (orig./AJ) [de

  19. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways.

    Science.gov (United States)

    Kornasio, Reut; Riederer, Ingo; Butler-Browne, Gillian; Mouly, Vincent; Uni, Zehava; Halevy, Orna

    2009-05-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine catabolite, has been shown to prevent exercise-induced protein degradation and muscle damage. We hypothesized that HMB would directly regulate muscle-cell proliferation and differentiation and would attenuate apoptosis, the latter presumably underlying satellite-cell depletion during muscle degradation or atrophy. Adding various concentrations of HMB to serum-starved myoblasts induced cell proliferation and MyoD expression as well as the phosphorylation of MAPK/ERK. HMB induced differentiation-specific markers, increased IGF-I mRNA levels and accelerated cell fusion. Its inhibition of serum-starvation- or staurosporine-induced apoptosis was reflected by less apoptotic cells, reduced BAX expression and increased levels of Bcl-2 and Bcl-X. Annexin V staining and flow cytometry analysis showed reduced staurosporine-induced apoptosis in human myoblasts in response to HMB. HMB enhanced the association of the p85 subunit of PI3K with tyrosine-phosphorylated proteins. HMB elevated Akt phosphorylation on Thr308 and Ser473 and this was inhibited by Wortmannin, suggesting that HMB acts via Class I PI3K. Blocking of the PI3K/Akt pathway with specific inhibitors revealed its requirement in mediating the promotive effects of HMB on muscle cell differentiation and fusion. These direct effects of HMB on myoblast differentiation and survival resembling those of IGF-I, at least in culture, suggest its positive influence in preventing muscle wasting.

  20. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  1. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  2. Local fibroblast proliferation but not influx is responsible for synovial hyperplasia in a murine model of rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Yusuke; Mizoguchi, Fumitaka; Saito, Tetsuya [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Kawahata, Kimito [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Ueha, Satoshi; Matsushima, Kouji [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Inagaki, Yutaka [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Center for Matrix Biology and Medicine, Graduate School of Medicine and the Institute of Medical Sciences, Tokai University, 143 Shimo-kasuya, Isehara, Kanagawa, 259-1193 (Japan); Miyasaka, Nobuyuki [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Kohsaka, Hitoshi, E-mail: kohsaka.rheu@tmd.ac.jp [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan)

    2016-02-12

    Synovial fibroblasts play crucial roles in inflammation and joint destruction in rheumatoid arthritis (RA). How they accumulate in the RA joints remains unclear. This study was conducted to discern whether cellular influx from the outside of the joints and local proliferation are responsible for synovial fibroblast accumulation in an animal model of RA. We found that synovial fibroblasts were identified as GFP+ cells using collagen type I alpha 2 (Col1a2)-GFP transgenic reporter mice. Then, bone marrow transplantation and parabiosis techniques were utilized to study the cellular influx. Irradiated wild-type mice were transplanted with bone marrow from Col1a2-GFP mice. Col1a2-GFP and wild-type mice were conjoined for parabiosis. The transplanted mice and the parabionts were subjected to collagen antibody-induced arthritis (CAIA). We found no GFP+ cells in the hyperplastic synovial tissues from the transplanted mice with CAIA and from the wild-type parabionts with CAIA. Furthermore, normal and CAIA synovial tissues from Col1a2-GFP mice and from fluorescent ubiquitination-based cell cycle indicator (Fucci) transgenic mice, in which cells in S/G{sub 2}/M phases of the cell cycle express Azami-Green, were studied for Ki67, a cellular proliferation marker, and vimentin, a fibroblast marker, expression. The percentages of Ki67+/GFP+ and Azami-Green+/vimentin+ cells in the CAIA synovial tissues were higher than those in the untreated synovial tissues (34% vs. 0.40% and 19% vs. 0.26%, respectively). These findings indicate that local fibroblast proliferation but not cellular influx is responsible for the synovial hyperplasia in CAIA. Suppression of proliferation of the local synovial fibroblasts should be a promising treatment for RA. - Highlights: • We studied how synovial fibroblasts accumulate in joints in a murine model of RA. • Bone marrow-derived cells did not accumulate in arthritic joints. • Synovial fibroblasts did not accumulate in arthritic joints via

  3. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes.

    Science.gov (United States)

    Pongsavee, Malinee

    2009-10-30

    Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. It showed that the immune cell proliferation (lymphocyte proliferation) was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI). The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Borax had effects on immune cell proliferation (lymphocyte proliferation) and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  4. Dendritic cells modulate burn wound healing by enhancing early proliferation.

    Science.gov (United States)

    Vinish, Monika; Cui, Weihua; Stafford, Eboni; Bae, Leon; Hawkins, Hal; Cox, Robert; Toliver-Kinsky, Tracy

    2016-01-01

    Adequate wound healing is vital for burn patients to reduce the risk of infections and prolonged hospitalization. Dendritic cells (DCs) are antigen presenting cells that release cytokines and are central for the activation of innate and acquired immune responses. Studies have showed their presence in human burn wounds; however, their role in burn wound healing remains to be determined. This study investigated the role of DCs in modulating healing responses within the burn wound. A murine model of full-thickness contact burns was used to study wound healing in the absence of DCs (CD11c promoter-driven diphtheria toxin receptor transgenic mice) and in a DC-rich environment (using fms-like tyrosine kinase-3 ligand, FL- a DC growth factor). Wound closure was significantly delayed in DC-deficient mice and was associated with significant suppression of early cellular proliferation, granulation tissue formation, wound levels of TGFβ1 and formation of CD31+ vessels in healing wounds. In contrast, DC enhancement significantly accelerated early wound closure, associated with increased and accelerated cellular proliferation, granulation tissue formation, and increased TGFβ1 levels and CD31+ vessels in healing wounds. We conclude that DCs play an important role in the acceleration of early wound healing events, likely by secreting factors that trigger the proliferation of cells that mediate wound healing. Therefore, pharmacological enhancement of DCs may provide a therapeutic intervention to facilitate healing of burn wounds. © 2016 by the Wound Healing Society.

  5. Cellular roles of ADAM12 in health and disease

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Couchman, John R

    2008-01-01

    and it is a potential biomarker for breast cancer. It is therefore important to understand ADAM12's functions. Many cellular roles for ADAM12 have been suggested. It is an active metalloprotease, and has been implicated in insulin-like growth factor (IGF) receptor signaling, through cleavage of IGF-binding proteins......, and in epidermal growth factor receptor (EGFR) pathways, via ectodomain shedding of membrane-tethered EGFR ligands. These proteolytic events may regulate diverse cellular responses, such as altered cell differentiation, proliferation, migration, and invasion. ADAM12 may also regulate cell-cell and cell...... to or from the cell interior. These ADAM12-mediated cellular effects appear to be critical events in both biological and pathological processes. This review presents current knowledge on ADAM12 functions gained from in vitro and in vivo observations, describes ADAM12's role in both normal physiology...

  6. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    International Nuclear Information System (INIS)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke; Katoh, Kazuo; Obara, Yoshiaki

    2008-01-01

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca 2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival

  7. Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor-γ: Therapeutic Implications for Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Florence Gizard

    2008-01-01

    Full Text Available Proliferation of vascular smooth muscle cells (SMCs is a critical process for the development of atherosclerosis and complications of procedures used to treat atherosclerotic diseases, including postangioplasty restenosis, vein graft failure, and transplant vasculopathy. Peroxisome proliferator-activated receptor (PPAR γ is a member of the nuclear hormone receptor superfamily and the molecular target for the thiazolidinediones (TZD, used clinically to treat insulin resistance in patients with type 2 diabetes. In addition to their efficacy to improve insulin sensitivity, TZD exert a broad spectrum of pleiotropic beneficial effects on vascular gene expression programs. In SMCs, PPARγ is prominently upregulated during neointima formation and suppresses the proliferative response to injury of the arterial wall. Among the molecular target genes regulated by PPARγ in SMCs are genes encoding proteins involved in the regulation of cell-cycle progression, cellular senescence, and apoptosis. This inhibition of SMC proliferation is likely to contribute to the prevention of atherosclerosis and postangioplasty restenosis observed in animal models and proof-of-concept clinical studies. This review will summarize the transcriptional target genes regulated by PPARγ in SMCs and outline the therapeutic implications of PPARγ activation for the treatment and prevention of atherosclerosis and its complications.

  8. In silico characterization of cell-cell interactions using a cellular automata model of cell culture.

    Science.gov (United States)

    Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun

    2017-07-14

    Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.

  9. SCFβ-TRCP targets MTSS1 for ubiquitination-mediated destruction to regulate cancer cell proliferation and migration

    Science.gov (United States)

    Tron, Adriana E.; Wang, Zhiwei; Sun, Liankun; Inuzuka, Hiroyuki; Wei, Wenyi

    2013-01-01

    Metastasis suppressor 1 (MTSS1) is an important tumor suppressor protein, and loss of MTSS1 expression has been observed in several types of human cancers. Importantly, decreased MTSS1 expression is associated with more aggressive forms of breast and prostate cancers, and with poor survival rate. Currently, it remains unclear how MTSS1 is regulated in cancer cells, and whether reduced MTSS1 expression contributes to elevated cancer cell proliferation and migration. Here we report that the SCFβ-TRCP regulates MTSS1 protein stability by targeting it for ubiquitination and subsequent destruction via the 26S proteasome. Notably, depletion of either Cullin 1 or β-TRCP1 led to increased levels of MTSS1. We further demonstrated a crucial role for Ser322 in the DSGXXS degron of MTSS1 in governing SCFβ-TRCP-mediated MTSS1 degradation. Mechanistically, we defined that Casein Kinase Iδ (CKIδ) phosphorylates Ser322 to trigger MTSS1's interaction with β-TRCP for subsequent ubiquitination and degradation. Importantly, introducing wild-type MTSS1 or a non-degradable MTSS1 (S322A) into breast or prostate cancer cells with low MTSS1 expression significantly inhibited cellular proliferation and migration. Moreover, S322A-MTSS1 exhibited stronger effects in inhibiting cell proliferation and migration when compared to ectopic expression of wild-type MTSS1. Therefore, our study provides a novel molecular mechanism for the negative regulation of MTSS1 by β-TRCP in cancer cells. It further suggests that preventing MTSS1 degradation could be a possible novel strategy for clinical treatment of more aggressive breast and prostate cancers. PMID:24318128

  10. The role of nuclear factor κB in the cellular response to different radiation qualities

    International Nuclear Information System (INIS)

    Koch, Kristina

    2013-01-01

    line was characterized concerning proliferation, cell cycle progression and gene expression. Additionally, the effects of the RelA knockdown on cell cycle progression, cellular survival and gene expression after exposure to low and high LET radiation were investigated. It was shown that activation of NF-κB depends on radiation quality and quantity. Experiments with chemical inhibitors revealed that NF-κB activation by ionizing radiation is strictly ATM dependent and degradation of the NF-κB inhibitor IκB by the proteasome is essential for both the classical and genotoxic stress-induced NF-κB pathway. Absence of NF-κB dimers containing RelA resulted in a prolonged lag-phase but did not affect cell cycle progression significantly in untreated cells. After irradiation, a dose and radiation quality dependent arrest in the G2 phase of the cell cycle occurred and also upon downregulation of RelA expression. RelA knockdown resulted in higher sensitivity of HEK cells to the killing effect of X-irradiation. In contrast, RelA knockdown did not further reduce the cellular survival after heavy ion exposure. Further, NF-κB target genes were not inducible in the RelA knockdown cell line. NF-κB-dependent gene expression rely on radiation dose and LET. Chemokine expression (e.g. CXCL1, 2, 8 and 10) was induced in a proportional manner to radiation quality and quantity, emphasizing the role of NF-κB in the bystander effect. These NF-κB regulated genes are interesting targets for countermeasure development against the effects of space radiation.

  11. The role of nuclear factor κB in the cellular response to different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Kristina

    2013-04-11

    line was characterized concerning proliferation, cell cycle progression and gene expression. Additionally, the effects of the RelA knockdown on cell cycle progression, cellular survival and gene expression after exposure to low and high LET radiation were investigated. It was shown that activation of NF-κB depends on radiation quality and quantity. Experiments with chemical inhibitors revealed that NF-κB activation by ionizing radiation is strictly ATM dependent and degradation of the NF-κB inhibitor IκB by the proteasome is essential for both the classical and genotoxic stress-induced NF-κB pathway. Absence of NF-κB dimers containing RelA resulted in a prolonged lag-phase but did not affect cell cycle progression significantly in untreated cells. After irradiation, a dose and radiation quality dependent arrest in the G2 phase of the cell cycle occurred and also upon downregulation of RelA expression. RelA knockdown resulted in higher sensitivity of HEK cells to the killing effect of X-irradiation. In contrast, RelA knockdown did not further reduce the cellular survival after heavy ion exposure. Further, NF-κB target genes were not inducible in the RelA knockdown cell line. NF-κB-dependent gene expression rely on radiation dose and LET. Chemokine expression (e.g. CXCL1, 2, 8 and 10) was induced in a proportional manner to radiation quality and quantity, emphasizing the role of NF-κB in the bystander effect. These NF-κB regulated genes are interesting targets for countermeasure development against the effects of space radiation.

  12. Tissue expander stimulated lengthening of arteries (TESLA) induces early endothelial cell proliferation in a novel rodent model.

    Science.gov (United States)

    Potanos, Kristina; Fullington, Nora; Cauley, Ryan; Purcell, Patricia; Zurakowski, David; Fishman, Steven; Vakili, Khashayar; Kim, Heung Bae

    2016-04-01

    We examine the mechanism of aortic lengthening in a novel rodent model of tissue expander stimulated lengthening of arteries (TESLA). A rat model of TESLA was examined with a single stretch stimulus applied at the time of tissue expander insertion with evaluation of the aorta at 2, 4 and 7day time points. Measurements as well as histology and proliferation assays were performed and compared to sham controls. The aortic length was increased at all time points without histologic signs of tissue injury. Nuclear density remained unchanged despite the increase in length suggesting cellular hyperplasia. Cellular proliferation was confirmed in endothelial cell layer by Ki-67 stain. Aortic lengthening may be achieved using TESLA. The increase in aortic length can be achieved without tissue injury and results at least partially from cellular hyperplasia. Further studies are required to define the mechanisms involved in the growth of arteries under increased longitudinal stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    International Nuclear Information System (INIS)

    Cameron, Jennifer E.; Fewell, Claire; Yin, Qinyan; McBride, Jane; Wang Xia; Lin Zhen

    2008-01-01

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers

  14. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  15. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  16. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  17. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  18. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance

    Directory of Open Access Journals (Sweden)

    Anna E. Maciag

    2013-01-01

    Full Text Available JS-K is a nitric oxide (NO-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.

  19. Platelet-released growth factors inhibit proliferation of primary keratinocytes in vitro.

    Science.gov (United States)

    Bayer, Andreas; Tohidnezhad, Mersedeh; Berndt, Rouven; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Simanski, Maren; Gläser, Regine; Harder, Jürgen

    2018-01-01

    Autologous thrombocyte concentrate lysates as platelet-released growth factors (PRGF) or Vivostat Platelet Rich Fibrin (PRF ® ) represent important tools in modern wound therapy, especially in the treatment of chronic, hard-to-heal or infected wounds. Nevertheless, underlying cellular and molecular mechanisms of the beneficial clinical effects of a local wound therapy with autologous thrombocyte concentrate lysates are poorly understood. Recently, we have demonstrated that PRGF induces antimicrobial peptides in primary keratinocytes and accelerates keratinocytes' differentiation. In the present study we analyzed the influence of PRGF on primary human keratinocytes' proliferation. Using the molecular proliferation marker Ki-67 we observed a concentration- and time dependent inhibition of Ki-67 gene expression in PRGF treated primary keratinocytes. These effects were independent from the EGFR- and the IL-6-R pathway. Inhibition of primary keratinocytes' proliferation by PRGF treatment was confirmed in colorimetric cell proliferation assays. Together, these data indicate that the clinically observed positive effects of autologous thrombocytes concentrates in the treatment of chronic, hard-to-heal wounds are not based on an increased keratinocytes proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. NF-κB2 mutation targets survival, proliferation and differentiation pathways in the pathogenesis of plasma cell tumors

    Directory of Open Access Journals (Sweden)

    McCarthy Brian A

    2012-05-01

    Full Text Available Abstract Background Abnormal NF-κB2 activation has been implicated in the pathogenesis of multiple myeloma, a cancer of plasma cells. However, a causal role for aberrant NF-κB2 signaling in the development of plasma cell tumors has not been established. Also unclear is the molecular mechanism that drives the tumorigenic process. We investigated these questions by using a transgenic mouse model with lymphocyte-targeted expression of p80HT, a lymphoma-associated NF-κB2 mutant, and human multiple myeloma cell lines. Methods We conducted a detailed histopathological characterization of lymphomas developed in p80HT transgenic mice and microarray gene expression profiling of p80HT B cells with the goal of identifying genes that drive plasma cell tumor development. We further verified the significance of our findings in human multiple myeloma cell lines. Results Approximately 40% of p80HT mice showed elevated levels of monoclonal immunoglobulin (M-protein in the serum and developed plasma cell tumors. Some of these mice displayed key features of human multiple myeloma with accumulation of plasma cells in the bone marrow, osteolytic bone lesions and/or diffuse osteoporosis. Gene expression profiling of B cells from M-protein-positive p80HT mice revealed aberrant expression of genes known to be important in the pathogenesis of multiple myeloma, including cyclin D1, cyclin D2, Blimp1, survivin, IL-10 and IL-15. In vitro assays demonstrated a critical role of Stat3, a key downstream component of IL-10 signaling, in the survival of human multiple myeloma cells. Conclusions These findings provide a mouse model for human multiple myeloma with aberrant NF-κB2 activation and suggest a molecular mechanism for NF-κB2 signaling in the pathogenesis of plasma cell tumors by coordinated regulation of plasma cell generation, proliferation and survival.

  1. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Science.gov (United States)

    Monteagudo, Ángel; Santos, José

    2015-01-01

    Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA) being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC) and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  2. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    OpenAIRE

    Clemens Kiecker; Anthony Graham; Malcolm Logan

    2016-01-01

    A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in compete...

