WorldWideScience

Sample records for survivable ground base

  1. 'Intensive care unit survivorship' - a constructivist grounded theory of surviving critical illness.

    Science.gov (United States)

    Kean, Susanne; Salisbury, Lisa G; Rattray, Janice; Walsh, Timothy S; Huby, Guro; Ramsay, Pamela

    2017-10-01

    To theorise intensive care unit survivorship after a critical illness based on longitudinal qualitative data. Increasingly, patients survive episodes of critical illness. However, the short- and long-term impact of critical illness includes physical, psychological, social and economic challenges long after hospital discharge. An appreciation is emerging that care needs to extend beyond critical illness to enable patients to reclaim their lives postdischarge with the term 'survivorship' being increasingly used in this context. What constitutes critical illness survivorship has, to date, not been theoretically explored. Longitudinal qualitative and constructivist grounded theory. Interviews (n = 46) with 17 participants were conducted at four time points: (1) before discharge from hospital, (2) four to six weeks postdischarge, (3) six months and (4) 12 months postdischarge across two adult intensive care unit setting. Individual face-to-face interviews. Data analysis followed the principles of Charmaz's constructivist grounded theory. 'Intensive care unit survivorship' emerged as the core category and was theorised using concepts such as status passages, liminality and temporality to understand the various transitions participants made postcritical illness. Intensive care unit survivorship describes the unscheduled status passage of falling critically ill and being taken to the threshold of life and the journey to a life postcritical illness. Surviving critical illness goes beyond recovery; surviving means 'moving on' to life postcritical illness. 'Moving on' incorporates a redefinition of self that incorporates any lingering intensive care unit legacies and being in control of one's life again. For healthcare professionals and policymakers, it is important to realise that recovery and transitioning through to survivorship happen within an individual's time frame, not a schedule imposed by the healthcare system. Currently, there are no care pathways or policies in

  2. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  3. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  4. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  5. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  6. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  7. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  8. Survival of B. Horneckiae Spores Under Ground-simulated Space Conditions

    Science.gov (United States)

    Schanche, Bradley

    2012-01-01

    To prevent forward contamination and maintain the scientific integrity of future life detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated habitats, spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. Recently a radiation resistant, spore forming bacterial isolate, Bacillus horneckiae, was isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. The exceptionally high tolerance of extreme conditions demonstrated by sporeforming bacteria highlighted the need to assess the viability of these microbes in situ (in real) space. The proposed BOSS (Biofilm Organisms Surfing Space) project aims to understand the mechanisms by which biofilm forming organisms, such as B. horneckiae, will potentially be able to withstand harsh space conditions. As previously stated, the spore producing ability of these species gives them increased survivability to harsh conditions. Some of the spores will have the protective exosporium layer artificially removed before the test to determine if the existence of this layer significantly changes the survivability during the mission. In preparation for that experiment, we analyzed spores which were exposed during a ground simulation, the EXPOSE R2 Biofilm Organisms Surfing Space (BOSS). Previous to exposure, spores were deposited onto spacecraft grade aluminum coupons in a spore suspension calculated to contain between 10(exp 7) and 10(exp 8) spores. This precursor series will be used to establish a baseline survivability function for comparison with the future flight tests during EXPOSE-R. For each coupon, a 10% polyvinyl alcohol (PVA) film was applied and peeled

  9. Survival of Salmonella during Drying of Fresh Ginger Root (Zingiber officinale) and Storage of Ground Ginger.

    Science.gov (United States)

    Gradl, Dana R; Sun, Lingxiang; Larkin, Emily L; Chirtel, Stuart J; Keller, Susanne E

    2015-11-01

    The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.

  10. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  11. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  12. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  13. The NTS Ground Motion Data Base

    Energy Technology Data Exchange (ETDEWEB)

    App, F.N.

    1994-04-01

    The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions This represents about 4200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and there are some measurements which were acquired by the other test sponsors on their events and provided to us for inclusion in this data base. Included in the data set is the Los Alamos motion data from the Non-Proliferation Experiment (NPE).

  14. Growth and survival of Salmonella in ground black pepper (Piper nigrum).

    Science.gov (United States)

    Keller, Susanne E; VanDoren, Jane M; Grasso, Elizabeth M; Halik, Lindsay A

    2013-05-01

    A four serovar cocktail of Salmonella was inoculated into ground black pepper (Piper nigrum) at different water activity (aw) levels at a starting level of 4-5 log cfu/g and incubated at 25 and at 35 °C. At 35 °C and aw of 0.9886 ± 0.0006, the generation time in ground black pepper was 31 ± 3 min with a lag time of 4 ± 1 h. Growth at 25 °C had a longer lag, but generation time was not statistically different from growth at 35 °C. The aw threshold for growth was determined to be 0.9793 ± 0.0027 at 35 °C. To determine survival during storage conditions, ground black pepper was inoculated at approximately 8 log cfu/g and stored at 25 and 35 °C at high (97% RH) and ambient (≤40% RH) humidity. At high relative humidity, aw increased to approximately 0.8-0.9 after approximately 20 days at both temperatures and no Salmonella was detected after 100 and 45 days at 25 and 35 °C, respectively. Under ambient humidity, populations showed an initial decrease of 3-4 log cfu/g, then remained stable for over 8 months at 25 and 35 °C. Results of this study indicate Salmonella can readily grow at permissive aw in ground black pepper and may persist for an extended period of time under typical storage conditions. Published by Elsevier Ltd.

  15. Modelling population-based cancer survival trends using join point models for grouped survival data.

    Science.gov (United States)

    Yu, Binbing; Huang, Lan; Tiwari, Ram C; Feuer, Eric J; Johnson, Karen A

    2009-04-01

    In the United States cancer as a whole is the second leading cause of death and a major burden to health care, thus the medical progress against cancer is a major public health goal. There are many individual studies to suggest that cancer treatment breakthroughs and early diagnosis have significantly improved the prognosis of cancer patients. To better understand the relationship between medical improvements and the survival experience for the patient population at large, it is useful to evaluate cancer survival trends on the population level, e.g., to find out when and how much the cancer survival rates changed. In this paper, we analyze the population-based grouped cancer survival data by incorporating joinpoints into the survival models. A joinpoint survival model facilitates the identification of trends with significant change points in cancer survival, when related to cancer treatments or interventions. The Bayesian Information Criterion is used to select the number of joinpoints. The performance of the joinpoint survival models is evaluated with respect to cancer prognosis, joinpoint locations, annual percent changes in death rates by year of diagnosis, and sample sizes through intensive simulation studies. The model is then applied to the grouped relative survival data for several major cancer sites from the Surveillance, Epidemiology and End Results (SEER) Program of the National Cancer Institute. The change points in the survival trends for several major cancer sites are identified and the potential driving forces behind such change points are discussed.

  16. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    Science.gov (United States)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-01-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  17. CLPX-Ground: Ground-based L and Ku band polarimetric scatterometry

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes ground-based radar observations carried out at the Fraser Experimental Forest Headquarters, Colorado, USA (39.95 N, 105.9 W), between 17-26...

  18. Ground-Based Observattions of IO

    Science.gov (United States)

    Matson, D. L.

    1986-06-01

    Io is the most geologically active of all the planets or satellites in the solar system. Most of what is known about it has been discovered in the past decade. This paper reviews recent advances in the knowledge of Io's surface, with emphasis placed on facts obtained using astronomical instruments on the ground and in Earth-orbit.

  19. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  20. Association between helicopter with physician versus ground emergency medical services and survival of adults with major trauma in Japan.

    Science.gov (United States)

    Abe, Toshikazu; Takahashi, Osamu; Saitoh, Daizoh; Tokuda, Yasuharu

    2014-07-09

    Helicopter emergency medical services with a physician (HEMS) has been provided in Japan since 2001. However, HEMS and its possible effect on outcomes for severe trauma patients have still been debated as helicopter services require expensive and limited resources. Our aim was to analyze the association between the use of helicopters with a physician versus ground services and survival among adults with serious traumatic injuries. This multicenter prospective observational study involved 24,293 patients. All patients were older than 15 years of age, had sustained blunt or penetrating trauma and had an Injury Severity Score (ISS) higher than 15. All of the patient data were recorded between 2004 and 2011 in the Japan Trauma Data Bank, which includes data from 114 major emergency hospitals in Japan. The primary outcome was survival to discharge from hospitals. The intervention was either transport by helicopter with a physician or ground emergency services. A total of 2,090 patients in the sample were transported by helicopter, and 22,203 were transported by ground. Overall, 546 patients (26.1%) transported by helicopter died compared to 5,765 patients (26.0%) transported by ground emergency services. Patients transported by helicopter had higher ISSs than those transported by ground. In multivariable logistic regression, helicopter transport had an odds ratio (OR) for survival to discharge of 1.277 (95% confidence interval (CI), 1.049 to 1.556) after adjusting for age, sex, mechanism of injury, type of trauma, initial vital signs (including systolic blood pressure, heart rate and respiratory rate), ISS and prehospital treatment (including intubation, airway protection maneuver and intravenous fluid). In the propensity score-matched cohort, helicopter transport was associated with improved odds of survival compared to ground transport (OR, 1.446; 95% CI, 1.220 to 1.714). In conditional logistic regression, after adjusting for prehospital treatment (including

  1. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  2. Full dates (day, month, year) should be used in population-based cancer survival studies.

    Science.gov (United States)

    Woods, Laura M; Rachet, Bernard; Ellis, Libby; Coleman, Michel P

    2012-10-01

    Accurate survival estimates are essential for monitoring cancer survival trends, for health care planning and for resource allocation. To obtain precise estimates of survival, full dates (day, month and year) rather than partial dates (month and year) are required. In some jurisdictions, however, cancer registries are constrained from providing full dates on the grounds of confidentiality. The bias resulting from the use of partial dates in the estimation and comparison of survival makes it impossible to determine precisely the differences in the risk of death from cancer between population groups or in successive calendar periods. Important operational arguments also exist against the use of incomplete dates for survival analysis, including increased workload for cancer registry staff and the introduction of avoidable complexity for quality control of survival data. Cancer survival is one of the most widely known outputs produced by population-based cancer registries, and it is a crucial metric for the comparative effectiveness of health services. The bodies that set data access guidelines must take a more balanced view of the risks and benefits of using full dates for the estimation of cancer survival. Copyright © 2012 UICC.

  3. Potential density and tree survival: an analysis based on South ...

    African Journals Online (AJOL)

    Finally, we present a tree survival analysis, based on the Weibull distribution function, for the Nelshoogte replicated CCT study, which has been observed for almost 40 years after planting and provides information about tree survival in response to planting espacements ranging from 494 to 2 965 trees per hectare.

  4. Symbolic interactionism in grounded theory studies: women surviving with HIV/AIDS in rural northern Thailand.

    Science.gov (United States)

    Klunklin, Areewan; Greenwood, Jennifer

    2006-01-01

    Although it is generally acknowledged that symbolic interactionism and grounded theory are connected, the precise nature of their connection remains implicit and unexplained. As a result, many grounded theory studies are undertaken without an explanatory framework. This in turn results in the description rather than the explanation of data determined. In this report, the authors make explicit and explain the nature of the connections between symbolic interactionism and grounded theory research. Specifically, they make explicit the connection between Blumer's methodological principles and processes and grounded theory methodology. In addition, the authors illustrate the explanatory power of symbolic interactionism in grounded theory using data from a study of the HIV/AIDS experiences of married and widowed Thai women.

  5. KSC ADVANCED GROUND BASED FIELD MILL V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Ground Based Field Mill (AGBFM) network consists of 34 (31 operational) field mills located at Kennedy Space Center (KSC), Florida. The field mills...

  6. Survival

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide information on the survival of California red-legged frogs in a unique ecosystem to better conserve this threatened species while restoring...

  7. Hospital survival upon discharge of ill-neonates transported by ground or air ambulance to a tertiary center

    Directory of Open Access Journals (Sweden)

    Jorge Luis Alvarado-Socarras

    2016-06-01

    Full Text Available Abstract Objective: To evaluate the differences in hospital survival between modes of transport to a tertiary center in Colombia for critically ill neonates. Methods: Observational study of seriously ill neonates transported via air or ground, who required medical care at a center providing highly complex services. Data on sociodemographic, clinical, the Transport Risk Index of Physiologic Stability (TRIPS, and mode of transport were collected. Patients were described, followed by a bivariate analysis with condition (live or dead at time of discharge as the dependent variable. A multiple Poisson regression with robust variance model was used to adjust associations. Results: A total of 176 neonates were transported by ambulance (10.22% by air over six months. The transport distances were longer by air (median: 237.5 km than by ground (median: 11.3 km. Mortality was higher among neonates transported by air (33.33% than by ground (7.79%. No differences in survival were found between the two groups when adjusted by the multiple model. An interaction between mode of transport and distance was observed. Live hospital discharge was found to be associated with clinical severity upon admittance, birth weight, hemorrhaging during the third trimester, and serum potassium levels when admitted. Conclusions: Mode of transport was not associated with the outcome. In Colombia, access to medical services through air transport is a good option for neonates in critical condition. Further studies would determine the optimum distance (time of transportation to obtain good clinical outcomes according type of ambulance.

  8. Atmospheric aerosol characteristics retrieved using ground based ...

    Indian Academy of Sciences (India)

    The fractional asymmetry factor is more negative in summer due to enhanced tourists' arrival and also in autumn months due to the monthlong International Kullu Dussehra fair. The AOD values given by MWR and satellite-based moderate resolution imaging spectro-radiometer have good correlation of 0.76, 0.92 and 0.97 ...

  9. Hardwood tree survival in heavy ground cover on reclaimed land in West Virginia: mowing and ripping effects.

    Science.gov (United States)

    Skousen, Jeff; Gorman, Jim; Pena-Yewtukhiw, Eugenia; King, Jim; Stewart, Jason; Emerson, Paul; Delong, Curtis

    2009-01-01

    Current West Virginia coal mining regulations emphasize reforestation as a preferred postmining land use on surface mined areas. Some mined sites reclaimed to pasture are being converted to forests. In the spring of 2001, we compared the establishment and growth of five hardwood tree species on a reclaimed West Virginaia surface mine with compacted soils and a heavy grass groundcover. We planted 1-yr-old seedlings of five species (black cherry [Prunus serotina Ehrh.], red oak [Quercus rubra L.], yellow poplar [Liriodendron tulipifera L.], black walnut [Juglans nigra L.], and white ash [Fraxinus americana L.]) into sites that were mowed and unmowed on north- and south-facing aspects. We applied a ripping treatment, which loosened the compacted soils and disturbed the heavy ground cover. First year results showed >80% survival for all species. After 7 yr black cherry survival averaged 36%, red oak 47%, yellow poplar 66%, black walnut 80%, and white ash 98% across all sites and treatments. Seedling survival was best on north, unmowed, and ripped areas. Average growth (height x diameter(2)) of trees after 7 yr was greatest with white ash (434 cm(3)), followed by yellow poplar (256 cm(3)) and black walnut (138 cm(3)), then by black cherry (31 cm(3)) and red oak (27 cm(3)). Browsing by wildlife had a negative impact on tree growth especially on south aspect sites. Overall, mowing reduced survival of black cherry, red oak, and yellow poplar, but not for black walnut and white ash. Ripping increased survival of black cherry, red oak, and yellow poplar. Growth of all species was improved with ripping. Using inverse linear-quadratic plateau models, the time required for tree survival to stabilize varied from 1 yr for white ash to 6 to 9 yr for the other species.

  10. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  11. Systems Engineering Approach To Ground Combat Vehicle Survivability In Urban Operations

    Science.gov (United States)

    2016-09-01

    According to Wei, engineers placed multiple converging lenses around a vehicle, and used an optical fiber delay line to connect the lenses together (2007...probability that a hostile weapon detects the ground vehicle, using C4ISR and situational awareness to avoid contact with the enemy forces, using...corresponding wires and connection points also means that it can be more difficult for engineers to integrate distributed architecture systems onto

  12. Survivability Design of Ground Systems for Area Defense Operation in an Urban Scenario

    Science.gov (United States)

    2014-09-01

    better evade the threat. Nevertheless, to achieve high mobility, vehicle platforms are commonly designed to be lightweight with limitations on...supplied by Raytheon and Lockheed Martin Javelin joint venture. Commonly operated by a two-person team, the compact and lightweight JAVELIN can also be...of Automobile Engineering: 903–920. Guzie, Gary L. 2004. Integrated Survivability Assessment. ARL-TR-3186. White Sands Missile Range, New Mexico

  13. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  14. Hospital survival upon discharge of ill-neonates transported by ground or air ambulance to a tertiary center.

    Science.gov (United States)

    Alvarado-Socarras, Jorge Luis; Idrovo, Alvaro Javier; Bermon, Anderson

    2016-01-01

    To evaluate the differences in hospital survival between modes of transport to a tertiary center in Colombia for critically ill neonates. Observational study of seriously ill neonates transported via air or ground, who required medical care at a center providing highly complex services. Data on sociodemographic, clinical, the Transport Risk Index of Physiologic Stability (TRIPS), and mode of transport were collected. Patients were described, followed by a bivariate analysis with condition (live or dead) at time of discharge as the dependent variable. A multiple Poisson regression with robust variance model was used to adjust associations. A total of 176 neonates were transported by ambulance (10.22% by air) over six months. The transport distances were longer by air (median: 237.5km) than by ground (median: 11.3km). Mortality was higher among neonates transported by air (33.33%) than by ground (7.79%). No differences in survival were found between the two groups when adjusted by the multiple model. An interaction between mode of transport and distance was observed. Live hospital discharge was found to be associated with clinical severity upon admittance, birth weight, hemorrhaging during the third trimester, and serum potassium levels when admitted. Mode of transport was not associated with the outcome. In Colombia, access to medical services through air transport is a good option for neonates in critical condition. Further studies would determine the optimum distance (time of transportation) to obtain good clinical outcomes according type of ambulance. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Milk matters: offspring survival in Columbian ground squirrels is affected by nutrient composition of mother’s milk

    Directory of Open Access Journals (Sweden)

    Amy eSkibiel

    2015-10-01

    Full Text Available Through maternal effects, information about environmental conditions experienced in the maternal generation can be transmitted to subsequent generations. Although maternal effects have been described and quantified in many mammalian species, the underlying causal links are often under-studied. The close association between mother and neonate during the extended period of lactation in mammals provides a unique opportunity for mothers to influence offspring phenotype through nutrient provisioning of milk. The purpose of this study was to examine sources of inter-individual variation in milk composition and impacts on offspring phenotype and survival. Variation in fat content, protein content, and energy density of mother’s milk was associated with timing of reproduction. Mothers with intermediate birthdates produced milk that was higher in fat and energy density, but lower in protein than females with early or late birthdates. In turn, the pattern of change in milk composition affected juvenile overwinter survival. The protein content of Columbian ground squirrel milk typically increases to peak lactation and then declines before weaning. Pups consuming milk that was lower in protein in early lactation but then relatively high in protein at peak and late lactation had a higher probability of survival overwinter. Our results indicate that the interplay between the timing of reproduction and lactation performance has consequences for maternal and offspring fitness.

  16. Imaging of Ground Ice with Surface-Based Geophysics

    Science.gov (United States)

    2015-10-01

    ER D C/ CR RE L TR -1 5- 14 ERDC Center-Directed Research Imaging of Ground Ice with Surface-Based Geophysics Co ld R eg io ns R es...320–342. Péwé, T. L. 1975. Quaternary Geology of Alaska. Washington, DC: U.S. Government Printing Office. Shur, Y., K. M. Hinkel, and F. E. Nelson

  17. Performance Based Criteria for Ship Collision and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    2009-01-01

    The paper outlines a probabilistic procedure whereby the maritime industry can develop performance based rules to reduce the risk associated with human, environmental and economic costs of collision and grounding events and identify the most economic risk control options associated with prevention...

  18. Mycological evaluation of a ground cocoa-based beverage ...

    African Journals Online (AJOL)

    Cocoa beans (Theobroma cacao) are processed into cocoa beverage through fermentation, drying, roasting and grounding of the seed to powder. The mycological quality of 39 samples of different brand of these cocoa – based beverage referred to as 'eruku oshodi' collected from 3 different markets in south – west Nigeria ...

  19. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and correspondi...

  20. Challenges and Rewards in Ground-Based Observing

    Science.gov (United States)

    Reardon, Kevin P.

    2016-05-01

    DKIST will be largest ground-based project in solar physics, and will offer access and data to the whole community. In pursuit of exciting science, many users may have their first encounters with high-resolution, ground-based solar observations. New facilities, space or ground-based, all bring particular signatures in their data. While tools or processed datasets might serve to minimize such non-solar signatures, it is nonetheless important for users to understand the impacts on observation planning, the nature of the corrections applied, and any residual effects on their data.In this talk I will review some of the instrumental and atmospheric signatures that are important for ground-based observing, in particular in planning for the potential capabilities of the DKIST Data Center. These techniques include image warping, local PSF deconvolution, atmospheric dispersion correction, and scattered light removal. I will present examples of data sets afflicted by such problems as well as some of the algorithms used in characterizing and removing these contributions. This will demonstrate how even with the challenges of observing through a turbulent atmosphere, it is possible to achieve dramatic scientific results.

  1. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  2. Mycological evaluation of a ground cocoa-based beverage

    African Journals Online (AJOL)

    user

    2006-11-16

    Nov 16, 2006 ... highlighted thus calling for improved hygienic practices in production of the beverages. Key words: Ground cocoa-based beverages, moulds, yeast. INTRODUCTION .... were repeatedly sub cultured on fresh PDA until pure culture of each isolate was established. Identification of fungi was by observing the ...

  3. GEARS: An Enterprise Architecture Based On Common Ground Services

    Science.gov (United States)

    Petersen, S.

    2014-12-01

    Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.

  4. LONG TERM SURVIVAL FOLLOWING TRAUMATIC BRAIN INJURY: A POPULATION BASED PARAMETRIC SURVIVAL ANALYSIS

    Science.gov (United States)

    Fuller, Gordon Ward; Ransom, Jeanine; Mandrekar, Jay; Brown, Allen W

    2017-01-01

    Background Long term mortality may be increased following traumatic brain injury (TBI); however the degree to which survival could be reduced is unknown. We aimed to model life expectancy following post-acute TBI to provide predictions of longevity and quantify differences in survivorship with the general population. Methods A population based retrospective cohort study using data from the Rochester Epidemiology Project (REP) was performed. A random sample of patients from Olmsted County, Minnesota with a confirmed TBI between 1987 and 2000 was identified and vital status determined in 2013. Parametric survival modelling was then used to develop a model to predict life expectancy following TBI conditional on age at injury. Survivorship following TBI was also compared with the general population and age and gender matched non-head injured REP controls. Results 769 patients were included in complete case analyses. Median follow up time was 16.1 years (IQR 9.0–20.4) with 120 deaths occurring in the cohort during the study period. Survival after acute TBI was well represented by a Gompertz distribution. Victims of TBI surviving for at least 6 months post-injury demonstrated a much higher ongoing mortality rate compared to the US general population and non-TBI controls (hazard ratio 1·47, 95% CI 1·15–1·87). US general population cohort life table data was used to update the Gompertz model’s shape and scale parameters to account for cohort effects and allow prediction of life expectancy in contemporary TBI. Conclusions Survivors of TBI have decreased life expectancy compared to the general population. This may be secondary to the head injury itself or result from patient characteristics associated with both the propensity for TBI and increased early mortality. Post-TBI life expectancy estimates may be useful to guide prognosis, in public health planning, for actuarial applications and in the extrapolation of outcomes for TBI economic models. PMID:27165161

  5. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  6. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  7. The WASP and NGTS ground-based transit surveys

    Science.gov (United States)

    Wheatley, P. J.

    2015-10-01

    I will review the current status of ground-based exoplanet transit surveys, using the Wide Angle Search for Planets (WASP) and the Next Generation Transit Survey (NGTS) as specific examples. I will describe the methods employed by these surveys and show how planets from Neptune to Jupiter-size are detected and confirmed around bright stars. I will also give an overview of the remarkably wide range of exoplanet characterization that is made possible with large-telescope follow up of these bright transiting systems. This characterization includes bulk composition and spin-orbit alignment, as well as atmospheric properties such as thermal structure, composition and dynamics. Finally, I will outline how ground-based photometric studies of transiting planets will evolve with the advent of new space-based surveys such as TESS and PLATO.

  8. Reduced density and nest survival of ground-nesting songbirds relative to earthworm invasions in northern hardwood forests.

    Science.gov (United States)

    Loss, Scott R; Blair, Robert B

    2011-10-01

    European earthworms (Lumbricus spp.) are spreading into previously earthworm-free forests in the United States and Canada and causing substantial changes, including homogenization of soil structure, removal of the litter layer, and reduction in arthropod abundance and species richness of understory plants. Whether these changes affect songbirds that nest and forage on the forest floor is unknown. In stands with and without earthworms in the Chequamegon-Nicolet National Forest, Wisconsin (U.S.A.), we surveyed for, monitored nests of, and measured attributes of habitat of Ovenbirds (Seiurus aurocapillus) and Hermit Thrushes (Catharus guttatus), both ground-dwelling songbirds, and we sampled earthworms at survey points and nests. Bird surveys indicated significantly lower densities of Ovenbirds and Hermit Thrushes in relation to Lumbricus invasions at survey point and stand extents (3.1 and 15-20 ha, respectively). Modeling of Ovenbird nest survival (i.e., the probability that nestlings successfully fledge) indicated that lower survival probabilities were associated with increased sedge cover and decreased litter depth, factors that are related to Lumbricus invasions, possibly due to reduced nest concealment or arthropod abundance. Our findings provide compelling evidence that earthworm invasions may be associated with local declines of forest songbird populations. ©2011 Society for Conservation Biology.

  9. Promoting survival: A grounded theory study of consequences of modern health practices in Ouramanat region of Iranian Kurdistan

    Science.gov (United States)

    Mohammadpur, Ahmad; Rezaei, Mehdi; Sadeghi, Rasoul

    2010-01-01

    The aim of this qualitative study is to explore the way people using modern health care perceive its consequences in Ouraman-e-Takht region of Iranian Kurdistan. Ouraman-e-Takht is a rural, highly mountainous and dry region located in the southwest Kurdistan province of Iran. Recently, modern health practices have been introduced to the region. The purpose of this study was to investigate, from the Ouramains' point of view, the impact that modern health services and practices have had on the Ouraman traditional way of life. Interview data from respondents were analyzed by using grounded theory. Promoting survival was the core category that explained the impact that modern health practices have had on the Ouraman region. The people of Ouraman interpreted modern health practices as increasing their quality of life and promoting their survival. Results are organized around this core category in a paradigm model consisting of conditions, interactions, and consequences. This model can be used to understand the impact of change from the introduction of modern health on a traditional society. PMID:20640020

  10. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  11. Ground-based lidar remote sensing of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H.; Freudenthaler, V.; Homburg, F.; Sussmann, R. [Fraunhofer-Institut fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany)

    1997-12-01

    A ground-based scanning lidar system with built-in CCD camera has been developed to investigate aerosols and persistent contrails in air traffic corridors with respect to growth and microphysical and optical properties. By calibrating CCD camera images with lidar information the optical depth of larger areas of contrail cover within the 40 degree viewing angle of the camera can be determined. This technique has been extended to investigate contrails in AVHRR satellite images. (orig.) 144 figs., 42 tabs., 497 refs.

  12. Reconstructing Fire Records from Ground-Based Routine Aerosol Monitoring

    Directory of Open Access Journals (Sweden)

    Hongmei Zhao

    2016-03-01

    Full Text Available Long-term fire records are important to understanding the trend of biomass burning and its interactions with air quality and climate at regional and global scales. Traditionally, such data have been compiled from ground surveys or satellite remote sensing. To obtain aerosol information during a fire event to use in analyzing air quality, we propose a new method of developing a long-term fire record for the contiguous United States using an unconventional data source: ground-based aerosol monitoring. Assisted by satellite fire detection, the mass concentration, size distribution, and chemical composition data of surface aerosols collected from the Interagency Monitoring of Protected Visual Environments (IMPROVE network are examined to identify distinct aerosol characteristics during satellite-detected fire and non-fire periods. During a fire episode, elevated aerosol concentrations and heavy smoke are usually recorded by ground monitors and satellite sensors. Based on the unique physical and chemical characteristics of fire-dominated aerosols reported in the literature, we analyzed the surface aerosol observations from the IMPROVE network during satellite-detected fire events to establish a set of indicators to identify fire events from routine aerosol monitoring data. Five fire identification criteria were chosen: (1 high concentrations of PM2.5 and PM10 (particles smaller than 2.5 and 10 in diameters, respectively; (2 a high PM2.5/PM10 ratio; (3 high organic carbon (OC/PM2.5 and elemental carbon (EC/PM2.5 ratios; (4 a high potassium (K/PM2.5 ratio; and (5 a low soil/PM2.5 ratio. Using these criteria, we are able to identify a number of fire episodes close to 15 IMPROVE monitors from 2001 to 2011. Most of these monitors are located in the Western and Central United States. In any given year within the study period fire events often occurred between April and September, especially in the two months of April and September. This ground-based fire

  13. ROS-based ground stereo vision detection: implementation and experiments.

    Science.gov (United States)

    Hu, Tianjiang; Zhao, Boxin; Tang, Dengqing; Zhang, Daibing; Kong, Weiwei; Shen, Lincheng

    This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan-Vese detection algorithm is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive scheme is developed to collect datasets for parameter tuning and performance evaluating. The flying vehicle outdoor experiments capture the stereo sequential images dataset and record the simultaneous data from pan-and-tilt unit, onboard sensors and differential GPS. Experimental results by using the collected dataset validate the effectiveness of the published ROS-based detection algorithm.

  14. Creating synergy between ground and space-based precipitation measurements

    Science.gov (United States)

    Gourley, J. J.; Hong, Y.; Petersen, W. A.; Howard, K.; Flamig, Z.; Wen, Y.

    2010-12-01

    As the successor of the Tropical Rainfall Measuring Mission (TRMM) satellite launched in 1997, the multi-national Global Precipitation Measurement (GPM) Mission, to be launched in 2013, will provide next-generation global precipitation estimates from space within a unified framework. On the ground, several countries worldwide are in the throes of expanding their weather radar networks with gap-filling radars and upgrading them to include polarimetric capabilities. While significant improvements in precipitation estimation capabilities have been realized from space- and ground-based platforms separately, little effort has been focused on aligning these communities for synergistic, joint development of algorithms. In this study, we demonstrate the integration of real-time rainfall products from the Tropical Rainfall Measurement Mission (TRMM) into the National Severe Storms Laboratory’s (NSSL) National Mosaic and QPE (NMQ/Q2; http://nmq.ou.edu) system. The NMQ system enables a CONUS-wide comparison of TRMM products to NEXRAD-based Q2 rainfall products. Moreover, NMQ’s ground validation software ingests and quality controls data from all automatic-reporting rain gauge networks throughout the US and provides robust graphical and statistical validation tools, accessible by anyone with internet access. This system will readily incorporate future products from GPM as well as those from the dual-polarization upgrade to the NEXRAD network. While initial efforts are on the intercomparison of rainfall products, we envision this system will ultimately promote the development of precipitation algorithms that capitalize on the strengths of spatiotemporal and error characteristics of space and ground remote-sensing data. An example algorithm is presented where the vertical structure of precipitating systems over complex terrain is more completely resolved using combined information from NMQ and TRMM precipitation radar (PR), leading to more accurate surface rainfall estimates.

  15. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  16. Independent Component Analysis applied to Ground-based observations

    Science.gov (United States)

    Martins-Filho, Walter; Griffith, Caitlin; Pearson, Kyle; Waldmann, Ingo; Alvarez-Candal, Alvaro; Zellem, Robert Thomas

    2018-01-01

    Transit measurements of Jovian-sized exoplanetary atmospheres allow one to study the composition of exoplanets, largely independent of the planet’s temperature profile. However, measurements of hot-Jupiter transits must archive a level of accuracy in the flux to determine the spectral modulation of the exoplanetary atmosphere. To accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth’s atmosphere, from signal due to the exoplanet, which is several orders of magnitude smaller. The effects of the terrestrial atmosphere and some of the time-dependent systematic errors of ground-based transit measurements are treated mainly by dividing the host star by a reference star at each wavelength and time step of the transit. Recently, Independent Component Analysis (ICA) have been used to remove systematics effects from the raw data of space-based observations (Waldmann, 2014, 2012; Morello et al., 2016, 2015). ICA is a statistical method born from the ideas of the blind-source separations studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). This technique requires no additional prior knowledge of the data set. In addition, this technique has the advantage of requiring no reference star. Here we apply the ICA to ground-based photometry of the exoplanet XO-2b recorded by the 61” Kuiper Telescope and compare the results of the ICA to those of a previous analysis from Zellem et al. (2015), which does not use ICA. We also simulate the effects of various conditions (concerning the systematic errors, noise and the stability of object on the detector) to determine the conditions under which an ICA can be used with high precision to extract the light curve of exoplanetary photometry measurements

  17. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  18. Sky type discrimination using a ground-based sun photometer

    Science.gov (United States)

    DeFelice, Thomas P.; Wylie, Bruce K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  19. Evaluating Ground-based Proxies for Solar Irradiance Variation

    Science.gov (United States)

    Oegerle, William (Technical Monitor); Jordan, Stuart

    2003-01-01

    In order to determine what ground-based proxies are best for evaluating solar irradiance variation before the advent of space observations, it is necessary to test these proxies against space observations. We have tested sunspot number, total sunspot area, and sunspot umbral area against the Nimbus-7 measurements of total solar irradiance variation cover the eleven year period 1980-1990. The umbral area yields the best correlation and the total sunspot area yields the poorest. Reasons for expecting the umbral area to yield the best correlation are given, the statistical procedure followed to obtain the results is described, and the value of determining the best proxy is discussed. The latter is based upon the availability of an excellent database from the Greenwich Observatory obtained over the period 1876-1976, which can be used to estimate the total solar irradiance variation before sensitive space observations were available. The ground-based observations used were obtained at the Coimbra Solar Observatory. The analysis was done at Goddard using these data and data from the Nimbus-7 satellite.

  20. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  1. Modeling Atmospheric Emission for CMB Ground-based Observations

    Science.gov (United States)

    Errard, J.; Ade, P. A. R.; Akiba, Y.; Arnold, K.; Atlas, M.; Baccigalupi, C.; Barron, D.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Delabrouille, J.; Dobbs, M.; Ducout, A.; Elleflot, T.; Fabbian, G.; Feng, C.; Feeney, S.; Gilbert, A.; Goeckner-Wald, N.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W. L.; Hori, Y.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A. H.; Jeong, O.; Katayama, N.; Kaufman, J.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Leon, D.; Linder, E.; Matsuda, F.; Matsumura, T.; Miller, N. J.; Myers, M. J.; Navaroli, M.; Nishino, H.; Okamura, T.; Paar, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K. M.; Schenck, D. E.; Sherwin, B. D.; Siritanasak, P.; Smecher, G.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Tajima, O.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Whitehorn, N.; Wilson, B.; Yadav, A.; Zahn, O.

    2015-08-01

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  2. Csf Based Non-Ground Points Extraction from LIDAR Data

    Science.gov (United States)

    Shen, A.; Zhang, W.; Shi, H.

    2017-09-01

    Region growing is a classical method of point cloud segmentation. Based on the idea of collecting the pixels with similar properties to form regions, region growing is widely used in many fields such as medicine, forestry and remote sensing. In this algorithm, there are two core problems. One is the selection of seed points, the other is the setting of the growth constraints, in which the selection of the seed points is the foundation. In this paper, we propose a CSF (Cloth Simulation Filtering) based method to extract the non-ground seed points effectively. The experiments have shown that this method can obtain a group of seed spots compared with the traditional methods. It is a new attempt to extract seed points

  3. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    OpenAIRE

    Wang, Wen; Yan, L.; Zeng, X.; Zhao, Xin; Wei, Baoze; Guerrero, Josep M.

    2016-01-01

    The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output...

  4. Ground-Based Research within NASA's Materials Science Program

    Science.gov (United States)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  5. Predicting thunderstorm evolution using ground-based lightning detection networks

    Science.gov (United States)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  6. First Direct Evidence for Natal Wintering Ground Fidelity and Estimate of Juvenile Survival in the New Zealand Southern Right Whale Eubalaena australis.

    Science.gov (United States)

    Carroll, E L; Fewster, R M; Childerhouse, S J; Patenaude, N J; Boren, L; Baker, C S

    2016-01-01

    Juvenile survival and recruitment can be more sensitive to environmental, ecological and anthropogenic factors than adult survival, influencing population-level processes like recruitment and growth rate in long-lived, iteroparous species such as southern right whales. Conventionally, Southern right whales are individually identified using callosity patterns, which do not stabilise until 6-12 months, by which time the whale has left its natal wintering grounds. Here we use DNA profiling of skin biopsy samples to identify individual Southern right whales from year of birth and document their return to the species' primary wintering ground in New Zealand waters, the Subantarctic Auckland Islands. We find evidence of natal fidelity to the New Zealand wintering ground by the recapture of 15 of 57 whales, first sampled in year of birth and available for subsequent recapture, during winter surveys to the Auckland Islands in 1995-1998 and 2006-2009. Four individuals were recaptured at the ages of 9 to 11, including two females first sampled as calves in 1998 and subsequently resampled as cows with calves in 2007. Using these capture-recapture records of known-age individuals, we estimate changes in survival with age using Cormack-Jolly-Seber models. Survival is modelled using discrete age classes and as a continuous function of age. Using a bootstrap method to account for uncertainty in model selection and fitting, we provide the first direct estimate of juvenile survival for this population. Our analyses indicate a high annual apparent survival for juveniles at between 0.87 (standard error (SE) 0.17, to age 1) and 0.95 (SE 0.05: ages 2-8). Individual identification by DNA profiling is an effective method for long-term demographic and genetic monitoring, particularly in animals that change identifiable features as they develop or experience tag loss over time.

  7. Simulations of Ground and Space-Based Oxygen Atom Experiments

    Science.gov (United States)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam

  8. RECONSTRUCTION OF SKY ILLUMINATION DOMES FROM GROUND-BASED PANORAMAS

    Directory of Open Access Journals (Sweden)

    F. Coubard

    2012-07-01

    Full Text Available The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  9. Modelling atmospheric turbulence effects on ground-based telescope systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, L.W.; Flatte, S.M. [California Univ., Santa Cruz, CA (United States). Dept. of Physics; Max, C.E. [Lawrence Livermore National Lab., CA (United States)

    1993-09-30

    Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.

  10. Vision-based Ground Test for Active Debris Removal

    Directory of Open Access Journals (Sweden)

    Seong-Min Lim

    2013-12-01

    Full Text Available Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

  11. Long term landslide monitoring with Ground Based SAR

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  12. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  13. Time series inversion of spectra from ground-based radiometers

    Directory of Open Access Journals (Sweden)

    O. M. Christensen

    2013-07-01

    Full Text Available Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument, which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the Onsala Space Observatory (OSO water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.

  14. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  15. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  16. Use of ground-based wind profiles in mesoscale forecasting

    Science.gov (United States)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  17. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  18. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  19. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  20. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  1. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  2. SAFARI 2000 AERONET Ground-based Aerosol Data, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: AERONET (AErosol RObotic NETwork) is an optical ground-based aerosol monitoring network and data archive system. AERONET measurements of the...

  3. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  4. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  5. Survivability enhancement study for C/sup 3/I/BM (communications, command, control and intelligence/battle management) ground segments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-30

    This study involves a concept developed by the Fairchild Space Company which is directly applicable to the Strategic Defense Initiative (SDI) Program as well as other national security programs requiring reliable, secure and survivable telecommunications systems. The overall objective of this study program was to determine the feasibility of combining and integrating long-lived, compact, autonomous isotope power sources with fiber optic and other types of ground segments of the SDI communications, command, control and intelligence/battle management (C/sup 3/I/BM) system in order to significantly enhance the survivability of those critical systems, especially against the potential threats of electromagnetic pulse(s) (EMP) resulting from high altitude nuclear weapon explosion(s). 28 figs., 2 tabs.

  6. ESTIMATION OF SURVIVAL FUNCTION BASED ON MODELING OF CENSORING PATTERN

    OpenAIRE

    Akio, Suzukawa; Nobuhiro, Taneichi; Department of Animal Production and Agricultural Economics, Obihiro University

    2000-01-01

    The Kaplan-Meier estimator(KM-estimator)is an important tool in the analysis of right censored data. It is a non-parametric estimator of an unknown survival function of a lifetime random variable. The purpose of this paper is to obtain a semi-parametric estimator of the survival function. In many practical data, there are several patterns of censoring, for example, censoring is apt to occur for the larger observable time. Such a pattern can be expressed by a function defined by conditional pr...

