WorldWideScience

Sample records for surveyor spacecraft system

  1. Surveyor mobile surveillance system for hazardous environments

    International Nuclear Information System (INIS)

    Silverman, E.B.; Simmons, R.K.; Kniazewycz, B.G.; Darvish, A.R.; Irving, T.L.

    1987-01-01

    A successful program was recently conducted to test and evaluate a commercial-ready, wireless, remotely operated surveillance system for use in nuclear power plants. This evaluation of the Surveyor mobile surveillance system took place at Niagara Mohawk Power Corporation's Nine Mile Point Nuclear Power Station. The remotely operated vehicle measures radiation, temperature and relative humidity and provides optical inspection capability. The vehicle is readily maneuvered in 36-inch wide passageways and labyrinth entries and can climb stairs, negotiating 180-degree turns on stair landings. The system consists of a supervisory control station and a rugged, remotely-operated, battery-powered vehicle. The surveyor system is specifically designed to decrease personnel radiation exposure by supplementing the functions of an auxiliary operator or wealth physics technician to perform periodic component inspections inside particular areas within a nuclear power plant

  2. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  3. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  4. 'Surveyor': An Underwater System for Threat Material Detection

    International Nuclear Information System (INIS)

    Valkovic, Vladivoj; Sudac, Davorin; Nad, Karlo; Obhodas, Jasmina; Matika, Dario; Kollar, Robert

    2010-01-01

    The bottoms of the coastal seas, and oceans as well, are contaminated by many man-made objects including a variety of ammunition. This contamination is world wide spread with some areas being highly polluted presenting a serious threat to local population and to visitors as well. All littoral nations are investing lots of effort into the remediation of their coastal areas. Once the presence of the anomaly on the bottom of the shallow coastal sea water is confirmed (by visual identification and by using one or several sensors, namely magnetometer, sonar and optical cameras) it is necessary to establish if it contains explosive/chemical warfare charge. In our work we propose this to be performed by using neutron sensor installed within an underwater vessel - 'Surveyor'. When positioned above the object, or to its side, the system inspects the object for the presence of the threat material by using alpha particle tagged neutrons from the sealed tube d+t neutron generator. (author)

  5. Quality assurance systems – the difficulties in providing a global unified system for Surveyors

    OpenAIRE

    Goodhead, Tim

    2012-01-01

    This paper will analyse the difficulties in providing a global quality assurance system for Surveyors. Using case studies from the United Kingdom and elsewhere opportunities for harmonising Quality Assurance systems will be explored. The difficulties in moving towards common quality assurance systems will be analysed. Possible alternatives in the form of the development a knowledge bank of mutual agreements and top up qualifications will be investigated. The paper also looks at the role of FI...

  6. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  7. Surveyor Manual

    DEFF Research Database (Denmark)

    Blyt, Henrik; Hessellund, Regner Bæk

    The project proposes a new training system aiming at the creation of a new profession, the building surveyor, working for the preservation of the existing built stock and extension of its lifetime, by means of regular, expert observation, operation and maintenance. The results of this activity...... in the field, at local and national level. The training system will operate at two different levels, a) for higher-education graduates, mainly architects and engineers, at postgraduate level, providing a new qualification as ‘building surveyor’ and b) for graduates of secondary schools, post-secondary training...... providing the qualification of ‘building maintenance technician’. Being addressed to people seeking jobs, but also to professionals already working in domains connected to the administration and maintenance of building stock, such as local administration, public and private companies owning buildings, SMEs...

  8. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  9. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  10. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  11. Discovery Mondays: Surveyors' Tools

    CERN Multimedia

    2003-01-01

    Surveyors of all ages, have your rulers and compasses at the ready! This sixth edition of Discovery Monday is your chance to learn about the surveyor's tools - the state of the art in measuring instruments - and see for yourself how they work. With their usual daunting precision, the members of CERN's Surveying Group have prepared some demonstrations and exercises for you to try. Find out the techniques for ensuring accelerator alignment and learn about high-tech metrology systems such as deviation indicators, tracking lasers and total stations. The surveyors will show you how they precisely measure magnet positioning, with accuracy of a few thousandths of a millimetre. You can try your hand at precision measurement using different types of sensor and a modern-day version of the Romans' bubble level, accurate to within a thousandth of a millimetre. You will learn that photogrammetry techniques can transform even a simple digital camera into a remarkable measuring instrument. Finally, you will have a chance t...

  12. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  13. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  14. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  15. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  16. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  17. Core-Log-Seismic investigations of the Surveyor Fan and Channel system during the Pleistocene; IODP Exp. 341

    Science.gov (United States)

    Somchat, K.; Reece, R.; Gulick, S. P. S.

    2017-12-01

    The Chugach-St. Elias mountain range is the product of the ongoing subduction and collision of the Yakutat microplate with the North America Plate. The presence of this high topography close to the shoreline creates a unique source-to-sink system in which glacial eroded sediment is transported directly to the sea and preserved offshore in a deep sea fan without intervening storage. Surveyor Fan and Channel system is the product of this system. In this study we will focus on the four tributary channels that form at the head of the Surveyor Channel complex and merge into the main channel trunk 200 km from the shelf edge. We integrated drill core and 2D seismic reflection data to study the evolution of these tributaries in order to decipher glacial history along the southern Alaskan margin since the mid-Pleistocene (1.2 Ma). An age model from Integrated Ocean Drilling Program Expedition 341 Site U1418 provides a higher resolution chronology of sediment delivery to the Surveyor Fan than previous studies. We regionally mapped the seismic subunits previously identified by Exp. 341 scientists starting from Site U1418 and analyzed regional patterns of sediment deposition. Channel migrations are observable between 1.2-0.5 Ma which could be the result of increasing glacial ice volume onshore due to onset of the MPT. Two-way travel time (isopach) maps of the three subunits show that sediment depocenter began to move eastward since 1.2 Ma with a trend of overall sediment flux increase in all tributary channels. Changes in sediment flux in each system represent the changes in volume of glacial ice over successive glacial intervals. Additionally, seismic analysis of channel geomorphology shows that each system contains distinct geomorphological evolutions that respond to the glacially eroded sediment flux at different times. Since glacial erosional processes is the driver of this source-to-sink system, a history of glacial ice onshore since the Pleistocene can be inferred from

  18. Manned spacecraft electrical power systems

    Science.gov (United States)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  19. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  20. Galileo spacecraft power management and distribution system

    International Nuclear Information System (INIS)

    Detwiler, R.C.; Smith, R.L.

    1990-01-01

    It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware

  1. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  2. Rapid Geophysical Surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques

  3. THERESA FRANCO INSPECTS THE SOLAR PANELS OF THE MARS GLOBAL SURVEYOR

    Science.gov (United States)

    1996-01-01

    Theresa Franco of SPECTROLAB Inc. carefully inspects the solar panels of the Mars Global Surveyor spacecraft, undergoing preflight assembly and checkout in the Payload Hazardous Servicing Facility in KSC's Industrial Area. The four solar array panels will play a crucial role in the Mars Global Surveyor mission by providing the electrical power required to operate the spacecraft and its complement of scientific instruments. The Surveyor is slated for launch November 6 aboard a Delta II expendable launch vehicle. After arriving at the Red Planet in September 1997, the Surveyor will carry out an extensive study of Mars, gathering data about the planet's topography, magnetism, mineral composition and atmosphere.

  4. Rapid geophysical surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  5. Spacecraft attitude and velocity control system

    Science.gov (United States)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  6. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  7. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft

    Science.gov (United States)

    Imamura, M. S.; Skelly, L.; Weiner, H.

    1977-01-01

    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  8. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  9. Glacial and tectonic influence on terrestrial organic carbon delivery to high latitude deep marine systems: IODP Site U1417, Surveyor Fan, Gulf of Alaska

    Science.gov (United States)

    Childress, L. B.; Ridgway, K. D.

    2014-12-01

    Glacial and tectonic processes on active margins are intrinsically coupled to the transport of sediment and associated organic carbon (OC). Glaciation/deglaciation and the formation of ice sheets can alter the quantity and composition of OC delivered to the marine environment. Over geologic time scales (>1 Ma), exhumation and mass wasting of sedimentary rock from uplifted accretionary wedges inject recycled OC (e.g. kerogen), along with modern OC into the marine environment. The sedimentary record of glacial and tectonic processes along the southern Alaska margin is particularly well preserved at Integrated Ocean Drilling Program (IODP) Site U1417. Lithofacies of Site U1417 can be divided into 3 sedimentary packages that we interpret as linked to the onset of tidewater glaciation along, and tectonic convergence of the Yakutat Terrane with, the continental margin of northwestern Canada and southern Alaska. Based on previous studies linking the development of the Cordilleran Ice Sheet and the movement of the Yakutat Terrane to the development of the Surveyor Fan System, we hypothesize biogeochemical variations in the deposited sediments as a result of changing provenance. Preservation of terrestrial OC that has been documented in sediments of the Alaskan continental shelf margin and sediment routing through the deep-sea Surveyor Channel from the Pleistocene to modern time implies a long-term conduit for this OC to reach the distal portion of the Surveyor Fan system. To correlate marine deposits with terrestrial formations, bulk geochemical and detailed biomarker analyses are used to delineate source material. Preliminary bulk OC content and stable carbon isotope analyses of the Yakataga, Poul Creek, and Kultheith Fms. reveal notable differences. Detailed biomarker analysis by pyrolysis-gas chromatograph-mass spectrometry has revealed further differences between the three primary formations. Using the biogeochemical fingerprints of the Yakataga, Poul Creek, and coal

  10. Research on intelligent power distribution system for spacecraft

    Science.gov (United States)

    Xia, Xiaodong; Wu, Jianju

    2017-10-01

    The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.

  11. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  12. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  13. Time maintenance system for the BMDO MSX spacecraft

    Science.gov (United States)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  14. Multi-kilowatt modularized spacecraft power processing system development

    International Nuclear Information System (INIS)

    Andrews, R.E.; Hayden, J.H.; Hedges, R.T.; Rehmann, D.W.

    1975-07-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

  15. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  16. Automating a spacecraft electrical power system using expert systems

    Science.gov (United States)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  17. Large autonomous spacecraft electrical power system (LASEPS)

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  18. Radioisotope heaters for spacecraft life support systems

    International Nuclear Information System (INIS)

    Shivers, R.W.; Murray, R.W.

    1974-01-01

    Future manned space flight requires the sanitary collection and disposal of biological wastes to minimize microbial contamination hazard. The recovery and reuse of water from such wastes are also necessary to reduce the weight of vehicles at launching and resupply logistics. The development and test of an engineering model, i.e. the completely integrated waste management-water system using radioisotopes for thermal energy, are described. This is capable of collecting and processing the wastes from four men during 180-day simulated space mission. The sub-systems include collection of feces, trash and urine, water reclamation, the storage, heating and dispensing of the water, and the disposal of feces, urine residue and other non-metallic waste material by incineration. (Mori, K.)

  19. An Expert System for Autonomous Spacecraft Control

    Science.gov (United States)

    Sherwood, Rob; Chien, Steve; Tran, Daniel; Cichy, Benjamin; Castano, Rebecca; Davies, Ashley; Rabideau, Gregg

    2005-01-01

    The Autonomous Sciencecraft Experiment (ASE), part of the New Millennium Space Technology 6 Project, is flying onboard the Earth Orbiter 1 (EO-1) mission. The ASE software enables EO-1 to autonomously detect and respond to science events such as: volcanic activity, flooding, and water freeze/thaw. ASE uses classification algorithms to analyze imagery onboard to detect chang-e and science events. Detection of these events is then used to trigger follow-up imagery. Onboard mission planning software then develops a response plan that accounts for target visibility and operations constraints. This plan is then executed using a task execution system that can deal with run-time anomalies. In this paper we describe the autonomy flight software and how it enables a new paradigm of autonomous science and mission operations. We will also describe the current experiment status and future plans.

  20. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  1. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  2. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  3. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    Science.gov (United States)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  4. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    Science.gov (United States)

    Brooks, R. P.; Cha, K. K.

    1995-01-01

    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  5. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    Science.gov (United States)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  6. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    Science.gov (United States)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  7. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  8. Investigation of fast initialization of spacecraft bubble memory systems

    Science.gov (United States)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  9. Challenges to Building Surveyors From The Perspectives Of Non Surveyors

    Directory of Open Access Journals (Sweden)

    Isnin Zarina

    2016-01-01

    Full Text Available Awareness on the importance of Building Surveyors in Malaysia is still low as the role and skills of this profession are not fully understood. Although studies indicated that Building Surveyors are still in demand, even without the Building Surveyor Act, many graduates are experiencing inadequate employment opportunities in the current economic situation. Little is known on the views from other stakeholders about BS. This research aims to examine the awareness and opinions on BS in Malaysia amongst construction stakeholders. Questionnaire surveys were collected from 120 respondents from construction, maintenance and insurance companies and interviews were conducted to selected built environment respondents. It was found that awareness and knowledge on BS are still low as they lack information on the profession and professional recognitions. Some views indicated on a major identity crisis for having fragmented and disparate range of modules. The cause may have resulted in problems on public recognition, poor understanding of the surveyor’s skills, and fewer job opportunities. Several suggested the profession to have a clear, coherent and relevant identity, with strong professional structures in order for the profession to survive and gain recognition from the government. Graduates are also recommended to acquire other skills and training in order for them to be significant to the construction industry.

  10. Galileo spacecraft solid-state imaging system view of Antarctica

    Science.gov (United States)

    1990-01-01

    Galileo spacecraft solid-state imaging system view of Antarctica was taken during its first encounter with the Earth. This color picture of Antarctica is part of a mosaic of pictures covering the entire polar continent showing the Ross Ice Shelf and its border with the sea and mountains poking through the ice near the McMurdo Station. From top to bottom, the frame looks across about half of Antarctica. View provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37297.

  11. A computer graphics system for visualizing spacecraft in orbit

    Science.gov (United States)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  12. Electronic Systems for Spacecraft Vehicles: Required EDA Tools

    Science.gov (United States)

    Bachnak, Rafic

    1999-01-01

    The continuous increase in complexity of electronic systems is making the design and manufacturing of such systems more challenging than ever before. As a result, designers are finding it impossible to design efficient systems without the use of sophisticated Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and lead to a correct by design methodology. This report identifies the EDA tools that would be needed to design, analyze, simulate, and evaluate electronic systems for spacecraft vehicles. In addition, the report presents recommendations to enhance the current JSC electronic design capabilities. This includes cost information and a discussion as to the impact, both positive and negative, of implementing the recommendations.

  13. Definition of the topological structure of the automatic control system of spacecrafts

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Zelenkov, P V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Karaseva, M V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Tsareva, E A; Tsarev, R Y

    2015-01-01

    The paper considers the problem of selection the topological structure of the automated control system of spacecrafts. The integer linear model of mathematical programming designed to define the optimal topological structure for spacecraft control is proposed. To solve the determination problem of topological structure of the control system of spacecrafts developed the procedure of the directed search of some structure variants according to the scheme 'Branch and bound'. The example of the automated control system of spacecraft development included the combination of ground control stations, managing the spacecraft of three classes with a geosynchronous orbit with constant orbital periods is presented

  14. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  15. Radioisotope AMTEC power system designs for spacecraft applications

    International Nuclear Information System (INIS)

    Ivanenok, J.F. III; Sievers, R.K.; Hunt, T.K.; Johnson, G.A.