  3. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  4. Determining Lineage Pathways from Cellular Barcoding Experiments

    Directory of Open Access Journals (Sweden)

    Leïla Perié

    2014-02-01

    Full Text Available Cellular barcoding and other single-cell lineage-tracing strategies form experimental methodologies for analysis of in vivo cell fate that have been instrumental in several significant recent discoveries. Due to the highly nonlinear nature of proliferation and differentiation, interrogation of the resulting data for evaluation of potential lineage pathways requires a new quantitative framework complete with appropriate statistical tests. Here, we develop such a framework, illustrating its utility by analyzing data from barcoded multipotent cells of the blood system. This application demonstrates that the data require additional paths beyond those found in the classical model, which leads us to propose that hematopoietic differentiation follows a loss of potential mechanism and to suggest further experiments to test this deduction. Our quantitative framework can evaluate the compatibility of lineage trees with barcoded data from any proliferating and differentiating cell system.

  5. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation.

    Science.gov (United States)

    Kahn, Joy; Byk, Tamara; Jansson-Sjostrand, Lottie; Petit, Isabelle; Shivtiel, Shoham; Nagler, Arnon; Hardan, Izhar; Deutsch, Varda; Gazit, Zulma; Gazit, Dan; Karlsson, Stefan; Lapidot, Tsvee

    2004-04-15

    A major limitation to clinical stem cell-mediated gene therapy protocols is the low levels of engraftment by transduced progenitors. We report that CXCR4 overexpression on human CD34+ progenitors using a lentiviral gene transfer technique helped navigate these cells to the murine bone marrow and spleen in response to stromal-derived factor 1 (SDF-1) signaling. Cells overexpressing CXCR4 exhibited significant increases in SDF-1-mediated chemotaxis and actin polymerization compared with control cells. A major advantage of CXCR4 overexpression was demonstrated by the ability of transduced CD34+ cells to respond to lower, physiologic levels of SDF-1 when compared to control cells, leading to improved SDF-1-induced migration and proliferation/survival, and finally resulting in significantly higher levels of in vivo repopulation of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice including primitive CD34+/CD38(-/low) cells. Importantly, no cellular transformation was observed following transduction with the CXCR4 vector. Unexpectedly, we documented lack of receptor internalization in response to high levels of SDF-1, which can also contribute to increased migration and proliferation by the transduced CD34+ cells. Our results suggest CXCR4 overexpression for improved definitive human stem cell motility, retention, and multilineage repopulation, which could be beneficial for in vivo navigation and expansion of hematopoietic progenitors.

  6. The impact of phosphatases on proliferative and survival signaling in cancer.

    Science.gov (United States)

    Narla, Goutham; Sangodkar, Jaya; Ryder, Christopher B

    2018-05-03

    The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.

  7. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    Science.gov (United States)

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  8. Proliferation marker pKi-67 occurs in different isoforms with various cellular effects.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Finniss, Susan; Bögler, Oliver; Duchrow, Michael

    2004-04-15

    The Ki-67 antigen, pKi-67, is a commonly used proliferation marker in research and pathology. It has been recognized that the protein exists in two different splice variants that differ in one exon. In the current work, we present three new splice variants of human pKi-67 consisting of two naturally occurring isoforms and one atypical version. Additionally, data is presented indicating that alternative splicing of the pKi-67 N-terminus is common in tumor cell lines. Analyzing 93 tissues mainly consisting of brain tumor specimens, we found evidence that long and short isoform can be expressed independently of each other. Induction of mitosis in human peripheral blood mononuclear cells revealed that short pKi-67 appears earlier in the cell cycle than the long isoform and reaches its expression maximum when transcription of the latter sets in. Finally, transfection of mammalian culture cells with exon 7 (specific for the long pKi-67 isoform and not present in the short isoform) in a tetracycline regulated expression system decreased the rate of cell proliferation without affecting the cell cycle. In summary, we present evidence that the pKi-67 N-terminus is differentially spliced resulting in at least five different isoforms with different functions. Copyright 2004 Wiley-Liss, Inc.

  9. STAT proteins: from normal control of cellular events to tumorigenesis.

    Science.gov (United States)

    Calò, Valentina; Migliavacca, Manuela; Bazan, Viviana; Macaluso, Marcella; Buscemi, Maria; Gebbia, Nicola; Russo, Antonio

    2003-11-01

    Signal transducers and activators of transcription (STAT) proteins comprise a family of transcription factors latent in the cytoplasm that participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis, and angiogenesis following cytokine, growth factor, and hormone signaling. STATs are activated by tyrosine phosphorylation, which is normally a transient and tightly regulates process. Nevertheless, several constitutively activated STATs have been observed in a wide number of human cancer cell lines and primary tumors, including blood malignancies and solid neoplasias. STATs can be divided into two groups according to their specific functions. One is made up of STAT2, STAT4, and STAT6, which are activated by a small number of cytokines and play a distinct role in the development of T-cells and in IFNgamma signaling. The other group includes STAT1, STAT3, and STAT5, activated in different tissues by means of a series of ligands and involved in IFN signaling, development of the mammary gland, response to GH, and embriogenesis. This latter group of STATS plays an important role in controlling cell-cycle progression and apoptosis and thus contributes to oncogenesis. Although an increased expression of STAT1 has been observed in many human neoplasias, this molecule can be considered a potential tumor suppressor, since it plays an important role in growth arrest and in promoting apoptosis. On the other hand, STAT3 and 5 are considered as oncogenes, since they bring about the activation of cyclin D1, c-Myc, and bcl-xl expression, and are involved in promoting cell-cycle progression, cellular transformation, and in preventing apoptosis.

  10. Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Rigbolt, Kristoffer T.G.; Emdal, Kristina B

    2013-01-01

    The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferation...

  11. Influence of beam shape on in-vitro cellular transformations in human skin fibroblasts

    CSIR Research Space (South Africa)

    Mthunzi, P

    2005-01-01

    Full Text Available of wound healing through stimulating cell proliferation, accelerating collagen synthesis and increasing ATP synthesis in mitochondria to name but a few2. This study focused on an in-vitro analysis of the cellular responses induced by treatment with three...

  12. Decreased tumor cell proliferation as an indicator of the effect of preoperative radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Adell, Gunnar; Zhang Hong; Jansson, Agneta; Sun Xiaofeng; Staal, Olle; Nordenskjoeld, Bo

    2001-01-01

    Background: Rectal cancer is a common malignancy, with significant local recurrence and death rates. Preoperative radiotherapy and refined surgical technique can improve local control rates and disease-free survival. Purpose: To investigate the relationship between the tumor growth fraction in rectal cancer measured with Ki-67 and the outcome, with and without short-term preoperative radiotherapy. Method: Ki-67 (MIB-1) immunohistochemistry was used to measure tumor cell proliferation in the preoperative biopsy and the surgical specimen. Materials: Specimens from 152 patients from the Southeast Swedish Health Care region were included in the Swedish rectal cancer trial 1987-1990. Results: Tumors with low proliferation treated with preoperative radiotherapy had a significantly reduced recurrence rate. The influence on death from rectal cancer was shown only in the univariate analysis. Preoperative radiotherapy of tumors with high proliferation did not significantly improve local control and disease-free survival. The interaction between Ki-67 status and the benefit of radiotherapy was significant for the reduced recurrence rate (p=0.03), with a trend toward improved disease-free survival (p=0.08). In the surgery-alone group, Ki-67 staining did not significantly correlate with local recurrence or survival rates. Conclusion: Many Ki-67 stained tumor cells in the preoperative biopsy predicts an increased treatment failure rate after preoperative radiotherapy of rectal cancer

  13. KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Garry L Coles

    2015-10-01

    Full Text Available The cell cycle must be tightly coordinated for proper control of embryonic development and for the long-term maintenance of organs such as the lung. There is emerging evidence that Kinesin family member 7 (Kif7 promotes Hedgehog (Hh signaling during embryonic development, and its misregulation contributes to diseases such as ciliopathies and cancer. Kif7 encodes a microtubule interacting protein that controls Hh signaling through regulation of microtubule dynamics within the primary cilium. However, whether Kif7 has a function in nonciliated cells remains largely unknown. The role Kif7 plays in basic cell biological processes like cell proliferation or cell cycle progression also remains to be elucidated. Here, we show that Kif7 is required for coordination of the cell cycle, and inactivation of this gene leads to increased cell proliferation in vivo and in vitro. Immunostaining and transmission electron microscopy experiments show that Kif7dda/dda mutant lungs are hyperproliferative and exhibit reduced alveolar epithelial cell differentiation. KIF7 depleted C3H10T1/2 fibroblasts and Kif7dda/dda mutant mouse embryonic fibroblasts have increased growth rates at high cellular densities, suggesting that Kif7 may function as a general regulator of cellular proliferation. We ascertained that in G1, Kif7 and microtubule dynamics regulate the expression and activity of several components of the cell cycle machinery known to control entry into S phase. Our data suggest that Kif7 may function to regulate the maintenance of the respiratory airway architecture by controlling cellular density, cell proliferation, and cycle exit through its role as a microtubule associated protein.

  14. Piezo proteins: regulators of mechanosensation and other cellular processes.

    Science.gov (United States)

    Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G

    2014-11-14

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Implications of TGFβ on transcriptome and cellular biofunctions of palatal mesenchyme

    Directory of Open Access Journals (Sweden)

    Xiujuan eZhu

    2012-04-01

    Full Text Available Development of the palate comprises sequential stages of growth, elevation and fusion of the palatal shelves. The mesenchymal component of palates plays a major role in early phases of palatogenesis, such as growth and elevation. Failure in these steps may result in cleft palate, the second most common birth defect in the world. These early stages of palatogenesis require precise and chronological orchestration of key physiological processes, such as growth, proliferation, differentiation, migration, and apoptosis. There is compelling evidence for the vital role of TGFβ-mediated regulation of palate development. We hypothesized that the isoforms of TGFβ regulate different cellular biofunctions of the palatal mesenchyme to various extents. Human embryonic palatal mesenchyme (HEPM cells were treated with TGFβ1, β2, and β3 for microarray-based gene expression studies in order to identify the roles of TGFβ in the transcriptome of the palatal mesenchyme. Following normalization and modeling of 28,869 human genes, 566 transcripts were detected as differentially expressed in TGFβ-treated HEPM cells. Out of these altered transcripts, 234 of them were clustered in cellular biofunctions, including growth and proliferation, development, morphology, movement, cell cycle, and apoptosis. Biological interpretation and network analysis of the genes active in cellular biofunctions were performed using IPA. Among the differentially expressed genes, 11 of them were previously identified as being crucial for palatogenesis (EDN1, INHBA, LHX8, PDGFC, PIGA, RUNX1, SNAI1, SMAD3, TGFβ1, TGFβ2, and TGFβR1. These genes were used for a merged interaction network with cellular behaviors. Overall, we have determined that more than 2% of human transcripts were differentially expressed in response to TGFβ treatment in HEPM cells. Our results suggest that both TGFβ1 and TGFβ2 orchestrate major cellular biofunctions within the palatal mesenchyme in vitro by

  16. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-04-01

    Full Text Available IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS in the presence of dead and dying cells, their supernatants (SNs, or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  17. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis).

    Science.gov (United States)

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K; Mohanty, Ashok K; Mukesh, Manishi

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  18. CytotoxicEffect of Curcumin on Proliferation of HT_29 Cell Line

    Directory of Open Access Journals (Sweden)

    Mohamad Nabiuni

    2017-10-01

    Conclusion:According to molecular mechanisms of cell proliferation and curcumin ability in the induction of pro_apoptotic proteins and the inhibition of anti_apoptotic proteins as well as inhibition of as survival pathways,like NF_KB and AKT, this predisposition makes curcumin a good anticancer drug.

  19. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Aldine R. Amiel

    2015-12-01

    Full Text Available Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation.

  20. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    Science.gov (United States)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  1. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    Directory of Open Access Journals (Sweden)

    Pongsavee Malinee

    2009-10-01

    Full Text Available Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. Results It showed that the immune cell proliferation (lymphocyte proliferation was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI. The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Conclusion Borax had effects on immune cell proliferation (lymphocyte proliferation and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  2. Lymphocyte Proliferation Response in Patients with Acute and Chronic Brucellosis

    Directory of Open Access Journals (Sweden)

    Khadijeh Khosravi

    2016-05-01

    Full Text Available Abstract Background: Brucella is an intracellular bacterium that causes chronic infection in humans and domestic animals. The underlying mechanisms that cause prolonged illness are complex and not fully understood. Immune responses may have an important role in the chronicity of infection. Here, we evaluated the lymphocyte proliferation responses in patients with chronic and acute brucellosis. Materials and Methods: This descriptive - analytical study was performed on 22 patients with acute brucellosis, 21 patients with chronic brucellosis and 21 healthy people with the similar age, sex and genetic background as control group. Peripheral lymphocytes were isolated using Ficoll and the cellular proliferation was quantified in presence of antigen and phytohemaglutinin-A by MTT method. Results: The brucella antigen-specific stimulation index in patients with chronic brucellosis was significantly lower than the acute brucellosis patients (p=0.001. Also, stimulating the lymphocytes with phytohemaglutinin-A has shown that proliferative response in patients with chronic brucellosis was lower than the other groups (p=0.04. Conclusion: The results indicated that chronic brucellosis inhibits lymphocyte proliferation. This inhibition of lymphocyte proliferation may be due to the induction of anergy.

  3. Femtosecond laser fabricated spike structures for selective control of cellular behavior.

    Science.gov (United States)

    Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N

    2010-09-01

    In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.

  4. MAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin.

    Science.gov (United States)

    Nardiello, Tricia; Jungbluth, Achim A; Mei, Anna; Diliberto, Maurizio; Huang, Xiangao; Dabrowski, Ania; Andrade, Valéria C C; Wasserstrum, Rebecca; Ely, Scott; Niesvizky, Ruben; Pearse, Roger; Coleman, Morton; Jayabalan, David S; Bhardwaj, Nina; Old, Lloyd J; Chen-Kiang, Selina; Cho, Hearn Jay

    2011-07-01

    The type I Melanoma Antigen GEnes (MAGEs) are commonly expressed in cancers, fueling speculation that they may be therapeutic targets with oncogenic potential. They form complexes with RING domain proteins that have E3 ubiquitin ligase activity and promote p53 degradation. MAGE-A3 was detected in tumor specimens from patients with multiple myeloma and its expression correlated with higher frequencies of Ki-67(+) malignant cells. In this report, we examine the mechanistic role of MAGE-A in promoting survival of proliferating multiple myeloma cells. The impact of MAGE-A3 expression on survival and proliferation in vivo was examined by immunohistochemical analysis in an independent set of tumor specimens segregated into two groups: newly diagnosed, untreated patients and patients who had relapsed after chemotherapy. The mechanisms of MAGE-A3 activity were investigated in vitro by silencing its expression by short hairpin RNA interference in myeloma cell lines and primary cells and assessing the resultant effects on proliferation and apoptosis. MAGE-A3 was detected in a significantly higher percentage of relapsed patients compared with newly diagnosed, establishing a novel correlation with progression of disease. Silencing of MAGE-A showed that it was dispensable for cell cycling, but was required for survival of proliferating myeloma cells. Loss of MAGE-A led to apoptosis mediated by p53-dependent activation of proapoptotic Bax expression and by reduction of survivin expression through both p53-dependent and -independent mechanisms. These data support a role for MAGE-A in the pathogenesis and progression of multiple myeloma by inhibiting apoptosis in proliferating myeloma cells through two novel mechanisms.

  5. Effects of electrical stimulation on cell proliferation and apoptosis.

    Science.gov (United States)

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  6. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  7. Gene Expression of Glucose Transporter 1 (GLUT1, Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

    Directory of Open Access Journals (Sweden)

    Andreas Kjaer

    2013-10-01

    Full Text Available Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs and hexokinases (HKs, which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET. The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs in comparison with 14 colorectal adenocarcinomas (CRAs. The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38% compared to CRAs (86%, P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111 and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53. There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047, but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36% than CRAs (86%, (P = 0.04. The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

  8. Chemical radiosensitization and quality of cellular damage in bacteria exposed to gamma rays

    International Nuclear Information System (INIS)

    Nair, C.K.K.; Pradhan, D.S.; Sreenivasan, A.

    1976-01-01

    Iodoacetic acid (IAA) and N-ethylmaleimide (NEM) when present during exposure of Streptococcus faecalis cells to gamma radiation enhance radiation-induced lethality under both anoxic and aerated conditions. The changes brought about by this radiosensitization in cellular functions have been studied with a view to elucidating the mechanism responsible for the increased loss of viability. The quality of cellular damage in chemical radiosensitization was investigated by correlating survival and the biosynthetic capacity of an irradiated cell population. The relationship between surviving fraction and extent of incorporation of 3 H-thymidine into DNA was found to be unaffected regardless of whether the sensitizers (IAA or NEM) were present or absent during irradiation under anoxia. However, under the oxic condition of irradiation the survival--DNA-labeling relationship was completely different in the presence and in the absence of the sensitizers

  9. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Directory of Open Access Journals (Sweden)

    Ángel Monteagudo

    Full Text Available Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  10. Clinicopathological and immunohistochemical characterization of papillary proliferation of the endometrium: A single institutional experience.

    Science.gov (United States)

    Park, Cheol Keun; Yoon, Gun; Cho, Yoon Ah; Kim, Hyun-Soo

    2016-06-28

    Papillary proliferation of the endometrium is an unusual lesion that is composed of papillae with fibrovascular stromal cores covered with benign-appearing glandular epithelium. We studied the clinicopathological and immunohistochemical features of four cases of endometrial papillary proliferations. All patients were postmenopausal. Two lesions were incidental findings in hysterectomy specimens, and two lesions were detected in endometrial curettage specimens. Based on the degree of architectural complexity and extent of proliferation, we classified papillary proliferations histopathologically into "simple" or "complex" growth patterns. Three cases were classified as simple papillary proliferation, and one case was classified as complex papillary proliferation. Simple papillary proliferations were characterized by slender papillae with delicate stromal cores. In contrast, complex papillary proliferations had intracystic papillary projections and cellular clusters with frequent branching and occasional cytological atypia. All cases showed coexistent metaplastic epithelial changes, including mucinous metaplasia, eosinophilic cell change, and ciliated cell metaplasia. One patient with simple papillary proliferations had coexistent well-differentiated endometrioid carcinoma. One patient had subsequent hyperplasia without atypia, and another patient had subsequent atypical hyperplasia/endometrioid intraepithelial neoplasia; both patients underwent total hysterectomy within four months. Our observations are consistent with previous data demonstrating that endometrial papillary proliferations coexist with or develop into atypical hyperplasia/endometrioid intraepithelial neoplasia or endometrioid carcinoma. It is very important for pathologists to discriminate papillary proliferations from neoplastic lesions (including atypical hyperplasia/endometrioid intraepithelial neoplasia and well-differentiated endometrioid carcinoma) and benign mimickers (including papillary

  11. Diurnal variations in proliferation and crypt survival suggest a small target cell population in mouse colon

    International Nuclear Information System (INIS)

    Dobbin, J.; Hamilton, E.