  7. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  8. Review of commonly used remote sensing and ground-based ...

    African Journals Online (AJOL)

    This review provides an overview of the use of remote sensing data, the development of spectral reflectance indices for detecting plant water stress, and the usefulness of field measurements for ground-truthing purposes. Reliable measurements of plant water stress over large areas are often required for management ...

  9. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  10. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...... of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground...... voltage compensation. Then, a current control method consisting of proportional resonant (PR) and proportional integral (PI) with capacitive current feedback is then proposed to guarantee sufficient output current accuracy and stability margin subjecting to large range of load change. The performance...

  11. Spatial representativeness of ground-based solar radiation measurements

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin

    2013-04-01

    The validation of gridded surface solar radiation (SSR) data, i.e., satellite-derived or climate model calculated, relies on the comparison with ground-based in-situ measurements. Detached from any modeling or temporal averaging biases, the question remains how representative a point measurement is for a larger-scale grid cell. In the present study, we make extensive use of high-resolution (0.03°) SSR data from the Satellite Application Facility on climate monitoring (CM SAF) to study in detail: 1) the spatial variability in SSR over Europe, 2) the sub-grid variability within an example grid of 1° resolution, 3) the representativeness of 143 surface sites (BSRN and GEBA) for their corresponding 1° grid cells, and 4) the point-centered and grid-independent surface sites' representativeness for larger-grid cells up to 3°. These analyses are done on a climatological annual mean basis over the period 2001-2005. Annually, the spatial variability as given in the CM SAF data set is largest in regions of sudden changes in weather conditions and topography, e.g., in Northern Spain, the Alpine region, the Carpathians, and Adriatic coast. The 1° sub-grid variability (mean absolute deviation from grid cell mean, relative to grid cell mean, RMAD) is on average 1.64 % (2.43 Wm-2) over European land, with maximum RMAD of up to 10% in Northern Spain. The surface sites' (GEBA and BSRN) representativeness for larger-grid cells is highly dependent on region and grid size. The difference between the CM SAF value at the GEBA site's location and the grid cell mean (calculated from CM SAF data) can vary from almost 0% to more than 10% for a 1° grid cell, and up to 15% for a 3° grid cell. On average, this spatial sampling error is below 5% even for grid cells of 3° resolution. We show that the latitudinal shift of a point relative to the larger-grid cell center may account for a spatial sampling error of up to +-1.81 Wm-2 (for a maximum distance of +-0.5° within 1° grid cell

  12. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  13. Ground roll wave suppression based on wavelet frequency division and radial trace transform

    Science.gov (United States)

    Wang, Wan-Li; Yang, Wu-Yang; Wei, Xin-Jian; He, Xin

    2017-03-01

    Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.

  14. Intercomparison of O3 profiles observed by SCIAMACHY and ground based microwave instruments

    Directory of Open Access Journals (Sweden)

    M. Palm

    2005-01-01

    Full Text Available Ozone profiles retrieved from limb scattering measurements of the SCIAMACHY instrument based on the satellite ENVISAT are compared to ground-based low altitude resolution remote sensors. All profiles are retrieved using optimal estimation. Following the work of Rodgers and Connor (2003 the retrievals of the ground-based instruments are simulated using the SCIAMACHY retrieval. The SCIAMACHY results and the results of the ground-based microwave radiometer in Bremen and Ny Ålesund agree within the expected covariance of the intercomparison.

  15. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  16. Exoplanets -New Results from Space and Ground-based Surveys

    Science.gov (United States)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  17. Inferring the colonization of a mountain range--refugia vs. nunatak survival in high alpine ground beetles.

    Science.gov (United States)

    Lohse, Konrad; Nicholls, James A; Stone, Graham N

    2011-01-01

    It has long been debated whether high alpine specialists survived ice ages in situ on small ice-free islands of habitat, so-called nunataks, or whether glacial survival was restricted to larger massifs de refuge at the periphery. We evaluate these alternative hypotheses in a local radiation of high alpine carabid beetles (genus Trechus) in the Orobian Alps, Northern Italy. While summits along the northern ridge of this mountain range were surrounded by the icesheet as nunataks during the last glacial maximum, southern areas remained unglaciated. We analyse a total of 1366 bp of mitochondrial (Cox1 and Cox2) data sampled from 150 individuals from twelve populations and 530 bp of nuclear (PEPCK) sequence sampled for a subset of 30 individuals. Using Bayesian inference, we estimate ancestral location states in the gene trees, which in turn are used to infer the most likely order of recolonization under a model of sequential founder events from a massif de refuge from the mitochondrial data. We test for the paraphyly expected under this model and for reciprocal monophyly predicted by a contrasting model of prolonged persistence of nunatak populations. We find that (i) only three populations are incompatible with the paraphyly of the massif de refuge model, (ii) both mitochondrial and nuclear data support separate refugial origins for populations on the western and eastern ends of the northern ridge, and (iii) mitochondrial node ages suggest persistence on the northern ridge for part of the last ice age. © 2010 Blackwell Publishing Ltd.

  18. Space- and ground-based particle physics meet at CERN

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  19. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    van der Burgh, Hannelore K|info:eu-repo/dai/nl/413641066; Schmidt, Ruben; Westeneng, Henk-Jan|info:eu-repo/dai/nl/413993663; de Reus, Marcel A|info:eu-repo/dai/nl/413970728; van den Berg, Leonard H|info:eu-repo/dai/nl/288255216; van den Heuvel, Martijn P|info:eu-repo/dai/nl/304820466

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data

  20. Neural Network Model for Survival and Growth of Salmonella enterica Serotype 8,20:-:z6 in Ground Chicken Thigh Meat during Cold Storage: Extrapolation to Other Serotypes.

    Science.gov (United States)

    Oscar, T P

    2015-10-01

    Mathematical models that predict the behavior of human bacterial pathogens in food are valuable tools for assessing and managing this risk to public health. A study was undertaken to develop a model for predicting the behavior of Salmonella enterica serotype 8,20:-:z6 in chicken meat during cold storage and to determine how well the model would predict the behavior of other serotypes of Salmonella stored under the same conditions. To develop the model, ground chicken thigh meat (0.75 cm(3)) was inoculated with 1.7 log Salmonella 8,20:-:z6 and then stored for 0 to 8 -8 to 16°C. An automated miniaturized most-probable-number (MPN) method was developed and used for the enumeration of Salmonella. Commercial software (Excel and the add-in program NeuralTools) was used to develop a multilayer feedforward neural network model with one hidden layer of two nodes. The performance of the model was evaluated using the acceptable prediction zone (APZ) method. The number of Salmonella in ground chicken thigh meat stayed the same (P > 0.05) during 8 days of storage at -8 to 8°C but increased (P Salmonella in ground chicken thigh meat stored for 0 to 8 days at -4, 4, 12, or 16°C under the same experimental conditions. A pAPZ of ≥0.7 indicates that a model provides predictions with acceptable bias and accuracy. Thus, the results indicated that the model provided valid predictions of the survival and growth of Salmonella 8,20:-:z6 in ground chicken thigh meat stored for 0 to 8 days at -8 to 16°C and that the model was validated for extrapolation to four other serotypes of Salmonella.

  1. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  2. Assessing ground-based counts of nestling bald eagles in northeastern Minnesota

    Science.gov (United States)

    Fuller, M.R.; Hatfield, J.S.; Lindquist, E.L.

    1995-01-01

    We present evidence that the bald eagle (Haliaeetus leucocephalus) productivity survey in the Boundary Waters Canoe Area Wilderness of northeastern Minnesota may have underestimated the number of nestlings during 1986-1988. Recommendations are provided to achieve more accurate ground-based counts. By conducting ground-based observations for up to 1 hour/nest, an accurate count of the number of bald eagle nestlings can be obtained. If nests are only observed for up to 30 minutes/nest, an accurate determination of nest success can be made. The effort that managers put into counts should be based on the intended use of the productivity data. If small changes in mean productivity would trigger management action, the less acurate ground-based counts should be conducted with caution. Prior to implementing ground-based counts, a study like ours should estimate bias associated with different survey procedures and the observation time needed to achieve accurate results.

  3. Satellite-Model-Ground-based Inter-Comparisons (WG-3)

    Science.gov (United States)

    Kahn, Ralph A.

    2014-01-01

    AERO-SAT is an international consortium of experts on aerosol remote sensing from ground and space. This initiative was established in 2013 (1) to accelerate the exchange of ideas and concepts and (2) to elevate the capabilities of satellite sensorsretrieval (aerosol) products, which are needed to constrain aerosol processing in and assist in evaluations of global modeling. The main goal of the meeting is to substantiate and invigorate the five AEROSAT working groups. On each of those five topics dedicated working groups are building up and will report on their initial activities followed by further related presentations and ample time for discussions. Organizers of the meeting held September 27-28, 2014 would like to post the presentations to a website.

  4. SAFARI 2000 AERONET Ground-based Aerosol Data, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — AERONET (AErosol RObotic NETwork) is an optical ground-based aerosol monitoring network and data archive system. AERONET measurements of the column-integrated...

  5. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (hourly files of all distinct navigation messages...

  6. Ground-Based Global Navigation Satellite System Mixed Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Mixed Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  7. Estimation of Antarctic ozone loss from ground-based total column measurements

    National Research Council Canada - National Science Library

    J. Kuttippurath; F. Goutail; J.-P. Pommereau; F. Lefèvre; H. K. Roscoe; A. Pazmiño; W. Feng; M. P. Chipperfield; S. Godin-Beekmann

    2010-01-01

    ... for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005-2009...

  8. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (daily files of all distinct navigation messages...

  9. Precursor Analysis for Flight- and Ground-Based Anomaly Risk Significance Determination

    Science.gov (United States)

    Groen, Frank

    2010-01-01

    This slide presentation reviews the precursor analysis for flight and ground based anomaly risk significance. It includes information on accident precursor analysis, real models vs. models, and probabilistic analysis.

  10. MICROSTRUCTURE, MINERALOGY AND PHYSICAL PROPERTIES OF GROUND FLY ASH BASED GEOPOLYMERS

    National Research Council Canada - National Science Library

    Ferenc Madai; Ferenc Kristaly; Mucsi Gabor

    2015-01-01

    ...). Compressive strength was determined on cilindrical specimens. Finally, samples of the ground fly ash based geopolymer specimens were analyzed by X-ray diffraction, optical and scanning electron microscopy...

  11. Survival trends in metastatic bladder cancer in the United States: A population based study

    Directory of Open Access Journals (Sweden)

    Binay Kumar Shah

    2015-01-01

    Conclusions: This population-based study shows that decreases in 6-month and 12-month relative survival rates among patients with MBC in 2001-2010 compared to 1991-2000, specifically, more pronounced among CC men and Oth men.

  12. Membrane based macroencapsulation devices for improved pancreatic islet survival and function

    NARCIS (Netherlands)

    Skrzypek, Katarzyna

    2017-01-01

    The research presented in this thesis is about the development of novel membrane based macroencapsulation devices for improved pancreatic islet survival and function. To improve pancreatic islets functionality by avoiding their aggregation within macroencapsulation devices, we developed a novel

  13. Coupling between tsunamis and ionosphere: ground-based and space-based observation opportunities

    Science.gov (United States)

    Coisson, Pierdavide; Makela, Jonathan J.; Occhipinti, Giovanni; Astafyeva, Elvira; alam Kherani, Esfhan; Lognonne, Philippe

    2012-07-01

    Large scale phenomena as tsunamis propagating through the ocean excite gravity waves that can reach ionospheric heights. The coupling between the ground/ocean and the atmosphere up to the ionosphere opens the possibility to observe in the upper atmosphere the effects of the propagation of tsunamis. During all recent major tsunami events ionospheric waves have been observed by ground GPS networks, satellite altimeters and, recently, also by an airglow imager. During the tsunami event of 11 March 2011 an all-sky camera in Hawaii observes the Internal Gravity Waves (IGW) during about one-and-a-half hours before the arrival of the, while it was crossing the Pacific Ocean in that region. Collocated ionospheric measurements were also done with GNSS sounding and Jason satellite. We present results of assessment studies of ground-based and space-based ionospheric remote sensing for tsunami propagation monitoring. We analyze the cases of airglow imager, Over-The-Horizon (OTH) radar, GPS, radio occultation and GNSS reflectometry. We describe modeling results of IGW excited by a realistic tsunami propagation model through the ocean near Hawaii. The model includes the propagation of the gravity wave in the atmosphere, the coupling between neutral and charged particles in the ionosphere and the production of the airglow emission at 630.0 nm. Synthetic all-sky images are calculated by integration of the emission along rays from the camera location to though the airglow layer. Additional ground-based observations could be provided by (OTH) radars, which operate in High Frequency (HF) band and can be used to monitor the bottomside ionosphere. Synthetic radar measurements computed using HF numerical ray-tracing confirm the possibility to detect IGW excited by tsunamis. The large coverage of OTH radar and its sensitivity to low-altitude plasma anomalies provides a wide range of observation. Additionally, we analyze the capabilities of space-based radio occultation and GNSS

  14. Estimating haplotype relative risks on human survival in population-based association studies.

    Science.gov (United States)

    Tan, Qihua; Christiansen, Lene; Bathum, Lise; Zhao, Jing Hua; Yashin, Anatoli I; Vaupel, James W; Christensen, Kaare; Kruse, Torben A

    2005-01-01

    Association-based linkage disequilibrium (LD) mapping is an increasingly important tool for localizing genes that show potential influence on human aging and longevity. As haplotypes contain more LD information than single markers, a haplotype-based LD approach can have increased power in detecting associations as well as increased robustness in statistical testing. In this paper, we develop a new statistical model to estimate haplotype relative risks (HRRs) on human survival using unphased multilocus genotype data from unrelated individuals in cross-sectional studies. Based on the proportional hazard assumption, the model can estimate haplotype risk and frequency parameters, incorporate observed covariates, assess interactions between haplotypes and the covariates, and investigate the modes of gene function. By introducing population survival information available from population statistics, we are able to develop a procedure that carries out the parameter estimation using a nonparametric baseline hazard function and estimates sex-specific HRRs to infer gene-sex interaction. We also evaluate the haplotype effects on human survival while taking into account individual heterogeneity in the unobserved genetic and nongenetic factors or frailty by introducing the gamma-distributed frailty into the survival function. After model validation by computer simulation, we apply our method to an empirical data set to measure haplotype effects on human survival and to estimate haplotype frequencies at birth and over the observed ages. Results from both simulation and model application indicate that our survival analysis model is an efficient method for inferring haplotype effects on human survival in population-based association studies.

  15. Survival of Escherichia coli O157:H7 in ground beef jerky assessed on two plating media.

    Science.gov (United States)

    Harrison, J A; Harrison, M A; Rose, R A

    1998-01-01

    Recent outbreaks of food-borne illness due to Salmonella spp. in beef jerky and Escherichia coli O157:H7 in venison jerky, coupled with the fact that a variety of preparation methods and dying procedures abound, raise concern over the safety of processed meat products made in the home. The potential of injured bacterial cells to regain the ability to cause illness is a particular threat with pathogens such as E. coli O157:H7, which is believed to have a low infectious dose. This study examined the efficacy of various methods of jerky preparation in reducing populations of E, coli O157:H7 in ground beef jerky and compared the recovery rate of E. coli O157:H7 on two selective plating media, modified sorbitol MacConkey agar (MSMA) and modified eosin methylene blue agar (MEMB). Populations of E. coli O157:H7 in both heated and unheated samples exhibited a greater decline during drying when a nitrite and salt cure mix was added during jerky preparation. When recovery of E. coli O157:H7 on MSMA and MEMB was compared, a trend toward slightly higher recovery rates with MEMB was observed. On the basis of these results, MEMB is a suitable alternative to MSMA for the recovery of E. coli O157:H7 from heated and dried meat samples similar to beef jerky.

  16. Mechanisms of common ground in case-based web discussions in teacher education

    OpenAIRE

    Mäkitalo, Kati; Häkkinen, Päivi; Leinonen, Piritta; Järvelä, Sanna

    2002-01-01

    Previous studies suggest that before the participants in Web-based conferencing can reach deeper level interaction and learning, they have to gain an adequate level of common ground in terms of shared mutual understanding, knowledge, beliefs, assumptions, and pre-suppositions (Clark & Schaefer, 1989; Dillenbourg, 1999). In this paper, the main purpose is to explore how participants establish and maintain common ground in order to reach deeper level interaction in case-based Web-discussions. T...

  17. Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2012-05-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic LIDAR, operating at 1064 nm. In addition, PM10 concentrations of particles, NOx concentrations and meteorological data were continuously monitored within the LIDAR scanning region. Based on the data we collected, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and found an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased LIDAR returns, which are associated with the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily plateau at around 17:00 Central European Time. We also found that horizontal atmospheric extinction at the height of 200 m, averaged in limited region with a radius of 300 m directly above the ground-based measuring site, was linearly correlated to the PM10 concentration with a correlation coefficient of 0.84. When considering the average of the horizontal atmospheric extinction over the entire scanning region, a strong dependence on traffic conditions (concentration of NOx in the vicinity of the ground-based measuring site was observed.

  18. Figure-ground organization based on three-dimensional symmetry

    Science.gov (United States)

    Michaux, Aaron; Jayadevan, Vijai; Delp, Edward; Pizlo, Zygmunt

    2016-11-01

    We present an approach to figure/ground organization using mirror symmetry as a general purpose and biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of symmetry in producing three-dimensional (3-D) percepts of objects. 3-D symmetry aids in scene organization because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relationship. No general purpose approach is known for solving 3-D symmetry correspondence in two-dimensional (2-D) camera images, because few invariants exist. Therefore, we present a general purpose method for finding 3-D symmetry correspondence by pairing the problem with the two-view geometry of the binocular correspondence problem. Mirror symmetry is a spatially global property that is not likely to be lost in the spatially local noise of binocular depth maps. We tested our approach on a corpus of 180 images collected indoors with a stereo camera system. K-means clustering was used as a baseline for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a priori knowledge of which objects may appear in the scene, and without knowing how many objects there are in the scene.

  19. UV ground based measurements in Río Gallegos, Argentina

    Science.gov (United States)

    Wolfram, Elian A.; Salvador, Jacobo; D'Elía, Raúl; Quel, Eduardo

    2009-03-01

    CEILAP's Lidar Division has established an atmospheric remote sensing site in Río Gallegos (51°55' S, 69°14' W) in the southern region of Argentina. SOLAR Campaign was held during 2005-2006. The main objectives of this experiment were to measure stratospheric ozone profiles and surface UV radiation in a subpolar region, where the influence of polar vortex and the Antarctic ozone hole are remarkable. This remote sensing site has lidar instruments and passive sensors to measure solar UV irradiance. In this paper we focused on passive remote sensing sensors and the Río Gallegos erythemal irradiances reported during 2005-2006. Time evolution of UV index was derived from these measurements and the influence of ozone depleted air masses passing over over Río Gallegos is highlighted in this paper. This Patagonian region is characterized by high cloud cover during the day that strongly changes the distribution of UV radiation that reaches the ground surface. For that reason some overpasses of ozone hole are masked by cloud cover avoiding the increase in UVB radiation. Reversely in same opportunities, cloud border increases the surface UV radiation. Both effects are analyzed in this work and the reduction or increase of ultraviolet radiation is quantified by comparing measurement and modeled UV radiation. In addition time evolution of daily UV exposures is presented.

  20. Ground-based hyperspectral analysis of the urban nightscape

    Science.gov (United States)

    Alamús, Ramon; Bará, Salvador; Corbera, Jordi; Escofet, Jaume; Palà, Vicenç; Pipia, Luca; Tardà, Anna

    2017-02-01

    Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.

  1. Sensor Technology Baseline Study for Enabling Condition Based Maintenance Plus in Army Ground Vehicles

    Science.gov (United States)

    2012-03-01

    for enabling condition based maintenance plus in Army ground vehicles. The sensor study was driven from Failure Mode Effects Analysis ( FMEA ...of Tables Table 1. Sensor technology baseline study based on engine FMEA report. ...................................5 Table 2. Sensor technology...baseline study based on transmission FMEA report. .........................8 Table 3. Sensor technology baseline study based on alternator FMEA report

  2. Data Processing and Analysis Tools Based on Ground-Based Synthetic Aperture Radar Imagery

    Science.gov (United States)

    Crosetto, M.; Monserrat, O.; Luzi, G.; Devanthéry, N.; Cuevas-González, M.; Barra, A.

    2017-09-01

    The Ground-Based SAR (GBSAR) is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  3. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  4. System Architecture-based Design Methodology for Monitoring the Ground-based Augmentation System: Category I - Integrity Risk

    OpenAIRE

    Elias, Paulo; Saotome, Osamu

    2012-01-01

    Abstract: This paper has described a method to accomplish the Ground-Based Augmentation System signal-in-space integrity risk monitoring for a ground station specified by ICAO, Annex 10, Vol. 1 and RTCA DO-245A, which is a mandatory requirement to meet the certification aspects for a Ground-Based Augmentation System station. The proposed methodology was based on the Risk Tree Analysis technique, which is an optional way to design and develop an engineering solution named as integrity risk monit...

  5. Principle and Design of a Single-phase Inverter-Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then......, a practical current detection method is proposed to specify the reference of compensated current. A current control method consisting of proportional resonant (PR) and proportional integral (PI) with capacitive current feedback is then proposed to guarantee sufficient output current accuracy and stability...

  6. Trends of population-based breast cancer survival in Germany and the US: Decreasing discrepancies, but persistent survival gap of elderly patients in Germany

    Science.gov (United States)

    2012-01-01

    Background Studies have revealed both higher cancer survival in the US than in Germany and substantial improvement of cancer survival in the past in these countries. This population-based study aims at comparing most recent 5-year relative survival of breast cancer patients and preceding trends in both countries. Methods Women with a first invasive breast cancer diagnosed and followed up between 1988 and 2008 from Germany and the US (utilizing data from the Saarland Cancer Registry and the Surveillance, Epidemiology, and End Results Program, respectively) were included. Period analysis was used to derive most up-to-date 5-year relative survival and preceding survival trends according to age and stage. Results Since 1993, age standardized relative survival has steadily improved in Germany and the US to 83% and 88%, respectively. In the period 2005–08, relative survival of localized cancer was above 97% in both countries, and 79% and 83% for locally/regionally spread breast cancer, respectively. Prognosis of metastasized disease has remained very poor overall, with improvement essentially being restricted to younger patients. The proportion of patients diagnosed with localized breast cancer was consistently higher in the US. If adjusted for stage, the differences in relative survival between both countries diminished over time and eventually disappeared. Conclusions Similar survival is now observed in both countries for patients below the age of 70 years, but in Germany survival is still much lower for elderly patients. The observed trends point to treatment advances as a major cause for improved survival. However, substantial differences in mammography usage existed between both countries and might probably also account for the observed differences (to a lesser extent, also differences in health care systems, and delivery of cancer care). Encouraging, survival of breast cancer patients has improved in Germany to a much greater extent than in the US, albeit the

  7. Dual Use Ground Vehicle Condition-Based Maintenance, Project B

    Science.gov (United States)

    2010-02-26

    and intelligent analysis modules System Configuration CAViDSUnclassified Evaluated Device Configurations • Texas Instrument’s MSP430 micro...temperature) – MSP430 , CC chips, and Crossbow motes can tolerate up to 185ºF • Connectivity – Interference (with other communication equipments, and...are being evaluated. Texas Instrument’s MSP430 microcontroller- based and Crossbow’s motes- based systems are shortlisted for further evaluation

  8. Investigating Ground Swarm Robotics Using Agent Based Simulation

    Science.gov (United States)

    2006-12-01

    interesting to see how alternatives like MANA (and even Pythagoras 3 ) measure up to the calling. If indeed MANA has rarely been dedicated to model swarm... Pythagoras is an agent based simulation package developed by Northrop Grumman 5 Figure 2. Simulation packages used to models robot swarms... Pythagoras , an agent based software platform developed by Northrop Grumman. 93 As mentioned before, the model is not complete without modeling the

  9. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    Science.gov (United States)

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  10. Up-to-date and precise estimates of cancer patient survival: model-based period analysis.

    Science.gov (United States)

    Brenner, Hermann; Hakulinen, Timo

    2006-10-01

    Monitoring of progress in cancer patient survival by cancer registries should be as up-to-date as possible. Period analysis has been shown to provide more up-to-date survival estimates than do traditional methods of survival analysis. However, there is a trade-off between up-to-dateness and the precision of period estimates, in that increasing the up-to-dateness of survival estimates by restricting the analysis to a relatively short, recent time period, such as the most recent calendar year for which cancer registry data are available, goes along with a loss of precision. The authors propose a model-based approach to maximize the up-to-dateness of period estimates at minimal loss of precision. The approach is illustrated for monitoring of 5-year relative survival of patients diagnosed with one of 20 common forms of cancer in Finland between 1953 and 2002 by use of data from the nationwide Finnish Cancer Registry. It is shown that the model-based approach provides survival estimates that are as up-to-date as the most up-to-date conventional period estimates and at the same time much more precise than the latter. The modeling approach may further enhance the use of period analysis for deriving up-to-date cancer survival rates.

  11. Regression analysis of restricted mean survival time based on pseudo-observations

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Hansen, Mette Gerster; Klein, John P.

    censoring; hazard function; health economics; regression model; survival analysis; mean survival time; restricted mean survival time; pseudo-observations......censoring; hazard function; health economics; regression model; survival analysis; mean survival time; restricted mean survival time; pseudo-observations...

  12. Regression Analysis of Restricted Mean Survival Time Based on Pseudo-Observations

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Hansen, Mette Gerster; Klein, John P.

    2004-01-01

    censoring; hazard function; health economics; mean survival time; pseudo-observations; regression model; restricted mean survival time; survival analysis......censoring; hazard function; health economics; mean survival time; pseudo-observations; regression model; restricted mean survival time; survival analysis...

  13. Grounding Collaborative Learning in Semantics-Based Critiquing

    Science.gov (United States)

    Cheung, William K.; Mørch, Anders I.; Wong, Kelvin C.; Lee, Cynthia; Liu, Jiming; Lam, Mason H.

    2007-01-01

    In this article we investigate the use of latent semantic analysis (LSA), critiquing systems, and knowledge building to support computer-based teaching of English composition. We have built and tested an English composition critiquing system that makes use of LSA to analyze student essays and compute feedback by comparing their essays with…

  14. MER vistas: ground-truth for Earth-based radar

    Science.gov (United States)

    Haldemann, Albert F.; Larsen, Kristopher W.; Jurgens, Raymond F.; Golombek, Matthew P.; Slade, Martin A.

    2004-01-01

    Earth-based delay-Doppler radar observations of Mars with four receiving stations were carried out during the Mars oppositions of 2001 and 2003 in support of Mars Exploration Rover landing site selection. This interferometric planetary radar technique has demonstrated radar mapping of Mars with a 5 km spatial resolution.

  15. A synthetic GMPE based on deterministic simulated ground motion data obtained from dynamic rupture models

    Science.gov (United States)

    Dalguer, L. A.; Baumann, C.; Cauzzi, C.

    2013-12-01

    Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.

  16. Ground-Based Backup Attitude Control System for the Koreasat Spacecraft

    Science.gov (United States)

    Lee, Byoung-Sun; Kim, Jae-Hoon; Eun, Jong-Won; Kim, Jae-Moung

    1996-12-01

    A ground-based backup attitude control software for the KOREASAT spacecraft was developed. The software is called the Ground Loop Control (GLC). GLC is activated by satellite operator when both Attitude Processor Electronics (APE) of the spacecraft are failed. GLC extracts pitch and roll angles from the normal spacecraft telemetry, and then generates momentum wheel and magnetic torquer commands simultaneously. This paper presents the design of the GLC software and the test of the GLC linked with KOREASAT Dynamic Satellite Simulator (DSS).

  17. A Comparison of Space and Ground Based Facility Environmental Effects for FEP Teflon. Revised

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Kitral, Michael

    1998-01-01

    Fluorinated Ethylene Propylene (FEP) Teflon is widely used as a thermal control material for spacecraft, however, it is susceptible to erosion, cracking, and subsequent mechanical failure in low Earth orbit. One of the difficulties in determining whether FEP Teflon will survive during a mission is the wide disparity of erosion rates observed for this material in space and in ground based facilities. Each environment contains different levels of atomic oxygen, ions, and vacuum ultraviolet (VUV) radiation in addition to parameters such as the energy of the arriving species and temperature. These variations make it difficult to determine what is causing the observed differences in erosion rates. This paper attempts to narrow down which factors affect the erosion rate of FEP Teflon through attempting to change only one environmental constituent at a time. This was attempted through the use of a single simulation facility (plasma asher) environment with a variety of Faraday cages and VUV transparent windows. Isolating one factor inside of a radio frequency (RF) plasma proved to be very difficult. Two observations could be made. First, it appears that the erosion yield of FEP Teflon with respect to that of polyimide Kapton is not greatly affected by the presence or lack of VUV radiation present in the RF plasma and the relative erosion yield for the FEP Teflon may decrease with increasing fluence. Second, shielding from charged particles appears to lower the relative erosion yield of the FEP to approximately that observed in space, however it is difficult to determine for sure whether ions, electrons, or some other components are causing the enhanced erosion.

  18. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground

  19. Estimating the personal cure rate of cancer patients using population-based grouped cancer survival data.

    Science.gov (United States)

    Binbing Yu; Tiwari, Ram C; Feuer, Eric J

    2011-06-01

    Cancer patients are subject to multiple competing risks of death and may die from causes other than the cancer diagnosed. The probability of not dying from the cancer diagnosed, which is one of the patients' main concerns, is sometimes called the 'personal cure' rate. Two approaches of modelling competing-risk survival data, namely the cause-specific hazards approach and the mixture model approach, have been used to model competing-risk survival data. In this article, we first show the connection and differences between crude cause-specific survival in the presence of other causes and net survival in the absence of other causes. The mixture survival model is extended to population-based grouped survival data to estimate the personal cure rate. Using the colorectal cancer survival data from the Surveillance, Epidemiology and End Results Programme, we estimate the probabilities of dying from colorectal cancer, heart disease, and other causes by age at diagnosis, race and American Joint Committee on Cancer stage.

  20. Modelling systematics of ground-based transit photometry I. Implications on transit timing variations

    DEFF Research Database (Denmark)

    von Essen, C.; Cellone, S.; Mallonn, M.

    2016-01-01

    , ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters. However, space-based missions such as Kepler and CoRoT have already revealed that hot Jupiters are mainly found in single systems. Thus, it is natural to question ourselves if we are properly using...... the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground......-based observations treated with current modelling techniques are reliable to detect and characterize additional planets in already known planetary systems. To meet this goal, we simulated typical primary transit observations of a hot Jupiter mimicing an existing system, Qatar-1. To resemble ground-based observations...

  1. Population-based cancer survival in the United States: Data, quality control, and statistical methods.

    Science.gov (United States)

    Allemani, Claudia; Harewood, Rhea; Johnson, Christopher J; Carreira, Helena; Spika, Devon; Bonaventure, Audrey; Ward, Kevin; Weir, Hannah K; Coleman, Michel P

    2017-12-15

    Robust comparisons of population-based cancer survival estimates require tight adherence to the study protocol, standardized quality control, appropriate life tables of background mortality, and centralized analysis. The CONCORD program established worldwide surveillance of population-based cancer survival in 2015, analyzing individual data on 26 million patients (including 10 million US patients) diagnosed between 1995 and 2009 with 1 of 10 common malignancies. In this Cancer supplement, we analyzed data from 37 state cancer registries that participated in the second cycle of the CONCORD program (CONCORD-2), covering approximately 80% of the US population. Data quality checks were performed in 3 consecutive phases: protocol adherence, exclusions, and editorial checks. One-, 3-, and 5-year age-standardized net survival was estimated using the Pohar Perme estimator and state- and race-specific life tables of all-cause mortality for each year. The cohort approach was adopted for patients diagnosed between 2001 and 2003, and the complete approach for patients diagnosed between 2004 and 2009. Articles in this supplement report population coverage, data quality indicators, and age-standardized 5-year net survival by state, race, and stage at diagnosis. Examples of tables, bar charts, and funnel plots are provided in this article. Population-based cancer survival is a key measure of the overall effectiveness of services in providing equitable health care. The high quality of US cancer registry data, 80% population coverage, and use of an unbiased net survival estimator ensure that the survival trends reported in this supplement are robustly comparable by race and state. The results can be used by policymakers to identify and address inequities in cancer survival in each state and for the United States nationally. Cancer 2017;123:4982-93. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U

  2. Estimation of Antarctic ozone loss from ground-based total column measurements

    Science.gov (United States)

    Kuttippurath, J.; Goutail, F.; Pommereau, J.-P.; Lefèvre, F.; Roscoe, H. K.; Pazmiño, A.; Feng, W.; Chipperfield, M. P.; Godin-Beekmann, S.

    2010-07-01

    The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa, and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005-2009. The ozone loss computed from the ground-based measurements is in very good agreement with those derived from satellite measurements (OMI and SCIAMACHY) and model simulations (REPROBUS and SLIMCAT), where the differences are within ±3-5%. The historical ground-based total ozone observations in October show that the depletion started in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation. There is no indication of ozone recovery yet. At southern mid-latitudes, a reduction of 20-50% is observed for a few days in October-November at the newly installed Rio Gallegos station. Similar depletion of ozone is also observed episodically during the vortex overpasses at Kerguelen in October-November and at Macquarie Island in July-August of the recent winters. This illustrates the significance of measurements at the edges of Antarctica.

  3. Solar cosmic ray effects in atmospheric chemistry evidenced from ground- based measurements

    Science.gov (United States)

    Shumilov, O.; Kasatkina, E.; Turyansky, V.

    Solar protons with a relatively soft energy spectrum (E450 MeV) of Ground Level Event (GLE) type can penetrate below 30 km and cause neutron flow enhancement detected by ground-based neutron monitors. Atmospheric effects of such high-energy particles seem to be more pronounced and appeared variations of total content of some atmospheric parameters that can be detected by ground-based devices. It was shown earlier that some GLEs cause considerable ozone total content decreases (up to 25%), or so-called ozone "miniholes" at high latitudes. This work presents ground-based measurements of nitrogen dioxide (NO2) total content made at Murmansk, Kola Peninsula (corrected geomagnetic latitude: 64.8) during and after GLE of 2 May 1998. Nitrogen dioxide was measured by zenith viewing spectrophotometer in wavelength region between 435-450 nm. An increase (about of 20%) in total column of NO2 has been recorded after 2 May 1998 GLE by this facility. Model calculations based on gas phase photochemical theory quantitatively agree with observations. In addition to satellite measurements the information obtained by ground-based devices will be helpful to study atmospheric effects of cosmic ray events. This work was supported by the RFBR grants 01-05-64850 and 01-05-26226).

  4. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas......Winds in the coastal zone have importance for near-shore wind farm planning. Recently the Danish Energy Agency gave new options for placing offshore wind farms much closer to the coastlines than previously. SAR wind retrievals give uniquely detailed spatial information on offshore wind fields. Wind...... maps can be retrieved from SAR observations at resolutions finer than 1 km. The high resolution make SAR images suitable for wind retrievals in the coastal zone, but the Geophysical Model Functions (GMF) for the wind retrieval are tuned for open sea conditions [1]. DTU routinely retrieves SAR wind...

  5. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    Winds in the coastal zone have importance for near-shore wind farm planning. Recently the Danish Energy Agency gave new options for placing offshore wind farms much closer to the coastlines than previously. The new tender areas are located from 3 to 8 km from the coast. Ground-based scanning lidar...... located on land can partly cover this area out to around 15 km. In order to improve wind farm planning for near-shore coastal areas, the project‘Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models’ (RUNE) is established. The measurement campaign starts October....... The various observation types have advantages and limitations; one advantage of both the Sentinel-1 and the scanning lidar is that they both observe wind fields covering a large area and so can be combined for studying the spatial variability of winds. Sentinel-1 are being processed near-real-time at DTU Wind...

  6. Application of Ground Based Microwave Radiometry for Characterizing Tropical Convection

    Science.gov (United States)

    Renju, R.; Raju, C. S.

    2016-12-01

    The characterization of the microphysical and thermodynamical properties of convective events over the tropical coastal station Thiruvananthapuram (TVM, 8.5o N 76.9oE) has been carried out by utilizing multiyear Microwave Radiometer Profiler (MRP) observations. The analyses have been extended to develop a methodology to identify convective events, based on the radiometric brightness temperature (Tb) differences, at 30 GHz and 22.5 GHz channels and are compared using reflectivity and rainfall intensity deduced from concurrent and collocated disdrometer measurements. In all 84 such convections were identified using the above methodology over the station for a period of years, 2010-2013; both during pre- and post- Indian summer monsoon months and further evaluated by computing their stability indices. The occurrence of convection over this coastal station peaks in the afternoon and early morning hours with genesis, respectively, over the land and the sea. The number of occurrence of convective events are less during monsoon deficit year whereas strong and more during heavy monsoon rainfall year. These findings are further evaluated with the percentage occurrence of fractional convective clouds derived from microwave payload SAPHIR observations on Megha-Tropique satellite. Based on the analyses the frequency of occurrence of convection can be related to the monsoonal rainfall obtaining over the region. The analyses also indicate that the microwave radiometric brightness temperature of humidity channels depicts the type of convection and respond two hours prior to the occurrence of rainfall. In addition to that the multi-angle observations of microwave radiometer profiler have been utilized to study the propagation of convective systems. This study and the methodology developed for identifying convection have significance in microwave (Ka- and W-band) satellite propagation characterization since convection and precipitation are the major hindrance to satellite

  7. 18-year survival of posterior composite resin restorations with and without glass ionomer cement as base.

    Science.gov (United States)

    van de Sande, Françoise H; Rodolpho, Paulo A Da Rosa; Basso, Gabriela R; Patias, Rômulo; da Rosa, Quéren F; Demarco, Flávio F; Opdam, Niek J; Cenci, Maximiliano S

    2015-06-01

    Advantages and disadvantages of using intermediate layers underneath resin-composite restorations have been presented under different perspectives. Yet, few long-term clinical studies evaluated the effect of glass-ionomer bases on restoration survival. The present study investigated the influence of glass-ionomer-cement base in survival of posterior composite restorations, compared to restorations without base. Original datasets of one dental practice were used to retrieve data retrospectively. The presence or absence of an intermediate layer of glass-ionomer-cement was the main factor under analysis, considering survival, annual failure rate and types of failure as outcomes. Other investigated factors were: patient gender, jaw, tooth, number of restored surfaces and composite. Statistical analysis was performed using Fisher's exact test, Kaplan-Meier method and multivariate Cox-regression. In total 632 restorations in 97 patients were investigated. Annual failure rates percentages up to 18-years were 1.9% and 2.1% for restorations with and without base, respectively. In restorations with glass-ionomer-cement base, fracture was the predominant reason for failure, corresponding to 57.8% of total failures. Failure type distribution was different (p=0.007) comparing restorations with and without base, but no effect in the overall survival of restorations was found (p=0.313). The presence of a glass-ionomer-cement base did not affect the survival of resin-composite restorations in the investigated sample. Acceptable annual failure rates after 18-years can be achieved with both techniques, leading to the perspective that an intermediate layer, placed during an interim treatment, may be maintained without clinical detriment, but no improvement in survival should be expected based on such measure. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  9. Evaluation of Base Station CORS UDIP and CSEM for monitoring Ground Deformation Sayung Demak Indonesia

    Science.gov (United States)

    Yuwono, B. D.; Awaluddin, M.; Kun, F. H.; Lutfi, E. R.

    2017-12-01

    Sayung is a subdistrict in Demak Regency which is located on the north coast is very vulnerable to natural disasters such as rob flood, abrasion and deformation of land subsidence. The condition is suspected, among others, by several factors, among others, geological structure as a large area dominated by young alluvium layers are still experiencing compression, loading and retrieval of ground water. It is necessary to do research related to ground deformation. The geodetic method used for monitoring ground deformation by satellite surveys with GNSS. The research was conducted to observe GPS survey in 2015 and 2016. GNSS data would be processed with scientific processing GAMIT 10.6. Strategic of GPS data proccesing is the important to reach a better accuracy. The purpose of this research is to evaluate the result of calculation of coordinate value and spatial deformation obtained by both base station that is CORS UDIP and CORS CSEM for monitoring ground deformation.

  10. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  11. Survival in a population-based cohort of dementia patients: predictors and causes of mortality

    NARCIS (Netherlands)

    Boersma, F.; van den Brink, W.; Deeg, D. J.; Eefsting, J. A.; van Tilburg, W.