    1993-01-01

    The Alkali Metal Thermal to Electric Converter (AMTEC) system is an exceptional candidate for high performance spacecraft power systems including small systems powered by General Purpose Heat Sources (GPHS). The AMTEC converter is best described as a thermally regenerative electrochemical concentration cell. AMTEC is a static energy conversion device and can operate at efficiencies between 15% and 30%. The single tube, remote condensed, wick return minicell design has been incorporated into a radioisotope powered system model. Reported cell efficiencies used for these system design studies ranged from 15% to 25%. This efficiency is significantly higher than other static conversion systems operating at the same temperatures. Savings in mass and cost, relative to other more conventional static conversion systems, have also been shown. The minicell used for this system study has many advanced features not combined in previous designs, including wick return, remote condensing, and hot zone feedthroughs. All of these features significantly enhance the performance of the AMTEC cell. Additionally, the cell end provides enough area for adequate heat transfer from the GPHS module, eliminating the need for a ''hot shoe'', and reducing the complexity and weight of the system. This paper describes and compares small (two module) and larger (16 module) AMTEC radioisotope powered systems and describes the computer model developed to predict their performance

  16. Reactor/Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  17. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    Science.gov (United States)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  18. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  19. An expert system for diagnosing environmentally induced spacecraft anomalies

    Science.gov (United States)

    Rolincik, Mark; Lauriente, Michael; Koons, Harry C.; Gorney, David

    1992-01-01

    A new rule-based, machine independent analytical tool was designed for diagnosing spacecraft anomalies using an expert system. Expert systems provide an effective method for saving knowledge, allow computers to sift through large amounts of data pinpointing significant parts, and most importantly, use heuristics in addition to algorithms, which allow approximate reasoning and inference and the ability to attack problems not rigidly defined. The knowledge base consists of over two-hundred (200) rules and provides links to historical and environmental databases. The environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. The use of heuristics frees the user from searching through large amounts of irrelevant information and allows the user to input partial information (varying degrees of confidence in an answer) or 'unknown' to any question. The modularity of the expert system allows for easy updates and modifications. It not only provides scientists with needed risk analysis and confidence not found in algorithmic programs, but is also an effective learning tool, and the window implementation makes it very easy to use. The system currently runs on a Micro VAX II at Goddard Space Flight Center (GSFC). The inference engine used is NASA's C Language Integrated Production System (CLIPS).

  20. Experience of the Surveyor Mobile robot at Nine Mile Point

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.; Irving, T.L.

    1987-01-01

    A successful test and evaluation program was recently conducted on a commercial-ready, wireless, remotely operated surveillance system for use in nuclear power plants. This evaluation of the Surveyor Mobile Surveillance System took place at Niagara Mohawk Power Corporation's (NMPC) Nine Mile Point (NMP) Nuclear Power Station. The remotely operated vehicles measures radiation, temperature and relative humidity and provides optical inspection capability. The vehicle is readily maneuvered through 36 inch wide passageways and labyrinth entries and can climb stairs, negotiating 180 degree turns on stair landings. The Surveyor systems consists of a Supervisory Control Station and a rugged, remotely operated, battery-powered vehicle. The Surveyor system is specifically designed to decrease personnel radiation exposure by supplementing the functions of an auxiliary operator or Health Physics Technician to perform periodic component inspections inside particular areas within a nuclear power plant. The purpose of this presentation is to describe the recent efforts, achievements and experiences of the personnel at NMP Unit 1. In particular, this will address the test and evaluation program for the Surveyor Mobile Surveillance Robot

  1. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    Science.gov (United States)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  2. The surveyors' quest for perfect alignment

    CERN Document Server

    2003-01-01

    Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...

  3. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    Science.gov (United States)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  4. Workplace stress experienced by quantity surveyors

    African Journals Online (AJOL)

    Paul (P.A.) Bowen, Department of Construction Economics and Management,. University of Cape Town, Private ..... Explore workplace stress levels among quantity surveyors in the developing nation of ...... London: Free. Association Books.

  5. Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer's Tutorial

    Directory of Open Access Journals (Sweden)

    Markus Wilde

    2018-04-01

    Full Text Available The paper provides a step-by-step tutorial on the Generalized Jacobian Matrix (GJM approach for modeling and simulation of spacecraft-manipulator systems. The General Jacobian Matrix approach describes the motion of the end-effector of an underactuated manipulator system solely by the manipulator joint rotations, with the attitude and position of the base-spacecraft resulting from the manipulator motion. The coupling of the manipulator motion with the base-spacecraft are thus expressed in a generalized inertia matrix and a GJM. The focus of the paper lies on the complete analytic derivation of the generalized equations of motion of a free-floating spacecraft-manipulator system. This includes symbolic analytic expressions for all inertia property matrices of the system, including their time derivatives and joint-angle derivatives, as well as an expression for the generalized Jacobian of a generic point on any link of the spacecraft-manipulator system. The kinematics structure of the spacecraft-manipulator system is described both in terms of direction-cosine matrices and unit quaternions. An additional important contribution of this paper is to propose a new and more detailed definition for the modes of maneuvering of a spacecraft-manipulator. In particular, the two commonly used categories free-flying and free-floating are expanded by the introduction of five categories, namely floating, rotation-floating, rotation-flying, translation-flying, and flying. A fully-symbolic and a partially-symbolic option for the implementation of a numerical simulation model based on the proposed analytic approach are introduced and exemplary simulation results for a planar four-link spacecraft-manipulator system and a spatial six-link spacecraft manipulator system are presented.

  6. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  7. SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  8. Compact Chemical Monitor for Silver Ions in Spacecraft Water Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified silver ions as the best candidate biocide for use in the potable water system on next-generation spacecraft. Though significant work has been...

  9. A Hybrid Systems Strategy to Support Autonomous Spacecraft Trajectory Design and Optimization in Multiple Dynamical Regimes

    Data.gov (United States)

    National Aeronautics and Space Administration — With ever increasing numbers of near-Earth satellites and deep space missions, autonomous spacecraft guidance, navigation, and control (GNC) systems are increasingly...

  10. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  11. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  12. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  13. Modeling the angular motion dynamics of spacecraft with a magnetic attitude control system based on experimental studies and dynamic similarity

    Science.gov (United States)

    Kulkov, V. M.; Medvedskii, A. L.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2017-12-01

    The problem of spacecraft attitude control using electromagnetic systems interacting with the Earth's magnetic field is considered. A set of dimensionless parameters has been formed to investigate the spacecraft orientation regimes based on dynamically similar models. The results of experimental studies of small spacecraft with a magnetic attitude control system can be extrapolated to the in-orbit spacecraft motion control regimes by using the methods of the dimensional and similarity theory.

  14. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    Science.gov (United States)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  15. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  16. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  17. Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model

    Science.gov (United States)

    dos Santos, Leonardo Barbosa Torres; de Almeida Prado, Antonio F. Bertachini; Sanchez, Diogo Merguizo

    2017-11-01

    Space missions allow us to expand our knowledge about the origin of the solar system. It is believed that asteroids and comets preserve the physical characteristics from the time that the solar system was created. For this reason, there was an increase of missions to asteroids in the past few years. To send spacecraft to asteroids or comets is challenging, since these objects have their own characteristics in several aspects, such as size, shape, physical properties, etc., which are often only discovered after the approach and even after the landing of the spacecraft. These missions must be developed with sufficient flexibility to adjust to these parameters, which are better determined only when the spacecraft reaches the system. Therefore, conducting a dynamic investigation of a spacecraft around a multiple asteroid system offers an extremely rich environment. Extracting accurate information through analytical approaches is quite challenging and requires a significant number of restrictive assumptions. For this reason, a numerical approach to the dynamics of a spacecraft in the vicinity of a binary asteroid system is offered in this paper. In the present work, the equations of the Restricted Synchronous Four-Body Problem (RSFBP) are used to model a binary asteroid system. The main objective of this work is to construct grids of initial conditions, which relates semi-major axis and eccentricity, in order to quantify the lifetime of a spacecraft when released close to the less massive body of the binary system (modeled as a rotating mass dipole). We performed an analysis of the lifetime of the spacecraft considering several mass ratios of a binary system of asteroids and investigating the behavior of a spacecraft in the vicinity of this system. We analyze direct and retrograde orbits. This study investigated orbits that survive for at least 500 orbital periods of the system (which is approximately one year), then not colliding or escaping from the system during this

  18. 46 CFR 42.05-65 - Surveyor.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Surveyor. 42.05-65 Section 42.05-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of... American Bureau of Shipping or other classification society recognized by the Commandant as the person who...

  19. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  20. Spacecraft systems engineering: An introduction to the process at GSFC

    Science.gov (United States)

    Fragomeni, Tony; Ryschkewitsch, Michael G.

    1993-01-01

    The main objective in systems engineering is to devise a coherent total system design capable of achieving the stated requirements. Requirements should be rigid. However, they should be continuously challenged, rechallenged and/or validated. The systems engineer must specify every requirement in order to design, document, implement and conduct the mission. Each and every requirement must be logically considered, traceable and evaluated through various analysis and trade studies in a total systems design. Margins must be determined to be realistic as well as adequate. The systems engineer must also continuously close the loop and verify system performance against the requirements. The fundamental role of the systems engineer, however, is to engineer, not manage. Yet, in large, complex missions, where more than one systems engineer is required, someone needs to manage the systems engineers, and we call them 'systems managers.' Systems engineering management is an overview function which plans, guides, monitors and controls the technical execution of a project as implemented by the systems engineers. As the project moves on through Phases A and B into Phase C/D, the systems engineering tasks become a small portion of the total effort. The systems management role increases since discipline subsystem engineers are conducting analyses and reviewing test data for final review and acceptance by the systems managers.

  1. Space Transportation System Cargo projects: inertial stage/spacecraft integration plan. Volume 1: Management plan

    Science.gov (United States)

    1981-01-01

    The Kennedy Space Center (KSC) Management System for the Inertial Upper Stage (IUS) - spacecraft processing from KSC arrival through launch is described. The roles and responsibilities of the agencies and test team organizations involved in IUS-S/C processing at KSC for non-Department of Defense missions are described. Working relationships are defined with respect to documentation preparation, coordination and approval, schedule development and maintenance, test conduct and control, configuration management, quality control and safety. The policy regarding the use of spacecraft contractor test procedures, IUS contractor detailed operating procedures and KSC operations and maintenance instructions is defined. Review and approval requirements for each documentation system are described.

  2. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  3. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    Science.gov (United States)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  4. Simulation of Tomographic Reconstruction of Magnetosphere Plasma Distribution By Multi-spacecraft Systems.

    Science.gov (United States)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Zelenyi, L.; Veselov, M.; Galperin, Y.; Buchner, J.

    A satellite radiotomography method for electron density distributions was recently proposed for closely-space multi-spacecraft group of high-altitude satellites to study the physics of reconnection process. The original idea of the ROY project is to use a constellation of spacecrafts (one main and several sub-satellites) in order to carry out closely-spaced multipoint measurements and 2D tomographic reconstruction of elec- tron density in the space between the main satellite and the subsatellites. The distances between the satellites were chosen to vary from dozens to few hundreds of kilometers. The easiest data interpretation is achieved when the subsatellites are placed along the plasma streamline. Then, whenever a plasma density irregularity moves between the main satellite and the subsatellites it will be scanned in different directions and we can get 2D distribution of plasma using these projections. However in general sub- satellites are not placed exactly along the plasma streamline. The method of plasma velocity determination relative to multi-spacecraft systems is considered. Possibilities of 3D tomographic imaging using multi-spacecraft systems are analyzed. The model- ing has shown that efficient scheme for 3D tomographic imaging would be to place spacecrafts in different planes so that the angle between the planes would make not more then ten degrees. Work is supported by INTAS PROJECT 2000-465.

  5. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    Science.gov (United States)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2012-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.

  6. The Evolution of Software and Its Impact on Complex System Design in Robotic Spacecraft Embedded Systems

    Science.gov (United States)

    Butler, Roy

    2013-01-01

    The growth in computer hardware performance, coupled with reduced energy requirements, has led to a rapid expansion of the resources available to software systems, driving them towards greater logical abstraction, flexibility, and complexity. This shift in focus from compacting functionality into a limited field towards developing layered, multi-state architectures in a grand field has both driven and been driven by the history of embedded processor design in the robotic spacecraft industry.The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-deterministic interactions, and multifaceted anomalies) in achieving mission success, as illustrated by the case of the Mars Reconnaissance Orbiter. Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the formalization of requirements, modular design practices, extensive system simulation, and spacecraft data trend analysis. The growth of hardware capability and software complexity can be expected to continue, with future directions including stackable commodity subsystems, computer-generated algorithms, runtime reconfigurable processors, and greater autonomy.

  7. Real-Time Analytics Test System for Distributed Spacecraft Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Upcoming DSM missions will produce unprecedented amounts of data during both I&T and flight, overwhelming current command/telemetry systems. The amount of data,...

  8. A Compact, Low Power Pulsed Optical Communication System for Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to reduce the power required for high bandwidth, deep space laser communications systems. Our concept will encode data in the time delay...

  9. System concepts and design examples for optical communication with planetary spacecraft

    Science.gov (United States)

    Lesh, James R.

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  10. Analysis on coverage ability of BeiDou navigation satellite system for manned spacecraft

    Science.gov (United States)

    Zhao, Sihao; Yao, Zheng; Zhuang, Xuebin; Lu, Mingquan

    2014-12-01

    To investigate the service ability of the BeiDou Navigation Satellite System (BDS) for manned spacecraft, both the current regional and the future-planned global constellations of BDS are introduced and simulated. The orbital parameters of the International Space Station and China's Tiangong-1 spacelab are used to create the simulation scenario and evaluate the performance of the BDS constellations. The number of visible satellites and the position dilution (PDOP) of precision at the spacecraft-based receiver are evaluated. Simulation and analysis show quantitative results on the coverage ability and time percentages of both the current BDS regional and future global constellations for manned-space orbits which can be a guideline to the applications and mission design of BDS receivers on manned spacecraft.

  11. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    Science.gov (United States)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  12. Centralized database for interconnection system design. [for spacecraft

    Science.gov (United States)

    Billitti, Joseph W.

    1989-01-01

    A database application called DFACS (Database, Forms and Applications for Cabling and Systems) is described. The objective of DFACS is to improve the speed and accuracy of interconnection system information flow during the design and fabrication stages of a project, while simultaneously supporting both the horizontal (end-to-end wiring) and the vertical (wiring by connector) design stratagems used by the Jet Propulsion Laboratory (JPL) project engineering community. The DFACS architecture is centered around a centralized database and program methodology which emulates the manual design process hitherto used at JPL. DFACS has been tested and successfully applied to existing JPL hardware tasks with a resulting reduction in schedule time and costs.

  13. Navigation Operations with Prototype Components of an Automated Real-Time Spacecraft Navigation System

    Science.gov (United States)

    Cangahuala, L.; Drain, T. R.

    1999-01-01

    At present, ground navigation support for interplanetary spacecraft requires human intervention for data pre-processing, filtering, and post-processing activities; these actions must be repeated each time a new batch of data is collected by the ground data system.

  14. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    Science.gov (United States)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  15. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  16. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  17. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  18. Development of solid-gas equilibrium propulsion system for small spacecraft

    Science.gov (United States)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki

    2017-11-01

    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  19. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  20. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  1. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    Science.gov (United States)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  2. The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance

    Science.gov (United States)

    Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  3. Analysis of the Apollo spacecraft operational data management system. Executive summary

    Science.gov (United States)

    1971-01-01

    A study was made of Apollo, Skylab, and several other data management systems to determine those techniques which could be applied to the management of operational data for future manned spacecraft programs. The results of the study are presented and include: (1) an analysis of present data management systems, (2) a list of requirements for future operational data management systems, (3) an evaluation of automated data management techniques, and (4) a plan for data management applicable to future space programs.

  4. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  5. A nuclear source term analysis for spacecraft power systems

    International Nuclear Information System (INIS)

    McCulloch, W.H.

    1998-01-01

    All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries

  6. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    Science.gov (United States)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  7. The MGS Avionics System Architecture: Exploring the Limits of Inheritance

    Science.gov (United States)

    Bunker, R.

    1994-01-01

    Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.

  8. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  9. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  10. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    Science.gov (United States)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  11. Miniature Heat Transport System for Spacecraft Thermal Control

    Science.gov (United States)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  12. Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk

    Science.gov (United States)

    Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark V.

    2014-01-01

    The end-to-end verification of a spacecraft photovoltaic power generation system requires light! Specifically, the standard practice for doing so is the Large Area Pulsed Solar Simulation (LAPSS). A LAPSS test can characterize a photovoltaic system's efficiency via its response to rapidly applied impulses of simulated sunlight. However, a Class D program on a constrained budget and schedule may not have the resources to ship an entire satellite for a LAPSS test alone. Such was the case with the Lunar Atmospheric and Dust Environment Explorer (LADEE) program, which was also averse to the risk of hardware damage during shipment. When the Electrical Power System (EPS) team was denied a spacecraft-level LAPSS test, the lack of an end-to-end power generation test elevated to a project-level technical risk. The team pulled together very limited resources to not only eliminate the risk, but build a process to monitor the health of the system through mission operations. We discuss a process for performing a low-cost, end-to-end test of the LADEE photovoltaic system. The approach combines system-level functional test, panel-level performance results, and periodic inspection (and repair) up until launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of data. The process starts in manufacturing at the subcontractor. The panel manufacturer provides functional test and LAPSS data on each individual panel. We apply an initial assumption that the per-panel performance is sufficient to meet the power generation requirements. The manufacturer's data is also carried as the performance allocation for each panel during EPS system modeling and initial mission operations. During integration and test, a high-power, professional theater lamp system provides simulated sunlight to each panel on the spacecraft, thereby permitting a true end-to-end system test. A passing test results in a step response to nearly full-rated current

  13. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  14. A historical overview of the electrical power systems in the US manned and some US unmanned spacecraft

    Science.gov (United States)

    Maisel, J. E.