    1986-01-01

    Male C57BLasup(t) mice of two ages, 3-5 months (young) and 14-15 months (old) were given 11 or 15Gy whole body irradiation at different times through the day. The mice were killed after 4.5 days and the number of surviving crypts per circumference of jejunum, ileum, transverse colon and descending colon were scored. These results show crypt survival in the small and large intestine of 15-month-old mice. In the ileum the maximum crypt survival was found at 04.00 h and the minimum at 08.00 h. In the jejunum and both regions of the colon the maximum crypt survival occurred at 16.00 h. The nadir of crypt survival after 15 Gy was at 04.00 h in the jejunum and at 20.00 and 24.00 h in the transverse and descending colon, respectively. In young mice, crypt survival levels were similar to those found in old animals except at 04.00 h. when survival in the jejunum and ileum fell to 0.0004+-0.0002 and 0.0007+-0.0004, respectively. The lowest crypt survival in the colon of young mice also occurred at 04.00 h and in all four tissues the greatest number of crypts survived irradiation at 24.00 h. (author)

  12. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    Science.gov (United States)

    Koehler, Christopher L; Perkins, Guy A; Ellisman, Mark H; Jones, D Leanne

    2017-08-07

    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles. © 2017 Koehler et al.

  13. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    Science.gov (United States)

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Mandula Borjigin

    2012-01-01

    Full Text Available Gene editing is a process by which single base mutations can be corrected, in the context of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs. The survival and proliferation of the corrected cells bearing modified genes, however, are impeded by a phenomenon known as reduced proliferation phenotype (RPP; this is a barrier to practical implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates on which modified cells were allowed to recover, grow, and expand after gene editing. Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced green fluorescent protein (eGFP gene and corrected by gene editing, proliferate on polylysine or fibronectin-coated polycaprolactone (PCL nanofiber scaffolds. In contrast, no cells from the same reaction protocol plated on both regular dish surfaces and polylysine (or fibronectin-coated dish surfaces proliferate. Therefore, growing genetically modified (edited cells on electrospun nanofiber scaffolds promotes the reversal of the RPP and increases the potential of gene editing as an ex vivo gene therapy application.

  15. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    Science.gov (United States)

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  16. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    International Nuclear Information System (INIS)

    Zhang, Yaonan; Wang, Xiao; Qiu, Yiwei; Cornish, Jillian; Carr, Andrew J.; Xia, Zhidao

    2014-01-01

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes

  17. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yaonan [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Department of Orthopaedic, Beijing Hospital of Ministry of Public Health, Beijing, China 100730 (China); Wang, Xiao; Qiu, Yiwei [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Cornish, Jillian [Department of Medicine, University of Auckland, Private Bag 92019, Auckland (New Zealand); Carr, Andrew J. [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Xia, Zhidao, E-mail: z.xia@swansea.ac.uk [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom)

    2014-11-14

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes.

  18. Avaliação da proliferação celular como indicador prognóstico para mastocitomas cutâneos caninos Evaluation of cellular proliferation as prognostic indicator for canine cutaneous mast cell tumors

    Directory of Open Access Journals (Sweden)

    Ricardo De F. Strefezzi

    2010-07-01

    Full Text Available Este estudo teve como objetivo avaliar o valor prognóstico de marcadores de proliferação celular em casos de mastocitomas cutâneos caninos. Vinte e três casos foram analisados quanto à expressão imuno-histoquímica de Ki67 e do Antígeno Nuclear de Proliferação Celular (PCNA, sendo subsequentemente acompanhados clinicamente. Observou-se que a expressão de Ki67 mantém relação negativa com a tradicional graduação histopatológica (p= 0,0418; pThis study evaluated the prognostic value of cell proliferation markers for canine cutaneous mast cell tumor cases. Twenty-three cases were analyzed with regard to immuno-histochemical expression of Ki67 and Proliferating Cell Nuclear Antigen (PCNA, and were clinically followed up. Ki67 expression was related to the traditional histopathological grading (p= 0.0418; p<0.05 between grades I and III, and was a reliable indicator of post-surgical survival (p=0.0089. PCNA immunoexpression did not show statistically significant values in the prediction of disease-related mortality and survival, although it is correlated to Ki67 expression. These results confirm that information about tumoral proliferative activity through Ki67 immunohistochemical detection can improve canine cutaneous mast cell tumor grading with regard to malignancy.

  19. Effects of IGFBP-2 on proliferation and differentiation in neural stem cell line C17.2

    Directory of Open Access Journals (Sweden)

    Deng Y

    2017-07-01

    Full Text Available Yujia Deng,1 Lei Wang,1,2 Lite Ge,1,3 Da Duan,1 Yi Zhuo,1 Ting Yuan,1 Weiping Yan,1 Peiqi Huang,1 Xiaohua Teng,1 Ming Lu1,3 1Department of Neurosurgery, The Second Affiliated Hospital of Hunan Normal University (163 Hospital of the People’s Liberation Army, Changsha, 2Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Central South University, Haikou, 3Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China Objective: Insulin-like growth factor binding protein-2 (IGFBP-2, a member of a highly conserved family of six insulin-like growth factor binding proteins (IGFBPs, can regulate several cellular processes through IGF-dependent or IGF-independent pathway. Recent studies have provided solid evidence for the importance to delineate that olfactory ensheathing cells (OEC-conditioned medium (OCM can not only facilitate the differentiation of neural stem cell line (C17.2 into neurons, but also promote the survival and proliferation. We have previously reported that IGFBP-2 was detected in OCM. This study is designed to investigate the roles of IGFBP-2 for the regulation of C17.2 differentiation and proliferation.Methods and results: IGFBP-2 was identified and upregulated in OCM to compare with astrocytes-conditioned medium by shotgun proteomics and semiquantitative proteomic analysis. In order to investigate whether exogenous IGFBP-2 could stimulate proliferation in C17.2 cells and differentiate it into glia or neuron, we used various concentrations of IGFBP-2 to induce C17.2 cells which were cultured in DMEM/F12. The results showed that exogenous IGFBP-2 can promote proliferation in C17.2 cells, but had little effect on differentiation. Interestingly, we also found that IGFBP-2 could induce C17.2 cells to differentiate into astrocytes, while inhibiting their differentiation into neurons in a dose

  20. A Multi-stage Representation of Cell Proliferation as a Markov Process.

    Science.gov (United States)

    Yates, Christian A; Ford, Matthew J; Mort, Richard L

    2017-12-01

    The stochastic simulation algorithm commonly known as Gillespie's algorithm (originally derived for modelling well-mixed systems of chemical reactions) is now used ubiquitously in the modelling of biological processes in which stochastic effects play an important role. In well-mixed scenarios at the sub-cellular level it is often reasonable to assume that times between successive reaction/interaction events are exponentially distributed and can be appropriately modelled as a Markov process and hence simulated by the Gillespie algorithm. However, Gillespie's algorithm is routinely applied to model biological systems for which it was never intended. In particular, processes in which cell proliferation is important (e.g. embryonic development, cancer formation) should not be simulated naively using the Gillespie algorithm since the history-dependent nature of the cell cycle breaks the Markov process. The variance in experimentally measured cell cycle times is far less than in an exponential cell cycle time distribution with the same mean.Here we suggest a method of modelling the cell cycle that restores the memoryless property to the system and is therefore consistent with simulation via the Gillespie algorithm. By breaking the cell cycle into a number of independent exponentially distributed stages, we can restore the Markov property at the same time as more accurately approximating the appropriate cell cycle time distributions. The consequences of our revised mathematical model are explored analytically as far as possible. We demonstrate the importance of employing the correct cell cycle time distribution by recapitulating the results from two models incorporating cellular proliferation (one spatial and one non-spatial) and demonstrating that changing the cell cycle time distribution makes quantitative and qualitative differences to the outcome of the models. Our adaptation will allow modellers and experimentalists alike to appropriately represent cellular

  1. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don).

    Science.gov (United States)

    Forest, Loïc; Demongeot, Jacques; Demongeota, Jacques

    2006-05-01

    The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results.

  2. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    International Nuclear Information System (INIS)

    Jin, Chun; Jin, Zhao; Chen, Nian-zhao; Lu, Min; Liu, Chang-bao; Hu, Wan-Le; Zheng, Chen-guo

    2016-01-01

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  3. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chun [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Jin, Zhao [Department of Coloproctology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000 (China); Chen, Nian-zhao [Department of Medicine, The Chinese Medicine Hospital of Wenzhou, Wenzhou 325000 (China); Lu, Min; Liu, Chang-bao; Hu, Wan-Le [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Zheng, Chen-guo, E-mail: zhengchenguo80@163.com [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China)

    2016-01-29

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  4. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  5. Cellular and ultrastructural characterization of the grey-morph phenotype in southern right whales (Eubalaena australis).

    Science.gov (United States)

    Eroh, Guy D; Clayton, Fred C; Florell, Scott R; Cassidy, Pamela B; Chirife, Andrea; Marón, Carina F; Valenzuela, Luciano O; Campbell, Michael S; Seger, Jon; Rowntree, Victoria J; Leachman, Sancy A

    2017-01-01

    Southern right whales (SRWs, Eubalena australis) are polymorphic for an X-linked pigmentation pattern known as grey morphism. Most SRWs have completely black skin with white patches on their bellies and occasionally on their backs; these patches remain white as the whale ages. Grey morphs (previously referred to as partial albinos) appear mostly white at birth, with a splattering of rounded black marks; but as the whales age, the white skin gradually changes to a brownish grey color. The cellular and developmental bases of grey morphism are not understood. Here we describe cellular and ultrastructural features of grey-morph skin in relation to that of normal, wild-type skin. Melanocytes were identified histologically and counted, and melanosomes were measured using transmission electron microscopy. Grey-morph skin had fewer melanocytes when compared to wild-type skin, suggesting reduced melanocyte survival, migration, or proliferation in these whales. Grey-morph melanocytes had smaller melanosomes relative to wild-type skin, normal transport of melanosomes to surrounding keratinocytes, and normal localization of melanin granules above the keratinocyte nuclei. These findings indicate that SRW grey-morph pigmentation patterns are caused by reduced numbers of melanocytes in the skin, as well as by reduced amounts of melanin production and/or reduced sizes of mature melanosomes. Grey morphism is distinct from piebaldism and albinism found in other species, which are genetic pigmentation conditions resulting from the local absence of melanocytes, or the inability to synthesize melanin, respectively.

  6. Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity.

    Science.gov (United States)

    Pitchaimani, Arunkumar; Nguyen, Tuyen Duong Thanh; Koirala, Mukund; Zhang, Yuntao; Aryal, Santosh

    2017-09-01

    In vitro cell-nanoparticle (NP) studies involve exposure of NPs onto the monolayer cells growing at the bottom of a culture plate, and assumed that the NPs evenly distributed for a dose-responsive effect. However, only a few proportion of the administered dose reaches the cells depending on their size, shape, surface, and density. Often the amount incubated (administered dose) is misled as a responsive dose. Herein, we proposed a cell adhesion-migration (CAM) strategy, where cells incubated with the NP coated cell culture substrate to maximize the cell-NP interaction and investigated the physiological properties of the cells. In the present study, cell adhesion and migration pattern of human breast cancer cell (MCF-7) and mouse melanoma cell (B16-F10) on cell culture substrate decorated with toxic (cetyltrimethylammonium bromide, CTAB) and biocompatible (poly (sodium 4-styrenesulphonate), PSS) gold nanoparticles (AuNPs) of different sizes (5 and 40nm) were investigated and evaluated for cellular uptake efficiency, proliferation, and toxicity. Results showed enhanced cell adhesion, migration, and nanoparticle uptake only on biocompatible PSS coated AuNP, irrespective of its size. Whereas, cytotoxic NP shows retard proliferation with reduced cellular uptake efficiency. Considering the importance of cell adhesion and migration on cellular uptake and cytotoxicity assessment of nanoparticle, CAM strategy would hold great promises in cell-NP interaction studies. Copyright © 2017. Published by Elsevier Ltd.

  7. The Role of Local Governmental Funding in Nonprofit Survival

    Directory of Open Access Journals (Sweden)

    Karl Besel

    2001-05-01

    Full Text Available Nonprofit social service organizations in America originally relied on private donations and charitable events to sustain their operations. As the number of nonprofit organizations has proliferated over the last few decades, so has nonprofit dependency on governmental and other sources of revenue. A case study design was used to examine factors that have impacted the survival of the original Indiana Youth Service Bureaus. This study highlights salient factors that influence survival and explores the characteristics and circumstances of selected organizations that enhance their sustainability. The findings suggest that social work administrators need to foster long-term relationships with local funders as a means of enhancing organizational survival.

  8. The similia principle: results obtained in a cellular model system.

    Science.gov (United States)

    Wiegant, Fred; Van Wijk, Roeland

    2010-01-01

    This paper describes the results of a research program focused on the beneficial effect of low dose stress conditions that were applied according to the similia principle to cells previously disturbed by more severe stress conditions. In first instance, we discuss criteria for research on the similia principle at the cellular level. Then, the homologous ('isopathic') approach is reviewed, in which the initial (high dose) stress used to disturb cellular physiology and the subsequent (low dose) stress are identical. Beneficial effects of low dose stress are described in terms of increased cellular survival capacity and at the molecular level as an increase in the synthesis of heat shock proteins (hsps). Both phenomena reflect a stimulation of the endogenous cellular self-recovery capacity. Low dose stress conditions applied in a homologous approach stimulate the synthesis of hsps and enhance survival in comparison with stressed cells that were incubated in the absence of low dose stress conditions. Thirdly, the specificity of the low dose stress condition is described where the initial (high dose) stress is different in nature from the subsequently applied (low dose) stress; the heterologous or 'heteropathic' approach. The results support the similia principle at the cellular level and add to understanding of how low dose stress conditions influence the regulatory processes underlying self-recovery. In addition, the phenomenon of 'symptom aggravation' which is also observed at the cellular level, is discussed in the context of self-recovery. Finally, the difference in efficiency between the homologous and the heterologous approach is discussed; a perspective is indicated for further research; and the relationship between studies on the similia principle and the recently introduced concept of 'postconditioning hormesis' is emphasized. Copyright 2009 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  9. The effects of radiofrequency fields on cell proliferation are non-thermal.

    Science.gov (United States)

    Velizarov, S; Raskmark, P; Kwee, S

    1999-02-01

    The number of reports on the effects induced by radiofrequency (RF) electromagnetic fields and microwave (MW) radiation in various cellular systems is still increasing. Until now no satisfactory mechanism has been proposed to explain the biological effects of these fields. One of the current theories is that heat generation by RF/MW is the cause, in spite of the fact that a great number of studies under isothermal conditions have reported significant cellular changes after exposure to RF/MW. Therefore, this study was undertaken to investigate which effect MW radiation from these fields in combination with a significant change of temperature could have on cell proliferation. The experiments were performed on the same cell line, and with the same exposure system as in a previous work [S. Kwee, P. Raskmark, Changes in cell proliferation due to environmental non-ionizing radiation: 2. Microwave radiation, Bioelectrochem. Bioenerg., 44 (1998), pp. 251-255]. The field was generated by signal simulation of the Global System for Mobile communications (GSM) of 960 MHz. Cell cultures, growing in microtiter plates, were exposed in a specially constructed chamber, a Transverse Electromagnetic (TEM) cell. The Specific Absorption Rate (SAR) value for each cell well was calculated for this exposure system. However, in this study the cells were exposed to the field at a higher or lower temperature than the temperature in the field-free incubator i.e., the temperature in the TEM cell was either 39 or 35 +/- 0.1 degrees C. The corresponding sham experiments were performed under exactly the same experimental conditions. The results showed that there was a significant change in cell proliferation in the exposed cells in comparison to the non-exposed (control) cells at both temperatures. On the other hand, no significant change in proliferation rate was found in the sham-exposed cells at both temperatures. This shows that biological effects due to RF/MW cannot be attributed only to a

  10. A Mathematical Model for Cisplatin Cellular Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Ardith W. El-Kareh

    2003-03-01

    Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.

  11. A Fork in the Path: Developing Therapeutic Inroads with FoxO Proteins

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2009-01-01

    Full Text Available Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a “double-edge sword” to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.

  12. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation.

    Science.gov (United States)

    Na, Jiwoon; Jung, Jisu; Bang, Jeyoung; Lu, Qiao; Carlson, Bradley A; Guo, Xiong; Gladyshev, Vadim N; Kim, Jinhong; Hatfield, Dolph L; Lee, Byeong Jae

    2018-04-30

    Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the

  13. Proliferation of mouse endometrial stromal cells in culture is highly sensitive to lysophosphatidic acid signaling

    International Nuclear Information System (INIS)

    Aikawa, Shizu; Kano, Kuniyuki; Inoue, Asuka; Aoki, Junken

    2017-01-01

    Endometrial stromal cells (ESCs) proliferate rapidly both in vivo and in vitro. Here we show that proliferation of ESCs in vitro is strongly dependent on lysophosphatidic acid (LPA) signaling. LPA is produced by autotaxin (ATX) and induces various kinds of cellular processes including migration, proliferation and inhibition of cell death possibly through six G protein-coupled receptors (LPA 1-6 ). We found that ESCs proliferated rapidly in vitro in an autocrine manner and that the proliferation was prominently suppressed by either an ATX inhibitor (ONO-8430506) or an LPA 1/3 antagonist (Ki16425). Among the cells lines tested, mouse ESCs were the most sensitive to these inhibitors. Proliferation of ESCs isolated from either LPA 1 - or LPA 3 -deficient mice was comparable to proliferation of ESCs isolated from control mice. An LPA receptor antagonist (AM095), which was revealed to be a dual LPA 1 /LPA 3 antagonist, also suppressed the proliferation of ESCs. The present results show that LPA signaling has a critical role in the proliferation of ESCs, and that this role is possibly mediated redundantly by LPA 1 and LPA 3 . - Highlights: • Uterine endometrial stromal cells (ESCs) proliferate rapidly both in vivo and in vitro. • ESCs proliferated in vitro in an autocrine fashion. • Proliferation of mouse ESCs was prominently suppressed by inhibitors of lysophosphatidic acid (LPA) signaling. • LPA receptors, LPA 1 and LPA 3 , had redundant role in supporting the proliferation of ESCs.