    1999-01-01

    To examine predictors of survival time and causes of mortality in a population-based cohort of demented subjects. Longitudinal naturalistic follow-up study. A rural area in The Netherlands. The study population consisted of 102 demented subjects derived from a population-based, two-stage prevalence

  12. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  13. Cancer survival in China, 2003-2005: a population-based study.

    Science.gov (United States)

    Zeng, Hongmei; Zheng, Rongshou; Guo, Yuming; Zhang, Siwei; Zou, Xiaonong; Wang, Ning; Zhang, Limei; Tang, Jingao; Chen, Jianguo; Wei, Kuangrong; Huang, Suqin; Wang, Jian; Yu, Liang; Zhao, Deli; Song, Guohui; Chen, Jianshun; Shen, Yongzhou; Yang, Xiaoping; Gu, Xiaoping; Jin, Feng; Li, Qilong; Li, Yanhua; Ge, Hengming; Zhu, Fengdong; Dong, Jianmei; Guo, Guoping; Wu, Ming; Du, Lingbin; Sun, Xibin; He, Yutong; Coleman, Michel P; Baade, Peter; Chen, Wanqing; Yu, Xue Qin

    2015-04-15

    Limited population-based cancer registry data available in China until now has hampered efforts to inform cancer control policy. Following extensive efforts to improve the systematic cancer surveillance in this country, we report on the largest pooled analysis of cancer survival data in China to date. Of 21 population-based cancer registries, data from 17 registries (n = 138,852 cancer records) were included in the final analysis. Cases were diagnosed in 2003-2005 and followed until the end of 2010. Age-standardized relative survival was calculated using region-specific life tables for all cancers combined and 26 individual cancers. Estimates were further stratified by sex and geographical area. The age-standardized 5-year relative survival for all cancers was 30.9% (95% confidence intervals: 30.6%-31.2%). Female breast cancer had high survival (73.0%) followed by cancers of the colorectum (47.2%), stomach (27.4%), esophagus (20.9%), with lung and liver cancer having poor survival (16.1% and 10.1%), respectively. Survival for women was generally higher than for men. Survival for rural patients was about half that of their urban counterparts for all cancers combined (21.8% vs. 39.5%); the pattern was similar for individual major cancers except esophageal cancer. The poor population survival rates in China emphasize the urgent need for government policy changes and investment to improve health services. While the causes for the striking urban-rural disparities observed are not fully understood, increasing access of health service in rural areas and providing basic health-care to the disadvantaged populations will be essential for reducing this disparity in the future. © 2014 UICC.

  14. A framework for recovery-oriented, COTS-based ground station networks

    Science.gov (United States)

    Cutler, James William

    The complexity of space communication has limited our access to space systems and kept mission operations costs high. Ultimately, this results in reduced mission capabilities and yields. In particular, ground stations, the access point between space and terrestrial networks, suffer from monolithic designs, narrow interfaces, and unreliability that raise significant financial barriers for low-cost, experimental satellite missions. This research reduces these barriers by developing technology for recovery-oriented, flexible access networks built from commercial-off-the-shelf (COTS) components. Based on our extensive small satellite experiences, we decomposed ground station services and captured them in an extensible framework that simplified reuse of ground station services and improved portability across heterogeneous installations. This capability, combined with selective customization through virtual machine technology, allowed us to deliver "just in time" ground stations for QuakeSat-1 at a fraction of the price of current commodity solutions. This decomposition is also informed by principles of robust system design. Thus, our ground station reference implementation called Mercury was a candidate for recursive recovery (RR), a high availability technique whose effectiveness in reducing recovery time has been demonstrated on research prototypes of Internet server systems. Augmenting Mercury to implement RR reduced recovery time of typical ground station software failures by a factor of four, dropping recovery time to within the "window of recovery" and effectively eliminating the adverse effects of these failures. Since the time of failures cannot be predicted, RR allowed us to mitigate the effects of the failures and greatly reduce their potential impact on ground station operations. Our ground station architecture harnessed the benefits of COTS components, including rapid prototyping and deployment, while overcoming the challenges of COTS reliability and mission

  15. Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations

    Science.gov (United States)

    Hirsch, Michael

    During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and

  16. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  17. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    OpenAIRE

    Fraser, A; Bernath, P. F.; Blatherwick, R. D.; Drummond, J. R.; Fogal, P. F.; D. Fu; Goutail, F.; Kerzenmacher, T. E.; McElroy, C. T.; C. Midwinter; Olson, J. R.; Strong, K.; Walker, K. A.; Wunch, D.; Young, I. J.

    2007-01-01

    The MANTRA (Middle Atmosphere Nitrogen TRend Assessment) 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W) from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs) that were part of the balloon payload also performed ground-based measurements of seve...

  18. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  19. A transit timing analysis with combined ground- and space-based photometry

    Directory of Open Access Journals (Sweden)

    Raetz St.

    2015-01-01

    The CoRoT satellite looks back on six years of high precision photometry of a very high number of stars. Thousands of transiting events are detected from which 27 were confirmed to be transiting planets so far. In my research I search and analyze TTVs in the CoRoT sample and combine the unprecedented precision of the light curves with ground-based follow-up photometry. Because CoRoT can observe transiting planets only for a maximum duration of 150 days the ground-based follow-up can help to refine the ephemeris. Here we present first examples.

  20. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites.

    Science.gov (United States)

    Karmee, Sanjib Kumar

    2018-02-01

    Spent coffee grounds are composed of lipid, carbohydrates, carbonaceous, and nitrogen containing compounds among others. Using n-hexane and n-hexane/isopropanol mixture highest oil yield was achived during soxhlet extraction of oil from spent coffee grounds. Alternatively, supercritical carbon dioxide can be employed as a green solvent for the extraction of oil. Using advanced chemical and biotechnological methods, spent coffee grounds are converted to various biofuels such as, biodiesel, renewable diesel, bioethanol, bioethers, bio-oil, biochar, and biogas. The in-situ transesterification of spent coffee grounds was carried out in a large scale (4 kg), which led to 80-83% biodiesel yield. In addition, a large number of value added and diversified products viz. polyhydroxyalkanoates, biosorbent, activated carbon, polyol, polyurethane foam, carotenoid, phenolic antioxidants, and green composite are obtained from spent coffee grounds. The principles of circular economy are applied to develop a sustanaible biorefinery based on valorisation of spent coffee grounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  2. Introduction of a prediction model to assigning periodontal prognosis based on survival rates.

    Science.gov (United States)

    Martinez-Canut, Pedro; Alcaraz, Jaime; Alcaraz, Jaime; Alvarez-Novoa, Pablo; Alvarez-Novoa, Carmen; Marcos, Ana; Noguerol, Blas; Noguerol, Fernando; Zabalegui, Ion

    2017-09-04

    To develop a prediction model for tooth loss due to periodontal disease (TLPD) in patients following periodontal maintenance (PM), and assess its performance using a multicentre approach. A multilevel analysis of eleven predictors of TLPD in 500 patients following PM was carried out to calculate the probability of TLPD. This algorithm was applied to three different TLPD samples (369 teeth) gathered retrospectively by nine periodontist, associating several intervals of probability with the corresponding survival rates, based on significant differences in the mean survival rates. The reproducibility of these associations was assessed in each sample (One-way ANOVA and pair-wise comparison with Bonferroni corrections). The model presented high specificity and moderate sensitivity, with optimal calibration and discrimination measurements. Seven intervals of probability were associated with seven survival rates and these associations contained close to 80% of the cases: the probability predicted the survival rate at this percentage. The model performed well in the three samples, since the mean survival rates of each association were significantly different within each sample, while no significant differences between the samples were found in pair-wise comparisons of means. This model might be useful for predicting survival rates in different TLPD samples This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Materials for Ground Platform Survivability

    Science.gov (United States)

    2011-05-17

    S-2 Glass – Carbon – Para-Aramid Synthetics • Ex. Kevlar – Ultra-high-molecular-weight polyethylene • Ex. Dyneema / Spectra Shield UNCLASSIFIED... Manufacturability • Attachment design• Shock transmission• Affordability• RAM Trades analyses • Performance•Weight• Cost UNCLASSIFIED: Dist A. Approved for public

  4. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.

    Science.gov (United States)

    Ye, S J

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  5. Uncertainties in Instantaneous Rainfall Rate Estimates: Satellite vs. Ground-Based Observations

    Science.gov (United States)

    Amitai, E.; Huffman, G. J.; Goodrich, D. C.

    2012-12-01

    High-resolution precipitation intensities are significant in many fields. For example, hydrological applications such as flood forecasting, runoff accommodation, erosion prediction, and urban hydrological studies depend on an accurate representation of the rainfall that does not infiltrate the soil, which is controlled by the rain intensities. Changes in the rain rate pdf over long periods are important for climate studies. Are our estimates accurate enough to detect such changes? While most evaluation studies are focusing on the accuracy of rainfall accumulation estimates, evaluation of instantaneous rainfall intensity estimates is relatively rare. Can a speceborne radar help in assessing ground-based radar estimates of precipitation intensities or is it the other way around? In this presentation we will provide some insight on the relative accuracy of instantaneous precipitation intensity fields from satellite and ground-based observations. We will examine satellite products such as those from the TRMM Precipitation Radar and those from several passive microwave imagers and sounders by comparing them with advanced high-resolution ground-based products taken at overpass time (snapshot comparisons). The ground based instantaneous rain rate fields are based on in situ measurements (i.e., the USDA/ARS Walnut Gulch dense rain gauge network), remote sensing observations (i.e., the NOAA/NSSL NMQ/Q2 radar-only national mosaic), and multi-sensor products (i.e., high-resolution gauge adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products).

  6. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis.

    Science.gov (United States)

    van der Burgh, Hannelore K; Schmidt, Ruben; Westeneng, Henk-Jan; de Reus, Marcel A; van den Berg, Leonard H; van den Heuvel, Martijn P

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n = 83 patients), a validation set (n = 20) and an independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication.

  7. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Hannelore K. van der Burgh

    2017-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n = 83 patients, a validation set (n = 20 and an independent evaluation set (n = 32 to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication.

  8. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  9. Disparities in pediatric leukemia early survival in Argentina: a population-based study.

    Science.gov (United States)

    Garibotti, Gilda; Moreno, Florencia; Dussel, Veronica; Orellana, Liliana

    2014-10-01

    To identify disparities-using recursive partitioning (RP)-in early survival for children with leukemias treated in Argentina, and to depict the main characteristics of the most vulnerable groups. This secondary data analysis evaluated 12-month survival (12-ms) in 3 987 children diagnosed between 2000 and 2008 with lymphoid leukemia (LL) and myeloid leukemia (ML) and registered in Argentina's population-based oncopediatric registry. Prognostic groups based on age at diagnosis, gender, socioeconomic index of the province of residence, and migration to a different province to receive health care were identified using the RP method. Overall 12-ms for LL and ML cases was 83.7% and 59.9% respectively. RP detected major gaps in 12-ms. Among 1-10-year-old LL patients from poorer provinces, 12-ms for those who did and did not migrate was 87.0% and 78.2% respectively. Survival of ML patients < 2 years old from provinces with a low/medium socioeconomic index was 38.9% compared to 62.1% for those in the same age group from richer provinces. For 2-14-year-old ML patients living in poor provinces, patient migration was associated with a 30% increase in 12-ms. Major disparities in leukemia survival among Argentine children were found. Patient migration and socioeconomic index of residence province were associated with survival. The RP method was instrumental in identifying and characterizing vulnerable groups.

  10. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    NARCIS (Netherlands)

    Dammers, E.; Shephard, M.W.; Palm, M.; Cady-Pereira, K.; Capps, S.; Lutsch, E.; Strong, K.; Hannigan, J.W.; Ortega, I.; Toon, G.C.; Stremme, W.; Grutter, M.; Jones, N.; Smale, D.; Siemons, J.; Hrpcek, K.; Tremblay, D.; Schaap, M.; Notholt, J.; Willem Erisman, J.

    2017-01-01

    Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the

  11. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  12. Modern developments for ground-based monitoring of fire behavior and effects

    Science.gov (United States)

    Colin C. Hardy; Robert Kremens; Matthew B. Dickinson

    2010-01-01

    Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...

  13. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  14. ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies

    Science.gov (United States)

    Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman

    2013-01-01

    Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...

  15. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  16. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming

    2005-01-01

    Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...

  17. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  18. Survival in Mediterranean Ambulatory Patients With Chronic Heart Failure. A Population-based Study

    NARCIS (Netherlands)

    Frigola Capell, E.; Comin-Colet, J.; Davins-Miralles, J.; Gich-Saladich, I.J.; Wensing, M.; Verdu-Rotellar, J.M.

    2013-01-01

    INTRODUCTION AND OBJECTIVES: Scarce research has been performed in ambulatory patients with chronic heart failure in the Mediterranean area. Our aim was to describe survival trends in our target population and the impact of prognostic factors. METHODS: We carried out a population-based retrospective

  19. 18-year survival of posterior composite resin restorations with and without glass ionomer cement as base.

    NARCIS (Netherlands)

    Sande, F.H. van de; Rosa Rodolpho, P.A. Da; Basso, G.R.; Patias, R.; Rosa, Q.F. da; Demarco, F.F.; Opdam, N.J.M.; Cenci, M.S.

    2015-01-01

    OBJECTIVE: Advantages and disadvantages of using intermediate layers underneath resin-composite restorations have been presented under different perspectives. Yet, few long-term clinical studies evaluated the effect of glass-ionomer bases on restoration survival. The present study investigated the

  20. Deep Learning based multi-omics integration robustly predicts survival in liver cancer.

    Science.gov (United States)

    Chaudhary, Kumardeep; Poirion, Olivier B; Lu, Liangqun; Garmire, Lana X

    2017-10-05

    Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient cohorts is lacking. To fill in this gap, we present a deep learning (DL) based model on HCC that robustly differentiates survival subpopulations of patients in six cohorts. We build the DL based, survival-sensitive model on 360 HCC patients' data using RNA-seq, miRNA-seq and methylation data from TCGA, which predicts prognosis as good as an alternative model where genomics and clinical data are both considered. This DL based model provides two optimal subgroups of patients with significant survival differences (P=7.13e-6) and good model fitness (C-index=0.68). More aggressive subtype is associated with frequent TP53 inactivation mutations, higher expression of stemness markers (KRT19, EPCAM) and tumor marker BIRC5, and activated Wnt and Akt signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-JP cohort (n=230, C-index=0.75), NCI cohort (n=221, C-index=0.67), Chinese cohort (n=166, C-index=0.69), E-TABM-36 cohort (n=40, C-index=0.77), and Hawaiian cohort (n=27, C-index=0.82). This is the first study to employ deep learning to identify multi-omics features linked to the differential survival of HCC patients. Given its robustness over multiple cohorts, we expect this workflow to be useful at predicting HCC prognosis prediction. Copyright ©2017, American Association for Cancer Research.

  1. Cancer survival in adult patients in Spain. Results from nine population-based cancer registries.

    Science.gov (United States)

    Chirlaque, M D; Salmerón, D; Galceran, J; Ameijide, A; Mateos, A; Torrella, A; Jiménez, R; Larrañaga, N; Marcos-Gragera, R; Ardanaz, E; Sant, M; Minicozzi, P; Navarro, C; Sánchez, M J

    2017-07-17

    With the aim of providing cancer control indicators, this work presents cancer survival in adult (≥15 years) patients in Spain diagnosed during the period 2000-2007 from Spanish cancer registries participating in the EUROCARE project. Cancer cases from nine Spanish population-based cancer registries were included and analysed as a whole. All primary malignant neoplasms diagnosed in adult patients were eligible for the analysis. Cancer patients were followed until 31 December 2008. For each type of cancer, 1-, 3- and 5-year observed and relative survival were estimated by sex, age and years from diagnosis. Furthermore, age-standardized 5-year relative survival for the period 2000-2007 has been compared with that of the period 1995-1999. Skin melanoma (84.6 95% CI 83.0-86.2), prostate (84.6% 95% CI 83.6-85.6) and thyroid (84.2% CI 95% 82.0-86.6) cancers showed the highest 5-year relative survival, whereas the worst prognosis was observed in pancreatic (6% 95% CI 5.1-7.0) and oesophageal (9.4% 95% CI 7.9-11.1) cancers. Overall, survival is higher in women (58.0%) than in men (48.9%). The absolute difference in relative survival between 2000-2007 and 1995-1999 was positive for all cancers as a whole (+4.8% in men, +1.6% in women) and for most types of tumours. Survival increased significantly for chronic myeloid leukaemia, non-Hodgkin's lymphoma and rectum cancer in both sexes, and for acute lymphoid leukaemia, prostate, liver and colon cancers in men and Hodgkin's lymphoma and breast cancer in women. Survival patterns by age were similar in Europe and Spain. A decline in survival by age was observed in all tumours, being more pronounced for ovarian, corpus uteri, prostate and urinary bladder and less for head and neck and rectum cancers. High variability and differences have been observed in survival among adults in Spain according to the type of cancer diagnosed, from above 84% to below 10%, reflecting high heterogeneity. The differences in prognosis by age, sex

  2. Survival Trends in Elderly Patients with Glioblastoma in the United States: a Population-based Study.

    Science.gov (United States)

    Shah, Binay Kumar; Bista, Amir; Sharma, Sandhya

    2016-09-01

    Concomitant and adjuvant temozolomide along with radiotherapy following surgery (the Stupp regimen) is the preferred therapy for young patients with glioblastoma as well as for elderly (>70 years) ones with favorable risk factors. This study investigated the survival trend since the introduction of the use of the Stupp regimen in elderly patients in a population-based setting. Surveillance, Epidemiology, and End Results 18 database was used to identify patients aged ≥70 years with glioblastoma as the first primary cancer diagnosed from 1999 to 2010. Chi-square test, Kaplan-Meier analysis with log-rank test and Cox proportional hazard method were used for analysis. A total of 5,575 patients were included in the survival analysis. Survival in Stupp era (year of diagnosis ≥2005) was significantly better compared to the pre-Stupp era with p<0.001 by log-rank test, with 1-, 2- and 3-year overall survival of 18.8% vs. 12.9%, 6.5% vs. 2.1% and 3.1% vs. 0.9% respectively, and hazard ratio for death in 3 years in the Stupp era was 0.87 (95% confidence interval=0.82-0.92; p<0.001) when compared with the pre-Stupp era. Factors such as younger age (<85 years), female sex, married status, Caucasian race and total resection favored better survival compared to their counterparts. This study shows that the survival of elderly patients with glioblastoma has improved since the introduction of the Stupp regimen. However, there are significant differences in survival rates among various cohorts. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. A population-based study of retinoblastoma incidence and survival in Argentine children.

    Science.gov (United States)

    Moreno, Florencia; Sinaki, Banafsheh; Fandiño, Adriana; Dussel, Verónica; Orellana, Liliana; Chantada, Guillermo

    2014-09-01

    An increased incidence of retinoblastoma in some developing countries has been reported but no conclusive data are available from population-based studies at national level. To report the incidence and survival of retinoblastoma in Argentina from the National Pediatric Cancer Registry (ROHA) and the influence of socio-economical indicators on outcome. Cases reported to the ROHA (2000-2009) were analyzed. Incidence rates were calculated using National Vital Statistics and survival was estimated. The extended human development index (EHDI) was used as a socio-economical indicator. With 438 patients reported, an incidence of 5.0 cases per million children 0-14 years old (95% CI 3.5-6.4) was calculated. Median age at diagnosis was significantly higher for children from provinces with lower EHDI; (24 vs. 35 months for unilateral, (P = 0.003) and 9 versus 11.5 months for bilateral retinoblastoma (P = 0.027). The 3-year probability of survival was 0.87 and 0.94 for unilateral and bilateral retinoblastoma, respectively. Residents in provinces with higher EHDI had a better 3-year survival (0.93 vs. 0.77 for lower EHDI, P < 0.0001). Probability of survival was higher for patients treated at tertiary level institutions (P = 0.0015). The combination of low EHDI residence province with no treatment at a tertiary institution was associated with the worst survival outcome. For both, unilateral and bilateral disease, children who died were in average diagnosed at older age. The incidence of retinoblastoma in Argentina is comparable to that of developed countries. Retinoblastoma is diagnosed later and survival is lower in the less developed areas of the country. © 2014 Wiley Periodicals, Inc.

  4. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  5. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (daily files)...

  6. Estimation of Antarctic ozone loss from ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-07-01

    Full Text Available The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa, and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005–2009. The ozone loss computed from the ground-based measurements is in very good agreement with those derived from satellite measurements (OMI and SCIAMACHY and model simulations (REPROBUS and SLIMCAT, where the differences are within ±3–5%.

    The historical ground-based total ozone observations in October show that the depletion started in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation. There is no indication of ozone recovery yet. At southern mid-latitudes, a reduction of 20–50% is observed for a few days in October–November at the newly installed Rio Gallegos station. Similar depletion of ozone is also observed episodically during the vortex overpasses at Kerguelen in October–November and at Macquarie Island in July–August of the recent winters. This illustrates the significance of measurements at the edges of Antarctica.

  7. Ground truth delineation for medical image segmentation based on Local Consistency and Distribution Map analysis.

    Science.gov (United States)

    Cheng, Irene; Sun, Xinyao; Alsufyani, Noura; Xiong, Zhihui; Major, Paul; Basu, Anup

    2015-01-01

    Computer-aided detection (CAD) systems are being increasingly deployed for medical applications in recent years with the goal to speed up tedious tasks and improve precision. Among others, segmentation is an important component in CAD systems as a preprocessing step to help recognize patterns in medical images. In order to assess the accuracy of a CAD segmentation algorithm, comparison with ground truth data is necessary. To-date, ground truth delineation relies mainly on contours that are either manually defined by clinical experts or automatically generated by software. In this paper, we propose a systematic ground truth delineation method based on a Local Consistency Set Analysis approach, which can be used to establish an accurate ground truth representation, or if ground truth is available, to assess the accuracy of a CAD generated segmentation algorithm. We validate our computational model using medical data. Experimental results demonstrate the robustness of our approach. In contrast to current methods, our model also provides consistency information at distributed boundary pixel level, and thus is invariant to global compensation error.

  8. An approach to the drone fleet survivability assessment based on a stochastic continues-time model

    Science.gov (United States)

    Kharchenko, Vyacheslav; Fesenko, Herman; Doukas, Nikos

    2017-09-01

    An approach and the algorithm to the drone fleet survivability assessment based on a stochastic continues-time model are proposed. The input data are the number of the drones, the drone fleet redundancy coefficient, the drone stability and restoration rate, the limit deviation from the norms of the drone fleet recovery, the drone fleet operational availability coefficient, the probability of the drone failure-free operation, time needed for performing the required tasks by the drone fleet. The ways for improving the recoverable drone fleet survivability taking into account amazing factors of system accident are suggested. Dependencies of the drone fleet survivability rate both on the drone stability and the number of the drones are analysed.

  9. Survival in patients with primary Dermatofibrosarcoma Protuberans: National Cancer Data Base analysis.

    Science.gov (United States)

    Trofymenko, Oleksandr; Bordeaux, Jeremy S; Zeitouni, Nathalie C

    2017-11-23

    The predictors of mortality, second surgery, and postoperative radiation therapy for treating Dermatofibrosarcoma protuberans (DFSP) are not well described. We sought to determine the impact of patient demographics, tumor characteristics, and treatment site and modality on survival after primary DFSP. A retrospective analysis of data from the National Cancer Data Base program was performed for patients diagnosed with DFSP from 2003 to 2012. A total of 5249 cases were identified. Of these, 3.1% of patients died during an average of 51.4 months of follow up. After adjusting for relevant factors, uninsured and/or Medicaid/Medicare insurance, anaplastic histology, and positive postoperative margins predicted mortality, while treatment at Integrated Network Cancer programs predicted survival (P data was not cancer-specific. Better understanding of factors affecting survival outcomes may help improve management of DFSP and delineate other potential causes of increased morbidity and mortality. Copyright © 2017. Published by Elsevier Inc.

  10. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  11. Factors driving inequality in prostate cancer survival: a population based study.

    Directory of Open Access Journals (Sweden)

    Richéal M Burns

    Full Text Available PURPOSE: As cancer control strategies have become more successful, issues around survival have become increasingly important to researchers and policy makers. The aim of this study was to examine the role of a range of clinical and socio-demographic variables in explaining variations in survival after a prostate cancer diagnosis, paying particular attention to the role of healthcare provider(s i.e. private versus public status. METHODS: Data were extracted from the National Cancer Registry Ireland, for patients diagnosed with prostate cancer from 1998-2009 (N = 26,183. A series of multivariate Cox and logistic regression models were used to examine the role of healthcare provider and socio-economic status (area-based deprivation on survival, controlling for age, stage, Gleason grade, marital status and region of residence. Survival was based on all-cause mortality. RESULTS: Older individuals who were treated in a private care setting were more likely to have survived than those who had not, when other factors were controlled for. Differences were evident with respect to marital status, region of residence, clinical stage and Gleason grade. The effect of socio-economic status was modified by healthcare provider, such that risk of death was higher in those men of lower socio-economic status treated by public, but not private providers in the Cox models. The logistic models revealed a socio-economic gradient in risk of death overall; the gradient was larger for those treated by public providers compared to those treated by private providers when controlling for a range of other confounding factors. CONCLUSION: The role of healthcare provider and socio-economic status in survival of men with prostate cancer may give rise to concerns that warrant further investigation.

  12. Survival in pediatric medulloblastoma: a population-based observational study to improve prognostication.

    Science.gov (United States)

    Weil, Alexander G; Wang, Anthony C; Westwick, Harrison J; Ibrahim, George M; Ariani, Rojine T; Crevier, Louis; Perreault, Sebastien; Davidson, Tom; Tseng, Chi-Hong; Fallah, Aria

    2017-03-01

    Medulloblastoma is the most common form of brain malignancy of childhood. The mainstay of epidemiological data regarding childhood medulloblastoma is derived from case series, hence population-based studies are warranted to improve the accuracy of survival estimates. To utilize a big-data approach to update survival estimates in a contemporary cohort of children with medulloblastoma. We performed a population-based retrospective observational cohort study utilizing the Surveillance, Epidemiology, and End Results Program database that captures all children, less than 20 years of age, between 1973 and 2012 in 18 geographical regions representing 28% of the US population. We included all participants with a presumed or histologically diagnosis of medulloblastoma. The main outcome of interest is survivors at 1, 5 and 10 years following diagnosis. A cohort of 1735 children with a median (interquartile range) age at diagnosis of 7 (4-11) years, with a diagnosis of medulloblastoma were identified. The incidence and prevalence of pediatric medulloblastoma has remained stable over the past 4 decades. There is a critical time point at 1990 when the overall survival has drastically improved. In the contemporary cohort (1990 onwards), the percentage of participants alive was 86, 70 and 63% at 1, 5 and 10 years, respectively. Multivariate Cox-Regression model demonstrated Radiation (HR 0.37; 95% CI 0.30-0.46, p medulloblastoma survival. In contrast to previous reports, the majority of patients survive in the modern era, and those alive 8 years following initial diagnosis are likely a long-term survivor. The importance of minimizing treatment-related toxicity is increasingly apparent given the likelihood of long-term survival.

  13. Global and regional trends of Aerosol Optical Thickness derived using satellite- and ground-based observations

    OpenAIRE

    Yoon, Jongmin

    2012-01-01

    Atmospheric aerosol plays a critical role for human health, air quality, long range transport of pollution, and the Earth s radiative balance, thereby influencing global climate change. To test our scientific understanding and provide an evidence base for policymakers, long-term temporal changes of local, regional, and global aerosols are needed. Remote sensing from satellite borne and ground based observations offers unique opportunities to provide such data. However, only a few studies have...

  14. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  15. A COMPUTER-BASED ENVIRONMENT FOR PROCESSING AND SELECTION OF SEISMIC GROUND MOTION RECORDS: OPENSIGNAL

    Directory of Open Access Journals (Sweden)

    Gian Paolo eCimellaro

    2015-09-01

    Full Text Available A new computer-based platform has been proposed whose novelty consists in modeling the local site effects of the ground motion propagation using a hybrid approach based on an equivalent linear model. The soil behavior is modeled assuming that both the shear modulus and the damping ratio vary with the shear strain amplitude. So the hysteretic behavior of the soil is described using the shear modulus degradation and damping ratio curves. In addition, another originality of the proposed system architecture consists in the evaluation of the Conditional Mean Spectrum (CMS on the entire Italian territory automatically, knowing the geographical coordinates. The computer-based platform based on signal processing has been developed using a modular programming approach, to enable the selection and the processing of earthquake ground motion records. The proposed computer-based platform combines in unified environment different features such as: (i selection of ground motion records using both spectral and waveform matching, (ii signal processing, (iii response spectra analysis, (iv soil response analysis etc. The computer-based platform OPENSIGNAL is freely available for the general public at http://areeweb.polito.it/ricerca/ICRED/Software/OpenSignal.php.

  16. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  17. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  18. Analyzing age-specific genetic effects on human extreme age survival in cohort-based longitudinal studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Jacobsen, Rune; Sørensen, Mette

    2013-01-01

    The analysis of age-specific genetic effects on human survival over extreme ages is confronted with a deceleration pattern in mortality that deviates from traditional survival models and sparse genetic data available. As human late life is a distinct phase of life history, exploring the genetic...... effects on extreme age survival can be of special interest to evolutionary biology and health science. We introduce a non-parametric survival analysis approach that combines population survival information with individual genotype data in assessing the genetic effects in cohort-based longitudinal studies...

  19. Analysis of CPolSK-based FSO system working in space-to-ground channel

    Science.gov (United States)

    Su, Yuwei; Sato, Takuro

    2018-03-01

    In this article, the transmission performance of a circle polarization shift keying (CPolSK)-based free space optical (FSO) system working in space-to-ground channel is analyzed. Formulas describing the optical polarization distortion caused by the atmospheric turbulence and the communication qualities in terms of signal-to-noise-ratio (SNR), bit-error-ratio (BER) and outage probability of the proposed system are derived. Based on the Stokes parameters data measured by a Japanese optical communication satellite, we evaluate the space-to-ground FSO link and simulate the system performance under a varying regime of turbulence strength. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the on-off-keying (OOK)-based FSO system. These results are useful to the designing and evaluating of a deep space FSO communication system.

  20. Monitoring of rainfall by ground-based passive microwave systems: models, measurements and applications

    Directory of Open Access Journals (Sweden)

    F. S. Marzano

    2005-01-01

    Full Text Available A large set of ground-based multi-frequency microwave radiometric simulations and measurements during different precipitation regimes are analysed. Simulations are performed for a set of frequencies from 22 to 60 GHz, representing the channels currently available on an operational ground-based radiometric system. Results are illustrated in terms of comparisons between measurements and model data in order to show that the observed radiometric signatures can be attributed to rainfall scattering and absorption. An inversion algorithm has been developed, basing on the simulated data, to retrieve rain rate from passive radiometric observations. As a validation of the approach, we have analyzed radiometric measurements during rain events occurred in Boulder, Colorado, and at the Atmospheric Radiation Measurement (ARM Program's Southern Great Plains (SGP site in Lamont, Oklahoma, USA, comparing rain rate estimates with available simultaneous rain gauge data.

  1. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Science.gov (United States)

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  2. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Castet

    Full Text Available This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also

  3. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  4. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    Science.gov (United States)

    Tack, Frederik; Hendrick, Francois; Goutail, Florence; Fayt, Caroline; Merlaud, Alexis; Pinardi, Gaia; Pommereau, Jean-Pierre; Van Roozendael, Michel

    2014-05-01

    Nitrogen dioxide (NO2) is one of the most important chemically active trace gases in the troposphere. Listed as primary pollutant, it is also a key precursor in the formation of tropospheric ozone, aerosols, and acid rain, and can contribute locally to radiative forcing. The long-term monitoring of this species is therefore of great relevance. Here we present a new method to retrieve tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. It is based on a four-step approach consisting of (1) the DOAS analysis of zenith radiance spectra using a fixed reference spectrum corresponding to low tropospheric NO2 content, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total slant column using stratospheric vertical columns measured at twilight and simulated stratospheric NO2 diurnal variation, (4) estimation of the tropospheric vertical columns by dividing the resulting tropospheric slant columns by appropriate air mass factors. The retrieval algorithm is tested on a 2 month dataset acquired from June to July 2009 by the BIRA MAX-DOAS instrument in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The tropospheric vertical column amounts derived from zenith-sky observations are compared to the vertical columns retrieved from the off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data of a co-located SAOZ (Système d'Analyse par Observations Zénithales) spectrometer operated by LATMOS. First results show a good agreement between the different data sets with correlation coefficients and slopes close to or larger than 0.85. We observe that the main error sources arise from the uncertainties in the determination of the residual NO2 amount in the reference spectrum, the stratospheric NO2 abundance and

  5. Smoking and survival of colorectal cancer patients: population-based study from Germany.

    Science.gov (United States)

    Walter, Viola; Jansen, Lina; Hoffmeister, Michael; Ulrich, Alexis; Chang-Claude, Jenny; Brenner, Hermann

    2015-09-15

    Current evidence on the association between smoking and colorectal cancer (CRC) prognosis after diagnosis is heterogeneous and few have investigated dose-response effects or outcomes other than overall survival. Therefore, the association of smoking status and intensity with several prognostic outcomes was evaluated in a large population-based cohort of CRC patients; 3,130 patients with incident CRC, diagnosed between 2003 and 2010, were interviewed on sociodemographic factors, smoking behavior, medication and comorbidities. Tumor characteristics were collected from medical records. Vital status, recurrence and cause of death were documented for a median follow-up time of 4.9 years. Using Cox proportional hazards regression, associations between smoking characteristics and overall, CRC-specific, non-CRC related, recurrence-free and disease-free survival were evaluated. Among stage I-III patients, being a smoker at diagnosis and smoking ≥15 cigarettes/day were associated with lower recurrence-free (adjusted hazard ratios (aHR): 1.29; 95% confidence interval (CI): 0.93-1.79 and aHR: 1.31; 95%-CI: 0.92-1.87) and disease-free survival (aHR: 1.26; 95%-CI: 0.95-1.67 and aHR: 1.29; 95%-CI: 0.94-1.77). Smoking was associated with decreased survival in stage I-III smokers with pack years ≥20 (Overall survival: aHR: 1.40; 95%-CI: 1.01-1.95), in colon cancer cases (Overall survival: aHR: 1.51; 95%-CI: 1.05-2.17) and men (Recurrence-free survival: aHR: 1.51; 95%-CI: 1.09-2.10; disease-free survival: aHR: 1.49; 95%-CI: 1.12-1.97), whereas no associations were seen among women, stage IV or rectal cancer patients. The observed patterns support the existence of adverse effects of smoking on CRC prognosis among nonmetastatic CRC patients. The potential to enhance prognosis of CRC patients by promotion of smoking cessation, embedded in tertiary prevention programs warrants careful evaluation in future investigations. © 2015 UICC.

  6. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    Science.gov (United States)

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  7. Ali Observatory in Tibet: a unique northern site for future CMB ground-based observations

    Science.gov (United States)

    Su, Meng

    2015-08-01

    Ground-based CMB observations have been performed at the South Pole and the Atacama desert in Chile. However, a significant fraction of the sky can not be observed from just these two sites. For a full sky coverage from the ground in the future, a northern site for CMB observation, in particular CMB polarization, is required. Besides the long-thought site in Greenland, the high altitude Tibet plateau provides another opportunity. I will describe the Ali Observatory in Tibet, located at N32°19', E80°01', as a potential site for ground-based CMB observations. The new site is located on almost 5100m mountain, near Gar town, where is an excellent site for both infrared and submillimeter observations. Study with the long-term database of ground weather stations and archival satellite data has been performed. The site has enough relative height on the plateau and is accessible by car. The Shiquanhe town is 40 mins away by driving, and a recently opened airport with 40 mins driving, the site also has road excess, electricity, and optical fiber with fast internet. Preliminary measurement of the Precipitable Water Vapor is ~one quarter less than 0.5mm per year and the long term monitoring is under development. In addition, surrounding higher sites are also available and could be further developed if necessary. Ali provides unique northern sky coverage and together with the South Pole and the Atacama desert, future CMB observations will be able to cover the full sky from ground.

  8. InSAR grounding line update for Antarctica based on Post IPY data acquisition

    Science.gov (United States)

    Scheuchl, B.; Mouginot, J.; Li, X.; Milillo, P.; Rignot, E. J.

    2016-12-01

    The grounding line of a glacier is a fundamental variable needed for accurate flux measurements into the ocean, for estimating ice shelf melt rates, and for detecting fine scale glacier retreat. Satellite synthetic aperture radar (SAR) remote sensing is the state of the art for providing grounding line information through double difference interferograms. The Sentinel-1 SAR mission represents a fundamental change in the way we are monitoring ice sheets going forward. The European Space Agency and the European Union show strong support for ice sheet acquisitions and the mission has a 20-year financial commitment. Through coordination by the Polar Space Task Group (PSTG), other international SAR missions augment the Sentinel-1 acquisitions to maximize the scientific value of the data. RADARSAT-2 is currently completing its second campaign to cover Central Antarctica following 2009. TerraSAR-X and COSMO SkyMed are collecting high-resolution data in key areas. Our Antarctica-wide InSAR based grounding line product generated in 2011 is in heavy use by the scientific community. Recently we have shown the potential of Sentinel-1 for grounding line measurements and provided an update for Pope, Smith, and Kohler glaciers [1]. Expanding on this work, we provide an continent-wide update on the post IPY grounding line which is based on Sentinel-1 acquisitions in coastal Antarctica, the RADARSAT-2 campaign for Ross and Ronne/Filchner ice shelves, and COSMO SkyMed in selected areas. We compare the results with the 1996, 2000, and 2011 grounding lines, and discuss the observed changes or lack thereof by region. The largest rates of retreat are found in the Amundsen Sea Embayment at about 1km/yr (Pine Island and Thwaites Glaciers) to 2 km/yr (Smith Glacier). [1] Scheuchl, B., J. Mouginot, E. Rignot, M. Morlighem, and A. Khazendar (2016), Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data, Geophys. Res

  9. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

  10. Etap Software Based Transient, Ground Grid and Short Circuit Analyses of 132 KV Grid

    Science.gov (United States)

    Bashir, Adnan; Jabbar Khan, Rana A.; Junaid, Muhammad; Mansoor Asghar, M.

    2010-06-01

    Faults always contribute significantly in disturbing the reliability and security of an integrated electrical power system. This requires the considerable attention of researchers and power industry stake holders to address these issues using latest instrumentation techniques. For this purpose a practical power system of 132 kV Grid has been selected for comprehensive analyses using Electrical Transient Analyzer Program (ETAP) software for Transient, Short circuit and Ground Grid analyses. In Transient analysis different waveforms like variation in bus frequency, bus real power loading, bus voltage angle and bus reactive power loading have been recorded for short interval of time. During Ground Grid modeling which is based upon practical data, step and touch potential have been calculated in comparison with set standards. While performing short circuit analysis all the possible short circuit faults like line to ground, double line to ground 3-phase faults etc on 1/2 cycle, 1.5 to 4 cycle and 30 cycle networks have been performed to record the short circuit currents. These real time data analyses provide opportunity to utilities about the remedial measures for the issues high-lighted in them.

  11. The retiring couple – A qualitative study based on grounded theory

    Directory of Open Access Journals (Sweden)

    Sabine Buchebner-Ferstl

    2010-03-01

    Full Text Available A large proportion of retiring people live with their partners. The study The Retiring Couple – a Qualitative Study Based one Grounded Theory deals with the questions of which changes the couples have to face, how they perceive them and which coping strategies they use when they retire. The situations of eight couples and one single person were explored by means of the Grounded Theory by Glaser and Strauss (1967 and the problem-centered interviews (Witzel 1989. The explanatory model deriving from the results relies on a role-based concept. The re-organisation of the role-system (of the individual on the one hand and the couple on the other hand therefore turns out to be the basic strategy to cope with retirement.

  12. Coherent receiving efficiency in satellite-ground coherent laser communication system based on analysis of polarization

    Science.gov (United States)

    Hao, Shiqi; Zhang, Dai; Zhao, Qingsong; Wang, Lei; Zhao, Qi

    2017-06-01

    Aimed at analyzing the coherent receiving efficiency of a satellite-ground coherent laser communication system, polarization state of the received light is analyzed. We choose the circularly polarized, partially coherent laser as transmitted light source. The analysis process includes 3 parts. Firstly, an theoretical model to analyze received light's polarization state is constructed based on Gaussian-Schell model (GSM) and cross spectral density function matrix. Then, analytic formulas to calculate coherent receiving efficiency are derived in which both initial ellipticity modification and deflection angle between polarization axes of the received light and the intrinsic light are considered. At last, numerical simulations are operated based on our study. The research findings investigate variations of polarization state and obtain analytic formulas to calculate the coherent receiving efficiency. Our study has theoretical guiding significances in construction and optimization of satellite-ground coherent laser communication system.