    1984-01-01

    A historical overview of electrical power systems used in the U.S. manned spacecraft and some of the U.S. unmanned spacecraft is presented in this investigation. A time frame of approximately 25 years, the period for 1959 to 1984, is covered in this report. Results indicate that the nominal bus voltage was 28 volts dc in most spacecraft and all other voltage levels were derived from this voltage through such techniques as voltage inversion or rectification, or a combination. Most spacecraft used solar arrays for the main source of power except for those spacecraft that had a relatively short flight duration, or deep spaceprobes that were designed for very long flight duration. Fuel cells were used on Gemini, Apollo, and Space Shuttle (short duration flights) while radioisotope thermoelectric generators were employed on the Pioneer, Jupiter/Saturn, Viking Lander, and Voyager spacecraft (long duration flights). The main dc bus voltage was unregulated on the manned spacecraft with voltage regulation provided at the user loads. A combination of regulated, semiregulated, and unregulated buses were used on the unmanned spacecraft depending on the type of load. For example, scientific instruments were usually connected to regulated buses while fans, relays, etc. were energized from an unregulated bus. Different forms of voltage regulation, such as shunt, buck/boot, and pulse-width modulated regulators, were used. This report includes a comprehensive bibliography on spacecraft electrical power systems for the space programs investigated.

  15. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    Science.gov (United States)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  16. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    Science.gov (United States)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  17. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    Science.gov (United States)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  18. Development of the solar array deployment and drive system for the XTE spacecraft

    Science.gov (United States)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  19. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  20. Dynamic Isotope Power System (DIPS) Applications Study. Volume II. Nuclear Integrated Multimission Spacecraft (NIMS) design definition. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The design requirements for the Nuclear Integrated Multimission Spacecraft. (NIMS) are discussed in detail. The requirements are a function of mission specifications, payload, control system requirements, electric system specifications, and cost limitations

  1. Results on a Questionnaire to Soil Surveyors Around the World ...

    African Journals Online (AJOL)

    Seventy respondents from 40 countries replied to a questionnaire on methodologies used in soil surveys. Observations and conclusions worth noting are given. Some terminologies in soil surveys are not conceived and used consistently by soil surveyors. The nature of soil surveys is determined by soil surveyors ...

  2. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    Science.gov (United States)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  3. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    Science.gov (United States)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  4. CERN’s surveyors send sparks flying

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    A few weeks ago, we published an article on the three-dimensional laser scanner technique used at CERN to produce 3D images of the LHC tunnels and experiments (see the article here). Photogrammetry is another technique in the CERN surveyors’ arsenal.   The ATLAS wheel during a photogrammetry measurement campaign. The white spots (see red arrows) dotted across the wheel are the retro-reflective "dot" targets. Used in a number of fields including topography, architecture, geology and archaeology, photogrammetry is a stereoscopy technique whereby 2D images taken from different angles can be used to reconstruct a 3D image of an object. Surveyors at CERN have been using this technique for over 15 years as a way of gaining precise information on the shape, size, deformation and position of the LHC detectors and their composite elements. The photogrammetry used at CERN is relatively “light” in terms of the equipment required, w...

  5. Robust control for spacecraft rendezvous system with actuator unsymmetrical saturation: a gain scheduling approach

    Science.gov (United States)

    Wang, Qian; Xue, Anke

    2018-06-01

    This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.

  6. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  7. Spacecraft Data Simulator for the test of level zero processing systems

    Science.gov (United States)

    Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem

    1994-01-01

    The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.

  8. Concurrent System Engineering and Risk Reduction for Dual-Band (RF/optical) Spacecraft Communications

    Science.gov (United States)

    Fielhauer, Karl, B.; Boone, Bradley, G.; Raible, Daniel, E.

    2012-01-01

    This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach.

  9. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    Science.gov (United States)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  10. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

    Science.gov (United States)

    Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

    2018-05-01

    Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

  11. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  12. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Science.gov (United States)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  13. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2011-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  14. Research Ship Southern Surveyor Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Southern Surveyor Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  15. The surveyors get the measure of the LHC

    CERN Multimedia

    2002-01-01

    The first to start work in the LHC tunnel, the surveyors are precisely marking out the positions of the future accelerator's magnets. A total of 7000 reference points will have to be marked out over two years.

  16. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    Science.gov (United States)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  17. A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC

    Science.gov (United States)

    Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.

    2012-01-01

    Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.

  18. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Cleary, Joseph

    2018-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of four telescopes designed to measure the polarization of the Cosmic Microwave Background. CLASS aims to detect the B-mode polarization from primordial gravitational waves predicted by cosmic inflation theory, as well as the imprint left by reionization upon the CMB E-mode polarization. This will be achieved through a combination of observing strategy and state-of-the-art instrumentation. CLASS is observing 70% of the sky to characterize the CMB at large angular scales, which will measure the entire CMB power spectrum from the reionization peak to the recombination peak. The four telescopes operate at frequencies of 38, 93, 145, and 217 GHz, in order to estimate Galactic synchrotron and dust foregrounds while avoiding atmospheric absorption. CLASS employs rapid polarization modulation to overcome atmospheric and instrumental noise. Polarization sensitive cryogenic detectors with low noise levels provide CLASS the sensitivity required to constrain the tensor-to-scalar ratio down to levels of r ~ 0.01 while also measuring the optical depth the reionization to sample-variance levels. These improved constraints on the optical depth to reionization are required to pin down the mass of neutrinos from complementary cosmological data. CLASS has completed a year of observations at 38 GHz and is in the process of deploying the rest of the telescope array. This poster provides an overview and update on the CLASS science, hardware and survey operations.

  20. Isolation, pointing, and suppression (IPS) system for high-performance spacecraft

    Science.gov (United States)

    Hindle, Tim; Davis, Torey; Fischer, Jim

    2007-04-01

    Passive mechanical isolation is often times the first step taken to remedy vibration issues on-board a spacecraft. In many cases, this is done with a hexapod of axial members or struts to obtain the desired passive isolation in all six degrees-of-freedom (DOF). In some instances, where the disturbance sources are excessive or the payload is particularly sensitive to vibration, additional steps are taken to improve the performance beyond that of passive isolation. Additional performance or functionality can be obtained with the addition of active control, using a hexapod of hybrid (passive/active) elements at the interface between the payload and the bus. This paper describes Honeywell's Isolation, Pointing, and Suppression (IPS) system. It is a hybrid isolation system designed to isolate a sensitive spacecraft payload with very low passive resonant break frequencies while affording agile independent payload pointing, on-board payload disturbance rejection, and active isolation augmentation. This system is an extension of the work done on Honeywell's previous Vibration Isolation, Steering, and Suppression (VISS) flight experiment. Besides being designed for a different size payload than VISS, the IPS strut includes a dual-stage voice coil design for improved dynamic range as well as improved low-noise drive electronics. In addition, the IPS struts include integral load cells, gap sensors, and payloadside accelerometers for control and telemetry purposes. The associated system-level control architecture to accomplish these tasks is also new for this program as compared to VISS. A summary of the IPS system, including analysis and hardware design, build, and single axis bipod testing will be reviewed.

  1. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    Science.gov (United States)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  2. Biofilm formation and control in a simulated spacecraft water system - Interim results

    Science.gov (United States)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.

    1989-01-01

    The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.

  3. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  4. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  5. Nonlinear guided wave circular array system for microcrack monitoring in spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable monitoring of the microcrack formation in the complex composite structure components in NASA spacecraft and launch vehicles is critical for vehicle...

  6. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    Science.gov (United States)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  7. Implementing model-based system engineering for the whole lifecycle of a spacecraft

    Science.gov (United States)

    Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.

    2017-09-01

    Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.

  8. Influence of a new generation of operations support systems on current spacecraft operations philosophy: The users feedback

    Science.gov (United States)

    Darroy, Jean Michel

    1993-01-01

    Current trends in the spacecraft mission operations area (spacecraft & mission complexity, project duration, required flexibility are requiring a breakthrough for what concerns philosophy, organization, and support tools. A major evolution is related to space operations 'informationalization', i.e adding to existing operations support & data processing systems a new generation of tools based on advanced information technologies (object-oriented programming, artificial intelligence, data bases, hypertext) that automate, at least partially, operations tasks that used be performed manually (mission & project planning/scheduling, operations procedures elaboration & execution, data analysis & failure diagnosis). All the major facets of this 'informationalization' are addressed at MATRA MARCONI SPACE, operational applications were fielded and generic products are becoming available. These various applications have generated a significant feedback from the users (at ESA, CNES, ARIANESPACE, MATRA MARCONI SPACE), which is now allowing us to precisely measure how the deployment of this new generation of tools, that we called OPSWARE, can 'reengineer' current spacecraft mission operations philosophy, how it can make space operations faster, better, and cheaper. This paper can be considered as an update of the keynote address 'Knowledge-Based Systems for Spacecraft Control' presented during the first 'Ground Data Systems for Spacecraft Control' conference in Darmstadt, June 1990, with a special emphasis on these last two years users feedback.

  9. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  10. Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data

    Science.gov (United States)

    Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.

    2012-01-01

    This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/deviation so that further analysis can be directed and corrective actions followed.

  11. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    DEFF Research Database (Denmark)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique......We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...

  12. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  13. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  14. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  15. Experience with the Surveyor mobile robot in radioactive work environments

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.; Darvish, A.R.; Irving, T.L.

    1986-01-01

    This paper summarizes the development and implementation history of the Surveyor mobile robotic device from November 1985 through August 1986. This two-tracked remotely controlled tetherless device is used to conduct surveillance and inspection and light maintenance missions in nuclear power plants. Surveyor's relatively light weight (<400 lb) can easily be transported manually from location to location. The total maximum payload of the device, which is able to climb 40-deg stairs, is up to 300 lb when transported on a level floor. Surveyor can traverse through 14 in. of water and over 9-in.-high obstacles. Standard accessories include radiation detector, humidity monitor, temperature measurement, sound detection and position/ranging, and a standard video or CCD camera having a wide angle and telephoto lens. These devices are mounted on a 3 degree-of-freedom articulated arm with halogen lights

  16. An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations

    Science.gov (United States)

    Cary, Everett; Davis, George; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    This viewgraph presentation provides information on the architecture of a computerized testbest for simulating Distributed Space Systems (DSS) for controlling spacecraft flying in formation. The presentation also discusses and diagrams the Distributed Synthesis Environment (DSE) for simulating and planning DSS missions.

  17. Design issues of the piezo motor for the spacecraft reflector control system

    Directory of Open Access Journals (Sweden)

    Azin Anton

    2018-01-01

    Full Text Available Creation of large-size reflectors for spacecrafts is a topical issue for the space industry. The accuracy of the reflecting surface form and the structure weight are the main criteria for the reflector design. The accuracy of the reflecting surface form during a long-term operation is provided by adjustment when using piezoelectric motors in the reflector design. These motors have small weight-size parameters and can reach great torque values. The piezo motor is a distributed mechanical-acoustic oscillation system. Mechanical-acoustic oscillations are generated in the piezo motor by a PZT-stack and transmitted to an oscillator element, and then from the oscillator element to a load action element. At high frequencies, when dimensions of the oscillator are proportionate to the wavelength, the energy is transmitted by means of acoustic waves. In this case, mechanical waves practically are not involved in the energy transmission process. This thesis shows a method for selecting the material of a mechanical-acoustic oscillation system according to the efficiency of the acoustic energy transmission via a piezoelectric layered structure.

  18. Towards the Development of a Unified Distributed Date System for L1 Spacecraft

    Science.gov (United States)

    Lazarus, Alan J.; Kasper, Justin C.

    2005-01-01

    The purpose of this grant, 'Towards the Development of a Unified Distributed Data System for L1 Spacecraft', is to take the initial steps towards the development of a data distribution mechanism for making in-situ measurements more easily accessible to the scientific community. Our obligations as subcontractors to this grant are to add our Faraday Cup plasma data to this initial study and to contribute to the design of a general data distribution system. The year 1 objectives of the overall project as stated in the GSFC proposal are: 1) Both the rsync and Perl based data exchange tools will be fully developed and tested in our mixed, Unix, VMS, Windows and Mac OS X data service environment. Based on the performance comparisons, one will be selected and fully deployed. Continuous data exchange between all L1 solar wind monitors initiated. 2) Data version metadata will be agreed upon, fully documented, and deployed on our data sites. 3) The first version of the data description rules, encoded in a XML Schema, will be finalized. 4) Preliminary set of library routines will be collected, documentation standards and formats agreed on, and desirable routines that have not been implemented identified and assigned. 5) ViSBARD test site implemented to independently validate data mirroring procedures. The specific MIT tasks over the duration of this project are the following: a) implement mirroring service for WIND plasma data b) participate in XML Schema development c) contribute toward routine library.

  19. Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

    Directory of Open Access Journals (Sweden)

    Sung-Woo Kim

    2012-12-01

    Full Text Available The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS. An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

  20. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    Science.gov (United States)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element

  1. Hummingbird - A Very Low Cost, High Delta V Spacecraft for Solar System Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on Microcosm's development of a high delta-V small Earth observation spacecraft called NanoEye, with a planned recurring cost of $2 million, Microcosm will...

  2. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Science.gov (United States)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  3. Design of RTPV generators integrated with new millennium spacecraft for outer solar system

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.; Kumar, V.

    1996-01-01

    The National Aeronautics and Space Administration's recently inaugurated New Millennium program, with its emphasis on miniaturized spacecraft, has generated interest in a low-power (10- to 30-watt), low-mass, high-efficiency RTPV (Radioisotope Thermophotovoltaic) power system. This led to a Department of Energy (DOE)-sponsored design study of such a system. A 75-watt design employed two 250-watt General Purpose Heat Source (GPHS) modules that DOE had previously developed and safety-qualified for various space missions. These modules were too large for the small RTPVs described in this paper. To minimize the need for new development and safety verification studies, derivative designs for 125-watt and 62.5-watt heat source modules containing identical fuel pellets, clads, impact shell, and thermal insulation were generated along with a novel heat source support scheme to reduce the heat losses through the structural supports, and a new and much simpler radiator structure, employing no honeycombs or heat pipes. Previous RTPV study had been based on the use of GaSb PV cells and spectrally selective IR filters. Because of the very encouraging results of system design studies, in the fall of 1994 an experimental program was initiated to develop improved filters and cells, to demonstrate how much improvement can actually be achieved. First priority was given to filter improvements, because our system studies indicated that improved filters would have a much greater effect on system performance than cell improvements. By September 1995 about 94% of the filter performance improvement projected in 1993 had been achieved. (Abstract Truncated)

  4. Model-based software engineering for an optical navigation system for spacecraft

    Science.gov (United States)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2018-06-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  5. Model-based software engineering for an optical navigation system for spacecraft

    Science.gov (United States)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2017-09-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  6. Mars Global Surveyor Ka-Band Frequency Data Analysis

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  7. Thermal Protection System Mass Estimating Relationships For Blunt-Body, Earth Entry Spacecraft

    Science.gov (United States)

    Sepka, Steven A.; Samareh, Jamshid A.

    2015-01-01

    Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.

  8. an examination of estate surveyors and valuers' perception of flood

    African Journals Online (AJOL)

    Osondu

    2013-11-27

    Nov 27, 2013 ... Key words: Estate Surveyors, Perception, Flood risk, Residential .... islands separated by creeks on a vast lagoon on ... the coastal low land of south western Nigeria – ... tropical continental with rainfall almost ... vegetation is salt water mangrove swamp forest .... have afforded them the opportunity of being.

  9. Whither the Nigerian Quantity Surveyors in the Information ...

    African Journals Online (AJOL)

    The paucity of information on the computing status of the quantity surveyors in Nigeria have been scanty and without empirical substantiation. The basic platform for entry to the information technology gateway is the acquisition, adoption and utilization of the computer. Baseline information is therefore indispensable for the ...