  14. GCN5 Potentiates Glioma Proliferation and Invasion via STAT3 and AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-09-01

    Full Text Available The general control of nucleotide synthesis 5 (GCN5, which is one kind of lysine acetyltransferases, regulates a number of cellular processes, such as cell proliferation, differentiation, cell cycle and DNA damage repair. However, its biological role in human glioma development remains elusive. In the present study, we firstly reported that GCN5 was frequently overexpressed in human glioma tissues and GCN5 was positively correlated with proliferation of cell nuclear antigen PCNA and matrix metallopeptidase MMP9. Meanwhile, down-regulation of GCN5 by siRNA interfering inhibited glioma cell proliferation and invasion. In addition, GCN5 knockdown reduced expression of p-STAT3, p-AKT, PCNA and MMP9 and increased the expression of p21 in glioma cells. In conclusion, GCN5 exhibited critical roles in glioma development by regulating cell proliferation and invasion, which suggested that GCN5 might be a potential molecular target for glioma treatment.

  15. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    International Nuclear Information System (INIS)

    Li, Fangyi; Dong, Lei; Xing, Rong; Wang, Li; Luan, Fengming; Yao, Chenhui; Ji, Xuening; Bai, Lizhi

    2014-01-01

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC

  16. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  17. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    NARCIS (Netherlands)

    Kim, D.; Fiske, B.P.; Birsoy, K.; Freinkman, E.; Kami, K.; Possemato, R.L.; Chudnovsky, Y.; Pacold, M.E.; Chen, W.W.; Cantor, J.R.; Shelton, L.M.; Gui, D.Y.; Kwon, M.; Ramkissoon, S.H.; Ligon, K.L.; Kang, S.W.; Snuderl, M.; der Heiden, M.G. Van; Sabatini, D.M.

    2015-01-01

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain

  18. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    International Nuclear Information System (INIS)

    Ohshimo, Shinichiro; Yokoyama, Akihito; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-01-01

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases

  19. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    International Nuclear Information System (INIS)

    Reis, Amilcar; Hermanson, Ola

    2012-01-01

    Highlights: ► DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. ► No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. ► OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. ► Increased HP1γ immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1γ immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  20. Calcium Sensor, NCS-1, Promotes Tumor Aggressiveness and Predicts Patient Survival.

    Science.gov (United States)

    Moore, Lauren M; England, Allison; Ehrlich, Barbara E; Rimm, David L

    2017-07-01

    Neuronal Calcium Sensor 1 (NCS-1) is a multi-functional Ca 2+ -binding protein that affects a range of cellular processes beyond those related to neurons. Functional characterization of NCS-1 in neuronal model systems suggests that NCS-1 may influence oncogenic processes. To this end, the biological role of NCS-1 was investigated by altering its endogenous expression in MCF-7 and MB-231 breast cancer cells. Overexpression of NCS-1 resulted in a more aggressive tumor phenotype demonstrated by a marked increase in invasion and motility, and a decrease in cell-matrix adhesion to collagen IV. Overexpression of NCS-1 was also shown to increase the efficacy of paclitaxel-induced cell death in a manner that was independent of cellular proliferation. To determine the association between NCS-1 and clinical outcome, NCS-1 expression was measured in two independent breast cancer cohorts by the Automated Quantitative Analysis method of quantitative immunofluorescence. Elevated levels of NCS-1 were significantly correlated with shorter survival rates. Furthermore, multivariate analysis demonstrated that NCS-1 status was prognostic, independent of estrogen receptor, progesterone receptor, HER2, and lymph node status. These findings indicate that NCS-1 plays a role in the aggressive behavior of a subset of breast cancers and has therapeutic or biomarker potential. Implications: NCS-1, a calcium-binding protein, is associated with clinicopathologic features of aggressiveness in breast cancer cells and worse outcome in two breast cancer patient cohorts. Mol Cancer Res; 15(7); 942-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Nuclear non-proliferation: a guide to the debate

    International Nuclear Information System (INIS)

    Goldblat, Jozef.

    1985-01-01

    The non-proliferation policies of 15 countries have been studied and summarized for use by participants of the third Review Conference of the Parties to the Treaty on the Non-Proliferation (NPT) of Nuclear weapons held in September 1985. The main purpose of the guide is to examine what action must be taken to ensure the Treaty's survival. There are four chapters following an introduction, covering the implementation of the essential provisions of the NPT, the motivations of the countries which have not joined the NPT, together with the motivations of those which have formally renounced the possession of nuclear weapons, even though they possess the technical and economic potential necessary to manufacture them. The last chapter summarises measures which might be taken to strengthen the NPT including ideas put forward at a workshop held in 1984. (author)

  2. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue

    DEFF Research Database (Denmark)

    Münstermann, U; Fritz, G; Seitz, G

    1990-01-01

    Protein kinase CKII (i.e. casein kinase II, CKII, NII) is expressed at a higher level in rapidly proliferating tissues and in solid human tumours (e.g. colorectal carcinomas) when compared to the corresponding non-neoplastic colorectal mucosa. This could be shown by (a) Western blotting of cellular...

  3. The role of iron in the proliferation of Drosophila l(2)mbn cells

    Energy Technology Data Exchange (ETDEWEB)

    Metzendorf, Christoph [Department of Comparative Physiology, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden); Lind, Maria I., E-mail: maria.lind@ebc.uu.se [Department of Comparative Physiology, Uppsala University, Norbyvaegen 18A, SE-752 36 Uppsala (Sweden)

    2010-09-24

    Research highlights: {yields} Establishment of a model system to study the role of iron during proliferation. {yields} Iron deprivation of insect tumorous cell line inhibits cell proliferation. {yields} Iron deprivation causes a reversible cell cycle arrest in G1/S-phase. {yields} Iron deprivation promotes decreased gene expression of cycE. -- Abstract: Iron is essential for life and is needed for cell proliferation and cell cycle progression. Iron deprivation results first in cell cycle arrest and then in apoptosis. The Drosophila tumorous larval hemocyte cell line l(2)mbn was used to study the sensitivity and cellular response to iron deprivation through the chelator desferrioxamine (DFO). At a concentration of 10 {mu}M DFO or more the proliferation was inhibited reversibly, while the amount of dead cells did not increase. FACS analysis showed that the cell cycle was arrested in G1/S-phase and the transcript level of cycE was decreased to less than 50% of control cells. These results show that iron chelation in this insect tumorous cell line causes a specific and coordinated cell cycle arrest.

  4. Mechanisms and kinetics of proliferation and fibrosis development in a mouse model of thyrocyte hyperplasia.

    Science.gov (United States)

    Ciornei, Radu Tudor; Hong, So-Hee; Fang, Yujiang; Zhu, Ziwen; Braley-Mullen, Helen

    2016-01-01

    IFN-γ(-/-) NOD.H-2h4 mice develop autoimmune disease with extensive hyperplasia and proliferation of thyroid epithelial cells (TEC H/P) and fibrosis. Splenic T cells from donors with severe TEC H/P transfer TEC H/P to SCID recipients. The goal of this study was to determine what factors control TEC H/P development/progression by examining T cells, markers of apoptosis, senescence and proliferation in thyroids of SCID recipients over time. At 28days, T cell infiltration was maximal, thyrocytes were proliferating, and fibrosis was moderate. At days 60 and 90, thyroids were larger with more fibrosis. T cells, cytokines and thyrocyte proliferation decreased, and cell cycle inhibitor proteins, and anti-apoptotic molecules increased. T cells and thyrocytes had foci of phosphorylated histone protein H2A.X, indicative of cellular senescence, when TEC H/P progressed and thyrocyte proliferation declined. Some thyrocytes were regenerating at day 90, with irregularly shaped empty follicles and ciliated epithelium. Proliferating thyrocytes were thyroid transcription factor (TTF1)-positive, suggesting they derived from epithelial cells and not brachial cleft remnants. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cell proliferation and ageing in mouse colon

    International Nuclear Information System (INIS)

    Hamilton, E.; Franks, L.M.

    1980-01-01

    Cell kinetic parameters in the descending colon of unirradiated mice, 3-30-months-old were compared with those in mice irradiated repeatedly from the age of 6 or 24 months. The latter animals were given 1250 rad local X-irradiation to the colon every 6 weeks. Dose-survival curves showed the colon crypts of 6 and 24-months-old mice were similarly radiosensitive. In unirradiated mice the number of crypts per colon section decreased significantly at 30 months, but no significant age-related changes were seen in crypt size or labelling index (LI). Cell proliferation returned to control levels within 6 weeks of each X-ray dose and remained at this level for 20 weeks after the final dose. Later, cell proliferation in the irradiated colon fell significantly below control. A total of 6 or 7 doses each of 1250 rad produced only 1 colon carcinoma amongst 50 mice kept until they died. (author)

  6. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis.

    Science.gov (United States)

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9.

  7. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  8. ERK2 protein regulates the proliferation of human mesenchymal stem cells without affecting their mobilization and differentiation potential

    International Nuclear Information System (INIS)

    Carcamo-Orive, Ivan; Tejados, Naiara; Delgado, Jesus; Gaztelumendi, Ainhoa; Otaegui, David; Lang, Valerie; Trigueros, Cesar

    2008-01-01

    Human Mesenchymal Stem Cells (hMSC), derived mainly from adult bone marrow, are valuable models for the study of processes involved in stem cell self-renewal and differentiation. As the Extracellular signal-Regulated Kinase (ERK) signalling pathway is a major contributor to cellular growth, differentiation and survival, we have studied the functions of this kinase in hMSC activity. Ablation of ERK2 gene expression (but not ERK1) by RNA interference significantly reduced proliferation of hMSC. This reduction was due to a defect in Cyclin D1 expression and subsequent arrest in the G0/G1 phase of the cell cycle. hMSC growth is enhanced through culture medium supplementation with growth factors (GFs) such as Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF) or Epidermal Growth Factor (EGF). However, these supplements could not rescue the defect observed after ERK2 knockdown, suggesting a common signalling pathway used by these GFs for proliferation. In contrast, ERK1/2 may be dissociated from chemotactic signalling induced by the same GFs. Additionally, hMSCs were capable of differentiating into adipocytes even in the absence of either ERK1 or ERK2 proteins. Our data show that hMSCs do not require cell division to enter the adipogenic differentiation process, indicating that clonal amplification of these cells is not a critical step. However, cell-cell contact seems to be an essential requirement to be able to differentiate into mature adipocytes

  9. The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Directory of Open Access Journals (Sweden)

    Salvador Fernández-Arroyo

    2015-10-01

    Full Text Available Background: Imbalances in the functional binding of fibroblast growth factors (FGFs to their receptors (FGFRs have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.

  10. TGF-β1 targets a microRNA network that regulates cellular adhesion and migration in renal cancer.

    Science.gov (United States)

    Bogusławska, Joanna; Rodzik, Katarzyna; Popławski, Piotr; Kędzierska, Hanna; Rybicka, Beata; Sokół, Elżbieta; Tański, Zbigniew; Piekiełko-Witkowska, Agnieszka

    2018-01-01

    In our previous study we found altered expression of 19 adhesion-related genes in renal tumors. In this study we hypothesized that disturbed expression of adhesion-related genes could be caused by microRNAs: short, non-coding RNAs that regulate gene expression. Here, we found that expression of 24 microRNAs predicted to target adhesion-related genes was disturbed in renal tumors and correlated with expression of their predicted targets. miR-25-3p, miR-30a-5p, miR-328 and miR-363-3p directly targeted adhesion-related genes, including COL5A1, COL11A1, ITGA5, MMP16 and THBS2. miR-363-3p and miR-328 inhibited proliferation of renal cancer cells, while miR-25-3p inhibited adhesion, promoted proliferation and migration of renal cancer cells. TGF-β1 influenced the expression of miR-25-3p, miR-30a-5p, and miR-328. The analyzed microRNAs, their target genes and TGF-β1 formed a network of strong correlations in tissue samples from renal cancer patients. The expression signature of microRNAs linked with TGF-β1 levels correlated with poor survival of renal cancer patients. The results of our study suggest that TGF-β1 coordinates the expression of microRNA network that regulates cellular adhesion in cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Predictive value of the flow cytometric PCNA - assay (proliferating cell nuclear antigen) in head and neck tumors after accelerated-hyperfractionated radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, F; Lohr, F; Rudat, V; Dietz, A; Flentje, M; Wannenmacher, M

    1995-07-01

    Purpose/Objective: Proliferation of surviving tumor cells during fractionated radiotherapy may limit tumor control, especially in rapidly proliferating tumors. It has been widely accepted, that this may play a major role in head and neck tumors. Several methods for the assessment of tumor proliferation have been developed, however, most of them are either laborious, invasive or potentially toxic. Today, the gold standard is the flow cytometric BrdUrd assay. We present a flow cytometric method for detection of PCNA, which is an intranuclear proliferation associated protein, in solid human head and neck tumors and how these data correlate with outcome. Materials and Methods: Pretherapeutic biopsies of 20 inoperable patients with squamous cell carcinoma of the head and neck (T3-4N2M0) were examined. The tissue was disaggregated with pepsin/HCl, antibody staining was performed using the clone PC10. Biparametric flow cytometry was performed after a FITC conjugated secondary antibody and propidiumjodine staining was applied. The PCNA-index (i.e. percentage PCNA-positive cells), the DNA-index and the S-phase fraction (SPF, euploid tumors only) were determined. The therapy consisted of combined accelerated-hyperfractionated radiochemotherapy (66 Gy in 5 wks, concomittant boost of 1.6 Gy/d in wks 4+5, Carboplatin in wks 1+5). The median follow-up time was 14 mths (5 - 28), the clinical partners (V.R., A.D.) were 'blinded' towards the PCNA-values. Results: 13 patients suffered from disease progession and 11 died. The actuarial median survival and disease free survival (DFS) were 14.4 and 10.7 mths, respectively. The PCNA-values ranged from 3.2 to 70% (median 9%), there were 7 aneuploid and 13 euploid tumors. SFP in the euploid tumors ranged from 4 to 14.5% (median 10.5%). Neither SFP nor ploidy had a significant influence on the outcome. The patients were divided according to their PCNA-value in higher (n=10) and lower (n=10) than the median. The survival and DFS were 13

  12. A biological study establishing the endotoxin limit for in vitro proliferation of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yusuke Nomura

    2017-12-01

    Conclusions: Since endotoxins can affect various cellular functions, an endotoxin limit should be set for in vitro MSC cultures. The lowest observed adverse effect level was determined to be 0.1 ng/ml based on the effect on MSC proliferation.

  13. Activation of peroxisome proliferator-activated receptor gamma bypasses the function of the retinoblastoma protein in adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B.; Petersen, R K; Larsen, B M

    1999-01-01

    The retinoblastoma protein (pRB) is an important regulator of development, proliferation, and cellular differentiation. pRB was recently shown to play a pivotal role in adipocyte differentiation, to interact physically with adipogenic CCAAT/enhancer-binding proteins (C/EBPs), and to positively...

  14. The cytosolic chaperonin CCT/TRiC and cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Chafika Boudiaf-Benmammar

    Full Text Available The molecular chaperone CCT/TRiC plays a central role in maintaining cellular proteostasis as it mediates the folding of the major cytoskeletal proteins tubulins and actins. CCT/TRiC is also involved in the oncoprotein cyclin E, the Von Hippel-Lindau tumour suppressor protein, cyclin B and p21(ras folding which strongly suggests that it is involved in cell proliferation and tumor genesis. To assess the involvement of CCT/TRiC in tumor genesis, we quantified its expression levels and activity in 18 cancer, one non-cancer human cell lines and a non-cancer human liver. We show that the expression levels of CCT/TRiC in cancer cell lines are higher than that in normal cells. However, CCT/TRiC activity does not always correlate with its expression levels. We therefore documented the expression levels of CCT/TRiC modulators and partners PhLP3, Hop/P60, prefoldin and Hsc/Hsp70. Our analysis reveals a functional interplay between molecular chaperones that might account for a precise modulation of CCT/TRiC activity in cell proliferation through changes in the cellular levels of prefoldin and/or Hsc/p70 and CCT/TRiC client protein availability. Our observation and approaches bring novel insights in the role of CCT/TRiC-mediated protein folding machinery in cancer cell development.

  15. Activation of a Neospora caninum EGFR-Like Kinase Facilitates Intracellular Parasite Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    2017-10-01

    Full Text Available The Apicomplexan parasite Neospora caninum, an obligate intracellular protozoan, causes serious diseases in a number of mammalian species, especially in cattle. Infection with N. caninum is associated with abortions in both dairy and beef cattle worldwide which have a major economic impact on the cattle industry. However, the mechanism by which N. caninum proliferates within host cells is poorly understood. Epidermal growth factor receptor (EGFR is a protein kinase ubiquitously expressed, present on cell surfaces in numerous species, which has been confirmed to be essential in signal transduction involved in cell growth, proliferation, survival, and many other intracellular processes. However, the presence of EGFR in N. caninum and its role in N. caninum proliferation remain unclear. In the present study, we identified a putative EGFR-like kinase in N. caninum, which could be activated in tachyzoites by infection or treatment with rNcMIC3 [containing four epidermal growth factor (EGF domains] or human EGF. Blockade of EGFR-like in tachyzoites by AG1478 significantly reduced parasite proliferation in host cells. Our data suggested that the activation of tachyzoite EGFR-like might facilitate the intracellular proliferation of N. caninum.