  13. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  14. Model evaluation based on the negative predictive value for interval-censored survival outcomes.

    Science.gov (United States)

    Han, Seungbong; Tsui, Kam-Wah; Andrei, Adin-Cristian

    2017-04-01

    In many cohort studies, time to events such as disease recurrence is recorded in an interval-censored format. An important objective is to predict patient outcomes. Clinicians are interested in predictive covariates. Prediction rules based on the receiver operating characteristic curve alone are not related to the survival endpoint. We propose a model evaluation strategy to leverage the predictive accuracy based on negative predictive functions. Our proposed method makes very few assumptions and only requires a working model to obtain the regression coefficients. A nonparametric estimate of the predictive accuracy provides a simple and flexible approach for model evaluation to interval-censored survival outcomes. The implementation effort is minimal, therefore this method has an increased potential for immediate use in biomedical data analyses. Simulation studies and a breast cancer trial example further illustrate the practical advantages of this approach.

  15. Increased pancreatic cancer survival with greater lymph node retrieval in the National Cancer Data Base.

    Science.gov (United States)

    Contreras, Carlo M; Lin, Chee Paul; Oster, Robert A; Reddy, Sushanth; Wang, Thomas; Vickers, Selwyn; Heslin, Martin

    2017-09-01

    We evaluated the role of lymph node (LN) retrieval in pancreatic adenocarcinoma (PA) patients undergoing pancreaticoduodenectomy (PD). We utilized the National Cancer Data Base; Cox regression models and logistic regression models were used for statistical evaluation. We evaluated 26,792 patients with PA who underwent PD. The mean LN retrieved in LN(-) patients was 10.8 vs 14.4 for LN(+) patients (P < 0.0001). Greater LN retrieval is an independent predictor of a negative microscopic margin and decreased length of stay. The median survival of LN(-) patients exceeded that of LN(+) patients (24.5 vs 15.1 months, P < 0.0001). Increasing LN retrieval is a significant predictor of survival in all patients, and in LN(-) patients. The relationship of increased LN retrieval and enhanced survival is a nearly linear trend. Rather than demonstrating an inflection point that defines the extent of adequate lymphadenectomy, this dataset demonstrates an incremental relationship between LN retrieval and survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  17. Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    2004-06-01

    Full Text Available Comparisons are made between climatological dynamic fields obtained from ground-based (GB and space-based (SB instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI instrument on the Upper Atmosphere Research Satellite (UARS. The GB data originate from meteor radars at Obninsk, (55° N, 37° E, Shigaraki (35° N, 136° E and Jakarta (6° S, 107° E and MF spaced-antenna radars at Hawaii (22° N, 160° W, Christmas I. (2° N, 158° W and Adelaide (35° S, 138° E. We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data

  18. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  19. Ground-based follow-up of the Gaia-RVS radial velocity standards

    Science.gov (United States)

    Soubiran, C.; Jasniewicz, G.; Zurbach, C.; Crifo, F.; Sartoretti, P.; Katz, D.; Marchal, O.; Panuzzo, P.; Udry, S.

    2016-12-01

    The RVS spectrograph on board of Gaia having no calibration device, radial velocity standards are needed to calibrate the zero-point of the instrument. We have prepared a list of 2798 such stars, well distributed over the sky, and compiled ˜25 000 individual RV measurements from ground-based velocimeters. For a fraction of these stars, their stability at the 300 ms level during the Gaia mission has still to be assessed. The catalogue and follow-up programme are presented.

  20. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    Science.gov (United States)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  1. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.

    Science.gov (United States)

    Kim, Myeongkyu; Lee, Donghun

    2017-03-01

    It is well known that, to locate humans in GPS-denied environments, a lower limb kinematic solution based on Inertial Measurement Unit (IMU), force plate, and pressure insoles is essential. The force plate and pressure insole are used to detect foot-ground contacts. However, the use of multiple sensors is not desirable in most cases. This paper documents the development of an IMU-based FGCD (foot-ground contact detection) algorithm considering the variations of both walking terrain and speed. All IMU outputs showing significant changes on the moments of foot-ground contact phases are fully identified through experiments in five walking terrains. For the experiment on each walking terrain, variations of walking speeds are also examined to confirm the correlations between walking speed and the main parameters in the FGCD algorithm. As experimental results, FGCD algorithm successfully detecting four contact phases is developed, and validation of performance of the FGCD algorithm is also implemented. Practitioner Summary: In this research, it was demonstrated that the four contact phases of Heel strike (or Toe strike), Full contact, Heel off and Toe off can be independently detected regardless of the walking speed and walking terrain based on the detection criteria composed of the ranges and the rates of change of the main parameters measured from the Inertial Measurement Unit sensors.

  2. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  3. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    CERN Document Server

    Romano, Joseph D; Cornish, Neil J; Gair, Jonathan; Mingarelli, Chiara M F; van Haasteren, Rutger

    2015-01-01

    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, e...

  4. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  5. Survival Comparison of Patients With Cystic Fibrosis in Canada and the United States: A Population-Based Cohort Study.

    Science.gov (United States)

    Stephenson, Anne L; Sykes, Jenna; Stanojevic, Sanja; Quon, Bradley S; Marshall, Bruce C; Petren, Kristofer; Ostrenga, Josh; Fink, Aliza K; Elbert, Alexander; Goss, Christopher H

    2017-04-18

    In 2011, the median age of survival of patients with cystic fibrosis reported in the United States was 36.8 years, compared with 48.5 years in Canada. Direct comparison of survival estimates between national registries is challenging because of inherent differences in methodologies used, data processing techniques, and ascertainment bias. To use a standardized approach to calculate cystic fibrosis survival estimates and to explore differences between Canada and the United States. Population-based study. 42 Canadian cystic fibrosis clinics and 110 U.S. cystic fibrosis care centers. Patients followed in the Canadian Cystic Fibrosis Registry (CCFR) and U.S. Cystic Fibrosis Foundation Patient Registry (CFFPR) between 1990 and 2013. Cox proportional hazards models were used to compare survival between patients followed in the CCFR (n = 5941) and those in the CFFPR (n = 45 448). Multivariable models were used to adjust for factors known to be associated with survival. Median age of survival in patients with cystic fibrosis increased in both countries between 1990 and 2013; however, in 1995 and 2005, survival in Canada increased at a faster rate than in the United States (P cystic fibrosis survival between Canada and the United States persisted after adjustment for risk factors associated with survival, except for private-insurance status among U.S. patients. Differential access to transplantation, increased posttransplant survival, and differences in health care systems may, in part, explain the Canadian survival advantage. U.S. Cystic Fibrosis Foundation.

  6. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    Science.gov (United States)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; hide

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  7. Energy-Based Response of Simple Structural Systems by using Simulated Ground Motions

    Science.gov (United States)

    karimzadeh Naghshineh, S.; Erberik, M. A.; Askan, A.

    2016-12-01

    For the last two decades, there has been a growing and remarkable attention on the energy-based design and assessment approaches for structural systems. These approaches have also been implemented to some of the national seismic design codes as alternative methods in addition to the traditional force-based design methodology. The underlying research has been often carried out by using actual ground motion records taken from many different earthquakes all over the world. However, such an attempt impairs the validity of the obtained results since it is generally not possible to construct a homogeneous ground motion record database with well-distributed source and ground motion parameters. In this study, in order to overcome the aforementioned disadvantage, a large set of simulated ground motion records are used in a parametric study to examine the influence of different intensity measures on the energy-based response of simple structural systems, i.e. single-degree-of-freedom (SDOF) systems. The simulated records are obtained using the stochastic finite-fault methodology that is efficient in simulating the frequencies of engineering interest. A set of ground motions is formed from simulation of potential events with a certain moment magnitude range, source-to-site distances and soil conditions. The simulations are performed on active faults around Erzincan city center located on the Eastern sections of North Anatolian Fault zone in Turkey. In the parametric study, time history analyses on SDOF systems are conducted with simulated records to obtain the response statistics. The output parameters are input energy, hysteretic energy and damping energy. The results show that the energy is a relatively stable parameter when compared to other response parameters, i.e. force and displacement. According to the energy balance equation, after estimating the input energy imparted to a structural system, the rest is to find ways to dissipate this energy through damping and

  8. Survival rates of porcelain laminate restoration based on different incisal preparation designs: An analysis

    Science.gov (United States)

    Shetty, Ashish; Kaiwar, Anjali; Shubhashini, N; Ashwini, P; Naveen, DN; Adarsha, MS; Shetty, Mitha; Meena, N

    2011-01-01

    Background: Veneer restorations provide a valid conservative alternative to complete coverage as they avoid aggressive dental preparation; thus, maintaining tooth structure. Initially, laminates were placed on the unprepared tooth surface. Although there is as yet no consensus as to whether or not teeth should be prepared for laminate veneers, currently, more conservative preparations have been advocated. Because of their esthetic appeal, biocompatibility and adherence to the physiology of minimal-invasive dentistry, porcelain laminate veneers have now become a restoration of choice. Currently, there is a lack of clinical consensus regarding the type of design preferred for laminates. Widely varying survival rates and methods for its estimation have been reported for porcelain veneers over approximately 2–10 years. Relatively few studies have been reported in the literature that use survival estimates, which allow for valid study comparisons between the types of preparation designs used. No survival analysis has been undertaken for the designs used. The purpose of this article is to attempt to review the survival rates of veneers based on different incisal preparation designs from both clinical and non-clinical studies. Aims and Objectives: The purpose of this study is to review both clinical and non-clinical studies to determine the survival rates of veneers based on different incisal preparation designs. A further objective of the study is to understand which is the most successful design in terms of preparation. Materials and Methods This study evaluated the existing literature – survival rates of veneers based on incisal preparation designs. The search strategy involved MEDLINE, BITTORRENT and other databases. Statistical Analysis Data were tabulated. Because of variability in the follow-up period in different studies, the follow-up period was extrapolated to 10 years in common for all of them. Accordingly, the failure rate was then estimated and The

  9. Survival rates of porcelain laminate restoration based on different incisal preparation designs: An analysis.

    Science.gov (United States)

    Shetty, Ashish; Kaiwar, Anjali; Shubhashini, N; Ashwini, P; Naveen, Dn; Adarsha, Ms; Shetty, Mitha; Meena, N

    2011-01-01

    Veneer restorations provide a valid conservative alternative to complete coverage as they avoid aggressive dental preparation; thus, maintaining tooth structure. Initially, laminates were placed on the unprepared tooth surface. Although there is as yet no consensus as to whether or not teeth should be prepared for laminate veneers, currently, more conservative preparations have been advocated. Because of their esthetic appeal, biocompatibility and adherence to the physiology of minimal-invasive dentistry, porcelain laminate veneers have now become a restoration of choice. Currently, there is a lack of clinical consensus regarding the type of design preferred for laminates. Widely varying survival rates and methods for its estimation have been reported for porcelain veneers over approximately 2-10 years. Relatively few studies have been reported in the literature that use survival estimates, which allow for valid study comparisons between the types of preparation designs used. No survival analysis has been undertaken for the designs used. The purpose of this article is to attempt to review the survival rates of veneers based on different incisal preparation designs from both clinical and non-clinical studies. The purpose of this study is to review both clinical and non-clinical studies to determine the survival rates of veneers based on different incisal preparation designs. A further objective of the study is to understand which is the most successful design in terms of preparation. This study evaluated the existing literature - survival rates of veneers based on incisal preparation designs. The search strategy involved MEDLINE, BITTORRENT and other databases. Data were tabulated. Because of variability in the follow-up period in different studies, the follow-up period was extrapolated to 10 years in common for all of them. Accordingly, the failure rate was then estimated and The weighted mean was computed. The study found that the window preparation was of the

  10. Incidence and survival of childhood leukemia in Recife, Brazil: A population-based analysis.

    Science.gov (United States)

    Lins, Mecneide Mendes; Santos, Marceli de Oliveira; de Albuquerque, Maria de Fátima Pessoa Militão; de Castro, Claudia Cristina Lima; Mello, Maria Julia Gonçalves; de Camargo, Beatriz

    2017-08-01

    Leukemia is the most common pediatric cancer with incidence rates of around 48 per million for children under 15 years of age. The median age-adjusted incidence rate (AAIR) in children aged 0-14 years in Brazil is 53.3 per million. While overall survival rates for children with leukemia have improved significantly, data for incidence, trends, and relative survival among children and adolescents with leukemia in Recife, Brazil, remain incomplete, which hampers our analyses and provision of the best healthcare. The objective of this report is to provide that data. Data from the Population-Based Cancer Registry of Recife were analyzed from 1998 to 2007. Our analyses included frequencies and AAIR, together with age-specific incidence rates for all leukemias, acute lymphoblastic leukemia, and acute myeloid leukemia. To evaluate incidence trends, joinpoint regression, including annual average percent change, were analyzed. Relative survival was calculated using the life-table method. One hundred seventy-five cases were identified, 51% in females. The review reduced the not otherwise specified (NOS) leukemia category by 50% and diagnosis by death certificate only from 5.7% to 1.1%. The AAIR for leukemia was 41.1 per million, with a peak among children aged 1-4 (78.3 per million). Incidence trends during the period were stable. The five-year relative survival rate was 69.8%. These data represent the incidence rate and survival of childhood leukemia in Recife, located in the northeast region of Brazil, using a high-quality database. © 2016 Wiley Periodicals, Inc.

  11. Ground-Based Global Navigation Satellite System (GNSS) SBAS Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Satellite-Based Augmentation System (SBAS) Broadcast Ephemeris Data (sub-hourly...

  12. Ground-Based Global Navigation Satellite System (GNSS) SBAS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Satellite-Based Augmentation System (SBAS) Broadcast Ephemeris Data (daily files)...

  13. Ground-Based Global Navigation Satellite System (GNSS) SBAS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Satellite-Based Augmentation System (SBAS) Broadcast Ephemeris Data (hourly files)...

  14. Coordinated Ground-Based and AIM Satellite Measurements of Mesospheric and Stratospheric Waves over South America

    Science.gov (United States)

    Taylor, M. J.; Zhao, Y.; Pautet, P. D.; Carstens, J. N.; Pugmire, J. R.; Smith, S. M.; Liu, A. Z.; Vargas, F.; Swenson, G. R.; Randall, C. E.; Bailey, S. M.; Russell, J. M., III

    2016-12-01

    To date, the primary research goals of the Aeronomy of Ice in the Mesosphere (AIM) satellite have focussed on investigating the occurrence, properties and dynamics of high-latitude Polar Mesospheric Clouds (PMC). With the evolution of the AIM orbit beta angle the opportunity now exists to make measurements outside the PMC region covering mid-low and equatorial latitudes. As part of the extended AIM mission science program, the AIM platform in conjunction with auxiliary ground-based measurements will be used to better understand upper atmospheric dynamics and vertical coupling due to gravity waves. Over the next 2 years AIM will take advantage of a new imaging capability of the on-board large-field CIPS UV imager to capture new data on the characteristics and spatial extents of stratospheric gravity waves near the 50 km level and their variation with latitude and season. In this study we report on initial coordinated ground-based measurements with the Andes Lidar Observatory (ALO) at Cerro Pachon, Chile ( 30°S) and nearby El Leoncito Observatory, Argentina, high in the Andes Mountains, where regular remote-sensing measurements are made using meteor radar, mesospheric airglow imagers, temperature mappers and an Na wind-temperature lidar (on a campaign basis). First coordinated measurements were made during the winter period in June 2016. AIM daytime overpasses have been analysed to search for and characterize extensive stratospheric wave events, as well as long-lived "Mountain Waves" over South America. Subsequent night-time ground-based measurements have been used to quantify wave characteristics in the mesopause region ( 80-100 km) to investigate vertical coupling. These measurements are continuing and it is planned to extend the new AIM stratospheric gravity wave data set for similar studies from a number of well-instrumented ground sites around the world.

  15. Sex differences in cancer survival in Estonia: a population-based study.

    Science.gov (United States)

    Innos, Kaire; Padrik, Peeter; Valvere, Vahur; Aareleid, Tiiu

    2015-02-19

    In Estonia, women have much longer life expectancy than men. The aim of this study was to examine sex differences in cancer survival in Estonia and to explore the role of age at diagnosis, stage at diagnosis and tumour subsite. Using data from the population-based Estonian Cancer Registry, we examined the relative survival of adult patients diagnosed with nine common cancers in Estonia in 1995-2006 and followed up through 2011. Excess hazard ratios (EHR) of death associated with female gender adjusted for age, stage at diagnosis and tumour subsite were estimated. A total of 20 828 male and 13 166 female cases were analysed. The main data quality indicators were similar between men and women. Women had more cases with unknown extent of disease at diagnosis. Overall, the age-adjusted 5-year relative survival ratio was higher among women than men for all studied sites, but the difference was significant for cancers of mouth and pharynx (22% units), lung (5% units), skin melanoma (17% units) and kidney (8% units). The increase in survival over time was larger for women than men for cancers of mouth and pharynx, colon, rectum, kidney and skin melanoma. In multivariate analysis, women had a significantly lower EHR of death within five years after diagnosis for five of the nine cancers studied (cancers of mouth and pharynx, stomach, lung, skin melanoma and kidney). Adjustment for stage and subsite explained some, but not all of the women's advantage. We found a significant female survival advantage in Estonia for cancers of mouth and pharynx, stomach, lung, kidney and skin melanoma. The differences in favour of women tended to increase over time as from the 1990s to the 2000s, survival improved more among women than among men. A large part of the women's advantage is likely attributable to biological factors, but other factors, such as co-morbidities, treatment compliance or health behaviour, are also probable contributors to gender survival disparities in Estonia and

  16. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  17. A Practice-based Study on the Survival of Restored Endodontically Treated Teeth

    NARCIS (Netherlands)

    Skupien, J.A.; Opdam, N.; Winnen, R.; Bronkhorst, E.; Kreulen, C.; Pereira-Cenci, T.; Huysmans, M.C.D.N.J.M.

    2013-01-01

    INTRODUCTION: This retrospective study evaluated the survival of endodontically treated teeth (ETTs) and investigated factors influencing restoration and tooth survival. METHODS: Data from 795 ETTs were recorded, and success (restoration still intact) and survival (restoration intact or

  18. Incidence, prevalence, and survival of moyamoya disease in Korea: a nationwide, population-based study.

    Science.gov (United States)

    Ahn, Il Min; Park, Dong-Hyuk; Hann, Hoo Jae; Kim, Kyoung Hoon; Kim, Hyun Jung; Ahn, Hyeong Sik

    2014-04-01

    There is a scarcity of information on the epidemiology and natural course of moyamoya disease. The aim of this study was to investigate the nationwide epidemiological features of moyamoya disease in Korea, including incidence, prevalence, and survival. We used the data from nationwide, population-based Health Insurance Review and Assessment Service claims database and Rare Intractable Disease registration program, which includes physician-certified diagnoses based on uniform criteria for moyamoya disease from 2007 to 2011. Age-specific incidence and prevalence were calculated, and survival was examined using Kaplan-Meier method. The total number of patients with moyamoya disease was 8154 in 2011, with a female-to-male ratio of 1.8. The incidence from 2007 to 2011 was 1.7 to 2.3/10(5), and the prevalence in 2011 was 16.1/10(5). In total, 66.3% of patients aged 0 to 14 years underwent surgery, whereas only 21.5% in the older than 15 years age group underwent surgery. The 1- and 5-year survival rates of adult patients were 96.9% and 92.9%, respectively, and of child patients were 99.6% and 99.3%, respectively. The prevalence and incidence presented in this study are higher than those in previous studies. This study demonstrates that the burden of moyamoya disease in Korea is substantial.

  19. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  20. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  1. Diurnal tidal wind estimates using TIDI and ground-based radars

    Science.gov (United States)

    Riggin, D.; Lieberman, R.; Wu, Q.; Franke, S.

    In this presentation we compare characteristics of the diurnal tide as viewed by the TIDI instrument and ground-based radars at tropical latitudes. The TIDI winds have been retrieved using a new broad-band filter that greatly enhances the signal-to-noise ratio. We investigate the use of global 12-hour differences to obtain tidal amplitudes on a time-scale of 10 days or shorter. The tidal winds are viewed from the ground using radars in the Hawaian Islands and on the Island of Rarotonga in the Cook Islands. The two Hawaian radars involved in the study are a medium frequency (MF) partial reflection radar on Kauai, and meteor scatter radar on Kauai. The Rarotonga site similarly has both an MF and meteor scatter radar. The Hawaii and Rarotonga locations are almost exactly conjugate (22 deg N and 22 deg S, respectively), and thus are well situated for making tidal comparisons.

  2. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  3. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  4. Satellite Based Mapping of Ground PM2.5 Concentration Using Generalized Additive Modeling

    OpenAIRE

    Bin Zou; Jingwen Chen; Liang Zhai; Xin Fang; Zhong Zheng

    2016-01-01

    Satellite-based PM2.5 concentration estimation is growing as a popular solution to map the PM2.5 spatial distribution due to the insufficiency of ground-based monitoring stations. However, those applications usually suffer from the simple hypothesis that the influencing factors are linearly correlated with PM2.5 concentrations, though non-linear mechanisms indeed exist in their interactions. Taking the Beijing-Tianjin-Hebei (BTH) region in China as a case, this study developed a generalized a...

  5. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  6. Long-term gravity changes in Chinese mainland from GRACE and ground-based gravity measurements

    Directory of Open Access Journals (Sweden)

    Xing Lelin

    2011-08-01

    Full Text Available A long-term (9 years gravity change in Chinese mainland is obtained on the basis of observations of the ground-based national gravity network. The result shows several features that may be related to some large-scale groundwater pumping in North China, glacier-water flow and storage in Tianshan region, and pre-seismic gravity changes of the 2008 Ms8.0 Wenchuan earthquake, which are spatially similar to co-seismic changes but reversed in sign. These features are also shown in the result of the satellite-based GRACE observation, after a height effect is corrected with GPS data.

  7. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  8. Gene Expression-Based Survival Prediction in Lung Adenocarcinoma: A Multi-Site, Blinded Validation Study

    Science.gov (United States)

    Shedden, Kerby; Taylor, Jeremy M.G.; Enkemann, Steve A.; Tsao, Ming S.; Yeatman, Timothy J.; Gerald, William L.; Eschrich, Steve; Jurisica, Igor; Venkatraman, Seshan E.; Meyerson, Matthew; Kuick, Rork; Dobbin, Kevin K.; Lively, Tracy; Jacobson, James W.; Beer, David G.; Giordano, Thomas J.; Misek, David E.; Chang, Andrew C.; Zhu, Chang Qi; Strumpf, Dan; Hanash, Samir; Shepherd, Francis A.; Ding, Kuyue; Seymour, Lesley; Naoki, Katsuhiko; Pennell, Nathan; Weir, Barbara; Verhaak, Roel; Ladd-Acosta, Christine; Golub, Todd; Gruidl, Mike; Szoke, Janos; Zakowski, Maureen; Rusch, Valerie; Kris, Mark; Viale, Agnes; Motoi, Noriko; Travis, William; Sharma, Anupama

    2009-01-01

    Although prognostic gene expression signatures for survival in early stage lung cancer have been proposed, for clinical application it is critical to establish their performance across different subject populations and in different laboratories. Here we report a large, training-testing, multi-site blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) can be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas. PMID:18641660

  9. Improving village poultry's survival rate through community-based poultry health management

    DEFF Research Database (Denmark)

    Sodjinou, Epiphane; Henningsen, Arne; Koudande, Olorounto Delphin

    2012-01-01

    Community-based poultry health management (CBM) is a strategy for village poultry improvement based on the installment of “poultry interest groups” in experimental villages. These groups serve as a channel for the dissemination of village poultry improvement technologies. The use of CBM is due...... that governments and development agencies can improve village poultry survival rates by investing in the dissemination of information regarding best husbandry management practices through approaches that rely on the community such as CBM because CBM groups serve as channels for the dissemination of village poultry...

  10. Improving village poultry’s survival rate through community-based poultry health management

    DEFF Research Database (Denmark)

    Sodjinou, Epiphane; Henningsen, Arne; Koudande, Olorounto D.

    Community-based poultry health management (CBM) is a strategy for village poultry improvement based on the installment of “poultry interest groups” in experimental villages. These groups serve as a channel for the dissemination of village poultry improvement technologies. The use of CBM is due...... that governments and development agencies can improve village poultry survival rates by investing in the dissemination of information regarding best husbandry management practices through approaches that rely on the community such as CBM because CBM groups serve as channels for the dissemination of village poultry...

  11. A Comparison of Online and On-Ground Student Performance in Calculus-based Physics I

    Science.gov (United States)

    Schwortz, Andria C.

    2011-05-01

    The validity and rigor of online courses is an open question in higher education, with each institution applying different interpretations of grades received and making different decisions about whether online courses should be accepted in the transfer process. These discrepancies in institutional opinion are at times based upon the realities of variety in instructional methods or student self-selection into a course they view as an "easy A", but at times they do a disservice to online classes and students. Quinsigamond Community College, located in Worcester, Massachusetts, is now offering an online section of freshman calculus-based mechanics (General Physics I, PHY 105). During Spring 2011, the author teaches both the online and on-ground sections of the course. Content in the online section is communicated by videos recorded during class sessions in Spring 2010, and both sections perform on-ground labs and take quizzes and exams on-ground. The author is currently studying student outcomes in the two sections to determine the effectiveness of instruction in the different modalities. Preliminary findings will be presented, including analysis of grades in quizzes, online homework (MasteringPhysics), and labs, and comparisons of student problem solving methods and visual representations of problems (such as Free Body Diagrams). The effect of self-selection will also be investigated using open-ended surveys and pretests. Sample size of the two courses consisted of approximately 20 students online and 25 on-ground, with the students commingled into two lab sections of approximately equal size. Support for this project was provided by Quinsigamond Community College. This project received approval by QCC's Institutional Review Board; data presented are either in aggregate form, or are used with informed consent of the participants.

  12. Are inventory based and remotely sensed above-ground biomass estimates consistent?

    Directory of Open Access Journals (Sweden)

    Timothy C Hill

    Full Text Available Carbon emissions resulting from deforestation and forest degradation are poorly known at local, national and global scales. In part, this lack of knowledge results from uncertain above-ground biomass estimates. It is generally assumed that using more sophisticated methods of estimating above-ground biomass, which make use of remote sensing, will improve accuracy. We examine this assumption by calculating, and then comparing, above-ground biomass area density (AGBD estimates from studies with differing levels of methodological sophistication. We consider estimates based on information from nine different studies at the scale of Africa, Mozambique and a 1160 km(2 study area within Mozambique. The true AGBD is not known for these scales and so accuracy cannot be determined. Instead we consider the overall precision of estimates by grouping different studies. Since an the accuracy of an estimate cannot exceed its precision, this approach provides an upper limit on the overall accuracy of the group. This reveals poor precision at all scales, even between studies that are based on conceptually similar approaches. Mean AGBD estimates for Africa vary from 19.9 to 44.3 Mg ha(-1, for Mozambique from 12.7 to 68.3 Mg ha(-1, and for the 1160 km(2 study area estimates range from 35.6 to 102.4 Mg ha(-1. The original uncertainty estimates for each study, when available, are generally small in comparison with the differences between mean biomass estimates of different studies. We find that increasing methodological sophistication does not appear to result in improved precision of AGBD estimates, and moreover, inadequate estimates of uncertainty obscure any improvements in accuracy. Therefore, despite the clear advantages of remote sensing, there is a need to improve remotely sensed AGBD estimates if they are to provide accurate information on above-ground biomass. In particular, more robust and comprehensive uncertainty estimates are needed.

  13. Hydrogeology and simulation of ground-water flow at Dover Air Force Base, Delaware

    Science.gov (United States)

    Hinaman, Kurt C.; Tenbus, Frederick J.

    2000-01-01

    Dover Air Force Base in Kent County, Delaware, has many contaminated sites that are in active remediation. To assist in this remediation, a steady-state model of ground-water flow was developed to aid in understanding the hydrology of the system, and for use as a ground-watermanagement tool. This report describes the hydrology on which the model is based, a description of the model itself, and some applications of the model.Dover Air Force Base is underlain by unconsolidated sediments of the Atlantic Coastal Plain. The primary units that were investigated include the upper Calvert Formation and the overlying Columbia Formation. The uppermost sand unit in the Calvert Formation at Dover Air Force Base is the Frederica aquifer, which is the deepest unit investigated in this report. A confining unit of clayey silt in the upper Calvert Formation separates the Frederica aquifer from the lower surficial aquifer, which is the basal Columbia Formation. North and northwest of Dover Air Force Base, the Frederica aquifer subcrops beneath the Columbia Formation and the upper Calvert Formation confining unit is absent. The Calvert Formation dips to the southeast. The Columbia Formation consists predominately of sands, silts, and gravels, although in places there are clay layers that separate the surficial aquifer into an upper and lower surficial aquifer. The areal extent of these clay layers has been mapped by use of gamma logs. Long-term hydrographs reveal substantial changes in both seasonal and annual ground-water recharge. These variations in recharge are related to temporal changes in evaporation, transpiration, and precipitation. The hydrographs show areas where extensive silts and clays are present in the surficial aquifer. In these areas, the vertical gradient between water levels in wells screened above and below the clays can be as large as several feet, and local ground-water highs typically form during normal recharge conditions. When drought conditions persist

  14. Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation

    Science.gov (United States)

    Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.

    2016-12-01

    We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on

  15. Factors relating to poor survival rates of aged cervical cancer patients: a population-based study with the relative survival model in Osaka, Japan.

    Science.gov (United States)

    Ioka, Akiko; Ito, Yuri; Tsukuma, Hideaki

    2009-01-01

    Poor survival of older cervical cancer patients has been reported; however, related factors, such as the extent of disease and the competitive risk by aging have not been well evaluated. We applied the relative survival model developed by Dickman et al to resolve this issue. Study subjects were cervical cancer patients retrieved from the Osaka Cancer Registry. They were limited to the 10,048 reported cases diagnosed from 1975 to 1999, based on the quality of data collection on vital status. Age at diagnosis was categorized into or = 65 years. The impact of prognostic factors on 5-year survival was evaluated with the relative survival model, incorporating patients' expected survival in multivariate analysis. The age-specific relative excess risk (RER) of death was significantly higher for older groups as compared with women aged 30-54 years (RER, 1.58 at 55-64 and 2.51 at > or = 65 years). The RER was decreased by 64.8% among the 55-64 year olds as an effect of cancer stage at diagnosis, and by 43.4% among those 65 years old and over. After adding adjustment for treatment modalities, the RER was no longer significantly higher among 55-64 year olds; however, it was still higher among 65 year olds and over. Advanced stage at diagnosis was the main determinant of poor survival among the aged cervical cancer patients, although other factors such as limitations on the combination of treatment were also suggested to have an influence in those aged 65 years and over.

  16. Enhanced static ground power unit based on flying capacitor based h-bridge hybrid active-neutral-point-clamped converter

    DEFF Research Database (Denmark)

    Abarzadeh, Mostafa; Madadi Kojabadi, Hossein; Deng, Fujin

    2016-01-01

    Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages of the p......Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages...... demonstrate the validity and feasibility of the proposed converter and the modulation method under various operating conditions....

  17. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  18. Radiation in fog: Quantification of the impact on fog liquid water based on ground-based remote sensing

    OpenAIRE

    E. G. Wærsted; M. Haeffelin; J.-C. Dupont; J. Delanoë; P. Dubuisson

    2017-01-01

    Radiative cooling and heating impact the liquid water balance of fog and therefore play an important role in determining their persistence or dissipation. We demonstrate that a quantitative analysis of the radiation-driven condensation and evaporation is possible in real time using ground-based remote sensing observations (cloud radar, ceilometer, microwave radiometer). Seven continental fog events in midlatitude winter are studied, and the radiative processes are further ex...

  19. Summer planetary-scale oscillations: aura MLS temperature compared with ground-based radar wind

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    2009-04-01

    Full Text Available The advent of satellite based sampling brings with it the opportunity to examine virtually any part of the globe. Aura MLS mesospheric temperature data are analysed in a wavelet format for easy identification of possible planetary waves (PW and aliases masquerading as PW. A calendar year, 2005, of eastward, stationary, and westward waves at a selected latitude is shown in separate panels for wave number range −3 to +3 for period range 8 h to 30 days (d. Such a wavelet analysis is made possible by Aura's continuous sampling at all latitudes 82° S–82° N. The data presentation is suitable for examination of years of data. However this paper focuses on the striking feature of a "dish-shaped" upper limit to periods near 2 d in mid-summer, with longer periods appearing towards spring and fall, a feature also commonly seen in radar winds. The most probable cause is suggested to be filtering by the summer jet at 70–80 km, the latter being available from ground based medium frequency radar (MFR. Classically, the phase velocity of a wave must be greater than that of the jet in order to propagate through it. As an attempt to directly relate satellite and ground based sampling, a PW event of period 8d and wave number 2, which appears to be the original rather than an alias, is compared with ground based radar wind data. An appendix discusses characteristics of satellite data aliases with regard to their periods and amplitudes.

  20. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns

    Science.gov (United States)

    Fernandez, S.; Murk, A.; Kämpfer, N.

    2015-07-01

    Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric

  1. SAR Ground Moving Target Indication Based on Relative Residue of DPCA Processing

    Directory of Open Access Journals (Sweden)

    Jia Xu

    2016-10-01

    Full Text Available For modern synthetic aperture radar (SAR, it has much more urgent demands on ground moving target indication (GMTI, which includes not only the point moving targets like cars, truck or tanks but also the distributed moving targets like river or ocean surfaces. Among the existing GMTI methods, displaced phase center antenna (DPCA can effectively cancel the strong ground clutter and has been widely used. However, its detection performance is closely related to the target’s signal-to-clutter ratio (SCR as well as radial velocity, and it cannot effectively detect the weak large-sized river surfaces in strong ground clutter due to their low SCR caused by specular scattering. This paper proposes a novel method called relative residue of DPCA (RR-DPCA, which jointly utilizes the DPCA cancellation outputs and the multi-look images to improve the detection performance of weak river surfaces. Furthermore, based on the statistics analysis of the RR-DPCA outputs on the homogenous background, the cell average (CA method can be well applied for subsequent constant false alarm rate (CFAR detection. The proposed RR-DPCA method can well detect the point moving targets and distributed moving targets simultaneously. Finally, the results of both simulated and real data are provided to demonstrate the effectiveness of the proposed SAR/GMTI method.

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  3. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  4. Enhancing the Lasso Approach for Developing a Survival Prediction Model Based on Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Shuhei Kaneko

    2015-01-01

    Full Text Available In the past decade, researchers in oncology have sought to develop survival prediction models using gene expression data. The least absolute shrinkage and selection operator (lasso has been widely used to select genes that truly correlated with a patient’s survival. The lasso selects genes for prediction by shrinking a large number of coefficients of the candidate genes towards zero based on a tuning parameter that is often determined by a cross-validation (CV. However, this method can pass over (or fail to identify true positive genes (i.e., it identifies false negatives in certain instances, because the lasso tends to favor the development of a simple prediction model. Here, we attempt to monitor the identification of false negatives by developing a method for estimating the number of true positive (TP genes for a series of values of a tuning parameter that assumes a mixture distribution for the lasso estimates. Using our developed method, we performed a simulation study to examine its precision in estimating the number of TP genes. Additionally, we applied our method to a real gene expression dataset and found that it was able to identify genes correlated with survival that a CV method was unable to detect.

  5. Ground-based research with heavy ions for space radiation protection

    Science.gov (United States)

    Durante, M.; Kronenberg, A.

    Human exposure to ionizing radiation is one of the acknowledged potential showstoppers for long duration manned interplanetary missions. Human exploratory missions cannot be safely performed without a substantial reduction of the uncertainties associated with different space radiation health risks, and the development of effective countermeasures. Most of our knowledge of the biological effects of heavy charged particles comes from accelerator-based experiments. During the 35th COSPAR meeting, recent ground-based experiments with high-energy iron ions were discussed, and these results are briefly summarised in this paper. High-quality accelerator-based research with heavy ions will continue to be the main source of knowledge of space radiation health effects and will lead to reductions of the uncertainties in predictions of human health risks. Efforts in materials science, nutrition and pharmaceutical sciences and their rigorous evaluation with biological model systems in ground-based accelerator experiments will lead to the development of safe and effective countermeasures to permit human exploration of the Solar System.

  6. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  7. Comparison of Different Ground-Based NDVI Measurement Methodologies to Evaluate Crop Biophysical Properties

    Directory of Open Access Journals (Sweden)

    Rossana Monica Ferrara

    2010-06-01

    Full Text Available The usage of vegetation indices such as the Normalized Difference Vegetation Index (NDVI calculated by means of remote sensing data is widely spread for describing vegetation status on large space scale. However, a big limitation of these indices is their inadequate time resolution for agricultural purposes. This limitation could be overcome by the ground-based vegetation indices that could provide an interesting tool for integrating satellite-based value. In this work, three techniques to calculate the ground-NDVI have been evaluated for sugar beet cultivated in South Italy in all its phenological phases: the NDVI1 based on hand made reflectance measurements, the NDVI2 calculated on automatically reflectance measurements and the broadband NDVIb based on Photosynthetically Active Radiation (PAR and global radiation measurements. The best performance was obtained by the NDVIb. Moreover, crop-microclimate-NDVI relations were investigated. In particular, the relationship between NDVI and the Leaf Area Index (LAI was found logarithmic with a saturation of NDVI at LAI around 1.5 m2 m-2. A clear relation was found between NDVI and crop coefficient Kc experimentally determined by the ratio between actual and reference measured or modelled evapotranspirations, while the relation between NDVI and crop actual evapotranspiration was very weak and not usable for practical purposes. Lastly, no relationship between the microclimate and the NDVI was found.

  8. Education level and survival after oesophageal cancer surgery: a prospective population-based cohort study.

    Science.gov (United States)

    Brusselaers, Nele; Ljung, Rickard; Mattsson, Fredrik; Johar, Asif; Wikman, Anna; Lagergren, Pernilla; Lagergren, Jesper

    2013-12-03

    This study aimed to investigate whether a higher education level is associated with an improved long-term survival after oesophagectomy for cancer. A prospective, population-based cohort study. Sweden-nationwide. 90% of all patients with oesophageal and cardia cancer who underwent a resection in Sweden in 2001-2005 were enrolled in this study (N=600; 80.3% male) and followed up until death or the end of the study period (2012). The study exposure was level of education, defined as compulsory (≤9 years), moderate (10-12 years) or high (≥13 years). The main outcome measure was overall 5-year survival after oesophagectomy. Cox regression was used to estimate the associations between education level and mortality, expressed as HRs with 95% CIs, with adjustment for sex, age, tumour stage, histological type, complications, comorbidities and annual surgeon volume. The patient group with highest education was used as the reference category. Among the 600 included patients, 281 (46.8%) had compulsory education, 238 (39.7%) had moderate education and 81 (13.5%) had high education. The overall 5-year survival rate was 23.1%, 24.4% and 32.1% among patients with compulsory, moderate and high education, respectively. After adjustment for confounders, a slightly higher, yet not statistically significantly increased point HR was found among the compulsory educated patients (HR 1.08, 95% CI 0.80 to 1.47). In patients with tumour stage IV, increased adjusted HRs were found for compulsory (HR 2.88, 95% CI 1.07 to 7.73) and moderately (HR 2.83, 95% CI 1.15 to 6.95) educated patients. No statistically significant associations were found for the other tumour stages. This study provides limited evidence of an association between lower education and worse long-term survival after oesophagectomy for cancer.

  9. Ground-Based Meteorological Data (daily, 24 hour files) from Co-Located Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Receivers from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Meteorological Data (daily, 24 hour files) from instruments co-located with Global Navigation Satellite System (GNSS) GLONASS...