  10. The Far-Infrared Surveyor (FIS) for AKARI

    NARCIS (Netherlands)

    Kawada, Mitsunobu; Baba, Hajime; Barthel, Peter D.; Clements, David; Cohen, Martin; Doi, Yasuo; Figueredo, Elysandra; Fujiwara, Mikio; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Jeong, Woong-Seob; Kaneda, Hidehiro; Kawai, Toshihide; Kawamura, Akiko; Kester, Do; Kii, Tsuneo; Kobayashi, Hisato; Kwon, Suk Minn; Lee, Hyung Mok; Makiuti, Sin'itirou; Matsuo, Hiroshi; Matsuura, Shuji; Mueller, Thomas G.; Murakami, Noriko; Nagata, Hirohisa; Nakagawa, Takao; Narita, Masanao; Noda, Manabu; Oh, Sang Hoon; Okada, Yoko; Okuda, Haruyuki; Oliver, Sebastian; Ootsubo, Takafumi; Pak, Soojong; Park, Yong-Sun; Pearson, Chris P.; Rowan-Robinson, Michael; Saito, Toshinobu; Salama, Alberto; Sato, Shinji; Savage, Richard S.; Serjeant, Stephen; Shibai, Hiroshi; Shirahata, Mai; Sohn, Jungjoo; Suzuki, Toyoaki; Takagi, Toshinobu; Takahashi, Hidenori; Thomson, Matthew; Usui, Fumihiko; Verdugo, Eva; Watabe, Toyoki; White, Glenn J.; Wang, Lingyu; Yamamura, Issei; Yamauchi, Chisato; Yasuda, Akiko

    2007-01-01

    The Far-Infrared Surveyor (FIS) is one of two focal-plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 mu m, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The

  11. 5 CFR 532.275 - Special wage schedules for ship surveyors in Puerto Rico.

    Science.gov (United States)

    2010-01-01

    ... in Puerto Rico. 532.275 Section 532.275 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... schedules for ship surveyors in Puerto Rico. (a) The Department of Defense shall establish special wage schedules for nonsupervisory ship surveyors and supervisory ship surveyors in Puerto Rico. (b) Rates shall...

  12. Technology for organization of the onboard system for processing and storage of ERS data for ultrasmall spacecraft

    Science.gov (United States)

    Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.

    2017-10-01

    Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.

  13. Development and Analysis of a Resource-Aware Power Management System as Applied to Small Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Shriver, Patrick [Univ. of Colorado, Boulder, CO (United States)

    2005-01-01

    In this thesis, an overall framework and solution method for managing the limited power resources of a small spacecraft is presented. Analogous to mobile computing technology, a primary limiting factor is the available power resources. In spite of the millions of dollars budgeted for research and development over decades, improvements in battery efficiency remains low. This situation is exacerbated by advances in payload technology that lead to increasingly power-hungry and data-intensive instruments. The challenge for the small spacecraft is to maximize capabilities and performance while meeting difficult design requirements and small project budgets.

  14. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission

    Directory of Open Access Journals (Sweden)

    Chen-Joe Fong

    2009-01-01

    Full Text Available The FORMOSAT-3/COSMIC spacecraft constellation consisting of six LEO satellites is the world's first operational GPS Radio Occultation (RO mission. The mission is jointly developed by Taiwan¡¦s National Space Organization (NSPO and the United States¡¦UCAR in collaboration with NSF, USAF, NOAA, NASA, NASA's Jet Propulsion Laboratory, and the US Naval Research Laboratory. The FORMOSAT-3/COSMIC satellites were successfully launched from Vandenberg US AFB in California at 0140 UTC 15 April 2006 into the same orbit plane of the designated 516 km altitude. The mission goal is to deploy the six satellites into six orbit planes at 800 km altitude with a 30-degree separation for evenly distributed global coverage. All six FORMOSAT-3/COSMIC satellites are currently maintaining a satisfactory good state-of-health. Five out of six satellites have reached their final mission orbit of 800 km as of November 2007. The data as received by FORMOSAT-3/COSMIC satellites constellation have been processed in near real time into 2500 good ionospheric profiles and 1800 good atmospheric profiles per day. These have outnumbered the worldwide radiosondes (~900 mostly over land launched from the ground per day. The processed atmospheric RO data have been assimilated into the Numerical Weather Prediction (NWP models for real-time weather prediction and typhoon/hurricane forecasting by many major weather centers in the world. This paper describes the FORMOSAT-3/COSMIC satellite constellation system performance and the mission results that span the period from April 2006 to October 2007; and reviews the prospect of a future follow-on mission.

  15. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  16. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  17. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  18. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    Science.gov (United States)

    2009-12-01

    For a high- cost spacecraft with accurate pointing requirements, the use of a star tracker is the preferred method for attitude determination. The...solutions, however there are certain costs with using this algorithm. There are significantly more features a triangle can provide when compared to an...to the other. The non-rotating geocentric equatorial frame provides an inertial frame for the two-body problem of a satellite in orbit. In this

  19. SyZyGy: A straight interferometric spacecraft system for gravity wave observations

    International Nuclear Information System (INIS)

    Estabrook, F.B.; Armstrong, J.W.; Tinto, Massimo; Folkner, William

    2003-01-01

    We consider a spaceborne gravitational wave (GW) detector formed by three spacecraft in a linear array, coherently exchanging laser beams and using the data combinations of time-delay interferometry (TDI). We previously showed how the measured time series of Doppler shifts in the six one-way laser links between spacecraft pairs in a general unequal-arm triangular configuration can be combined, using TDI, to exactly cancel the otherwise overwhelming phase noise of the lasers while retaining sensitivity to GWs. Here we apply TDI, unfolding the general triangular configuration, to the special case of a linear array of three spacecraft. We show that such an array ('SyZyGy') has, compared with an equilateral triangle GW detector of the same scale, a degraded (but non-zero) sensitivity at low frequencies [f -4 -10 -1 Hz). SyZyGy with ∼1 light-second scale could, for the same instrumental assumptions as LISA, make observations in this intermediate frequency GW band with 5σ sensitivity to sinusoidal waves ≅2.5x10 -23 in a year's integration

  20. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  1. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  2. Manifold dynamics in the Earth-Moon system via isomorphic mapping with application to spacecraft end-of-life strategies

    Science.gov (United States)

    Pontani, Mauro; Giancotti, Marco; Teofilatto, Paolo

    2014-12-01

    Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth-Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth-Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible

  3. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  4. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  5. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  6. The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small Spacecraft

    Science.gov (United States)

    McComas, David; Wilmot, Jonathan; Cudmore, Alan

    2016-01-01

    In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board (CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being maintained in compliance with the NASA Class B software development process requirements and the open source release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is being used on multiple spacecraft and instrument development efforts. While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies being pursued, the development/verification tools and opportunities for the small satellite community to become engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.

  7. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    Science.gov (United States)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  8. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  9. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  10. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  11. A passively controlled appendage deployment system for the San Marco D/L spacecraft

    Science.gov (United States)

    Lang, W. E.; Frisch, H. P.; Schwartz, D. A.

    1984-01-01

    The analytical simulation of deployment dynamics of these two axis concepts as well as the evolution of practical designs for the add on deployable inertia boom units is described. With the boom free to swing back in response to Coriolis forces as well as outwards in response to centrifugal forces, the kinematics of motion are complex but admit the possibility of absorbing deployment energy in frictional or other damping devices about the radial axis, where large amplitude motions can occur and where the design envelope allows more available volume. An acceptable range is defined for frictional damping for any given spin rate. Inadequate damping allows boom motions which strike the spacecraft; excessive damping causes the boom to swing out and latch with damaging violence. The acceptable range is a design parameter and must accommodate spin rate tolerance and also the tolerance and repeatability of the damping mechanisms.

  12. Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems

    Science.gov (United States)

    Estes, Lynda

    2011-01-01

    This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in

  13. CERN's surveyors are pushing back the frontiers of precision

    CERN Multimedia

    2001-01-01

    Aiming at a target on the other side of the Alps, 730 kilometres from CERN, or controlling the positions of thousands of devices to a precision of one tenth of a millimetre, these are just some of the painstaking tasks undertaken by the surveyors in the Positioning Metrology and Surveying Group. These masters of measurement are pushing precision to its very limit.Go down into the LEP tunnel, walk about half a mile and then try to imagine how you could possibly take precise aim at something hundreds of kilometres away without any reference to the surface. Absurd, you might think? Not entirely, for that, in a nutshell, is the geodetic challenge of the Gran Sasso project. Indeed it is just one of the challenges faced by the surveyors in CERN's Positioning Metrology and Surveying Group, whose task it will be to aim a neutrino beam at a detector located in an underground cavern 732 kilometres away at INFN's Gran Sasso laboratory in Italy. The tools for solving such problems are provided by geodetics, the branch of...

  14. Performance verification and system parameter identification of spacecraft tape recorder control servo

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1979-01-01

    Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.

  15. Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    Science.gov (United States)

    Adam, Niklas; Mitchell, Julie; Pickering, Karen; Carrier, Chris; Vega, Letty; Muirhead, Dean

    2014-01-01

    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  16. Project-based learning applied to spacecraft power systems: a long-term engineering and educational program at UPM University

    Science.gov (United States)

    Pindado, Santiago; Cubas, Javier; Roibás-Millán, Elena; Sorribes-Palmer, Félix

    2018-03-01

    The IDR/UPM Institute is the research center responsible for the Master in Space Systems (MUSE) of Universidad Politécnica de Madrid (UPM). This is a 2-year (120 ECTS) master's degree focused on space technology. The UPMSat-2 satellite program has become an excellent educational framework in which the academic contents of the master are trained through project-based learning and following a multidisciplinary approach. In the present work, the educational projects developed and carried out in relation to spacecraft power systems at the IDR/UPM Institute are described. These projects are currently being developed in the framework represented by the aforementioned MUSE master's program and UPMSat-2.

  17. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  18. Chemical Analysis of the Moon at the Surveyor VI Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Patterson, J H; Franzgrote, E J

    1968-06-07

    The alpha-scattering experiment aboard soft-landing Surveyor VI has provided a chemical analysis of the surface of the moon in Sinus Medii. The preliminary results indicate that, within experimental errors, the composition is the same as that found by Surveyor V in Mare Tranquillitatis. This finding suggests that large portions of the lunar maria resemble basalt in composition.

  19. Are Quantity Surveyors Competent to Value for Civil Engineering Works? Evaluating QSs' Competencies and Militating Factors

    Science.gov (United States)

    Olawumi, Timothy Oluwatosin; Ayegun, Olaleke Amos

    2016-01-01

    The role of the quantity surveyor is one that is often unclear amongst the general public. This study discussed the competencies of the quantity surveyor in measuring and managing civil engineering works and also carrying out the financial management for civil engineering construction projects; also outlined the various competencies and skills…

  20. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (UNIX VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  1. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  2. Surveyor Management of Hospital Accreditation Program: A Thematic Analysis Conducted in Iran.

    Science.gov (United States)

    Teymourzadeh, Ehsan; Ramezani, Mozhdeh; Arab, Mohammad; Rahimi Foroushani, Abbas; Akbari Sari, Ali

    2016-05-01

    The surveyors in hospital accreditation program are considered as the core of accreditation programs. So, the reliability and validity of the accreditation program heavily depend on their performance. This study aimed to identify the dimensions and factors affecting surveyor management of hospital accreditation programs in Iran. This qualitative study used a thematic analysis method, and was performed in Iran in 2014. The study participants included experts in the field of hospital accreditation, and were derived from three groups: 1. Policy-makers, administrators, and surveyors of the accreditation bureau, the ministry of health and medical education, Iranian universities of medical science; 2. Healthcare service providers, and 3. University professors and faculty members. The data were collected using semi-structured in-depth interviews. Following text transcription and control of compliance with the original text, MAXQDA10 software was used to code, classify, and organize the interviews in six stages. The findings from the analysis of 21 interviews were first classified in the form of 1347 semantic units, 11 themes, 17 sub-themes, and 248 codes. These were further discussed by an expert panel, which then resulted in the emergence of seven main themes - selection and recruitment of the surveyor team, organization of the surveyor team, planning to perform surveys, surveyor motivation and retention, surveyor training, surveyor assessment, and recommendations - as well as 27 sub-themes, and 112 codes. The dimensions and variables affecting the surveyors' management were identified and classified on the basis of existing scientific methods in the form of a conceptual framework. Using the results of this study, it would certainly be possible to take a great step toward enhancing the reliability of surveys and the quality and safety of services, while effectively managing accreditation program surveyors.

  3. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  4. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  5. Vapor Compression Refrigeration System for Cold Storage on Spacecrafts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is looking for a high efficiency long term food storage system for space crafts. Previous refrigerator/freezer systems developed for this application such as...

  6. Multi-Component Remediation System for Generating Potable Water Onboard Spacecrafts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractal Systems Inc. proposes to develop an innovative, energy-efficient water purification system to enable humans to live and work permanently in space. Water...

  7. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  8. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  9. The State of Play US Space Systems Competitiveness: Prices, Productivity, and Other Measures of Launchers & Spacecraft

    Science.gov (United States)

    Zapata, Edgar

    2017-01-01

    Collects space systems cost and related data (flight rate, payload, etc.) over time. Gathers only public data. Non-recurring and recurring. Minimal data processing. Graph, visualize, add context. Focus on US space systems competitiveness. Keep fresh update as data arises, launches occur, etc. Keep fresh focus on recent data, indicative of the future.

  10. High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor

    Science.gov (United States)

    Zhang, William

    Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.

  11. Common data buffer system. [communication with computational equipment utilized in spacecraft operations

    Science.gov (United States)

    Byrne, F. (Inventor)

    1981-01-01

    A high speed common data buffer system is described for providing an interface and communications medium between a plurality of computers utilized in a distributed computer complex forming part of a checkout, command and control system for space vehicles and associated ground support equipment. The system includes the capability for temporarily storing data to be transferred between computers, for transferring a plurality of interrupts between computers, for monitoring and recording these transfers, and for correcting errors incurred in these transfers. Validity checks are made on each transfer and appropriate error notification is given to the computer associated with that transfer.

  12. Reliability considerations in long-life outer planet spacecraft system design

    Science.gov (United States)

    Casani, E. K.

    1975-01-01

    A Mariner Jupiter/Saturn mission has been planned for 1977. System reliability questions are discussed, taking into account the actual and design lifetime, causes of mission termination, in-flight failures and their consequences for the mission, and the use of redundancy to avoid failures. The design process employed optimizes the use of proven subsystem and system designs and then makes the necessary improvements to increase the lifetime as required.

  13. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft

    Science.gov (United States)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.

    2012-01-01

    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  14. Delivering spacecraft control centers with embedded knowledge-based systems: The methodology issue

    Science.gov (United States)

    Ayache, S.; Haziza, M.; Cayrac, D.

    1994-01-01

    Matra Marconi Space (MMS) occupies a leading place in Europe in the domain of satellite and space data processing systems. The maturity of the knowledge-based systems (KBS) technology, the theoretical and practical experience acquired in the development of prototype, pre-operational and operational applications, make it possible today to consider the wide operational deployment of KBS's in space applications. In this perspective, MMS has to prepare the introduction of the new methods and support tools that will form the basis of the development of such systems. This paper introduces elements of the MMS methodology initiatives in the domain and the main rationale that motivated the approach. These initiatives develop along two main axes: knowledge engineering methods and tools, and a hybrid method approach for coexisting knowledge-based and conventional developments.

  15. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    Science.gov (United States)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  16. Development of Mission and Spacecraft Dynamics Analysis System for Geostationary Communication Satellite

    Directory of Open Access Journals (Sweden)

    Hyeon Cheol Gong

    1998-06-01

    Full Text Available We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system can be applied to a general communication satellite as well as a specific communication satellite, i.e. Koreasat I, II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface (GUI makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I, II which are being operated as geostationary communication satellites to verify the system performance.

  17. A case study in nonlinear dynamics and control of articulated spacecraft: The Space Station Freedom with a mobile remote manipulator system

    Science.gov (United States)

    Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer

    1994-01-01

    The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.

  18. Shaded Spacecraft Radiators to Be Used on the Daytime Surface of the Mercury Planet, the Moon, and Asteroids of the Solar System Inner Part

    Directory of Open Access Journals (Sweden)

    V. A. Igrickii

    2016-01-01

    Full Text Available During the daytime a surface of the Moon, Mercury planet, and asteroids of the Solar system inner part, significantly heats up, and infrared radiation of the local soil becomes essential. At the same time direct solar radiation and reflected from the surface solar radiation reach the maximum too. These radiation fluxes can significantly decrease the efficiency of spacecraft radiators in the daytime. This effect is especially strong on the Mercury surface where direct solar radiation is 10 times stronger than solar radiation near the Earth. As a result, on the daytime surface of the Mercury the conventional low-temperature radiators become completely disabled.The article describes the development of the special shaded spacecraft radiators to be used in daytime on the Mercury and other atmosphereless bodies of the Solar system inner part. To solve this task are used mirror shades. The shape of these shades is developed to improve operation conditions of the spacecraft radiator through the appropriate scheme of radiation reflection. The task is discussed in 2D and 3D cases. A new design of shaded spacecraft radiators is proposed, and reasonable proportions of radiators are determined. The performance capability of proposed radiators for environments of the Mercury and the Moon is estimated using the zonal method in view of partial mirror reflection. The calculations showed that the developed shaded spacecraft radiators are capable to work on the Mercury surface as the low-temperature radiators even during the daytime. New radiators provide minimum accepted operating temperature of 241К (-32°С, meanwhile radiators of common design have minimum operating temperature of 479К (206°С. Using such radiators on the Moon enables us to increase effectiveness of spacecraft radiators and to decrease their minimum operating temperature from 270К (-3°С to 137К (-136°С.

  19. The Global Precipitation Measurement (GPM Spacecraft Power System Design and Orbital Performance

    Directory of Open Access Journals (Sweden)

    Dakermanji George

    2017-01-01

    The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  20. Design of a mission network system using SpaceWire for scientific payloads onboard the Arase spacecraft

    Science.gov (United States)

    Takashima, Takeshi; Ogawa, Emiko; Asamura, Kazushi; Hikishima, Mitsuru

    2018-05-01

    Arase is a small scientific satellite program conducted by the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency, which is dedicated to the detailed study of the radiation belts around Earth through in situ observations. In particular, the goal is to directly observe the interaction between plasma waves and particles, which cause the generation of high-energy electrons. To observe the waves and particles in detail, we must record large volumes of burst data with high transmission rates through onboard mission network systems. For this purpose, we developed a high-speed and highly reliable mission network based on SpaceWire, as well as a new and large memory data recorder equipped with a data search function based on observation time (the time index, TI, is the satellite time starting from when the spacecraft is powered on.) with respect to the orbital data generated in large quantities. By adopting a new transaction concept of a ring topology network with SpaceWire, we could secure a redundant mission network system without using large routers and having to suppress the increase in cable weight. We confirmed that their orbit performs as designed.[Figure not available: see fulltext.

  1. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  2. Development of an advanced spacecraft water and waste materials processing system

    Science.gov (United States)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  3. Efficacy of Various Chemical Disinfectants on Biofilms Formed in Spacecraft Potable Water System Component

    Science.gov (United States)

    Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane

    2009-01-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.

  4. Efficacy of various chemical disinfectants on biofilms formed in spacecraft potable water system components.

    Science.gov (United States)

    Wong, Wing C; Dudinsky, Lynn A; Garcia, Veronica M; Ott, Charlie M; Castro, Victoria A

    2010-07-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the Station. In-flight pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony-forming units (CFU) ml(-1). Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with nonsterile water and left at room temperature for more than 1 month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, including Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides, and Cupriavidus pauculus. After incubation for 5 days, the hoses were challenged with various chemical disinfectants including hydrogen peroxide (H2O2), colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. The disinfection efficacy over time was measured by collecting daily heterotrophic plate counts after exposure to the disinfectants. A single flush with either 6% H2O2 solution or a mixture of 3% H2O2 and 400 ppb colloidal silver effectively reduced the bacterial concentrations to <1 CFU ml(-1) for a period of up to 3 months.

  5. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  6. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    Science.gov (United States)

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    1992-01-01

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  7. Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments

    Science.gov (United States)

    1977-01-01

    Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.

  8. Microwave Readout to Enable the Imaging Spectrometer for the X-ray Surveyor

    Data.gov (United States)

    National Aeronautics and Space Administration — The X-ray Surveyor mission concept is one of NASA’s four large missions to be studied in the upcoming 2020 Astrophysics Decadal Review. It aims to be a true...

  9. MARS GLOBAL SURVEYOR RAW DATA SET - CRUISE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Global Surveyor (MGS) Radio Science (RS) Raw Data Archive (RDA) is a time-ordered collection of raw and partially processed data collected during the MGS...

  10. Emergency strategy optimization for the environmental control system in manned spacecraft

    Science.gov (United States)

    Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin

    2018-02-01

    It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.

  11. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    Science.gov (United States)

    Lurio, Charles A.

    1992-01-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.

  12. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  13. Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants

    Science.gov (United States)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Taylor, Terry L.

    2013-01-01

    "Green" propellants based on Ionic-liquids (ILs) like Ammonium DiNitramide and Hydroxyl Ammonium Nitrate have recently been developed as reduced-hazard replacements for hydrazine. Compared to hydrazine, ILs offer up to a 50% improvement in available density-specific impulse. These materials present minimal vapor hazard at room temperature, and this property makes IL's potentially advantageous for "ride-share" launch opportunities where hazards introduced by hydrazine servicing are cost-prohibitive. Even though ILs present a reduced hazard compared to hydrazine, in crystalline form they are potentially explosive and are mixed in aqueous solutions to buffer against explosion. Unfortunately, the high water content makes IL-propellants difficult to ignite and currently a reliable "coldstart" capability does not exist. For reliable ignition, IL-propellants catalyst beds must be pre-heated to greater than 350 C before firing. The required preheat power source is substantial and presents a significant disadvantage for SmallSats where power budgets are extremely limited. Design and development of a "micro-hybrid" igniter designed to act as a "drop-in" replacement for existing IL catalyst beds is presented. The design requires significantly lower input energy and offers a smaller overall form factor. Unlike single-use "squib" pyrotechnic igniters, the system allows the gas generation cycle to be terminated and reinitiated on demand.

  14. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; hide

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  15. The Transient High Energy Sky and Early Universe Surveyor (THESEUS)

    Science.gov (United States)

    Amati, Lorenzo; O'Brien, Paul T.; Götz, Diego

    2016-07-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 9-10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.

  16. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  17. Putting Integrated Systems Health Management Capabilities to Work: Development of an Advanced Caution and Warning System for Next-Generation Crewed Spacecraft Missions

    Science.gov (United States)

    Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene

    2013-01-01

    Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.

  18. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  19. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  20. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  1. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  2. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept technology development overview

    Science.gov (United States)

    Bolcar, Matthew R.

    2017-09-01

    The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).

  3. The Transient High Energy Sky and Early Universe Surveyor

    Science.gov (United States)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  4. Environmental charging of spacecraft-tests of thermal control materials for use on the global positioning system flight space vehicle. Part 2: Specimen 6 to 9

    Science.gov (United States)

    Stevens, N. J.; Berkopec, F. D.; Blech, R. A.

    1976-01-01

    The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance.

  5. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.

  6. The cosmology large angular scale surveyor (CLASS): 40 GHz optical design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-09-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19° x 14° with a resolution for each beam on the sky of 1.5° FWHM.

  7. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  8. Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers.

    Science.gov (United States)

    Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun; Shim, Hosup

    2017-12-31

    Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS.

  9. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  10. Test Telemetry And Command System (TTACS)

    Science.gov (United States)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for

  11. Pressure-Fed LOX/LCH4 Reaction Control System for Spacecraft: Transient Modeling and Thermal Vacuum Hotfire Test Results

    Science.gov (United States)

    Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.

    2017-01-01

    An integrated cryogenic liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA), a pressure-fed LOX/LCH4 propulsion system composed of a single 2,800 lbf main engine, two 28 lbf RCS engines, and two 7 lbf RCS engines. Propellants are stored in four 48 inch diameter 5083 aluminum tanks that feed both the main engine and RCS engines in parallel. Helium stored cryogenically in a composite overwrapped pressure vessel (COPV) flows through a heat exchanger on the main engine before being used to pressurize the propellant tanks to a design operating pressure of 325 psi. The ICPTA is capable of simultaneous main engine and RCS operation. The RCS engines utilize a coil-on-plug (COP) ignition system designed for operation in a vacuum environment, eliminating corona discharge issues associated with a high voltage lead. There are two RCS pods on the ICPTA, with two engines on each pod. One of these two engines is a heritage flight engine from Project Morpheus. Its sea level nozzle was removed and replaced by an 85:1 nozzle machined using Inconel 718, resulting in a maximum thrust of 28 lbf under altitude conditions. The other engine is a scaled down version of the 28 lbf engine, designed to match the core and overall mixture ratios as well as other injector characteristics. This engine can produce a maximum thrust of 7 lbf with an 85:1 nozzle that was additively manufactured using Inconel 718. Both engines are film-cooled and capable of limited duration gas-gas and gas-liquid operation, as well as steady-state liquid-liquid operation. Each pod contains one of each version, such that two engines of the same thrust level can be fired as a couple on opposite pods. The RCS feed system is composed of symmetrical 3/8 inch lines

  12. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  13. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  14. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  15. Spacecraft Health Automated Reasoning Prototype (SHARP): The fiscal year 1989 SHARP portability evaluations task for NASA Solar System Exploration Division's Voyager project

    Science.gov (United States)

    Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius

    1990-01-01

    A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.

  16. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  17. Chaos as the hub of systems dynamics. The part I-The attitude control of spacecraft by involving in the heteroclinic chaos

    Science.gov (United States)

    Doroshin, Anton V.

    2018-06-01

    In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.

  18. Chemical Analysis of the Moon at the Surveyor VII Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Franzgrote, E J; Patterson, J H

    1968-10-04

    The alpha-scattering experiment aboard Surveyor VII has provided a chemical analysis of the moon in the area of the crater Tycho. The preliminary results indicate a chemical composition similar to that already found at two mare sites, but with a lower concentration of elements of the iron group (titanium through copper).

  19. Adjusting forest density estimates for surveyor bias in historical tree surveys

    Science.gov (United States)

    Brice B. Hanberry; Jian Yang; John M. Kabrick; Hong S. He

    2012-01-01

    The U.S. General Land Office surveys, conducted between the late 1700s to early 1900s, provide records of trees prior to widespread European and American colonial settlement. However, potential and documented surveyor bias raises questions about the reliability of historical tree density estimates and other metrics based on density estimated from these records. In this...

  20. Identifying and Describing Tutor Archetypes: The Pragmatist, the Architect, and the Surveyor

    Science.gov (United States)

    Harootunian, Jeff A.; Quinn, Robert J.

    2008-01-01

    In this article, the authors identify and anecdotally describe three tutor archetypes: the pragmatist, the architect, and the surveyor. These descriptions, based on observations of remedial mathematics tutors at a land-grant university, shed light on a variety of philosophical beliefs regarding and pedagogical approaches to tutoring. An analysis…

  1. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  2. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  3. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  4. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  5. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update

    Science.gov (United States)

    Bolcar, Matthew R.; Aloezos, Steve; Bly, Vincent T.; Collins, Christine; Crooke, Julie; Dressing, Courtney D.; Fantano, Lou; Feinberg, Lee D.; France, Kevin; Gochar, Gene; Gong, Qian; Hylan, Jason E.; Jones, Andrew; Linares, Irving; Postman, Marc; Pueyo, Laurent; Roberge, Aki; Sacks, Lia; Tompkins, Steven; West, Garrett

    2017-09-01

    In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA's Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.

  6. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  7. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  8. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  9. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  10. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  11. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  12. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (MACINTOSH A/UX VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  13. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (DEC VAX VMS VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  14. The ties that bind: Soil surveyor William Edgar Tharp and oceanographic cartographer Marie Tharp

    Science.gov (United States)

    Landa, Edward R.

    The link between soil science and geology is personified in the American father and daughter: soil surveyor William Edgar Tharp (1870-1959) and oceanographic cartographer Marie Tharp (1920-2006). From 1904 to 1935, W.E. Tharp mapped soils in 14 states for the US Department of Agriculture, and campaigned during the late 1920s-early 1930s to raise awareness of the high rates of soil erosion from croplands. The lifestyle of the federal soil surveyor in the United States during the early 20th century involved frequent household moves, and it played a formative role in Marie Tharp’s childhood. Her path to a career in geology was molded by this family experience, by mentors encountered in the classroom, and by social barriers that faced women scientists of that era.

  15. Professional Risk Assessment on the Workplace of Surface Surveyor Employed in Measuring-Geological Department of Coalmine

    Science.gov (United States)

    Matuszewska, Ewa; Orwat, Justyna

    2016-06-01

    In this article were shown the identification of threats and the assessment of occupational risk for the surface surveyor by using the Five Steps method and taking into account the health state of workers.

  16. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  17. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  18. The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennet, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakula, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D.; Miller, Nathan; Moseley, Samuel H.; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-07-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  19. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  20. Correlates of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2012-05-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Job satisfaction is the sense of well- being, good feeling and positive mental state that emerge in an incumbent worker when his obtained reward consequent upon his performance is congruent with his equitable reward.The aim of this study is to ascertain the levels of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria. Biographical and job descriptive index questionnaires (JDI were administered to gather the data. The JDI measures job satisfaction on five facets, namely, pay, promotions, supervision, co-workers and the work itself. A total of 100 questionnaires were collected and used for the study. The survey covered quantity surveyors in consulting firms in Lagos and the respondents were selected using stratified random sampling technique. Data collected were analysed using descriptive statistics, correlation matrix, t-test and one way anova. Findings of the study revealed that the respondents were satisfied with the relationship with co-workers, nature of work and the supervision they receive. Major sources of dissatisfaction are promotion and salaries of the respondents. This finding is a bold step and necessary benchmark for resolving major sources of dissatisfaction among quantity surveyors in consulting firms. The roles of other contextual factors on job satisfaction need to be contemplated for future research.

  1. Correlates of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2012-05-01

    Full Text Available Job satisfaction is the sense of well- being, good feeling and positive mental state that emerge in an incumbent worker when his obtained reward consequent upon his performance is congruent with his equitable reward.The aim of this study is to ascertain the levels of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria. Biographical and job descriptive index questionnaires (JDI were administered to gather the data. The JDI measures job satisfaction on five facets, namely, pay, promotions, supervision, co-workers and the work itself. A total of 100 questionnaires were collected and used for the study. The survey covered quantity surveyors in consulting firms in Lagos and the respondents were selected using stratified random sampling technique. Data collected were analysed using descriptive statistics, correlation matrix, t-test and one way anova. Findings of the study revealed that the respondents were satisfied with the relationship with co-workers, nature of work and the supervision they receive. Major sources of dissatisfaction are promotion and salaries of the respondents. This finding is a bold step and necessary benchmark for resolving major sources of dissatisfaction among quantity surveyors in consulting firms. The roles of other contextual factors on job satisfaction need to be contemplated for future research.

  2. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  3. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  4. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.

  5. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  6. Characterizing Biological Closed-Loop Life Support Systems for Thermal Control and Revitalization of Spacecraft Cabin Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental Control and Support Systems (ECLSS) are required for all manned spaceflight missions to provide the most fundamental physiological needs. One of these...

  7. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    Science.gov (United States)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  8. Fault Diagnosis Scheme for Nonlinear Stochastic Systems with Time-Varying Fault: Application to the Rigid Spacecraft Control

    Czech Academy of Sciences Publication Activity Database

    Nguyen, H.Q.; Čelikovský, Sergej

    2012-01-01

    Roč. 1, č. 3 (2012), s. 179-187 ISSN 2223-7038 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Attitude control * adaptive fault estimation * LMI * PDF Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=02c925f7e4ab

  9. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  10. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  11. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  12. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  13. Software Surveyor

    National Research Council Canada - National Science Library

    Wells, Davide

    2003-01-01

    .... The non-intrusive gauges illustrate the interaction patters, how far the effects of changes can propagate and whether an anticipated action is likely to be safe and identify subtle differences...

  14. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  15. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    Science.gov (United States)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  16. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    Science.gov (United States)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  17. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  18. Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight

    Science.gov (United States)

    Bloomberg, Jacob J.; Reschke, Millard F.; Clement, Gilles R.; Mulavara, Ajitkumar P.; Taylor, Laura C..

    2015-01-01

    Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional

  19. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  20. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  1. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  2. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  3. A New Approach to Isolating External Magnetic Field Components in Spacecraft Measurements of the Earth's Magnetic Field Using Global Positioning System observables

    Science.gov (United States)

    Raymond, C.; Hajj, G.

    1994-01-01

    We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.

  4. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Science.gov (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  5. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.

    2006-01-01

    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  6. Low cost spacecraft computers: Oxymoron or future trend?

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  7. "Long life" DC brush motor for use on the Mars surveyor program

    Science.gov (United States)

    Braun, David; Noon, Don

    1998-01-01

    DC brush motors have several qualities which make them very attractive for space flight applications. Their mechanical commutation is simple and lightweight, requiring no external sensing and control in order to function properly. They are extremely efficient in converting electrical energy into mechanical energy. Efficiencies over 80% are not uncommon, resulting in high power throughput to weight ratios. However, the inherent unreliability and short life of sliding electrical contacts, especially in vacuum, have driven previous programs to utilize complex brushless DC or the less efficient stepper motors. The Mars Surveyor Program (MSP'98) and the Shuttle Radar Topography Mission (SRTM) have developed a reliable "long life" brush type DC motor for operation in low temperature, low pressure CO2 and N2, utilizing silver-graphite brushes. The original intent was to utilize this same motor for SRTM's space operation, but the results thus far have been unsatisfactory in vacuum. This paper describes the design, test, and results of this development.

  8. The Manned Spacecraft Center and medical technology

    Science.gov (United States)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  9. Assessment of Viability Appraisal Practice by Estate Surveyors and Valuers in Lagos Metropolis, Nigeria

    Directory of Open Access Journals (Sweden)

    Oyetunji Abiodun Kolawale

    2017-01-01

    Full Text Available A capital investment appraisal is a means of ensuring value for money. It is not meant to provide an indication of profit or loss, but rather a comparison of costs in relation to those areas where there is an opportunity or an inclination for change. The decision to invest in a project is based on the expectation of future returns since a rational investor does not expect to incur loss on his capital outlay. This decision making is usually hinged on advice obtained during pre-investment appraisal. This study is aimed at evaluating the mode of practicing investment viability appraisal by Estate Surveyors and Valuers in Lagos metropolis. The data for the study was obtained by randomly administering structured questionnaires on eighty-seven (87 practicing Estate Surveyors and Valuers in the study area and the findings were analyzed through descriptive statistical tools such as the Likert scale to present the result. Findings revealed that the payback period is the most adopted appraisal technique in practice as evidenced with a mean score of 3.57. The objective (s of the investor is also the most significant factor being considered while selecting appraisal technique with a mean score of 3.83 while the problems of actual return varying from the expected return and also difficulty in the repayment of loans always result when a wrong viability technique is employed. The success of any viability study goes beyond knowing the objective (s of the investor; therefore, it was recommended that appraisers should ensure that they are equipped with adequate knowledge required for the execution of feasibility and on viability studies because knowing the right viability criteria for a particular objective will help in advising an investor on a course of action that will best achieve the developer’s objective.

  10. Astronaut L. Gordon Cooper is assisted into his spacecraft for tests

    Science.gov (United States)

    1963-01-01

    NASA and McDonnell Aircraft Corp. spacecraft technicians assist Astronaut L. Gordon Cooper into his spacecraft prior to undergoing tests in the altitude chamber. These tests are used to determine the operating characteristcs of the overall environmental control system.

  11. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  12. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  13. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  14. About the Big Graphs Arising when Forming the Diagnostic Models in a Reconfigurable Computing Field of Functional Monitoring and Diagnostics System of the Spacecraft Onboard Control Complex

    Directory of Open Access Journals (Sweden)

    L. V. Savkin

    2015-01-01

    Full Text Available One of the problems in implementation of the multipurpose complete systems based on the reconfigurable computing fields (RCF is the problem of optimum redistribution of logicalarithmetic resources in growing scope of functional tasks. Irrespective of complexity, all of them are transformed into an orgraph, which functional and topological structure is appropriately imposed on the RCF based, as a rule, on the field programmable gate array (FPGA.Due to limitation of the hardware configurations and functions realized by means of the switched logical blocks (SLB, the abovementioned problem becomes even more critical when there is a need, within the strictly allocated RCF fragment, to realize even more complex challenge in comparison with the problem which was solved during the previous computing step. In such cases it is possible to speak about graphs of big dimensions with respect to allocated RCF fragment.The article considers this problem through development of diagnostic algorithms to implement diagnostics and control of an onboard control complex of the spacecraft using RCF. It gives examples of big graphs arising with respect to allocated RCF fragment when forming the hardware levels of a diagnostic model, which, in this case, is any hardware-based algorithm of diagnostics in RCF.The article reviews examples of arising big graphs when forming the complicated diagnostic models due to drastic difference in formation of hardware levels on closely located RCF fragments. It also pays attention to big graphs emerging when the multichannel diagnostic models are formed.Three main ways to solve the problem of big graphs with respect to allocated RCF fragment are given. These are: splitting the graph into fragments, use of pop-up windows with relocating and memorizing intermediate values of functions of high hardware levels of diagnostic models, and deep adaptive update of diagnostic model.It is shown that the last of three ways is the most efficient

  15. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  16. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  17. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  18. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  19. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  20. Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

    CERN Multimedia

    2004-01-01

    Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

  1. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  2. Spacecraft early design validation using formal methods

    International Nuclear Information System (INIS)

    Bozzano, Marco; Cimatti, Alessandro; Katoen, Joost-Pieter; Katsaros, Panagiotis; Mokos, Konstantinos; Nguyen, Viet Yen; Noll, Thomas; Postma, Bart; Roveri, Marco

    2014-01-01

    The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed – with challenging requirements from the European space industry – a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested)

  3. Determination of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  4. Passive Devices for Advanced Fluid Management aboard Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acute challenges are faced by the designers of fluid systems for spacecraft because of the persistently unfamiliar and unforgiving low-g environment. For example,...

  5. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  6. A Quantized State Approach to On-line Simulation for Spacecraft Autonomy

    DEFF Research Database (Denmark)

    Alminde, Lars; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2006-01-01

    Future space applications will require an increased level of operational autonomy. This calls for declarative methods for spacecraft state estimation and control, so that the spacecraft engineer can focus on modeling the spacecraft rather than implementing all details of the on-line system. Celeb...

  7. Cloud amount/frequency, NITRATE and other data from SURVEYOR in the Chukchi Sea from 1990-10-02 to 1990-10-20 (NODC Accession 9200012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Chukchi Sea. Data was collected during 155 Casts from Ship SURVEYOR. The data was...

  8. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    Science.gov (United States)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  9. Schema for Spacecraft-Command Dictionary

    Science.gov (United States)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse

    2008-01-01

    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  10. Drivers militating against the pricing of sustainable construction materials: The Ghanaian quantity surveyors perspective

    Directory of Open Access Journals (Sweden)

    Ernest Kissi

    2018-06-01

    Full Text Available Sustainability has in recent times attained much acceptance as a result of its positive impact on the environment, social and economic issues. Nevertheless, in developing countries, the price of sustainable construction materials are too high. The aim of the study was to examine drivers militating against the pricing of sustainable construction materials. Through an in-depth review of literature as well as an interview survey, questionnaire was designed and administered to practicing quantity surveyors. Data generated from the survey was analysed using Principal Component Analysis which resulted four main drivers. These included: awareness challenge (AC, sustainability measurement tools challenge (SMTC, economic challenge (EC, and information challenge (IC. The study offers useful lessons on sustainable practices that pricing experts in the construction industry can draw on when pricing.The need for this study cannot be doubted since the consciousness of such challenges will help in resolving issues associated with pricing of sustainable construction materials. Keywords: Drivers, Militating, Pricing, Sustainable construction materials, Ghanaian

  11. The Transient High-Energy Sky and Early Universe Surveyor (THESEUS)

    Science.gov (United States)

    Amati, L.; O'Brien, P.; Goetz, D.; Tenzer, C.; Bozzo, E.

    2017-10-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept developed by a large international collaboration aimed at exploiting Gamma-Ray Bursts for investigating the early Universe. The main scientic objectives of THESEUS, currently under evaluation by ESA within the selection process for next M5 mission, include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.7m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to perform a monitoring of the X-ray sky with unprecedented sensitivity, which will provide a perfect service and sinergy to next generation multi-wavalength (e.g., E-ELT, SKA, CTA, ATHENA) and multi-messenger (aLIGO, aVIRGO, eLISA, ET, neutrino detectors, ...) facilities.

  12. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  13. Ad hoc laser networks component technology for modular spacecraft

    Science.gov (United States)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  14. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    Teflon (AGT5, Ag-FEP) Thermal control surface (radiator) Spacecraft Exposure Soda-lime glass (74% SiO2 , 13% Na2O, 8% CaO, 4% MgO, 1% other oxide... Glass Solar panel cover Spacecraft Exposure Buna-N (acrylonitrile butadiene rubber) Seals Iodine Feed System Carbon fiber composite (epoxy resin...Fe Propellant isolator Spacecraft Exposure Lanthanum Hexaboride, LaB6 Cathode emitter Inside Cathode Yes MACOR (46% SiO2 , 17% MgO, 16% Al2O3, 10

  15. Overview of SDCM - The Spacecraft Design and Cost Model

    Science.gov (United States)

    Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.

    1988-01-01

    The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.

  16. Close-Range Photogrammetry & Next Generation Spacecraft

    Science.gov (United States)

    Pappa, Richard S.

    2002-01-01

    NASA is focusing renewed attention on the topic of large, ultra-lightweight space structures, also known as 'gossamer' spacecraft. Nearly all of the details of the giant spacecraft are still to be worked out. But it's already clear that one of the most challenging aspects will be developing techniques to align and control these systems after they are deployed in space. A critical part of this process is creating new ground test methods to measure gossamer structures under stationary, deploying and vibrating conditions for validation of corresponding analytical predictions. In addressing this problem, I considered, first of all, the possibility of simply using conventional displacement or vibration sensor that could provide spatial measurements. Next, I turned my attention to photogrammetry, a method of determining the spatial coordinates of objects using photographs. The success of this research and development has convinced me that photogrammetry is the most suitable method to solve the gossamer measurement problem.

  17. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  18. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  19. Design of systemic autonomous safety for Tiangong-I target spacecraft%“天宫一号”,目标飞行器系统级自主安全设计

    Institute of Scientific and Technical Information of China (English)

    李智勇

    2011-01-01

    为确保载人飞行器在长期飞行中的设备安全以及短期飞行中航天员的安全,需要从系统层面进行自主安全设计,使航天器在出现地面无法快速反应的故障时能够启动安全模式进行自我保护.文章以能源安全设计为主对“天宫一号”目标飞行器系统级自主安全设计进行了论述,总结了设计经验,对后续型号的设计提出了建议.%In space flights, the safety of hardware during a long-time flight and that of astronaut during a short-time flight are important issues in the implementation of the mission goal. The capability of independent safety control should be designed for spacecraft in the system level against major faults beyond instant ground responses. This paper discusses the system design of autonomous safety for manned spacecraft, with primary concern on the power system. Some engineering practices and suggestions are summarized for further studies.

  20. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  1. DRIRU I/SKIRU - The application of the DTG to spacecraft attitude control. [Dynamically-Tuned Gyro for Inertial Reference Unit systems

    Science.gov (United States)

    Swanson, C. O.

    1982-01-01

    The dynamically tuned gyro (DTG) was developed to replace the floated, rate integrating gyro used for space attitude control, as the DTG fulfills cost, performance, and reliability requirements not satisfied by its predecessor. The use of this gyro in the Dry Gyro Inertial Reference Unit I (DRIRU I) marked the first application of a DTG in a spacecraft attitude reference unit. Design and performance characteristics of DTG application in the Singer-Kearfott Inertial Reference Unit (SKIRU) are outlined, for example its minimal weight (7 lb), and operational reliability. The DTG has accomplished 156,000 failure-free hours, and a chart, logging test performance, indicates that this and other requirements were more than sufficiently satisfied. The unit has an unparalleled life span, with several units still operating after 70,000 to 130,000 hours, and a random drift which always remains under 0.0005 deg/h. Potential for improvements, such as drift performance, are considered.

  2. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  3. Darwinian Spacecraft: Soft Computing Strategies Breeding Better, Faster Cheaper

    Science.gov (United States)

    Noever, David A.; Baskaran, Subbiah

    1999-01-01

    Computers can create infinite lists of combinations to try to solve a particular problem, a process called "soft-computing." This process uses statistical comparables, neural networks, genetic algorithms, fuzzy variables in uncertain environments, and flexible machine learning to create a system which will allow spacecraft to increase robustness, and metric evaluation. These concepts will allow for the development of a spacecraft which will allow missions to be performed at lower costs.

  4. Virtual Surveyor based Object Extraction from Airborne LiDAR data

    Science.gov (United States)

    Habib, Md. Ahsan

    Topographic feature detection of land cover from LiDAR data is important in various fields - city planning, disaster response and prevention, soil conservation, infrastructure or forestry. In recent years, feature classification, compliant with Object-Based Image Analysis (OBIA) methodology has been gaining traction in remote sensing and geographic information science (GIS). In OBIA, the LiDAR image is first divided into meaningful segments called object candidates. This results, in addition to spectral values, in a plethora of new information such as aggregated spectral pixel values, morphology, texture, context as well as topology. Traditional nonparametric segmentation methods rely on segmentations at different scales to produce a hierarchy of semantically significant objects. Properly tuned scale parameters are, therefore, imperative in these methods for successful subsequent classification. Recently, some progress has been made in the development of methods for tuning the parameters for automatic segmentation. However, researchers found that it is very difficult to automatically refine the tuning with respect to each object class present in the scene. Moreover, due to the relative complexity of real-world objects, the intra-class heterogeneity is very high, which leads to over-segmentation. Therefore, the method fails to deliver correctly many of the new segment features. In this dissertation, a new hierarchical 3D object segmentation algorithm called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. AVSOE segments objects based on their distinct geometric concavity/convexity. This is achieved by strategically mapping the sloping surface, which connects the object to its background. Further analysis produces hierarchical decomposition of objects to its sub-objects at a single scale level. Extensive qualitative and qualitative results are presented to demonstrate the efficacy of this hierarchical segmentation approach.

  5. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  6. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  7. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will use existing hardware and software from related programs to create a prototype Lunar Navigation Sensor (LNS) early in Phase II, such that most of the...

  8. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm proposes to design and develop a fully autonomous Lunar Navigator based on our MicroMak miniature star sensor and a gravity gradiometer similar to one on a...

  9. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  10. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  11. A small spacecraft for multipoint measurement of ionospheric plasma

    Science.gov (United States)

    Roberts, T. M.; Lynch, K. A.; Clayton, R. E.; Weiss, J.; Hampton, D. L.

    2017-07-01

    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  12. Nuclear-powered Hysat spacecraft: comparative design study

    International Nuclear Information System (INIS)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements

  13. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  14. Architectural and Behavioral Systems Design Methodology and Analysis for Optimal Habitation in a Volume-Limited Spacecraft for Long Duration Flights

    Science.gov (United States)

    Kennedy, Kriss J.; Lewis, Ruthan; Toups, Larry; Howard, Robert; Whitmire, Alexandra; Smitherman, David; Howe, Scott

    2016-01-01

    As our human spaceflight missions change as we reach towards Mars, the risk of an adverse behavioral outcome increases, and requirements for crew health, safety, and performance, and the internal architecture, will need to change to accommodate unprecedented mission demands. Evidence shows that architectural arrangement and habitability elements impact behavior. Net habitable volume is the volume available to the crew after accounting for elements that decrease the functional volume of the spacecraft. Determination of minimum acceptable net habitable volume and associated architectural design elements, as mission duration and environment varies, is key to enabling, maintaining, andor enhancing human performance and psychological and behavioral health. Current NASA efforts to derive minimum acceptable net habitable volumes and study the interaction of covariates and stressors, such as sensory stimulation, communication, autonomy, and privacy, and application to internal architecture design layouts, attributes, and use of advanced accommodations will be presented. Furthermore, implications of crew adaptation to available volume as they transfer from Earth accommodations, to deep space travel, to planetary surface habitats, and return, will be discussed.

  15. Passive Set-Point Thermal Control Skin for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned and unmanned spacecraft require sophisticated thermal control technologies to keep systems at temperatures within their proper operating ranges....

  16. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  17. SSS-A spacecraft and experiment description.

    Science.gov (United States)

    Longanecker, G. W.; Hoffman, R. A.

    1973-01-01

    The scientific objectives of the Explorer-45 mission are discussed. The primary objective is the study of the ring current responsible for the main phase of magnetic storms. Closely associated with this objective is the determination of the relationship between magnetic storms, substorms, and the acceleration of charged particles in the magnetosphere. Further objectives are the measurement of a wide range of proton, electron and alpha-particle energies, and studies of wave-particle interactions responsible for particle transport and loss in the inner magnetosphere. The orbital parameters, the spacecraft itself, and some of its unique features, such as the data handling system, which is programmable from the ground, are described.

  18. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  19. A Research on the Electrical Test Fault Diagnostic and Data Mining of a Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2017-01-01

    Full Text Available The paper introduces the modeling method and modeling tool for the fault diagnosis of manned spacecraft, the multi-signal flow graph model of a manned space equipment was established using this method; the framework of the fault detection and diagnosis system of manned spacecraft is proposed, the function of ground system and function of the spacecraft are clearly defined. The structure of the functional module is given separately; finally, the tool builds the fault detection and diagnosis system, the application of fault diagnosis method for manned spacecraft is used for reference.

  20. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  1. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  2. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Science.gov (United States)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  3. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  4. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  5. Improvement of job satisfaction and organisational commitment through work group identification: an examination of the quantity surveyors in Hong Kong

    Directory of Open Access Journals (Sweden)

    Wai Yee Betty Chiu

    2013-09-01

    Full Text Available Though extant literatures in other sectors indicatethat job satisfaction and organizational commitment are important fordetermining individual and organisational outcomes, limited related researchhas been conducted amongst quantity surveyors in Hong Kong. Given cooperativeworking arrangement in the quantity surveying profession, work groupidentification is regarded as an important antecedent for determining jobsatisfaction and organisational commitment. The aim of this study is to examinewhether work group identification improves job satisfaction and organisationalcommitment. A questionnaire survey is conducted to collect data from quantitysurveyors working in private sector. A total of 71 valid responses are obtainedfrom 509 contacted quantity surveyors in Hong Kong. Bivariate correlation andmultiple regression analyses are performed to find the significance ofrelationships among the variables. Data analysis results support mosthypotheses. Work group identification is found to have significant positiveeffect on job satisfaction, affective and normative commitment. The finding isa bold step for quantity surveying companies to improve their quantity surveyors’job satisfaction and commitment level. The role of other contextual and organisationalfactors on job satisfaction and organisational commitment needs to becomplemented for future research.

  6. A spacecraft computer repairable via command.

    Science.gov (United States)

    Fimmel, R. O.; Baker, T. E.

    1971-01-01

    The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.

  7. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  8. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 2: Concept development and selection

    Science.gov (United States)

    1972-01-01

    The overall program background, the various system concepts considered, and the rationale for the selected design are described. The concepts for each subsystem are also described and compared. Details are given for the requirements, boom configuration and dynamics, actuators, man/machine interface and control, visual system, control system, environmental control and life support, data processing, and materials.

  9. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  10. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  11. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  12. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  13. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  14. Trajectories of inner and outer heliospheric spacecraft: Predicted through 1999

    Science.gov (United States)

    Parthasarathy, R.; King, Joseph H.

    1991-01-01

    Information is presented in tabular and graphical form on the trajectories of the international fleet of spacecraft that will be probing the far reaches of the heliosphere during the 1990s. In particular, the following spacecraft are addressed: Pioneer 10 and 11, Pioneer Venus Orbiter (PVO), Voyager 1 and 2, Galileo, Ulysses, Suisei, Sakigake, Giotto, International Cometary Explorer (ICE), and Interplanetary Monitoring Platform 8 (IMP 8). Yearly resolution listing of position information in inertial space are given for Pioneer and Voyager spacecraft from the times of their launches in the 1970s. One series of plots shows the radial distances, latitudes, and longitudes of the Pioneers and Voyagers. The solar ecliptic inertial coordinate system is used. In this system, the Z axis is normal to the ecliptic plane and the X axis is towards the first point of Aries (from Sun to Earth on the vernal equinox).

  15. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  16. The γ-ray burst-detection system of SPI

    International Nuclear Information System (INIS)

    Lichti, G.G.; Georgii, R.; Kienlin, A. von; Schoenfelder, V.; Wunderer, C.; Jung, H.-J.; Hurley, K.

    2000-01-01

    The determination of precise locations of γ-ray bursts is a crucial task of γ-ray astronomy. Although γ-ray burst locations can be obtained nowadays from single experiments (BATSE, COMPTEL, BeppoSax) the location of bursts via triangulation using the interplanetary network is still important because not all bursts will be located precisely enough by these single instruments. In order to get location accuracies down to arcseconds via triangulation one needs long baselines. At the beginning of the next decade several spacecrafts which explore the outer planetary system (the Mars-Surveyor-2001 Orbiter and probably Ulysses) will carry γ-ray burst instruments. INTEGRAL as a near-earth spacecraft is the ideal counterpart for these satellites. The massive anticoincidence shield of the INTEGRAL-spectrometer SPI allows the measurement of γ-ray bursts with a high sensitivity. Estimations have shown that with SPI some hundred γ-ray bursts per year on the 5σ level can be measured. This is equivalent to the BATSE sensitivity. We describe the γ-ray burst-detection system of SPI, present its technical features and assess the scientific capabilities

  17. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  18. Impact of revisions to the F-Tag 309 surveyors' interpretive guidelines on pain management among nursing home residents.

    Science.gov (United States)

    Lapane, Kate L; Quilliam, Brian J; Chow, Wing; Kim, Myoung S

    2012-05-01

    On 31 March 2009, the US Centers for Medicare & Medicaid Services (CMS) provided revised guidance for meeting compliance in the evaluation and management of pain in nursing home residents, known as F-Tag 309. The aim of the study was to estimate the extent to which implementation of revisions to the surveyors' interpretive guidelines for F-Tag 309 improved recognition and management of pain among nursing home residents. The impact of the revisions to guidance on F-Tag 309 on pain in nursing home residents was investigated. The study was quasi-experimental in design and included 174 for-profit nursing homes in 19 US states. Nursing home residents with ≥2 Minimum Data Set (MDS) assessments between 1 January 2007 and 30 March 2009 (before the revisions to the guidelines; n = 8449) and between 31 March 2009 and 31 December 2009 (after the revisions; n = 1400) were included. The MDS assessments provided information on pain, analgesic use and cognitive, functional and emotional status. Separate logistic regression models that adjusted for clustering effects of residents residing in nursing homes provided estimates of the relationship between the implementation of the revisions to F-Tag 309 and the prevalence of pain and its management. Pain was more likely to be documented in the period after the revisions were implemented. The odds of pain being documented on at least one of two consecutive MDS assessments increased after the revisions to the guidelines were implemented (adjusted odds ratio [OR] 1.15; 95% confidence interval [CI] 1.01, 1.31). Increases in scheduled analgesic prescription were observed in the post-revision era (adjusted OR 1.38; 95% CI 1.21,1.57). The implementation of revisions to the surveyors' interpretive guidelines for F-Tag 309 improved recognition and management of pain as well as analgesic use in nursing home residents with documented non-cancer pain. Use of directed language as part of the surveyors' interpretive guidelines may be a

  19. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  20. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  1. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 1: Technical

    Science.gov (United States)

    1972-01-01

    Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.

  2. Standardized spacecraft: a methodology for decision making. AMS report No. 1199

    International Nuclear Information System (INIS)

    Greenberg, J.S.; Nichols, R.A.

    1974-01-01

    As the space program matures, more and more attention is being focused on ways to reduce the costs of performing space missions. Standardization has been suggested as a way of providing cost reductions. The question of standardization at the system level, in particular, the question of the desirability of spacecraft standardization for geocentric space missions is addressed. The spacecraft is considered to be a bus upon which mission oriented equipment, the payload, is mounted. Three basic questions are considered: (1) is spacecraft standardization economically desirable; (2) if spacecraft standardization is economically desirable, what standardized spacecraft configuration or mix of configurations and technologies should be developed; and (3) if standardized spacecraft are to be developed, what power levels should they be designed for. A methodology which has been developed and which is necessary to follow if the above questions are to be answered and informed decisions made relative to spacecraft standardization is described. To illustrate the decision making problems and the need for the developed methodology and the data requirements, typical standardized spacecraft have been considered. Both standardized solar and nuclear-powered spacecraft and mission specialized spacecraft have been conceptualized and performance and cost estimates have been made. These estimates are not considered to be of sufficient accuracy to allow decisions regarding spacecraft mix and power levels to be made at this time. The estimates are deemed of sufficient accuracy so as to demonstrate the desirability of spacecraft standardization and the methodology (as well as the need for the methodology) which is necessary to decide upon the best mix of standardized spacecraft and their design power levels. (U.S.)

  3. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  4. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    Science.gov (United States)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  5. Mars Global Surveyor Data Analysis Program. Origins of Small Volcanic Cones: Eruption Mechanisms and Implications for Water on Mars

    Science.gov (United States)

    Fagents, Sarah A.; Greeley, Ronald; Thordarson, Thorvaldur

    2002-01-01

    The goal of the proposed work was to determine the origins of small volcanic cones observed in Mars Global Surveyor (MGS) data, and their implications for regolith ice stores and magma volatile contents. For this 1-year study, our approach involved a combination of: Quantitative morphologic analysis and interpretation of Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data; Numerical modeling of eruption processes responsible for producing the observed features; Fieldwork on terrestrial analogs in Iceland. Following this approach, this study succeeded in furthering our understanding of (i) the spatial and temporal distribution of near-surface water ice, as defined by the distribution and sizes of rootless volcanic cones ("pseudocraters"), and (ii) the properties, eruption conditions, and volatile contents of magmas producing primary vent cones.

  6. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  7. An Empirical Comparison between Two Recursive Filters for Attitude and Rate Estimation of Spinning Spacecraft

    Science.gov (United States)

    Harman, Richard R.

    2006-01-01

    The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.

  8. Conceptual design of a crewed reusable space transportation system aimed at parabolic flights: stakeholder analysis, mission concept selection, and spacecraft architecture definition

    Science.gov (United States)

    Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco

    2017-03-01

    This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.

  9. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  10. Multiple spacecraft configuration designs for coordinated flight missions

    Science.gov (United States)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  11. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  12. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  13. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  14. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  15. Spacecraft Dynamic Characterization by Strain Energies Method

    Science.gov (United States)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven

  16. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  17. A shuttle and space station manipulator system for assembly, docking, maintenance cargo handling and spacecraft retrieval (preliminary design). Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    A preliminary design is established for a general purpose manipulator system which can be used interchangeably on the shuttle and station and can be transferred back and forth between them. Control of the manipulator is accomplished by hard wiring from internal control stations in the shuttle or station. A variety of shuttle and station manipulator operations are considered including servicing the Large Space Telescope; however, emphasis is placed on unloading modules from the shuttle and assembling the space station. Simulation studies on foveal stereoscopic viewing and manipulator supervisory computer control have been accomplished to investigate the feasibility of their use in the manipulator system. The basic manipulator system consists of a single 18.3 m long, 7 degree of freedom (DOF), electrically acutated main boom with an auxiliary 3 DOF electrically actuated, extendible 18.3 m maximum length, lighting, and viewing boom. A 3 DOF orientor assembly is located at the tip of the viewing boom to provide camera pan, tilt, and roll.

  18. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  19. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  20. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 2: Development program

    Science.gov (United States)

    1972-01-01

    A preliminary estimate is presented of the resources required to develop the basic general purpose walking boom manipulator system. It is assumed that the necessary full scale zero g test facilities will be available on a no cost basis. A four year development effort is also assumed and it is phased with an estimated shuttle development program since the shuttle will be developed prior to the space station. Based on delivery of one qualification unit and one flight unit and without including any ground support equipment or flight test support it is estimated (within approximately + or - 25%) that a total of 3551 man months of effort and $17,387,000 are required.

  1. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach

    2005-03-01

    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  2. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  3. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  4. Plasma Interactions with Spacecraft. Volume 2, NASCAP-2K Scientific Documentation for Version 4.1

    Science.gov (United States)

    2011-04-15

    surface is taken as the equipotential surface at  = ±ln2. This choice is made because the attracted species is absorbed by the sheath, so we have only...spacecraft-generated plasma environments on spacecraft systems. This document describes the physics and numeric models used in the surface charging...2 2.1 Surface Charging from Orbit Limited Currents

  5. Analysis of the Ability of United States and Russian Trace Contaminant Control Systems to Meet U.S. 180-Day and Russian 360-Day Spacecraft Maximum Allowable Concentrations

    Science.gov (United States)

    Perry, J. L.

    2016-01-01

    As the Space Station Freedom program transitioned to become the International Space Station (ISS), uncertainty existed concerning the performance capabilities for U.S.- and Russian-provided trace contaminant control (TCC) equipment. In preparation for the first dialogue between NASA and Russian Space Agency personnel in Moscow, Russia, in late April 1994, an engineering analysis was conducted to serve as a basis for discussing TCC equipment engineering assumptions as well as relevant assumptions on equipment offgassing and cabin air quality standards. The analysis presented was conducted as part of the efforts to integrate Russia into the ISS program via the early ISS Multilateral Medical Operations Panel's Air Quality Subgroup deliberations. This analysis, served as a basis for technical deliberations that established a framework for TCC system design and operations among the ISS program's international partners that has been instrumental in successfully managing the ISS common cabin environment.

  6. What's New is What's Old: Use of Bode's Integral Theorem (circa 1945) to Provide Insight for 21st Century Spacecraft Attitude Control System Design Tuning

    Science.gov (United States)

    Ruth, Mike; Lebsock, Ken; Dennehy, Neil

    2010-01-01

    This paper revisits the Bode integral theorem, first described in 1945 for feedback amplifier design, in the context of modern satellite Attitude Control System (ACS) design tasks. Use of Bode's Integral clarifies in an elegant way the connection between open-loop stability margins and closed-loop bandwidth. More importantly it shows that there is a very strong tradeoff between disturbance rejection below the satellite controller design bandwidth, and disturbance amplification in the 'penalty region' just above the design bandwidth. This information has been successfully used to re-tune the control designs for several NASA science-mission satellites. The Appendix of this paper contains a complete summary of the relevant integral conservation theorems for stable, unstable, and non-minimum- phase plants.

  7. Environmentally-induced discharge transient coupling to spacecraft

    Science.gov (United States)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  8. Standardization and Economics of Nuclear Spacecraft, Final Report, Phase I, Sense Study

    Energy Technology Data Exchange (ETDEWEB)

    1973-03-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft are investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 21000 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification. Three-axis stabilization is included. Several spacecraft can be stacked in the shuttle payload compartment for multi-mission launches. A reactor-powered thermoelectric generator system, operating at an electric power level of 5000 watts, is briefly studied for applicability to two test missions of divers requirements. A cost analysis indicates that use of the two standardized spacecraft offers sizable savings in comparison with specially designed solar-powered spacecraft. There is a duplicate copy.

  9. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  10. Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Science.gov (United States)

    Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael

    2018-01-01

    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.

  11. Attitude tracking control of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  12. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    Science.gov (United States)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  13. Temperature, salinity and other measurements found in dataset CTD taken from the SOUTHERN SURVEYOR (VLHJ) in the Coastal S Pacific, Equatorial Pacific and other locations from 2003 to 2006 (NODC Accession 0043461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, chemical, and other data were collected using CTD casts from the SOUTHERN SURVEYOR in the Iceland Sea and North / South Pacific Ocean. Data...

  14. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from SURVEYOR in the North Pacific Ocean, Bering Sea and NE Pacific from 1995-09-10 to 1995-09-19 (NODC Accession 9600139)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hydrophysical, hydrochemical, and other data were collected from the SURVEYOR from September 10, 1995 to September 19, 1995. Data were submitted by Mr. David Kachel...

  15. CTD data from CTD casts in the Northeast Pacific Ocean from NOAA Ship DISCOVERER and NOAA Ship SURVEYOR from 1985-06-03 to 1988-09-21 (NODC Accession 8900194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD data were collected from CTD casts from NOAA Ship DISCOVERER and NOAA Ship SURVEYOR in the Northeast Pacific Ocean from 03 June 1985 to 21 September 1988. Data...

  16. Spacecraft on-orbit deployment anomalies - What can be done?

    Science.gov (United States)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  17. Autonomous spacecraft landing through human pre-attentive vision

    International Nuclear Information System (INIS)

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; De Croon, Guido C H E

    2012-01-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting. (paper)

  18. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  19. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  20. Theoretical analysis of infrared radiation shields of spacecraft

    Science.gov (United States)

    Shealy, D. L.

    1984-01-01

    For a system of N diffuse, gray body radiation shields which view only adjacent surfaces and space, the net radiation method for enclosures has been used to formulate a system of linear, nonhomogeneous equations in terms of the temperatures to the fourth power of each surface in the coupled system of enclosures. The coefficients of the unknown temperatures in the system of equations are expressed in terms of configuration factors between adjacent surfaces and the emissivities. As an application, a system of four conical radiation shields for a spin stabilized STARPROBE spacecraft has been designed and analyzed with respect to variations of the cone half angles, the intershield spacings, and emissivities.

  1. Programs To Optimize Spacecraft And Aircraft Trajectories

    Science.gov (United States)

    Brauer, G. L.; Petersen, F. M.; Cornick, D.E.; Stevenson, R.; Olson, D. W.

    1994-01-01

    POST/6D POST is set of two computer programs providing ability to target and optimize trajectories of powered or unpowered spacecraft or aircraft operating at or near rotating planet. POST treats point-mass, three-degree-of-freedom case. 6D POST treats more-general rigid-body, six-degree-of-freedom (with point masses) case. Used to solve variety of performance, guidance, and flight-control problems for atmospheric and orbital vehicles. Applications include computation of performance or capability of vehicle in ascent, or orbit, and during entry into atmosphere, simulation and analysis of guidance and flight-control systems, dispersion-type analyses and analyses of loads, general-purpose six-degree-of-freedom simulation of controlled and uncontrolled vehicles, and validation of performance in six degrees of freedom. Written in FORTRAN 77 and C language. Two machine versions available: one for SUN-series computers running SunOS(TM) (LAR-14871) and one for Silicon Graphics IRIS computers running IRIX(TM) operating system (LAR-14869).

  2. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    Science.gov (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  3. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  4. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  5. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  6. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  7. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  8. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  9. Computational Model for Spacecraft/Habitat Volume

    Data.gov (United States)

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...

  10. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  11. The cart before the horse: Mariner spacecraft and launch vehicles

    Science.gov (United States)

    1984-01-01

    Evolution of unmanned space exploration (Pioneer, Ranger, Surveyor, and Prospector) up to 1960, and the problems in the design and use of the Atlas Centaur launch vehicle were discussed. The Mariner Program was developed from the experience gained from the previous unmanned flights.

  12. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    Science.gov (United States)

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  13. Singular formalism and admissible control of spacecraft with rotating flexible solar array

    Directory of Open Access Journals (Sweden)

    Lu Dongning

    2014-02-01

    Full Text Available This paper is concerned with the attitude control of a three-axis-stabilized spacecraft which consists of a central rigid body and a flexible sun-tracking solar array driven by a solar array drive assembly. Based on the linearization of the dynamics of the spacecraft and the modal identities about the flexible and rigid coupling matrices, the spacecraft attitude dynamics is reduced to a formally singular system with periodically varying parameters, which is quite different from a spacecraft with fixed appendages. In the framework of the singular control theory, the regularity and impulse-freeness of the singular system is analyzed and then admissible attitude controllers are designed by Lyapunov’s method. To improve the robustness against system uncertainties, an H∞ optimal control is designed by optimizing the H∞ norm of the system transfer function matrix. Comparative numerical experiments are performed to verify the theoretical results.

  14. Reduced Order Electrostatic Force Field Modeling of 3D Spacecraft Shapes

    Data.gov (United States)

    National Aeronautics and Space Administration — The Autonomous Vehicles Systems (AVS) Lab at CU Boulder has been pursuing research in Coulomb charge control of spacecraft for several years. The electrostatic...

  15. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the vehicle, avionics and atmosphere (if crewed) within a defined temperature range. Since water is non-toxic and good...

  16. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the cabin (both air and its structure if manned) and electronic equipment within a narrow temperature range even though...

  17. Foil Gas Bearing Supported Quiet Fan for Spacecraft Ventilation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Developing a quiet fan for Environmental Control and Life Support systems to enhance the livable environment within the spacecraft has been a challenge. A Foil Gas...

  18. Thrusting maneuver control of a small spacecraft via only gimbaled-thruster scheme

    Science.gov (United States)

    Kabganian, Mansour; Kouhi, Hamed; Shahravi, Morteza; Fani Saberi, Farhad

    2018-05-01

    The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.

  19. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  20. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  1. Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2011-01-01

    Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.

  2. A study of Schwarz converters for nuclear powered spacecraft

    Science.gov (United States)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  3. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  4. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  5. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  6. Probabilistic Risk Assessment for Decision Making During Spacecraft Operations

    Science.gov (United States)

    Meshkat, Leila

    2009-01-01

    Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn

  7. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  8. A Technology Program that Rescues Spacecraft

    Science.gov (United States)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  9. Spaceborne intensity interferometry via spacecraft formation flight

    Science.gov (United States)

    Ribak, Erez N.; Gurfil, Pini; Moreno, Coral

    2012-07-01

    Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

  10. Cruise report; RV Coastal Surveyor Cruise C1-99; multibeam mapping of the Long Beach, California continental shelf; April 12 through May 19, 1999

    Science.gov (United States)

    Gardner, James V.; Hughes-Clarke, John E.; Mayer, Larry A.

    1999-01-01

    The greater Los Angeles area of California is home to more than 10 million people. This large population puts increased pressure on the adjacent offshore continental shelf and margin with activities such as ocean disposal for dredged spoils, explosive disposal, waste-water outfall, and commercial fishing. The increased utilization of the shelf and margin in this area has generated accelerated multi-disciplinary research efforts in all aspects of the environment of the coastal zone. Prior to 1996 there were no highly accurate base maps of the continental shelf and slope upon which the research activities could be located and monitored. In 1996, the United States Geological Survey (USGS) Pacific Seafloor Mapping Project began to address this problem by mapping the Santa Monica shelf and margin (Fig. 1) using a state-of-the-art, high-resolution multibeam sonar system (Gardner, et al., 1996; 1999). Additional seafloor mapping in 1998 provided coverage of the continental margin from south of Newport to the proximal San Pedro Basin northwest of Palos Verdes Peninsula (Gardner, et al., 1998) (Fig. 1). The mapping of the seafloor in the greater Los Angeles continental shelf and margin was completed with a 30-day mapping of the Long Beach shelf in April and May 1999, the subject of this report. The objective of Cruise C-1-99-SC was to completely map the broad continental shelf from the eastern end of the Palos Verdes Peninsula to the narrow shelf south of Newport Beach, from the break in slope at about 120-m isobath to the inner shelf at about the 10-m isobath. Mapping the Long Beach shelf was jointly funded by the U.S. Geological Survey and the County of Orange (CA) Sanitation District and was conducted under a Cooperative Agreement with the Ocean Mapping Group from the University of New Brunswick (OMG/UNB). The OMG/UNB contracted with C&C Technologies, Inc. of Lafayette, LA for use of the RV Coastal Surveyor and the latest evolution of high-resolution multibeam sonars, a

  11. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  12. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    Science.gov (United States)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  13. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  14. Characterization of overwintering sites of the invasive brown marmorated stink bug in natural landscapes using human surveyors and detector canines.

    Directory of Open Access Journals (Sweden)

    Doo-Hyung Lee

    Full Text Available Halyomorpha halys is an invasive species from Asia causing major economic losses in agricultural production in the mid-Atlantic region of the United States. Unlike other crop pests, H. halys is also well-known for nuisance problems in urban, suburban, and rural areas, as massive numbers of adults often invade human-made structures to overwinter inside protected environments. Research efforts have focused on populations in human-made structures while overwintering ecology of H. halys in natural landscapes is virtually unknown. We explored forested landscapes in the mid-Atlantic region to locate and characterize natural overwintering structures used by H. halys. We also evaluated the use of detector canines to locate overwintering H. halys to enhance the accuracy and efficiency of surveys. From these studies, we indentified shared characteristics of overwintering sites used by H. halys in natural landscapes. Overwintering H. halys were recovered from dry crevices in dead, standing trees with thick bark, particularly oak (Quercus spp. and locust (Robinia spp.; these characteristics were shared by 11.8% of all dead trees in surveyed landscapes. For trees with favorable characteristics, we sampled ∼20% of the total above-ground tree area and recovered 5.9 adults per tree from the trees with H. halys present. Two detector canines were successfully trained to recognize and detect the odor of adult H. halys yielding >84% accuracy in laboratory and semi-field trials. Detector canines also found overwintering H. halys under field conditions. In particular, overwintering H. halys were recovered only from dead trees that yielded positive indications from the canines and shared key tree characteristics established by human surveyors. The identified characteristics of natural overwintering sites of H. halys will serve as baseline information to establish crop economic risk levels posed by overwintering populations, and accordingly develop sustainable

  15. Manned spacecraft automation and robotics

    Science.gov (United States)

    Erickson, Jon D.

    1987-01-01

    The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.

  16. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    Science.gov (United States)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  17. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    Science.gov (United States)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  18. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    Formiga, J K S; Prado, A F B A

    2013-01-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  19. Dream missions space colonies, nuclear spacecraft and other possibilities

    CERN Document Server

    van Pelt, Michel

    2017-01-01

    This book takes the reader on a journey through the history of extremely ambitious, large and complex space missions that never happened. What were the dreams and expectations of the visionaries behind these plans, and why were they not successful in bringing their projects to reality thus far? As spaceflight development progressed, new technologies and ideas led to pushing the boundaries of engineering and technology though still grounded in real scientific possibilities. Examples are space colonies, nuclear-propelled interplanetary spacecraft, space telescopes consisting of multiple satellites and canon launch systems. Each project described in this book says something about the dreams and expectations of their time, and their demise was often linked to an important change in the cultural, political and social state of the world. For each mission or spacecraft concept, the following will be covered: • Description of the design. • Overview of the history of the concept and the people involved. • Why it...

  20. Leo Spacecraft Charging Design Guidelines: A Proposed NASA Standard

    Science.gov (United States)

    Hillard, G. B.; Ferguson, D. C.

    2004-01-01

    Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, commissioned and funded a design guidelines document intended to capture the current state of understanding. This document, which was completed in the spring of 2003, has been submitted as a proposed NASA standard. We present here an overview of this document and discuss the effort to develop it as a NASA standard.

  1. Customizing graphical user interface technology for spacecraft control centers

    Science.gov (United States)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  2. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  3. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    2002-07-01

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  4. On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.

  5. Artificial Neural Network Based Mission Planning Mechanism for Spacecraft

    Science.gov (United States)

    Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying

    2018-04-01

    The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.

  6. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  7. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  8. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  9. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  10. Architecture for spacecraft operations planning

    Science.gov (United States)

    Davis, William S.

    1991-01-01

    A system which generates plans for the dynamic environment of space operations is discussed. This system synthesizes plans by combining known operations under a set of physical, functional, and temperal constraints from various plan entities, which are modeled independently but combine in a flexible manner to suit dynamic planning needs. This independence allows the generation of a single plan source which can be compiled and applied to a variety of agents. The architecture blends elements of temperal logic, nonlinear planning, and object oriented constraint modeling to achieve its flexibility. This system was applied to the domain of the Intravehicular Activity (IVA) maintenance and repair aboard Space Station Freedom testbed.

  11. Final results of the Resonance spacecraft calibration effort

    Science.gov (United States)

    Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.

    2010-05-01

    We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the

  12. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    Science.gov (United States)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  13. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  14. Internal Acoustics of the ISS and Other Spacecraft

    Science.gov (United States)

    Allen, Christopher S.

    2017-01-01

    It is important to control the acoustic environment inside spacecraft and space habitats to protect for astronaut communications, alarm audibility, and habitability, and to reduce astronauts' risk for sleep disturbance, and hear-ing loss. But this is not an easy task, given the various design trade-offs, and it has been difficult, historically, to achieve. Over time it has been found that successful control of spacecraft acoustic levels is achieved by levying firm requirements at the system-level, using a systems engineering approach for design and development, and then validating these requirements with acoustic testing. In the systems engineering method, the system-level requirements must be flowed down to sub-systems and component noise sources, using acoustic analysis and acoustic modelling to develop allocated requirements for the sub-systems and components. Noise controls must also be developed, tested, and implemented so the sub-systems and components can achieve their allocated limits. It is also important to have management support for acoustics efforts to maintain their priority against the various trade-offs, including mass, volume, power, cost, and schedule. In this extended abstract and companion presentation, the requirements, approach, and results for controlling acoustic levels in most US spacecraft since Apollo will be briefly discussed. The approach for controlling acoustic levels in the future US space vehicle, Orion Multipurpose Crew Vehicle (MPCV), will also be briefly discussed. These discussions will be limited to the control of continuous noise inside the space vehicles. Other types of noise, such as launch, landing, and abort noise, intermittent noise, Extra-Vehicular Activity (EVA) noise, emergency operations/off-nominal noise, noise exposure, and impulse noise are important, but will not be discussed because of time limitations.

  15. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  16. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  17. High-Temperature Superconductors as Electromagnetic Deployment and Support Structures in Spacecraft. [NASA NIAC Phase I

    Science.gov (United States)

    Getliffe, Gwendolyn V.; Inamdar, Niraj K.; Masterson, Rebecca; Miller, David W.

    2012-01-01

    This report, concluding a one-year NIAC Phase I study, describes a new structural and mechanical technique aimed at reducing the mass and increasing the deployed-to-stowed length and volume ratios of spacecraft systems. This technique uses the magnetic fields generated by electrical current passing through coils of high-temperature superconductors (HTSs) to support spacecraft structures and deploy them to operational configurations from their stowed positions inside a launch vehicle fairing.

  18. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  19. Testing programs for the Multimission Modular Spacecraft

    Science.gov (United States)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  20. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  1. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  2. Spacecraft Pointing and Position Control,

    Science.gov (United States)

    1981-11-01

    manpower resources, it will be more difficult in the future to find skilled and experienced staff for operational systems and staffing costs will rise...In Eq. (6) n is the Earths’ angular velocity of rotation and L the station right ascen- sion, whereag U is the geocentric gravitational constant. The

  3. Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.

    2015-01-01

    An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).

  4. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  5. Application of software technology to a future spacecraft computer design

    Science.gov (United States)

    Labaugh, R. J.

    1980-01-01

    A study was conducted to determine how major improvements in spacecraft computer systems can be obtained from recent advances in hardware and software technology. Investigations into integrated circuit technology indicated that the CMOS/SOS chip set being developed for the Air Force Avionics Laboratory at Wright Patterson had the best potential for improving the performance of spaceborne computer systems. An integral part of the chip set is the bit slice arithmetic and logic unit. The flexibility allowed by microprogramming, combined with the software investigations, led to the specification of a baseline architecture and instruction set.

  6. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  7. Shutter mechanism for spacecraft spectrophotometer

    Science.gov (United States)

    Weilbach, A.

    1972-01-01

    A shutter mechanism is described for the backscatter ultraviolet spectrophotometer experiment on the Nimbus D satellite. The purpose of the experiment is to determine spatial distribution of atmospheric ozone from measurements of ultraviolet radiation backscattered by the earth's atmosphere. The system consists of two independent, rotary cylinder shutters, controlled by a dual star Geneva mechanism, and driven by a single stepper motor. A single driver controls a combination of two independently driven Geneva stars. Design considerations involved the use of low friction, nonmetallic materials.

  8. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers

  9. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Science.gov (United States)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  10. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  11. 2015 Sensorimotor Risk Standing Review Panel Evidence and Status Review For: the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Sensorimotor Risk Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Human Health Countermeasures (HHC) Element, representatives from the Human Research Program (HRP), NASA Headquarters, and NASA Research and Education Support Services (NRESS) on December 17, 2015 (list of participants is in Section VI of this report). The SRP reviewed the new Evidence Report for the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (from here on referred to as the 2015 Sensorimotor Evidence Report), and also received a status review of the Risk. The opening section of the 2015 Sensorimotor Evidence Report provides written descriptions of various incidents that have occurred during space missions. In most of these incidents, the main underlying contributing factors are not easy to identify unambiguously. For example, in section 1.9, a number of falls occurred while astronauts were walking on the moon. It is not clear to the SRP, however, why they fell. It is only possible to extrapolate from likely specific psychophysical or physiological abnormalities, but how these abnormalities were determined, and how they were directly responsible for the falls is unclear to the SRP. Section 2.1.2 on proprioception is very interesting, but the functional significance of the abnormalities detected is not clear. The SRP sees this as a problem throughout the report: a mapping between the component abnormalities identified and the holistic behaviors that are most relevant, for example, controlling the vehicle, and locomotion during egress, is generally lacking. The SRP thinks the cognitive section is too strongly focused on vestibular functioning. The SRP questions the notion that the main cognitive effects are mainly attributable to reversible vestibular changes induced by spaceflight. The SRP thinks that there can also

  12. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  13. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  14. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  15. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  16. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  17. Accelerated life testing of spacecraft subsystems

    Science.gov (United States)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  18. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  19. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  20. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.