  16. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  17. Store-Operated Ca2+ Entry Does Not Control Proliferation in Primary Cultures of Human Metastatic Renal Cellular Carcinoma

    Science.gov (United States)

    Turin, Ilaria; Potenza, Duilio Michele; Bottino, Cinzia; Glasnov, Toma N.; Ferulli, Federica; Mosca, Alessandra; Guerra, Germano; Rosti, Vittorio; Luinetti, Ombretta; Porta, Camillo; Pedrazzoli, Paolo

    2014-01-01

    Store-operated Ca2+ entry (SOCE) is activated following depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pool to regulate proliferation in immortalized cell lines established from either primary or metastatic lesions. The molecular nature of SOCE may involve both Stim1, which senses Ca2+ levels within the endoplasmic reticulum (ER) Ca2+ reservoir, and a number of a Ca2+-permeable channels on the plasma membrane, including Orai1, Orai3, and members of the canonical transient receptor (TRPC1–7) family of ion channels. The present study was undertaken to assess whether SOCE is expressed and controls proliferation in primary cultures isolated from secondary lesions of heavily pretreated metastatic renal cell carcinoma (mRCC) patients. SOCE was induced following pharmacological depletion of the ER Ca2+ store, but not by InsP3-dependent Ca2+ release. Metastatic RCC cells express Stim1-2, Orai1–3, and TRPC1–7 transcripts and proteins. In these cells, SOCE was insensitive to BTP-2, 10 µM Gd3+ and Pyr6, while it was inhibited by 100 µM Gd3+, 2-APB, and carboxyamidotriazole (CAI). Neither Gd3+ nor 2-APB or CAI impaired mRCC cell proliferation. Consistently, no detectable Ca2+ signal was elicited by growth factor stimulation. Therefore, a functional SOCE is expressed but does not control proliferation of mRCC cells isolated from patients resistant to multikinase inhibitors. PMID:25126575

  18. Store-Operated Ca2+ Entry Does Not Control Proliferation in Primary Cultures of Human Metastatic Renal Cellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Silvia Dragoni

    2014-01-01

    Full Text Available Store-operated Ca2+ entry (SOCE is activated following depletion of the inositol-1,4,5-trisphosphate (InsP3-sensitive Ca2+ pool to regulate proliferation in immortalized cell lines established from either primary or metastatic lesions. The molecular nature of SOCE may involve both Stim1, which senses Ca2+ levels within the endoplasmic reticulum (ER Ca2+ reservoir, and a number of a Ca2+-permeable channels on the plasma membrane, including Orai1, Orai3, and members of the canonical transient receptor (TRPC1–7 family of ion channels. The present study was undertaken to assess whether SOCE is expressed and controls proliferation in primary cultures isolated from secondary lesions of heavily pretreated metastatic renal cell carcinoma (mRCC patients. SOCE was induced following pharmacological depletion of the ER Ca2+ store, but not by InsP3-dependent Ca2+ release. Metastatic RCC cells express Stim1-2, Orai1–3, and TRPC1–7 transcripts and proteins. In these cells, SOCE was insensitive to BTP-2, 10 µM Gd3+ and Pyr6, while it was inhibited by 100 µM Gd3+, 2-APB, and carboxyamidotriazole (CAI. Neither Gd3+ nor 2-APB or CAI impaired mRCC cell proliferation. Consistently, no detectable Ca2+ signal was elicited by growth factor stimulation. Therefore, a functional SOCE is expressed but does not control proliferation of mRCC cells isolated from patients resistant to multikinase inhibitors.

  19. Specific blockade by CD54 and MHC II of CD40-mediated signaling for B cell proliferation and survival

    DEFF Research Database (Denmark)

    Doyle, I S; Hollmann, C A; Crispe, I N

    2001-01-01

    Regulation of B lymphocyte proliferation is critical to maintenance of self-tolerance, and intercellular interactions are likely to signal such regulation. Here, we show that coligation of either the adhesion molecule ICAM-1/CD54 or MHC II with CD40 inhibited cell cycle progression and promoted...... these effects. Addition of BCR or IL-4 signals did not overcome the effect of ICAM-1 or MHC II on CD40-induced proliferation. FasL expression was not detected in B cell populations. These results show that MHC II and ICAM-1 specifically modulate CD40-mediated signaling, so inhibiting proliferation...

  20. Identification of a sub-population of B cells that proliferates after infection with epstein-barr virus

    Directory of Open Access Journals (Sweden)

    Ye Jianjiang

    2011-02-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV-driven B cell proliferation is critical to its subsequent persistence in the host and is a key event in the development of EBV-associated B cell diseases. Thus, inquiry into early cellular events that precede EBV-driven proliferation of B cells is essential for understanding the processes that can lead to EBV-associated B cell diseases. Methods Infection with high titers of EBV of mixed, primary B cells in different stages of differentiation occurs during primary EBV infection and in the setting of T cell-immunocompromise that predisposes to development of EBV-lymphoproliferative diseases. Using an ex vivo system that recapitulates these conditions of infection, we correlated expression of selected B cell-surface markers and intracellular cytokines with expression of EBV latency genes and cell proliferation. Results We identified CD23, CD58, and IL6, as molecules expressed at early times after EBV-infection. EBV differentially infected B cells into two distinct sub-populations of latently infected CD23+ cells: one fraction, marked as CD23hiCD58+IL6- by day 3, subsequently proliferated; another fraction, marked as CD23loCD58+, expressed IL6, a B cell growth factor, but failed to proliferate. High levels of LMP1, a critical viral oncoprotein, were expressed in individual CD23hiCD58+ and CD23loCD58+ cells, demonstrating that reduced levels of LMP1 did not explain the lack of proliferation of CD23loCD58+ cells. Differentiation stage of B cells did not appear to govern this dichotomy in outcome either. Memory or naïve B cells did not exclusively give rise to either CD23hi or IL6-expressing cells; rather memory B cells gave rise to both sub-populations of cells. Conclusions B cells are differentially susceptible to EBV-mediated proliferation despite expression of viral gene products known to be critical for continuous B cell growth. Cellular events, in addition to viral gene expression, likely play a

  1. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification.

    Science.gov (United States)

    Malliaras, Konstantinos; Vakrou, Styliani; Kapelios, Chris J; Nanas, John N

    2016-11-01

    The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.

  2. Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    International Nuclear Information System (INIS)

    Manzotti, G; Mariani, S A; Corradini, F; Bussolari, R; Cesi, V; Vergalli, J; Ferrari-Amorotti, G; Fragliasso, V; Soliera, A R; Cattelani, S; Raschellà, G; Holyoake, T L; Calabretta, B

    2012-01-01

    The c-Myb gene encodes the p75 c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is p c-Mybex9b , which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of p c-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of p c-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75 c-Myb , p c-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of p c-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of p c-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34 + cells, without affecting the levels of p75 c-Myb . Together, these studies indicate that expression of the low-abundance p c-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

  3. Homeostatic Proliferation and IL-7R Alpha Expression Do Not Correlate with Enhanced T Cell Proliferation and Protection in Chronic Mouse Malaria

    OpenAIRE

    Stephens, Robin; Seddon, Benedict; Langhorne, Jean

    2011-01-01

    While chronic infection has been shown to enhance protection from disease caused by several pathogens, the mechanisms are not known. The gamma-c family of cytokines IL-7, IL-2, and IL-15 are implicated in homeostatic proliferation, which is thought to maintain T cell memory. However in chronic infection, prolonged antigen exposure itself may contribute to lymphocyte survival. We have previously observed that chronic malaria infection enhances protection to re-infection, as well as enhancing B...

  4. NO-dependent proliferation and migration induced by Vitamin D in HUVEC.

    Science.gov (United States)

    Pittarella, Pamela; Squarzanti, Diletta F; Molinari, Claudio; Invernizzi, Marco; Uberti, Francesca; Renò, Filippo

    2015-05-01

    Recently, Vitamin D (Vit. D) has gained importance in cellular functions of a wide range of extraskeletal organs and target tissues, other than bone. In particular, Vit. D has displayed important beneficial effects in the cardiovascular system. Although little is known about the mechanism by which this response is exerted, a Vit. D-induced eNOS-dependent nitric oxide (NO) production in endothelial cells (EC) has been reported. The aim of this study was to evaluate whether Vit. D administration could affect human EC proliferation and/or migration through NO production. For this purpose, HUVEC (human umbilical vein endothelial cells) were used to evaluate Vit. D effects on cell proliferation and migration in a 3D matrix. Experiments were also performed in the presence of the specific VDR ligand ZK159222 and eNOS inhibitor L-NAME. This study demonstrated that Vit. D can promote both HUVEC proliferation and migration in a 3D matrix. These effects were NO dependent, since HUVEC proliferation and migration were abrogated along with Vit. D induced MMP-2 expression by inhibiting eNOS activity by L-NAME. These findings support the role of Vit. D in the angiogenic process, suggesting new applications for Vit. D in tissue repair and wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Jutten, Barry; Keulers, Tom G.; Schaaf, Marco B.E.; Savelkouls, Kim; Theys, Jan; Span, Paul N.; Vooijs, Marc A.; Bussink, Johan; Rouschop, Kasper M.A.

    2013-01-01

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  6. Two-dimensional gel human protein databases offer a systematic approach to the study of cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Celis, julio E.; Gesser, Borbala; Dejgaard, Kurt

    1989-01-01

    Human cellular protein databases have been established using computer-analyzed 2D gel electrophoresis. These databases, which include information on various properties of proteins, offer a global approach to the study of regulation of cell proliferation and differentiation. Furthermore, thanks...

  7. Two dimensional gel human protein databases offer a systematic approach to the study of cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Celis, J E; Gesser, B; Dejgaard, K

    1989-01-01

    Human cellular protein databases have been established using computer-analyzed 2D gel electrophoresis. These databases, which include information on various properties of proteins, offer a global approach to the study of regulation of cell proliferation and differentiation. Furthermore, thanks to...

  8. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  9. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components

    OpenAIRE

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    Purpose To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. Methods The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were...

  10. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells.

    Science.gov (United States)

    Maillard, Virginie; Desmarchais, Alice; Durcin, Maeva; Uzbekova, Svetlana; Elis, Sebastien

    2018-04-26

    Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. These data show that DHA stimulated proliferation and steroidogenesis of bovine

  11. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  12. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  13. Cell Survival Signaling in Neuroblastoma

    Science.gov (United States)

    Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.

    2013-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706

  14. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis.

    Science.gov (United States)

    Dong, Xingchen; Hu, Xiangming; Chen, Jinjing; Hu, Dan; Chen, Lin-Feng

    2018-02-12

    Small molecules targeting bromodomains of BET proteins possess strong anti-tumor activities and have emerged as potential therapeutics for cancer. However, the underlying mechanisms for the anti-proliferative activity of these inhibitors are still not fully characterized. In this study, we demonstrated that BET inhibitor JQ1 suppressed the proliferation and invasiveness of gastric cancer cells by inducing cellular senescence. Depletion of BRD4, which was overexpressed in gastric cancer tissues, but not other BET proteins recapitulated JQ1-induced cellular senescence with increased cellular SA-β-Gal activity and elevated p21 levels. In addition, we showed that the levels of p21 were regulated at the post-transcriptional level by BRD4-dependent expression of miR-106b-5p, which targets the 3'-UTR of p21 mRNA. Overexpression of miR-106b-5p prevented JQ1-induced p21 expression and BRD4 inhibition-associated cellular senescence, whereas miR-106b-5p inhibitor up-regulated p21 and induced cellular senescence. Finally, we demonstrated that inhibition of E2F suppressed the binding of BRD4 to the promoter of miR-106b-5p and inhibited its transcription, leading to the increased p21 levels and cellular senescence in gastric cancer cells. Our results reveal a novel mechanism by which BRD4 regulates cancer cell proliferation by modulating the cellular senescence through E2F/miR-106b-5p/p21 axis and provide new insights into using BET inhibitors as potential anticancer drugs.

  15. Cell proliferation in the atherosclerotic plaques of cholesterol-fed rabbits

    International Nuclear Information System (INIS)

    Cavallero, C.; Tondo, U. di; Mingazinni, P.L.; Nicosia, R.; Pericoli, M.N.; Sarti, P.; Spagnoli, L.G.; Villaschi, S.

    1976-01-01

    Tritiated thymidine radioautography was employed to study the effect of cortisol and other glucocorticoids on cellular proliferation in the aorta and pulmonary artery of rabbits with cholesterol atherosclerosis. Labelled cell counts showed that glucocorticoids, even after one day and at a relatively low dose, decrease sharply the deoxyribonucleic acid synthesis in the intimal plaques. The hormonal influence on [ 3 H] thymidine uptake seems to be a dose-dependent process. The relative potency of these steroids in inhibiting DNA synthesis in the plaques parallels closely their anti-inflammatory effectiveness. Conversely mineralocorticoids, including aldosterone and deoxycorticosterone, increase the rate of DNA synthesis in the plaques. It is concluded that the anti-atherogenic effect of glucocorticoids on cholesterol-fed rabbits may be due, at least partly, to the inhibitory effect of these steroids on the DNA synthesis of the cellular components of the intimal plaques

  16. The zebrafish miR-125c is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations and embryogenesis.

    Science.gov (United States)

    He, Yan; Huang, Chun-Xiao; Chen, Nan; Wu, Meng; Huang, Yan; Liu, Hong; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2017-09-26

    Hypoxia is a unique environmental stress. Hypoxia inducible factor-lα (HIF-lα) is a major transcriptional regulator of cellular adaptations to hypoxic stress. MicroRNAs (miRNAs) as posttranscriptional gene expression regulators occupy a crucial role in cell survival under low-oxygen environment. Previous evidences suggested that miR-125c is involved in hypoxia adaptation, but its precise biological roles and the regulatory mechanism underlying hypoxic responses remain unknown. The present study showed that zebrafish miR-125c is upregulated by hypoxia in a Hif-lα-mediated manner in vitro and in vivo . Dual-luciferase assay revealed that cdc25a is a novel target of miR-125c. An inverse correlation between miR-125c and cdc25a was further confirmed in vivo , suggesting miR-125c as a crucial physiological inhibitor of cdc25a which responds to cellular hypoxia. Overexpression of miR-125c suppressed cell proliferation, led to cell cycle arrest at the G1 phase in ZF4 cells and induced apoptotic responses during embryo development. More importantly, miR-125c overexpression resulted in severe malformation and reduction of motility during zebrafish embryonic development. Taken together, we conclude that miR-125c plays a pivotal role in cellular adaptations to hypoxic stress at least in part through the Hif-1α/miR-125c/cdc25a signaling and has great impact on zebrafish early embryonic development.

  17. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    International Nuclear Information System (INIS)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  18. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  19. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Kumar, P R Anil; Varma, H K; Kumary, T V

    2007-01-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function

  20. Neural Plasticity and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication

    Directory of Open Access Journals (Sweden)

    Fuencisla Pilar-Cuéllar

    2013-01-01

    Full Text Available It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF, and vascular endothelial growth factor (VEGF through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies.

  1. Different effects of 25-kDa amelogenin on the proliferation, attachment and migration of various periodontal cells

    International Nuclear Information System (INIS)

    Li, Xiting; Shu, Rong; Liu, Dali; Jiang, Shaoyun

    2010-01-01

    Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.

  2. [Notochord cells enhance proliferation and phenotype-keeping of intervertebral disc chondroid cells].

    Science.gov (United States)

    Zhao, Xianfeng; Liu, Hao; Feng, Ganjun; Deng, Li; Li, Xiuqun; Liang, Tao

    2008-08-01

    To isolate and culture the chondroid cells and notochord cells from New Zealand rabbit immature nucleus pulposus (NP) in monolayer, and to evaluate the responsiveness of rabbit disc-derived chondroid cells to notochord cells with respect to cell proliferation and phenotype. The NP cells were released from the minced immature NP of 6 New Zealand rabbits (4-week-old) by 0.2% collagenase II digestion. The chondroid cells and notochord cells were purified by discontinuous gradient density centrifugation. The chondroid cells were cultured alone (group A) and co-cultured with notochord cells (group B) (1:1), and cell proliferation and phenotype including proteoglycan and collagen II were evaluated. The cells in both groups were observed by the inverted microscope, and the survival rates of the primary and passage cells were detected by toluidine blue staining. The growth curves of the second passage cells in both groups were determined by MTT. Besides, the expressions of proteoglycan and collagen II of the primary and passage cells were examined by toluidine blue and immunocytochemistry staining. The notochord cells and chondroid cells were isolated and purified. With the diameter of 10-15 microm, the notochord cell had abundant intracytoplasmic vesicles, while the chondroid cell, with the diameter of 4-6 microm, had no intracytoplasmic vesicle. The cell survival rate was 89.0%-95.3% in group A and 91.3%-96.3% in group B. There was no significant difference between the same passages in both groups (P > 0.05). The co-cultured cells (group B) increased in cell proliferation compared with the chondroid cells alone (group A) in repeated experiments. The cells in group A reached their logarithmic growth phase after 3-4 days of culture, while the cells in group B did after 2 days of culture. The cell proliferation in group B was more than that in group A after 4-day culture (P notochord cells are conducive for the proliferation and phenotype-keeping of the chondroid cells and

  3. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium.