  10. Aerosol Optical Properties over South Asia from Ground-Based Observations and Remote Sensing: A Review

    Directory of Open Access Journals (Sweden)

    Sumita Kedia

    2013-10-01

    Full Text Available Seasonal and inter-annual variabilities in aerosol optical depth (AOD andaerosol size distribution are investigated using ground-based measurements (sun photometersand sun/sky radiometers, and MODIS (MODerate Imaging Spectroradiometer and MISR(Multiangle Imaging SpectroRadiometer satellites over Ahmedabad, Gurushikhar, Karachi,Kanpur and Gandhi College in South Asia during 2006–2008. An analysis and a review onthe comparison between aerosol optical depths measured from ground-based observationsand remote sensing over South Asia is performed. Karachi and Ahmedabad AODs aretwo times higher than Gurushikhar, a high altitude remote site. AODs over Kanpur andGandhi College in the Indo-Gangetic basin are higher than those measured over Ahmedabad,Gurushikhar and Karachi. Summer monsoon AODs are higher over Ahmedabad andKarachi, while winter AODs are higher over Kanpur and Gandhi College. AOD ratio,ratio of AODs obtained at 0.38 μm and 0.87 μm, is higher during postmonsoon andwinter than premonsoon and monsoon ratio suggesting the abundance of fine mode aerosolsduring postmonsoon and winter. Monsoon AOD ratios are lowest owing to the dominanceof coarse mode (mainly sea salt particles. Ångström wavelength exponent (α duringpostmonsoon and winter are higher than that of premonsoon and monsoon values. Lower α values over Gurushikhar and Karachi indicate the dominance of coarse mode aerosols(dust in Gurushikhar, and dust and sea salt in Karachi. Dominance of fine mode aerosolsdue to anthropogenic activities give rise to higher α values over urban locations (e.g.,Ahmedabad and Kanpur. Comparison between ground-based and MODIS (Terra andAqua retrieved AODs show that aerosol optical depths do not change significantly inan hour and much of the diurnal AOD variation is captured well by the two MODISinstruments. The temporal difference (about an hour between the ground-based and remotesensing measurements contributes negligibly to the observed

  11. Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing

    Science.gov (United States)

    Chien, Steve A.; McLaren, David A.; Rabideau, Gregg R.; Mandl, Daniel; Hengemihle, Jerry

    2013-01-01

    A set of automated planning algorithms is the current operations baseline approach for the Intelligent Payload Module (IPM) of the proposed Hyper spectral Infrared Imager (HyspIRI) mission. For this operations concept, there are only local (e.g. non-depletable) operations constraints, such as real-time downlink and onboard memory, and the forward sweeping algorithm is optimal for determining which science products should be generated onboard and on ground based on geographical overflights, science priorities, alerts, requests, and onboard and ground processing constraints. This automated planning approach was developed for the HyspIRI IPM concept. The HyspIRI IPM is proposed to use an X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However, the HyspIRI VSWIR and TIR instruments will produce approximately 1 Gbps data, while the DB capability is 15 Mbps for a approx. =60X oversubscription. In order to address this mismatch, this innovation determines which data to downlink based on both the type of surface the spacecraft is overflying, and the onboard processing of data to detect events. For example, when the spacecraft is overflying Polar Regions, it might downlink a snow/ice product. Additionally, the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected, thereby reducing data volume. The planning system described above automatically generated the IPM mission plan based on requested products, the overflight regions, and available resources.

  12. Recent changes in stratospheric aerosol budget from ground-based and satellite observations

    Science.gov (United States)

    Khaykin, Sergey; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Portafaix, Thierry; Begue, Nelson; Vernier, Jean-Paul; DeLand, Matthew; Bhartia, Pawan K.; Leblanc, Thierry

    2017-04-01

    Stratospheric aerosol budget plays an important role in climate variability and ozone chemistry. Observations of stratospheric aerosol by ground-based lidars represent a particular value as they ensure the continuity and coherence of stratospheric aerosol record. Ground-based lidars remain indispensable for complementing and validating satellite instruments and for filling gaps between satellite missions. On the other hand, geophysical interpretation of local observations is complicated without the knowledge of global distribution of stratospheric aerosol, which calls for a combined analysis of ground-based and space-borne observations. The present study aims at characterizing global and regional variability of stratospheric aerosol over the last 5 years using various sets of observations. We use the data provided by three lidars operated within NDACC (Network for Detection of Atmospheric Composition Change) at Haute-Provence, (44° N), Mauna Loa (21° N) and Maido (21° S) sites together with quasi-global-coverage aerosol measurements by CALIOP and OMPS satellite instruments. The local and space-borne measurements are shown to be in good agreement allowing for their synergetic use. Since the late 2012 stratospheric aerosol remained at background levels throughout the globe. Eruptions of Kelud volcano at 4° S in February 2014 and Calbuco volcano at 41° S in April 2015 resulted in a remarkable enhancement of stratospheric AOD at a wide latitude range. We explore meridional dispersion and lifetime of volcanic plumes in consideration of global atmospheric circulation. A focus is made on the poleward transport of volcanic aerosol and its detection at the mid-latitude Haute-Provence observatory. We show that the moderate eruptions in the Southern hemisphere leave a measurable imprint on the Northern mid-latitude aerosol loading. Having identified the volcanically-perturbed periods from local and global observations we examine the evolution of non-volcanic (background

  13. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  14. Coupled Simulations, Ground-Based Experiments and Flight Experiments for Astrodynamics Research

    Science.gov (United States)

    Boyce, R.; Brown, M.; Lorrain, P.; Capon, C.; Lambert, A.; Benson, C.; Tuttle, S.; Griffin, D.

    Near-Earth satellites undergo complex and poorly understood interactions with their environment, leading to large uncertainties in predicting orbits and an associated risk of collision with other satellites and with space debris. The nature, evolution and behaviour of the growing cloud of space debris in that environment is even less well understood. Significant effort and expenditure is currently being made by governments in Australia, UK, USA, Europe and elsewhere in space surveillance and tracking, in order to mitigate the risk. However, a major gap exists with respect to the science of in-orbit behaviour. Research is underway in Australia to enable the prediction of the orbits of near-Earth space objects with order(s) of magnitude greater fidelity than currently possible. This is being achieved by coupling together the necessary parts of the puzzle - the physics of rarefied space object “aerodynamics” and the space physics and space weather that affects it - and employing our capabilities in ground-based and in-orbit experiments, ground-based observations and high performance computing to do so. As part of the effort, UNSW Canberra is investing $10M to develop a sustainable university-led program to develop and fly affordable in-orbit missions for space research. In the coming 6 years, we will fly a minimum of four cubesat missions, some in partnership with DSTO, which will include flight experiments for validating Space Situational Awareness astrodynamics simulation and observation capabilities. The flights are underpinned by ground-based experimental research employing space test chambers, advanced diagnostics, and supercomputer simulations that couple DSMC and Particle-in-Cell methods for modelling space object interactions with the ionosphere. This paper will describe the research both underway and planned, with particular emphasis on the coupled numerical/experimental/flight approach.

  15. Predicting survival outcome of localized melanoma: an electronic prediction tool based on the AJCC Melanoma Database.

    Science.gov (United States)

    Soong, Seng-jaw; Ding, Shouluan; Coit, Daniel; Balch, Charles M; Gershenwald, Jeffrey E; Thompson, John F; Gimotty, Phyllis

    2010-08-01

    We sought to develop a reliable and reproducible statistical model to predict the survival outcome of patients with localized melanoma. A total of 25,734 patients with localized melanoma from the 2008 American Joint Committee on Cancer (AJCC) Melanoma Database were used for the model development and validation. The predictive model was developed from the model development data set (n = 14,760) contributed by nine major institutions and study groups and was validated on an independent model validation data set (n = 10,974) consisting of patients from a separate melanoma center. Multivariate analyses based on the Cox model were performed for the model development, and the concordance correlation coefficients were calculated to assess the adequacy of the predictive model. Patient characteristics in both data sets were virtually identical, and tumor thickness was the single most important prognostic factor. Other key prognostic factors identified by stratified analyses included ulceration, lesion site, and patient age. Direct comparisons of the predicted 5- and 10-year survival rates calculated from the predictive model and the observed Kaplan-Meier 5- and 10-year survival rates estimated from the validation data set yielded high concordance correlation coefficients of 0.90 and 0.93, respectively. A Web-based electronic prediction tool was also developed ( http://www.melanomaprognosis.org/ ). This is the first predictive model for localized melanoma that was developed based on a very large data set and was successfully validated on an independent data set. The high concordance correlation coefficients demonstrated the accuracy of the predicted model. This predictive model provides a clinically useful tool for making treatment decisions, for assessing patient risk, and for planning and analyzing clinical trials.

  16. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    Science.gov (United States)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  17. A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework with mul...... with multiple neighborhoods and a loosely coupled rule engine based on simulated annealing is presented. Computational experiments on real-life data from various airport ground handling organization show the performance and flexibility of the proposed algorithm....

  18. Ground-based Instrumentations in Africa and its Scientific and Societal Benefits to the region

    Science.gov (United States)

    Yizengaw, Endawoke

    2012-07-01

    Much of what we know about equatorial physics is based on Jicamarca Incoherent Scattering Radar (ISR) observations. However, Jicamarca is in the American sector where the geomagnetic equator dips with a fairly large excursion between the geomagnetic and geodetic equator. On the other hand, in the African sector the geomagnetic equator is fairly well aligned with the geodetic equator. Satellites (e.g. ROCSAT, DMSP, C/NOFS) observations have also indicated that the equatorial ionosphere in the African sector responds differently than other sectors. However, these satellite observations have not been confirmed, validated or studied in detail by observations from the ground due to lack of suitable ground-based instrumentation in the region. Thus, the question of what causes or drives these unique density irregularities in the region is still not yet fully understood, leading the investigation of the physics behind each effect into speculative dead ends. During the past couple of years very few (compared to the land-mass that Africa covers) small instruments, like GPS receivers, magnetometers, VHF, and VLF have been either deployed in the region or in process. However, to understand the most dynamic region in terms of ionospheric irregularities, those few instruments are far from enough. Recently, significant progress has been emerging in securing more ground-based instrument into the region, and thus three ionosondes are either deployed or in process. In this paper, results from AMBER magnetometer network, ionosonde, and GPS receivers will be presented. By combining the multi instrument independent observations, this paper will show a cause and effect of space weather impact in the region for the first time. While the magnetometer network, such as those operated under the umbrella of AMBER project, estimates the fundamental electrodynamics that governs equatorial ionospheric motion, the GPS receivers will track the structure and dynamics of the ionosphere. In addition

  19. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  20. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    Two types of wind lidar’s have recently become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although both types have been build upon recent 1.55 &My telecom fibre technology, there are significant fundamental...... differences between the two lidars temporal and spatial resolution capabilities. A review of the two lidar systems special and temporal resolution characteristics will be presented, and the implication for measurements of mean wind and turbulence in the lower atmospheric boundary layer will be discussed....

  1. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  2. Ground-based thermal mapping on Venus: temperature fields and variations of SO2 and HDO

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Widemann, T.; Bézard, B.; Fouchet, T.; Atreya, S. K.; Sagawa, H.

    2017-09-01

    As a continuation of our ground-based thermal imaging campaign of Venus, we have been mapping Venus in December 2016 and January 2017 to monitor the behaviour of SO2 and H2O (through its proxy HDO). The SO2 mixing ratio was at its maximum since 2012. As during our previous runs, short-term variations of SO2 (with a timescale of a few hours) were observed. There is still no evidence for a correlation or an anti-correlation between SO2 and HDO. The thermal maps might show some correlation with the topography, but this remains to be confirmed with further observations.

  3. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  4. Projected constraints on the dispersion of gravitational waves using advanced ground- and space-based interferometers

    Science.gov (United States)

    Samajdar, Anuradha; Arun, K. G.

    2017-11-01

    Certain alternative theories of gravity predict that gravitational waves will disperse as they travel from the source to the observer. The recent binary black hole observations by Advanced-LIGO have set limits on a modified dispersion relation from the constraints on their effects on gravitational-wave propagation. Using an identical modified dispersion, of the form E2=p2c2+A pαcα , where A denotes the magnitude of dispersion and E and p are the energy and momentum of the gravitational wave, we estimate the projected constraints on the modified dispersion from observations of compact binary mergers by third-generation ground-based detectors such as the Einstein Telescope and Cosmic Explorer as well as the space-based detector Laser Interferometer Space Antenna. We find that third-generation detectors would bound dispersion of gravitational waves much better than their second-generation counterparts. The Laser Interferometer Space Antenna, with its extremely good low-frequency sensitivity, would place stronger constraints than the ground-based detectors for α ≤1 , whereas for α >1 , the bounds are weaker. We also study the effect of the spins of the compact binary constituents on the bounds.

  5. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Directory of Open Access Journals (Sweden)

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  6. Integrated water vapor from IGS ground-based GPS observations. Initial results from a global 5-min data set

    Energy Technology Data Exchange (ETDEWEB)

    Heise, S.; Dick, G.; Gendt, G.; Schmidt, T.; Wickert, J. [GFZ German Research Centre for Geosciences, Potsdam (Germany). Dept. 1 Geodesy and Remote Sensing

    2009-07-01

    Ground based GPS zenith path delay (ZPD) measurements are well established as a powerful tool for integrated water vapor (IWV) observation. The International GNSS Service (IGS) provides ZPD data of currently more than 300 globally distributed GPS stations. To derive IWV from these data, meteorological information (ground pressure and mean temperature above the station) are needed. Only a limited number of IGS stations is equipped with meteorological ground sensors up to now. Thus, meteorological data for IWV conversion are usually derived from nearby ground meteorological observations (ground pressure) and meteorological analyses (mean temperature). In this paper we demonstrate for the first time the applicability of ground pressure data from ECMWF meteorological analysis fields in this context. Beside simplified data handling (no single station data and quality control) this approach allows for IWV derivation if nearby meteorological stations are not available. Using ECMWF ground pressure and mean temperature data the new IGS 5-min ZPD data set has been converted to IWV for the first time. We present initial results from selected stations with ground meteorological sensors including pressure and temperature comparisons between ECMWF and local measurements. The GPS IWV is generally validated by comparison with ECMWF IWV. The ECMWF derived station meteorological data are compared with local measurements at all accordingly equipped stations. Based on this comparison, the mean error (in terms of standard deviation) introduced by time interpolation of the 6-hourly ECMWF data is estimated below 0.2 mm IWV. (orig.)

  7. Integrated water vapor from IGS ground-based GPS observations: initial results from a global 5-min data set

    Directory of Open Access Journals (Sweden)

    S. Heise

    2009-07-01

    Full Text Available Ground based GPS zenith path delay (ZPD measurements are well established as a powerful tool for integrated water vapor (IWV observation. The International GNSS Service (IGS provides ZPD data of currently more than 300 globally distributed GPS stations. To derive IWV from these data, meteorological information (ground pressure and mean temperature above the station are needed. Only a limited number of IGS stations is equipped with meteorological ground sensors up to now. Thus, meteorological data for IWV conversion are usually derived from nearby ground meteorological observations (ground pressure and meteorological analyses (mean temperature. In this paper we demonstrate for the first time the applicability of ground pressure data from ECMWF meteorological analysis fields in this context. Beside simplified data handling (no single station data and quality control this approach allows for IWV derivation if nearby meteorological stations are not available. Using ECMWF ground pressure and mean temperature data the new IGS 5-min ZPD data set has been converted to IWV for the first time. We present initial results from selected stations with ground meteorological sensors including pressure and temperature comparisons between ECMWF and local measurements. The GPS IWV is generally validated by comparison with ECMWF IWV. The ECMWF derived station meteorological data are compared with local measurements at all accordingly equipped stations. Based on this comparison, the mean error (in terms of standard deviation introduced by time interpolation of the 6-hourly ECMWF data is estimated below 0.2 mm IWV.

  8. Ground-Based Global Navigation Satellite System (GNSS) Observation Data (30-second sampling, daily, 24 hour files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (30-second sampling, daily 24 hour files) from the NASA Crustal...

  9. Ground-Based Global Navigation Satellite System (GNSS) Compact Observation Data (30-second sampling, hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (30-second sampling, hourly files) from the NASA Crustal Dynamics...

  10. Ground-Based Global Navigation Satellite System (GNSS) Observation Data (1-second sampling, sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (1-second sampling, sub-hourly files) from the NASA Crustal Dynamics...

  11. Ground-Based Global Navigation Satellite System (GNSS) Observation Data (30-second sampling, hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (30-second sampling, hourly files) from the NASA Crustal Dynamics...

  12. Ground-Based Global Navigation Satellite System (GNSS) QZSS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Quasi-Zenith Satellite System (QZSS) Broadcast Ephemeris Data (daily files) from the...

  13. Ground-Based Global Navigation Satellite System (GNSS) QZSS Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Quasi-Zenith Satellite System (QZSS) Broadcast Ephemeris Data (sub-hourly files) from...

  14. Ground-Based Global Navigation Satellite System (GNSS) Galileo Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Galileo Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics...

  15. Ground-Based Global Navigation Satellite System Mixed Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Mixed Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics Data...

  16. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (hourly files) from the NASA Crustal Dynamics Data...

  17. Ground-Based Global Navigation Satellite System (GNSS) Beidou Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Beidou Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics...

  18. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS - Cloned

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (sub-hourly...

  19. Ground-Based Global Navigation Satellite System (GNSS) QZSS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Quasi-Zenith Satellite System (QZSS) Broadcast Ephemeris Data (hourly files) from the...

  20. Ground-Based Global Navigation Satellite System (GNSS) Galileo Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Galileo Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  1. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics Data...

  2. Ground-Based Global Navigation Satellite System (GNSS) Beidou Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Beidou Broadcast Ephemeris Data (hourly files) from the NASA Crustal Dynamics Data...

  3. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  4. Raster-based regolith thickness of the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of raster-based generalized thickness of regolith (unconsolidated sediments) overlying bedrock in the Lost Creek Designated Ground Water Basin,...

  5. Information Technology Management: Select Controls for the Information Security of the Ground-Based Midcourse Defense Communications Network

    National Research Council Canada - National Science Library

    Truex, Kathryn M; Lamar, Karen J; Leighton, George A; Woodruff, Courtney E; Brunetti, Tina N; Russell, Dawn M

    2006-01-01

    ... to the Ground-Based Midcourse Defense Communications Network should read this report to reduce the risk of interruption, misuse, modification, and unauthorized access to information in the system...

  6. Ground-Based Global Navigation Satellite System (GNSS) Beidou Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Beidou Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  7. Ground-Based Global Navigation Satellite System (GNSS) Galileo Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Galileo Broadcast Ephemeris Data (hourly files) from the NASA Crustal Dynamics Data...

  8. Ground-Based Global Navigation Satellite System Observation Summary Data (30-second sampling, daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Summary Data (30-second sampling, daily files of all distinct navigation...

  9. Ground-Based Meteorological Data (hourly files) from Co-Located Global Navigation Satellite System (GNSS) Receivers from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Meteorological Data (hourly, 24 hour files) from instruments co-located with Global Navigation Satellite System (GNSS)...

  10. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  11. High-Altitude Airborne Platform Characterisation of Adaptive Optic Corrected Ground Based Laser

    Science.gov (United States)

    Bennet, F.; Petkovic, M.; Sheard, B.; Greene, B.

    Adaptive optics can be used for more than astronomical imaging with large telescopes. The Research School of Astronomy and Astrophysics (RSAA) and the Space Environment Management Research Centre (SERC) at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optics (AO) for space environment management. Turbulence in the atmosphere causes optical signals to become degraded during propagation, which reduces the effective aperture of your transmitting or receiving telescope. An AO system measures and corrects for the turbulence in the atmosphere, allowing for greater resolution of optical signals. AO can be used to correct a laser beam propagating from the ground into space, or high-altitude airborne platform. The AO system performance depends heavily on the chosen site and system design. In order to properly design and implement a cost-effective AO system to propagate a laser into orbit, we propose using high-altitude platforms to measure AO system performance directly as a precursor in-orbit measurements. SERC plan on demonstrating remote manoeuvre of an orbiting object using photon pressure from an AO corrected high power ground based laser. The manoeuvre target will be a suitable piece of debris, or a dedicated satellite mission which is instrumented and tracked to measure the applied photon pressure and resulting orbit perturbation. High-altitude airborne platforms such as weather balloons or UAVs enable us to efficiently de-risk elements of this program by validating our numerical simulations of AO system performance with actual measurements. We are then able to confidently move towards in-orbit measurement of an AO corrected ground based laser, and remote manoeuvre with photon pressure. We present simulations along with experimental results for the development of array detectors which can be used to directly measure AO system performance.

  12. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  13. How ground-based observations can support satellite greenhouse gas retrievals

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  14. Cancer Prevalence in Aichi, Japan for 2012: Estimates Based on Incidence and Survival Data from Population-Based Cancer Registries

    Science.gov (United States)

    Nakagawa-Senda, Hiroko; Yamaguchi, Michiyo; Matsuda, Tomohiro; Koide, Kayoko; Kondo, Yoshinobu; Tanaka, Hideo; Ito, Hidemi

    2017-08-27

    Background: Cancer is the leading cause of death among both men and women in Japan. Monitoring cancer prevalence is important because prevalence data play a critical role in the development and implementation of health policy. We estimated cancer prevalence in 2012 based on cancer incidence and 5-year survival rate in Aichi Prefecture using data from a population-based cancer registry, the Aichi Cancer Registry, which covers 7.4 million people. Methods: The annual number of incident cases between 2008 and 2012 was used. Survival data of patients diagnosed in 2006–2008 and followed up until the end of 2012 were selected for survival analysis. Cancer prevalence was estimated from incidence and year-specific survival probabilities. Cancer prevalence was stratified by sex, cancer site (25 major cancers), and age group at diagnosis. Results: The estimated prevalence for all cancers in 2012 was 68,013 cases among men, 52,490 cases among women, with 120,503 cases for both sexes. Colorectal cancer was the most incident cancer with 6,654 cases, accounting for 16.0% of overall incident cases, followed by stomach cancer with 5,749 cases (13.8%) and lung cancer with 5,593 cases (13.4%). Prostate cancer was the most prevalent among men, accounting for 21.5%, followed by colorectal and stomach cancers. Breast cancer was the most prevalent among women, accounting for 28.6%, followed by colorectal, stomach, and uterine cancers. Conclusion: This study provides cancer prevalence data that could serve as useful essential information for local governments in cancer management, to carry out more practical and reasonable countermeasures for cancer. Creative Commons Attribution License

  15. Development of a model to predict breast cancer survival using data from the National Cancer Data Base.

    Science.gov (United States)

    Asare, Elliot A; Liu, Lei; Hess, Kenneth R; Gordon, Elisa J; Paruch, Jennifer L; Palis, Bryan; Dahlke, Allison R; McCabe, Ryan; Cohen, Mark E; Winchester, David P; Bilimoria, Karl Y

    2016-02-01

    With the large amounts of data on patient, tumor, and treatment factors available to clinicians, it has become critically important to harness this information to guide clinicians in discussing a patient's prognosis. However, no widely accepted survival calculator is available that uses national data and includes multiple prognostic factors. Our objective was to develop a model for predicting survival among patients diagnosed with breast cancer using the National Cancer Data Base (NCDB) to serve as a prototype for the Commission on Cancer's "Cancer Survival Prognostic Calculator." A retrospective cohort of patients diagnosed with breast cancer (2003-2006) in the NCDB was included. A multivariable Cox proportional hazards regression model to predict overall survival was developed. Model discrimination by 10-fold internal cross-validation and calibration was assessed. There were 296,284 patients for model development and internal validation. The c-index for the 10-fold cross-validation ranged from 0.779 to 0.788 after inclusion of all available pertinent prognostic factors. A plot of the observed versus predicted 5 year overall survival showed minimal deviation from the reference line. This breast cancer survival prognostic model to be used as a prototype for building the Commission on Cancer's "Cancer Survival Prognostic Calculator" will offer patients and clinicians an objective opportunity to estimate personalized long-term survival based on patient demographic characteristics, tumor factors, and treatment delivered. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Modeling turbulent fluxes at a winter wheat stand -possibilities and limitations of ground-based thermography

    Science.gov (United States)

    Ahrends, H. E.; Haseneder-Lind, R.; Schickling, A.; Crewell, S.; Rascher, U.

    2013-12-01

    Aircraft and satellite sensors operating in the thermal infrared (TIR) region of the spectrum provide spatially comprehensive information on the radiometric surface temperature (TR), representing an integrated temperature based on the radiation emitted from different surface components. TR data are commonly applied as a proxy for the (theoretical) aerodynamic temperature, which satisfies the bulk resistance formulation for the sensible heat transport. The quantitative relation between the radiometric and the aerodynamic temperature is however complex and strongly affected by ambient conditions and surface characteristics. Consequently, TR-based estimates of the latent and sensible heat flux can have high levels of uncertainty. Ground-based studies for the validation of remotely sensed TR data and for the evaluation of TR-based models are crucial. Ground-based TIR cameras, allowing for a high observation frequency and for studying the spatial variability of temperatures, might provide a suitable tool for such studies. We aim at testing the limitations and the possibilities of passive ground-based thermography for the application in studies on the diurnal and seasonal changes of land-atmosphere interactions. Operating at a frequency of 5 min., a TIR camera is mounted at a height of 2m at a winter wheat stand (TR32 research site, Germany), capturing images of a 1m x 1m area (320 × 240 pixel) during spring and summer 2013. Radiometric temperatures are corrected for the influence of cloud cover and evaluated using observations from thermocouples (leaf temperature), RTDs (canopy temperature profile) and an IR radiometer (spatially integrated temperature). Simultaneous hyperspectral and sun-induced chlorophyll fluorescence measurements are used as a proxy for plant functioning and status. Spatial image information is integrated into the framework of different flux modeling approaches, ranging from established one-source to complex, multi-layer models. Modelled fluxes are

  17. Seasonal dependence of northern high-latitude upper thermospheric winds : A quiet time climatological study based on ground-based and space-based measurements

    NARCIS (Netherlands)

    Dhadly, Manbharat; Emmert, John; Drob, Douglas; Conde, Mark; Doornbos, E.N.; Shepherd, Gordon; Makela, Jonathan; Wu, Qian; Niciejewski, Rick; Ridley, Aaron J.

    2017-01-01

    This paper investigates the large-scale seasonal dependence of geomagnetically quiet time, northern high-latitude F region thermospheric winds by combining extensive observations from eight ground-based (optical remote sensing) and three space-based (optical remote sensing and in situ)

  18. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application

    Science.gov (United States)

    Reveret, Vincent

    2018-01-01

    CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.

  20. Multipath Interferences in Ground-Based Radar Data: A Case Study

    Directory of Open Access Journals (Sweden)

    Célia Lucas

    2017-12-01

    Full Text Available Multipath interference can occur in ground-based radar data acquired with systems with a large antenna beam width in elevation in an upward looking geometry, where the observation area and the radar are separated by a reflective surface. Radiation reflected at this surface forms a coherent overlay with the direct image of the observation area and appears as a fringe-like pattern in the data. This deteriorates the phase and intensity data and therefore can pose a considerable disadvantage to many ground-based radar measurement campaigns. This poses a problem for physical parameter retrieval from backscatter intensity and polarimetric data, absolute and relative calibration on corner reflectors, the generation of digital elevation models from interferograms and in the case of a variable reflective surface, differential interferometry. The main parameters controlling the interference pattern are the vertical distance between the radar antennas and the reflective surface, and the reflectivity of this surface. We used datasets acquired in two different locations under changing conditions as well as a model to constrain and fully understand the phenomenon. To avoid data deterioration in test sites prone to multipath interference, we tested a shielding of the antennas preventing the radar waves from illuminating the reflective surface. In our experiment, this strongly reduced but did not completely prevent the interference. We therefore recommend avoiding measurement geometries prone to multipath interferences.

  1. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Ground-based demonstration of the European Laser Timing (ELT) experiment.

    Science.gov (United States)

    Schreiber, Karl Ulrich; Prochazka, Ivan; Lauber, Pierre; Hugentobler, Urs; Schäfer, Wolfgang; Cacciapuoti, Luigi; Nasca, Rosario

    2010-03-01

    The development of techniques for the comparison of distant clocks and for the distribution of stable and accurate time scales has important applications in metrology and fundamental physics research. Additionally, the rapid progress of frequency standards in the optical domain is presently demanding additional efforts for improving the performances of existing time and frequency transfer links. Present clock comparison systems in the microwave domain are based on GPS and two-way satellite time and frequency transfer (TWSTFT). European Laser Timing (ELT) is an optical link presently under study in the frame of the ESA mission Atomic Clock Ensemble in Space (ACES). The on-board hardware for ELT consists of a corner cube retro-reflector (CCR), a single-photon avalanche diode (SPAD), and an event timer board connected to the ACES time scale. Light pulses fired toward ACES by a laser ranging station will be detected by the SPAD diode and time tagged in the ACES time scale. At the same time, the CCR will re-direct the laser pulse toward the ground station providing precise ranging information. We have carried out a ground-based feasibility study at the Geodetic Observatory Wettzell. By using ordinary satellites with laser reflectors and providing a second independent detection port and laser pulse timing unit with an independent time scale, it is possible to evaluate many aspects of the proposed time transfer link before the ACES launch.

  5. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  6. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    Science.gov (United States)

    van Harten, G.; de Boer, J.; Rietjens, J. H. H.; Di Noia, A.; Snik, F.; Volten, H.; Smit, J. M.; Hasekamp, O. P.; Henzing, J. S.; Keller, C. U.

    2014-12-01

    Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal, and snapshot spectral polarization modulation technique, and is hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~5 × 10-3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the colocated AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  10. Tomographic reconstruction of the ionosphere over north America with comparisons to ground-based radar

    Energy Technology Data Exchange (ETDEWEB)

    Pakula, W.A.; Fougere, P.F.; Klobuchar, J.A.; Kuenzler, H.J.; Buonsanto, M.J.

    1995-02-01

    Data collection for the first ground-based ionospheric tomography campaign in North America was conducted over a 48-hour period in mid-November 1991. The data consist of records of ionospheric total electron content (TEC) from a number of passes of the U. S. Navy Navigation Satellite System spacecraft over a chain of ground-based receiving stations. Data collection and reduction techniques are discussed; these include the determination of absolute TEC from the different phase advances induced by the ionosphere in each component of the dual-frequency spacecraft signal. The use of tomographic methods to reconstruct ionospheric electron densities over a two-dimensional (2-D) region of the Earth`s ionosphere at a number of different times is demonstrated. Specifically, two distinct tomographic methods, the algebraic reconstruction technique and a maximum entropy method, are used to mathematically invert the records of TEC. The resulting 2-D contour maps of ionospheric electron density are then compared to similar maps produced by the Millstone Hill incoherent backscatter radar facility located at Westford, Massachusetts. Both qualitative and quantitative measures of agreement among the different reconstructions and the radar maps are presented. The behavior of the ionosphere over the course of the experiment is discussed.

  11. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    Science.gov (United States)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  12. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  13. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  14. First detection of tidal behaviour in polar mesospheric water vapour by ground based microwave spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Hallgren

    2012-04-01

    Full Text Available Mesospheric water vapour has been observed above ALOMAR in northern Norway (69° N 16° E by our group since 1995 using a 22 GHz ground based microwave spectrometer. A new instrument with higher sensitivity, providing a much better time resolution especially in the upper mesosphere, was installed in May 2008. The time resolution is high enough to provide observations of daily variations in the water vapour mixing ratio. We present the first ground based detections of tidal behaviour in the polar middle atmospheric water vapour distribution.

    Diurnal and semidiurnal variations of water vapour have been observed and due to the long chemical lifetime of water they are assumed to be caused by changing wind patterns which transport water-rich or poor air into the observed region. The detected tidal behaviour does not follow any single other dynamical field but is instead assumed to be a result of the different wind components.

    Both the diurnal and semidiurnal amplitude and phase components are resolved. The former shows a stable seasonal behaviour consistent with earlier observations of wind fields and model calculations, whereas the latter appears more complex and no regular behaviour has so far been observed.

  15. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  16. A Hybrid Reliable Heuristic Mapping Method Based on Survivable Virtual Networks for Network Virtualization

    Directory of Open Access Journals (Sweden)

    Qiang Zhu

    2015-01-01

    Full Text Available The reliable mapping of virtual networks is one of the hot issues in network virtualization researches. Unlike the traditional protection mechanisms based on redundancy and recovery mechanisms, we take the solution of the survivable virtual topology routing problem for reference to ensure that the rest of the mapped virtual networks keeps connected under a single node failure condition in the substrate network, which guarantees the completeness of the virtual network and continuity of services. In order to reduce the cost of the substrate network, a hybrid reliable heuristic mapping method based on survivable virtual networks (Hybrid-RHM-SVN is proposed. In Hybrid-RHM-SVN, we formulate the reliable mapping problem as an integer linear program. Firstly, we calculate the primary-cut set of the virtual network subgraph where the failed node has been removed. Then, we use the ant colony optimization algorithm to achieve the approximate optimal mapping. The links in primary-cut set should select a substrate path that does not pass through the substrate node corresponding to the virtual node that has been removed first. The simulation results show that the acceptance rate of virtual networks, the average revenue of mapping, and the recovery rate of virtual networks are increased compared with the existing reliable mapping algorithms, respectively.

  17. A practice-based research network on the survival of ceramic inlay/onlay restorations.

    Science.gov (United States)

    Collares, Kauê; Corrêa, Marcos B; Laske, Mark; Kramer, Enno; Reiss, Bernd; Moraes, Rafael R; Huysmans, Marie-Charlotte D N J M; Opdam, Niek J M

    2016-05-01

    To evaluate prospectively the longevity of ceramic inlay/onlay restorations placed in a web-based practice-based research network and to investigate risk factors associated with restoration failures. Data were collected by a practice-based research network called Ceramic Success Analysis (CSA). 5791 inlay/onlay ceramic restorations were placed in 5523 patients by 167 dentists between 1994 and 2014 in their dental practices. For each restoration specific information related to the tooth, procedures and materials used were recorded. Annual failure rates (AFRs) were calculated and variables associated with failure were assessed by a multivariate Cox-regression analysis with shared frailty. The mean observation time was 3 years (maximum 15 years) of clinical service, and AFRs at 3 and 10 years follow up were calculated as 1.0% and 1.6%. Restorations with cervical outline in dentin showed a 78% higher risk for failure compared to restorations with margins in enamel. The presence of a liner or base of glass-ionomer cement resulted in a risk for failure twice as large as that of restorations without liner or base material. Restorations performed with simplified adhesive systems (2-step etch-and-rinse and 1-step self-etch) presented a risk of failure 142% higher than restorations performed with adhesives with bonding resin as a separate step (3-step etch-and-rinse and 2-step self-etch). 220 failures were recorded and the most predominant reason for failure was fracture of the restoration or tooth (44.5%). Ceramic inlay/onlay restorations made from several glass ceramic materials and applied by a large number of dentists showed a good survival. Deep cervical cavity outline, presence of a glass ionomer lining cement, and use of simplified adhesive systems were risk factors for survival. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Base of moderately saline ground water in San Juan County, Utah

    Science.gov (United States)

    Howells, Lewis

    1990-01-01

    The base of moderately saline ground water (water that contains from 3,000 to 10,000 milligrams per liter of dissolved solids) was delineated for San Juan County, Utah, based on water-quality data and on formation-water resistivities determined from geophysical well logs using the resistivity-porosity, spontaneous-potential, and resistivity-ratio methods. These data and the contour map developed from them show that a thick layer of very saline to briny ground water (water that contains more than 10,000 milligrams per liter of dissolved solids) underlies the eastern two-thirds of San Juan County. The upper surface of this layer is affected by the geologic structure of the area, but it may be modified locally by recharge mounds of less saline water and by vertical leakage of water through transmissive faults and fractures. The highest altitude of the base of moderately saline water is west of the Abajo Mountains where it is more than 6,500 feet above sea level. The lowest altitude is in the western part of the county and is below sea level: depressions in the base of moderately saline water in recharge areas in the La Sal and Abajo Mountains also may be that low. The base of moderately saline water commonly is in the Permian Cutler Formation or the Pennsylvanian Honaker Trail Formation of the Hermosa Group, but locally may be as high stratigraphically as the Triassic (?) and Jurassic Navajo Sandstone north of the Abajo Mountains and in the Jurassic Morrison Formation south of the mountains.

  19. The Chinese ground-based instrumentation in support of the combined Cluster/Double Star satellite measurements

    Directory of Open Access Journals (Sweden)

    R.-Y. Liu

    2005-11-01

    Full Text Available Ground-based observations can be used to provide substantial support for Cluster/Double Star measurements and greatly enhance the mission's scientific return. There are six Chinese ground stations involved in coordinated cluster/Double Star and ground-based instrument observations. Among them, the Chinese Zhongshan Station in Antarctica and the Yellow River Station on Svalbard are closely magnetic conjugate and are situated under the ionospheric projection of the magnetospheric cusp regions, which, combined with satellite data, provide a perfect configuration to conduct conjugate studies of cusp phenomena. In this paper we present the ground-based instrumentation at these stations, discuss the restriction which is applyed to the optical sites and present an overview of the occurrences for conjunctions of these instruments with the spacecraft. Samples of data products are given to illustrate the potential use of these instrumentations in coordination with Cluster/Double Star measurements.

  20. The Chinese ground-based instrumentation in support of the combined Cluster/Double Star satellite measurements

    Directory of Open Access Journals (Sweden)

    R.-Y. Liu

    2005-11-01

    Full Text Available Ground-based observations can be used to provide substantial support for Cluster/Double Star measurements and greatly enhance the mission's scientific return. There are six Chinese ground stations involved in coordinated cluster/Double Star and ground-based instrument observations. Among them, the Chinese Zhongshan Station in Antarctica and the Yellow River Station on Svalbard are closely magnetic conjugate and are situated under the ionospheric projection of the magnetospheric cusp regions, which, combined with satellite data, provide a perfect configuration to conduct conjugate studies of cusp phenomena. In this paper we present the ground-based instrumentation at these stations, discuss the restriction which is applyed to the optical sites and present an overview of the occurrences for conjunctions of these instruments with the spacecraft. Samples of data products are given to illustrate the potential use of these instrumentations in coordination with Cluster/Double Star measurements.

  1. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed......A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle......, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u;v;w) of the wind field. We present this method as an alternative to the so-called velocity azimuth...

  2. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed......A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle......, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v,w) of the wind field. We present this method as an alternative to the so-called velocity azimuth...

  3. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    Science.gov (United States)

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient.

  4. Evaluation of educational strategy, grounded on problem-based learning on nursing undergraduate

    Directory of Open Access Journals (Sweden)

    Miriam Fernanda Sanches Alarcon

    2016-01-01

    Full Text Available Objective: to compare the performance of student ́s learning from evaluations of the method Problem-Based Learning and the Traditional method, in a discipline of undergraduate Nursing. Methods: an experimental study, performed with 16 students of the Degree course in Nursing. The experimental group was submitted to the educational strategy grounded on Problem-Based Learning and the control group to Traditional education. Cognitive Assessment Exercise evaluations were performed and traditional assessments for the two groups. Results: students in the experimental group showed better performance when compared to students from the traditional method. Conclusion: there was a positive influence on the strategy implemented for learning in Nursing, such as improved of critical thinking, knowledge construction.

  5. Evaluation of educational strategy, grounded on problem-based learning on nursing undergraduate

    Directory of Open Access Journals (Sweden)

    Miriam Fernanda Sanches Alarcon

    2016-05-01

    Full Text Available Objective: to compare the performance of student´s learning from evaluations of the method Problem-Based Learning and the Traditional method, in a discipline of undergraduate Nursing. Methods: an experimental study, performed with 16 students of the Degree course in Nursing. The experimental group was submitted to the educational strategy grounded on Problem-Based Learning and the control group to Traditional education. Cognitive Assessment Exercise evaluations were performed and traditional assessments for the two groups. Results: students in the experimental group showed better performance when compared to students from the traditional method. Conclusion: there was a positive influence on the strategy implemented for learning in Nursing, such as improved of critical thinking, knowledge construction.

  6. The Holy Grail of Resource Assessment: Low Cost Ground-Based Measurements with Good Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; Smith, Benjamin

    2017-06-22

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis shows the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.

  7. Cause-specific or relative survival setting to estimate population-based net survival from cancer? An empirical evaluation using women diagnosed with breast cancer in Geneva between 1981 and 1991 and followed for 20 years after diagnosis.