    Science.gov (United States)

    Blocki, Anna; Beyer, Sebastian; Dewavrin, Jean-Yves; Goralczyk, Anna; Wang, Yingting; Peh, Priscilla; Ng, Michael; Moonshi, Shehzahdi S; Vuddagiri, Susmitha; Raghunath, Michael; Martinez, Eliana C; Bhakoo, Kishore K

    2015-06-01

    The limited efficacy of cardiac cell-based therapy is thought to be due to poor cell retention within the myocardium. Hence, there is an urgent need for biomaterials that aid in long-term cell retention. This study describes the development of injectable microcapsules for the delivery of mesenchymal stem cells (MSCs) into the infarcted cardiac wall. These microcapsules comprise of low concentrations of agarose supplemented with extracellular matrix (ECM) proteins collagen and fibrin. Dextran sulfate, a negatively charged polycarbohydrate, was added to mimic glycosaminoglycans in the ECM. Cell viability assays showed that a combination of all components is necessary to support long-term survival and proliferation of MSCs within microcapsules. Following intramyocardial transplantation, microcapsules degraded slowly in vivo and did not induce a fibrotic foreign body response. Pre-labeling of encapsulated MSCs with iron oxide nanoparticles allowed continued cell-tracking by MRI over several weeks following transplantation into infarcted myocardium. In contrast, MSCs injected as cell suspension were only detectable for two days post transplantation by MRI. Histological analysis confirmed integration of transplanted cells at the infarct site. Therefore, microcapsules proved to be suitable for stem cell delivery into the infarcted myocardium and can overcome current limitations of poor cell retention in cardiac cell-based therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging can predict histopathological findings including proliferation potential, cellularity, and nucleic areas in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Leifels, Leonard; Höhn, Anne-Kathrin; Richter, Cindy; Winter, Karsten

    2018-04-20

    Our purpose was to analyze possible associations between histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging DCE MRI and histopathological findings like proliferation index, cell count and nucleic areas in head and neck squamous cell carcinoma (HNSCC). 30 patients (mean age 57.0 years) with primary HNSCC were included in the study. In every case, histogram analysis parameters of K trans , V e , and K ep were estimated using a mathlab based software. Tumor proliferation index, cell count, and nucleic areas were estimated on Ki 67 antigen stained specimens. Spearman's non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. KI 67 correlated with K trans min ( p = -0.386, P = 0.043) and s K trans skewness ( p = 0.382, P = 0.045), V e min ( p = -0.473, P = 0.011), Ve entropy ( p = 0.424, P = 0.025), and K ep entropy ( p = 0.464, P = 0.013). Cell count correlated with K trans kurtosis ( p = 0.40, P = 0.034), V e entropy ( p = 0.475, P = 0.011). Total nucleic area correlated with V e max ( p = 0.386, P = 0.042) and V e entropy ( p = 0.411, P = 0.030). In G1/2 tumors, only K trans entropy correlated well with total ( P =0.78, P =0.013) and average nucleic areas ( p = 0.655, P = 0.006). In G3 tumors, KI 67 correlated with Ve min ( p = -0.552, P = 0.022) and V e entropy ( p = 0.524, P = 0.031). Ve max correlated with total nucleic area ( p = 0.483, P = 0.049). Kep max correlated with total area ( p = -0.51, P = 0.037), and K ep entropy with KI 67 ( p = 0.567, P = 0.018). We concluded that histogram-based parameters skewness, kurtosis and entropy of K trans , V e , and K ep can be used as markers for proliferation activity, cellularity and nucleic content in HNSCC. Tumor grading influences significantly associations between perfusion and histopathological parameters.

  5. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    Science.gov (United States)

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  6. The DNA glycosylases OGG1 and NEIL3 influence differentiation potential, proliferation, and senescence-associated signs in neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Amilcar [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, SE 17177 Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, SE 17177 Stockholm (Sweden)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer DNA glycosylases OGG1 and NEIL3 are required for neural stem cell state. Black-Right-Pointing-Pointer No effect on cell viability by OGG1 or NEIL3 knockdown in neural stem cells. Black-Right-Pointing-Pointer OGG1 or NEIL3 RNA knockdown result in decreased proliferation and differentiation. Black-Right-Pointing-Pointer Increased HP1{gamma} immunoreactivity after NEIL3 knockdown suggests premature senescence. -- Abstract: Embryonic neural stem cells (NSCs) exhibit self-renewal and multipotency as intrinsic characteristics that are key parameters for proper brain development. When cells are challenged by oxidative stress agents the resulting DNA lesions are repaired by DNA glycosylases through the base excision repair (BER) pathway as a means to maintain the fidelity of the genome, and thus, proper cellular characteristics. The functional roles for DNA glycosylases in NSCs have however remained largely unexplored. Here we demonstrate that RNA knockdown of the DNA glycosylases OGG1 and NEIL3 decreased NSC differentiation ability and resulted in decreased expression of both neuronal and astrocytic genes after mitogen withdrawal, as well as the stem cell marker Musashi-1. Furthermore, while cell survival remained unaffected, NEIL3 deficient cells displayed decreased cell proliferation rates along with an increase in HP1{gamma} immunoreactivity, a sign of premature senescence. Our results suggest that DNA glycosylases play multiple roles in governing essential neural stem cell characteristics.

  7. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    International Nuclear Information System (INIS)

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-01-01

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  8. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer

    NARCIS (Netherlands)

    Vlug, E.J.; Ven, R.A. van de; Vermeulen, J.F.; Bult, P.; Diest, P.J. van; Derksen, P.W.B.

    2013-01-01

    BACKGROUND: Yes Associated Protein (YAP) has been implicated in the control of organ size by regulating cell proliferation and survival. YAP is a transcriptional coactivator that controls cellular responses through interaction with TEAD transcription factors in the nucleus, while its transcriptional

  9. Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod.

    Science.gov (United States)

    Beltrán-Frutos, E; Seco-Rovira, V; Ferrer, C; Madrid, J F; Sáez, F J; Canteras, M; Pastor, L M

    2016-04-01

    The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an 'age group' with three subgroups - young, adult and old animals - and a 'regressed group' with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.

  10. Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear.

    Science.gov (United States)

    Warchol, Mark E

    2002-04-01

    Sensory hair cells in the inner ears of nonmammalian vertebrates can regenerate after injury. In many species, replacement hair cells are produced by the proliferation of epithelial supporting cells. Thus, the ability of supporting cells to undergo renewed proliferation is a key determinant of regenerative ability. The present study used cultures of isolated inner ear sensory epithelia to identify cellular signals that regulate supporting cell proliferation. Small pieces of sensory epithelia from the chicken utricle were cultured in glass microwells. Under those conditions, cell proliferation was inversely related to local cell density. The signaling molecules N-cadherin, beta-catenin, and focal adhesion kinase were immunolocalized in the cultured epithelial cells, and high levels of phosphotyrosine immunoreactivity were present at cell-cell junctions and focal contacts of proliferating cells. Binding of microbeads coated with a function-blocking antibody to N-cadherin inhibited ongoing proliferation. The growth of epithelial cells was also affected by the density of extracellular matrix molecules. The results suggest that cell density, cell-cell contact, and the composition of the extracellular matrix may be critical influences on the regulation of sensory regeneration in the inner ear.

  11. Rac1 Guides Porf-2 to Wnt Pathway to Mediate Neural Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Xi-Tao Yang

    2017-06-01

    Full Text Available The molecular and cellular mechanisms underlying the anti-proliferative effects of preoptic regulator factor 2 (Porf-2 on neural stem cells (NSCs remain largely unknown. Here, we found that Porf-2 inhibits the activity of ras-related C3 botulinum toxin substrate 1 (Rac1 protein in hippocampus-derived rat NSCs. Reduced Rac1 activity impaired the nuclear translocation of β-catenin, ultimately causing a repression of NSCs proliferation. Porf-2 knockdown enhanced NSCs proliferation but not in the presence of small molecule inhibitors of Rac1 or Wnt. At the same time, the repression of NSCs proliferation caused by Porf-2 overexpression was counteracted by small molecule activators of Rac1 or Wnt. By using a rat optic nerve crush model, we observed that Porf-2 knockdown enhanced the recovery of visual function. In particular, optic nerve injury in rats led to increased Wnt family member 3a (Wnt3a protein expression, which we found responsible for enhancing Porf-2 knockdown-induced NSCs proliferation. These findings suggest that Porf-2 exerts its inhibitory effect on NSCs proliferation via Rac1-Wnt/β-catenin pathway. Porf-2 may therefore represent and interesting target for optic nerve injury recovery and therapy.

  12. Giardia-specific cellular immune responses in post-giardiasis chronic fatigue syndrome.

    Science.gov (United States)

    Hanevik, Kurt; Kristoffersen, Einar; Mørch, Kristine; Rye, Kristin Paulsen; Sørnes, Steinar; Svärd, Staffan; Bruserud, Øystein; Langeland, Nina

    2017-01-28

    The role of pathogen specific cellular immune responses against the eliciting pathogen in development of post-infectious chronic fatigue syndrome (PI-CFS) is not known and such studies are difficult to perform. The aim of this study was to evaluate specific anti-Giardia cellular immunity in cases that developed CFS after Giardia infection compared to cases that recovered well. Patients reporting chronic fatigue in a questionnaire study three years after a Giardia outbreak were clinically evaluated five years after the outbreak and grouped according to Fukuda criteria for CFS and idiopathic chronic fatigue. Giardia specific immune responses were evaluated in 39 of these patients by proliferation assay, T cell activation and cytokine release analysis. 20 Giardia exposed non-fatigued individuals and 10 healthy unexposed individuals were recruited as controls. Patients were clinically classified into CFS (n = 15), idiopathic chronic fatigue (n = 5), fatigue from other causes (n = 9) and recovered from fatigue (n = 10). There were statistically significant antigen specific differences between these Giardia exposed groups and unexposed controls. However, we did not find differences between the Giardia exposed fatigue classification groups with regard to CD4 T cell activation, proliferation or cytokine levels in 6 days cultured PBMCs. Interestingly, sCD40L was increased in patients with PI-CFS and other persons with fatigue after Giardia infection compared to the non-fatigued group, and correlated well with fatigue levels at the time of sampling. Our data show antigen specific cellular immune responses in the groups previously exposed to Giardia and increased sCD40L in fatigued patients.

  13. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Cindy, E-mail: c.gunawan@unsw.edu.au [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Sirimanoonphan, Aunchisa [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Teoh, Wey Yang [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Marquis, Christopher P., E-mail: c.marquis@unsw.edu.au [School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2013-09-15

    Highlights: • Uptake of TiO{sub 2} solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO{sub 2} exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO{sub 2} and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO{sub 2} exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO{sub 2} stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO{sub 2} exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO{sub 2}/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.

  14. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Gunawan, Cindy; Sirimanoonphan, Aunchisa; Teoh, Wey Yang; Marquis, Christopher P.; Amal, Rose

    2013-01-01

    Highlights: • Uptake of TiO 2 solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO 2 exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO 2 and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO 2 exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO 2 stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO 2 exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO 2 /L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials

  15. PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation.

    Science.gov (United States)

    Baldassarro, Vito A; Marchesini, Alessandra; Giardino, Luciana; Calzà, Laura

    2017-07-01

    Poly (ADP-ribose) polymerase (PARP) family members are ubiquitously expressed and play a key role in cellular processes, including DNA repair and cell death/survival balance. Accordingly, PARP inhibition is an emerging pharmacological strategy for cancer and neurodegenerative diseases. Consistent evidences support the critical involvement of PARP family members in cell differentiation and phenotype maturation. In this study we used an oligodendrocyte precursor cells (OPCs) enriched system derived from fetal and adult brain to investigate the role of PARP in OPCs proliferation, survival, and differentiation. The PARP inhibitors PJ34, TIQ-A and Olaparib were used as pharmacological tools. The main results of the study are: (i) PARP mRNA expression and PARP activity are much higher in fetal than in adult-derived OPCs; (ii) the culture treatment with PARP inhibitors is cytotoxic for OPCs derived from fetal, but not from adult, brain; (iii) PARP inhibition reduces cell number, according to the inhibitory potency of the compounds; (iv) PARP inhibition effect on fetal OPCs is a slow process; (v) PARP inhibition impairs OPCs maturation into myelinating OL in fetal, but not in adult cultures, according to the inhibitory potency of the compounds. These results have implications for PARP-inhibition therapies for diseases and lesions of the central nervous system, in particular for neonatal hypoxic/ischemic encephalopathy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. IR-induced autophagy plays a role in survival of HeLa cells

    International Nuclear Information System (INIS)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong Min; Kim, Jin Hong; Kim, Jin Kyu

    2014-01-01

    Cells respond to stress with repair, or are diverted into irreversible cell cycle exit (senescence) or are eliminated through programmed cell death. There are two major morphologically distinctive forms of programmed cell death, apoptosis and autophagic cell death. Apoptosis contribute to cell death, whereas autophagy can play a dual role in mediating either cell survival or death in response to various stress stimuli. Here we analysed cellular responses induced by IR. The understanding of an appropriate cellular stress response is of crucial importance in foreseeing the cell fate. Apoptotic feagures were not detected in HeLa under our experimental irradiation condition. Autophagic cell death in HeLa may play an important role in cell protection and can result in cell survival

  17. Nuclear PIM1 confers resistance to rapamycin-impaired endothelial proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Walpen, Thomas; Kalus, Ina [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Schwaller, Juerg [Department of Biomedicine, University of Basel, 4031 Basel (Switzerland); Peier, Martin A. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Battegay, Edouard J. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland); Humar, Rok, E-mail: Rok.Humar@usz.ch [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumor growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation

  18. The bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) blocks hairy cell leukaemia survival, proliferation and B cell receptor signalling: a new therapeutic approach.

    Science.gov (United States)

    Sivina, Mariela; Kreitman, Robert J; Arons, Evgeny; Ravandi, Farhad; Burger, Jan A

    2014-07-01

    B cell receptor (BCR) signalling plays a critical role in the progression of several B-cell malignancies, but its role in hairy cell leukaemia (HCL) is ambiguous. Bruton tyrosine kinase (BTK), a key player in BCR signalling, as well as B cell migration and adhesion, can be targeted with ibrutinib, a selective, irreversible BTK inhibitor. We analysed BTK expression and function in HCL and analysed the effects of ibrutinib on HCL cells. We demonstrated uniform BTK protein expression in HCL cells. Ibrutinib significantly inhibited HCL proliferation and cell cycle progression. Accordingly, ibrutinib also reduced HCL cell survival after BCR triggering with anti-immunoglobulins and abrogated the activation of kinases downstream of the BCR (PI3K and MAPK). Ibrutinib also inhibited BCR-dependent secretion of the chemokines CCL3 and CCL4 by HCL cells. Interestingly, ibrutinib inhibited also CXCL12-induced signalling, a key pathway for bone marrow homing. Collectively, our data support the clinical development of ibrutinib in patients with HCL. © 2014 John Wiley & Sons Ltd.

  19. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alberto Bosque

    2011-10-01

    Full Text Available Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death.

  20. Proliferation and Polarity in Breast Cancer: Untying the GordianKnot

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Radisky, Derek C.; Bissell, Mina J.

    2005-05-09

    Epithelial cancers are associated with genomic instability and alterations in signaling pathways that affect proliferation, apoptosis, and integrity of tissue structure. Overexpression of a number of oncogenic protein kinases has been shown to malignantly transform cells in culture and to cause tumors in vivo, but the interconnected signaling events induced by transformation still awaits detailed dissection. We propose that the network of cellular signaling pathways can be classified into functionally distinct branches, and that these pathways are rewired in transformed cells and tissues after they lose tissue-specific architecture to favor tumor expansion and invasion. Using three-dimensional (3D) culture systems, we recently demonstrated that polarity and proliferation of human mammary epithelial cancer cells were separable consequences of signaling pathways downstream of PI3 kinase.These, and results from a number of other laboratories are beginning to provide insight into how different signaling pathways may become interconnected in normal tissues to allow homeostasis, and how they are disrupted during malignant progression.

  1. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis

    DEFF Research Database (Denmark)

    Stutzin, A; Hoffmann, E K

    2006-01-01

    Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under phys...... as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis....

  2. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation.

    Directory of Open Access Journals (Sweden)

    Nina Bertaux-Skeirik

    2015-02-01

    Full Text Available The cytotoxin-associated gene (Cag pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat. Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique

  3. Bacterial Intoxication Evokes Cellular Senescence with Persistent DNA Damage and Cytokine Signaling

    DEFF Research Database (Denmark)

    Blazkova, Hana; Krejcikova, Katerina; Moudry, Pavel

    2009-01-01

    to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR-90 and WI-38 fibroblasts, HeLa and U2-OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic...... mechanistically underlie the 'distended' morphology evoked by CDTs. Finally, the activation of the two anti-cancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects...

  4. Survival probability of diffusion with trapping in cellular neurobiology

    Science.gov (United States)

    Holcman, David; Marchewka, Avi; Schuss, Zeev

    2005-09-01

    The problem of diffusion with absorption and trapping sites arises in the theory of molecular signaling inside and on the membranes of biological cells. In particular, this problem arises in the case of spine-dendrite communication, where the number of calcium ions, modeled as random particles, is regulated across the spine microstructure by pumps, which play the role of killing sites, while the end of the dendritic shaft is an absorbing boundary. We develop a general mathematical framework for diffusion in the presence of absorption and killing sites and apply it to the computation of the time-dependent survival probability of ions. We also compute the ratio of the number of absorbed particles at a specific location to the number of killed particles. We show that the ratio depends on the distribution of killing sites. The biological consequence is that the position of the pumps regulates the fraction of calcium ions that reach the dendrite.

  5. Imaging Cellular Proliferation During Chemo-Radiotherapy: A Pilot Study of Serial 18F-FLT Positron Emission Tomography/Computed Tomography Imaging for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Everitt, Sarah; Hicks, Rodney J.; Ball, David; Kron, Tomas; Schneider-Kolsky, Michal; Walter, Tania; Binns, David; Mac Manus, Michael

    2009-01-01

    Purpose: To establish whether 18 F-3'-deoxy-3'-fluoro-L-thymidine ( 18 F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial 18 F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline 18 F-FLT PET/CT scans were compared with routine staging 18 F-FDG PET/CT scans. Two on-treatment 18 F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptake of 18 F-FLT on PET/CT corresponded to staging 18 F-FDG PET/CT abnormalities. 18 F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of 18 F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in 18 F-FLT tumor uptake of 0.58 x baseline. A marked reduction of 18 F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that 18 F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of 18 F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.

  6. Methylselenol, a selenium metabolite, plays common and different roles in cancerous colon HCT116 cell and noncancerous NCM460 colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Briske-Anderson, Mary; Wu, Min; Moyer, Mary P

    2012-01-01

    Methylselenol is hypothesized to be a critical selenium metabolite for anticancer action, and differential chemopreventive effects of methylselenol on cancerous and noncancerous cells may play an important role. In this study, the submicromolar concentrations of methylselenol were generated by incubating methionase with seleno-L methionine, and colon-cancer-derived HCT-116 cells and noncancerous colon NCM460 cells were exposed to methylselenol. Methylselenol exposure inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase and an induction of apoptosis in HCT116, but to a much lesser extent in NCM460 colon cells. Similarly, the examination of mitogen-activated protein kinase (MAPK) and cellular myelocytomatosis oncogene (c-Myc) signaling status revealed that methylselenol inhibited the phosphorylation of extracellular-regulated kinase1/2 and p38 mitogen-activated protein kinase and the expression of c-Myc in HCT116 cells, but also to a lesser extent in NCM460 cells. The other finding is that methylselenol inhibits sarcoma kinase phosphorylation in HCT116 cells. In contrast, methylselenol upregulated the phosphorylation of sarcoma and focal adhesion kinase survival signals in the noncancerous NCM460 cells. Collectively, methylselenol's stronger potential of inhibiting cell proliferation/survival signals in the cancerous HCT116 cells when compared with that in noncancerous NCM460 cells may partly explain the potential of methylselenol's anticancer action.

  7. Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Jekaterina Kazantseva

    Full Text Available Transcription factor IID (TFIID activity can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. Alternative splicing of TFIID subunits is often the result of external stimulation of upstream signaling pathways. We studied tissue distribution and cellular expression of different splice variants of TFIID subunit TAF4 mRNA and biochemical properties of its isoforms in human mesenchymal stem cells (hMSCs to reveal the role of different isoforms of TAF4 in the regulation of proliferation and differentiation. Expression of TAF4 transcripts with exons VI or VII deleted, which results in a structurally modified hTAF4-TAFH domain, increases during early differentiation of hMSCs into osteoblasts, adipocytes and chondrocytes. Functional analysis data reveals that TAF4 isoforms with the deleted hTAF4-TAFH domain repress proliferation of hMSCs and preferentially promote chondrogenic differentiation at the expense of other developmental pathways. This study also provides initial data showing possible cross-talks between TAF4 and TP53 activity and switching between canonical and non-canonical WNT signaling in the processes of proliferation and differentiation of hMSCs. We propose that TAF4 isoforms generated by the alternative splicing participate in the conversion of the cellular transcriptional programs from the maintenance of stem cell state to differentiation, particularly differentiation along the chondrogenic pathway.

  8. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  9. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    International Nuclear Information System (INIS)

    Chiou, S.-H.; Chen, S.-J.; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-01-01

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 μM fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1β, IL-6, and TNF-α in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression

  10. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor

    International Nuclear Information System (INIS)

    Valmikinathan, Chandra M.; Hoffman, John; Yu, Xiaojun

    2011-01-01

    Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation. In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues. At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral

  11. Selenium in bone health: roles in antioxidant protection and cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Cao, Jay J; Combs, Gerald F

    2013-01-10

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.

  12. Interleukin-6 promotes the migration and cellular senescence and inhibits apoptosis of human intrahepatic biliary epithelial cells.

    Science.gov (United States)

    Li, Ran; Dong, Juan; Bu, Xiu-Qin; Huang, Yong; Yang, Jing-Yu; Dong, Xuan; Liu, Jie

    2018-02-01

    Biliary epithelial cells (BEC) are closely related to some immune regulatory bile duct diseases. However, the complexity and polymorphism of the morphology and function of bile duct cells have hindered further investigation. Therefore, the aim of this study is to investigate how interleukin-6 (IL-6) affects the migration, cellular senescence, and apoptosis of human intrahepatic biliary epithelial cells (HIBECs). The HIBECs were stimulated by different concentrations of IL-6 (0, 5, 10, 15, and 20 ng/mL, respectively). Transwell assay was performed in order to measure the migration abilities, positive β-Galactosidase staining for the cellular senescence of HIBECs, MTT assay for changes of proliferation after IL-6 treatment and flow cytometry for cell cycle and apoptosis. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted in order to detect the mRNA and protein expressions of epithelial-mesenchymal transition (EMT) markers in HIBECs. In comparison to the 0 ng/mL group, in the 5, 10, 15, and 20 ng/mL groups, a significant increase in the number of migratory HIBECs, proliferation, along with mRNA and protein expressions of EMT markers was observed. While the mRNA and protein expressions of epithelial markers, the number of β-galactosidase positive staining cells, as well as apoptosis rate of HIBECs dramatic decreased. Further, the aforementioned changes were significantly more evident in the 15 and 20 ng/mL groups in comparison to the 5 and 10 ng/mL groups. IL-6 may stimulate EMT, enhance the migration and proliferation, and inhibit apoptosis of HIBECs, thus delaying cellular senescence. © 2017 Wiley Periodicals, Inc.

  13. Cellular anomalies underlying retinoid-induced phocomelia.

    Science.gov (United States)

    Zhou, Jian; Kochhar, Devendra M

    2004-11-01

    The question of how alterations in cell behavior produced by retinoic acid (RA) influenced the development of skeletogenic mesenchyme of the limb bud was examined in this study. Our established model was employed, which involves treatment of pregnant mice with a teratogenic dose of RA (100 mg/kg) on 11 days postcoitum (dpc) resulting in a severe truncation of all long bones of the forelimbs in virtually every exposed fetus. It is shown that RA, administered at a stage to induce phocomelia in virtually all exposed embryos, resulted in immediate appearance of enhanced cell death within the mesenchyme in the central core of the limb bud, an area destined for chondrogenesis. The central core mesenchyme, which in the untreated limb buds experiences a sharp decline in cell proliferation heralding the onset of chondrogenesis, demonstrated a reversal of the process; this mesenchyme maintained a higher rate of cell proliferation upon RA exposure. These events resulted in a truncation and disorganization of the chondrogenic anlage, more pronounced in zeugopodal mesenchyme than in the autopod. We conclude that an inhibition of chondrogenesis was secondary to a disruption in cellular behavior caused by RA, a likely consequence of misregulation in the growth factor signaling cascade.

  14. Cellular prion protein and γ-synuclein overexpression in LS 174T colorectal cancer cell drives endothelial proliferation-to-differentiation switch

    Directory of Open Access Journals (Sweden)

    Sing-Hui Ong

    2018-03-01

    Full Text Available Background Tumor-induced angiogenesis is an imperative event in pledging new vasculature for tumor metastasis. Since overexpression of neuronal proteins gamma-synuclein (γ-Syn and cellular prion protein (PrPC is always detected in advanced stages of cancer diseases which involve metastasis, this study aimed to investigate whether γ-Syn or PrPC overexpression in colorectal adenocarcinoma, LS 174T cells affects angiogenesis of endothelial cells, EA.hy 926 (EA. Methods EA cells were treated with conditioned media (CM of LS 174T-γ-Syn or LS 174T-PrP, and their proliferation, invasion, migration, adhesion and ability to form angiogenic tubes were assessed using a range of biological assays. To investigate plausible background mechanisms in conferring the properties of EA cells above, nitrite oxide (NO levels were measured and the expression of angiogenesis-related factors was assessed using a human angiogenesis antibody array. Results EA proliferation was significantly inhibited by LS 174T-PrP CM whereas its telomerase activity was reduced by CM of LS 174T-γ-Syn or LS 174T-PrP, as compared to EA incubated with LS 174T CM. Besides, LS 174T-γ-Syn CM or LS 174T-PrP CM inhibited EA invasion and migration in Boyden chamber assay. Furthermore, LS 174T-γ-Syn CM significantly inhibited EA migration in scratch wound assay. Gelatin zymography revealed reduced secretion of MMP-2 and MMP-9 by EA treated with LS 174T-γ-Syn CM or LS 174T-PrP CM. In addition, cell adhesion assay showed lesser LS 174T-γ-Syn or LS 174T-PrP cells adhered onto EA, as compared to LS 174T. In tube formation assay, LS 174T-γ-Syn CM or LS 174T-PrP CM induced EA tube formation. Increased NO secretion by EA treated with LS 174T-γ-Syn CM or LS 174T-PrP CM was also detected. Lastly, decreased expression of pro-angiogenic factors like CXCL16, IGFBP-2 and amphiregulin in LS 174T-γ-Syn CM or LS 174T-PrP CM was detected using the angiogenesis antibody array. Discussion These results

  15. Lung cells support osteosarcoma cell migration and survival.

    Science.gov (United States)

    Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard

    2017-01-25

    Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline

  16. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zanhua [Medical School of Nanchang University (China); The Chest Hospital of Jiangxi Province Department of Respiration (China); Jiang, Xunsheng [Department of Respiration, Medical School of Nanchang University (China); Zhang, Wei, E-mail: weizhangncu@gmail.com [Department of Respiration, The First Affiliated Hospital of Nanchang University (China)

    2016-01-29

    Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosis (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.

  17. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.

    Science.gov (United States)

    Dai, Lei; Wang, Gang; Pan, Wensheng

    2017-01-01

    To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  18. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2017-01-01

    Full Text Available To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  19. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    OpenAIRE

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cel...

  20. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    Science.gov (United States)

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug

  1. Stem cell survival is severely compromised by the thymidineanalog EdU (5-ethynyl-2'-deoxyuridine), an alternative to BrdU for proliferation assays and stem cell tracing

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Skovrind, Ida; Christensen, Marlene Louise

    2013-01-01

    Stem cell therapy has opened up the possibility of treating numerous degenerating diseases. However, we are still merely at the stage of identifying appropriate sources of stem cells and exploring their full differentiation potential. Thus, tracking the stem cells upon in vivo engraftment...... and during in vitro co-culture is very important and is an area of research embracing many pitfalls. 5-Ethynyl-2'-deoxyuridine (EdU), a rather new thymidine analog incorporated into DNA, has recently been suggested to be a novel highly valid alternative to other dyes for labeling of stem cells and subsequent...... tracing of their proliferation and differentiation ability. However, our results herein do not at any stage support this recommendation, since EdU severely reduces the viability of stem cells. Accordingly, we found that transplanted EdU-labeled stem cells hardly survive upon in vivo transplantation...

  2. A genetic screen for anchorage-independent proliferation in mammalian cells identifies a membrane-bound neuregulin.

    Directory of Open Access Journals (Sweden)

    Davide Danovi

    2010-07-01

    Full Text Available Anchorage-independent proliferation is a hallmark of oncogenic transformation and is thought to be conducive to proliferation of cancer cells away from their site of origin. We have previously reported that primary Schwann cells expressing the SV40 Large T antigen (LT are not fully transformed in that they maintain a strict requirement for attachment, requiring a further genetic change, such as oncogenic Ras, to gain anchorage-independence. Using the LT-expressing cells, we performed a genetic screen for anchorage-independent proliferation and identified Sensory and Motor Neuron Derived Factor (SMDF, a transmembrane class III isoform of Neuregulin 1. In contrast to oncogenic Ras, SMDF induced enhanced proliferation in normal primary Schwann cells but did not trigger cellular senescence. In cooperation with LT, SMDF drove anchorage-independent proliferation, loss of contact inhibition and tumourigenicity. This transforming ability was shared with membrane-bound class III but not secreted class I isoforms of Neuregulin, indicating a distinct mechanism of action. Importantly, we show that despite being membrane-bound signalling molecules, class III neuregulins transform via a cell intrinsic mechanism, as a result of constitutive, elevated levels of ErbB signalling at high cell density and in anchorage-free conditions. This novel transforming mechanism may provide new targets for cancer therapy.

  3. Intraretinal proliferation induced by retinal detachment

    International Nuclear Information System (INIS)

    Fisher, S.K.; Erickson, P.A.; Lewis, G.P.; Anderson, D.H.

    1991-01-01

    Cellular proliferation after retinal detachment was studied by 3 H-thymidine light microscopic autoradiography in cats that had experimental detachments of 0.5-180 days duration. The animals underwent labeling 2 hr before death with an intraocular injection of 200 microCi of 3 H-thymidine. The number of labeled nuclei were counted in 1-micron thick tissue sections in regions of detachment, in regions of the experimental eyes that remained attached, and in control eyes that had no detachments. In the normal eye, in one that had only the lens and vitreous removed, and in the eyes with 0.5- and 1-day detachments, the number of labeled nuclei ranged from 0/mm (0.5-day detachment) to 0.38/mm (lens and vitreous removed only). By 2 days postdetachment, the number of labeled nuclei increased to 2.09/mm. The highest levels of labeling occurred in two animals with detachments of 3 (7.86/mm) and 4 (7.09/mm) days. Thereafter, the numbers declined steadily until near-baseline counts were obtained at 14 days. The number of labeled nuclei was slightly elevated in the attached regions of two animals with 3-day detachments. Labeled cell types included: Mueller cells, astrocytes, pericytes, and endothelial cells of the retinal vasculature, and both resident (microglial cells) and invading macrophages. In an earlier study RPE cells were also shown to proliferate in response to detachment. Thus, these data show that proliferation is a rapid response to detachment, reaching a maximum within 4 days, and that virtually every nonneuronal cell type in the retina can participate in this response. The data suggest that events leading to such clinical manifestations as proliferative vitreoretinopathy and subretinal fibrosis may have their beginnings in this very early proliferative response

  4. Thioredoxin priming prolongs lung allograft survival by promoting immune tolerance.

    Directory of Open Access Journals (Sweden)

    Hanbo Hu

    Full Text Available Tolerance to allograft antigen is the major challenge and final goal of transplant medicine. Our previous study demonstrated that thioredoxin-1 (Trx priming of donor lung significantly protected allogeneic lung graft. To determine whether Trx priming of donor lung inhibits allograft rejection, extends allograft survival and induces immune tolerance, orthotopic left lung transplantation was performed from Lewis to Sprague-Dawley rats without immunosuppression. Donor lungs were primed with Trx at 4°C for 4 hr prior to transplantation. After up to 37 days post-transplantation, allograft lung morphology, recipient T cell and humoral alloantigen-specific immune responses were examined. We found that Trx-primed lungs exhibited much reduced acute rejection and associated lung injuries resulting in loss of graft functional area at 5-37 days post-transplant in contrast to the control groups. CD4+ T cells from the recipients with Trx-primed grafts responded to the stimulation of dendritic cells (DCs of donor origin, in contrast to DCs from the third party, with significantly reduced proliferation. Consistent with above findings, we observed that CD4+Foxp3+ regulatory T cells in spleen cells from the recipients with Trx-primed grafts were significantly increased compared to controls, and CD4+ T cells from the recipients with Trx-primed grafts produced much higher levels of immunosuppressive cytokine, IL-10 when stimulated with allogeneic donor DCs. In addition, humoral immune tolerance was also induced as there was no significant increase levels of serum antibodies against donor antigens in Trx-lung recipients when re-challenged with allogeneic donor antigens. Our results demonstrate that one-time Trx-priming of donor lung grafts prior to transplantation significantly prolongs the survival of the grafts through inducing or promoting cellular and humoral alloantigen-specific immune tolerance, which might be associated with the induction of

  5. Identification of irradiated food. III. Identification of irradiated potato tubers by means of a test based on the cellular proliferation

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Mazon Matanzo, M.P.

    1976-01-01

    The effect of gamma radiation on the formation of the wound periderm in potato tubers cut in halves and on the proliferation of the potato parenchyma cultivated ''in vitro'' is studied. Doses of 3 Krad and higher ones completely inhibit the formation of the wound periderm and the growth of protuberances in the fragments of the parenchyma cultivated ''in vitro''. In the control and IPC treated tubers the proliferation was normal and abundant, in the tubers as well as in the potato parenchyma tissues cultivated ''in vitro''.(author) [es

  6. Poor survival of treatment-related acute nonlymphocytic leukemia

    International Nuclear Information System (INIS)

    Neugut, A.I.; Nieves, J.; Murray, T.; Tsai, Weiyann; Robinson, E.

    1990-01-01

    Population-based data on more than 1 million patients registered in the Surveillance, Epidemiology, and End-Results Program of the National Cancer Institute, 1973-1984, were analyzed to determine the survival of patients with de novo acute nonlymphocytic leukemia (ANLL) and following a first primary tumor treated (with chemotherapy and/or radiation therapy) or untreated. Cases that occurred within 12 months of the first malignant neoplasm were excluded. Survival was estimated using Cox proportional-hazards modeling, with age, sex, and specific type of ANLL as covariates. The 6,271 patients with de novo ANLL had an estimated 12-month survival of 30%, while the 107 patients with treatment-related ANLL had an estimated 12-month survival of 10%. The authors conclude that ANLL that occurs after chemotherapy or radiation therapy is biologically more aggressive and/or resistant to therapy than spontaneous ANLL. This provides a rationale for current studies on treatment-induced cellular changes and on more aggressive therapy for these patients

  7. Cellular modelling of river catchments and reaches: Advantages, limitations and prospects

    Science.gov (United States)

    Coulthard, T. J.; Hicks, D. M.; Van De Wiel, M. J.

    2007-10-01

    The last decade has witnessed the development of a series of cellular models that simulate the processes operating within river channels and drive their geomorphic evolution. Their proliferation can be partly attributed to the relative simplicity of cellular models and their ability to address some of the shortcomings of other numerical models. By using relaxed interpretations of the equations determining fluid flow, cellular models allow rapid solutions of water depths and velocities. These can then be used to drive (usually) conventional sediment transport relations to determine erosion and deposition and alter the channel form. The key advance of using these physically based yet simplified approaches is that they allow us to apply models to a range of spatial scales (1-100 km 2) and time periods (1-100 years) that are especially relevant to contemporary management and fluvial studies. However, these approaches are not without their limitations and technical problems. This paper reviews the findings of nearly 10 years of research into modelling fluvial systems with cellular techniques, principally focusing on improvements in routing water and how fluvial erosion and deposition (including lateral erosion) are represented. These ideas are illustrated using sample simulations of the River Teifi, Wales. A detailed case study is then presented, demonstrating how cellular models can explore the interactions between vegetation and the morphological dynamics of the braided Waitaki River, New Zealand. Finally, difficulties associated with model validation and the problems, prospects and future issues important to the further development and application of these cellular fluvial models are outlined.

  8. Effects of Uptake of Hydroxyapatite Nanoparticles into Hepatoma Cells on Cell Adhesion and Proliferation

    Directory of Open Access Journals (Sweden)

    Meizhen Yin

    2014-01-01

    Full Text Available Hydroxyapatite nanoparticles (nano-HAPs were prepared by homogeneous precipitation, and size distribution and morphology of these nanoparticles were determined by laser particle analysis and transmission electron microscopy, respectively. Nano-HAPs were uniformly distributed, with rod-like shapes sizes ranging from 44.6 to 86.8 nm. Attached overnight, suspended, and proliferating Bel-7402 cells were repeatedly incubated with nano-HAPs. Inverted microscopy, transmission electron microscopy, and fluorescence microscopy were used to observe the cell adhesion and growth, the culture medium containing nano-HAPs, the cell ultrastructure, and intracellular Ca2+ labeled with a fluo-3 calcium fluorescent probe. The results showed that nano-HAPs inhibited proliferation of Bel-7402 cells and, caused an obvious increase in the concentration of intracellular Ca2+, along with significant changes in the cell ultrastructure. Moreover, nano-HAPs led suspended cells and proliferating cells after trypsinized that did not attach to the bottom of the culture bottle died. Nano-HAPs continuously entered these cells. Attached, suspended, and proliferating cells endocytosed nano-HAPs, and nanoparticle-filled vesicles were in the cytoplasm. Therefore, hepatoma cellular uptake of nano-HAPs through endocytosis was very active and occurred continuously. Nano-HAPs affected proliferation and adhesion of hepatoma cells probably because uptake of nano-HAPs blocked integrin-mediated cell adhesion, which may have potential significance in inhibiting metastatic cancer cells to their target organ.