    Science.gov (United States)

    Schaffar, Robin; Rachet, Bernard; Belot, Aurélien; Woods, Laura

    2015-06-01

    Both cause-specific and relative survival settings can be used to estimate net survival, the survival that would be observed if the only possible underlying cause of death was the disease under study. Both resulting net survival estimators are biased by informative censoring and prone to biases related to the data settings within which each is derived. We took into account informative censoring to derive theoretically unbiased estimators and examine which of the two data settings was the most robust against incorrect assumptions in the data. We identified 2489 women in the Geneva Cancer Registry, diagnosed with breast cancer between 1981 and 1991, and estimated net survival up to 20-years using both cause-specific and relative survival settings, by tackling the informative censoring with weights. To understand the possible origins of differences between the survival estimates, we performed sensitivity analyses within each setting. We evaluated the impact of misclassification of cause of death and of using inappropriate life tables on survival estimates. Net survival was highest using the cause-specific setting, by 1% at one year and by up to around 11% twenty years after diagnosis. Differences between both sets of net survival estimates were eliminated after recoding between 15% and 20% of the non-specific deaths as breast cancer deaths. By contrast, a dramatic increase in the general population mortality rates was needed to see the survival estimates based on relative survival setting become closer to those derived from cause-specific setting. Net survival estimates derived using the cause-specific setting are very sensitive to misclassification of cause of death. Net survival estimates derived using the relative-survival setting were robust to large changes in expected mortality. The relative survival setting is recommended for estimation of long-term net survival among patients with breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of a Ground Based Remote Sensing Approach for Direct Evaluation of Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Samir Ahmed

    2012-10-01

    Full Text Available The possible interaction and modification of cloud properties due to aerosols is one of the most poorly understood mechanisms within climate studies, resulting in the most significant  uncertainty as regards radiation budgeting. In this study, we explore direct ground based remote sensing methods to assess the Aerosol-Cloud Indirect Effect directly, as space-borne retrievals are not directly suitable for simultaneous aerosol/cloud retrievals. To illustrate some of these difficulties, a statistical assessment of existing multispectral imagers on geostationary (e.g., GOES/Moderate Resolution Imaging Spectroradiometer (MODIS satellite retrievals of the Cloud Droplet Effective Radius (Reff showed significant biases especially at larger solar zenith angles, further motivating the use of ground based remote sensing approaches. In particular, we discuss the potential of using a combined Microwave Radiometer (MWR—Multi-Filter Rotating Shadowband Radiometer (MFRSR system for real-time monitoring of Cloud Optical Depth (COD and Cloud Droplet Effective Radius (Reff, which are combined with aerosol vertical properties from an aerosol lidar. An iterative approach combining the simultaneous observations from MFRSR and MWR are used to retrieve the COD and Reff for thick cloud cases and are extensively validated using the DoE Southern Great Plains (SGP retrievals as well as regression based parameterized model retrievals. In addition, we account for uncertainties in background aerosol, surface albedo and the combined measurement uncertainties from the MWR and MFRSR in order to provide realistic uncertainty estimates, which is found to be ~10% for the parameter range of interest in Aerosol-Cloud Interactions. Finally, we analyze a particular case of possible aerosol-cloud interaction described in the literature at the SGP site and demonstrate that aerosol properties obtained at the surface can lead to inconclusive results in comparison to lidar

  9. A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication

    Science.gov (United States)

    McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe

    2010-01-01

    An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route

  10. Ground-based photometry of the 21-day Neptune HD 106315c

    Science.gov (United States)

    Lendl, M.; Ehrenreich, D.; Turner, O. D.; Bayliss, D.; Blanco-Cuaresma, S.; Giles, H.; Bouchy, F.; Marmier, M.; Udry, S.

    2017-07-01

    Space-based transit surveys such as K2 and the Transiting Exoplanets Survey Satellite (TESS) allow the detection of small transiting planets with orbital periods greater than 10 days. Few of these warm Neptunes are currently known around stars bright enough to allow for detailed follow-up observations dedicated to their atmospheric characterization. The 21-day period and 3.95 R⊕ planet HD 106315c has been discovered by K2 based on the observation of two of its transits. We observed HD 106315 using the 1.2 m Euler telescope equipped with the EulerCam camera on two occasions to confirm the transit using broadband photometry and refine the planetary period. Based on two observed transits of HD 106315c, we detect its 1 mmag transit and obtain a precise measurement of the planetary ephemerides, which are critical for planning further follow-up observations. We used the attained precision together with the predicted yield from the TESS mission to evaluate the potential for ground-based confirmation of Neptune-sized planets found by TESS. We find that one-meter class telescopes on the ground equipped with precise photometers could substantially contribute to the follow-up of 162 TESS candidates orbiting stars with magnitudes of V ≤ 14. Of these candidates, 74 planets orbit stars with V ≤ 12 and 12 planets orbit V ≤ 10, which makes them high-priority objects for atmospheric characterization with high-end instrumentation. The photometric time series data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/L5

  11. Taking Root: a grounded theory on evidence-based nursing implementation in China.

    Science.gov (United States)

    Cheng, L; Broome, M E; Feng, S; Hu, Y

    2017-08-02

    Evidence-based nursing is widely recognized as the critical foundation for quality care. To develop a middle-range theory on the process of evidence-based nursing implementation in Chinese context. A grounded theory study using unstructured in-depth individual interviews was conducted with 56 participants who were involved in 24 evidence-based nursing implementation projects in Mainland China from September 2015 to September 2016. A middle-range grounded theory of 'Taking Root' was developed. The theory describes the evidence implementation process consisting of four components (driving forces, process, outcome, sustainment/regression), three approaches (top-down, bottom-up and outside-in), four implementation strategies (patient-centred, nurses at the heart of change, reaching agreement, collaboration) and two patterns (transformational and adaptive implementation). Certain perspectives may have not been captured, as the retrospective nature of the interviewing technique did not allow for 'real-time' assessment of the actual implementation process. The transferability of the findings requires further exploration as few participants with negative experiences were recruited. This is the first study that explored evidence-based implementation process, strategies, approaches and patterns in the Chinese nursing practice context to inform international nursing and health policymaking. The theory of Taking Root described various approaches to evidence implementation and how the implementation can be transformational for the nurses and the setting in which they work. Nursing educators, managers and researchers should work together to improve nurses' readiness for evidence implementation. Healthcare systems need to optimize internal mechanisms and external collaborations to promote nursing practice in line with evidence and achieve clinical outcomes and sustainability. © 2017 International Council of Nurses.

  12. Person centered prediction of survival in population based screening program by an intelligent clinical decision support system.

    Science.gov (United States)

    Safdari, Reza; Maserat, Elham; Asadzadeh Aghdaei, Hamid; Javan Amoli, Amir Hossein; Mohaghegh Shalmani, Hamid

    2017-01-01

    To survey person centered survival rate in population based screening program by an intelligent clinical decision support system. Colorectal cancer is the most common malignancy and major cause of morbidity and mortality throughout the world. Colorectal cancer is the sixth leading cause of cancer death in Iran. In this survey, we used cosine similarity as data mining technique and intelligent system for estimating survival of at risk groups in the screening plan. In the first step, we determined minimum data set (MDS). MDS was approved by experts and reviewing literatures. In the second step, MDS were coded by python language and matched with cosine similarity formula. Finally, survival rate by percent was illustrated in the user interface of national intelligent system. The national intelligent system was designed in PyCharm environment. Main data elements of intelligent system consist demographic information, age, referral type, risk group, recommendation and survival rate. Minimum data set related to survival comprise of clinical status, past medical history and socio-demographic information. Information of the covered population as a comprehensive database was connected to intelligent system and survival rate estimated for each patient. Mean range of survival of HNPCC patients and FAP patients were respectively 77.7% and 75.1%. Also, the mean range of the survival rate and other calculations have changed with the entry of new patients in the CRC registry by real-time. National intelligent system monitors the entire of risk group and reports survival rates by electronic guidelines and data mining technique and also operates according to the clinical process. This web base software has a critical role in the estimation survival rate in order to health care planning.

  13. a Ground-Based LIDAR and Imaging Spectrometer Synchronous Experiment on Vegetation

    Science.gov (United States)

    Hong, T.; Luo, X.; Chen, H.; Hui, J.

    2017-09-01

    Extraction of vegetation canopy structure parameters is of great significance for researching global ecosystem and environment. Focused on the effective synergy between active and passive sensors, we carried out some ground-based observations about different vegetation on different terrains. In different experimental sites, a light detection and ranging (LiDAR) data and an imaging spectrum data of typical vegetation were collected from different directions and angles. Meanwhile, a variety of canopy structure parameters, including plant height, crown breadth, leaf area index, etc, were measured. The whole observed results form a comprehensive ground synchronous data set corresponding to flight data and provide data support for development and validation of synergic retrieval methods of vegetation canopy structure parameters. Our specific experimental objectives and design are introduced, including the selection of sampling plots, arrangement of observation stations, acquisition of active and passive data, and measurement of auxiliary data. The processing and practical applications of those obtained synchronous data are also discussed. Finally, our experimental experience is summarized and it is a valuable reference for remote sensing researchers.

  14. Reaching for the stars - New developments in ground-based astronomy

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I will briefly review the state-of-the-art in ground-based astronomy - both on the telescope side and the instrument side. Interesting parallels can be drawn in cost, construction and operations with the particle physics facilities. I will then present some recent results in the two hottest topics in astronomy, driving the requests for more advanced facilities: exoplanets and the hunt for life beyond the solar system (calling for Extremely Large Telescope); and cosmology and the understanding of dark energy (calling for large survey telescopes). This will lead to a description of the latest telescope project developments on the ground: the on-going construction of the Large Synoptic Telescope on a quest to better understand dark energy, and the start of the construction of three Extremely Large Telescopes by European and US-led international consortia, hoping to find life on planets around nearby stars.   ATS Seminars Organisers: H. Burkhardt (BE), M. Modena (TE), T. Stora (EN) Coffee / tea will ...

  15. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  16. A GROUND-BASED LIDAR AND IMAGING SPECTROMETER SYNCHRONOUS EXPERIMENT ON VEGETATION

    Directory of Open Access Journals (Sweden)

    T. Hong

    2017-09-01

    Full Text Available Extraction of vegetation canopy structure parameters is of great significance for researching global ecosystem and environment. Focused on the effective synergy between active and passive sensors, we carried out some ground-based observations about different vegetation on different terrains. In different experimental sites, a light detection and ranging (LiDAR data and an imaging spectrum data of typical vegetation were collected from different directions and angles. Meanwhile, a variety of canopy structure parameters, including plant height, crown breadth, leaf area index, etc, were measured. The whole observed results form a comprehensive ground synchronous data set corresponding to flight data and provide data support for development and validation of synergic retrieval methods of vegetation canopy structure parameters. Our specific experimental objectives and design are introduced, including the selection of sampling plots, arrangement of observation stations, acquisition of active and passive data, and measurement of auxiliary data. The processing and practical applications of those obtained synchronous data are also discussed. Finally, our experimental experience is summarized and it is a valuable reference for remote sensing researchers.

  17. Conceptual Design of Rover’s Mobility System for Ground-Based Model

    Directory of Open Access Journals (Sweden)

    Youn-Kyu Kim

    2009-12-01

    Full Text Available In recent years, lots of studies on the planetary rover systems have been performed around space advanced agencies such as NASA, ESA, JAXA, etc. Among the various technologies for the planetary rover system, the mobility system, navigation algorithm, and scientific payload have been focused particularly. In this paper, the conceptual design for a ground-based model of planetary rover’s mobility system to evaluate mobility and moving stability on ground is presented. The status of overseas research and development of the planetary rover systems is also addressed in terms of technical issues. And then, the requirements of the planetary rover’s mobility system are derived by means of considering mobility and stability. The designed rover’s mobility system has an active suspension with 6 legs that controls 6 joints on the each leg in order to achieve high stability and mobility. This kind of mobility system has already applied to the ATHELE of NASA for various purposes such as transportation and habitation for human lunar exploration activities in the near future (i.e., Constellation program. However, the proposed system has been designed by focusing on the small-sized unmanned explorations, which may be applied for the future Korea Lunar exploration missions. Therefore, we expect that this study will be an useful reference and experience in order to develop the planetary exploration rover system in Korea.

  18. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System

    Directory of Open Access Journals (Sweden)

    Ajmal Hinas

    2017-12-01

    Full Text Available In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.

  19. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  20. Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments

    Science.gov (United States)

    Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.

    2017-04-01

    Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.

  1. Kinetic analysis of ski turns based on measured ground reaction forces.

    Science.gov (United States)

    Vaverka, Frantisek; Vodickova, Sona; Elfmark, Milan

    2012-02-01

    The objective of this study was to devise a method of kinetic analysis of the ground reaction force that enables the durations and magnitudes of forces acting during the individual phases of ski turns to be described exactly. The method is based on a theoretical analysis of physical forces acting during the ski turn. Two elementary phases were defined: (1) preparing to turn (initiation) and (2) actual turning, during which the center of gravity of the skier-ski system moves along a curvilinear trajectory (steering). The starting point of the turn analysis is a dynamometric record of the resultant acting ground reaction force applied perpendicularly on the ski surface. The method was applied to six expert skiers. They completed a slalom course comprising five gates arranged on the fall line of a 26° slope at a competition speed using symmetrical carving turns (30 evaluated turns). A dynamometric measurement system was placed on the carving skis (168 cm long, radius 16 m, data were recorded at 100 Hz). MATLAB procedures were used to evaluate eight variables during each turn: five time variables and three force variables. Comparison of the turn analysis results between individuals showed that the method is useful for answering various research questions associated with ski turns.

  2. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  3. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System.

    Science.gov (United States)

    Hinas, Ajmal; Roberts, Jonathan M; Gonzalez, Felipe

    2017-12-17

    In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV) for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act) loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.

  4. MICROSTRUCTURE, MINERALOGY AND PHYSICAL PROPERTIES OF GROUND FLY ASH BASED GEOPOLYMERS

    Directory of Open Access Journals (Sweden)

    Ferenc Madai

    2015-03-01

    Full Text Available This paper is focused on the utilization of deposited fly ash as a main component of geopolymer. After determination of particle size distribution, moisture content, real and bulk density and specific surface area of the raw fly ash, mechanical activation was performed by laboratory scale ball mill. This step is introduced for improving the reactivity of raw material. Then test specimens were produced by geopoliomerisation using a caustic spent liquor (NaOH. Compressive strength was determined on cilindrical specimens. Finally, samples of the ground fly ash based geopolymer specimens were analyzed by X-ray diffraction, optical and scanning electron microscopy. Results prove that geopolymer production with proper strength from the investigated F-type deposited fly ash is possible. The uniaxial compressive strength of obtained composites strongly depends on the fineness of the ground fly ash. XRD results show that comparing the crystalline components for different geopolymer samples, zeolite-A appears and its amount increases gradually from 0T sample till 30T and then decreases for 60T sample. The same trend holds for sodalite type structure phases, however its amount is much lower than for zeolite-A. SEM+EDS investigation revealed that Na-content is elevated in the interstitial fine-grained matrix, especially for the 30T sample when highest strength was observed. Si and Al are abundant mainly in anhedral and spherical grains and in rarely occurring grains resembling some crystal shape.

  5. Improving Daytime Planetary Boundary Layer Height Determination from CALIOP: Validation Based on Ground-Based Lidar Station

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    2017-01-01

    Full Text Available An integrated algorithm by combining the advantages of the wavelet covariance method and the improved maximum variance method was developed to determine the planetary boundary layer height (PBLH from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP measurements, and an aerosol fraction threshold was applied to the integrated algorithm considering the applicability of the two methods. We compared the CALIOP retrieval with the measurements of PBLH derived from nine years of ground-based Lidar synchronous observations located in Lille, north of France. The results indicate that a good correlation (R≥0.79 exists between the PBLHs derived from CALIOP and ground-based Lidar under clear sky conditions. The mean absolute differences of PBLHs are, respectively, of 206 m and 106 m before and after the removal of the aloft aerosol layer. The results under cloudy sky conditions show a lower agreement (R=0.48 in regard of the comparisons performed under clear sky conditions. Besides, the spatial correlation of PBLHs decreases with the increasing spatial distance between CALIOP footprint and Lille observation platform. Based on the above analysis, the PBLHs can be effectively derived by the integrated algorithm under clear sky conditions, while larger mean absolute difference (i.e., 527 m exists under cloudy sky conditions.

  6. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pwork might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  7. Evaluating Continuous Tumor Measurement-Based Metrics as Phase II Endpoints for Predicting Overall Survival

    Science.gov (United States)

    Dong, Xinxin; Meyers, Jeffrey; Han, Yu; Grothey, Axel; Bogaerts, Jan; Sargent, Daniel J.; Mandrekar, Sumithra J.

    2015-01-01

    Background: We sought to develop and validate clinically relevant, early assessment continuous tumor measurement–based metrics for predicting overall survival (OS) using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 data warehouse. Methods: Data from 13 trials representing 2096 patients with breast cancer, non–small cell lung cancer (NSCLC), or colorectal cancer were used in a complete case analysis. Tumor measurements from weeks 0–6-12 assessments were used to evaluate the ability of slope (absolute change in tumor size from 0-6 and 6–12 weeks) and percent change (relative change in tumor size from 0–6 and 6–12 weeks) metrics to predict OS using Cox models, adjusted for average baseline tumor size. Metrics were evaluated by discrimination (via concordance or c-index), calibration (goodness-of-fit type statistics), association (hazard ratios), and likelihood (Bayesian Information Criteria), with primary focus on the c-index. All statistical tests were two-sided. Results: Comparison of c-indices suggests slight improvement in predictive ability for the continuous tumor measurement–based metrics vs categorical RECIST response metrics, with slope metrics performing better than percent change metrics for breast cancer and NSCLC. However, these differences were not statistically significant. The goodness-of-fit statistics for the RECIST metrics were as good as or better than those for the continuous metrics. In general, all the metrics performed poorly in breast cancer, compared with NSCLC and colorectal cancer. Conclusion: Absolute and relative change in tumor measurements do not demonstrate convincingly improved overall survival predictive ability over the RECIST model. Continued work is necessary to address issues of missing tumor measurements and model selection in identifying improved tumor measurement–based metrics. PMID:26296640

  8. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    Science.gov (United States)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  9. Validating Dust Storm Model Using Satellite Aerosol Retrievals and Ground-based Observations

    Science.gov (United States)

    YU, M.; Benedict, K. K.; Huang, Q.; Gui, Z.; XIA, J.; Chen, S.

    2013-12-01

    Dust storm is a meteorological phenomenon with high dust concentration and strong striking force affecting transportation and causing disease. Considering the negative impacts of dust storm, the accuracy of dust storm forecasting is critical for, especially, responding to the emergencies. However, it is challenge to validating the forecasting limited by availability of observation data. The complexity is partially caused by the inconsistency in spatial and temporal resolutions between model simulation and field observation. In addition, the accuracy and reliability of observation data are not guaranteed. Therefore, in order to complement observation data in terms of temporal resolution and enhance the accuracy of observation data, validation methods should be based on data assimilation between satellite and ground-based observations. The dust storm simulation and forecasting model, NMM-dust, coupling Dust Regional Atmospheric Model (DREAM) and Non-hydrostatic Mesoscale Model (NMM) meteorological module, produces higher resolution results for weather forecasting and enabling executability in parallel mode on distributed systems. So far, NMM-dust has been validated in the southwestern US only by comparison with measurement from AIRNOW data and with barely acceptable results. Observation data used for validation includes MODIS and SeaWiFS Deep Blue aerosol products, and ground-based observations from EPA-AQS. Results from comparisons between satellite data and model output show similar dust distribution patterns. Besides, the temporal resolution of satellite data is improved by using both MODIS and SeaWiFS. Quantitative analysis including time-series analysis and diagnose analysis are also examined to investigate the stability and consistency of the model.

  10. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  11. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  12. Network operability of ground-based microwave radiometers: Calibration and standardization efforts

    Science.gov (United States)

    Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald

    2017-04-01

    Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.

  13. Investigation of Rainfall Characteristics Using TRMM PR and Ground Based Radar

    Science.gov (United States)

    Dolan, B.; Lang, T. J.; Nesbitt, S. W.; Cifelli, R.; Rutledge, S. A.

    2011-12-01

    Despite relatively good agreement between reflectivity profiles, comparisons of rainfall statistics derived from TRMM Precipitation Radar (PR) deviate from ground-based radar (GR) observations in various field locations across the globe. TRMM PR rain rate probability distribution functions underestimate the occurrence of high rain rates (> 80 mm hr-1) compared with similar ground-based statistics, and similarly, GR distributes the total rain volume over a larger range of rain rates. Analysis of ten years of TRMM data over three field sites has shown that the greatest disagreements occur in the most intense convection, such as over land and during the east and break wind regimes over the Amazon and Australia, respectively. These differences are investigated further in this study. Ten years of TRMM PR data are analyzed in conjunction with data collected during two field experiments involving the NCAR S-Pol radar. S-Pol was deployed in Brazil in the Amazon during TRMM LBA in 1998-1999 and near Mazatlan, Mexico as part of the North American Monsoon Experiment (NAME) in 2004. Additionally, multiple years of data from the Australian Bureau of Meteorology CPOL radar located in Darwin, Australia, are examined to extend the robustness of the GR observations beyond the relatively short field campaigns. Polarimetric data collected by the two radars are used to characterize the differences between TRMM PR and GR observations as a function of bulk hydrometeor type. For example, profiles with significant graupel, as identified by GR, are analyzed to investigate the role of mixed phase in the PR retrievals. The vertical variability of D0 is examined as a function of reflectivity and related to the underlying microphysical conditions using the polarimetric data provided by the GR observations. Spatial variability of D0 is also explored by correlating D0 values derived from GR at different heights. Several significant changes were made to the TRMM processing algorithms in the

  14. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Science.gov (United States)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  15. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Directory of Open Access Journals (Sweden)

    Y. G. Rapoport

    2017-01-01

    Full Text Available We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs, which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100–420 m s−1. Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical–numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1 of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 − f1 in the altitude ranges 0–0.1 km, in the strongly nonlinear regime, and (2 of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1–20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz and VLF (kHz ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere–ionosphere system

  16. GOMOS ozone profile validation using ground-based and balloon sonde measurements

    Directory of Open Access Journals (Sweden)

    J. A. E. van Gijsel

    2010-11-01

    Full Text Available The validation of ozone profiles retrieved by satellite instruments through comparison with data from ground-based instruments is important to monitor the evolution of the satellite instrument, to assist algorithm development and to allow multi-mission trend analyses.

    In this study we compare ozone profiles derived from GOMOS night-time observations with measurements from lidar, microwave radiometer and balloon sonde. Collocated pairs are analysed for dependence on several geophysical and instrument observational parameters. Validation results are presented for the operational ESA level 2 data (GOMOS version 5.00 obtained during nearly seven years of observations and a comparison using a smaller dataset from the previous processor (version 4.02 is also included.

    The profiles obtained from dark limb measurements (solar zenith angle >107° when the provided processing flag is properly considered match the ground-based measurements within ±2 percent over the altitude range 20 to 40 km. Outside this range, the pairs start to deviate more and there is a latitudinal dependence: in the polar region where there is a higher amount of straylight contamination, differences start to occur lower in the mesosphere than in the tropics, whereas for the lower part of the stratosphere the opposite happens: the profiles in the tropics reach less far down as the signal reduces faster because of the higher altitude at which the maximum ozone concentration is found compared to the mid and polar latitudes. Also the bias is shifting from mostly negative in the polar region to more positive in the tropics

    Profiles measured under "twilight" conditions are often matching the ground-based measurements very well, but care has to be taken in all cases when dealing with "straylight" contaminated profiles.

    For the selection criteria applied here (data within 800 km, 3 degrees in equivalent latitude, 20 h (5 h above 50 km and a relative

  17. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  18. Investigation of the frequency content of ground motions recorded during strong Vrancea earthquakes, based on deterministic and stochastic indices

    CERN Document Server

    Craifaleanu, Iolanda-Gabriela

    2013-01-01

    The paper presents results from a recent study in progress, involving an extensive analysis, based on several deterministic and stochastic indices, of the frequency content of ground motions recorded during strong Vrancea seismic events. The study, continuing those initiated by Lungu et al. in the early nineties, aims to better reveal the characteristics of the analyzed ground motions. Over 300 accelerograms, recorded during the strong Vrancea seismic events mentioned above and recently re-digitized, are used in the study. Various analytical estimators of the frequency content, such as those based on Fourier spectra, power spectral density, response spectra and peak ground motion values are evaluated and compared. The results are correlated and validated by using the information provided by various spectral bandwidth measures, as the Vanmarcke and the Cartwright and Longuet-Higgins indices. The capacity of the analyzed estimators to describe the frequency content of the analyzed ground motions is assessed com...

  19. User manual for the NTS ground motion data base retrieval program: ntsgm

    Energy Technology Data Exchange (ETDEWEB)

    App, F.N. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Tunnell, T.W. [EG and G Energy Measurements, Inc., Los Alamos, NM (United States). Los Alamos Operations

    1994-05-01

    The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and there are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.

  20. Investigation of the frequency content of ground motions recorded during strong Vrancea earthquakes, based on deterministic and stochastic indices

    OpenAIRE

    Craifaleanu, Iolanda-Gabriela

    2013-01-01

    The paper presents results from a recent study in progress, involving an extensive analysis, based on several deterministic and stochastic indices, of the frequency content of ground motions recorded during strong Vrancea seismic events. The study, continuing those initiated by Lungu et al. in the early nineties, aims to better reveal the characteristics of the analyzed ground motions. Over 300 accelerograms, recorded during the strong Vrancea seismic events mentioned above and recently re-di...

  1. Ground-Based Submillimeter Spectroscopic Cosmological Surveys and Synergies with Space FIR Surveys

    Science.gov (United States)

    Spinoglio, Luigi

    2018-01-01

    To study the dust obscured processes of both star formation and black hole accretion during galaxy evolution and establish their role, as well as their mutual feedback processes, rest frame IR to submillimeter spectroscopy is needed. At these frequencies dust extinction is at its minimum and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. A large ground based submillimeter telescope with a large field of view and high sensitivity in the TeraHertz domain will pave the way of future FIR space telescope missions, such as SPICA in the late 2020's and the Origins Telescope later. I will present predictions demonstrating the synergies of such instruments to fully understand galaxy evolution, during its obscured phase, which has built most of the stellar populations in galaxies.

  2. Ground-based observations of the [SII] 6731 Å emission lines of the Io plasma torus

    Science.gov (United States)

    Magalhães Fabíola, P.; Gonzalez, Walter; Echer, Ezequiel; Souza-Echer, Mariza P.; Lopes, Rosaly; Morgenthaler, Jeffrey P.; Rathbun, Julie

    2017-10-01

    The Io Plasma Torus (IPT) is a doughnut-shaped structure of charged particles, composed mainly of sulfur and oxygen ions. The main source of the IPT is the moon Io, the most volcanically active object in the Solar System. Io is the innermost of the Galilean moons of Jupiter, the main source of the magnetospheric plasma and responsible for injecting nearly 1 ton/s of ions into Jupiter's magnetosphere. In this work ground-based observations of the [SII] 6731 Å emission lines are observed, obtained at the MacMath-Pierce Solar Telescope. The results shown here were obtained in late 1997 and occurred shortly after a period of important eruptions observed by the Galileo mission (1996-2003). Several outbursts were observed and periods of intense volcanic activity are important to correlate with periods of brightness enhancements observed at the IPT. The time of response between an eruption and enhancement at IPT is still not well understood.

  3. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    Science.gov (United States)

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project.

  4. POLARIS-II - An acousto-optic imaging spectropolarimeter for ground-based astronomy

    Science.gov (United States)

    Glenar, D. A.; Hillman, J. J.; Saif, B.; Bergstralh, J.

    1992-01-01

    A compact, acousto-optic tunable filter (AOTF) imaging spectropolarimeter for ground based astronomy from 400-1100 nm has been constructed at NASA/GSFC. The key components of this instrument are a TeO2 non-collinear AOTF, CCD camera, and an all-reflective optical relay assembly which uses a single elliptical mirror to produce side-by-side orthogonally polarized spectral images. The instrument was used at the Lowell Observatory 42-inch telescope for 'first light' planetary imaging and measurements of photometric standard stars. Narrow-band images of Saturn near 700 nm appear to show polarization effects which result from multiple scattering by aerosols. The instrument has recently been upgraded in order to integrate the RF drive electronics and eliminate contamination by scattered light. Design of the instrument and some initial results are presented.

  5. Chlorine oxide in the stratospheric ozone layer: ground-based detection and measurement.

    Science.gov (United States)

    Parrish, A; DE Zafra, R L; Solomon, P M; Barrett, J W; Carlson, E R

    1981-03-13

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204-gigahertz, millimeter-wave receiver. Data taken at latitude 42 degrees N on 17 days between 10 January and 18 February 1980 yield an average chlorine oxide column density of approximately 1.05 x 10(14) per square centimeter or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of 14 July 1977) made over the past 4 years at 32 degrees N. We find less chlorine oxide below 35 kilometers and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer.

  6. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  7. Miniaturized Wideband Bandpass Filter with Wide Stopband using Metamaterial-based Resonator and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    S. Chaimool

    2012-06-01

    Full Text Available This paper presents a miniaturized wideband bandpass filter with wide stopband performance. It is shown that the coupled metamaterial-based resonators (MBRs incorporating with the defected ground structure (DGS can significantly increase the coupling value to achieve wideband bandpass filter. This technique has been extended to realize wideband bandpass filter having fractional bandwidth of 63 % and low insertion loss in the passband. To further suppress the spurious harmonics and upper stopband, the combining of the zero-degree feed structure and embedded slot-loaded resonators in both input and output ports is introduced. The proposed filter has not only compact size but also good out-of-band response. The experimental results are demonstrated and discussed.

  8. Brine shrimp development in space: ground-based data to shuttle flight results

    Science.gov (United States)

    Spooner, B. S.; DeBell, L.; Hawkins, L.; Metcalf, J.; Guikema, J. A.; Rosowski, J.

    1992-01-01

    The brine shrimp, Artemia salina, has been used as a model system to assess microgravity effects on developing organisms. Following fertilization and early development, the egg can arrest in early gastrula as a dehydrated cyst stage that is stable to harsh environments over long time periods. When salt water is added, the cysts can reactivate, with embryonic development and egg hatching occurring in about 24 h. A series of larval molts or instars, over about a 2 week period, results in the adult crustacean. We have assessed these developmental events in a closed syringe system, a bioprocessing module, in ground-based studies, and have conducted preliminary in-orbit experiments aboard the Space Shuttle Atlantis during the flights of STS-37 and STS-43. Although the in-flight data are limited, spectacular degrees of development have been achieved.

  9. Ground-Based Validation of CCI Ozone Profile Climate Research Data Package Release 2015

    Science.gov (United States)

    Hubert, D.; Keppens, A.; Granville, J.; Verhoelst, T.; Lambert, J.-C.; Delcloo, A.; Hauchecorne, A.; Kivi, R.; Stubi, R.

    2016-08-01

    Validation is one of the cornerstones of ESA's Climate Change Initiative programme and of the Ozone_cci subproject in particular. Its objective is threefold: identification of the optimal retrieval algorithm for each instrument, characterisation of all products in the Climate Research Data Package, and assessment of their compliance with climate user requirements and specific research needs. We present the latest validation analyses and results of the ozone profile products (from limb- and nadir-viewing instruments) developed during the second phase of the Ozone_cci project: explorations of data content and information content, and comparisons of satellite data to ground-based reference observations. Ultimately, the validation conclusions are presented to data product users in the Product Validation and Intercomparison Report.

  10. Ground-based lidar beach topography of Fire Island, New York, April 2013

    Science.gov (United States)

    Brenner, Owen T.; Hapke, Cheryl J.; Spore, Nicholas J.; Brodie, Katherine L.; McNinch, Jesse E.

    2015-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, strong winter storms. The ongoing beach monitoring is part of the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

  11. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    Science.gov (United States)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  12. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    Science.gov (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  13. Ground and Space-based Imaging of the IGM with CWI, FIREBALL, and ISTOS

    Science.gov (United States)

    Martin, Christopher

    I discuss several experimental projects underway or proposed designed to discover and map emission from the IGM. The Cosmic Web Imager (CWI) is a ground-based high resolution spectrometer designed to detect low surface brightness emission from redshifted Lyman alpha, OVI and CIV at Palomar and Keck Observatories, over 2 1.0 range in the UV balloon window at 2000 Angstroms. ISTOS (Imaging Spectroscopic Telescope for Origins Surveys) is a proposed SMEX mission to discover and map baryons in the IGM from 0.05 < z < 2 over the 1250-2800 Angstrom range. All three experiments are integral field spectrometers designed to detect low surface brightness emission and reject point and diffuse foregrounds, and all have sensitives required to detect IGM and Circum-Galactic Medium emission at levels predicted by three independent cosmological simulations.

  14. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass...... of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled...... conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. Copyright...

  15. A site evaluation campaign for a ground based atmospheric Cherenkov telescope in Romania

    Science.gov (United States)

    Radu, Aurelian Andrei; Angelescu, Tatiana; Curtef, Valentin; Delia, Florin; Felea, Daniel; Goia, Ioana; Haşegan, Dumitru; Lucaschi, Bogdan; Manea, Ancuta; Popa, Vlad; Raliţă, Ioan; Văcăreanu, Radu

    2012-07-01

    Around the world, several scientific projects share the interest of a global network of small Cherenkov telescopes for monitoring observations of the brightest blazars—the DWARF network. A small, ground based, imaging atmospheric Cherenkov telescope of last generation is intended to be installed and operated in Romania as a component of the DWARF network. To prepare the construction of the observatory, two support projects have been initiated. Within the framework of these projects, we have assessed a number of possible sites where to settle the observatory. In this paper we submit a brief report on the general characteristics of the best four sites selected after the local infrastructure, the nearby facilities and the social impact criteria have been applied.

  16. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-08-01

    The feasibility of utilizing a ground-based laser without an orbital mirror for space debris removal is examined. Technical issues include atmospheric transmission losses, adaptive-optics corrections of wavefront distortions, laser field of view limitations, and laser-induced impulse generation. The physical constraints require a laser with megawatt output, long run-time capability, and wavelength with good atmospheric transmission characteristics. It is found that a 5-MW reactor-pumped laser can deorbit debris having masses of the order of one kilogram from orbital altitudes to be used by Space Station Freedom. Debris under one kilogram can be deorbited after one pass over the laser site, while larger debris can be deorbited or transferred to alternate orbits after multiple passes over the site.

  17. Research on the evaluation indicators of skilled employees’ career success based on grounded theory

    Directory of Open Access Journals (Sweden)

    Fulei Chu

    2015-04-01

    Full Text Available Purpose: summarized and sorted career success evaluation indicators of skilled employees Design/methodology/approach: Based on Grounded Theory, through interviews and questionnaires to railway skilled employees Findings and Originality/value: the study shows that “subjective career success”, including work-family balance, life satisfaction, career satisfaction, perception of career success, “objective career success”, including level of total revenue venue, growth rate of wage and times of promotion, “knowledge and skills career success” including upgrade of knowledge and skills, classification of skills, external competitiveness and job autonomy, are three important career success evaluation indicators of skilled employees. Originality/value: The results show that different age groups, different titles and different positions of skilled employees, there is a significant difference in the choice of career success evaluation indicators. It provides a useful reference to establish a career development system for the skilled employees.

  18. Obesity and survival in population-based patients with pancreatic cancer in the San Francisco Bay Area.

    Science.gov (United States)

    Gong, Zhihong; Holly, Elizabeth A; Bracci, Paige M

    2012-12-01

    Obesity has been consistently associated with increased risk of pancreatic cancer incidence and mortality. However, studies of obesity and overall survival in patients with pancreatic cancer are notably lacking, especially in population-based studies. Active and passive follow-up were used to determine vital status and survival for 510 pancreatic cancer patients diagnosed from 1995 to 1999 in a large population-based case-control study in the San Francisco Bay Area. Survival rates were computed using Kaplan-Meier methods. Hazard ratios (HR) and 95 % confidence intervals (CI) were estimated in multivariable Cox proportional hazards models as measures of the association between pre-diagnostic obesity and pancreatic cancer survival. An elevated hazard ratio of 1.3 (95 % CI, 0.91-1.81) was observed for obese [body mass index (BMI) ≥ 30] compared with normal range BMI (patients. Associations between BMI and overall survival did not statistically significantly vary by known prognostic and risk factors (all p-interaction ≥0.18), yet elevated HRs consistently were observed for obese compared with normal BMI patients [localized disease at diagnosis (HR, 3.1), surgical resection (HR, 1.6), ever smokers (HR, 1.6), diabetics (HR, 3.3)]. Poor survival was observed among men, older patients, more recent and current smokers, whereas improved survival was observed for Asian/Pacific Islanders. Our results in general provide limited support for an association between pre-diagnostic obesity and decreased survival in patients with pancreatic cancer. Patterns of reduced survival associated with obesity in some patient subgroups could be due to chance and require assessment in larger pooled studies.

  19. Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites

    Directory of Open Access Journals (Sweden)

    Jean-Maurice Cadet

    2017-11-01

    Full Text Available South Africa has been measuring the ground-based solar UV index for more than two decades at six sites to raise awareness about the impacts of the solar UV index on human health. This paper is an exploratory study based on comparison with satellite UV index measurements from the OMI/AURA experiment. Relative UV index differences between ground-based and satellite-derived data ranged from 0 to 45% depending on the site and year. Most of time, these differences appear in winter. Some ground-based stations’ data had closer agreement with satellite-derived data. While the ground-based instruments are not intended for long-term trend analysis, they provide UV index information for public awareness instead, with some weak signs suggesting such long-term trends may exist in the ground-based data. The annual cycle, altitude, and latitude effects clearly appear in the UV index data measured in South Africa. This variability must be taken into account for the development of an excess solar UV exposure prevention strategy.

  20. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  1. An assessment of the performance of global rainfall estimates without ground-based observations

    Science.gov (United States)

    Massari, Christian; Crow, Wade; Brocca, Luca

    2017-09-01

    Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC) to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS), showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth) of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007-2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern Hemisphere. The

  2. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  3. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    M.-M. Zempila

    2017-06-01

    Full Text Available This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4 UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh, in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990 and with a very low bias (0.000 to 0.011 in absolute units proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5

  4. Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G G; Houser, S; Benson, S; Klein, S A; Min, Q

    2009-11-02

    Given the known shortcomings in representing clouds in Global Climate Models (GCM) comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and column optical depth that extends over multiple decades. The necessary limitations of the ISCCP retrieval algorithm require that before comparisons can be made between model output and ISCCP results the model output must be modified to simulate what ISCCP would diagnose under the simulated circumstances. We evaluate one component of the so-called ISCCP simulator in this study by comparing ISCCP and a similar algorithm with various long-term statistics derived from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility ground-based remote sensors. We find that were a model to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, then the likelihood of that occurrence being placed in the same cloud top pressure and optical depth bin as ISCCP of the 9 bins that have become standard ranges from 30% to 70% depending on optical depth. While the ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, we find minor discrepancies due to the parameterization of cloud top pressure in the ISCCP simulator. The primary source of error seems to be related to discrepancies in visible optical depth that are not accounted for in the ISCCP simulator. We show that the optical depth discrepancies are largest when the assumptions necessary for plane parallel radiative transfer optical depths retrievals are violated.

  5. Io’s volcanoes at high spatial, spectral, and temporal resolution from ground-based observations

    Science.gov (United States)

    de Kleer, Katherine R.; de Pater, Imke

    2017-10-01

    Io’s dynamic volcanic eruptions provide a laboratory for studying large-scale volcanism on a body vastly different from Earth, and for unraveling the connections between tidal heating and the geological activity it powers. Ground-based near-infrared observatories allow for high-cadence, long-time-baseline observing programs using diverse instrumentation, and yield new information into the nature and variability of this activity. I will summarize results from four years of ground-based observations of Io’s volcanism, including: (1) A multi-year cadence observing campaign using adaptive optics on 8-10 meter telescopes, which places constraints on tidal heating models through sampling the spatial distribution of Io’s volcanic heat flow, and provides estimates of the occurrence rate of Io’s most energetic eruptions; (2) High-spectral-resolution (R~25,000) studies of Io’s volcanic SO gas emission at 1.7 microns, which resolves this rovibronic line into its different branches, and thus contains detailed information on the temperature and thermal state of the gas; and (3) The highest-spatial-resolution map ever produced of the entire Loki Patera, a 20,000 km2 volcanic feature on Io, derived from adaptive-optics observations of an occultation of Io by Europa. The map achieves a spatial resolution of ~10 km and indicates compositional differences across the patera. These datasets both reveal specific characteristics of Io’s individual eruptions, and provide clues into the sub-surface systems connecting Io’s tidally-heated interior to its surface expressions of volcanism.

  6. Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling

    Directory of Open Access Journals (Sweden)

    J. Reichardt

    2004-01-01

    Full Text Available The day-long observation of a polar stratospheric cloud (PSC by two co-located ground-based lidars at the Swedish research facility Esrange (67.9° N, 21.1° E on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale modeling is utilized to simulate the meteorological setting of the lidar measurements. Microphysical properties of the PSC particles are retrieved by comparing the measured particle depolarization ratio and the PSC-averaged lidar ratio with theoretical optical data derived for different particle shapes. In the morning, nitric acid trihydrate (NAT particles and then increasingly coexisting liquid ternary aerosol (LTA were detected as outflow from a mountain wave-induced ice PSC upwind Esrange. The NAT PSC is in good agreement with simulations for irregular-shaped particles with length-to-diameter ratios between 0.75 and 1.25, maximum dimensions from 0.7 to 0.9 µm, and a number density from 8 to 12 cm-3 and the coexisting LTA droplets had diameters from 0.7 to 0.9 µm, a refractive index of 1.39 and a number density from 7 to 11 cm-3. The total amount of condensed HNO3 was in the range of 8–12 ppbv. The data provide further observational evidence that NAT forms via deposition nucleation on ice particles as a number of recently published papers suggest. By early afternoon the mountain-wave ice PSC expanded above the lidar site. Its optical data indicate a decrease in minimum particle size from 3 to 1.9 µm with time. Later on, following the weakening of the mountain wave, wave-induced LTA was observed only. Our study demonstrates that ground-based lidar measurements of PSCs can be comprehensively interpreted if combined with mesoscale meteorological data.

  7. Calibration of ground-based microwave radiometers - Accuracy assessment and recommendations for network users

    Science.gov (United States)

    Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen

    2016-04-01

    Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.

  8. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  9. Combination of ground-based and satellite remote sensing measurements over Limassol

    Science.gov (United States)

    Nisantzi, Argyro; Mamouri, Rodanthi E.; Akylas, Evangelos; Hadjimitsis, Diofantos G.

    2013-08-01

    According to the International Panel of Climate Change (IPCC, 2007) there are still uncertainties in climate change predictions due to the impact of aerosols in the solar irradiance. The scattering procedure of aerosols depends strongly on their shape and size distribution while lidar techniques could give the vertical distribution of them. Southeastern Mediterranean is affected by air masses of different sources thus layers with complicate aerosol composition are frequently observed over Cyprus. A backscatter lidar has been established at Cyprus University of Technology's (CUT) premises (34°N, 33°E) since 2010, in order to provide vertical profiles of the aerosol optical properties such as backscatter coefficient and particle depolarization ratio. More than 2 years of daily measurements have been analyzed for the period of May 2010 to May 2012. From this dataset, there are almost 45 CALISPO coincidence overpasses at a distance of less than 105km from the location of the ground-based lidar and from those two cases were selected. Both, ground based and space born active remote sensing techniques were used in order to characterize aerosol layers in the free troposphere over SE Mediterranean. The layers of CALIPSO and CUT's lidar observations have been examined with respect to their origin, in order to retrieve the backscatter coefficient and the particle depolarization ratio at 532nm. The analysis of the presented cases, together with the air mass back-trajectories calculations, in accordance with depolarization retrievals, show that non-spherical particles originated from Africa whereas marine layer consist of spherical particles. Furthermore aerosol optical properties such as Ångström exponents (AE) derived from the sun-photometer belonging to the AERONET network at Limassol city were used complementary in order to support our analysis.

  10. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  11. Geocenter Coordinates from a Combined Processing of LEO and Ground-based GPS Observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-04-01

    The GPS observations provided by the global IGS (International GNSS Service) tracking network play an important role for the realization of a unique terrestrial reference frame that is accurate enough to allow the monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board Low Earth Orbiters (LEO) might help to further improve the realization of the terrestrial reference frame and the estimation of the geocenter coordinates, GPS satellite orbits and Earth rotation parameters (ERP). To assess the scope of improvement, we processed a network of 50 globally distributed and stable IGS-stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of three years (2010-2012). To ensure fully consistent solutions the zero-difference phase observations of the ground stations and LEOs were processed in a common least-square adjustment, estimating GPS orbits, LEO orbits, station coordinates, ERPs, site-specific tropospheric delays, satellite and receiver clocks and ambiguities. We present the significant impact of the individual LEOs and a combination of all four LEOs on geocenter coordinates derived by using a translational approach (also called network shift approach). In addition, we present geocenter coordinates derived from the same set of GPS observations by using a unified approach. This approach combines the translational and the degree-one approach by estimating translations and surface deformations simultaneously. Based on comparisons against each other and against geocenter time series derived by other techniques the effect of the selected approach is assessed.

  12. Ground-Based Measurements of the 2014–2015 Holuhraun Volcanic Cloud (Iceland

    Directory of Open Access Journals (Sweden)

    Melissa A. Pfeffer

    2018-01-01

    Full Text Available The 2014–2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios of SO2/HCl = 30–110 and SO2/HF = 30–130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3–5.5 km agl were measured with ground- and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting.

  13. Survival and complications of zirconia-based fixed dental prostheses: a systematic review.

    Science.gov (United States)

    Raigrodski, Ariel J; Hillstead, Matthew B; Meng, Graham K; Chung, Kwok-Hung

    2012-03-01

    Evidence is limited on the efficacy of zirconia-based fixed dental prostheses. The purpose of this systemic review was to assess zirconia-based FDPs in terms of survival and complications. Searches performed in PubMed databases were enriched by hand searches to identify suitable publications. The keywords used were: "zirconia" and "fixed dental prosthesis," "zirconia" and "crown," "zirconia" and "fixed partial denture" and "humans," "zirconia" and "crown" and "humans," "crown" and "all-ceramics," and "fixed partial denture" and "all-ceramics". Titles and abstracts were read to identify literature that fulfilled the inclusion criteria. Only peer reviewed clinical studies published in the English language from January 1999 through June 2011 were included. Twelve clinical studies based on zirconia, framework design, and porcelain veneering technique met the inclusion criteria. Of the studies identified, 1 was a randomized clinical study with 3-year follow-up results; the others were cohort prospective studies. Clinical complications included chipping of veneering porcelain, abutment failure, and framework fracture. One study investigated pressed ceramics as the veneering material and found no chipping of veneering porcelain after 3 years. Short term clinical data suggest that zirconia-based fixed dental prostheses may serve as an alternative to metal ceramic fixed dental prostheses in the anterior and posterior dentition. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Disparities in Survival with Bystander CPR following Cardiopulmonary Arrest Based on Neighborhood Characteristics

    Directory of Open Access Journals (Sweden)

    Nina Thakkar Rivera

    2016-01-01

    Full Text Available The American Heart Association reports the annual incidence of out-of-hospital cardiopulmonary arrests (OHCA is greater than 300,000 with a survival rate of 9.5%. Bystander cardiopulmonary resuscitation (CPR saves one life for every 30, with a 10% decrease in survival associated with every minute of delay in CPR initiation. Bystander CPR and training vary widely by region. We conducted a retrospective study of 320 persons who suffered OHCA in South Florida over 25 months. Increased survival, overall and with bystander CPR, was seen with increasing income (p=0.05, with a stronger disparity between low- and high-income neighborhoods (p=0.01 and p=0.03, resp.. Survival with bystander CPR was statistically greater in white- versus black-predominant neighborhoods (p=0.04. Increased survival, overall and with bystander CPR, was seen with high- versus low-education neighborhoods (p=0.03. Neighborhoods with more high school age persons displayed the lowest survival. We discovered a significant disparity in OHCA survival within neighborhoods of low-income, black-predominance, and low-education. Reduced survival was seen in neighborhoods with larger populations of high school students. This group is a potential target for training, and instruction can conceivably change survival outcomes in these neighborhoods, closing the gap, thus improving survival for all.

  15. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  16. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism

  17. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  18. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  19. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  20. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Cox regression is commonly used to predict the outcome by the time to an event of interest and in addition, identify relevant features for survival analysis in cancer genomics. Due to the high-dimensionality of high-throughput genomic data, existing Cox models trained on any particular dataset usually generalize poorly to other independent datasets. In this paper, we propose a network-based Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis across multiple ovarian cancer datasets. Net-Cox integrates gene network information into the Cox's proportional hazard model to explore the co-expression or functional relation among high-dimensional gene expression features in the gene network. Net-Cox was applied to analyze three independent gene expression datasets including the TCGA ovarian cancer dataset and two other public ovarian cancer datasets. Net-Cox with the network information from gene co-expression or functional relations identified highly consistent signature genes across the three datasets, and because of the better generalization across the datasets, Net-Cox also consistently improved the accuracy of survival prediction over the Cox models regularized by L(2 or L(1. This study focused on analyzing the death and recurrence outcomes in the treatment of ovarian carcinoma to identify signature genes that can more reliably predict the events. The signature genes comprise dense protein-protein interaction subnetworks, enriched by extracellular matrix receptors and modulators or by nuclear signaling components downstream of extracellular signal-regulated kinases. In the laboratory validation of the signature genes, a tumor array experiment by protein staining on an independent patient cohort from Mayo Clinic showed that the protein expression of the signature gene FBN1 is a biomarker significantly associated with the early recurrence after 12 months of the treatment in the ovarian cancer patients who are

  1. Survival benefit of postoperative radiation in papillary meningioma: Analysis of the National Cancer Data Base.

    Science.gov (United States)

    Sumner, Whitney A; Amini, Arya; Hankinson, Todd C; Foreman, Nicholas K; Gaspar, Laurie E; Kavanagh, Brian D; Karam, Sana D; Rusthoven, Chad G; Liu, Arthur K

    2017-01-01

    Papillary meningioma represents a rare subset of World Health Organization (WHO) Grade III meningioma that portends an overall poor prognosis. There is relatively limited data regarding the benefit of postoperative radiation therapy (PORT). We used the National Cancer Data Base (NCDB) to compare overall survival (OS) outcomes of surgically resected papillary meningioma cases undergoing PORT compared to post-operative observation. The NCDB was queried for patients with papillary meningioma, diagnosed between 2004 and 2013, who underwent upfront surgery with or without PORT. Overall survival (OS) was determined using the Kaplan-Meier method. Univariate (UVA) and multivariate (MVA) analyses were performed. In total, 190 patients were identified; 89 patients underwent PORT, 101 patients were observed. Eleven patients received chemotherapy (6 with PORT, 5 without). 2-Year OS was significantly improved with PORT vs. no PORT (93.0% vs. 74.4%), as was 5-year OS (78.5% vs. 62.5%) (hazard ratio [HR], 0.48; 95% confidence interval [CI], 0.27-0.85; p = 0.01). On MVA, patients receiving PORT had improved OS compared to observation (HR, 0.41; 95% CI, 0.22-0.76; p = 0.005). On subset analysis by age group, the benefit of PORT vs. no PORT was significant in patients ≤18 years (n = 13), with 2-year OS of 85.7% vs. 50.0% (HR, 0.08; 95% CI, 0.01-0.80; p = 0.032) and for patients >18 years (n = 184), with 2-year OS of 94.7% vs. 76.1% (HR, 0.55; 95% CI, 0.31-1.00; p = 0.049), respectively. In this large contemporary analysis, PORT was associated with improved survival for both adult and pediatric patients with papillary meningioma. PORT should be considered in those who present with this rare, aggressive tumor.

  2. Evaluation of Satellite and Ground Based Precipitation Products for Flood Forecasting

    Science.gov (United States)

    Chintalapudi, S.; Sharif, H.; Yeggina, S.

    2012-04-01

    The development in satellite-derived rainfall estimates encouraged the hydrological modeling in sparse gauged basins or ungauged basins. Especially, physically-based distributed hydrological models can benefit from the good spatial and temporal coverage of satellite precipitation products. In this study, three satellite derived precipitation datasets (TRMM, CMORPH, and PERSIANN), NEXRAD, and rain gauge precipitation datasets were used to drive the hydrological model. The physically-based, distributed hydrological model Gridded Surface Subsurface Hydrological Analysis (GSSHA) was used in this study. Focus will be on the results from the Guadalupe River Basin above Canyon Lake and below Comfort, Texas. The Guadalupe River Basin above Canyon Lake and below Comfort Texas drains an area of 1232 km2. Different storm events will be used in these simulations. August 2007 event was used as calibration and June 2007 event was used as validation. Results are discussed interms of accuracy of satellite precipitation estimates with the ground based precipitation estimates, predicting peak discharges, runoff volumes, time lag, and spatial distribution. The initial results showed that, model was able to predict the peak discharges and runoff volumes when using NEXRAD MPE data, and TRMM 3B42 precipitation product. The results also showed that there was time lag in hydrographs driven by both PERSIANN and CMORPH data sets.

  3. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-04

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  4. Indoor positioning and floor plan based ground truth: Can you really click where you are?

    OpenAIRE

    Popleteev, Andrei

    2016-01-01

    The increasing accuracy of indoor positioning systems requires an appropriately accurate evaluation, which compares system outputs with the known coordinates of test locations --- the ground truth. Although ground truth data are rarely (if ever) tested, they are traditionally assumed to be perfectly accurate. However, even small errors introduced by inaccurate ground truth need to be taken into account for fair evaluation and comparison between modern high-resolution positioning systems. ...

  5. Survival As a Quality Metric of Cancer Care: Use of the National Cancer Data Base to Assess Hospital Performance.

    Science.gov (United States)

    Shulman, Lawrence N; Palis, Bryan E; McCabe, Ryan; Mallin, Kathy; Loomis, Ashley; Winchester, David; McKellar, Daniel

    2018-01-01

    Survival is considered an important indicator of the quality of cancer care, but the validity of different methodologies to measure comparative survival rates is less well understood. We explored whether the National Cancer Data Base (NCDB) could serve as a source of unadjusted and risk-adjusted cancer survival data and whether these data could be used as quality indicators for individual hospitals or in the aggregate by hospital type. The NCDB, an aggregate of > 1,500 hospital cancer registries, was queried to analyze unadjusted and risk-adjusted hazards of death for patients with stage III breast cancer (n = 116,787) and stage IIIB or IV non-small-cell lung cancer (n = 252,392). Data were analyzed at the individual hospital level and by hospital type. At the hospital level, after risk adjustment, few hospitals had comparative risk-adjusted survival rates that were statistically better or worse. By hospital type, National Cancer Institute-designated comprehensive cancer centers had risk-adjusted survival ratios that were statistically significantly better than those of academic cancer centers and community hospitals. Using the NCDB as the data source, survival rates for patients with stage III breast cancer and stage IIIB or IV non-small-cell lung cancer were statistically better at National Cancer Institute-designated comprehensive cancer centers when compared with other hospital types. Compared with academic hospitals, risk-adjusted survival was lower in community hospitals. At the individual hospital level, after risk adjustment, few hospitals were shown to have statistically better or worse survival, suggesting that, using NCDB data, survival may not be a good metric to determine relative quality of cancer care at this level.

  6. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass.

    Directory of Open Access Journals (Sweden)

    Cristiana Paina

    Full Text Available Important agronomical traits in perennial ryegrass (Lolium perenne breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date.

  7. Abandoning Peracetic Acid-Based Dialyzer Reuse Is Associated with Improved Survival

    Science.gov (United States)

    Wang, Weiling; Mooney, Ann; Ofsthun, Norma; Lazarus, J. Michael; Hakim, Raymond M.

    2011-01-01

    Summary Background and objectives Higher mortality risk reported with reuse versus single use of dialyzers is potentially related to reuse reagents that modify membrane surface characteristics and the blood-membrane interface. A key mechanism may involve stimulation of an inflammatory response. Design, setting, participants, & measurements In a prospective crossover design, laboratory markers and mortality from 23 hemodialysis facilities abandoning reuse with peracetic acid mixture were tracked. C-reactive protein (CRP), white blood cell (WBC) count, albumin, and prealbumin were measured for 2 consecutive months before abandoning reuse and subsequently within 3 and 6 months on single use. Survival models were utilized to compare the 6-month period before abandoning reuse (baseline) and the 6-month period on single use of dialyzers after a 3-month “washout period.” Results Patients from baseline and single-use periods had a mean age of approximately 63 years; 44% were female, 54% were diabetic, 60% were white, and the mean vintage was approximately 3.2 years. The unadjusted hazard ratio for death was 0.70 and after case-mix adjustment was 0.74 for single use compared with reuse. Patients with CRP ≥ 5 mg/L during reuse (mean CRP = 26.6 mg/ml in April) declined on single use to 20.2 mg/L by August and 20.4 mg/L by November. WBC count declined slightly during single use, but nutritional markers were unchanged. Conclusions Abandonment of peracetic-acid-based reuse was associated with improved survival and lower levels of inflammatory but not nutritional markers. Further study is needed to evaluate a potential link between dialyzer reuse, inflammation, and mortality. PMID:20947788

  8. Strategy of thunderstorm measurement with super dense ground-based observation network

    Science.gov (United States)

    Takahashi, Y.; Sato, M.

    2014-12-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  9. Ground-Based Hyperspectral Characterization of Alaska Tundra Vegetation along Environmental Gradients

    Directory of Open Access Journals (Sweden)

    Marcel Schwieder

    2013-08-01

    Full Text Available Remote sensing has become a valuable tool in monitoring arctic environments. The aim of this paper is ground-based hyperspectral characterization of Low Arctic Alaskan tundra communities along four environmental gradients (regional climate, soil pH, toposequence, and soil moisture that all vary in ground cover, biomass, and dominating plant communities. Field spectroscopy in connection with vegetation analysis was carried out in summer 2012, along the North American Arctic Transect (NAAT. Spectral metrics were extracted, including the averaged reflectance and absorption-related metrics such as absorption depths and area of continuum removal. The spectral metrics were investigated with respect to “greenness”, biomass, vegetation height, and soil moisture regimes. The results show that the surface reflectances of all sites are similar in shape with a reduced near-infrared (NIR reflectance that is specific for low-growing biomes. The main spectro-radiometric findings are: (i Southern sites along the climate gradient have taller shrubs and greater overall vegetation biomass, which leads to higher reflectance in the NIR. (ii Vegetation height and surface wetness are two antagonists that balance each other out with respect to the NIR reflectance along the toposequence and soil moisture gradients. (iii Moist acidic tundra (MAT sites have “greener” species, more leaf biomass, and green-colored moss species that lead to higher pigment absorption compared to moist non-acidic tundra (MNT sites. (iv MAT and MNT plant community separation via narrowband Normalized Difference Vegetation Index (NDVI shows the potential of hyperspectral remote sensing applications in the tundra.

  10. Validation Campaigns for Sea Surface Wind and Wind Profile by Ground-Based Doppler Wind Lidar

    Science.gov (United States)

    Liu, Zhishen; Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Li, Zhigang

    2010-12-01

    According to the research frame of ESA-MOST DRAGON Cooperation Program (ID5291), Chinese partners from Ocean Remote Sensing Institute of Ocean University of China have carried out a serial of campaigns for ground-based lidar validations and atmospheric observations. ORSI/OUC Doppler wind lidar has been developed and deployed to accurately measure wind speed and direction over large areas in real time -- an application useful for ADM-Aeolus VAL/CAL, aviation safety, weather forecasting and sports. The sea surface wind campaigns were successfully accomplished at the Qingdao sailing competitions during the 29th Olympic Games. The lidar located at the seashore near the sailing field, and made a horizontal scan over the sea surface, making the wind measurement in real time and then uploading the data to the local meteorological station every 10 minutes. In addition to the sea surface wind campaigns, ORSI/OUC Doppler wind lidar was deployed on the wind profile observations for the China's Shenzhou 7 spacecraft landing zone weather campaigns in September 2008 in Inner Mongolia steppe. Wind profile was tracked by the mobile Doppler lidar system to help to predict the module's landing site. During above ground tests, validation lidar is tested to be able to provide an independent and credible measurement of radial wind speed, wind profile, 3D wind vector, aerosol- backscattering ratio, aerosol extinction coefficient, extinction-to-backscatter ratio in the atmospheric boundary layer and troposphere, sea surface wind vectors, which will be an independent and very effective validation tool for upcoming ADM-Aeolus project.

  11. 3D visual analysis tool in support of the SANDF's growing ground based air defence simulation capability

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-10-01

    Full Text Available A 3D visual analysis tool has been developed to add value to the SANDF's growing Ground Based Air Defence (GBAD) System of Systems simulation capability. A time based XML interface between the simulation and analysis tool, via a TCP connection or a...

  12. Photonic-based spectral reflectance sensor for ground-based plant detection and weed discrimination

    Science.gov (United States)

    Paap, Arie; Askraba, Sreten; Alameh, Kamal; Rowe, John

    2008-04-01

    A bench prototype photonic-based spectral reflectance sensor architecture for use in selective herbicide spraying systems performing non-contact spectral reflectance measurements of plants and soil is described and experimental data obtained with simulated farming vehicle traveling speed of 7 and 22 km/h is presented. The sensor uses a three-wavelength laser diode module that sequentially emits identically-polarized laser light beams through a common aperture, along one optical path. Each laser beam enters a multi-spot beam generator which produces up to 14 parallel laser beams over a 210mm span. The intensity of the reflected light from each spot is detected by a high-speed line scan image sensor. Plant discrimination is based on calculating the slope of the spectral response between the 635nm to 670nm and 670nm to 785nm laser wavelengths. The use of finely spaced and collimated laser beam array, instead of an un-collimated light source, allows detection of narrow leaved plants with a width as small as 12mm.

  13. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  14. A Comparison of Growth and Survival of Aquacultured Juvenile Florida Pompano fed Fishmeal and Plant-Based Diets

    Science.gov (United States)

    Budden, D.

    2016-02-01

    We investigated the growth and survival of aquacultured juvenile Florida Pompano (Trachinotus carolinus) fed two different diets. Pompano (initial weight 7.7 g /fish) were randomly assigned to one of two dietary treatments: Zeigler pellets (fishmeal; 35% protein, 5% lipid) and a plant-based Repashy Soilent Green algae gel (plant-based; 35% protein, 6% lipid). Fish were fed rations of 5% body weight twice daily for eight weeks. Despite nearly equivalent proximate compositions for the two feeds, survival rates were significantly affected by diet. All fish fed the Zeigler diet survived; however, mortality was observed in 92% of the fish fed the Repashy diet. At the end of the trial, mean weight gain of surviving pompano was highest in fish fed Zeigler pellets. Mean specific growth rate (SGR) for fish fed the Zeigler diet (0.24% per day) was higher than for fish fed Repashy (-2.44%).While plant-based feeds have been successfully used with the species, these results suggest that the plant-based Repashy diet is not suitable for survival or growth of aquacultured Florida pompano.

  15. Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch Shuttle Operations. Chapter 8

    Science.gov (United States)

    Martin, Rodney Alexander

    2010-01-01

    This chapter will provide a thorough end-to-end description of the process for evaluation of three different data-driven algorithms for anomaly detection to select the best candidate for deployment as part of a suite of IVHM (Integrated Vehicle Health Management) technologies. These algorithms were deemed to be sufficiently mature enough to be considered viable candidates for deployment in support of the maiden launch of Ares I-X, the successor to the Space Shuttle for NASA's Constellation program. Data-driven algorithms are just one of three different types being deployed. The other two types of algorithms being deployed include a "nile-based" expert system, and a "model-based" system. Within these two categories, the deployable candidates have already been selected based upon qualitative factors such as flight heritage. For the rule-based system, SHINE (Spacecraft High-speed Inference Engine) has been selected for deployment, which is a component of BEAM (Beacon-based Exception Analysis for Multimissions), a patented technology developed at NASA's JPL (Jet Propulsion Laboratory) and serves to aid in the management and identification of operational modes. For the "model-based" system, a commercially available package developed by QSI (Qualtech Systems, Inc.), TEAMS (Testability Engineering and Maintenance System) has been selected for deployment to aid in diagnosis. In the context of this particular deployment, distinctions among the use of the terms "data-driven," "rule-based," and "model-based," can be found in. Although there are three different categories of algorithms that have been selected for deployment, our main focus in this chapter will be on the evaluation of three candidates for data-driven anomaly detection. These algorithms will be evaluated upon their capability for robustly detecting incipient faults or failures in the ground-based phase of pre-launch space shuttle operations, rather than based oil heritage as performed in previous studies. Robust

  16. Condition assessment of concrete pavements using both ground penetrating radar and stress-wave based techniques

    Science.gov (United States)

    Li, Mengxing; Anderson, Neil; Sneed, Lesley; Torgashov, Evgeniy

    2016-12-01

    Two stress-wave based techniques, ultrasonic surface wave (USW) and impact echo (IE), as well as ground penetrating radar (GPR) were used to assess the condition of a segment of concrete pavement that includes a layer of concrete, a granular base and their interface. Core specimens retrieved at multiple locations were used to confirm the accuracy and reliability of each non-destructive testing (NDT) result. Results from this study demonstrate that the GPR method is accurate for estimating the pavement thickness and locating separations (air voids) between the concrete and granular base layers. The USW method is a rapid way to estimate the in-situ elastic modulus (dynamic elastic modulus) of the concrete, however, the existence of air voids at the interface could potentially affect the accuracy and reliability of the USW test results. The estimation of the dynamic modulus and the P-wave velocity of concrete was improved when a shorter wavelength range (3 in. to 8.5 in.) corresponding to the concrete layer thickness was applied instead of the full wavelength rage (3 in. to 11 in.) based on the standard spacing of the receiver transducers. The IE method is proved to be fairly accurate in estimating the thickness of concrete pavements. However, the flexural mode vibration could affect the accuracy and reliability of the test results. Furthermore, the existence of air voids between the concrete and granular base layers could affect the estimation of the compression wave velocity of concrete when the full wavelength range was applied (3 in. to 11 in.). Future work is needed in order to improve the accuracy and reliability of both USW and IE test results.

  17. Scope of Jovian lightning observation by ground-based and spacecraft instruments

    Science.gov (United States)

    Fukuhara, T.; Takahashi, Y.; Sato, M.; Nakajima, K.

    2009-12-01

    It is suggested by recent observational and theoretical studies that the thunderstorms, i.e., strong moist convective clouds in Jupiter’s atmosphere are very important not only as an essential ingredient of meteorology of Jupiter but also as a potentially very useful “probe” of the water abundance of the deep atmosphere, which is crucial to constrain the behavior of volatiles in early solar system. We would propose the lightning observation with properly designed optical device onboard Jovian system orbiter and with the ground-based telescope. Based on detailed analysis of cloud motions by Galileo orbiter, Gierasch et al. proposed that the thunderstorms can produce the small scale eddies and ultimately drive the belt/zone structure. Moreover, the belt zone structure helps the development of thunderstorms in the belt region in accordance with observation; the belt/zone structure and thunderstorms may be in a symbiotic relation. This framework is a refined version of shallow origin theory, but, although it is a very fantastic idea, quantitative verification remains to be done. Most recent numerical modeling by our group calculated all three types of cloud, i.e., H2O, NH3, and, NH4SH. One of the most important findings is the existence of distinct, quasi-periodic temporal variation of the convective cloud activity; explosion of cloud activity extending all over the computational domain occurs separated by quiet period of order of 10 days. Another surprising finding is that the period of the active/break cycle is roughly proportional to the amount of condensable component in the sub-cloud layer. This strong correspondence between the deep volatile abundance and temporal variability of cloud convection implies a new method to probe the deep atmosphere. We believe JGO with other optical equipments especially for atmospheric spectral imaging is the ideal platform for the lightning detector. Comparing quantitative lightning activity with ambient cloud motion and

  18. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC

  19. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC are associated with

  20. Physically-Based Ground Motion Prediction and Validation A Case Study: Mid-sized Marmara Sea Earthquakes

    Science.gov (United States)

    Mert, A.

    2015-12-01

    In this study we have two main purposes. The first one is to simulate five midsize earthquakes (Mw≈5.0) recorded in the Marmara region, which has a geologically complex and heterogeneous crustal structure. We synthesize ground motion for the full wave train on three components, and applied a 'physics based' solution of earthquake rupture. The simulation methodology is based on the studies by Hutchings et al. (2007), Scognamiglio and Hutchings (2009). For each earthquake, we synthesized seismograms using by 500 different rupture scenarios that were generated by Monte Carlo selection of parameters within the range. Synthetic ground motion is a major challenge for seismic hazard assessment studies. Especially after the adoption of performance-based design approach with the Earthquake resistant design of engineering structures. To compute realistic time histories for different locations around Marmara region can be helpful for engineering design, retrofitting the existing structures, hazard and risk management studies and developing new seismic codes and standards.The second purpose is to validate synthetic seismograms with real seismograms. We follow the methodology presented by Anderson (2003) for validation. This methodology proposes a similarity score based on averages of the quality of fit measuring ground motion characteristics and uses a suite of measurements. Namely, the synthetics are compared to real data by ten representative ground motion criteria. The applicability of Empirical Green's functions methodology and physics based solution of earthquake rupture had been assessed in terms of modeling in complex geologic structure. Because the methodology produces source and site specific synthetic ground motion time histories and goodness-of-fit scores of obtained synthetics is between 'fair' to 'good' range based on Anderson's score, we concluded that it can be tried to produce ground motion that has not previously been recorded during catastrophic earthquake

  1. Survival of patients discharged after acute myocardial infarction and evidence-based drug therapy.

    Science.gov (United States)

    Gouya, Ghazaleh; Reichardt, Berthold; Ohrenberger, Gerald; Wolzt, Michael

    2007-01-01

    There is consensus that patients should be treated with antiplatelet agents, beta-blockers, ACE-inhibitors/ARBs, and lipid lowering drugs for secondary prevention after acute myocardial infarction (AMI), but this evidence-based pharmacotherapy is underutilized. A quality improvement program was conducted in the Austrian county of Burgenland to emphasize the importance of cardiovascular drug therapy at hospital discharge in patients with AMI. In this prospective cohort study 250 members of a regional health insurance company, Burgenländische Gebietskrankenkasse (BGKK), with AMI during the year 2003 were identified using BGKK database. Discharge prescriptions and pharmacy reimbursement data of all included patients were determined. Overall prescription rate for patients discharged from hospital after AMI (n = 207) was 86% for platelet aggregation inhibitors, 77% for ACE-inhibitors or ARBs, 72% for beta-blockers, and 68% for a lipid lowering agent including statins. The all-cause mortality rate during a mean follow-up period of 552 days was 20%. Hazard ratio (HR) for death of patients with maximum 2 medications vs. those receiving 3 or 4 medications was 2.23 (95% CI: 1.19-4.18; p = 0.012). These data demonstrate that use of evidence-based drug treatment for prevention of mortality in patients with AMI is associated with risk reduction and survival benefit. Continuous quality improvement initiatives serve to improve outcome after AMI.

  2. Evidence for orbital motion of CW Leonis from ground-based astrometry

    Science.gov (United States)

    Sozzetti, A.; Smart, R. L.; Drimmel, R.; Giacobbe, P.; Lattanzi, M. G.

    2017-10-01

    Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations indicate that CW Leo, the closest carbon-rich asymptotic giant branch star to Sun, might have a low-mass stellar companion. We present archival ground-based astrometric measurements of CW Leo obtained within the context of the Torino Parallax Program and with >6 yr (1995-2001) of time baseline. The residuals to a single-star solution show significant curvature, and they are strongly correlated with the well-known I-band photometric variations due to stellar pulsations. We describe successfully the astrometry of CW Leo with a variability-induced motion (VIM) + acceleration model. We obtain proper motion and parallax of the centre-of-mass of the binary, the former in fair agreement with recent estimates, the latter at the near end of the range of inferred distances based on indirect methods. The VIM + acceleration model results allow us to derive a companion mass in agreement with that inferred by ALMA, they point towards a somewhat longer period than implied by ALMA, but are not compatible with much longer period estimates. These data will constitute a fundamental contribution towards the full understanding of the orbital architecture of the system when combined with Gaia astrometry, providing an ∼25 yr time baseline.

  3. PhoneSat: Ground Testing of a Phone-Based Prototype Bus

    Science.gov (United States)

    Felix, Carmen; Howard, Benjamin; Reyes, Matthew; Snarskiy, Fedor; Hickman, Ryan; Boshuizen, Christopher; Marshall, William

    2010-01-01

    Most of the key capabilities that are requisite of a satellite bus are housed in today's smart phones. PhoneSat refers to an initiative to build a ground-based prototype vehicle that could all the basic functionality of a satellite, including attitude control, using a smart Phone as its central hardware. All components used were also low cost Commercial off the Shelf (COTS). In summer 2009, an initial prototype was created using the LEGO Mindstorm toolkit demonstrating simple attitude control. Here we report on a follow up initiative to design, build and test a vehicle based on the Google s smart phone Nexus One. The report includes results from initial thermal-vacuum chamber tests and low altitude sub-orbital rocket flights which show that, at least for short durations, the Nexus One phone is able to withstand key aspects of the space environment without failure. We compare the sensor data from the Phone's accelerometers and magnetometers with that of an external microelectronic inertial measurement unit.

  4. Signal-to-noise enhancement in ground-based intensity observations of solar p modes

    Science.gov (United States)

    Germain, Marvin E.

    1995-01-01

    Intensity observations of solar p modes are needed to form a complete picture of wave propagation in the photosphere. Ground-based intensity observations are severely hampered by terrestrial atmospheric noise. Partial cancellation of the noise power can be achieved if two spectra having disparate signal-to- noise ratios, and based on time series acquired simultaneously at the same site, are combined. A method of combining the spectra is suggested in which one amplitude is scaled and subtracted from the other. The result is squared yielding a positive-definite power density. To test the method, the intensity of light scattered by the Earth's atmnosphere was recorded at fifteen- second intervals in two narrow bands centered on 0.5 microns and 1.6 microns. When the two resulting spectra were combined, the noise power was attenuated by a factor of 2.7. The scale factor was varied about its optimum value, revealing that noise peaks have a different siganture than signal peaks, and opening up the possibility of a new tool in discrimination against noise peaks. Maxima at symmetry-allowed frequencies and minima at symmetry- forbidden frequencies indicate that the possibility that these results are obtained by chance is only 6.1 x 10(exp -4). The positions of these maxima and minima also support the solar-cycle dependent frequency shifts found by Palle, Regulo, and Roca Cortes.

  5. Aerosol Monitoring over Athens Using Satellite and Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2010-01-01

    Full Text Available Satellite data of moderate spatial resolution (MODIS and MERIS were used to retrieve the aerosol optical depth (AOD over the urban area of Athens. MODIS products were obtained at a horizontal resolution of 10 by 10 km2 centered over Athens, while the differential textural analysis (DTA code was applied to MERIS images to retrieve relative-to-reference AOD with a resolution of 260 m by 290 m. The possibility of exploiting the full resolution of MERIS data in retrieving AOD over a grid of a few hundreds metres was thereby investigated for the first time. MERIS-based AOD, centred at 560 nm, showed strong positive correlation to ground-based PM10 data (R2 = 0.85, while MODIS AOD products were in agreement with both MERIS and PM10. Back trajectories were used to study the impact of atmospheric conditions prevailing during the examined days. Days associated with Saharan air masses corresponded to enhanced AOD and predominance of coarse-mode particles. The results suggest that, at least for the case of Athens, AOD retrieved by MERIS images using the DTA code over cloud-free areas can be related to PM10. The accuracy of retrieval mainly depends on the successful selection of the reference satellite data, namely, an image being least contaminated by tropospheric aerosols.

  6. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    Science.gov (United States)

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  7. Stellar activity and stellar pulsations in ground- and space-based observations

    Science.gov (United States)

    Paunzen, E.; Bernhard, K.; Hümmerich, S.

    2018-01-01

    The research on variable stars has significantly benefited from the availability of long-term photometric time series data from ground- and space-based surveys. Precise and long-term stable data allow the investigation of variable stars with small amplitudes and long periods, and the research on multi-periodic objects has profited greatly from the availability of quasi-uninterrupted time series data from space-based mission. To illustrate this situation, we have chosen to present our efforts to investigate the photometric variability of magnetic chemically peculiar stars using data from six different survey sources (ASAS-3, CoRoT, KELT, Kepler, Kepler-K2 and SuperWASP). Due to their range of periods (0.5 days to several years) and photometric amplitudes (sub-mmag range to about 0.1 mag), these objects constitute a challenge to observers. Long-term instrumental stability and a sufficient phase coverage are needed to detect and investigate this kind of variability.

  8. Statistical Modeling of Soil Moisture, Integrating Satellite Remote-Sensing (SAR and Ground-Based Data

    Directory of Open Access Journals (Sweden)

    Reza Hosseini

    2015-03-01

    Full Text Available We present a flexible, integrated statistical-based modeling approach to improve the robustness of soil moisture data predictions. We apply this approach in exploring the consequence of different choices of leading predictors and covariates. Competing models, predictors, covariates and changing spatial correlation are often ignored in empirical analyses and validation studies. An optimal choice of model and predictors may, however, provide a more consistent and reliable explanation of the high environmental variability and stochasticity of soil moisture observational data. We integrate active polarimetric satellite remote-sensing data (RADARSAT-2, C-band with ground-based in-situ data across an agricultural monitoring site in Canada. We apply a grouped step-wise algorithm to iteratively select best-performing predictors of soil moisture. Integrated modeling approaches may better account for observed uncertainty and be tuned to different applications that vary in scale and scope, while also providing greater insights into spatial scaling (upscaling and downscaling of soil moisture variability from the field- to regional scale. We discuss several methodological extensions and data requirements to enable further statistical modeling and validation for improved agricultural decision-support.

  9. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  10. Secure Web-based Ground System User Interfaces over the Open Internet

    Science.gov (United States)

    Langston, James H.; Murray, Henry L.; Hunt, Gary R.

    1998-01-01

    A prototype has been developed which makes use of commercially available products in conjunction with the Java programming language to provide a secure user interface for command and control over the open Internet. This paper reports successful demonstration of: (1) Security over the Internet, including encryption and certification; (2) Integration of Java applets with a COTS command and control product; (3) Remote spacecraft commanding using the Internet. The Java-based Spacecraft Web Interface to Telemetry and Command Handling (Jswitch) ground system prototype provides these capabilities. This activity demonstrates the use and integration of current technologies to enable a spacecraft engineer or flight operator to monitor and control a spacecraft from a user interface communicating over the open Internet using standard World Wide Web (WWW) protocols and commercial off-the-shelf (COTS) products. The core command and control functions are provided by the COTS Epoch 2000 product. The standard WWW tools and browsers are used in conjunction with the Java programming technology. Security is provided with the current encryption and certification technology. This system prototype is a step in the direction of giving scientist and flight operators Web-based access to instrument, payload, and spacecraft data.

  11. Gap interpolation by inpainting methods: Application to ground and space-based asteroseismic data

    Science.gov (United States)

    Pires, Sandrine; Mathur, Savita; García, Rafael A.; Ballot, Jérôme; Stello, Dennis; Sato, Kumiko

    2015-02-01

    In asteroseismology, the observed time series often suffers from incomplete time coverage due to gaps. The presence of periodic gaps may generate spurious peaks in the power spectrum that limit the analysis of the data. Various methods have been developed to deal with gaps in time series data. However, it is still important to improve these methods to be able to extract all the possible information contained in the data. In this paper, we propose a new approach to handling the problem, the so-called inpainting method. This technique, based on a prior condition of sparsity, enables the gaps in the data to be judiciously fill-in thereby preserving the asteroseismic signal as far as possible. The impact of the observational window function is reduced and the interpretation of the power spectrum simplified. This method is applied on both ground- and space-based data. It appears that the inpainting technique improves the detection and estimation of the oscillation modes. Additionally, it can be used to study very long time series of many stars because it is very fast to compute. For a time series of 50 days of CoRoT-like data, it allows a speed-up factor of 1000, if compared to methods with the same accuracy.

  12. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    OpenAIRE

    Strong, K.; Walker, K. A.; Olson, J. R.; McElroy, C. T.; C. Midwinter; Kerzenmacher, T. E.; D. Fu; Goutail, F.; Fogal, P. F.; Drummond, J. R.; Blatherwick, R. D.; Bernath, P. F.; Fraser, A; Wunch, D.; Young, I. J.

    2007-01-01

    International audience; The MANTRA (Middle Atmosphere Nitrogen TRend Assessment) 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W) from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs) that were part of the balloon payload also performed ground-based meas...

  13. High resolution PolInSAR with the ground-based SAR (GB-SAR) System: measurement and modelling

    OpenAIRE

    Morrison, K; Williams, M L

    2006-01-01

    Ground-based work is necessary for a comprehensive assessment of the operational potential and limitations of PolInSAR in airborne and satellite SAR applications. A study is made of the performance and usefulness of the UK’s Ground-Based SAR (GB-SAR) Outdoor System in high-resolution PolInSAR studies of vegetation using modeling results. The facility provides fully-polarimetric L- through X-band imagery down to a resolution of several wavelengths. However, the measurem...

  14. Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations

    Directory of Open Access Journals (Sweden)

    S. P. Rusli

    2017-12-01

    Full Text Available Despite the importance of radar reflectivity (Z measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC. From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud–drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent

  15. Compiling a national resistivity atlas of Denmark based on airborne and ground-based transient electromagnetic data

    DEFF Research Database (Denmark)

    Barfod, Adrian; Møller, Ingelise; Christiansen, Anders Vest

    2016-01-01

    We present a large-scale study of the petrophysical relationship of resistivities obtained from densely sampled ground-based and airborne transient electromagnetic surveys and lithological information from boreholes. The overriding aim of this study is to develop a framework for examining...... the resistivity-lithology relationship in a statistical manner and apply this framework to gain a better description of the large-scale resistivity structures of the subsurface. In Denmark very large and extensive datasets are available through the national geophysical and borehole databases, GERDA and JUPITER...... respectively. In a 10 by 10 km grid, these data are compiled into histograms of resistivity versus lithology. To do this, the geophysical data are interpolated to the position of the boreholes, which allows for a lithological categorization of the interpolated resistivity values, yielding different histograms...

  16. Conceptualisation of community-based basic nursing education in South Africa: a grounded theory analysis.

    Science.gov (United States)

    Mtshali, N G

    2005-05-01

    Community-based education is about a decade old in basic nursing education in South Africa. An extensive review of literature revealed that although CBE was a familiar concept in South Africa, there was however, limited understanding of what this phenomenon means. The purpose of the study was to analyse the concept 'community-based education' with the aim of discovering shared understanding of this phenomenon in basic nursing education within the South African context. Strauss and Corbin's (1990) grounded theory approach was used to guide the research process. The South African Nursing Council's (SANC) education committee, the National Department of Health, human resources division representatives as well as seven nursing education institutions with well-established CBE programmes participated in the study. The data was collected by means of observations, interviews and document analysis. Purposive sampling and later theoretical sampling was used for selecting interviewees. This resulted in a total of 45 interviewees. The data collection and initial data analysis took place concurrently. Descriptive analysis followed by conceptual analysis was performed using Strauss and Corbin's model. The findings in this study revealed that community-based education is education that uses the community extensively, especially the under-developed and under-resourced settings, for learning purposes in order to enhance relevance of nursing education to the needs of the South African population. The core discriminatory characteristics of CBE were found to include; primacy of the community as a learning environment; the early exposure of students to community-based learning experiences; community-based learning experiences dominating the curriculum, exposure to community-based learning experiences throughout the curriculum, vertical sequencing of community-based learning experiences in a curriculum, starting from primary settings to secondary and later tertiary health care settings

  17. Model-based estimation of above-ground biomass in the miombo ecoregion of Zambia

    Directory of Open Access Journals (Sweden)

    James Halperin

    2016-07-01

    Full Text Available Background Information on above-ground biomass (AGB is important for managing forest resource use at local levels, land management planning at regional levels, and carbon emissions reporting at national and international levels. In many tropical developing countries, this information may be unreliable or at a scale too coarse for use at local levels. There is a vital need to provide estimates of AGB with quantifiable uncertainty that can facilitate land use management and policy development improvements. Model-based methods provide an efficient framework to estimate AGB. Methods Using National Forest Inventory (NFI data for a ~1,000,000 ha study area in the miombo ecoregion, Zambia, we estimated AGB using predicted canopy cover, environmental data, disturbance data, and Landsat 8 OLI satellite imagery. We assessed different combinations of these datasets using three models, a semiparametric generalized additive model (GAM and two nonlinear models (sigmoidal and exponential, employing a genetic algorithm for variable selection that minimized root mean square prediction error (RMSPE, calculated through cross-validation. We compared model fit statistics to a null model as a baseline estimation method. Using bootstrap resampling methods, we calculated 95 % confidence intervals for each model and compared results to a simple estimate of mean AGB from the NFI ground plot data. Results Canopy cover, soil moisture, and vegetation indices were consistently selected as predictor variables. The sigmoidal model and the GAM performed similarly; for both models the RMSPE was ~36.8 tonnes per hectare (i.e., 57 % of the mean. However, the sigmoidal model was approximately 30 % more efficient than the GAM, assessed using bootstrapped variance estimates relative to a null model. After selecting the sigmoidal model, we estimated total AGB for the study area at 64,526,209 tonnes (+/− 477,730, with a confidence interval 20 times more precise than a simple design-based

  18. Evaluation of atmospheric dust prediction models using ground-based observations

    Science.gov (United States)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  19. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    Science.gov (United States)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  20. Spatial representativeness of ground-based solar radiation measurements estimated from high-resolution Meteosat data

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Sanchez-Lorenzo, Arturo; Wild, Martin

    2014-05-01

    The validation of gridded surface solar radiation (SSR) data often relies on the comparison with ground-based in-situ measurements. This poses the question on how representative a point measurement is for a larger-scale surrounding. We use the high-resolution (0.03° ) SIS MVIRI data from the Satellite Application Facility on Climate Monitoring (CM SAF) to study the spatial sub-grid variability in all-sky surface solar radiation (SSR) over Europe, Africa, and parts of South America as covered by the Meteosat disk. This is done for the CERES EBAF 1° standard grid and two equal-angle grids of 0.25° and 3° resolution. Furthermore, we quantify the spatial representativeness of numerous surface sites from the BSRN and the GEBA for their site-centered larger surroundings varying in size from 0.25° to 3°, as well as with respect to the given standard grids. These analyses are done on a climatological annual and monthly mean basis over the period 2001-2005. The annual mean sub-grid variability (mean absolute deviation) in the 1° standard grid over European land is on average 1.6% (2.4 Wm¯²), with a maximum of up to 10% in Northern Spain (Hakuba et al. 2013). As expected, highest sub-grid variability is found in mountainous and coastal regions. The annual mean representation error of point values at 143 surface sites in Europe with respect to their 1° surrounding and the 1° standard grid is on average 2% (3 Wm¯² ). For larger surroundings of 3°, the representation error increases to 3% (4.8 Wm¯²), which is of similar order as the measurement accuracy of in-situ observations. Most of the sites can thus be considered as representative for their larger surroundings of up to 3°, which holds also true for the majority of BSRN sites located in Africa and South America. This representation error can be reduced if site-specific correction factors are applied or when multiple sites are available in the same grid cell, i.e., three more sites reduce the error by 50

  1. Ground-based Characterization of Hayabusa2 Mission Target Asteroid 162173 Ryugu

    Science.gov (United States)

    Le Corre, Lucille; Reddy, Vishnu; Sanchez, Juan A.; Takir, Driss; Cloutis, Edward; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2017-10-01

    In preparation for the arrival of the Japanese Space Agency’s (JAXA) Hayabusa2 sample return mission to near-Earth asteroid (NEA) (162173) Ryugu, we took the opportunity to characterize the target with a ground-based telescope. We observed Ryugu using the SpeX instrument in Prism mode on NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on July, 12 2016 when the asteroid was 18.87 visual magnitude, at a phase angle of 13.3°. The NIR spectra were used to constrain Ryugu’s surface composition, meteorite analogs and spectral affinity to other asteroids. We also modeled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Masateru et al. (2014). Our spectrum of Ryugu has a broad absorption band at 1 µm, a slope change at 1.6 µm, and a second broad absorption band near 2.2 µm, but no well-defined absorption features over the 0.8-2.5 µm range. The two broad absorption features, if confirmed, are consistent with CO and CV chondrites. The shape of Ryugu’s spectrum matches very well those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regolith have similar composition. We also compared the spectrum of Ryugu with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as the source of Ryugu by Campins et al. (2013). We found that the spectrum of Clarissa shows significant differences with our NIR spectrum of Ryugu. Our analysis shows Ryugu’s spectrum best matches two CM2 carbonaceous chondrites, Mighei and ALH83100. We expect the surface regolith of Ryugu to be altered by a range of factors including temperature, contamination by exogenic material, and space weathering, posing challenges to

  2. Survival rate in nasopharyngeal carcinoma improved by high caseload volume: a nationwide population-based study in Taiwan

    Directory of Open Access Journals (Sweden)

    Chou Pesus

    2011-08-01

    Full Text Available Abstract Background Positive correlation between caseload and outcome has previously been validated for several procedures and cancer treatments. However, there is no information linking caseload and outcome of nasopharyngeal carcinoma (NPC treatment. We used nationwide population-based data to examine the association between physician case volume and survival rates of patients with NPC. Methods Between 1998 and 2000, a total of 1225 patients were identified from the Taiwan National Health Insurance Research Database. Survival analysis, the Cox proportional hazards model, and propensity score were used to assess the relationship between 10-year survival rates and physician caseloads. Results As the caseload of individual physicians increased, unadjusted 10-year survival rates increased (p p = 0.001 after adjusting for comorbidities, hospital, and treatment modality. When analyzed by propensity score, the adjusted 10-year survival rate differed significantly between patients treated by high-volume physicians and patients treated by low/medium-volume physicians (75% vs. 61%; p Conclusions Our data confirm a positive volume-outcome relationship for NPC. After adjusting for differences in the case mix, our analysis found treatment of NPC by high-volume physicians improved 10-year survival rate.

  3. Treatment of base of tongue cancer, stage III and stage IV with primary surgery: survival and functional outcomes.

    Science.gov (United States)

    Al-Qahtani, Khaled; Rieger, Jen; Harris, Jeffery R; Mlynarek, Alex; Williams, David; Islam, Tahera; Seikaly, Hadi

    2015-08-01

    This study examines functional outcome (speech and swallowing), survival, and disease control in patients receiving an intensified treatment regimen with primary aggressive surgery, and postoperative radiotherapy or postoperative concomitant chemoradiotherapy, for previously untreated, resectable, stage III and IV squamous cell carcinoma (SCC) of the tongue base. Sixty-six consecutive patients treated from June 1997 to June 2006 were followed prospectively through the Multidisciplinary Head and Neck Surgery Reconstruction Clinic. Speech and swallowing data were gathered at four evaluation times during the first year. Speech assessment was conducted by PERCI, Nasometer, and C-AIDS and swallowing assessment by Modified barium swallow, Diet survey and G-tube. Also, the overall survival, disease-specific survival and loco regional control were measured. The average age of the patients was 56.8, 85 % male and 15 % female. All patients had primary surgical resection and 83 % received postoperative radiotherapy and 17 % chemoradiation therapy. Overall survival at 3 years was 80.3 % and 5 years 52.2 %. Disease-specific survival at 3 years was 86.7 % and 5 years was 77.5 %. Local control was 94 %. Distal metastasis and second primary were found to be 7.5 % each. Primary surgical treatment of advanced BOT cancer offers excellent functional outcome, local control and disease-specific survival.

  4. Cancer survival among children of Turkish descent in Germany 1980–2005: a registry-based analysis

    Directory of Open Access Journals (Sweden)

    Razum Oliver

    2008-11-01

    Full Text Available Abstract Background Little is known about the effect of migrant status on childhood cancer survival. We studied cancer survival among children of Turkish descent in the German Cancer Childhood Registry, one of the largest childhood cancer registries worldwide. Methods We identified children of Turkish descent among cancer cases using a name-based approach. We compared 5-year survival probabilities of Turkish and other children in three time periods of diagnosis (1980–87, 1988–95, 1996–2005 using the Kaplan-Meier method and log-rank tests. Results The 5-year survival probability for all cancers among 1774 cases of Turkish descent (4.76% of all 37.259 cases was 76.9% compared to 77.6% in the comparison group (all other cases; p = 0.15. We found no age- or sex-specific survival differences (p-values between p = 0.18 and p = 0.90. For the period 1980–87, the 5-year survival probability among Turkish children with lymphoid leukaemia was significantly lower (62% versus 75.8%; p Conclusion Our results suggest that nowadays Turkish migrant status has no bearing on the outcome of childhood cancer therapies in Germany. The inclusion of currently more than 95% of all childhood cancer cases in standardised treatment protocols is likely to contribute to this finding.

  5. Factors associated with survival in pediatric adrenocortical carcinoma: An analysis of the National Cancer Data Base (NCDB).

    Science.gov (United States)

    Gulack, Brian C; Rialon, Kristy L; Englum, Brian R; Kim, Jina; Talbot, Lindsay J; Adibe, Obinna O; Rice, Henry E; Tracy, Elisabeth T

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare tumor in children with important distinctions from the adult disease. We reviewed the National Cancer Data Base (NCDB) to determine factors associated with long-term survival. The NCDB was queried for patients less than 18 years of age who were diagnosed with ACC between 1998 and 2011. Kaplan-Meier analysis was utilized to determine factors significantly associated with overall survival. A total of 111 patients were included (median age: 4 years, 69% female). ACC was more common in the youngest cohort, with 48% of cases occurring in children younger than the age of 3. Median tumor size was 9.5 cm (IQR: 6.5-13.0), and 87% of patients underwent some form of surgical resection. Among children with available data, 19 of 62 presented with metastases. Overall 1- and 3-year survival was 70% and 64%, respectively. Age, tumor size, extension of tumor into surrounding tissue, and metastatic disease were all found to be significantly associated with survival. Among patients who underwent a surgical procedure, margin status was also found to be significantly associated with survival. Age, tumor size, extension of tumor, metastatic disease, and margin status are significantly associated with long-term survival in children with adrenocortical carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study

    Science.gov (United States)

    Strömberg, Cecilia; Persson, Gunnar; Nilsson, Magnus

    2012-01-01

    Objectives To determine whether the routine use of intraoperative cholangiography can improve survival from complications related to bile duct injuries. Design Population based cohort study. Setting Prospectively collected data from the Swedish national registry of gallstone surgery and endoscopic retrograde cholangiopancreatography, GallRiks. Multivariate analysis done by Cox regression. Population All cholecystectomies recorded in GallRiks between 1 May 2005 and 31 December 2010. Main outcome measures Evidence of bile duct injury, rate of intended use of intraoperative cholangiography, and rate of survival after cholecytectomy. Results During the study, 51 041 cholecystectomies were registered in GallRiks and 747 (1.5%) iatrogenic bile duct injuries identified. Patients with bile duct injuries had an impaired survival compared with those without injury (mortality at one year 3.9% v 1.1%). Kaplan-Meier analysis showed that early detection of a bile duct injury, during the primary operation, improved survival. The intention to use intraoperative cholangiography reduced the risk of death after cholecystectomy by 62% (hazard ratio 0.38 (95% confidence interval 0.31 to 0.46)). Conclusions The high incidence of bile duct injury recorded is probably from GallRiks’ ability to detect the entire range of injury severities, from minor ductal lesions to complete transections of major ducts. Patients with bile duct injury during cholecystectomy had impaired survival, and early detection of the injury improved survival. The intention to perform an intraoperative cholangiography reduced the risk of death after cholecystectomy. PMID:23060654

  7. An inflammation-based prognostic index predicts survival advantage after transarterial chemoembolization in hepatocellular carcinoma.

    Science.gov (United States)

    Pinato, David J; Sharma, Rohini

    2012-08-01

    Transarterial chemoembolization (TACE) is the preferred treatment for unresectable, intermediate-stage hepatocellular carcinoma (HCC). However, survival after TACE can be highly variable, suggesting the need for more accurate patient selection to improve therapeutic outcome. We have explored the prognostic ability of the blood neutrophil-to-lymphocyte ratio (NLR), a biomarker of systemic inflammation, as a predictor of survival after TACE. Fifty-four patients with a diagnosis of HCC eligible for TACE were selected. Clinicopathologic variables were collected, including demographics, tumor staging, liver functional reserve, and laboratory variables. Dynamic changes in the NLR before and after TACE were studied as predictors of survival using both a univariate and multivariate Cox regression model. Patients in whom the NLR remained stable or normalized after TACE showed a significant improvement in overall survival of 26 months compared with patients showing a persistently abnormal index (P = 0.006). Other predictors of survival on univariate analysis were Cancer of the Liver Italian Program score (P = 0.05), intrahepatic spread (P = 0.01), tumor diameter > 5 cm (P = 0.02), > 1 TACE (P = 0.01), alpha-fetoprotein ≥ 400 (P = 0.002), and radiologic response to TACE (P analysis. Changes in alpha-fetoprotein after treatment did not predict survival. Patients with a persistently increased NLR have a worse outcome after TACE. NLR is a simple and universally available stratifying biomarker that can help identify patients with a significant survival advantage after TACE. Copyright © 2012 Mosby, Inc. All rights reserved.

  8. 21 CFR 601.41 - Approval based on a surrogate endpoint or on an effect on a clinical endpoint other than survival...

    Science.gov (United States)

    2010-04-01

    ... effect on a clinical endpoint other than survival or irreversible morbidity. 601.41 Section 601.41 Food... Approval based on a surrogate endpoint or on an effect on a clinical endpoint other than survival or... survival or irreversible morbidity. Approval under this section will be subject to the requirement that the...

  9. Time trends in population-based breast cancer survival in Estonia: analysis by age and stage.

    Science.gov (United States)

    Baburin, Aleksei; Aareleid, Tiiu; Padrik, Peeter; Valvere, Vahur; Innos, Kaire

    2014-02-01

    Survival from breast cancer (BC) in Estonia has been consistently among the lowest in Europe. The aim of this study was to examine most recent trends in BC survival in Estonia by age and stage. The trends in overall BC incidence and mortality are also shown in the paper. Estonian Cancer Registry data on all cases of BC, diagnosed in women in Estonia during 1995-2007 (n = 7424) and followed up for vital status through 2009, were used to estimate relative survival ratios (RSR). Period hybrid approach was used to obtain the most recent estimates (2005-2009). Stage was classified as localized, local/regional spread or distant. BC incidence continued to rise throughout the study period, but mortality has been in steady decline since 2000. The distribution of patients shifted towards older age and earlier stage at diagnosis. Overall age-standardized five-year RSR increased from 63% in 1995-1999 to 74% in 2005-2009. Younger age groups experienced a more rapid improvement compared to women over 60. Significant survival increase was observed for both localized and locally/regionally spread BC with five-year RSRs reaching 96% and 70% in 2005-2009, respectively; the latest five-year RSR for distant BC was 11%. Survival for T4 tumors was poor and large age difference was seen for locally/regionally spread BC. Considerable improvement in BC survival was observed over the study period. Women under 60 benefited most from both earlier diagnosis and treatment advances of locally/regionally spread cancers. However, the survival gap with more developed countries persists. Further increase in survival, but also decline in BC mortality in Estonia could be achieved by facilitating early diagnosis in all age groups, but particularly among women over 60. Investigations should continue to clarify the underlying mechanisms of the stage-specific survival deficit in Estonia.

  10. Survival of extensive restorations in primary molars: 15-year practice-based study.

    Science.gov (United States)

    Tseveenjav, Battsetseg; Furuholm, Jussi; Mulic, Aida; Valen, Håkon; Maisala, Tuomo; Turunen, Seppo; Varsio, Sinikka; Auero, Merja; Tjäderhane, Leo

    2017-12-03

    Caries decline in the western world is accompanied by strong polarization among children; 8% of Finnish 5-year-olds having 76% of untreated caries. This high caries risk group needs preventive and restorative strategies. To explore survival of extensive restorations in primary molars. This study was based on health records from 2002 to 2016 of children under 18 years. Of severely affected primary molars (n = 1061), 41% were restored with preformed metal crowns (PMCs), 38% with glass-ionomer cement (GIC)/polyacid-modified resin composite (PAMRC)/resin-modified GIC (RMGIC), and 21% with resin composites (RC). Younger children (3-8) received 97% of the PMCs and 86% of GIC/PAMRC/RMGIC; older ones (≥9) 91% of the RC restorations. Neither amalgam nor indirect restorations were registered. General dentists (GDs) engaged in primary care restored with GIC/PAMRC/RMGIC (52%) or RC (48%). GDs in general anesthesia care service placed 66% and specializing/specialized dentists 31% of PMCs. PMCs had lower failure rate (1.4% vs 3.0%) than GIC/PAMRC/RMGIC (P = 0.001). Choosing PMCs reduced patient visits compared to other restorations (P < 0.001). Severely affected primary molars of children at high caries risk are better managed, using PMCs to optimize the resources in public oral health services. © 2017 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Debris search around (486958) 2014 MU69: Results from SOFIA and ground-based occultation campaigns

    Science.gov (United States)

    Young, Eliot F.; Buie, Marc W.; Porter, Simon Bernard; Zangari, Amanda Marie; Stern, S. Alan; Ennico, Kimberly; Reach, William T.; Pfueller, Enrico; Wiedemann, Manuel; Fraser, Wesley Cristopher; Camargo, Julio; Young, Leslie; Wasserman, Lawrence H.; New Horizons MU69 Occultation Team

    2017-10-01

    The New Horizons spacecraft is scheduled to fly by the cold classical KBO 2014 MU69 on 1-Jan-2019. The spacecraft speed relative to the MU69 will be in excess of 14 km/s. At these encounter velocities, impact with debris could be fatal to the spacecraft. We report on searches for debris in the neighborhood of MU69 conducted from SOFIA and ground-based sites. SOFIA observed the star field around MU69 on 10-Jul-2017 (UT) with their Focal Plane Imager (FPI+), operating at 20 Hz from 7:25 to 8:10 UT, spanning the time of the predicted occultation. Several large fixed telescopes observed the 3-Jun-2017, 10-Jul-2017 and/or the 17-Jul-2017 occultation events, including the 4-meter SOAR telescope, the 8-meter Gemini South telescope, and many 16-inch portable telescopes that were arranged in picket fences in South Africa and Argentina. We report on the light curves from these observing platforms and constraints on the optical depth due to debris or rings within the approximate Hill sphere (about 60,000 km across) of MU69. This work was supported by the New Horizons mission and NASA, with astrometric support from the Gaia mission and logistical support from Argentina and the US embassies in Buenos Aires and CapeTown. At SOAR, data acquisition has been done with a Raptor camera (visitor instrument) funded by the Observatorio Nacional/MCTIC.

  12. Multi-instrument ground-based observations of a travelling convection vortices event

    Directory of Open Access Journals (Sweden)

    H. Lühr

    1996-02-01

    Full Text Available A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s–1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.

  13. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    Science.gov (United States)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a

  14. CO2 Total Column Variability From Ground-Based FTIR Measurements Over Central Mexico

    Science.gov (United States)

    Baylon, J. L.; Stremme, W.; Plaza, E.; Bezanilla, A.; Grutter, M.; Hase, F.; Blumenstock, T.

    2014-12-01

    There are now several space missions dedicated to measure greenhouse gases in order to improve the understanding of the carbon cycle. Ground based measurement sites are of great value in the validation process, however there are only a few stations in tropical latitudes. We present measurements of solar-absorption infrared spectra recorded on two locations over Central Mexico: the High-Altitude Station Altzomoni (19.12 N, 98.65 W), located in the Izta-Popo National Park outside of Mexico City; and the UNAM's Atmospheric Observatory (19.32 N, 99.17 W) in Mexico City. These measurements were performed using a high resolution Fourier transform infrared spectrometer FTIR (Bruker, HR 120/5) at Altzomoni and a moderate resolution FTIR (Bruker, Vertex 80) within the city. In this work, we present the first results for total vertical columns of CO2 derived from near-infrared spectra recorded at both locations using the retrieval code PROFFIT. We present the seasonal cycle and variability from the measurements, as well as the full diagnostics of the retrieval in order assess its quality and discuss the differences of both instruments and locations (altitudes, urban vs remote). This work aims to contribute to generate high quality datasets for satellite validation.

  15. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground-based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well-suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory-oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego-motion makes use of the Fourier-Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real-world data from a vehicle moving at 30 km/h over a 2.5 km course.

  16. Ground-based astrometry calibrated by Gaia DR1: new perspectives in asteroid orbit determination

    Science.gov (United States)

    Spoto, F.; Tanga, P.; Bouquillon, S.; Desmars, J.; Hestroffer, D.; Mignard, F.; Altmann, M.; Herald, D.; Marchant, J.; Barache, C.; Carlucci, T.; Lister, T.; Taris, F.

    2017-10-01

    Context. The Gaia Data Release 1 (GDR1) is a first, important step on the path of evolution of astrometric accuracy towards a much improved situation. Although asteroids are not present in GDR1, this intermediate release already impacts asteroid astrometry. Aims: Our goal is to investigate how the GDR1 can change the approach to a few typical problems, including the determination of orbits from short-arc astrometry, the exploitation of stellar occultations, and the impact risk assessment. Methods: We employ optimised asteroid orbit determination tools, and study the resulting orbit accuracy and post-fit residuals. For this goal, we use selected ground-based asteroid astrometry, and occultation events observed in the past. All measurements are calibrated by using GDR1 stars. Results: We show that, by adopting GDR1, very short measurement arcs can already provide interesting orbital solutions, capable of correctly identifying near-Earth asteroids (NEAs) and providing a much more accurate risk rating. We also demonstrate that occultations, previously used to derive asteroid size and shapes, now reach a new level of accuracy at which they can be fruitfully used to obtain astrometry at the level of accuracy of Gaia star positions.

  17. Statistical analysis of ground based magnetic field measurements with the field line resonance detector

    Directory of Open Access Journals (Sweden)

    F. Plaschke

    2008-11-01

    Full Text Available In this paper we introduce the field line resonance detector (FLRD, a wave telescope technique which has been specially adapted to estimate the spectral energy density of field line resonance (FLR phase structures in a superposed wave field. The field line resonance detector is able to detect and correctly characterize several superposed FLR structures of a wave field and therefore constitutes a new and powerful tool in ULF pulsation studies. In our work we derive the technique from the classical wave telescope beamformer and present a statistical analysis of one year of ground based magnetometer data from the Canadian magnetometer network CANOPUS, now known as CARISMA. The statistical analysis shows that the FLRD is capable of detecting and characterizing superposed or hidden FLR structures in most of the detected ULF pulsation events; the one year statistical database is therefore extraordinarily comprehensive. The results of this analysis confirm the results of previous FLR characterizations and furthermore allow a detailed generalized dispersion analysis of FLRs.

  18. Ground-based Observation System Development for the Moon Hyper-spectral Imaging

    Science.gov (United States)

    Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng

    2017-05-01

    The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.

  19. Petascale Computing for Ground-Based Solar Physics with the DKIST Data Center

    Science.gov (United States)

    Berukoff, Steven J.; Hays, Tony; Reardon, Kevin P.; Spiess, DJ; Watson, Fraser; Wiant, Scott

    2016-05-01

    When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 3 PB per year, and produce 107-109 metadata elements.The DKIST Data Center is being designed to store, curate, and process this flood of information, while providing association of science data and metadata to its acquisition and processing provenance. The Data Center will produce quality-controlled calibrated data sets, and make them available freely and openly through modern search interfaces and APIs. Documented software and algorithms will also be made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. We discuss our iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and how software and hardware support, intelligently deployed, will enable high-caliber solar physics research and community growth for the DKIST's 40-year lifespan.

  20. ZERODUR expanding capabilities and capacity for future spaceborne and ground-based telescopes

    Science.gov (United States)

    Westerhoff, Thomas; Werner, Thomas

    2017-09-01

    The glass ceramic ZERODUR is well known for its extremely low coefficient of thermal expansion making it one of the key materials for ultra-precision application such as IC and LCD Lithography, High-end Metrology, Aviation and space borne or ground based Astronomy. The steady growth of demand for more precision in those applications together with a growing number of precision systems and components is requesting the ability to on hand increase precision in manufacturing. Additionally, there is a need to increase production capacity of ZERODUR CNC machined products in parallel. This paper reports on the measures SCHOTT is realizing to feed the continuously increasing demand on high precision material and components. Next to a second melting tank additional capacity is going to be installed along the entire value stream of ZERODUR production. Features of new CNC machining capabilities in the two and four meter class will be reported allowing to provide tighter tolerance on mirror surface figure together with reduced sub surface damage in order to accelerate the polishing time. Examples are discussed such as the 4 m class secondary and tertiary mirrors for the ESO E-ELT. The new equipment will enable SCHOTT to light weight 4 m class mirror substrates for future space optics demand.

  1. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  2. Overview of the DACCIWA ground-based field campaign in southern West Africa

    Science.gov (United States)

    Lohou, Fabienne; Kalthoff, Norbert; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Ajao, Adewale; Ayoola, Muritala; Babić, Karmen; Bessardon, Geoffrey; Delon, Claire; Dione, Cheikh; Handwerker, Jan; Jambert, Corinne; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Derrien, Solène

    2017-04-01

    During June and July 2016, a ground-based field campaign took place in southern West Africa within the framework of the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project. In the investigated region, extended low-level stratus clouds form very frequently during night-time and persist long into the following day influencing the diurnal cycle of the atmospheric boundary layer and, hence, the regional climate. The motivation for the measurements was to identify the meteorological controls on the whole process chain from the formation of nocturnal stratus clouds, via the daytime transition to convective clouds and the formation of deep precipitating clouds. During the measurement period, extensive remote sensing and in-situ measurements were performed at three supersites in Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). The gathered observations included the energy-balance components at the Earth's surface, the mean and turbulent conditions in the nocturnal and daytime ABL as well as the de- and entrainment processes between the ABL and the free troposphere. The meteorological measurements were supplemented by aerosol and air-chemistry observations. We will give an overview of the conducted measurements including instrument availability and strategy during intensive observation periods.

  3. Astrometric star catalogues as combination of Hipparcos/Tycho catalogues with ground-based observations

    Directory of Open Access Journals (Sweden)

    Vondrák J.

    2004-01-01

    Full Text Available The successful ESA mission Hipparcos provided very precise parallaxes positions and proper motions of many stars in optical wavelength. Therefore it is a primary representation of International Celestial Reference System in this wavelength. However, the shortness of the mission (less than four years causes some problems with proper motions of the stars that are double or multiple. Therefore, a combination of the positions measured by Hipparcos satellite with ground-based observations with much longer history provides a better reference frame that is more stable in time. Several examples of such combinations are presented (ACT, TYCHO-2, FK6, GC+HIP, TYC2+HIP, ARIHIP and briefly described. The stress is put on the most recent Earth Orientation Catalogue (EOC that uses about 4.4 million optical observations of latitude/universal time variations (made during the twentieth century at 33 observatories in Earth orientation programmes, in combination with some of the above mentioned combined catalogues. The second version of the new catalogue EOC-2 contains 4418 objects, and the precision of their proper motions is far better than that of Hipparcos Catalogue.

  4. Ground-Based Phase of Spaceflight Experiment "Biosignal" Using Autonomic Microflurimeter "Fluor-K"

    Science.gov (United States)

    Grigorieva, O. V.; Gal'chuk, S. V.; Rudimov, E. G.; Buravkova, L. B.

    2013-02-01

    The majority of flight experiments with the use of cell cultures and equipment like KUBIK and CRIOGEM carried out on board of the satellites (Bion, Foton) and ISS only allows the after-flight biosamples to be analyzed. As far as with few exceptions, the real-time cellular parameters registration for a long period is hard to be implemented. We developed the "Fluor-K" equipment - precision, small-sized, autonomous, two-channel, programmed fluorimeter. This device is designed for registration of differential fluorescent signal from organic and non-organic objects of microscale in small volumes (cellular organelles suspensions, animal and human cells, unicellular algae, bacteria, various fluorescent colloid solutions). Beside that, "Fluor-K" allows simultaneous detection of temperature. The ground-based tests of the device proved successful. The developed software can support experimental schedules while real-time data registration with the built-in storage device allows changes in selected parameters to be analyzed using wide range of fluorescent probes.

  5. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone.

    Science.gov (United States)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafé, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of +0.3% exists between the UV-RAD total ozone values and those given by the Brewer #63 spectroradiometer and that mean differences of +0.3% and -0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer #63 and the Brewer #104 spectroradiometers, respectively.

  6. Identification of geomagnetic current systems from a ground-based network

    Science.gov (United States)

    Pereira, F.; Dudok de Wit, T.; Menvielle, M.

    2003-04-01

    The Earth's total magnetic field is a superposition of magnetic fields from a variety of sources. At the Earth's surface, the most important source is the internal field produced by currents within the Earth's liquid core. At high latitudes of our planet, magnetopheric and ionospheric current systems are other important sources of magnetic field. A large part of research in geomagnetism is devoted to the identification of these internal and external sources. The separation of current systems from ground-based measurements is a source separation problem. In this study, our approach consists in inferring from a statistical analysis of the data set what are the different contributing source terms. Our analysis will be done by a statistical method known as the Singular Value Decomposition. The SVD is widely used in multivariate analysis for reduction of dimensionality, which offers a more concise description of the observed data and helps to extract significant information from the data. From geomagnetic data provided by the INTERMAGNET global network, the results of the SVD analysis can be interpreted in terms of current systems such as the magnetic field declination, the separation of the auroral electrojets into quiet and intermittent components, the seasonal effects, the ring current signature, the observation of the polar cusp and the cross-tail currents, the displacement of the auroral oval (and even the detection of geomagnetic jerks ?).

  7. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  8. Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations

    Directory of Open Access Journals (Sweden)

    Suelynn Choy

    2015-01-01

    Full Text Available We present a comparison of atmospheric precipitable water vapor (PWV derived from ground-based global positioning system (GPS receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI technique for a five-year period (2008–2012 using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.

  9. GSBMS, a Ground Based Facility in Toulouse for plants, cells and microorganisms

    Science.gov (United States)

    Pereda-Loth, Veronica; Gasset, Gilbert; Eche, Brigitte; Gauquelin-Koch, Guillemette; Ginibri, Didier; Collin, Laetitia; Courtade-Saidi, Monique

    2012-07-01

    GSBMS (Scientific Group of Space Biology and Medicine) was created in 1992 by a group of scientists willing to share their skills, knowledge and expertise on space science. Our main topics are: gravitational biology, physiology, radiobiology and medicine at the University of Toulouse. GSBMS is a horizontal structure, supported by CNES, which can help user teams to prepare and develop experiments which require microgravity environment (Space Station, automatic spacecraft, Airbus-0g ). GSBMS is also part of the ESA-Ground Based Facility program. The scientific teams that have been granted to carry out a space experiment can find in GSBMS the expertise needed to finalize their project by doing preliminary tests necessary to prove the relevance of future space experiments and all over the following operational phases of a selected experiment until the launching. GSBMS make available to scientific teams, some devices to generate either Hypergravity (centrifuge 1g-5g) or alteration of the gravitational stimulus (RPM and clinostats). GSBMS has also developed an innovating device providing continuous low dose γ radiations (patent pending). GSBMS has participated to several Biological Space experiments using devices like Biobloc, Cytos, Biorack, Biopan, Ibis, Kubik, EMCS. Recently, GSBMS participated to the logistics ant technical support for PolCa, Gravigen and Genara-A Experiment in the last two years.

  10. Early Warning Monitoring of Natural and Engineered Slopes with Ground-Based Synthetic-Aperture Radar

    Science.gov (United States)

    Atzeni, C.; Barla, M.; Pieraccini, M.; Antolini, F.

    2015-01-01

    The first application of ground-based interferometric synthetic-aperture radar (GBInSAR) for slope monitoring dates back 13 years. Today, GBInSAR is used internationally as a leading-edge tool for near-real-time monitoring of surface slope movements in landslides and open pit mines. The success of the technology relies mainly on its ability to measure slope movements rapidly with sub-millimetric accuracy over wide areas and in almost any weather conditions. In recent years, GBInSAR has experienced significant improvements, due to the development of more advanced radar techniques in terms of both data processing and sensor performance. These improvements have led to widespread diffusion of the technology for early warning monitoring of slopes in both civil and mining applications. The main technical features of modern SAR technology for slope monitoring are discussed in this paper. A comparative analysis with other monitoring technologies is also presented along with some recent examples of successful slope monitoring.

  11. Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS)

    Science.gov (United States)

    Correll, Melanie J.; Edelmann, Richard E.; Hangarter, Roger P.; Mullen, Jack L.; Kiss, John Z.

    Phototropism and gravitropism play key roles in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. The blue-light response is controlled by the phototropins while the red-light response is mediated by the phytochrome family of photoreceptors. In order to better characterize root phototropism, we plan to perform experiments in microgravity so that this tropism can be more effectively studied without the interactions with the gravity response. Our experiments are to be performed on the European Modular Cultivation System (EMCS), which provides an incubator, lighting system, and high resolution video that are on a centrifuge palette. These experiments will be performed at μg, 1g (control) and fractional g-levels. In order to ensure success of this mission on the International Space Station, we have been conducting ground-based studies on growth, phototropism, and gravitropism in experimental unique equipment (EUE) that was designed for our experiments with Arabidopsis seedlings. Currently, the EMCS and our EUE are scheduled for launch on space shuttle mission STS-121. This project should provide insight into how the blue- and red-light signaling systems interact with each other and with the gravisensing system.

  12. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  13. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J. [Leiden Observatory, Leiden University, Postbus 9513, 2300-RA Leiden (Netherlands); De Kok, R. J. [SRON, Sorbonnelaan 2, 3584-CA Utrecht (Netherlands)

    2013-02-20

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter {tau} Booetis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  14. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  15. The ground-based FTIR network's potential for investigating the atmospheric water cycle

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-04-01

    Full Text Available We present tropospheric H216O and HD16O/H216O vapour profiles measured by ground-based FTIR (Fourier Transform Infrared spectrometers between 1996 and 2008 at a northern hemispheric subarctic and subtropical site (Kiruna, Northern Sweden, 68° N and Izaña, Tenerife Island, 28° N, respectively. We compare these measurements to an isotope incorporated atmospheric general circulation model (AGCM. If the model is nudged towards meteorological fields of reanalysis data the agreement is very satisfactory on time scales ranging from daily to inter-annual. Taking the Izaña and Kiruna measurements as an example we document the FTIR network's unique potential for investigating the atmospheric water cycle. At the subarctic site we find strong correlations between the FTIR data, on the one hand, and the Arctic Oscillation index and the northern Atlantic sea surface temperature, on the other hand. The Izaña FTIR measurements reveal the importance of the Hadley circulation and the Northern Atlantic Oscillation index for the subtropical middle/upper tropospheric water balance. We document where the AGCM is able to capture these complexities of the water cycle and where it fails.

  16. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    Science.gov (United States)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  17. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    Science.gov (United States)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  18. Ground-based Tracking of Geosynchronous Space Objects with a GM-CPHD Filter

    Science.gov (United States)

    Jones, B.; Hatten, N.; Ravago, N.; Russell, R.

    2016-09-01

    This paper presents a multi-target tracker for space objects near geosynchronous orbit using the Gaussian Mixture Cardinalized Probability Hypothesis Density (CPHD) filter. Given limited sensor coverage and more than 1,000 objects near geosynchronous orbit, long times between measurement updates for a single object can yield propagated uncertainties sufficiently large to create ambiguities in observation-to-track association. Recent research considers various methods for tracking space objects via Bayesian multi-target filters, with the CPHD being one such example. The implementation of the CPHD filter presented in this paper includes models consistent with the space-object tracking problem to form a new space-object tracker. This tracker combines parallelization with efficient models and integrators to reduce the run time of Gaussian-component propagation. To allow for instantiating new objects, the proposed filter uses a variation of the probabilistic admissible region that adheres to assumptions in the derivation of the CPHD filter. Finally, to reduce computation time while mitigating the so-called "spooky action at a distance" phenomenon in the CPHD filter, we propose splitting the multi-target state into distinct, non-interacting populations based on the sensor's field of view. In a scenario with 700 near-geosynchronous objects observed via three ground stations, the tracker maintains custody of initially known objects and instantiates tracks for newly detected ones. The mean filter estimation after a 48 hour observation campaign is comparable to the measurement error statistics.

  19. Yellowfin Tuna (Thunnusalbacares Fishing Ground Forecasting Model Based On Bayes Classifier In The South China Sea

    Directory of Open Access Journals (Sweden)

    Zhou Wei-feng

    2017-08-01

    Full Text Available Using the yellowfin tuna (Thunnusalbacares,YFTlongline fishing catch data in the open South China Sea (SCS provided by WCPFC, the optimum interpolation sea surface temperature (OISST from CPC/NOAA and multi-satellites altimetric monthly averaged product sea surface height (SSH released by CNES, eight alternative options based on Bayes classifier were made in this paper according to different strategies on the choice of environment factors and the levels of fishing zones to classify the YFT fishing ground in the open SCS. The classification results were compared with the actual ones for validation and analyzed to know how different plans impact on classification results and precision. The results of validation showed that the precision of the eight options were 71.4%, 75%, 70.8%, 74.4%, 66.7%, 68.5%, 57.7% and 63.7% in sequence, the first to sixth among them above 65% would meet the practical application needs basically. The alternatives which use SST and SSH simultaneously as the environmental factors have higher precision than which only use single SST environmental factor, and the consideration of adding SSH can improve the model precision to a certain extent. The options which use CPUE’s mean ± standard deviation as threshold have higher precision than which use CPUE’s 33.3%-quantile and 66.7%-quantile as the threshold

  20. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    Science.gov (United States)

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.