  9. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    International Nuclear Information System (INIS)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.; Xu, C. Wilson

    2011-01-01

    Research highlights: → Resveratrol induces cellular senescence in glioma cell. → Resveratrol inhibits mono-ubiquitination of histone H2B at K120. → Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. → Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. → RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-β-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are

  10. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  11. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  12. WetA bridges cellular and chemical development in Aspergillus flavus.

    Directory of Open Access Journals (Sweden)

    Ming-Yueh Wu

    Full Text Available Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3-glucan, β-(1,3-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.

  13. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Directory of Open Access Journals (Sweden)

    Rushendhiran Kesavan

    Full Text Available Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs, PDGF-BB (20 ng/ml induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml. The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA. Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  14. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Science.gov (United States)

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  15. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  16. Inhibition of B cell proliferation by antisense DNA to both alpha and beta forms of Fc epsilon R II.

    Science.gov (United States)

    Bhatti, L; Behle, K; Stevens, R H

    1992-10-01

    Epstein-Barr Virus (EBV) infection activates B lymphocyte proliferation through partially understood mechanisms, resulting in phenotypic changes, including the appearance of new antigens. One such antigen is Fc epsilon R II/CD-23 which may be relevant for B cell proliferation. We have used anti-sense oligonucleotides to study the importance of the two forms of this molecule for proliferation in the EBV-transformed, Fc epsilon R II +ve lymphoblastoid B cell line, RPMI 8866. Anti-sense oligodeoxynucleotides were generated to the two forms of Fc epsilon R II; Fc epsilon R IIa (alpha) and IIb (beta) which differ only in their intracytoplasmic domains. Addition of increasing concentrations of anti-sense oligonucleotides, ranging from 1 to 30 microM, significantly decreased cellular proliferation as measured by the incorporation of [3H]thymidine (inhibition range 8-88%). Optimum inhibition of cellular proliferation was apparent at 15 microM concentration of both anti-sense Fc epsilon R IIa and IIb (Fc epsilon R IIa, mean +/- SE = 75 +/- 7% inhibition, p less than 0.001; Fc epsilon R IIb, mean +/- SE = 71 +/- 7% inhibition, p less than 0.001). Anti-sense oligonucleotides complementary to the common part of Fc epsilon R II resulted in a similar inhibition of proliferation. Sense oligonucleotides did not induce significant inhibition. Preincubation of sense and anti-sense oligonucleotides resulted in an abrogation of proliferation inhibition. Moreover, none of these oligonucleotides had any effect on a Fc epsilon R II -ve cell line. Incubation with both anti-sense IIa and IIb resulted in additive, but not synergistic inhibition of proliferation. Addition of soluble Fc epsilon R II did not reverse inhibition of proliferation, suggesting that membrane-bound or intracellular rather than soluble Fc epsilon R II was important for the induced proliferation. Analysis of cell surface expression for Fc epsilon II indicated that while there was a pronounced effect on cell number

  17. Investigation on Cell Proliferation with a New Antibody against Thymidine Kinase 1

    Directory of Open Access Journals (Sweden)

    Naining Wang

    2001-01-01

    Full Text Available The cytosolic thymidine kinase 1 (TK1 is one of the enzymes involved in DNA replication. Based on biochemical studies, TK1 is activated at late G1 of cell cycle, and its activity correlates with the cell proliferation. We have developed a polyclonal anti‐TK1 antibody against a synthetic peptide from the C‐terminus of human TK1. Using this antibody, here we demonstrate the exclusive location of TK1 in the cytoplasm of cells. Cell cycle dependent TK1 expression was studied by simultaneous fluorescence staining for TK1 and bromodeoxyuridine, by using elutriated cells, and by quantitation of the amount TK1 in relation to the cellular DNA content. TK1, which was strongly expressed in the cells in S+G2 period, raised at late G1 and decreased during mitosis. The amount of TK1 increased three folds from late G1 to G2. TK1 positive cells were demonstrated in areas of proliferation activity of various normal and malignant tissues. The new anti‐TK1 antibody works in archival specimens and is a specific marker of cell proliferation.

  18. Immunological Dysregulation in Multiple Myeloma Microenvironment

    OpenAIRE

    Romano, Alessandra; Conticello, Concetta; Cavalli, Maide; Vetro, Calogero; La Fauci, Alessia; Parrinello, Nunziatina Laura; Di Raimondo, Francesco

    2014-01-01

    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extr...

  19. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay

    2018-06-01

    c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

  20. Rac1 Regulates the Proliferation, Adhesion, Migration, and Differentiation of MDPC-23 Cells.

    Science.gov (United States)

    Ren, Jing; Liang, Guobin; Gong, Li; Guo, Bing; Jiang, Hongwei

    2017-04-01

    Stem cells are responsible for replacing damaged pulp tissue; therefore, promoting their survival and inducing their adhesion to dentin are vital. As a member of the Rho family of guanosine triphosphatases, Rac1 is an important regulator of osteoblast functions. However, little is known about its role in regenerative endodontic procedures. The current study examined the role of Rac1 in the proliferation, migration, and odontoblastic differentiation of MDPC-23 cells. MDPC-23 cells were transfected with small interfering RNA to knock down Rac1 expression, and then their proliferation, migration, adhesion, and odontoblastic differentiation were examined in vitro. MDPC-23 cells transfected with si-Rac1 exhibited the increased expression of several key odontogenic protein markers, including Dmp1, Dspp, Runx2, and alkaline phosphatase, as well as decreased proliferation and migration in vitro. The results suggest that Rac1 might regulate nuclear factor kappa B signaling in MDPC-23 cells. Rac1 may have vital roles in the proliferation, migration, adhesion, and odontoblastic differentiation of MDPC-23 cells. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Histomorfometria, apoptose e proliferação celular em neoplasias intraepiteliais do colo uterino Histomorphometry, apoptosis and cell proliferation in cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Rodrigo Tadeu de Puy e Souza

    2011-12-01

    alterations. Accumulation of such mutations and unbalance of genomic homeostasis induce changes in certain genes as well as affect cell proliferation and apoptosis. Immunohistochemical markers of cellular proliferation, apoptosis and cell survival in cervical intraepithelial lesions still require morphometric studies in order to define their role in the development of dysplasias caused by invasive carcinoma. OBJECTIVES: In order to better understand the processes of cellular proliferation, apoptosis and epithelial turn over in such precursory lesions, histomorphometric evaluation for mitosis and apoptosis as well as immunohistochemical reactions for Bax, Bcl-2 and Ki-67 proteins (reactivity, localization and intensity were carried out in cervical biopsies. METHODS: Samples were split into four groups: 1. cervicitis (n = 20; 2. light dysplasia (n = 20; 3. moderate dysplasia (n = 20; 4. severe dysplasia (n = 20. RESULTS: Intense proliferation and apoptosis were observed in lesions with high, extensive, intense, and diffuse Ki-67 and Bax immunolabeling. Proliferation and apoptosis were mild or null in groups 1 and 2. Bcl-2 immunolabeling was more intense in high degree lesions and mild in the other groups. Extensive Ki-67 and Bax immunolabeling suggests an increased cellular turn over, which was also corroborated by histomorphometry. The more severe the dysplasia is the higher Bcl-2 expression. CONCLUSION: These data indicate that the pre-neoplastic process is dynamic and is concomitant with apoptosis and mitosis.

  2. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Chiara Focaccetti

    Full Text Available Antimetabolites are a class of effective anticancer drugs interfering in essential biochemical processes. 5-Fluorouracil (5-FU and its prodrug Capecitabine are widely used in the treatment of several solid tumors (gastro-intestinal, gynecological, head and neck, breast carcinomas. Therapy with fluoropyrimidines is associated with a wide range of adverse effects, including diarrhea, dehydration, abdominal pain, nausea, stomatitis, and hand-foot syndrome. Among the 5-FU side effects, increasing attention is given to cardiovascular toxicities induced at different levels and intensities. Since the mechanisms related to 5-FU-induced cardiotoxicity are still unclear, we examined the effects of 5-FU on primary cell cultures of human cardiomyocytes and endothelial cells, which represent two key components of the cardiovascular system. We analyzed at the cellular and molecular level 5-FU effects on cell proliferation, cell cycle, survival and induction of apoptosis, in an experimental cardioncology approach. We observed autophagic features at the ultrastructural and molecular levels, in particular in 5-FU exposed cardiomyocytes. Reactive oxygen species (ROS elevation characterized the endothelial response. These responses were prevented by a ROS scavenger. We found induction of a senescent phenotype on both cell types treated with 5-FU. In vivo, in a xenograft model of colon cancer, we showed that 5-FU treatment induced ultrastructural changes in the endothelium of various organs. Taken together, our data suggest that 5-FU can affect, both at the cellular and molecular levels, two key cell types of the cardiovascular system, potentially explaining some manifestations of 5-FU-induced cardiovascular toxicity.

  3. The radiobiological response of the thyroid

    International Nuclear Information System (INIS)

    O'Connor, M.K.; Malone, J.F.; Moriarty, M.; Cullen, M.J.

    1980-01-01

    The response of sheep thyroid cells in culture to single doses of X or γ rays is described. In the absence of cellular proliferation the cells were unusually radioresistant, showing little sign of interphase death at doses up to 9 krad. The follicular morphology characteristic of thyroid cells in vivo was also very radioresistant. Iodide trapping was reduced to 50% of the control value by doses of the order of 2 krad. When proliferation was induced the cells could be assayed for post-irradiation survival using a clonogenic endpoint. The survival curves were sigmoid with a Do of 410 rad and a very low extrapolation number. (author)

  4. GP88 (PC-Cell Derived Growth Factor, progranulin stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sabnis Gauri

    2011-06-01

    Full Text Available Abstract Background Aromatase inhibitors (AI that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+ breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88, also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.

  5. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  6. [Effects of triterpenoid from Psidium guajava leaves ursolic acid on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance].

    Science.gov (United States)

    Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai

    2013-08-01

    To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.

  7. Proliferation: myth or reality?; La proliferation: mythe ou realite?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This article analyzes the proliferation approach, its technical condition and political motivation, and the share between the myth (political deception, assumptions and extrapolations) and the reality of proliferation. Its appreciation is complicated by the irrational behaviour of some political actors and by the significant loss of the non-use taboo. The control of technologies is an important element for proliferation slowing down but an efficient and autonomous intelligence system remains indispensable. (J.S.)

  8. Metabolic regulation of cellular plasticity in the pancreas.

    Science.gov (United States)

    Ninov, Nikolay; Hesselson, Daniel; Gut, Philipp; Zhou, Amy; Fidelin, Kevin; Stainier, Didier Y R

    2013-07-08

    Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    Energy Technology Data Exchange (ETDEWEB)

    Manceur, Aziza P. [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Michael [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Holowacz, Tamara [Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Witterick, Ian [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Department of Otolaryngology, Head and Neck Surgery, University of Toronto, ON (Canada); Weksberg, Rosanna [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); McCurdy, Richard D. [The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); Warsh, Jerry J. [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Audet, Julie, E-mail: julie.audet@utoronto.ca [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada)

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  10. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Andrea M Siegel

    2008-04-01

    Full Text Available Murine gammaherpesvirus 68 (MHV68 establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV. EBV encodes an interleukin-10 (IL-10 homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25 and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis

  11. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Science.gov (United States)

    Siegel, Andrea M; Herskowitz, Jeremy H; Speck, Samuel H

    2008-04-04

    Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis-identifying a

  12. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    Science.gov (United States)

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.

  13. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation.

    Science.gov (United States)

    Savic, Daniel; Ramaker, Ryne C; Roberts, Brian S; Dean, Emma C; Burwell, Todd C; Meadows, Sarah K; Cooper, Sara J; Garabedian, Michael J; Gertz, Jason; Myers, Richard M

    2016-07-11

    The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic

  14. Effect of Temperature and Nutrient Concentration on Survival of Foodborne Pathogens in Deciduous Fruit Processing Environments for Effective Hygiene Management.

    Science.gov (United States)

    Duvenage, Stacey; Korsten, Lise

    2016-11-01

    Temperature and good sanitation practices are important factors for controlling growth of microorganisms. Fresh produce is stored at various temperatures to ensure quality and to prolong shelf life. When foodborne pathogens survive and grow on fresh produce at storage temperatures, then additional control strategies are needed to inactivate these pathogens. The aim of this study was to determine how temperatures associated with deciduous fruit processing and storage facilities (0.5, 4, and 21°C) affect the growth and/or survival of Escherichia coli O157:H7, Listeria monocytogenes , Salmonella enterica subsp. enterica serovar Typhimurium, and Staphylococcus aureus under different nutrient conditions (nutrient rich and nutrient poor) and on simulated contact surfaces (vinyl coupons). Information on the growth and survival of foodborne pathogens at specific deciduous fruit processing and storage temperatures (0.5°C) is not available. All pathogens except E. coli O157:H7 were able to survive on vinyl coupons at all temperatures. L. monocytogenes proliferated under both nutrient conditions independent of temperature. S. aureus was the pathogen least affected by nutrient conditions. The survival of foodborne pathogens on the vinyl coupons, a model system for studying surfaces in fruit preparation and storage environments, indicates the potential for cross-contamination of deciduous fruit products under poor sanitation conditions. Foodborne pathogens that can proliferate and survive at various temperatures under different nutrient conditions could lead to fruit cross-contamination. Temperature mismanagement, which could allow pathogen proliferation in contaminated fruit packing houses and storage environments, is a concern. Therefore, proper hygiene and sanitation practices, removal of possible contaminants, and proper food safety management systems are needed to ensure food safety.

  15. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Science.gov (United States)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  16. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  17. Hydroxysafflor yellow A suppresses oxidized low density lipoprotein induced proliferation of vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Lin Sheng

    2012-06-01

    Full Text Available To investigate the relationship between the suppression of Hydroxysafflor yellow A (HSYA on the oxidized low density lipoprotein (ox-LDL induced proliferation of vascular smooth muscle cells (VSMCs and the mRNA and protein expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2 and mitogen activated protein kinase phospholipase-1 (MAKP-1, VSMCs were treated with HSYA at 10 ?mol/L and/or ox-LDL at 35 mg/L for 48 h. MTT assay was done to measure cell survival rate, flow cytometry to detect cell cycle, reverse transcription PCR and Western blot to detect the expression of ERK1/2 and MAKP-1. When compared to cells treated with ox-LDL alone, the survival rate of cells treated with two reagents was reduced and the proportion of cells in G0/G1 phase significantly increased, with increased MKP-1 expression. The study suggests HSYA can inhibit VSMC proliferation via increasing MKP-1 expression, reducing p-ERK1/2 activity and suppressing cell cycle.

  18. The methanol seed extract of Garcinia kola attenuated angiotensin II- and lipopolyssacharide-inducedvascular smooth muscle cell proliferation and nitric oxide production

    Directory of Open Access Journals (Sweden)

    Adeolu A. Adedapo

    2016-10-01

    Full Text Available All over the world, cardiovascular diseases are a risk factor for poor health and early death with predisposing factors to include age, gender, tobacco use, physical inactivity, excessive alcohol consumption, unhealthy diet, obesity, family history of cardiovascular disease, hypertension, diabetes mellitus, hyperlipidemia, psychosocial factors, poverty and low educational status, and air pollution. It is envisaged that herbal products that can stem this trend would be of great benefit. Garcinia kola (GK, also known as bitter kola is one of such plants. Generally used as a social snack and offered to guests in some cultural settings, bitter kola has been indicated in the treatment of laryngitis, general inflammation, bronchitis, viral infections and diabetes. In this study, the effects of methanol seed extract of Garcinia kola on the proliferation of Vascular Smooth Muscle Cells (VSMCs in cell culture by Angiotensin II (Ang II and LPS-induced NO production were carried out. Confluent VSMCs were exposed to GK (25, 50 and 100 μg/ml before or after treatment with lipopolyssacharide (100μg/ml, and Angiotensin II (10-8-10-6M. Cellular proliferation was determined by MTT assay and NO production by Griess assay. Treatment with Angiotensin II (10-8, 10-6 or LPS significantly enhanced proliferation of VSM cells while LPS significantly increased nitric oxide (NO production. Treatment with GK (25, 50 & 100 μg/ml attenuated VSM cell proliferation. The results indicate that GK has potential to inhibit mitogen activated vascular cell growth and possibly inhibit inflammatory responses to LPS. Thus GK may be useful in condition that is characterized by cellular proliferation and inflammatory responses.

  19. Inhibition of Epidermal Growth Factor Receptor and PI3K/Akt Signaling Suppresses Cell Proliferation and Survival through Regulation of Stat3 Activation in Human Cutaneous Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Bito, T.; Sumita, N.; Ashida, M.; Budiyanto, A.; Ueda, M.; Ichihashi, M.; Nishigori, C.; Tokura, Y.; Bito, T.

    2011-01-01

    Recent studies have emphasized the important role of Stat3 activation in a number of human tumors from the viewpoint of its oncogenic and anti apoptotic activity. In this study, we examined the role and related signaling molecules of Stat3 in the carcinogenesis of human cutaneous squamous cell carcinoma (SCC). In 35 human cutaneous SCC samples, 86% showed overexpression of phosphorylated (p)-Stat3, and most of those simultaneously over expressed p-EGFR or p-Akt. Constitutive activation of EGFR and Stat3 was observed in three SCC cell lines and four of five SCC tissues. AG1478, an inhibitor of the EGFR, down regulated Stat3 activation in HSC-1 human SCC cells. AG1478 inhibited cell proliferation and induced apoptosis of HSC-1 cells but did not inhibit the growth of normal human epidermal keratinocytes that did not show Stat3 activation. Furthermore, a PI3K inhibitor also suppressed Stat3 activation in HSC-1 cells to some degree. Combined treatment with the PI3K inhibitor and AG1478 strongly suppressed Stat3 activity and dramatically induced apoptosis of HSC-1 cells. These data suggest that Stat3 activation through EGFR and/or PI3K/Akt activation plays a critical role in the proliferation and survival of human cutaneous SCC.

  20. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    Science.gov (United States)

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes