WorldWideScience

Sample records for surveyor mgs thermal

  1. Correcting Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) High Altitude (40 - 65 km) Temperature Retrievals for Instrumental Correlated Noise and Biases

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.

    2011-12-01

    Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) nadir-soundings have been used to derive atmospheric temperatures up to roughly 40 km [Conrath et al., JGR 105 2000, Smith et al., JGR 106, 2001], and MGS-TES limb soundings have been used to extend the atmospheric temperature data set to > 60 km in altitude [Smith et al., JGR 106, 2001]. The ~40 - ~65 km altitude range probed by the MGS-TES limb sounding is particularly important for capturing key dynamical features such as the warm winter polar mesosphere [e.g., Smith et al., JGR 106, 2001; McCleese et al., Nature Geoscience 1, 2008], and the response of thermal tides to dust opacity [e.g. Wilson and Hamilton, J. Atmos. Sci. 53, 1996]. Thus accurate and precise temperature profiles at these altitudes are particularly important for constraining global circulation models. They are also critical for interpreting observations of mesospheric condensate aerosols [e.g., Määttänen et al., Icarus 209, 2010; McConnochie et al., Icarus 210, 2010)]. We have indentified correlated noise components in the MGS-TES limb sounding radiances that propagate into very large uncertainties in the retrieved temperatures. We have also identified a slowly varying radiance bias in the limb sounding radiances. Note that the nadir-sounding-based MGS-TES atmospheric temperatures currently available from the Planetary Data System are not affected by either of these issues. These two issues affect the existing MGS-TES limb sounding temperature data set are as follows: Considering, for example, the 1.5 Pascal pressure level (which typically falls between 50 and 60 km altitude), correlated-noise induced standard errors for individual limb-sounding temperature retrievals were 3 - 5 K in Mars Year 24, rising to 5 - 15 K in Mars Year 25 and 10 - 15 K in Mars Year 26 and 27. The radiance bias, although consistent on ~10-sol time scales, is highly variable over the course of the MGS-TES mission. It results in temperatures (at the 1

  2. Summer season variability of the north residual cap of Mars as observed by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES)

    Science.gov (United States)

    Calvin, W.M.; Titus, T.N.

    2008-01-01

    Previous observations have noted the change in albedo in a number of North Pole bright outliers and in the distribution of bright ice deposits between Mariner 9, Viking, and Mars Global Surveyor (MGS) data sets. Changes over the summer season as well as between regions at the same season (Ls) in different years have been observed. We used the bolometric albedo and brightness temperature channels of the Thermal Emission Spectrometer (TES) on the MGS spacecraft to monitor north polar residual ice cap variations between Mars years and within the summer season for three northern Martian summers between July 1999 and April 2003. Large-scale brightness variations are observed in four general areas: (1) the patchy outlying frost deposits from 90 to 270??E, 75 to 80??N; (2) the large "tail" below the Chasma Boreale and its associated plateau from 315 to 45??E, 80 to 85??N, that we call the "Boreale Tongue" and in Hyperboreae Undae; (3) the troughed terrain in the region from 0 to 120??E longitude (the lower right on a polar stereographic projection) we have called "Shackleton's Grooves" and (4) the unit mapped as residual ice in Olympia Planitia. We also note two areas which seem to persist as cool and bright throughout the summer and between Mars years. One is at the "source" of Chasma Boreale (???15??E, 85??N) dubbed "McMurdo", and the "Cool and Bright Anomaly (CABA)" noted by Kieffer and Titus 2001. TES Mapping of Mars' north seasonal cap. Icarus 154, 162-180] at ???330??E, 87??N called here "Vostok". Overall defrosting occurs early in the summer as the temperatures rise and then after the peak temperatures are reached (Ls???110) higher elevations and outlier bright deposits cold trap and re-accumulate new frost. Persistent bright areas are associated with either higher elevations or higher background albedos suggesting complex feedback mechanisms including cold-trapping of frost due to albedo and elevation effects, as well as influence of mesoscale atmospheric dynamics

  3. Summer season variability of the north residual cap of Mars as observed by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES)

    Science.gov (United States)

    Calvin, W. M.; Titus, T. N.

    2008-02-01

    Previous observations have noted the change in albedo in a number of North Pole bright outliers and in the distribution of bright ice deposits between Mariner 9, Viking, and Mars Global Surveyor (MGS) data sets. Changes over the summer season as well as between regions at the same season ( Ls) in different years have been observed. We used the bolometric albedo and brightness temperature channels of the Thermal Emission Spectrometer (TES) on the MGS spacecraft to monitor north polar residual ice cap variations between Mars years and within the summer season for three northern Martian summers between July 1999 and April 2003. Large-scale brightness variations are observed in four general areas: (1) the patchy outlying frost deposits from 90 to 270°E, 75 to 80°N; (2) the large "tail" below the Chasma Boreale and its associated plateau from 315 to 45°E, 80 to 85°N, that we call the "Boreale Tongue" and in Hyperboreae Undae; (3) the troughed terrain in the region from 0 to 120°E longitude (the lower right on a polar stereographic projection) we have called "Shackleton's Grooves" and (4) the unit mapped as residual ice in Olympia Planitia. We also note two areas which seem to persist as cool and bright throughout the summer and between Mars years. One is at the "source" of Chasma Boreale (˜15°E, 85°N) dubbed "McMurdo", and the "Cool and Bright Anomaly (CABA)" noted by Kieffer and Titus 2001. TES Mapping of Mars' north seasonal cap. Icarus 154, 162-180] at ˜330°E, 87°N called here "Vostok". Overall defrosting occurs early in the summer as the temperatures rise and then after the peak temperatures are reached ( Ls˜110) higher elevations and outlier bright deposits cold trap and re-accumulate new frost. Persistent bright areas are associated with either higher elevations or higher background albedos suggesting complex feedback mechanisms including cold-trapping of frost due to albedo and elevation effects, as well as influence of mesoscale atmospheric dynamics.

  4. The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA

  5. MGS-TES thermal inertia study of the Arsia Mons Caldera

    Science.gov (United States)

    Cushing, G.E.; Titus, T.N.

    2008-01-01

    Temperatures of the Arsia Mons caldera floor and two nearby control areas were obtained by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). These observations revealed that the Arsia Mons caldera floor exhibits thermal behavior different from the surrounding Tharsis region when compared with thermal models. Our technique compares modeled and observed data to determine best fit values of thermal inertia, layer depth, and albedo. Best fit modeled values are accurate in the two control regions, but those in the Arsia Mons' caldera are consistently either up to 15 K warmer than afternoon observations, or have albedo values that are more than two standard deviations higher than the observed mean. Models of both homogeneous and layered (such as dust over bedrock) cases were compared, with layered-cases indicating a surface layer at least thick enough to insulate itself from diurnal effects of an underlying substrate material. Because best fit models of the caldera floor poorly match observations, it is likely that the caldera floor experiences some physical process not incorporated into our thermal model. Even on Mars, Arsia Mons is an extreme environment where CO2 condenses upon the caldera floor every night, diurnal temperatures range each day by a factor of nearly 2, and annual average atmospheric pressure is only around one millibar. Here, we explore several possibilities that may explain the poor modeled fits to caldera floor and conclude that temperature dependent thermal conductivity may cause thermal inertia to vary diurnally, and this effect may be exaggerated by presence of water-ice clouds, which occur frequently above Arsia Mons. Copyright 2008 by the American Geophysical Union.

  6. Analyzing Magnetic Field and Electrical Current Profiles of the Day Side and Terminator of Mars Using Data from Mars Global Surveyor (MGS)

    Science.gov (United States)

    Fogle, A. L.; Ponce, N.; Fillingim, M. O.

    2014-12-01

    Mars does not have a global magnetic field, so the interplanetary magnetic field (IMF) can impact the upper atmosphere and induce currents in the Martian ionosphere. During aerobraking maneuvers, Mars Global Surveyor (MGS) made over 1000 passes through the Martian ionosphere. During the aerobraking phase, MGS measured the local magnetic field in the ionosphere. From measuring changes in the magnetic field, we can calculate the ionospheric currents. By only using measurements where the radial component of the magnetic field is zero and making some assumptions about the gradients in the magnetic field, we are allowed to classify data that meets those conditions as "good" data and calculate horizontal currents in the ionosphere. We focus on data taken over regions of Mars that had negligible crustal magnetic fields to simplify our analysis. The data being analyzed is observed at a maximum altitude of 250 kilometers with a solar zenith angle (SZA) range of 0 degrees to 50 degrees for the day side and 50 to 130 degrees for the terminator. For the day side of Mars, it was found that 24.06% of the data observed was usable data under the initial parameters that were set for "good" data. For the terminator, it was found that 32.08% of the data was usable. The currents that are computed using these "good" magnetic field profiles can give us insights into how the changing solar wind and interplanetary magnetic field can effect the upper atmosphere of mars. For example, induced currents can lead to Joule heating of the atmosphere potentially modifying the neutral dynamics.

  7. Adaptive MGS Phase Retrieval

    Science.gov (United States)

    Basinger, Scott A.; Bikkannavar, Siddarayappa; Cohen, David; Green, Joseph J.; Lou, John; Ohara, Catherine; Redding, David; Shi, Fang

    2008-01-01

    Adaptive MGS Phase Retrieval software uses the Modified Gerchberg-Saxton (MGS) algorithm, an image-based sensing method that can turn any focal plane science instrument into a wavefront sensor, avoiding the need to use external metrology equipment. Knowledge of the wavefront enables intelligent control of active optical systems.

  8. A Global Map of Thermal Inertia from Mars Global Surveyor Mapping-Mission Data

    Science.gov (United States)

    Mellon, M. T.; Kretke, K. A.; Smith, M. D.; Pelkey, S. M.

    2002-01-01

    TES (thermal emission spectrometry) has obtained high spatial resolution surface temperature observations from which thermal inertia has been derived. Seasonal coverage of these data now provides a nearly global view of Mars, including the polar regions, at high resolution. Additional information is contained in the original extended abstract.

  9. Determination of Net Martian Polar Dust Flux from MGS-TES Observations

    Science.gov (United States)

    Blackmon, M. A.; Murphy, J. R.

    2003-01-01

    Using atmospheric dust abundance and atmospheric temperature observation data from the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS), the net flux of dust into and out of the Martian polar regions will be examined. Mars polar regions possess layered terrain , believed to be comprised of a mixture of ice and dust, with the different layers possibly representing different past climate regimes. These changes in climate may reflect changes in the deposition of dust and volatiles through impacts, volcanism, changes in resources of ice and dust, and response to Milankovitch type cycles (changes in eccentricity of orbit, obliquity and precession of axis). Understanding how rapidly such layers can be generated is an important element to understanding Mars climate history. This study uses the observed vertical temperature data and dust content measurements from TES to analyze the sign (gain or loss) of dust at high latitudes.

  10. Simultaneous Mars Express / MGS observations of plasma near Mars

    Science.gov (United States)

    Brain, D.; Luhmann, J.; Halekas, J.; Frahm, R.; Winningham, D.; Barabash, S.

    2006-12-01

    Since late 2003, Mars Express (MEX) and Mars Global Surveyor (MGS) have been making complementary in situ measurements (in terms of both instrument and orbit) of the Martian plasma environment. Study of MGS and MEX data in tandem provides an opportunity to mitigate the shortcomings of each dataset and increase our overall understanding of the Martian solar wind interaction and atmospheric escape. Close passes of spacecraft (conjunctions) are one particularly powerful means of increasing the utility of measurements, as evidenced by the Cluster mission at Earth. At Mars, conjunctions might be used to obtain more complete simultaneous and/or co-located plasma measurements, which can be used to study a variety of phenomena, including measurements of auroral-like particle acceleration near crustal fields and the three-dimensional motion and shape of plasma boundaries. We will present an analysis of approximately forty conjunctions (instances with instantaneous spacecraft separation smaller than 400 km) of MEX and MGS identified between January 2004 and February 2006. The closest pass was ~40~km, near the South Pole. Conjunctions occur both at mid-latitudes (when the surface-projected orbit tracks of the two spacecraft nearly overlap), and at the poles. We will present comparisons of MEX Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) data with MGS Magnetometer and Electron Reflectometer (MAG/ER) data for these events. Our case studies include intercomparison of MEX and MGS electron data, the addition of MGS magnetic field and MEX ion data, and the inclusion of solar wind proxy information to establish context. In addition to these close conjunctions, we will present the preliminary results of a search for times when MEX and MGS pass through the same region of space separated by a delay (for time evolution of plasma populations in certain regions), and times when they occupy the same flux tube (for spatial evolution of particle distributions). Continued study of

  11. Accelerated Adaptive MGS Phase Retrieval

    Science.gov (United States)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  12. Effects of Palagonitic Dust Coatings on Thermal Emission Spectra of Rocks and Minerals: Implications for Mineralogical Characterization of the Martian Surface by MGS-TES

    Science.gov (United States)

    Graff, T. G.; Morris, R.; Christensen, P.

    2001-01-01

    Thermal emission measurements on dust-coated rocks and minerals show that a 300 5m thick layer is required to mask emission from the substrate and that non-linear effects are present. Additional information is contained in the original extended abstract.

  13. Analysis of Properties of the North Polar Layered Deposits: THEMIS Data in Context of MGS Data

    Science.gov (United States)

    Ivanov, A. B.; Byrne, S.; Richardson, M. I.; Vasavada, A. R.; Titus, T. N.; Bell, J. F.; McConnochie, T. H.; Christensen, P. R.

    2003-01-01

    One of the many questions of Martian exploration is to uncover the history of Mars, through analysis of the polar layered deposits (PLD). Martian polar ice caps hold most of the exposed water on the surface on Mars and yet their history and physical processed involved in their formation are unclear. We will attempt to contribute to our knowledge of the composition and stratigraphy of the polar deposits. In this work we present the latest imaging data acquired by the Mars Odyssey THermal EMission Imaging System (THEMIS) and place it into context of the Mars Global Surveyor (MGS) data. THEMIS provides capabilities for imaging in both thermal IR and visible color wavelengths. These observations are affected by atmospheric scattering and topography. The Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) instruments on board of the MGS spacecraft can provide context information for THEMIS data. Of particular interest are Mars Orbiter Camera (MOC) images, which provide high resolution data. We are primarily interested in the seasonal evolution of ice cap temperatures during the first northern summer of THEMIS observations. Morphology, stratigraphy and composition of the layered deposits can be addressed by THEMIS VIS color images, along with MOC high resolution data and MOLA Digital Elevation Models (DEM). This work is intentionally descriptive. Based on the knowledge obtained by the orbiting spacecraft and described here, we will attempt to expose major directions for modeling and further understanding of of the physical processes involved in the formation of the polar layered terrain 2 Available data 2.1 THEMIS IR The THEMIS IR camera has 10 bands from 6 to 15 m. Due to to signal-to-noise restrictions the most useful band for polar observations is band 9 (12.57 m ). Band 10 (14.88 m ) data can be used for atmospheric calibration. An example of seasonal evolution observed by the THEMIS IR subsystem is shown in Figure 1. We have projected all IR

  14. Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; Rezac, L.; Smith, M. D.

    2015-01-01

    This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibrations

  15. Mars Global Surveyor measurements of solar storms and their effects

    Science.gov (United States)

    Brain, D. A.; Delory, G. T.; Lillis, R. J.; Ulusen, D.; Mitchell, D.; Luhmann, J. G.; Falkenberg, T. V.

    2010-12-01

    Space weather events in the form of solar photons and energetic charged particles provide brief but relatively intense periods of energy input to the Martian plasma environment and atmosphere, with implications for a number of science and exploration-related issues. The Mars Global Surveyor (MGS) spacecraft orbited Mars for more than 9 years, and was capable of indirectly detecting space weather events and their effects. Shocks associated with passing coronal mass ejections are evident in MGS magnetometer data, and in proxies for upstream solar wind pressure at 1.5 AU derived from magnetometer measurements. Fluxes of solar energetic particles with energies greater than ˜30 MeV are sometimes evident in the background count rates of the MGS electron instrument. Measurements of the background count rates at altitudes of ˜400 km over a seven year period provide an unprecedented long-baseline data set of the energetic particle environment at Mars over a significant fraction of a solar cycle. We will present results of analyses pertaining to three main uses of MGS observations of solar storms. First, by combining MGS measurements of solar storms with terrestrial and solar measurements, we have analyzed the propagation of individual solar storm events from the Sun throughout the inner heliosphere. Next, we have used MGS particle and field measurements to study the effect of solar storms on the Martian plasma environment - including increased fluxes of 10-20 keV electrons close to the planet and influences on auroral activity. Finally, we have studied the influence of solar storms on the Martian upper atmosphere - including suprathermal electrons produced in the atmosphere via impact ionization and a correlation of solar storm periods with ionospheric electron density profiles.

  16. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera

    OpenAIRE

    Wang, Huiqun; Ingersoll, Andrew P.

    2002-01-01

    We have made daily global maps that cover both polar and equatorial regions of Mars for Ls 135°–360° and 0°–111° using the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red and blue wide-angle swaths taken from May 1999 to January 2001. We study the seasonal distribution of condensate clouds and dust clouds during roughly 1 Martian year using these daily global maps. We present the development and decay of the tropical cloud belt and the polar hoods, the spatial and temporal distributi...

  17. Discovery Mondays: Surveyors' Tools

    CERN Multimedia

    2003-01-01

    Surveyors of all ages, have your rulers and compasses at the ready! This sixth edition of Discovery Monday is your chance to learn about the surveyor's tools - the state of the art in measuring instruments - and see for yourself how they work. With their usual daunting precision, the members of CERN's Surveying Group have prepared some demonstrations and exercises for you to try. Find out the techniques for ensuring accelerator alignment and learn about high-tech metrology systems such as deviation indicators, tracking lasers and total stations. The surveyors will show you how they precisely measure magnet positioning, with accuracy of a few thousandths of a millimetre. You can try your hand at precision measurement using different types of sensor and a modern-day version of the Romans' bubble level, accurate to within a thousandth of a millimetre. You will learn that photogrammetry techniques can transform even a simple digital camera into a remarkable measuring instrument. Finally, you will have a chance t...

  18. Constraints on the Within Season and Between Year Variability of the North Residual Cap from MGS-TES

    Science.gov (United States)

    Calvin, W. M.; Titus, T. N.; Mahoney, S. A.

    2003-01-01

    There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated ice deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and ice constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 ice deposits ("Swiss Cheese", "slab ice" etc.) b) the relationship of the ice deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual ice cap. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual ice cap exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with ice and rocky materials. Exploration of these properties is the subject of our current study.

  19. An examination of Mars' north seasonal polar cap using MGS: Composition and infrared radiation balance

    Science.gov (United States)

    Hansen, Gary B.

    2013-08-01

    A detailed analysis of data from one revolution of the Mars Global Surveyor (MGS) is presented. Approximately 80% of this revolution observes the mid-winter northern seasonal polar cap, which covers the surface to night. The surface composition and temperature are determined through analysis of 6-50 μm infrared spectra from the Thermal Emission Spectrometer (TES). The infrared radiative balance, which is the entire heat balance in the polar night except for small subsurface and atmospheric advection terms, is calculated for the surface and atmospheric column. The primary constituent, CO2 ice, also dominates the infrared spectral properties by variations in its grain size and by admixtures of dust and water ice, which cause large variations in the 20-50 μm emissivity. This is modified by incomplete areal coverage, and clouds or hazes. This quantitative analysis reveals CO2 grain radii ranging from ˜100 μm in isolated areas, to 1-5 mm in more widespread regions. The water ice content varies from none to about one part per thousand by mass, with a clear increase towards the periphery of the polar cap. The dust content is typically a few parts per thousand by mass, but is as much as an order of magnitude less abundant in "cold spot" regions, where the low emissivity of pure CO2 ice is revealed. This is the first quantitative analysis of thermal spectra of the seasonal polar cap and the first to estimate water ice content. Our models show that the cold spots represent cleaner, dust-free ice rather than finer grained ice than the background. Our guess is that the dust in cold spots is hidden in the center of the CO2 frost particles rather than not present. The fringes of the cap have more dust and water ice, and become patchy, with warmer water snow filling the gaps on the night side, and warmer bare soil on the day side. A low optical depth (night side, and appears with smaller optical depth on the day side. The infrared radiative balance at the surface is typically

  20. The Rapid Transient Surveyor

    CERN Document Server

    Baranec, Christoph; Wright, Shelley A; Tonry, John; Tully, R Brent; Szapudi, István; Takamiya, Marianne; Hunter, Lisa; Riddle, Reed; Chen, Shaojie; Chun, Mark

    2016-01-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of ~4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z < 0.1 universe. RTS will comprise an upgraded version of the Robo-AO laser AO system and will respond quickly to target-of-opportunity events, minimizing the time between discovery and characterization. RTS will acquire simultaneous-multicolor images with a...

  1. The rapid transient surveyor

    Science.gov (United States)

    Baranec, C.; Lu, J. R.; Wright, S. A.; Tonry, J.; Tully, R. B.; Szapudi, I.; Takamiya, M.; Hunter, L.; Riddle, R.; Chen, S.; Chun, M.

    2016-07-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of 4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z efficiency prism integral field unit spectrograph: R = 70-140 over a total bandpass of 840-1830nm with an 8.7" by 6.0" field of view (0.15" spaxels). The AO correction boosts the infrared point-source sensitivity of the spectrograph against the sky background by a factor of seven for faint targets, giving the UH 2.2-m the H-band sensitivity of a 5.7-m telescope without AO.

  2. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  3. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-07-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  4. The Rapid Transient Surveyor

    Science.gov (United States)

    Baranec, Christoph; Tonry, John; Wright, Shelley; Tully, R. Brent; Lu, Jessica R.; Takamiya, Marianne Y.; Hunter, Lisa

    2016-01-01

    The next decade of astronomy will be dominated by large area surveys (see the detailed discussion in the Astro-2010 Decadal survey and NRC's recent OIR System Report). Ground-based optical transient surveys, e.g., LSST, ZTF and ATLAS and space-based exoplanet, supernova, and lensing surveys such as TESS and WFIRST will join the Gaia all-sky astrometric survey in producing a flood of data that will enable leaps in our understanding of the universe. There is a critical need for further characterization of these discoveries through high angular resolution images, deeper images, spectra, or observations at different cadences or periods than the main surveys. Such follow-up characterization must be well matched to the particular surveys, and requires sufficient additional observing resources and time to cover the extensive number of targets.We describe plans for the Rapid Transient Surveyor (RTS), a permanently mounted, rapid-response, high-cadence facility for follow-up characterization of transient objects on the U. of Hawai'i 2.2-m telescope on Maunakea. RTS will comprise an improved robotic laser adaptive optics system, based on the prototype Robo-AO system (formerly at the Palomar 1.5-m and now at the Kitt Peak 2.2-m telescope), with simultaneous visible and near-infrared imagers as well as a near-infrared integral field spectrograph (R~100, λ = 850 - 1830 nm, 0.15″ spaxels, 8.7″×6.0″ FoV). RTS will achieve an acuity of ~0.07″ in visible wavelengths and automated detection and characterization of astrophysical transients during a sustained observing campaign will yield the necessary statistics to precisely map dark matter in the local universe.

  5. Mutation detection using Surveyor nuclease.

    Science.gov (United States)

    Qiu, Peter; Shandilya, Harini; D'Alessio, James M; O'Connor, Kevin; Durocher, Jeffrey; Gerard, Gary F

    2004-04-01

    We have developed a simple and flexible mutation detection technology for the discovery and mapping of both known and unknown mutations. This technology is based on a new mismatch-specific DNA endonuclease from celery, Surveyor nuclease, which is a member of the CEL nuclease family of plant DNA endonucleases. Surveyor nuclease cleaves with high specificity at the 3' side of any mismatch site in both DNA strands, including all base substitutions and insertion/deletions up to at least 12 nucleotides. Surveyor nuclease technology involves four steps: (i) PCR to amplify target DNA from both mutant and wild-type reference DNA; (ii) hybridization to form heteroduplexes between mutant and wild-type reference DNA; (iii) treatment of annealed DNA with Surveyor nuclease to cleave heteroduplexes; and (iv) analysis of digested DNA products using the detection/separation platform of choice. The technology is highly sensitive, detecting rare mutants present at as low as 1 in 32 copies. Unlabeled Surveyor nuclease digestion products can be analyzed using conventional gel electrophoresis or high-performance liquid chromatography (HPLC), while end labeled digestion products are suitable for analysis by automated gel or capillary electrophoresis. The entire protocol can be performed in less than a day and is suitable for automated and high-throughput procedures.

  6. The Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.

  7. The Strategy for the Second Phase of Aerobraking Mars Global Surveyor

    Science.gov (United States)

    Johnston, M. D.; Esposito, P. B.; Alwar, V.; Demcak, S. W.; Graat, E. J.; Burkhart, P. D.; Portock, B. M.

    2000-01-01

    On February 19, 1999, the Mars Global Surveyor (MGS) spacecraft was able to propulsively establish its mapping orbit. This event followed the completion of the second phase of aerobraking for the MGS spacecraft on February 4, 1999. For the first time, a spacecraft at Mars had successfully employed aerobraking methods in order to reach its desired pre-launch mapping orbit. This was accomplished despite a damaged spacecraft solar array. The MGS spacecraft was launched on November 7, 1996, and after a ten month interplanetary transit was inserted into a highly elliptical capture orbit at Mars on September 12, 1997. Unlike other interplanetary missions, the MGS spacecraft was launched with a planned mission delta-V ((Delta)V) deficit of nearly 1250 m/s. To overcome this AV deficit, aerobraking techniques were employed. However, damage discovered to one of the spacecraft's two solar arrays after launch forced major revisions to the original aerobraking planning of the MGS mission. In order to avoid a complete structural failure of the array, peak dynamic pressure levels for the spacecraft were established at a major spacecraft health review in November 1997. These peak dynamic pressure levels were roughly one-third of the original mission design values. Incorporating the new dynamic pressure limitations into mission replanning efforts resulted in an 'extended' orbit insertion phase for the mission. This 'extended' orbit insertion phase was characterized by two distinct periods of aerobraking separated by an aerobraking hiatus that would last for several months in an intermediate orbit called the "Science Phasing Orbit" (SPO). This paper describes and focuses on the strategy for the second phase of aerobraking for the MGS mission called "Aerobraking Phase 2." This description will include the baseline aerobraking flight profile, the trajectory control methodology, as well as the key trajectory metrics that were monitored in order to successfully "guide' the spacecraft to

  8. Proton Cyclotron Waves Upstream from Mars: Observations from Mars Global Surveyor

    CERN Document Server

    Romanelli, Norberto; Gomez, Daniel; Mazelle, Christian; Delva, Magda

    2013-01-01

    We present a study on the properties of electromagnetic plasma waves in the region upstream of the Martian bow shock, detected by the magnetometer and electron reflectometer (MAG / ER) onboard the Mars Global Surveyor (MGS) spacecraft during the period known as Science Phasing Orbits (SPO). The frequency of these waves, measured in the MGS reference frame (SC), is close to the local proton cyclotron frequency. Minimum variance analysis (MVA) shows that these 'proton cyclotron frequency' waves (PCWs) are characterized - in the SC frame - by a left-hand, elliptical polarization and propagate almost parallel to the background magnetic field. They also have a small degree of compressibility and an amplitude that decreases with the increase of the interplanetary magnetic field (IMF) cone angle and radial distance from the planet. The latter result supports the idea that the source of these waves is Mars. In addition, we find that these waves are not associated with the foreshock . Empirical evidence and theoretica...

  9. Challenges to Building Surveyors From The Perspectives Of Non Surveyors

    Directory of Open Access Journals (Sweden)

    Isnin Zarina

    2016-01-01

    Full Text Available Awareness on the importance of Building Surveyors in Malaysia is still low as the role and skills of this profession are not fully understood. Although studies indicated that Building Surveyors are still in demand, even without the Building Surveyor Act, many graduates are experiencing inadequate employment opportunities in the current economic situation. Little is known on the views from other stakeholders about BS. This research aims to examine the awareness and opinions on BS in Malaysia amongst construction stakeholders. Questionnaire surveys were collected from 120 respondents from construction, maintenance and insurance companies and interviews were conducted to selected built environment respondents. It was found that awareness and knowledge on BS are still low as they lack information on the profession and professional recognitions. Some views indicated on a major identity crisis for having fragmented and disparate range of modules. The cause may have resulted in problems on public recognition, poor understanding of the surveyor’s skills, and fewer job opportunities. Several suggested the profession to have a clear, coherent and relevant identity, with strong professional structures in order for the profession to survive and gain recognition from the government. Graduates are also recommended to acquire other skills and training in order for them to be significant to the construction industry.

  10. 46 CFR 153.1101 - Procedures for getting a Surveyor: Approval of Surveyors.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Procedures for getting a Surveyor: Approval of Surveyors. 153.1101 Section 153.1101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Approval of Surveyors...

  11. Global-scale external magnetic fields at Mars from Mars Global Surveyor data

    Science.gov (United States)

    Mittelholz, A.; Johnson, C. L.

    2015-12-01

    The martian magnetic field is unique among those of the terrestrial planets. It is the net result of the interaction of the solar wind and interplanetary magnetic field (IMF) with crustal remnant magnetization and a planetary ionosphere. Internal fields of crustal origin have been the subject of extensive studies; the focus of our work is identification and characterization of contributions from external magnetic fields using the Mars Global Surveyor (MGS) vector magnetic field data. We investigate the magnitude, average spatial structure and temporal variability of the external magnetic field at the MGS mapping altitude of 400 km by first subtracting expected contributions from crustal fields using existing global crustal field models. We identify contributions to the residual dayside fields from two sources: the draped IMF and a source that we interpret to be of ionospheric origin. As observed in previous work, nightside external fields are minimal at mapping orbit altitudes. The IMF contribution changes polarity every 13 days due to the geometry of the heliospheric magnetic field and Mars' orbit. This allows us to calculate the amplitude of the IMF at mapping orbit altitudes. The ionospheric contribution results in a quasi-steady dayside signal in the MGS observations because of the limited local time sampling of the MGS mapping orbit. The ionospheric contribution can be isolated by averaging the external fields over timescales longer than several Carrington rotations, to average out the IMF contribution. We present a global average of the ionopsheric field for the duration of the mapping orbit (2000-2006) and analyze daytime and nightime fields separately. We show that some structure in the time-averaged ionospheric field is organized in the Mars body-fixed frame, due for example, to the influence of crustal fields. We also show that the ionospheric fields vary in amplitude and geometry with martian season. Broader local time coverage over a restricted latitude

  12. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-07-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k2 of 0.1697 ± 0.0027 (3-σ). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C30 and, for the first time, C50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C30 for ∼1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics (l = 60-80) than previous solutions.

  13. HUBBLE WATCHES THE RED PLANET AS MARS GLOBAL SURVEYOR BEGINS AEROBRAKING

    Science.gov (United States)

    2002-01-01

    his NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere). This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations. Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking. Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds. Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view. The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this observation. Mars was 158

  14. Rapid Geophysical Surveyor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  15. Mars Global Surveyor Ka-Band Frequency Data Analysis

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  16. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    DEFF Research Database (Denmark)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... Reflectometer also measured particles with energies >30 MeV that penetrated the aluminum housing of the instrument and were detected directly by microchannel plates in the instrument interior. Using a combination of theoretical and experimental results, we show how the Electron Reflectometer microchannel plates...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...

  17. Thermal Emission Spectra of Silica-coated Basalt and Considerations for Martian Surface Mineralogy

    Science.gov (United States)

    Kraft, M. D.; Sharp, T. G.; Michalski, J. R.

    2003-01-01

    Among the most important discoveries made during the Mars Global Surveyor (MGS) mission was that the rocky materials of Mars are broadly divisible into two distinct rock types. The geological significance of this finding is dependent on the mineralogy of these rock types as well as their geographic and stratigraphic positions. Much work has yet to be done to understand these relationships and the small-scale variability of these units. For now, it is worth considering various scenarios that could have resulted in Mars global-scale mineralogical dichotomy. Such work will make clearer what must be looked for in Thermal Emission Spectrometer (TES) and Thermal Imaging Spectrometer (THEMIS) data, what to test with other data sets, and what geological processes can be considered or ruled out as we advance with interpreting Martian geologic history. Here, we suggest that exogenic coatings of secondary silica on basaltic rocks may provide a plausible explanation for the newly discovered distribution of rock types.

  18. Asymmetric penetration of solar wind perturbations down to 400-km altitudes at Mars observed by Mars Global Surveyor

    Science.gov (United States)

    Matsunaga, K.; Seki, K.; Hara, T.; Brain, D. A.

    2012-12-01

    Since Mars has no intrinsic global magnetic field, the exchange of energy, momentum, and material with the planet takes place through interaction between the solar wind and the Martin upper atmosphere. It is thought that solar wind encountering Mars can penetrate into the point where the solar wind dynamic pressure and the plasma thermal pressure in the Martin ionosphere are almost balanced and the solar wind flow is deflected around the boundary. However, the actual interaction can be complicated, since both plasma processes and the existence of crustal magnetic fields can modify the structure of the boundary. The Kelvin-Helmholtz (K-H) instability at the Martian ionopause is one of important candidate process to cause the modification. The dDistribution of ionopause surface waves generated by the K-H instability can should exhibit a clear asymmetry between hemispheres of upward and downward solar wind motional electric fields [e.g., Terada et al., 2002]. It is also suggested that the crustal magnetic fields can locally push the MPB (magnetic pileup boundary) upward [e.g., Brain et al., 2003]. It is also reported that the boundary between the solar wind and Martian ionosphere is located at an altitude of 380 km on average in the dayside [e.g., Mitchell et al., 2001]. However, this boundary location can change significantly depending on solar wind conditions. While it is considered that the solar wind can penetrate to lower altitudes than usual when the solar wind pressure is high, the frequency of the solar wind penetration and its quantitative dependence on the solar wind conditions are not yet well understood. In this study, we focused on penetration of solar wind electromagnetic disturbances, which are a characteristic feature of the shocked solar wind (magnetosheath), down to 400-km altitude at Mars. Using Mars Global Surveyor (MGS) data, we investigated the observational frequency and characteristics of the penetration events. We used data from the MGS

  19. Operational Data Reduction Procedure for Determining Density and Vertical Structure of the Martian Upper Atmosphere from Mars Global Surveyor Accelerometer Measurements

    Science.gov (United States)

    Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.

    1998-01-01

    The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.

  20. Thermal Infrared Observations and Thermophysical Modeling of Phobos

    Science.gov (United States)

    Smith, Nathan Michael; Edwards, Christopher Scott; Mommert, Michael; Trilling, David E.; Glotch, Timothy

    2016-10-01

    Mars-observing spacecraft have the opportunity to study Phobos from Mars orbit, and have produced a sizeable record of observations using the same instruments that study the surface of the planet below. However, these observations are generally infrequent, acquired only rarely over each mission.Using observations gathered by Mars Global Surveyor's (MGS) Thermal Emission Spectrometer (TES), we can investigate the fine layer of regolith that blankets Phobos' surface, and characterize its thermal properties. The mapping of TES observations to footprints on the Phobos surface has not previously been undertaken, and must consider the orientation and position of both MGS and Phobos, and TES's pointing mirror angle. Approximately 300 fully resolved observations are available covering a significant subset of Phobos' surface at a variety of scales.The properties of the surface regolith, such as grain size, density, and conductivity, determine how heat is absorbed, transferred, and reradiated to space. Thermophysical modeling allows us to simulate these processes and predict, for a given set of assumed parameters, how the observed thermal infrared spectra will appear. By comparing models to observations, we can constrain the properties of the regolith, and see how these properties vary with depth, as well as regionally across the Phobos surface. These constraints are key to understanding how Phobos formed and evolved over time, which in turn will help inform the environment and processes that shaped the solar system as a whole.We have developed a thermophysical model of Phobos adapted from a model used for unresolved observations of asteroids. The model has been modified to integrate thermal infrared flux across each observed portion of Phobos. It will include the effects of surface roughness, temperature-dependent conductivity, as well as radiation scattered, reflected, and thermally emitted from the Martian surface. Combining this model with the newly-mapped TES

  1. Rocksalt MgS solar blind ultra-violet detectors

    Directory of Open Access Journals (Sweden)

    Ying-Hoi Lai

    2012-03-01

    Full Text Available Studies using in-situ Auger electron spectroscopy and reflection high energy electron diffraction, and ex-situ high resolution X-ray diffraction and electron backscatter diffraction reveal that a MgS thin film grown directly on a GaAs (100 substrate by molecular beam epitaxy adopts its most stable phase, the rocksalt structure, with a lattice constant of 5.20 Å. A Au/MgS/n+-GaAs (100 Schottky-barrier photodiode was fabricated and its room temperature photoresponse was measured to have a sharp fall-off edge at 235 nm with rejection of more than three orders at 400 nm and higher than five orders at 500 nm, promising for various solar-blind UV detection applications.

  2. An investigation of washability characteristics of lignites from Yenicubuk-Gemerek districts by MGS; Yenicubuk gemerek linyit komurlerinin MGS ile yikanabilirliginin arastirilmasi

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, N.; Canbazoglu, M.; Ulusoy, U. [Cumhuriyet Universitesi, Sivas (Turkey). Maden Muhendisligi Bolumu

    1999-07-01

    Washability and ash removal from Gemerek lignite in a multi gravity separator (MGS) were investigated. Experimental studies were carried out on -0.5 mm coal samples containing 37.75% ash in a laboratory C-900 type MGS. Drum speed, shake amplitude, tilt angle, shake frequency, wash water quantity and feed solid ratio were investigated. Optimum operating conditions were determined. 8 refs., 7 figs.

  3. A New View of the Surface of Mars: High-Resolution Rock Abundance from MGS TES

    Science.gov (United States)

    Nowicki, S.; Christensen, P.

    2001-12-01

    Mars Global Surveyor Thermal Emission Spectrometer data from the most dust-free seasons on Mars were used to calculate the areal percentage of rocks and finer materials such as dust and sand. Rock is defined as a surface material that has a thermal inertia of 1250 J/m2-s1/2-K (30 cal/cm2-s1/2-K) or greater. A surface with a high rock abundance value could be exposed bedrock, blocky debris, well-cemented materials or a combination. Globally, the TES and IRTM data agree well, with no rocks exposed in the large dusty regions such as Tharsis and Arabia, and exposure of rocks in small (a few km) areas where likely eolian or mass-wasting processes actively remove dust from the ancient rocky surface. Analysis of high-resolution TES rock abundance suggests that there are extremely varied surfaces within relatively small regions, and places an upper limit of ~45 % rocks in the rockiest regions. Thermal inertia and rock abundance are correlate to some degree over much of the planet, but the highest thermal inertia surfaces often do not have the highest rock abundances. A global perspective will be presented here, with detailed look at a few high-resolution ares including Ares Vallis/Pathfinder, Valles Marineris, and the proposed landing sites for the 2003 MER landers.

  4. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.

  5. The conduction bands of MgO, MgS and HfO2

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations for MgO, MgS and HfO2 are reported. It is shown that the conduction bands of MgO and MgS have predominantly anion character, contrary to the common picture of the conduction band being derived from cation states. In transition metal oxides, unoccupied anion states a

  6. Quantitative studies of volcanic processes on Mars using data from the Mars Global Surveyor

    Science.gov (United States)

    Bishop, Louise Jane

    Volcanic processes on Mars were investigated using topographic profiles derived with the help of IDL software from data collected by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor Mission (MGS) in 1997-2001 and images obtained by the MGS Mars Orbiter Camera (MOC) and by the earlier Viking mission. Thickness and slope values for lava flows at both Elysium Mons and Alba Patera made it possible to compute flow emplacement times and effusion rates using the flow growth model proposed by C. R. J. Kilburn and R. M. C Lopes in 1990. Geological mapping of the Elysium volcanic region showed that Elysium Mons was emplaced as a result of a single shift in vent position on top of an older volcanic edifice, here termed the Ancient Volcanic Edifice (AVE). This implies that there have been substantial variations in both position and time for the magma supply. Calculations suggest that the flows at Alba Patera were emplaced more quickly than those at Elysium Mons, possibly owing to differences in fissure width and lava composition. There is evidence for both aa and pahoehoe on the summit areas of Elysium Mons and Alba Patera. The presence of aa is consistent with the view that long lava flows on Mars are emplaced quickly. Pahoehoe flows imply slow emplacement, and their inferred presence on Mars provides support for the theory that long terrestrial lavas are often emplaced as sheets of inflated pahoehoe. MOC image analysis indicated that late-stage explosive activity has occurred at several Martian volcanoes where it was previously undetected, contrary to the prevalent view that Martian volcanism evolves from explosive to effusive activity. To resolve the many ambiguities inherent in morphological data and imagery the need remains for ground truthing by experienced observers and detailed geochemical analyses in situ or by means of a sample return mission

  7. Mars Surveyor '98 MVACS Robotic Arm Control System Design Concepts

    Science.gov (United States)

    Bonitz, Robert G.

    1997-01-01

    This paper describes the control system design concepts for the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm which supports the scientific investigations to be conducted as part of the Mars Surveyor '98 Lander project. Novel solutions are presented to some of the unique problems encountered in this demanding space application with its tight constraints on mass, power, volume, and computing power.

  8. MgS in detached shells around carbon stars. Mining the mass-loss history

    CERN Document Server

    Hony, S

    2004-01-01

    We investigate the dust composition of detached shells around carbon stars, with a focus to understand the origin of the cool magnesium-sulfide (MgS) material around warm carbon stars, which has been detected around several of these objects. We build a radiative transfer model of a carbon star surrounded by an expanding detached shell of dust. The shell contains amorphous carbon grains and MgS grains. We find that a small fraction of MgS dust (2% of the dust mass) can give a significant contribution to the IRAS 25 micron flux. However, the presence of MgS in the detached shell cannot be inferred from the IRAS broadband photometry alone but requires infrared spectroscopy. We apply the model to the detached-shell sources R Scl and U Cam, both exhibiting a cool MgS feature in their ISO/SWS spectra. We use the shell parameters derived for the molecular shell, using the CO submillimetre maps. The models, with MgS grains located in the detached shell, explain the MgS grain temperature, as derived from their ISO spe...

  9. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  10. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  11. The surveyors' quest for perfect alignment

    CERN Multimedia

    2003-01-01

    Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...

  12. CERN’s surveyors send sparks flying

    CERN Document Server

    Anaïs Schaeffer

    2013-01-01

    A few weeks ago, we published an article on the three-dimensional laser scanner technique used at CERN to produce 3D images of the LHC tunnels and experiments (see the article here). Photogrammetry is another technique in the CERN surveyors’ arsenal.   The ATLAS wheel during a photogrammetry measurement campaign. The white spots (see red arrows) dotted across the wheel are the retro-reflective "dot" targets. Used in a number of fields including topography, architecture, geology and archaeology, photogrammetry is a stereoscopy technique whereby 2D images taken from different angles can be used to reconstruct a 3D image of an object. Surveyors at CERN have been using this technique for over 15 years as a way of gaining precise information on the shape, size, deformation and position of the LHC detectors and their composite elements. The photogrammetry used at CERN is relatively “light” in terms of the equipment required, w...

  13. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    Science.gov (United States)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-09-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29(deg) N and 64(deg) S, obtained during the early martian southern summer, L_s=264(deg-308^deg) . The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. Wavelengths ~ 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29(deg) N and 10(deg) S, usually in regions of ``interesting'' topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30(deg) of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4--mbar level or at higher altitudes. This implies that the waves are ``breaking'' and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  14. Forecasting the manpower demand for quantity surveyors in Hong Kong

    Directory of Open Access Journals (Sweden)

    Paul H K Ho

    2013-09-01

    Full Text Available Recently, there has been a massive infrastructure development and an increasing demand for public and private housing, resulting in a shortage of qualified quantity surveyors. This study aims to forecast the demand for qualified quantity surveyors in Hong Kong from 2013 to 2015. Literature review indicates that the demand for quantity surveyors is a function of the gross values of building, civil engineering and maintenance works. The proposed forecasting method consists of two steps. The first step is to estimate the gross values of building, civil engineering and maintenance works by time series methods and the second step is to forecast the manpower demand for quantity surveyors by causal methods. The data for quantity surveyors and construction outputs are based on the ‘manpower survey reports of the building and civil engineering industry’ and the ‘gross value of construction works performed by main contractors’ respectively. The forecasted manpower demand for quantity surveyors in 2013, 2014 and 2015 are 2,480, 2,632 and 2,804 respectively. Due to the low passing rate of the assessment of professional competence (APC and the increasing number of retired qualified members, there will be a serious shortage of qualified quantity surveyors in the coming three years.

  15. Forecasting the manpower demand for quantity surveyors in Hong Kong

    Directory of Open Access Journals (Sweden)

    Paul H K Ho

    2013-09-01

    Full Text Available Recently, there has been a massive infrastructure development and an increasing demand for public and private housing, resulting in a shortage of qualified quantity surveyors. This study aims to forecast the demand for qualified quantity surveyors in Hong Kong from 2013 to 2015. Literature review indicates that the demand for quantity surveyors is a function of the gross values of building, civil engineering and maintenance works. The proposed forecasting method consists of two steps. The first step is to estimate the gross values of building, civil engineering and maintenance works by time series methods and the second step is to forecast the manpower demand for quantity surveyors by causal methods. The data for quantity surveyors and construction outputs are based on the ‘manpower survey reports of the building and civil engineering industry’ and the ‘gross value of construction works performed by main contractors’ respectively. The forecasted manpower demand for quantity surveyors in 2013, 2014 and 2015 are 2,480, 2,632 and 2,804 respectively. Due to the low passing rate of the assessment of professional competence (APC and the increasing number of retired qualified members, there will be a serious shortage of qualified quantity surveyors in the coming three years.

  16. The surveyors get the measure of the LHC

    CERN Multimedia

    2002-01-01

    The first to start work in the LHC tunnel, the surveyors are precisely marking out the positions of the future accelerator's magnets. A total of 7000 reference points will have to be marked out over two years.

  17. an examination of estate surveyors and valuers' perception of flood ...

    African Journals Online (AJOL)

    Osondu

    2013-11-27

    Nov 27, 2013 ... Key words: Estate Surveyors, Perception, Flood risk, Residential ... financial service sector (banking, insurance, etc.) ... 1Department of Estate Management, College of Science .... institutions (Ayida-Otobo, 2009), Lagos State.

  18. Research Ship Southern Surveyor Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Southern Surveyor Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  19. The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...

  20. CLASS: The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...

  1. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  2. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  3. The CAMbridge Emission Line Surveyor (CAMELS)

    CERN Document Server

    Thomas, C N; Maiolino, R; Goldie, D J; Acedo, E de Lera; Wagg, J; Blundell, R; Paine, S; Zeng, L

    2014-01-01

    The CAMbridge Emission Line Surveyor (CAMELS) is a pathfinder program to demonstrate on-chip spectrometry at millimetre wavelengths. CAMELS will observe at frequencies from 103-114.7 GHz, providing 512 channels with a spectral resolution of R = 3000. In this paper we describe the science goals of CAMELS, the current system level design for the instrument and the work we are doing on the detailed designs of the individual components. In addition, we will discuss our efforts to understand the impact that the design and calibration of the filter bank on astronomical performance. The shape of the filter channels, the degree of overlap and the nature of the noise all effect how well the parameters of a spectral line can be recovered. We have developed a new and rigorous method for analysing performance, based on the concept of Fisher information. This can in be turn coupled to a detailed model of the science case, allowing design trade-offs to be properly investigated.

  4. Observing Magnetic and Current Profiles of the Night side and Terminator of Mars through the Mars Global Surveyor Data

    Science.gov (United States)

    Ponce, N.; Fillingim, M. O.; Fogle, A. L.

    2014-12-01

    Mars has no global magnetic field. Changes in the solar wind and interplanetary magnetic field can impact the upper atmosphere and induce currents in the ionosphere of Mars. During aerobraking maneuvers, Mars Global Surveyor (MGS) made over 1000 passes through Mars's ionosphere. During these passes, MGS measured the local magnetic field. From these measurements, we can determine the ionospheric currents. We restrict our analysis to passes where the radial component of the magnetic field is nearly zero. This restriction, along with some assumptions about the gradients in the magnetic field, allows us to estimate the horizontal ionospheric currents. Additionally, we focus on the magnetic field data acquired over regions above negligible crustal magnetic fields in order to simplify the analysis. At a maximum altitude of 250 km, the Mars map was segmented to 30 by 30 degrees east longitude and latitude for analysis. We find that on the night side, where the solar zenith angle (SZA) lies between 130 to 180 degrees, only 4% of the data (out of a total of 52 profiles) is usable for computing currents, that is the radial component of the magnetic field is nearly zero. We also find that near the terminator, where the SZA lies between 50 to 130 degrees, an average of 2% of the magnetic field profiles (out of 1905) are usable to compute currents. This implies that currents are rarely horizontal (as required by our assumptions) in these regions. The currents computed from these profiles can give us insights into how the changing solar wind and interplanetary magnetic field can affect the upper atmosphere of Mars. For example, induced currents can lead to Joule heating of the atmosphere potentially modifying the neutral dynamics.

  5. Surveyor television camera, selected materials and electronic components, Appendix C

    Science.gov (United States)

    Carroll, W. F.

    1972-01-01

    The locations of various parts of the Surveyor camera are presented. Tables were prepared with emphasis on: (1) exterior parts and surfaces that are directly exposed to space, (2) parts that shield others from space radiation, (3) representative or unique materials, and (4) electronic devices that may contain unique or well-characterized materials.

  6. Caspar Wessel (1745-1818). Surveyor and Mathematician

    DEFF Research Database (Denmark)

    Branner, Bodil; Johansen, Nils Voje

    1999-01-01

    This is a biography. It focus on Caspar Wessel's work as surveyor under the auspices of the Royal Danish Academy of Sciences and Letters, in particular on some of his theoretical investigations of geodesy that lead him to use complex numbers to represent directions in a plane at least as early...

  7. Analysis of Surveyor 3 television cable

    Science.gov (United States)

    Gross, F. C.; Park, J. J.

    1972-01-01

    A sample of cable described as four inches of TV cable, fabric wrapped, which had been exposed to the atmosphere for an unknown period of time, was subjected to extensive chemical analyses for the various components. The fabric was tested using attenuated total reflectance, chloroform extract, aqueous extraction, pyrolysis infrared, and reflectance spectroscopy. The wire insulation was tested using pyrolysis infrared, pyrolysis gas chromatography, differential thermal analysis, attenuated total reflectance subsurface, and tensile tests. Corrosion was also observed in parts of certain wires.

  8. Core skills requirement and competencies expected of quantity surveyors: perspectives from quantity surveyors, allied professionals and clients in Nigeria

    Directory of Open Access Journals (Sweden)

    Joshua Oluwasuji Dada

    2015-10-01

    Full Text Available Abstract Deployment of appropriate skills and competencies is crucial and germane to the development and continuous relevance of any profession. In the built environment, the science for selecting the required skills and competencies expected of quantity surveyors and understanding the inherent dependencies between them remains a research issue. The purpose of this study was to determine the skill requirements and competencies expected of quantity surveyors. A structured questionnaire was administered among quantity surveyors, architects, engineers, builders and clients in Nigeria. The respondents were asked to give rating, on a 5 point Likert scale, on usual skills and competencies required of quantity surveyors. A secondary objective of the study was to examine the important skills and competencies and categorized them into core skill, basic skill, core competence, optional competence and special competence. The results of the study indicate the important skills as computer literacy, building engineering, information technology, economics, measurement/quantification and knowledge of civil/heavy engineering works. The results also indicate the important competencies as cost planning and control, estimating, construction procurement system, contract documentation, contract administration and project management. It is emphasized that the findings of the research have considerable implications on the training and practice of quantity surveying in Nigeria.

  9. Core skills requirement and competencies expected of quantity surveyors: perspectives from quantity surveyors, allied professionals and clients in Nigeria

    Directory of Open Access Journals (Sweden)

    Joshua Oluwasuji Dada

    2012-12-01

    Full Text Available AbstractDeployment of appropriate skills and competencies is crucial and germane to the development and continuous relevance of any profession. In the built environment, the science for selecting the required skills and competencies expected of quantity surveyors and understanding the inherent dependencies between them remains a research issue. The purpose of this study was to determine the skill requirements and competencies expected of quantity surveyors. A structured questionnaire was administered among quantity surveyors, architects, engineers, builders and clients in Nigeria. The respondents were asked to give rating, on a 5 point Likert scale, on usual skills and competencies required of quantity surveyors. A secondary objective of the study was to examine the important skills and competencies and categorized them into core skill, basic skill, core competence, optional competence and special competence. The results of the study indicate the important skills as computer literacy, building engineering, information technology, economics, measurement/quantification and knowledge of civil/heavy engineering works. The results also indicate the important competencies as cost planning and control, estimating, construction procurement system, contract documentation, contract administration and project management. It is emphasized that the findings of the research have considerable implications on the training and practice of quantity surveying in Nigeria.

  10. Neutron Star Science with the X-ray Surveyor

    Science.gov (United States)

    Ozel, Feryal

    2015-10-01

    Probing the interiors and magnetic fields of neutron stars and characterizing their populations in the Galaxy is an important science goal for the next generation X-ray telescopes. I will discuss how the capabilities of the X-ray Surveyor Mission are crucial for making significant advances in these fields and how we can address the open questions with a dataset that will become available with such a mission.

  11. Testing the principle of equivalence with Planck surveyor

    CERN Document Server

    Popa, L A; Mandolesi, N

    2002-01-01

    We consider the effect of the violation of the equivalence principle (VEP) by the massive neutrino component on the Cosmic Microwave Background angular power specrum. We show that in the presence of adiabatic and isocurvature primordial density perturbations the Planck surveyor can place limits on the maximal VEP by the massive neutrino component at the level of 10^ -5, valid in the general relativity, for the case in which the gravity is the single source of VEP. This work has been performed within the framework of the {\\sc Planck}/LFI activities.

  12. CERN's surveyors are pushing back the frontiers of precision

    CERN Multimedia

    2001-01-01

    Aiming at a target on the other side of the Alps, 730 kilometres from CERN, or controlling the positions of thousands of devices to a precision of one tenth of a millimetre, these are just some of the painstaking tasks undertaken by the surveyors in the Positioning Metrology and Surveying Group. These masters of measurement are pushing precision to its very limit.Go down into the LEP tunnel, walk about half a mile and then try to imagine how you could possibly take precise aim at something hundreds of kilometres away without any reference to the surface. Absurd, you might think? Not entirely, for that, in a nutshell, is the geodetic challenge of the Gran Sasso project. Indeed it is just one of the challenges faced by the surveyors in CERN's Positioning Metrology and Surveying Group, whose task it will be to aim a neutrino beam at a detector located in an underground cavern 732 kilometres away at INFN's Gran Sasso laboratory in Italy. The tools for solving such problems are provided by geodetics, the branch of...

  13. The Mars Surveyor '01 Rover and Robotic Arm

    Science.gov (United States)

    Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.

    1999-01-01

    The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment

  14. The X-Ray Surveyor Mission: A Concept Study

    Science.gov (United States)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-01-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  15. The Infrared Imaging Surveyor (Iris) Project: Astro-F

    Science.gov (United States)

    Shibai, H.

    IRIS (Infrared Imaging Surveyor) is the first Japanese satellite dedicated solely to infrared astronomy. The telescope has 70-cm aperture, and is cooled down to 6 K with super-fluid helium assisted by two-stage Stirling cycle coolers. On the focal plane, the two instruments, the InfraRed Camera (IRC) and the Far-Infrared Surveyor (FIS), are mounted. IRC is a near- and mid-infrared camera for deep imaging-surveys in the wavelength region from 2 to 25 microns. FIS is a far-infrared instrument for a whole sky survey in the wavelength region from 50 to 200 microns. The diffraction-limited spatial resolution is achieved except in the shortest waveband. The point source sensitivity and the survey coverage are significantly improved compared to previous missions. The primary scientific objective is to investigate birth and evolution of galaxies in the early universe by surveys of young normal galaxies and starburst galaxies. IRIS is thrown by a Japanese M-V rocket into a sun-synchronous orbit, in which the cooled telescope can avoid huge emissions from the Sun and the Earth. The expected holding time of the super-fluid helium is more than one year. After consumption of the helium, the near-infrared observation can be continued by the mechanical coolers

  16. ASTRO-F : Infrared Imaging Surveyor (IRIS) Mission

    Science.gov (United States)

    Onaka, T.

    The ASTRO-F (also known as Infrared Imaging Surveyor: IRIS) is the second infrared satellite mission of the Institute of Space and Astronautical Science, Japan to be launched early 2004 with the M-V rocket and is planned as a second generation infrared sky survey mission. It has a 67-cm aperture telescope and is cooled by 170-liter liquid helium and Stirling-cycle coolers. Two scientific instruments share the focal plane. The infrared camera (IRC) covers 2 to 26 μm range with large two-dimensional arrays in the imaging and low-resolution spectroscopic modes and will perform deep sky surveys of selected areas of the sky with a wide field of view (10' × 10') at unprecedented sensitivity. The far-infrared Surveyor (FIS), consisting of an imaging scanner and a Fourier transform spectrometer, covers 50 to 200 μm range and makes a whole sky survey in four far-infrared bands, which is higher by more than 10 in sensitivity (20 110 mJy), better by several in the spatial resolution (30'' 50''), and longer in the spectral coverage (200 μm) than IRAS. A brief description and the current status of the ASTRO-F mission are presented.

  17. The Digital Cadastral Databse and the Role of the Private Licensed Surveyors in Denmark

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    This article presents the cadastral system and the role of the private licensed surveyors in Denmark as a basis for discussion of its relevance to Ireland......This article presents the cadastral system and the role of the private licensed surveyors in Denmark as a basis for discussion of its relevance to Ireland...

  18. Are Quantity Surveyors Competent to Value for Civil Engineering Works? Evaluating QSs' Competencies and Militating Factors

    Science.gov (United States)

    Olawumi, Timothy Oluwatosin; Ayegun, Olaleke Amos

    2016-01-01

    The role of the quantity surveyor is one that is often unclear amongst the general public. This study discussed the competencies of the quantity surveyor in measuring and managing civil engineering works and also carrying out the financial management for civil engineering construction projects; also outlined the various competencies and skills…

  19. The link between quality and accreditation of residency programs: the surveyors' perceptions.

    Science.gov (United States)

    Dos Santos, Renato Antunes; Snell, Linda; Tenorio Nunes, Maria do Patrocinio

    2017-01-01

    Accreditation of medical residency programs has become globally important. Currently it is moving from the goal of attaining minimal standards to a model of continuous improvement. In some countries, the accreditation system engages peers (physicians) to survey residency programs. The surveyors are sometimes volunteers, usually engaged in multiple clinical and education activities. Few studies have investigated the benefits of residency program evaluation and accreditation from the perspective of the surveyors. As peers they both conduct and receive accreditation surveys, which puts them in a privileged position in that it provides the surveyor with an opportunity to share experiences and knowledge and apply what is learned in their own context. The objective of this study is to obtain the perceptions of these surveyors about the impact of an accreditation system on residency programs. Surveyors participated in semi-structured interviews. A thematic analysis was performed on the interview data, and resulting topics were grouped into five themes: Burden (of documentation and of time needed); Efficiency and efficacy of the accreditation process; Training and experience of surveyors; Being a peer; Professional skills and recognition of surveyors. These categories were organized into two major themes: 'Structure and Process' and 'Human Resources'. The study participants proposed ways to improve efficiency including diminish the burden of documentation to the physicians involved in the process and to increase efforts on training programs and payment for surveyors and program directors. Based on the results we propose a conceptual framework to improve accreditation systems.

  20. A Map-Making for the Planck Surveyor

    CERN Document Server

    Natoli, P; Gheller, C; Vittorio, N

    2001-01-01

    We present a parallel implementation of a map-making algorithm for CMB anisotropy experiments which is both fast and efficient. We show for the first time a Maximum Likelihood, minimum variance map obtained by processing the entire data stream expected from the Planck Surveyor, under the assumption of a symmetric beam profile. Here we restrict ourselves to the case of the 30 GHz channel of the Planck Low Frequency Instrument. The extension to Planck higher frequency channels is straightforward. If the satellite pointing periodicity is good enough to average data that belong to the same sky circle, then the code runs very efficiently on workstations. The serial version of our code also runs on very competitive time-scales the map-making pipeline for current and forthcoming balloon borne experiments.

  1. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    CERN Document Server

    Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...

  2. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    Science.gov (United States)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  3. Anionic lipid binding to the foreign protein MGS provides a tight coupling between phospholipid synthesis and protein overexpression in Escherichia coli.

    Science.gov (United States)

    Ariöz, Candan; Ye, Weihua; Bakali, Amin; Ge, Changrong; Liebau, Jobst; Götzke, Hansjörg; Barth, Andreas; Wieslander, Ake; Mäler, Lena

    2013-08-20

    Certain membrane proteins involved in lipid synthesis can induce formation of new intracellular membranes in Escherichia coli, i.e., intracellular vesicles. Among those, the foreign monotopic glycosyltransferase MGS from Acholeplasma laidlawii triggers such massive lipid synthesis when overexpressed. To examine the mechanism behind the increased lipid synthesis, we investigated the lipid binding properties of MGS in vivo together with the correlation between lipid synthesis and MGS overexpression levels. A good correlation between produced lipid quantities and overexpressed MGS protein was observed when standard LB medium was supplemented with four different lipid precursors that have significant roles in the lipid biosynthesis pathway. Interestingly, this correlation was highest concerning anionic lipid production and at the same time dependent on the selective binding of anionic lipid molecules by MGS. A selective interaction with anionic lipids was also observed in vitro by (31)P NMR binding studies using bicelles prepared with E. coli lipids. The results clearly demonstrate that the discriminative withdrawal of anionic lipids, especially phosphatidylglycerol, from the membrane through MGS binding triggers an in vivo signal for cells to create a "feed-forward" stimulation of lipid synthesis in E. coli. By this mechanism, cells can produce more membrane surface in order to accommodate excessively produced MGS molecules, which results in an interdependent cycle of lipid and MGS protein synthesis.

  4. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.

  5. Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission

    Science.gov (United States)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt; hide

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  6. Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept

    Science.gov (United States)

    Bandler, Simon R.; Adams, Joseph S.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Betancourt-Martinez, Gabriele; Miniussi, Antoine R.; Porter, Frederick S.; Sadleir, John E.; Sakai, Kazuhiro; Smith, Stephen J.; Stevenson, Thomas R.; Wakeham, Nicholas A.; Wassell, Edward J.; Yoon, Wonsik; Becker, Dan; Bennett, Douglas; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathan D.; Hilton, Gene C.; Mates, Benjamin; Morgan, Kelsey M.; Reintsema, Carl D.; Swetz, Daniel; Ullom, Joel N.; Chaudhuri, Saptarshi; Irwin, Kent D.; Lee, Sang-Jun; Vikhlinin, Alexey

    2016-07-01

    Four astrophysics missions are currently being studied by NASA as candidate large missions to be chosen in the 2020 astrophysics decadal survey.1 One of these missions is the "X-Ray Surveyor" (XRS), and possible configurations of this mission are currently under study by a science and technology definition team (STDT). One of the key instruments under study is an X-ray microcalorimeter, and the requirements for such an instrument are currently under discussion. In this paper we review some different detector options that exist for this instrument, and discuss what array formats might be possible. We have developed one design option that utilizes either transition-edge sensor (TES) or magnetically coupled calorimeters (MCC) in pixel array-sizes approaching 100 kilo-pixels. To reduce the number of sensors read out to a plausible scale, we have assumed detector geometries in which a thermal sensor such a TES or MCC can read out a sub-array of 20-25 individual 1" pixels. In this paper we describe the development status of these detectors, and also discuss the different options that exist for reading out the very large number of pixels.

  7. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz optical design

    CERN Document Server

    Eimer, Joseph R; Chuss, David T; Marriage, Tobias A; Wollack, Edward J; Zeng, Lingzhen; 10.1117/12.925464

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19deg x 14deg with a resolution for each beam on the sky of 1.5deg FWHM.

  8. The cosmology large angular scale surveyor (CLASS): 40 GHz optical design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-09-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19° x 14° with a resolution for each beam on the sky of 1.5° FWHM.

  9. CHISL: The Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor

    CERN Document Server

    France, Kevin; Hoadley, Keri

    2016-01-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (primary diameter 12 m, 1000 Ang - 2 micron spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a high-resolution (R 120,000; 1000 - 1700 Ang) point-source spectroscopy channel and a ...

  10. The Far-Infrared Surveyor Mission Study: Paper I, the Genesis

    Science.gov (United States)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; hide

    2017-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some preliminary highlights here. We note key areas for technological innovation and improvements necessary to make a Far-Infrared Surveyor mission a reality.

  11. The Far-Infrared Surveyor Mission study: paper I, the genesis

    Science.gov (United States)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; Ennico, K.; Melnick, G. J.; Milam, S.; Narayanan, D.; Pontoppidan, K.; Pope, A.; Roellig, T.; Sandstrom, K.; Su, K. Y. L.; Vieira, J.; Wright, E.; Zmuidzinas, J.; Alato, S.; Carey, S.; Gerin, M.; Helmich, F.; Menten, K.; Scott, D.; Sakon, I.; Vavrek, R.

    2016-07-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some preliminary highlights here. We note key areas for technological innovation and improvements necessary to make a Far-Infrared Surveyor mission a reality.

  12. The Far-Infrared Surveyor Mission Study: Paper I, the Genesis

    CERN Document Server

    Meixner, M; Carter, R; DiPirro, M; Flores, A; Leisawitz, D; Armus, L; Battersby, C; Bergin, E; Bradford, C M; Ennico, K; Melnick, G J; Milam, S; Narayanan, D; Pontoppidan, K; Pope, A; Roellig, T; Sandstrom, K; Su, K Y L; Vieira, J; Wright, E; Zmuidzinas, J; Alato, S; Carey, S; Gerin, M; Helmich, F; Menten, K; Scott, D; Sakon, I; Vavrek, R

    2016-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some preliminary highlights here. We note key areas for technological innovation and improvements necessary to make a Far-Infrared Surveyor mission a reality.

  13. Screening for Mutations in Kidney-Related Genes Using SURVEYOR Nuclease for Cleavage at Heteroduplex Mismatches

    OpenAIRE

    Voskarides, Konstantinos; DELTAS, Constantinos

    2009-01-01

    SURVEYOR is a new mismatch-specific plant DNA endonuclease that is very efficient for mutation scanning in heteroduplex DNA. It is much faster, cheaper, more sensitive, and easier to perform than other “traditional” mutation detection methods such as single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, heteroduplex analysis, and phage resolvases. This is the first comprehensive report on the use of SURVEYOR for screening genes implicated in a sp...

  14. Schmidt Crater: Using Data from the Mars Global Surveyor

    Science.gov (United States)

    Thomas, Fred

    2001-10-01

    In the Physics Department at Sinclair Community College in Dayton, the most popular general-education course is a three-quarter astronomy sequence. The course is designed to incorporate significant elements of conceptual physics, scientific methods, and quantitative reasoning, along with the content of astronomy. In cooperation with faculty from mathematics and sociology, the author developed new lab activities that engage students in making "practical" plans for the colonization of Mars. The activities are intended to be low-cost, to be suitable for either on-campus or distance-learning environments, and to be fun for both students and instructors. The Schmidt Crater region, an Ohio-sized area near the South Pole of Mars, was selected as a potential site for obtaining large quantities of water. Topographic data for the region was extracted from the 36 CD's of laser altimeter data obtained by the Mars Global Surveyor, and ArcView was used to produce detailed maps. Wide and narrow angle photos of the region from the Mars Orbiter Camera were integrated with the topographic maps. Both the maps and the photographs were therefore made accessible to students who can use free software packages, such as ArcExplorer and Scion Image With access to up-to-date data for this region, students complete a series of "authentic learning tasks" that include calculating water needs for a Martian city, identifying likely water sources, planning transportation methods, and selecting a "homestead" for their own personal use.

  15. The Far-Infrared Surveyor (FIS) for AKARI

    CERN Document Server

    Kawada, Mitsunobu; Barthel, Peter D; Clements, David; Cohen, Martin; Doi, Yasuo; Figueredo, Elysandra; Fujiwara, Mikio; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Jeong, Woong-Seob; Kaneda, Hidehiro; Kawai, Toshihide; Kawamura, Akiko; Kester, Do; Kii, Tsuneo; Kobayashi, Hisato; Kwon, Suk Minn; Lee, Hyung Mok; Makiuti, Sin'itirou; Matsuo, Hiroshi; Matsuura, Shuji; Müller, Thomas G; Murakami, Noriko; Nagata, Hirohisa; Nakagawa, Takao; Narita, Masanao; Noda, Manabu; Oh, Sang Hoon; Okada, Yoko; Okuda, Haruyuki; Oliver, Sebastian; Ootsubo, Takafumi; Pak, Soojong; Park, Yong-Sun; Pearson, Chris P; Rowan-Robinson, Michael; Saito, Toshinobu; Salama, Alberto; Sato, Shinji; Savage, Richard S; Serjeant, Stephen; Shibai, Hiroshi; Shirahata, Mai; Sohn, Jungjoo; Suzuki, Toyoaki; Takagi, Toshinobu; Takahashi, Hidenori; Thomson, Matthew; Usui, Fumihiko; Verdugo, Eva; Watabe, Toyoki; White, Glenn J; Wang, Lingyu; Yamamura, Issei; Yamamuchi, Chisato; Yasuda, Akiko

    2007-01-01

    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, i...

  16. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  17. The Transient High Energy Sky and Early Universe Surveyor (THESEUS)

    Science.gov (United States)

    Amati, Lorenzo; O'Brien, Paul T.; Götz, Diego

    2016-07-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 9-10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.

  18. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2016-08-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  19. Detector architecture of the cosmology large angular scale surveyor

    Science.gov (United States)

    Rostem, K.; Bennett, C. L.; Chuss, D. T.; Costen, N.; Crowe, E.; Denis, K. L.; Eimer, J. R.; Lourie, N.; Essinger-Hileman, T.; Marriage, T. A.; Moseley, S. H.; Stevenson, T. R.; Towner, D. W.; Voellmer, G.; Wollack, E. J.; Zeng, L.

    2012-09-01

    The cosmic microwave background (CMB) provides a powerful tool for testing modern cosmology. In particular, if inflation has occurred, the associated gravitational waves would have imprinted a specific polarized pattern on the CMB. Measurement of this faint polarized signature requires large arrays of polarization-sensitive, background- limited detectors, and an unprecedented control over systematic effects associated with instrument design. To this end, the ground-based Cosmology Large Angular Scale Surveyor (CLASS) employs large-format, feedhorn- coupled, background-limited Transition-Edge Sensor (TES) bolometer arrays operating at 40, 90, and 150 GHz bands. The detector architecture has several enabling technologies. An on-chip symmetric planar orthomode transducer (OMT) is employed that allows for highly symmetric beams and low cross-polarization over a wide bandwidth. Furthermore, the quarter-wave backshort of the OMT is integrated using an innovative indium bump bonding process at the chip level that ensures minimum loss, maximum repeatability and performance uniformity across an array. Care has been taken to reduce stray light and on-chip leakage. In this paper, we report on the architecture and performance of the first prototype detectors for the 40 GHz focal plane.

  20. Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mehdi Nafar

    2015-08-01

    Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.

  1. Screening for mutations in kidney-related genes using SURVEYOR nuclease for cleavage at heteroduplex mismatches.

    Science.gov (United States)

    Voskarides, Konstantinos; Deltas, Constantinos

    2009-07-01

    SURVEYOR is a new mismatch-specific plant DNA endonuclease that is very efficient for mutation scanning in heteroduplex DNA. It is much faster, cheaper, more sensitive, and easier to perform than other "traditional" mutation detection methods such as single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, heteroduplex analysis, and phage resolvases. This is the first comprehensive report on the use of SURVEYOR for screening genes implicated in a spectrum of inherited renal diseases. Of the 48.2 kb screened, 44 variations were identified, accounting for one variation per 1.1 kb. The re-sequencing of multiple samples did not reveal any variation that had not been identified by SURVEYOR, attesting to its high fidelity. Additionally, we tested this enzyme against 15 known variants, 14 of which it identified, thus showing a sensitivity of 93%. We showed that the genetic heterogeneity of renal diseases can be easily overcome using this enzyme with a high degree of confidence and no bias for any specific variations. We also showed for the first time that SURVEYOR does not demonstrate any preference regarding mismatch cleavage at specific positions. Disadvantages of using SURVEYOR include enhanced exonucleolytic activity for some polymerase chain reaction products and less than 100% sensitivity. We report that SURVEYOR can be used as a mutation detection method with a high degree of confidence, offering an excellent alternative for low-budget laboratories and for the rapid manipulation of multiple genes.

  2. Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Y. H.; He, Q. L. [Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, HKSAR, People' s Republic of China (China); Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People' s Republic of China (China); Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Sou, I. K. [Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People' s Republic of China (China); Ho, S. K. [Faculty of Science and Technology, University of Macau, Macau, People' s Republic of China (China); Tam, K. W. [Department of Electrical and Electronics Engineering, University of Macau, Macau, People' s Republic of China (China)

    2013-04-29

    Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

  3. Simulation of the charge collection and signal response of a HPGe double sided strip detector using MGS

    Energy Technology Data Exchange (ETDEWEB)

    Mateu, I., E-mail: isidre.mateu@irap.omp.eu [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Medina, P., E-mail: patrice.medina@aero.obs-mip.fr [IPHC, IN2P3 – CNRS/Université Louis Pasteur, 23 rue du Loess, PB28, Strasbourg Cedex 2, F67037 (France); Roques, J.P., E-mail: jean-pierre.roques@irap.omp.eu [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Jourdain, E., E-mail: elisabeth.jourdain@irap.omp.eu [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2014-01-21

    This paper aims to present Multi geometry Simulation (MGS), a software intended for the characterization of the signal response of solid state detectors. Its main feature is the calculation of the pulse shapes induced at the electrodes of the detector by a photon–semiconductor interaction occurring at a specific position inside the detector volume. The program uses numerical methods to simulate the drift of the charge carriers generated by the interaction, as the movement of these particles induces the useful signal for detection to the electrodes. After the description of the tool fundamentals, an example of application is presented where MGS was used for simulating a High Purity Germanium (HPGe) double sided strip detector conceived for hard X-ray astronomy. Simulated and measured pulse shapes are compared for interactions occurring at different depths in the detector volume. The comparison focuses on the difference in time of arrival between the anode and cathode pulses, as this measure allows, together with the X/Y information retrieved from the strips, a 3D determination of the photon interaction point, which is an important feature of the detector. A good matching between simulations and measurements is obtained, with a discrepancy less than 0.5 mm between the measured and the simulated depth of the interaction, for an 11 mm thick detector. -- Highlights: • Description of MGS, a tool for the synthesis of the signal response of solid state detectors. • Validation of the simulator through comparison with measurements on a DSSD prototype. • Discussion on the advantages, drawbacks and possible evolutions of MGS.

  4. Spectroscopy of the X^1Σ^+, A^1Π and B^1Σ^+ Electronic States of MgS

    Science.gov (United States)

    Caron, Nicholas; Tokaryk, Dennis W.; Adam, Allan G.; Linton, Colan

    2016-06-01

    The spectra of some astrophysical sources contain signatures from molecules containing magnesium or sulphur atoms. Therefore, we have extended previous studies of the diatomic molecule MgS, which is a possible candidate for astrophysical detection. Microwave spectra of X^1Σ^+ , the ground electronic state, were reported in 1989 and 1997, and the B^1Σ^+-X^1Σ^+ electronic absorption spectrum in the blue was last studied in 1970. We have investigated the B^1Σ^+-X^1Σ^+ 0-0 spectrum of MgS at high resolution under jet-cooled conditions in a laser-ablation molecular source, and have obtained laser-induced fluorescence spectra from four isotopologues. Dispersed fluorescence from this source identified the low-lying A^1Π state near 4520 wn. We also created MgS in a Broida oven, with the help of a stream of activated nitrogen, and took rotationally resolved dispersed fluorescence spectra of the B^1Σ^+-A^1Π transition with a grating spectrometer by laser excitation of individual rotational levels of the B^1Σ^+ state via the B^1Σ^+-X^1Σ^+ transition. These spectra provide a first observation and analysis of the A^1Π state. S. Takano, S. Yamamoto and S. Saito, Chem. Phys. Lett. 159, 563-566 (1989) K. A. Walker and M. C. L. Gerry, J. Mol. Spectrosc 182, 178-183 (1997) M. Marcano and R. F. Barrow, Trans. Faraday Soc. 66, 2936-2938 (1970)

  5. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    Science.gov (United States)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents

  6. Perancangan Aplikasi Komputer Berbasis Android untuk Survei Kondisi Kapal oleh Owner Surveyor

    Directory of Open Access Journals (Sweden)

    Paul Stevan Haloho

    2017-01-01

    Full Text Available Survei kondisi kapal adalah survei yang dilakukan oleh seorang Owner Surveyor untuk melaporkan kondisi aktual kapal beserta bagian-bagiannya. Proses survei yang dilakukan saat ini masih dilakukan secara manual dimana seorang Owner Surveyor melakukan survei berdasarkan daftar survei yang diterbitkan oleh perusahaan pemilik kapal. Hasil survei kondisi akan disajikan dalam bentuk laporan yang nantinya akan diserahkan kepada pemilik kapal sebagai bahan pertimbangan untuk dilakukannya “repair” dan “maintenance”. Proses survei yang dilakukan saat ini tentu saja kurang efektif untuk dilakukan, mengingat tidak semua Owner Surveyor memiliki pengetahuan dan pengalaman yang sama serta proses pembuatan laporan hasil survei yang sering memakan waktu lama. Penelitian ini bertujuan untuk merancang sebuah aplikasi komputer berbasis android yang dapat membantu seorang Owner Surveyor dalam melakukan proses survei kondisi. Dalam aplikasi ini memuat fasilitas daftar survei, review survei, updating survei, dan menu untuk menambahkan Owner Surveyor. Aplikasi ini telah diujicobakan kepada beberapa responden yang memiliki pengalaman survei kapal dan pihak-pihak yang memiliki latar belakang pendidikan di bidang perkapalan. Pengujian ini dilakukan dalam bentuk kuisioner yang bertujuan untuk mengetahui penilaian para responden terhadap aplikasi ini. Dari hasil kuisioner dapat disimpulkan bahwa aplikasi ini sangat diperlukan dalam mendukung kegiatan survei kondisi kapal.

  7. The Transient High Energy Sky and Early Universe Surveyor

    Science.gov (United States)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  8. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    Science.gov (United States)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2011-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor 1lI spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor 1lI camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the Apollo 12 LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing were reexamined by a KSC research team using SEM/EDS and XPS analysis. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues. Several likely scenarios are proposed to explain the Surveyor III dust observations. These include electrostatic attraction of the dust to the surface of the Surveyor as a result of electrostatic charging of the jet gas exiting the engine nozzle during descent; dust blown by the Apollo 12 LM fly-by while on its descent trajectory; dust ejected from the lunar surface due to gas forced into the soil by the Surveyor 1lI rocket nozzle, based on Darcy's law; and mechanical movement of dust during the Surveyor landing. Even though an absolute answer is not possible based on available data and theory, various computational models are employed to estimate the feasibility of each of these proposed mechanisms. Scenarios are then discussed which combine multiple mechanisms to produce results consistent with observations.

  9. The role of quantity surveyors in public–private partnerships in South Africa

    Directory of Open Access Journals (Sweden)

    Hoffie Cruywagen

    2017-05-01

    Full Text Available Background: Quantity surveyors play an important role in providing cost and contractual advice in the built environment. This article seeks to investigate the current extent of their involvement in public–private partnerships (PPPs in South Africa. Aim: The study intends to establish factors that influence quantity surveyors’ participation in PPPs. Methodology: A mixed-methods research approach was followed by firstly conducting a survey amongst South African quantity surveyors in order to determine their level of participation in PPPs. For triangulation purposes, a case study was also conducted. Results: The results of the research show that, although quantity surveyors have the corresponding skills and competencies required in a PPP project, their current involvement in PPPs in South Africa is limited and that there is a greater role they can play in future. Conclusion: Quantity surveyors are uniquely positioned to play a bigger role in the implementation of PPPs in South Africa.

  10. 120 Years of Education for Mine Surveyors in South Africa A ...

    African Journals Online (AJOL)

    Grobler, Hennie

    identified as the new centre of gravity of mining activities, where in 1903, it was ... 1The NQF level is stated as an approximate value as these qualifications have ..... in the survey department, …after obtaining his mine surveyors certificate, ...

  11. The Far-Infrared Surveyor Mission study: paper I, the genesis

    NARCIS (Netherlands)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; Ennico, K.; Melnick, G. J.; Milam, S.; Narayanan, D.; Pontoppidan, K.; Pope, A.; Roellig, T.; Sandstrom, K.; Su, K. Y. L.; Vieira, J.; Wright, E.; Zmuidzinas, J.; Alato, S.; Carey, S.; Gerin, M.; Helmich, F.; Menten, K.; Scott, D.; Sakon, I.; Vavrek, R.

    2016-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some prelimin

  12. The Far-Infrared Surveyor Mission study: paper I, the genesis

    NARCIS (Netherlands)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; Ennico, K.; Melnick, G. J.; Milam, S.; Narayanan, D.; Pontoppidan, K.; Pope, A.; Roellig, T.; Sandstrom, K.; Su, K. Y. L.; Vieira, J.; Wright, E.; Zmuidzinas, J.; Alato, S.; Carey, S.; Gerin, M.; Helmich, F.; Menten, K.; Scott, D.; Sakon, I.; Vavrek, R.

    2016-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some

  13. Identifying and Describing Tutor Archetypes: The Pragmatist, the Architect, and the Surveyor

    Science.gov (United States)

    Harootunian, Jeff A.; Quinn, Robert J.

    2008-01-01

    In this article, the authors identify and anecdotally describe three tutor archetypes: the pragmatist, the architect, and the surveyor. These descriptions, based on observations of remedial mathematics tutors at a land-grant university, shed light on a variety of philosophical beliefs regarding and pedagogical approaches to tutoring. An analysis…

  14. Fossil gastropods from the MGS3 stratigraphic segment in the Salawusu River Valley and their climatic and environmental implications

    Institute of Scientific and Technical Information of China (English)

    LI BaoSheng; YE JianPing; GUO YunHai; CHEN DeNiu; David Dian ZHANG; WEN XiaoHao; QIU ShiFan; OU XianJiao; DU ShuHuan; NIU DongFeng; YANG Yi

    2008-01-01

    Contemporaneous with MIS3, the MGS3 segment of the Milanggouwan stratigraphic section in the Salawusu River Valley, Mu Us Desert, China contains fossil gastropods (terrestrial and freshwater snails) in strata 33LS, 35LS, 37FL and 39LS. Examination of these fossils revealed 11 species belonging to 8 families and 10 genera. They can be classified as: (1) assemblage of Gyraulus and Galba mainly consisting of Gyraulus convexiusculus, Gyraulus sibiricus, Galba pervia and Galba superegra Gredler,etc. (2) assemblage of Vallonia mainly consisting of terrestrial snails, such as Vallonia patens, Pupilla muscorum and Discus paupe, etc. Based on the dating results, and the living habits, living conditions,and geographic distribution of their extant species, we suggest that: the ages of 33LS, 35LS, 37FL, and 39LS are 26000, 29000, 33000 and 38000 a, respectively, corresponding well to the interstadial period in GRIP 4,5, 6 and 10 in terms of chronology and climatic characters; 33LS, 35LS and 39LS represent very warm-humid periods, while 37FL represents a less warm-humid period; the four periods of climatic fluctuations recorded in MGS3 were related to the strong impact of the summer monsoon in East Asia in Mu Us Desert of China during the interstadial of MIS3 on a global climatic background.

  15. Fossil gastropods from the MGS3 stratigraphic segment in the Salawusu River Valley and their climatic and environmental implications

    Institute of Scientific and Technical Information of China (English)

    David; Dian

    2008-01-01

    Contemporaneous with MIS3, the MGS3 segment of the Milanggouwan stratigraphic section in the Salawusu River Valley, Mu Us Desert, China contains fossil gastropods (terrestrial and freshwater snails) in strata 33LS, 35LS, 37FL and 39LS. Examination of these fossils revealed 11 species belonging to 8 families and 10 genera. They can be classified as: (1) assemblage of Gyraulus and Galba mainly consisting of Gyraulus convexiusculus, Gyraulus sibiricus, Galba pervia and Galba superegra Gredler, etc. (2) assemblage of Vallonia mainly consisting of terrestrial snails, such as Vallonia patens, Pupilla muscorum and Discus paupe, etc. Based on the dating results, and the living habits, living conditions, and geographic distribution of their extant species, we suggest that: the ages of 33LS, 35LS, 37FL, and 39LS are 26000, 29000, 33000 and 38000 a, respectively, corresponding well to the interstadial period in GRIP 4, 5, 6 and 10 in terms of chronology and climatic characters; 33LS, 35LS and 39LS represent very warm-humid periods, while 37FL represents a less warm-humid period; the four periods of climatic fluctuations recorded in MGS3 were related to the strong impact of the summer monsoon in East Asia in Mu Us Desert of China during the interstadial of MIS3 on a global climatic background.

  16. An Investigation of the Correlation of Water-Ice and Dust Retrievals Via the MGS TES Data Set

    Science.gov (United States)

    Qu, Z.; Tamppari, L. K.; Smith, M. D.; Bass, Deborah; Hale, A. S.

    2004-01-01

    Water-ice in the Martian atmosphere was first identified in the Mariner 9 Infrared Interferometer Spectrometer (IRIS) spectra. The Viking Imaging Subsystem (VIS) instruments aboard the Viking orbiter also observed water-ice clouds and hazes in the Martian atmosphere. The MGS TES instrument is an infrared inferometer/spectrometer which covers the spectral range 6-50 micron with a selectable sampling resolution of either 5 or 10 per cm. Using the relatively independent and distinct spectral signatures for dust and water-ice, these two retrieved quantities have been retrieved simultaneously. Although the interrelations among the two quantities have been analyzed by Smith et al. and the retrievals are thought to be robust, understanding the impact of each quantity on the other during their retrievals as well as the impact from the surface for retrievals is important for correctly interpreting the science, and therefore requires close examination. An understanding of the correlation or a-correlation between dust and water-ice would aid in understanding the physical processes responsible for the transport of aerosols in the Martian atmosphere. In this presentation, we present an investigation of the correlation between water-ice and dust in the MGS TES data set.

  17. CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor

    Science.gov (United States)

    France, Kevin; Fleming, Brian; Hoadley, Keri

    2016-07-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (dprimary ≍ 12 m, Δλ ≍ 1000 Å - 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of a LUVOIR Surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a highresolution (R ≍ 120,000; 1000 - 1700Å) point-source spectroscopy channel and a medium resolution (R >= 14,000 from 1000 - 2000 Å in a single observation and R 24,000 - 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under

  18. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    Science.gov (United States)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2012-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.

  19. Solar wind rare gas analysis: Trapped solar wind helium and neon in Surveyor 3 material

    Science.gov (United States)

    Buehler, F.; Eberhardt, P.; Geiss, J.; Schwarzmueller, J.

    1972-01-01

    The He-4 and Ne-20 contents in sections of the Surveyor 3 support strut samples were determined by optical and scanning electron microscopy and are compared to the results of the Apollo solar wind composition (SWC) experiments. The He-4/Ne-20 ratio in the samples from the sunlit side of the strut was approximately 300; the ratios determined in Apollo 12 lunar fines and SWC foil were below 100. The He-4/He-3 ratios were also determined, and the ratio obtained from Surveyor 3 material is higher than those found with Apollo 11 and 12 SWC experiments. The effects of spallation by cosmic rays or solar protons, stripping by cosmic ray or energetic solar alpha particles, recycling of solar wind He and radiogenic Ne, He from terrestrial atmosphere, mass discrimination near the moon, mass dependence of trapping probability, diffusion, and contamination by lunar dust are considered.

  20. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz detector array of bolometric polarimeters

    CERN Document Server

    Appel, John W; Amiri, Mandana; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseleyb, Samuel H; Novakh, Giles; Reintsemad, Carl; Rostemab, Karwan; Stevensonb, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  1. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  2. Correlates of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2012-05-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Job satisfaction is the sense of well- being, good feeling and positive mental state that emerge in an incumbent worker when his obtained reward consequent upon his performance is congruent with his equitable reward.The aim of this study is to ascertain the levels of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria. Biographical and job descriptive index questionnaires (JDI were administered to gather the data. The JDI measures job satisfaction on five facets, namely, pay, promotions, supervision, co-workers and the work itself. A total of 100 questionnaires were collected and used for the study. The survey covered quantity surveyors in consulting firms in Lagos and the respondents were selected using stratified random sampling technique. Data collected were analysed using descriptive statistics, correlation matrix, t-test and one way anova. Findings of the study revealed that the respondents were satisfied with the relationship with co-workers, nature of work and the supervision they receive. Major sources of dissatisfaction are promotion and salaries of the respondents. This finding is a bold step and necessary benchmark for resolving major sources of dissatisfaction among quantity surveyors in consulting firms. The roles of other contextual factors on job satisfaction need to be contemplated for future research.

  3. Correlates of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2012-05-01

    Full Text Available Job satisfaction is the sense of well- being, good feeling and positive mental state that emerge in an incumbent worker when his obtained reward consequent upon his performance is congruent with his equitable reward.The aim of this study is to ascertain the levels of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria. Biographical and job descriptive index questionnaires (JDI were administered to gather the data. The JDI measures job satisfaction on five facets, namely, pay, promotions, supervision, co-workers and the work itself. A total of 100 questionnaires were collected and used for the study. The survey covered quantity surveyors in consulting firms in Lagos and the respondents were selected using stratified random sampling technique. Data collected were analysed using descriptive statistics, correlation matrix, t-test and one way anova. Findings of the study revealed that the respondents were satisfied with the relationship with co-workers, nature of work and the supervision they receive. Major sources of dissatisfaction are promotion and salaries of the respondents. This finding is a bold step and necessary benchmark for resolving major sources of dissatisfaction among quantity surveyors in consulting firms. The roles of other contextual factors on job satisfaction need to be contemplated for future research.

  4. Assessment of Cost Management Functions of Quantity Surveyors with Lean Methodology

    Directory of Open Access Journals (Sweden)

    Maroof Opeyemi Anifowose

    2013-11-01

    Full Text Available The Construction industry in Nigeria is made up of a wide variety of activities which include the provision of professional and technical services to clients in the built environment. Despite the provision of these services to a large number of clients worldwide, the construction industry is still awash by the chronic problems of low productivity, insufficient quality, time over-runs, and poor safety, which hinder customer delivered value. The Just-In-Time phenomenon is a characteristic of lean production systems which operate with very little “fat” (e.g. excess inventory extra workers, wasted space.This study aimed at assessing the construction management function of the quantity surveyor in line with the principle of lean methodology (Just-In-Time. This was achieved by exploring the cost management function of the quantity surveyor, to investigate the current practice of cost management by quantity surveying firms. Data for the study were sourced primarily with the use of questionnaire and the subsequent data analysis, which employed the use of descriptive analysis of presenting the data as obtained on tables during the field survey and attempts a rudimentary establishment of patterns using percentages. The study concluded amongst others, that: all activities involved in the cost management function of the quantity surveyor are important, and value adding, corresponding to conversion activities in line with the Just-In-time/lean methodology

  5. Perancangan Aplikasi Komputer Berbasis Android untuk Panduan Pengawasan Pembangunan Kapal Baru oleh Owner Surveyor

    Directory of Open Access Journals (Sweden)

    Joshua Adrian Lasuardi

    2017-01-01

    Full Text Available Kegiatan pengawasan pembangunan kapal baru yang ada saat ini masih dilakukan secara manual dimana seorang owner surveyor melakukan pengawasan mengacu pada form pengawasan. Kegiatan pengawasan yang ada saat ini kurang efektif untuk dilakukan pada proses pembangunan kapal baru, hal ini dikarenakan tidak semua owner surveyor memiliki pengetahuan dan pengalaman yang sama. Tujuan dari tugas akhir ini adalah melakukan observasi sistem pengawasan pembangunan kapal baru yang ada saat ini, merancang aplikasi komputer berbasis android untuk panduan pengawasan pembangunan kapal baru, dan melakukan uji validitas aplikasi tersebut dalam meningkatkan efektivitas pengawasan pembangunan kapal baru. Perancangan aplikasi dilakukan dengan pembuatan mock up aplikasi, desain interface, perancangan database, dan pengkodingan aplikasi tersebut. Aplikasi ini memiliki fitur daftar proses pengawasan, review hasil pengawasan, progress pembangunan kapal, dan menu untuk menambahkan owner surveyor. Uji coba aplikasi ini dilakukan kepada beberapa responden yang memiliki pengalaman pengawasan pembangunan kapal baru dan pihak-pihak yang memiliki latar belakang pendidikan di bidang perkapalan. Dari hasil pengujian menggunakan kuisoner tersebut diperoleh kesimpulan bahwa aplikasi ini perlu diaplikasikan dalam mendukung proses pengawasan pembangunan kapal baru.

  6. Analysis of Surveyor 3 television cable after residence on the moon

    Science.gov (United States)

    Gross, F. C.; Park, J. J.

    1972-01-01

    The Apollo 12 astronauts brought the Surveyor III television camera back from the moon in November 1969. Chemical analyses of a portion of television cable revealed changes in the glass fabric sleeve and in the wire insulation as a result of exposure to the lunar environment. Loss of volatile constituents from the glass fabric and a discoloration of the glass occurred. The Teflon layer on the wire showed a slight discoloration and possibly a slight change in its infrared spectrum. Both the polyimide layer and the Teflon layer of the wire insulation showed changes in tensile strength and elongation.

  7. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  8. Surveyor Manual

    DEFF Research Database (Denmark)

    Blyt, Henrik; Hessellund, Regner Bæk

    providing the qualification of ‘building maintenance technician’. Being addressed to people seeking jobs, but also to professionals already working in domains connected to the administration and maintenance of building stock, such as local administration, public and private companies owning buildings, SMEs...

  9. Method of Display Entity Information of VR-forces on MGS Platform%基于MGS平台的VR-Forces实体信息显示方法

    Institute of Scientific and Technical Information of China (English)

    韩晓光; 赵志军; 蔡郁知

    2015-01-01

    在同一模拟系统中同时使用MGS与VR-Forces平台,存在实体信息格式转换问题.为实现在MGS平台中显示VR-Forces中实体信息,分析了VR-Forces平台中实体信息的组织方式,基于XML技术构建了VR-Forces平台与MGS平台间的实体ID编码映射关系,实现了VR-Forces平台中实体经纬度、首向角、敌我关系等属性信息的获取方法,解决了基于MGS开发的模拟仿真训练程序与基于VR-Forces开发的模拟训练程序共存的问题,为后续具有类似功能需求的模拟系统开发提供了技术支持.%To use MGS and VR-Forces in the same simulation system, there is an entity information transform problem. To display VR-Forces entity information on MGS, the entity in heritance structure of VR-Forces is analyzed, building a Mapping Table of entity ID between VR-Forces and MGS platforms on XML technology. To achieve the methods to get latitude,heading,the enemy relationship from VR-Forces, the coexistence problem of MGS and VR-Forces are solved. The technical support for the development of simulation system with the similar function is provided.

  10. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    Science.gov (United States)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  11. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    Science.gov (United States)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  12. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.

    Science.gov (United States)

    Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L

    2010-11-01

    Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy.

  13. Knowledge and Attitudes of Nursing Home Staff and Surveyors about the Revised Federal Guidance for Incontinence Care

    Science.gov (United States)

    DuBeau, Catherine E.; Ouslander, Joseph G.; Palmer, Mary H.

    2007-01-01

    Purpose: We assessed nursing home staff and state nursing home surveyors regarding their knowledge and attitudes about urinary incontinence, its management, and the revised federal Tag F315 guidance for urinary incontinence. Design and Methods: We conducted a questionnaire survey of a convenience sample of nursing home staff and state nursing home…

  14. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases.

    Science.gov (United States)

    Vouillot, Léna; Thélie, Aurore; Pollet, Nicolas

    2015-01-07

    Genome editing using engineered nucleases is used for targeted mutagenesis. But because genome editing does not target all loci with similar efficiencies, the mutation hit-rate at a given locus needs to be evaluated. The analysis of mutants obtained using engineered nucleases requires specific methods for mutation detection, and the enzyme mismatch cleavage method is used commonly for this purpose. This method uses enzymes that cleave heteroduplex DNA at mismatches and extrahelical loops formed by single or multiple nucleotides. Bacteriophage resolvases and single-stranded nucleases are used commonly in the assay but have not been compared side-by-side on mutations obtained by engineered nucleases. We present the first comparison of the sensitivity of T7E1 and Surveyor EMC assays on deletions and point mutations obtained by zinc finger nuclease targeting in frog embryos. We report the mutation detection limits and efficiencies of T7E1 and Surveyor. In addition, we find that T7E1 outperforms the Surveyor nuclease in terms of sensitivity with deletion substrates, whereas Surveyor is better for detecting single nucleotide changes. We conclude that T7E1 is the preferred enzyme to scan mutations triggered by engineered nucleases.

  15. Lybia Montes: A Safe, Ancient Cratered Terrain, Mars Surveyor Landing Site at the Isidis Basin Rim

    Science.gov (United States)

    Haldemann, A. F. C.; Anderson, R. C.; Harbert, W.

    2000-01-01

    The Isidis basin rim may be key to understanding Mars' past with future lander missions: this area enables the mission objective to explore Mars' climatic and geologic history, including the search for liquid water and evidence of prior or extant life in ancient terrains. While two safe candidate landIng sites for Mars Pathfinder were identified in Isidis Planitia, and one is being pursued for the Mars Surveyor 2001 Lander, the region around Isidis Planitia. in contrast to Tharsis for example, has only been lightly studied. The advent of new high resolution data sets provides an opportunity to re-assess the geologic context of this Impact basin and its rim within the Martian geologic sequence as a candidate site for studying Mars' ancient cratered terrain and ancient hydrosphere. This reexamination is warranted by the various hypotheses that Isidis was once filled with ice or water.

  16. PENERAPAN MEDIA MONOPOLY GAMES SMART (MGS UNTUK MENINGKATKAN HASIL BELAJAR SISWA PADA MATERI EKOSISTEM DI KELAS VII MTS AL-WAHDAH SUMBER

    Directory of Open Access Journals (Sweden)

    Sri Ayu

    2015-07-01

    Full Text Available Dalam proses pembelajaran siswa dituntut untuk aktif melaluiaktivitas-aktivitas yang membangun kerja kelompok dan dalam waktu singkatmembuat mereka berfikir tentang materi pelajaran. Keterlibatan siswa secara aktif dalam pembelajaran biologi sangat diperlukan, sehingga apa yang dipelajari akan lebih tertanam dalam pikiran siswa. PenerapanMonopoly Games Smartpada pembelajaranBiologi merupakan salah satu alternatif untuk meningkatkan motivasi dan kreatifitas siswa serta dapat mengurangi kejenuhan belajar siswa, sehingga mendapatkanhasilbelajar siswa yang memuaskan. Adapun yang menjadi tujuan penelitian ini adalah:(1 Untuk mengkaji penerapan media MGS (Monopoly Games Smart pada materi Ekosistem di MTs Al-Wahdah Sumber. (2 Untuk mengkaji hasil belajar siswa pada pembelajaran biologi materi Ekosistem dengan menggunakan media MGS (Monopoly Games Smart di MTs Al-Wahdah Sumber. (3 Untuk mengkaji respon siswa terhadap penggunaan media MGS (Monopoly Games Smart dalam pembelajaran biologi khususnya pada materi Ekosistem di Mts Al-Wahdah Sumber. Penelitian ini dilakukan di MTs Al-Wahdah dengan teknik pengumpulan data yang digunakan adalah instrumen tes (pre-test dan post-test untuk mengukur hasil belajar siswa, observasi untuk mengetahui aktivitas siswa dan angketuntuk mengetahui respon siswa terhadap media pembelajaran. Hasil penelitian menunjukan bahwa (1 berdasarkan hasil analisis observasi, aktivitas siswa meningkat setelah diterapkan media Monopoly Games Smart. (2 Hasil belajar siswa kelas eksperimen menggunakan media pembelajaran Monopoly Games Smart nilai rata-rata pretest sebesar 39, posttest 78 dan n-gain 0,62.. Terbukti dari hasil perhitungan uji T menggunakan SPSS 16 diperoleh nilai Sig. 0,000 < (0,05 yang berarti terdapat peningkatan hasil belajar biologi siswa. (3 berdasarkan hasil analisis angket mengenai respon siswa terhadap penerapan media hampir dari siswa (82% dengan kriteria sangat kuat, menyukai penerapan strategi pembelajaran Monopoly

  17. The Behavior of Warm Molecules in Planet-forming Disks and CHESS: a Pathfinder UV Spectrograph for the LUVOIR Surveyor

    Science.gov (United States)

    Hoadley, Keri; France, Kevin

    2017-01-01

    Understanding the evolution of gas over the lifetime of protoplanetary disks provides us with important clues about how planet formation mechanisms drive the diversity of exoplanetary systems observed to date. In the first part of my talk, I will discuss how we use emission line observations of molecular hydrogen (H2) in the far-ultraviolet (far-UV) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to study the warm molecular regions (a disks. We compare the observations with analytic disk models that produce synthetic H2 profiles, and we statistically determine the disk representations that best replicate the data. I will discuss the results of our comparisons and how the modeled radial distributions of H2 in the disk help provide important constraints on the effective density of gas left in the inner disk of protoplanetary disks at various disk evolutionary stages. Finally, I will talk about follow-up studies that look to connect the warm, UV-pumped molecular populations of the inner disk to thermally-excited molecules observed in similar regions of the disk in the near- to mid-IR.In the second part of my talk, I will discuss the observational requirements in the UV and IR band passes to gain further insights into the behavior of the warm, gaseous protoplanetary disk, focusing specifically on a spectrograph concept for the next-generation LUVOIR Surveyor. I will discuss a testbed instrument, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), built as a demonstration of one component of the LUVOIR spectrograph and new technological improvements to UV optical components for the next generation of near- to far-UV astrophysical observatories. CHESS is a far-UV sounding rocket experiment designed to probe the warm and cool atoms and molecules near sites of recent star formation in the local interstellar medium. I will talk about the science goals, design, research and development (R&D) components, and calibration of the CHESS

  18. Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

    CERN Multimedia

    2004-01-01

    Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

  19. Development Status of Adjustable X-ray Optics with 0.5 Arcsec Imaging for the X-ray Surveyor Mission Concept

    Science.gov (United States)

    Reid, Paul B.; Allured, Ryan; ben-Ami, Sagi; Cotroneo, Vincenzo; Schwartz, Daniel A.; Tananbaum, Harvey; Vikhlinin, Alexey; Trolier-McKinstry, Susan; Wallace, Margeaux L.; Jackson, Tom

    2016-04-01

    The X-ray Surveyor mission concept is designed as a successor to the Chandra X-ray Observatory. As currently envisioned, it will have as much as 30-50 times the collecting area of Chandra with the same 0.5 arcsec imaging resolution. This combination of telescope area and imaging resolution, along with a detector suite for imaging and dispersive and non-dispersive imaging spectroscopy, will enable a wide range of astrophysical observations. These observations will include studies of the growth of large scale structure, early black holes and the growth of SMBHs, and high resolution spectroscopy with arcsec resolution, among many others. We describe the development of adjustable grazing incidence X-ray optics, a potential technology for the high resolution, thin, lightweight mirrors. We discuss recent advancements including the demonstration of deterministic figure correction via the use of the adjusters, the successful demonstration of integrating control electronics directly on the actuator cells to enable row-column addressing, and discuss the feasibility of on-orbit piezoelectric performance and figure monitoring via integrated semiconductor strain gauges. We also present the telescope point design and progress in determining the telescope thermal sensitivities and achieving alignment and mounting requirements.

  20. Holocene millennium-scale climatic variations as recorded by Rb and Sr concentrations for the MGS1 stratigraphical segment of Milanggouwan section in the Salawusu River Valley of Southeast Mu Us Desert%萨拉乌苏河流域MGS1 Rb和Sr记录的全新世千年尺度气候变化

    Institute of Scientific and Technical Information of China (English)

    牛东风; 李保生; 魏建国; 温小浩; 舒培仙; 司月君

    2016-01-01

    萨拉乌苏河流域米浪沟湾剖面全新世地层MGS1层段记录了11个由风成砂与河流相或湖沼相构成的沉积旋回。对该层段63个样品的Rb、Sr数据进行了分析,结果显示由沙丘砂至上覆河湖相Rb和Sr含量由低增高,而Rb/Sr比值的分布则显示出与Rb和Sr含量变化相反的趋势,三者与平均粒径Mz(f)的相关系数都在0.43以上。研究表明MGS1至少经历了11次冷干和11次暖湿的气候波动。米浪沟湾剖面MGS1记录的千年尺度气候波动既是对东亚季风环流演变历史的体现,同时也是对全球气候与环境变化的响应。%The MGS1 stratigraphical segment of Milanggouwan section is located in the Salawusu River Valley of southeast Mu Us Desert. The segment documents 11 sedimentary cycles consisting of aeolian facies and fluvial facies or lacustrine-swamp facies. Totally 63 samples were analyzed for rubidium (Rb) and strontium (Sr) concentrations. The results show that Rb and Sr concentrations increase as the sediments vary from aeolian facies to lacustrine-swamp facies, however, variation of the Rb/Sr ratios shows reversed trends in contrast to that of Rb and Sr concentrations. The line correlation coefficients of Rb and Sr concentrations and Rb/Sr ratios with mean grain size are all above 0.43. All these indicate that the MGS1 stratigraphic segment at least records 11 cold-dry and 11 warm-humid millennium-scale climatic oscillations, which represent the evolution history of East Asian monsoon circulation and show good correspondence to global climatic and environment variations.

  1. Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-surface Water

    Science.gov (United States)

    Christensen, P. R.; Bandfield, J. L.; Clark, R. N.; Edgett, K. S.; Hamilton, V. E.; Hoefen, T.; Kieffer, H. H.; Kuzmin, R. O.; Lane, M. D.; Malin, M. C.

    1999-01-01

    The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite ((alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350-750 km in size centered near 2 S latitude between 0 and 5 W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and >525/cm, and by the absence of silicate fundamentals in the 1000/cm region. Spectral features resulting from atmospheric CO2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (>5-10 micron). Diameters up to and greater than 100s of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles 30 micron in diameter to 40-60% for unpacked 10 micron powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter <5-10 micron), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it could be a late-stage sedimentary unit, or it could be a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse-grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: (1) chemical precipitation that includes origin by (a

  2. The MESSIER surveyor: unveiling the ultra-low surface brightness universe

    Science.gov (United States)

    Valls-Gabaud, David; MESSIER Collaboration

    2017-03-01

    The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.

  3. Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study

    Science.gov (United States)

    Crooke, Julie A.; Roberge, Aki; Domagal-Goldman, Shawn D.; Mandell, Avi M.; Bolcar, Matthew R.; Rioux, Norman M.; Perez, Mario R.; Smith, Erin C.

    2016-07-01

    In preparation of the 2020 Astrophysics Decadal Survey, National Aeronautics and Space Administration (NASA) has commenced a process for the astronomical community to study several large mission concepts leveraging the lessons learned from past Decadal Surveys. This will enable the Decadal Survey committee to make more informed recommendations to NASA on its astrophysics science and mission priorities with respect to cost and risk. Four astrophysics large mission concepts were identified. Each of them had a Science and Technology Definition Teem (STDT) chartered to produce scientifically compelling, feasible, and executable design reference mission (DRM) concepts to present to the 2020 Decadal Survey. In addition, The Aerospace Corporation will perform an independent cost and technical evaluation (CATE) of each of these mission concept studies in advance of the 2020 Decadal Survey, by interacting with the STDTs to provide detailed technical details on certain areas for which "deep dives" are appropriate. This paper presents the status and path forward for one of the four large mission concepts, namely, the Large UltraViolet, Optical, InfraRed surveyor (LUVOIR).

  4. The Role of County Surveyors and County Drainage Boards in Addressing Water Quality

    Science.gov (United States)

    Dunn, Mike; Mullendore, Nathan; de Jalon, Silvestre Garcia; Prokopy, Linda Stalker

    2016-06-01

    Water quality problems stemming from the Midwestern U.S. agricultural landscape have been widely recognized and documented. The Midwestern state of Indiana contains tens of thousands of miles of regulated drains that represent biotic communities that comprise the headwaters of the state's many rivers and creeks. Traditional management, however, reduces these waterways to their most basic function as conveyances, ignoring their role in the ecosystem as hosts for biotic and abiotic processes that actively regulate the fate and transport of nutrients and farm chemicals. Novel techniques and practices such as the two-stage ditch, denitrifying bioreactor, and constructed wetlands represent promising alternatives to traditional management approaches, yet many of these tools remain underutilized. To date, conservation efforts and research have focused on increasing the voluntary adoption of practices among agricultural producers. Comparatively little attention has been paid to the roles of the drainage professionals responsible for the management of waterways and regulated drains. To address this gap, we draw on survey responses from 39 county surveyors and 85 drainage board members operating in Indiana. By examining the backgrounds, attitudes, and actions of these individuals, we consider their role in advocating and implementing novel conservation practices.

  5. Future Japanese X-ray TES Calorimeter Satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor)

    Science.gov (United States)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Miyazaki, N.; Kuwabara, K.; Kuromaru, G.; Suzuki, S.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Sakai, K.; Nagayoshi, K.; Yamamoto, R.; Hayashi, T.; Muramatsu, H.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Nakamichi, R.; Bandai, A.; Yuasa, T.; Ota, N.

    2016-08-01

    We present the latest update and progress on the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS). DIOS is proposed to JAXA as a small satellite mission, and would be launched with an Epsilon rocket. DIOS would carry on the legacy of ASTRO-H, which carries semiconductor-based microcalorimeters and is scheduled to be launched in 2016, in high-resolution X-ray spectroscopy. A 400-pixel array of transition-edge sensors (TESs) would be employed, so DIOS would also provide valuable lessons for the next ESA X-ray mission ATHENA on TES operation and cryogen-free cooling in space. We have been sophisticating the entire design of the satellite to meet the requirement for the Epsilon payload for the next call. The primary goal of the mission is to search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy by detecting redshifted emission lines from OVII and OVIII ions. The results would have significant impacts on our understanding of the nature of "dark baryons," their total amount and spatial distribution, as well as their evolution over cosmological timescales.

  6. Mirko Danijel Bogdanić (1760-1802, Astronomer, Mathematician, Surveyor and Croatian Educator

    Directory of Open Access Journals (Sweden)

    Tatjana Kren

    2010-12-01

    Full Text Available This article provides valuable information about the life and work of Mirko Danijel Bogdanić (Bogdanić Imre Dániel (Virovitica, 1762 – Buda, 1802 who was an astronomer, mathematician, surveyor and the author of a book on world history in Croatian. This article observes his life and work from the historical perspective of the time of Emperor Joseph II in Austria. From 1782 to 1785, Bogdanić studied mathematics, physics and astronomy in Buda and Pešt. He often worked with famous Croatian scientists such as Ivan Paskvić (János Pasquich, Franjo Bruna (Ferenc Bruna, Josip Mitterpacher (József Mitterpacher and others. Particular attention is paid to the period between approximately 1791 and 1796, which he spent in Vienna. At first, he focused on publishing the first volume of his history of the world in Croatian (Dogodjaji svieta (World events, 1792 in which he paid particular attention to astronomy and Croatian astronomical terminology. From 1793 to 1795, he studied astronomy at the University of Vienna. The following period was the most important in his life. He was second, then first assistant at the Buda Observatory (1796–1802 and also (1798–1802 appointed Imperial Assistant Astronomer to the cartographer János Lipszky, charged with conducting precise astronomical observations to determine the geographical coordinates for the geographical map of Hungary (Mappa Generalis Regni Hungariae. His observations, especially of latitudes, were considered excellent. He spent many long, hard hours working in the field under adverse weather conditions, leading to extreme exhaustion, which resulted in serious illness and his premature death.

  7. The Cosmology Large Angular Scale Surveyor (CLASS): In search of the energy scale of inflation

    Science.gov (United States)

    Eimer, Joseph R.

    The hypothesis that the early universe underwent a period of accelerating expansion, called inflation, has become an essential mechanism for explaining the flatness and homogeneity of the universe and explaining the fluctuations found in the cosmic microwave background (CMB). Inflation predicts the existence of primordial gravitational waves that would have produced a unique polarization pattern on the CMB. Measurement of the amplitude of these gravitational waves can be used to infer the energy scale of the potential driving the expansion. Detection of this signal would be a dramatic confirmation of the inflation paradigm and significantly tighten constraints on inflationary models. The Cosmology Large Angular Scale Surveyor (CLASS) is a new ground-based instrument designed to search for the inflationary B-mode signal from the Atacama Desert in northern Chile (elevation ~ 5200 m). The CLASS instrument will observe over 60% of the sky to target the large scale polarization signal (> 10 deg), and consist of four separate telescopes: one observing at 40 GHz, two observing at 90 GHz and one observing at 150 GHz. The detectors for each band will be background limited antenna-coupled transition edge sensor bolometers. A variable-delay polarization modulator (VPM) will be placed as the first optical element in each of the telescopes. The front-end polarization modulator will mitigate many systematic effects and provide a powerful means of distinguishing the instrument response from the input signal. This dissertation contains an overview of the CLASS instrument. Specific emphasis is placed on the connection between the science goals and the instrument architecture. A description of the optical design of the 40 GHz telescope is given, and the application of the VPM technology to the CLASS instrument is described. We end with an overview of the detectors.

  8. Improvement of job satisfaction and organisational commitment through work group identification: an examination of the quantity surveyors in Hong Kong

    Directory of Open Access Journals (Sweden)

    Wai Yee Betty Chiu

    2013-09-01

    Full Text Available Though extant literatures in other sectors indicatethat job satisfaction and organizational commitment are important fordetermining individual and organisational outcomes, limited related researchhas been conducted amongst quantity surveyors in Hong Kong. Given cooperativeworking arrangement in the quantity surveying profession, work groupidentification is regarded as an important antecedent for determining jobsatisfaction and organisational commitment. The aim of this study is to examinewhether work group identification improves job satisfaction and organisationalcommitment. A questionnaire survey is conducted to collect data from quantitysurveyors working in private sector. A total of 71 valid responses are obtainedfrom 509 contacted quantity surveyors in Hong Kong. Bivariate correlation andmultiple regression analyses are performed to find the significance ofrelationships among the variables. Data analysis results support mosthypotheses. Work group identification is found to have significant positiveeffect on job satisfaction, affective and normative commitment. The finding isa bold step for quantity surveying companies to improve their quantity surveyors’job satisfaction and commitment level. The role of other contextual and organisationalfactors on job satisfaction and organisational commitment needs to becomplemented for future research.

  9. A simple, high sensitivity mutation screening using Ampligase mediated T7 endonuclease I and Surveyor nuclease with microfluidic capillary electrophoresis.

    Science.gov (United States)

    Huang, Mo Chao; Cheong, Wai Chye; Lim, Li Shi; Li, Mo-Huang

    2012-03-01

    Mutation and polymorphism detection is of increasing importance for a variety of medical applications, including identification of cancer biomarkers and genotyping for inherited genetic disorders. Among various mutation-screening technologies, enzyme mismatch cleavage (EMC) represents a great potential as an ideal scanning method for its simplicity and high efficiency, where the heteroduplex DNAs are recognized and cleaved into DNA fragments by mismatch-recognizing nucleases. Thereby, the enzymatic cleavage activities of the resolving nucleases play a critical role for the EMC sensitivity. In this study, we utilized the unique features of microfluidic capillary electrophoresis and de novo gene synthesis to explore the enzymatic properties of T7 endonuclease I and Surveyor nuclease for EMC. Homoduplex and HE DNAs with specific mismatches at desired positions were synthesized using PCR (polymerase chain reaction) gene synthesis. The effects of nonspecific cleavage, preference of mismatches, exonuclease activity, incubation time, and DNA loading capability were systematically examined. In addition, the utilization of a thermostable DNA ligase for real-time ligase mediation was investigated. Analysis of the experimental results has led to new insights into the enzymatic cleavage activities of T7 endonuclease I and Surveyor nuclease, and aided in optimizing EMC conditions, which enhance the sensitivity and efficiency in screening of unknown DNA variations.

  10. DHPLC/SURVEYOR nuclease: a sensitive, rapid and affordable method to analyze BRCA1 and BRCA2 mutations in breast cancer families.

    Science.gov (United States)

    Pilato, Brunella; De Summa, Simona; Danza, Katia; Papadimitriou, Stavros; Zaccagna, Paolo; Paradiso, Angelo; Tommasi, Stefania

    2012-09-01

    Hereditary breast cancer accounts for about 10% of all breast cancers and BRCA1 and BRCA2 genes have been identified as validated susceptibility genes for this pathology. Testing for BRCA gene mutations is usually based on a pre-screening approach, such as the partial denaturation DHPLC method, and capillary direct sequencing. However, this approach is time consuming due to the large size of BRCA1 and BRCA2 genes. Recently, a new low cost and time saving DHPLC protocol has been developed to analyze gene mutations by using SURVEYOR(®) Nuclease digestion and DHPLC analysis. A subset of 90 patients, enrolled in the Genetic Counseling Program of the National Cancer Centre of Bari (Italy), was performed to validate this approach. Previous retrospective analysis showed that 9/90 patients (10%) were mutated in BRCA1 and BRCA2 genes and these data were confirmed by the present approach. DNA samples underwent touchdown PCR and, subsequently, SURVEYOR(®) nuclease digestion. BRCA1 and BRCA2 amplicons were divided into groups depending on amplicon size to allow multiamplicon digestion. The product of this reaction were analyzed on Transgenomic WAVE Nucleic Acid High Sensitivity Fragment Analysis System. The operator who performed the DHPLC surveyor approach did not know the sequencing results at that time. The SURVEYOR(®) Nuclease DHPLC approach was able to detect all alterations with a sensitivity of 95%. Furthermore, in order to save time and reagents, a multiamplicon setting preparation was validated.

  11. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    Science.gov (United States)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  12. Evaluation of Cast Re-Orientation on a Dental Surveyor Using Three Tripod Techniques: A Survey and In Vitro Study.

    Science.gov (United States)

    Sayed, Mohammed E; Busaily, Idris A; Nahari, Rana J; Hakami, Ruaa O; Maashi, Sami M; Ramireddy, Naveen R

    2017-01-18

    To survey different educational levels (i.e., students, interns, technicians, and prosthodontic faculty) with regard to their opinions, attitudes, and adoption of three selected tripod techniques. The study will also investigate the accuracy of these techniques to reposition casts on the dental surveyor in anterio-posterior (AP) and lateral directions at both technique and educational levels. Tripod points, scored lines, and cemented post tripod techniques were used in this study. Three Kennedy class II modification I stone casts, duplicated from a standard cast, were assigned to each of the tripod techniques. The tilt angles of all casts were set on the dental surveyor to 10° (control angle) in AP and lateral directions using a digital angle gauge with an accuracy of 0.2°. The casts were tripoded accordingly. A total of 243 participants were involved in this study. Participants were first asked to remount the three casts on three different dental surveyors using the tripod technique noted on each cast. Questionnaires were then given to each participant in an individual interview setting; this assured a 100% response rate. The angle differences were calculated. All data were coded and entered into an Excel Spreadsheet file. Statistical analyses were performed using a paired Chi-square, Wilcoxon Matched-pairs, ANOVA, and Tukey post hoc tests at 5% level of significance. No significant difference was found between the educational levels relative to the responses to technique demands, sensitivity, and time required for reorientation (p = 0.08202, 0.8108, 0.6874, respectively); however, the majority of respondents reported low technique demands, low sensitivity, and time saving for technique C in comparison to techniques A and B. Significant differences were noted among the educational levels in response to preference and adoption questions (p = 0.0035 and 0.0015, respectively). The highest percentage of faculty chose technique A for inclusion into the academic

  13. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®

    Directory of Open Access Journals (Sweden)

    Vincent Kate

    2009-12-01

    Full Text Available Abstract Background TILLING (Targeting Induced Local Lesions IN Genomes is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor® software, aimed at simultaneous detection of mutations in three homoeologous genes. Results We demonstrate that High Resolution Melting (HRM analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor® is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Conclusion Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence

  14. Marine bird specimen, marine bird sighting, and other data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 24 July 1979 to 19 November 1982 (NODC Accession 8300058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine bird specimen, marine bird sighting, and other data were collected from the NOAA Ship SURVEYOR from 24 July 1979 to 19 November 1982. Data were collected by...

  15. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship SURVEYOR in the North Pacific Ocean in support of the Integrated Global Ocean Services System (IGOSS) project from 1976-09-27 to 1976-10-22 (NCEI Accession 7601473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship SURVEYOR in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the National Ocean...

  16. Delayed XBT data from the Southern Surveyor, collected by Commonwealth Scientific Industrial Research Organization (CSIRO), and submitted to the Global Temperature-Salinity Profile Program (GTSPP), date range from 02/07/2009 - 03/14/2009 (NODC Accession 0059379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected in the Pacific Ocean aboard the Southern Surveyor from 07 February to 14 March 2009. Data were submitted by the CommonWealth Scientific...

  17. Temperature profiles from expendable bathythermograph (XBT) casts from the NOAA Ship SURVEYOR in the North Pacific Ocean in support of the Integrated Global Ocean Services System (IGOSS) project from 14 November 1986 to 23 November 1986 (NODC Accession 8600384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from the NOAA Ship SURVEYOR in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the National...

  18. Marine animal sighting and census data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 11 May 1982 to 19 March 1983 (NODC Accession 8400150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine animal sighting and census data were collected from the NOAA Ship SURVEYOR from 11 May 1982 to 19 March 1983. Data were collected by the Envirosphere Co. as...

  19. Marine toxic substance and other data from bottle casts from the NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 13 August 1980 to 21 February 1981 (NODC Accession 8100531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine toxic substance and other data were collected from bottle casts from the NOAA Ship SURVEYOR from 13 August 1980 to 21 February 1981. Data were collected by...

  20. Physical, meteorological, and other data from surface sensors and CTD casts from the SURVEYOR and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 23 February 1981 to 30 April 1983 (NODC Accession 8300167)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the SURVEYOR and other platforms from 23 February 1981 to 30 April...

  1. Zooplankton and other data from net casts in Prince William Sound from NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-10-03 to 1975-10-10 (NCEI Accession 7601873)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts in Prince William Sound from the SURVEYOR from 03 October 1975 to 10 October 1975. Data were collected by...

  2. Zooplankton and other data from net casts in the Gulf of Alaska from the SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 30 September 1975 to 24 October 1975 (NODC Accession 7601809)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts in the Gulf of Alaska from the SURVEYOR from 30 September 1975 to 24 October 1975. Data were collected by...

  3. Zooplankton and other data from net casts from NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-06-28 to 1977-07-04 (NCEI Accession 7900066)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts from NOAA Ship SURVEYOR from 28 June 1977 to 04 July 1977. Data were collected by the University of Alaska,...

  4. Zooplankton and other data from net casts from NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1976-03-17 to 1976-04-26 (NCEI Accession 7601628)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts from NOAA Ship SURVEYOR from 17 March 1976 to 26 April 1976. Data were collected by the University of Alaska...

  5. Physical, meteorological, and other data from surface sensors and CTD casts from SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 16 August 1977 to 15 September 1977 (NODC Accession 7800013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the SURVEYOR. Data were collected by the Pacific Marine Environmental...

  6. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts from SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 15 April 1976 to 26 April 1976 (NODC Accession 7601823)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts from the SURVEYOR. Data were collected by the University of...

  7. Temperature, salinity and other measurements found in dataset CTD taken from the SOUTHERN SURVEYOR (VLHJ) in the Coastal S Pacific, Equatorial Pacific and other locations from 2003 to 2006 (NODC Accession 0043461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, chemical, and other data were collected using CTD casts from the SOUTHERN SURVEYOR in the Iceland Sea and North / South Pacific Ocean. Data...

  8. Temperature and salinity profiles from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 21 September 1975 to 22 September 1975 (NODC Accession 7601224)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profiles were collected from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR. Data were collected by the Pacific...

  9. Physical and other data from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 05 June 1975 to 12 June 1975 (NODC Accession 7601225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR. Data were collected by the Pacific Marine...

  10. Marine animal sighting and census data from NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 May 1975 to 13 October 1977 (NODC Accession 8000349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine animal sighting and census data were collected from the NOAA Ship SURVEYOR from 17 May 1975 to 13 October 1977. Data were collected by the U.S. National...

  11. Marine bird sighting and other data from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 01 September 1976 to 02 September 1976 (NODC Accession 7800704)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine bird sighting and other data were collected from the SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP). Data were...

  12. Physical, meteorological, and other data from surface sensors and CTD casts from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 15 August 1980 to 05 September 1980 (NODC Accession 8200116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the NOAA Ship SURVEYOR from 15 August 1980 to 05 September 1980. Data...

  13. Oceanographic profile data collected aboard Atlantic Surveyor as part of project OPR-D302-KR-12 in the North Atlantic Ocean from 2012-07-05 to 2012-09-05 (NCEI Accession 0130622)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130622 includes physical and profile data collected aboard the Atlantic Surveyor during project OPR-D302-KR-12 in the North Atlantic Ocean from...

  14. Marine mammal specimen and other data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 22 July 1975 to 28 August 1979 (NODC Accession 8100349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected from the NOAA Ship SURVEYOR from 22 July 1975 to 28 August 1979. Data were collected by the University of...

  15. Marine mammal specimen and other data from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 10 February 1977 to 19 November 1977 (NODC Accession 7900320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected from the SURVEYOR and other platforms from 10 February 1977 to 19 November 1977. Data were collected by the...

  16. Marine mammal specimen and other data from the SURVEYOR and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 20 March 1977 to 02 November 1977 (NODC Accession 7900319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected from the SURVEYOR and other platforms from 20 March 1977 to 02 November 1977. Data were collected by the Alaska...

  17. Marine bird sighting and other data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 16 August 1980 to 05 September 1980 (NODC Accession 8100473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine bird sighting and other data were collected from the NOAA Ship SURVEYOR from 16 August 1980 to 05 September 1980. Data were collected by the University of...

  18. Interference of Co-Amplified Nuclear Mitochondrial DNA Sequences on the Determination of Human mtDNA Heteroplasmy by Using the SURVEYOR Nuclease and the WAVE HS System

    OpenAIRE

    Hsiu-Chuan Yen; Shiue-Li Li; Wei-Chien Hsu; Petrus Tang

    2014-01-01

    High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detectin...

  19. Feedhorn-coupled Bolometer Detectors at 40 GHz Implemented on the Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Chuss, David T.; Ali, A.; Appel, J. W.; Bennett, C. L.; Colazo, F.; Crowe, E.; Denis, K.; Eimer, J.; Essinger-Hileman, T.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wollack, E.; Zeng, L.

    2014-01-01

    We have designed, produced, and tested 40 GHz feedhorn-coupled transition-edge sensor (TES) detectors using microstrip circuits on monocrystalline silicon dielectric substrates. Symmetric planar orthomode transducers (OMTs) couple two independent orthogonal linear polarization modes from feedhorns onto planar transmission lines over a broad (60 %) bandwidth. The 33-43 GHz band is defined by a combination of on-chip planar filtering and effective integrated shielding of stray light (blue leaks). The integrated stray light control is achieved over a frequency range of > 10:1. The monocrystalline silicon substrate provides a highly uniform dielectric constant that results in reliable circuit uniformity and performance. In addition, the monocrystalline silicon enables high efficiency due to its extremely low loss. The efficiency of the devices, including all integrated filtering, has been measured to be ~90 % for each polarization. The Cosmology Large Angular Scale Surveyor (CLASS) cosmic microwave background B-mode experiment is employing a 36-element focal plane of these detectors, along with similar detectors at higher frequencies, to map a large fraction of the sky.

  20. MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars with DISORT-based Rad. Transfer Modeling: Phase 1 - Using Historical Climatology for Temperatures, Aerosol Opacities, & Atmo. Pressures

    CERN Document Server

    McGuire, P C; Smith, M D; Arvidson, R E; Murchie, S L; Clancy, R T; Roush, T L; Cull, S C; Lichtenberg, K A; Wiseman, S M; Green, R O; Martin, T Z; Milliken, R E; Cavender, P J; Humm, D C; Seelos, F P; Seelos, K D; Taylor, H W; Ehlmann, B L; Mustard, J F; Pelkey, S M; Titus, T N; Hash, C D; Malaret, E R

    2009-01-01

    We discuss the DISORT-based radiative transfer pipeline ('CRISM_LambertAlb') for atmospheric and thermal correction of MRO/CRISM data acquired in multispectral mapping mode (~200 m/pixel, 72 spectral channels). Currently, in this phase-one version of the system, we use aerosol optical depths, surface temperatures, and lower-atmospheric temperatures, all from climatology derived from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, and surface altimetry derived from MGS Mars Orbiter Laser Altimeter (MOLA). The DISORT-based model takes as input the dust and ice aerosol optical depths (scaled to the CRISM wavelength range), the surface pressures (computed from MOLA altimetry, MGS-TES lower-atmospheric thermometry, and Viking-based pressure climatology), the surface temperatures, the reconstructed instrumental photometric angles, and the measured I/F spectrum, and then outputs a Lambertian albedo spectrum. The Lambertian albedo spectrum is valuable geologically since it allows the mineralogical ...

  1. Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions

    Science.gov (United States)

    Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.

    2016-07-01

    We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.

  2. Characterization of overwintering sites of the invasive brown marmorated stink bug in natural landscapes using human surveyors and detector canines.

    Directory of Open Access Journals (Sweden)

    Doo-Hyung Lee

    Full Text Available Halyomorpha halys is an invasive species from Asia causing major economic losses in agricultural production in the mid-Atlantic region of the United States. Unlike other crop pests, H. halys is also well-known for nuisance problems in urban, suburban, and rural areas, as massive numbers of adults often invade human-made structures to overwinter inside protected environments. Research efforts have focused on populations in human-made structures while overwintering ecology of H. halys in natural landscapes is virtually unknown. We explored forested landscapes in the mid-Atlantic region to locate and characterize natural overwintering structures used by H. halys. We also evaluated the use of detector canines to locate overwintering H. halys to enhance the accuracy and efficiency of surveys. From these studies, we indentified shared characteristics of overwintering sites used by H. halys in natural landscapes. Overwintering H. halys were recovered from dry crevices in dead, standing trees with thick bark, particularly oak (Quercus spp. and locust (Robinia spp.; these characteristics were shared by 11.8% of all dead trees in surveyed landscapes. For trees with favorable characteristics, we sampled ∼20% of the total above-ground tree area and recovered 5.9 adults per tree from the trees with H. halys present. Two detector canines were successfully trained to recognize and detect the odor of adult H. halys yielding >84% accuracy in laboratory and semi-field trials. Detector canines also found overwintering H. halys under field conditions. In particular, overwintering H. halys were recovered only from dead trees that yielded positive indications from the canines and shared key tree characteristics established by human surveyors. The identified characteristics of natural overwintering sites of H. halys will serve as baseline information to establish crop economic risk levels posed by overwintering populations, and accordingly develop sustainable

  3. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects.

    Science.gov (United States)

    Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique

    2005-06-01

    Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.

  4. The Evolution of the Surveyor Fan and Channel System, Gulf of Alaska based on Core-Log-Seismic Integration at IODP Site U1417

    Science.gov (United States)

    Morey, S.; Gulick, S. P. S.; Walton, M. A. L.; Swartz, J. M.; Worthington, L. L.; Reece, R.; Somchat, K.; Wagner, P. F.; Jaeger, J. M.; Mix, A. C.

    2015-12-01

    The transition to quasi-periodic ~100-kyr glacial cycles during the mid-Pleistocene transition (MPT, ~1.2 Ma) saw an acceleration of sediment delivery from the St. Elias orogen. Eroded sediment from the St. Elias Mountains is transferred to the deep sea via glacially carved shelf troughs and eventually to the Aleutian Trench via the Surveyor Channel and Fan system. By analyzing the submarine sediments in this Fan, we can evaluate the source-to-sink relationship between the erosion of an orogen and deep-sea deposition and inform our understanding of the impact of climate on local tectonics. Our work seeks to update depositional models of the unique sedimentary sequences, architecture, and origins of the glacially-fed Surveyor Fan using well-log-seismic correlation and new data from Integrated Ocean Drilling Program (IODP) Expedition 341. Exp. 341 results question proposed ages of major fan stratigraphic packages, necessitating this update. We created an integrated velocity model using discrete core-based p-wave velocities acquired at site U1417 from 100-152m, down-hole sonic log velocities from 152m-476m, and then projected the trend of the sonic log velocity from 476m to the base of the borehole. Previous work has interpreted the Sequence I/II boundary (~300 mbsf at U1417) to correspond with the start of the Surveyor Fan and the onset of tidewater glaciation in the late Miocene and the Sequence II/III boundary (~160 mbsf at U1417) to coincide with the intensification of glaciation and subsequent increase in sediment flux at the MPT. Our updated velocity model places these major sequence boundaries at the correct depths in borehole site U1417. We can use the revised velocity model to correlate lithologic, biostratigraphic, paleomagnetic, and logging data from the borehole/cores to seismic data, allowing for construction of a temporal model for the evolution of the Surveyor fan. We can then examine the relationship between glacial-interglacial cycle duration and

  5. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  6. Pitting within the Martian South Polar Residual Cap: Evidence for Pressurized Subsurface Carbon Dioxide

    Science.gov (United States)

    Pathare, A.; Ingersoll, A.; Titus, T.; Byrne, S.

    2005-12-01

    We present observations of small-scale pitting within the Swiss cheese terrain of the carbon dioxide South Polar Residual Cap (SPRC) and consider the implications of their rapid cascade-like evolution. We show that such pitting cascades: (1) only occur near the walls of thick Swiss cheese mesas; (2) rarely occur in polygonally-cracked mesas; and (3) occur far more often in Mars Global Surveyor (MGS) Years 2 and 3 than in MGS Year 1. We propose that pitting results from depressurization of a sealed layer, which requires subsurface heating that cannot be presently maintained by lateral heat conduction. Instead, we attribute the pressurization and heating implied by pitting to a solid state greenhouse initiated by the recent formation of slab CO2 ice during the southern spring and summer of MGS Year 1, which we show is consistent with Thermal Emission Spectrometer (TES) 25-micron band depth measurements of the SPRC over the last three Mars years.

  7. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible

  8. Titan Airship Surveyor

    Science.gov (United States)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the surface allows relatively simple means for flight control. Mission requirements and possible methods of navigation, control, data acquisition, and communications are discussed. The presentation describes also the state-of-the art and current progress in aerial deployed aerobots.

  9. GPS for land surveyors

    CERN Document Server

    Van Sickle, Jan

    2008-01-01

    The GPS SignalGlobal Positioning System (GPS) Signal StructureTwo ObservablesPseudorangingCarrier Phase RangingBiases and SolutionsThe Error BudgetDifferencingThe FrameworkTechnological ForerunnersVery Long Baseline InterferometryTransitNavstar GPSGPS Segment OrganizationGPS ConstellationThe Control SegmentReceivers and MethodsCommon Features of GPS ReceiversChoosing a GPS ReceiverSome GPS Surveying MethodsCoordinatesA Few Pertinent Ideas About Geodetic Datums for GPSState Plane CoordinatesHeightsGPS Surveying TechniquesStatic GPS SurveyingReal-Time Kinematic (RTK) and Differential GPS (DGPS)T

  10. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  11. The Mars Analysis Correction Data Assimilation (MACDA) Dataset V1.0

    Science.gov (United States)

    Montabone, L.; Marsh, K.; Lewis, S. R.; Read, P. L.; Smith, M. D.; Holmes, J.; Spiga, A.; Lowe, D.; Pamment, A.

    2014-06-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (a Martian year is about 1.88 terrestrial years). This has been produced by data assimilation of observations from NASA's Mars Global Surveyor (MGS) spacecraft during its science mapping phase (February 1999-August 2004). In particular, we have used retrieved thermal profiles and total dust optical depths from the Thermal Emission Spectrometer (TES) on board MGS. Data have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office. The MGCM used is the UK spectral version of the Laboratoire de Météorologie Dynamique (LMD, Paris, France) MGCM. MACDA is a joint project of the University of Oxford and The Open University in the UK.

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Bass Strait, Coral Sea and others from 2008011 to 2010-10-31 (NODC Accession 0115181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115181 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Bass Strait, Coral Sea, Great...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean and others from 2012-04-11 to 2012-07-25 (NODC Accession 0115295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115295 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean, South...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Coral Sea, Great Australian Bight and others from 2011-04-06 to 2011-11-26 (NODC Accession 0115708)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115708 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Coral Sea, Great Australian...

  15. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from the SURVEYOR and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 22 July 1976 to 02 October 1976 (NODC Accession 7800045)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from the SURVEYOR and other...

  16. Phytoplankton and other data from net and bottle casts in the North Pacific Ocean from NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1976-03-15 to 1976-04-26 (NODC Accession 7700779)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton and other data were collected from net and bottle casts in the North Pacific Ocean from NOAA Ship SURVEYOR from 15 March 1976 to 26 April 1976. Data...

  17. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-10-28 to 1975-11-17 (NODC Accession 7601830)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Gulf of Alaska from NOAA Ship SURVEYOR. Data were...

  18. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts in the Bering Sea from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 18 March 1977 to 04 April 1977 (NODC Accession 7800309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Bering Sea from the SURVEYOR. Data were collected by...

  19. Physical, meteorological, and other data from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 22 July 1977 to 05 August 1977 (NODC Accession 7700854)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR. Data were collected by the...

  20. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts in the Bering Sea from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 April 1977 to 01 May 1977 (NODC Accession 7800310)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts in the Bering Sea from the SURVEYOR. Data were collected by...

  1. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the SOUTHERN SURVEYOR in the North Pacific Ocean and South Pacific Ocean from 2009-02-03 to 2009-03-24 (NODC Accession 0108082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108082 includes chemical, discrete sample, physical and profile data collected from SOUTHERN SURVEYOR in the North Pacific Ocean and South Pacific...

  2. Marine mammal specimen and other data from the Gulf of Alaska from NOAA Ship SURVEYOR and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1978-04-06 to 1978-09-12 (NODC Accession 8000004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected in the Gulf of Alaska from NOAA Ship SURVEYOR and other platforms from 06 April 1978 to 12 September 1978. Data...

  3. Marine mammal specimen and other data from the Beaufort Sea and other locations from the SURVEYOR and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 25 January 1977 to 17 November 1977 (NODC Accession 7900339)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected in the Beaufort Sea from the SURVEYOR and other platforms from 25 January 1977 to 17 November 1977. Data were...

  4. Surface Brightness Correction for Compact Extended Sources Observed by the AKARI Far-Infrared Surveyor (FIS) in the Slow-Scan Mode

    CERN Document Server

    Ueta, Toshiya; Takita, Satoshi; Izumiura, Hideyuki; Shirahata, Mai; Fullard, Andrew; Yamamura, Issei; Matsuura, Shuji

    2016-01-01

    We present a general surface brightness correction method for compact extended sources imaged in the slow-scan pointed observation mode of the Far-Infrared Surveyor (FIS) aboard the AKARI Infrared Astronomical Satellite. Our method recovers correct surface brightness distribution maps by re-scaling archived raw FIS maps using the surface-brightness-dependent inverse FIS response function. The flux of a target source is then automatically corrected for as the simple sum of surface brightnesses within the adopted contour encircling the perimeter of the target (i.e., contour photometry). This correction method is contrasted to the previous aperture photometry method for point sources, which directly corrects for the target flux with a flux-dependent scaling law. The new surface brightness correction scheme is applicable to objects of any shape from unresolved point sources to resolved extended objects, as long as the target is not deemed diffuse, i.e., the total extent of the target source does not exceed too mu...

  5. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  6. Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations

    Science.gov (United States)

    Steckiewicz, M.; Garnier, P.; André, N.; Mitchell, D. L.; Andersson, L.; Penou, E.; Beth, A.; Fedorov, A.; Sauvaud, J.-A.; Mazelle, C.; Brain, D. A.; Espley, J. R.; McFadden, J.; Halekas, J. S.; Larson, D. E.; Lillis, R. J.; Luhmann, J. G.; Soobiah, Y.; Jakosky, B. M.

    2017-01-01

    Nightside suprathermal electron depletions have been observed at Mars by three spacecraft to date: Mars Global Surveyor, Mars Express, and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. This spatial and temporal diversity of measurements allows us to propose here a comprehensive view of the Martian electron depletions through the first multispacecraft study of the phenomenon. We have analyzed data recorded by the three spacecraft from 1999 to 2015 in order to better understand the distribution of the electron depletions and their creation mechanisms. Three simple criteria adapted to each mission have been implemented to identify more than 134,500 electron depletions observed between 125 and 900 km altitude. The geographical distribution maps of the electron depletions detected by the three spacecraft confirm the strong link existing between electron depletions and crustal magnetic field at altitudes greater than 170 km. At these altitudes, the distribution of electron depletions is strongly different in the two hemispheres, with a far greater chance to observe an electron depletion in the Southern Hemisphere, where the strongest crustal magnetic sources are located. However, the unique MAVEN observations reveal that below a transition region near 160-170 km altitude the distribution of electron depletions is the same in both hemispheres, with no particular dependence on crustal magnetic fields. This result supports the suggestion made by previous studies that these low-altitudes events are produced through electron absorption by atmospheric CO2.

  7. Geographic Information Systems and Martian Data: Compatibility and Analysis

    Science.gov (United States)

    Jones, Jennifer L.

    2005-01-01

    Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.

  8. Mars Surveyor Program '01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil

    Science.gov (United States)

    Kounaves, Samuel P.; Lukow, Stefan R.; Comeau, Brian P.; Hecht, Michael H.; Grannan-Feldman, Sabrina M.; Manatt, Ken; West, Steven J.; Wen, Xiaowen; Frant, Martin; Gillette, Tim

    2003-01-01

    The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.

  9. Surface brightness correction for compact extended sources observed by the AKARI Far-Infrared Surveyor in the slow-scan mode

    Science.gov (United States)

    Ueta, Toshiya; Tomasino, Rachael L.; Takita, Satoshi; Izumiura, Hideyuki; Shirahata, Mai; Fullard, Andrew; Yamamura, Issei; Matsuura, Shuji

    2017-02-01

    We present a general surface brightness correction method for compact extended sources imaged in the slow-scan pointed observation mode of the Far-Infrared Surveyor (FIS) aboard the AKARI infrared astronomical satellite. Our method recovers correct surface brightness distribution maps by rescaling archived raw FIS maps using the surface-brightness-dependent inverse FIS response function. The flux of a target source is then automatically corrected for as the simple sum of surface brightnesses within the adopted contour encircling the perimeter of the target (i.e., contour photometry). This correction method is contrasted with the previous aperture photometry method for point sources, which directly corrects for the target flux with a flux-dependent scaling law. The new surface brightness correction scheme is applicable to objects of any shape from unresolved point sources to resolved extended objects, as long as the target is not deemed diffuse, i.e., the total extent of the target source does not exceed too much more than a single FIS scan width of 10'. The new correction method takes advantage of the well-defined shape (i.e., the scale invariance) of the point spread function, which enables us to adopt a power-law FIS response function. We analyze the point source photometric calibrator data using the FIS AKARI Slow-scan Tool and constrain the parameters of the adopted power-law FIS response function. We conclude that the photometric accuracy of the new correction method is better than 10% error based on comparisons with the expected fluxes of the photometric calibrators, and that resulting fluxes without the present correction method can lead to up to 230% overestimates or down to 50% underestimates.

  10. Identification of M.bovis from M.tuberculosis by DHPLC and SURVEYOR Nuclease%异源双链分析法用于结核和牛分枝杆菌的鉴别

    Institute of Scientific and Technical Information of China (English)

    张霞; 赵德华; 秦殊; 石瑞如; 张国龙

    2013-01-01

    Objective It is very difficult to differentiate M.bovis from M.tuberculosis from the aspect of molecular microbiology because of more than 99% similarity of their genome sequence.This work is to differentiate these two mycobacteria by DHPLC and SURVEYOR Nuclease methods according to pncA gene C169G mutation and oxyR gene G285A difference of M.bovis,for exploring the application of these two new methods of gene mutation detection based on heteroduplex analysis.Methods PncA gene and oxyR gene of M.tb and M.boris were analyzed by DHPLC and SURVEYOR Nuclease methods.Results It was very easy to judge whether a sample was M.tb or M.bovis from DHPLC profile or SURVEYOR electrophoresis bands.Conclusion DHPLC and SURVEYOR Nuclease methods are sensible,simple,rapid and may become new methods to help to differentiate M.boris from M.tb.%目的 牛分枝杆菌存在pncA基因C169G和oxyR基因G285A突变,而结核分枝杆菌则无此突变,本研究利用DHPLC和SURVEYOR酶法测定这两个位点是否有突变,探讨异源双链分析法在结核分枝杆菌、牛分枝杆菌鉴别中的临床应用价值.方法 SURVEYOR酶法和DHPLC法分析结核分枝杆菌与牛分枝杆菌的pncA及oxyR基因.结果 DHPLC图谱和SURVEYOR酶法电泳图谱在牛分枝杆菌和结核分枝杆菌显著不同,很容易将二者区分开来.结论 DHPLC法和SURVEYOR酶法灵敏,简便,快速,在结核与牛分枝杆菌的鉴别中优于传统的培养鉴别方法.

  11. Interference of Co-amplified nuclear mitochondrial DNA sequences on the determination of human mtDNA heteroplasmy by Using the SURVEYOR nuclease and the WAVE HS system.

    Science.gov (United States)

    Yen, Hsiu-Chuan; Li, Shiue-Li; Hsu, Wei-Chien; Tang, Petrus

    2014-01-01

    High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detecting human mtDNA variants and found that its performance was slightly better than that of denaturing high-performance liquid chromatography (DHPLC). The potential interference from co-amplified NUMTs on screening mtDNA heteroplasmy when using these 2 highly sensitive techniques was further examined by using 2 published primer sets containing a total of 65 primer pairs, which were originally designed to be used with one of the 2 techniques. We confirmed that 24 primer pairs could amplify NUMTs by conducting bioinformatic analysis and PCR with the DNA from 143B-ρ0 cells. Using mtDNA extracted from the mitochondria of human 143B cells and a cybrid line with the nuclear background of 143B-ρ0 cells, we demonstrated that NUMTs could affect the patterns of chromatograms for cell DNA during SN-WAVE/HS analysis of mtDNA, leading to incorrect judgment of mtDNA homoplasmy or heteroplasmy status. However, we observed such interference only in 2 of 24 primer pairs selected, and did not observe such effects during DHPLC analysis. These results indicate that NUMTs can affect the screening of low-level mtDNA variants, but it might not be predicted by bioinformatic analysis or the amplification of DNA from 143B-ρ0 cells. Therefore, using purified mtDNA from cultured cells with proven purity to evaluate the effects of NUMTs from a primer pair on mtDNA detection by using PCR-based high-sensitivity methods prior to the use of a primer pair in real studies would be a more practical strategy.

  12. Interference of Co-amplified nuclear mitochondrial DNA sequences on the determination of human mtDNA heteroplasmy by Using the SURVEYOR nuclease and the WAVE HS system.

    Directory of Open Access Journals (Sweden)

    Hsiu-Chuan Yen

    Full Text Available High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA, but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs co-amplified during polymerase chain reaction (PCR. In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS for detecting human mtDNA variants and found that its performance was slightly better than that of denaturing high-performance liquid chromatography (DHPLC. The potential interference from co-amplified NUMTs on screening mtDNA heteroplasmy when using these 2 highly sensitive techniques was further examined by using 2 published primer sets containing a total of 65 primer pairs, which were originally designed to be used with one of the 2 techniques. We confirmed that 24 primer pairs could amplify NUMTs by conducting bioinformatic analysis and PCR with the DNA from 143B-ρ0 cells. Using mtDNA extracted from the mitochondria of human 143B cells and a cybrid line with the nuclear background of 143B-ρ0 cells, we demonstrated that NUMTs could affect the patterns of chromatograms for cell DNA during SN-WAVE/HS analysis of mtDNA, leading to incorrect judgment of mtDNA homoplasmy or heteroplasmy status. However, we observed such interference only in 2 of 24 primer pairs selected, and did not observe such effects during DHPLC analysis. These results indicate that NUMTs can affect the screening of low-level mtDNA variants, but it might not be predicted by bioinformatic analysis or the amplification of DNA from 143B-ρ0 cells. Therefore, using purified mtDNA from cultured cells with proven purity to evaluate the effects of NUMTs from a primer pair on mtDNA detection by using PCR-based high-sensitivity methods prior to the use of a primer pair in real studies would be a more practical

  13. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor;

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  14. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-01-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.

  15. Matrix Thermalization

    CERN Document Server

    Craps, Ben; Nguyen, Kévin

    2016-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  16. Thermal Hardware for the Thermal Analyst

    Science.gov (United States)

    Steinfeld, David

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.

  17. Thermal Clothing

    Science.gov (United States)

    1997-01-01

    Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.

  18. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  19. Thermal Relativity

    Institute of Scientific and Technical Information of China (English)

    赵柳

    2011-01-01

    The group G of general coordinate transformations on the thermodynamic configuration space ε spanned by all the extensive variables keeps the first law of thermodynamics invariant. One can introduce a metric with Lorentzian signature on the space ε, with the corresponding line element also being invariant under the action of G. This line element is identi6ed as the square of the proper entropy. Thus the second law of thermodynamics is also formulated invariantly and this lays down the foundation for the principle of thermal relativity.

  20. Thermal conductivity of thermal-battery insulations

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  1. CEQATR Thermal Test Overview

    Science.gov (United States)

    Balusek, Alan R.

    2009-01-01

    A thermal test overview of the Constellation Environmental Qualification and Acceptance Test Requirement (CEQATR) is presented. The contents include: 1) CEQATR Thermal Test Overview; 2) CxP Environments; 3) CEQATR Table 1.2-1; 4) Levels of Assembly; 5) Definitions for Levels of Assembly; 6) Hardware Applicability; 7) CEQATR Thermal-Related Definitions; 8) Requirements for unit-level thermal testing; 9) Requirements for major assembly level thermal testing; 10) General thermal testing requirements; 11) General thermal cycle, thermal vacuum profiles; 12) Test tolerances; 13) Vacuum vs Ambient; 14) Thermal Gradient; 15) Sequence of Testing; 16) Alternative Strategies; 17) Protoflight; 18) Halt/Hass; 19) Humidity; and 20) Tailoring.

  2. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  3. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  4. Introduction to thermal transport

    Directory of Open Access Journals (Sweden)

    Simon R. Phillpot

    2005-06-01

    Full Text Available The relentless increase in the thermal loads imposed on devices and materials structures is driving renewed interest among materials scientists and engineers in the area of thermal transport. Applications include thermal barrier coatings on turbine blades, thermoelectric coolers, high-performance thermal transfer liquids, and heat dissipation in microelectronics. These, and other applications, demand not only ever more efficient thermal management, but also a better fundamental understanding of the underlying physical mechanisms.

  5. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research.

  6. RV Ocean Surveyor cruise O1-02-GM: bathymetry and acoustic backscatter of selected areas of the outer continental shelf, northwestern Gulf of Mexico; June 8, through June 28, 2002; Iberia, LA to Iberia, LA

    Science.gov (United States)

    Beaudoin, Jonathan D.; Gardner, James V.; Clarke, John E. Hughes

    2002-01-01

    Following the publication of high-resolution multibeam echosounder (MBES) images and data of the Flower Gardens area of the northwest Gulf of Mexico outer continental shelf (Gardner et al., 1998), the Flower Gardens Banks National Marine Sanctuary (FGBNMS) and the Minerals Management Service (MMS) have been interested in additional MBES data in the area. A coalition of FGBNMS, MMS, and the US Geological Survey (USGS) was formed to map additional areas of interest in the northwestern Gulf of Mexico in 2002. The areas were chosen by personnel of the FGBNMS and the choice of MBES was made by the USGS. MMS and FGBNMS funded the mapping and the USGS organized the ship and multibeam systems through a Cooperative Agreement between the USGS and the University of New Brunswick. The University of New Brunswick (UNB) contracted the RV Ocean Surveyor and the EM1000 MBES system from C&C Technologies, Inc., Lafayette, LA. C&C personnel oversaw data collection whereas UNB personnel conducted the cruise and processed all the data. USGS personnel were responsible for the overall cruise including the final data processing and digital map products.

  7. Thermal diffusivity effect in opto-thermal skin measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, P; Imhof, R E [Faculty of ESBE, London South Bank University, 103 Borough Road, London SE1 0AA (United Kingdom); Cui, Y [Sunrise Systems Limited, Flint Bridge Business Centre, Ely Road, Waterbeach, Cambridge CB5 9QZ (United Kingdom); Ciortea, L I; Berg, E P, E-mail: xiaop@lsbu.ac.u [Biox Systems Ltd, 103 Borough Road, London SE1 0AA (United Kingdom)

    2010-03-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  8. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  9. Solar Thermal Rocket Propulsion

    Science.gov (United States)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  10. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to: Evaluate and characterize the effect of flame and thermal...

  11. Thermally favourable gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Dalianis, Ioannis, E-mail: Ioannis.Dalianis@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland); Lalak, Zygmunt, E-mail: Zygmunt.Lalak@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland)

    2011-03-14

    We discuss the thermal evolution of the spurion and messenger fields of ordinary gauge mediation models taking into account the Standard Model degrees of freedom. It is shown that for thermalized messengers the metastable susy breaking vacuum becomes thermally selected provided that the susy breaking sector is sufficiently weakly coupled to messengers or to any other observable field.

  12. Thermal Performance Benchmarking (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  13. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  14. Nanoscale Thermal Transport

    Science.gov (United States)

    2003-01-15

    171.64.49.29. Redistribution subject toneed high thermal conductivity. In others, such as thermal barriers or thermoelectric materials used for solid-state re... thermal barriers . Significant decreases in conductivity have been observed recently in nanocrystalline ZrO2 :Y2O3 ~Ref. 118! and attributed to the

  15. Necessity of Eigenstate Thermalization

    Science.gov (United States)

    De Palma, Giacomo; Serafini, Alessio; Giovannetti, Vittorio; Cramer, Marcus

    2015-11-01

    Under the eigenstate thermalization hypothesis (ETH), quantum-quenched systems equilibrate towards canonical, thermal ensembles. While at first glance the ETH might seem a very strong hypothesis, we show that it is indeed not only sufficient but also necessary for thermalization. More specifically, we consider systems coupled to baths with well-defined macroscopic temperature and show that whenever all product states thermalize then the ETH must hold. Our result definitively settles the question of determining whether a quantum system has a thermal behavior, reducing it to checking whether its Hamiltonian satisfies the ETH.

  16. Beyond Chandra (towards the X-ray Surveyor mission): possible solutions for the implementation of very high angular resolution X-ray telescopes in the new millennium based on fused silica segments

    Science.gov (United States)

    Pareschi, G.; Basso, S.; Civitani, M. M.; Ghigo, M.; Parodi, G.; Pelliciari, C.; Salmaso, B.; Spiga, D.; Vecchi, G.

    2016-07-01

    An important challenge for the X-ray astronomy of the new millennium is represented by the implementation of an Xray telescope able to maintain the exquisite angular resolution of Chandra (with a sub-arcsec HEW, on-axis) but, at the same time, being characterized by a much larger throughput and grasp. A mission with similar characteristics is represented by the X-ray Surveyor Mission. The project has been recently proposed in USA and is being currently studied by NASA. It will host an X-ray telescope with an effective area of more than 2 square meters at 1 keV (i.e. 30 times greater than Chandra) and a 15-arcminutes field-of-view, with 1-arcsecond or better half-power diameter (versus the 4 arcmin diameter of Chandra). While the scientific reasons for implementing a similar mission are clear, being related to compelling problems like e.g. the formation and subsequent growth of black hole seeds at very high redshift or the identification of the first galaxy groups and proto-clusters, the realization of a grazing-angle optics system able to fulfil these specs remain highly challenging. Different technologies are being envisaged, like e.g. the use of adjustable segmented mirrors (with use of piezoelectric or magneto-restrictive film actuators on the back surface) or the direct polishing of a variety of thin substrates or the use of innovative correction methods like e.g. differential deposition, ionfiguring or the correction of the profile via controlled stress films. In this paper we present a possible approach based on the direct polishing (with final ion figuring correction of the profile) of thin SiO2 segmented substrates (typically 2 mm thick), discussing different aspects of the technology under implementation and presenting some preliminary results.

  17. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun

  18. Quantum thermal transistor

    CERN Document Server

    Joulain, Karl; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-01-01

    We demonstrate that a thermal transistor can be made up with a quantum system of 3 interacting subsystems , coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved determining the heat fluxes by means of the strong-coupling formalism. For the case of 3 interacting spins, in which one of them is coupled to the other 2, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nano systems.

  19. Quantum Thermal Transistor.

    Science.gov (United States)

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  20. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging

    Directory of Open Access Journals (Sweden)

    Leland Weiss

    2012-04-01

    Full Text Available Increasing world-wide energy use and growing population growth presents a critical need for enhanced energy efficiency and sustainability. One method to address this issue is via waste heat scavenging. In this approach, thermal energy that is normally expelled to the environment is transferred to a secondary device to produce useful power output. This paper investigates a novel MEMS-based boiler designed to operate as part of a small-scale energy scavenging system. For the first time, fabrication and operation of the boiler is presented. Boiler operation is based on capillary action that drives working fluid from surrounding reservoirs across a heated surface. Pressure is generated as working fluid transitions from liquid to vapor in an integrated steamdome. In a full system application, the steam can be made available to other MEMS-based devices to drive final power output. Capillary channels are formed from silicon substrates with 100 µm widths. Varying depths are studied that range from 57 to 170 µm. Operation of the boiler shows increasing flow-rates with increasing capillary channel depths. Maximum fluid mass transfer rates are 12.26 mg/s from 170 µm channels, an increase of 28% over 57 µm channel devices. Maximum pressures achieved during operation are 229 Pa.

  1. Seasonal thermal energy storage

    Science.gov (United States)

    Allen, R. D.; Kannberg, L. D.; Raymond, J. R.

    1984-05-01

    Seasonal thermal energy storage (STES) using heat or cold available from surplus, waste, climatic, or cogeneration sources show great promise to reduce peak demand, reduce electric utility load problems, and contribute to establishing favorable economics for district heating and cooling systems. Heated and chilled water can be injected, stored, and recovered from aquifers. Geologic materials are good thermal insulators, and potentially suitable aquifers are distributed throughout the United States. Potential energy sources for use in an aquifer thermal energy storage system include solar heat, power plant cogeneration, winter chill, and industrial waste heat source. Topics covered include: (1) the U.S. Department of Energy seasonal thermal energy storage program; (2) aquifer thermal energy storage technology; (3) alternative STES technology; (4) foreign studies in seasonal thermal energy storage; and (5) economic assessment.

  2. TFAWS: Ares Thermal Overview

    Science.gov (United States)

    Sharp, John R.

    2007-01-01

    As part of a Constellation session at the 2007 Thermal & Fluids Analysis Workshop (TFAWS), an overview of the Crew Launch Vehicle (CLV), Crew Exploration Vehicle (CEV) and Lunar Lander systems will be given. This presentation provides a general description of the CLV (also known as Ares-I)and Ares-V vehicles portion of the session. The presentation will provide an overview of the thermal requirements, design environments, challenges and thermal modeling examples.

  3. Solid state thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  4. Urban thermal diversity

    Institute of Scientific and Technical Information of China (English)

    KoenSTEEMERS; MarylisRAMOS; MariaSINOU

    2003-01-01

    This paper introduces the interrelationships between urban form, microclimate and thermal comfort. It draws on recent research of monitoring, surveying and modelling urban thermal characteristics and proposes a method of mapping urban diversity. Because the urban context provides a rich and varied environment that influences the way we use urban spaces (movement, sequence, activity) and how we feel in them (stimulation, thermal comfort), the aim here is to highlight the notion of diversity. Thus thermal diversity is used as a measure of the urban environment, rather than more conventional spatially or temporally fixed average values.

  5. Theory of thermal stresses

    CERN Document Server

    Boley, Bruno A

    1997-01-01

    Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.

  6. Solar Thermal Propulsion

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  7. Thermal Performance Benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui; Moreno, Gilbert; Bennion, Kevin

    2016-06-07

    The goal for this project is to thoroughly characterize the thermal performance of state-of-the-art (SOA) in-production automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The thermal performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY16, the 2012 Nissan LEAF power electronics and 2014 Honda Accord Hybrid power electronics thermal management system were characterized. Comparison of the two power electronics thermal management systems was also conducted to provide insight into the various cooling strategies to understand the current SOA in thermal management for automotive power electronics and electric motors.

  8. Utopia Cracks and Polygons

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  9. Thermal Properties, Thermal Shock, and Thermal Cycling Behavior of Lanthanum Zirconate-Based Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Lu, Zhe; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing

    2016-06-01

    Lanthanum zirconate (La2Zr2O7) coatings are newly proposed thermal barrier coating (TBC) systems which exhibit lower thermal conductivity and potentially higher thermal stability compared to other traditional thermal barrier systems. In this work, La2Zr2O7 and 8 wt pct yttria stabilized zirconia (8YSZ) single-layer and double-layer TBC systems were deposited using the air plasma spray technique. Thermal properties of the coatings were measured. Furnace heat treatment and jet engine thermal shock tests were implemented to evaluate coating performance during thermal cycling. The measured average thermal conductivity of porous La2Zr2O7 coating ranged from 0.59 to 0.68 W/m/K in the temperature range of 297 K to 1172 K (24 °C to 899 °C), which was approximately 25 pct lower than that of porous 8YSZ (0.84 to 0.87 W/m/K) in the same temperature range. The coefficients of thermal expansion values of La2Zr2O7 were approximately 9 to 10 × 10-6/K from 400 K to 1600 K (127 °C to 1327 °C), which were about 10 pct lower than those of porous 8YSZ. The double-layer coating system consisting of the porous 8YSZ and La2Zr2O7 layers had better thermal shock resistance and thermal cycling performance than those of single-layer La2Zr2O7 coating and double-layer coating with dense 8YSZ and La2Zr2O7 coatings. This study suggests that porous 8YSZ coating can be employed as a buffer layer in La2Zr2O7-based TBC systems to improve the overall coating durability during service.

  10. Effective utilisation of generation Y Quantity Surveyors

    African Journals Online (AJOL)

    its productivity, and ultimately its profitability. The findings of this ... cognisance of generational theory, because relationships at work ..... structure less relevant in the workplace nowadays (Harrington, ..... Human capital in QS companies: Job.

  11. Workplace stress experienced by quantity surveyors

    African Journals Online (AJOL)

    issues concerning workplace stress and implement appropriate policies and measures to .... focuses, in particular, on differences in gender, age and ethnicity. Job demand ... workplace support as a resource that, together with control, can mitigate ... project managers in their sample may be higher than the threshold value at ...

  12. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias; McMahon, Jeff; Miller, Nathan; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2017-01-01

    The Cosmology Large Angular Scale Surveryor (CLASS) is a ground based telescope array designed to measure the large-angular scale polarization signal of the Cosmic Microwave Background (CMB). The large-angular scale CMB polarization measurement is essential for a precise determination of the optical depth to reionization (from the E-mode polarization) and a characterization of inflation from the predicted polarization pattern imprinted on the CMB by gravitational waves in the early universe (from the B-mode polarization). CLASS will characterize the primordial tensor-to-scalar ratio, r, to 0.01 (95% CL).CLASS is uniquely designed to be sensitive to the primordial B-mode signal across the entire range of angular scales where it could possibly dominate over the lensing signal that converts E-modes to B-modes while also making multi-frequency observations both high and low of the frequency where the CMB-to-foreground signal ratio is at its maximum. The design enables CLASS to make a definitive cosmic-variance-limited measurement of the optical depth to scattering from reionization.CLASS is an array of 4 telescopes operating at approximately 40, 90, 150, and 220 GHz. CLASS is located high in the Andes mountains in the Atacama Desert of northern Chile. The location of the CLASS site at high altitude near the equator minimizes atmospheric emission while allowing for daily mapping of ~70% of the sky.A rapid front end Variable-delay Polarization Modulator (VPM) and low noise Transition Edge Sensor (TES) detectors allow for a high sensitivity and low systematic error mapping of the CMB polarization at large angular scales. The VPM, detectors and their coupling structures were all uniquely designed and built for CLASS.We present here an overview of the CLASS scientific strategy, instrument design, and current progress. Particular attention is given to the development and status of the Q-band receiver currently surveying the sky from the Atacama Desert and the development of 90 GHz focal planes and associated detector technologies.

  13. Paradoxes of Thermal Radiation

    Science.gov (United States)

    Besson, U.

    2009-01-01

    This paper presents an analysis of the thermal behaviour of objects exposed to a solar-type flux of thermal radiation. It aims to clarify certain apparent inconsistencies between theory and observation, and to give a detailed exposition of some critical points that physics textbooks usually treat in an insufficient or incorrect way. In particular,…

  14. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, M.

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow se

  15. Power Electronics Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-07

    Thermal modeling was conducted to evaluate and develop thermal management strategies for high-temperature wide-bandgap (WBG)-based power electronics systems. WBG device temperatures of 175 degrees C to 250 degrees C were modeled under various under-hood temperature environments. Modeling result were used to identify the most effective capacitor cooling strategies under high device temperature conditions.

  16. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  17. Conceptual thermal design

    NARCIS (Netherlands)

    Strijk, R.

    2008-01-01

    Present thermal design tools and methods insufficiently support the development of structural concepts engaged by typical practicing designers. Research described in this thesis identifies the main thermal design problems in practice. In addition, models and methods are developed that support an

  18. Thermal energy storage

    Science.gov (United States)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  19. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  20. Paradoxes of Thermal Radiation

    Science.gov (United States)

    Besson, U.

    2009-01-01

    This paper presents an analysis of the thermal behaviour of objects exposed to a solar-type flux of thermal radiation. It aims to clarify certain apparent inconsistencies between theory and observation, and to give a detailed exposition of some critical points that physics textbooks usually treat in an insufficient or incorrect way. In particular,…

  1. Conceptual thermal design

    NARCIS (Netherlands)

    Strijk, R.

    2008-01-01

    Present thermal design tools and methods insufficiently support the development of structural concepts engaged by typical practicing designers. Research described in this thesis identifies the main thermal design problems in practice. In addition, models and methods are developed that support an eff

  2. Thermal backflow in CFTs

    CERN Document Server

    Banks, Elliot; Gauntlett, Jerome P; Griffin, Tom; Melgar, Luis

    2016-01-01

    We study the thermal transport properties of general CFTs on curved spacetimes in the leading order viscous hydrodynamic limit. At the level of linear response, we show that the thermal transport is governed by a system of forced linearised Navier-Stokes equations on a curved space. Our setup includes CFTs in flat spacetime that have been deformed by spatially dependent temperature gradients or strains that have been applied to the CFT, and hence is relevant to CFTs arising in condensed matter systems at zero charge density. We provide specific examples of deformations which lead to thermal backflow driven by a DC source: that is, the thermal currents locally flow in the opposite direction to the applied DC thermal source.

  3. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  4. Low thermal conductivity oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Phillpot, Simon R.; Wan, Chunlei; Chernatynskiy, Aleksandr; Qu, Zhixue

    2012-10-09

    Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

  5. Lecture on Thermal Radiation

    Science.gov (United States)

    Dennis, Brian R.

    2006-01-01

    This lecture will cover solar thermal radiation, particularly as it relates to the high energy solar processes that are the subject of this summer school. After a general review of thermal radiation from the Sun and a discussion of basic definitions, the various emission and absorption mechanisms will be described including black-body emission, bremsstrahlung, free-bound, and atomic line emissions of all kinds. The bulk of the time will be spent discussing the observational characteristics of thermal flare plasma and what can be learned about the flare energy release process from observations of the thermal radiation at all wavelengths. Information that has been learned about the morphology, temperature distribution, and composition of the flare plasma will be presented. The energetics of the thermal flare plasma will be discussed in relation to the nonthermal energy of the particles accelerated during the flare. This includes the total energy, the radiated and conductive cooling processes, and the total irradiated energy.

  6. Tunable thermal link

    Science.gov (United States)

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  7. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Local Thermal Insulating Materials For Thermal Energy Storage. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... In this paper the thermal properties of selected potential local materials ...

  9. Thermal imaging in medicine

    Directory of Open Access Journals (Sweden)

    Jaka Ogorevc

    2015-12-01

    Full Text Available AbstractIntroduction: Body temperature monitoring is one of the oldest and still one of the most basic diagnostic methods in medicine. In recent years thermal imaging has been increasingly used in measurements of body temperature for diagnostic purposes. Thermal imaging is non-invasive, non-contact method for measuring surface body temperature. Method is quick, painless and patient is not exposed to ionizing radiation or any other body burden.Application of thermal imaging in medicine: Pathological conditions can be indicated as hyper- or hypothermic patterns in many cases. Thermal imaging is presented as a diagnostic method, which can detect such thermal anomalies. This article provides an overview of the thermal imaging applications in various fields of medicine. Thermal imaging has proven to be a suitable method for human febrile temperature screening, for the detection of sites of fractures and infections, a reliable diagnostic tool in the detection of breast cancer and determining the type of skin cancer tumour. It is useful in monitoring the course of a therapy after spinal cord injury, in the detection of food allergies and detecting complications at hemodialysis and is also very effective at the course of treatment of breast reconstruction after mastectomy. With thermal imaging is possible to determine the degrees of burns and early detection of osteomyelitis in diabetic foot phenomenon. The most common and the oldest application of thermal imaging in medicine is the field of rheumatology.Recommendations for use and standards: Essential performance of a thermal imaging camera, measurement method, preparation of a patient and environmental conditions are very important for proper interpretation of measurement results in medical applications of thermal imaging. Standard for screening thermographs was formed for the human febrile temperature screening application.Conclusion: Based on presented examples it is shown that thermal imaging can

  10. Thermal Giant Gravitons

    CERN Document Server

    Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand

    2012-01-01

    We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...

  11. Thermal properties of nanofluids.

    Science.gov (United States)

    Philip, John; Shima, P D

    2012-11-15

    Colloidal suspensions of fine nanomaterials in the size range of 1-100 nm in carrier fluids are known as nanofluids. For the last one decade, nanofluids have been a topic of intense research due to their enhanced thermal properties and possible heat transfer applications. Miniaturization and increased operating speeds of gadgets warranted the need for new and innovative cooling concepts for better performance. The low thermal conductivity of conventional heat transfer fluid has been a serious impediment for improving the performance and compactness of engineering equipments. Initial studies on thermal conductivity of suspensions with micrometer-sized particles encountered problems of rapid settling of particles, clogging of flow channels and increased pressure drop in the fluid. These problems are resolved by using dispersions of fine nanometer-sized particles. Despite numerous experimental and theoretical studies, it is still unclear whether the thermal conductivity enhancement in nanofluids is anomalous or within the predictions of effective medium theory. Further, many reports on thermal conductivity of nanofluids are conflicting due to the complex issues associated with the surface chemistry of nanofluids. This review provides an overview of recent advances in the field of nanofluids, especially the important material properties that affect the thermal properties of nanofluids and novel approaches to achieve extremely high thermal conductivities. The background information is also provided for beginners to better understand the subject.

  12. Thermalized axion inflation

    Science.gov (United States)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  13. Hyperbolic thermal antenna

    CERN Document Server

    Barbillon, Grégory; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2016-01-01

    A thermal antenna is an electromagnetic source which emits in its surrounding, a spatially coherent field in the infrared frequency range. Usually, its emission pattern changes with the wavelength so that the heat flux it radiates is weakly directive. Here, we show that a class of hyperbolic materials, possesses a Brewster angle which is weakly dependent on the wavelength, so that they can radiate like a true thermal antenna with a highly directional heat flux. The realization of these sources could open a new avenue in the field of thermal management in far-field regime.

  14. Negative thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G D [Departamento de QuImica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9000 Comodoro Rivadavia (Argentina); Bruno, J A O [Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de QuImica Inorganica, AnalItica y QuImica FIsica, Pabellon 2, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Barron, T H K [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Allan, N L [School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)

    2005-02-02

    There has been substantial renewed interest in negative thermal expansion following the discovery that cubic ZrW{sub 2}O{sub 8} contracts over a temperature range in excess of 1000 K. Substances of many different kinds show negative thermal expansion, especially at low temperatures. In this article we review the underlying thermodynamics, emphasizing the roles of thermal stress and elasticity. We also discuss vibrational and non-vibrational mechanisms operating on the atomic scale that are responsible for negative expansion, both isotropic and anisotropic, in a wide range of materials. (topical review)

  15. Thermal energy transformer

    Science.gov (United States)

    Berdahl, C. M.; Thiele, C. L. (Inventor)

    1979-01-01

    For use in combination with a heat engine, a thermal energy transformer is presented. It is comprised of a flux receiver having a first wall defining therein a radiation absorption cavity for converting solar flux to thermal energy, and a second wall defining an energy transfer wall for the heat engine. There is a heat pipe chamber interposed between the first and second walls having a working fluid disposed within the chamber and a wick lining the chamber for conducting the working fluid from the second wall to the first wall. Thermal energy is transferred from the radiation absorption cavity to the heat engine.

  16. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  17. Thermal Expansion "Paradox."

    Science.gov (United States)

    Fakhruddin, Hasan

    1993-01-01

    Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)

  18. Thermal cloak-concentrator

    Science.gov (United States)

    Shen, Xiangying; Li, Ying; Jiang, Chaoran; Ni, Yushan; Huang, Jiping

    2016-07-01

    For macroscopically manipulating heat flow at will, thermal metamaterials have opened a practical way, which possesses a single function, such as either cloaking or concentrating the flow of heat even though environmental temperature varies. By developing a theory of transformation heat transfer for multiple functions, here we introduce the concept of intelligent thermal metamaterials with a dual function, which is in contrast to the existing thermal metamaterials with single functions. By assembling homogeneous isotropic materials and shape-memory alloys, we experimentally fabricate a kind of intelligent thermal metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or cloak) when the environmental temperature changes. This work paves an efficient way for a controllable gradient of heat, and also provides guidance both for arbitrarily manipulating the flow of heat and for efficiently designing similar intelligent metamaterials in other fields.

  19. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  20. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  1. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  2. Thermal hyperbolic metamaterials.

    Science.gov (United States)

    Guo, Yu; Jacob, Zubin

    2013-06-17

    We explore the near-field radiative thermal energy transfer properties of hyperbolic metamaterials. The presence of unique electromagnetic states in a broad bandwidth leads to super-planckian thermal energy transfer between metamaterials separated by a nano-gap. We consider practical phonon-polaritonic metamaterials for thermal engineering in the mid-infrared range and show that the effect exists in spite of the losses, absorption and finite unit cell size. For thermophotovoltaic energy conversion applications requiring energy transfer in the near-infrared range we introduce high temperature hyperbolic metamaterials based on plasmonic materials with a high melting point. Our work paves the way for practical high temperature radiative thermal energy transfer applications of hyperbolic metamaterials.

  3. Thermal Properties Measurement Report

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gofryk, Krzysztof [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knight, Collin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Mitch [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  4. Compliant thermal microactuators

    DEFF Research Database (Denmark)

    Jonsmann, Jacques; Sigmund, Ole; Bouwstra, Siebe

    1999-01-01

    Two dimensional compliant metallic thermal microactuators are designed using topology optimisation, and microfabricated using rapid prototyping techniques. Structures are characterised using advanced image analysis, yielding a very high precision. Characterised structures behave in a way which can...

  5. Compliant thermal microactuators

    DEFF Research Database (Denmark)

    Jonsmann, Jacques; Sigmund, Ole; Bouwstra, Siebe

    1999-01-01

    Two dimensional compliant metallic thermal microactuators are designed using topology optimisation, and microfabricated using rapid prototyping techniques. Structures are characterised using advanced image analysis, yielding a very high precision. Characterised structures behave in a way which can...

  6. Compliant thermal microactuators

    DEFF Research Database (Denmark)

    Jonsmann, Jacques; Sigmund, Ole; Bouwstra, Siebe

    1999-01-01

    Two dimensional compliant metallic thermal microactuators are designed using topology optimisation, and microfabricated using rapid prototyping techniques. Structures are characterised using advanced image analysis, yielding a very high precision. Characterised structures behave in accordance...

  7. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert

    2016-01-01

    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  8. ThermalTracker Software

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-10

    The software processes recorded thermal video and detects the flight tracks of birds and bats that passed through the camera's field of view. The output is a set of images that show complete flight tracks for any detections, with the direction of travel indicated and the thermal image of the animal delineated. A report of the descriptive features of each detected track is also output in the form of a comma-separated value text file.

  9. Thermal axion production

    OpenAIRE

    Salvio, Alberto; Strumia, Alessandro; Xue, Wei

    2014-01-01

    We reconsider thermal production of axions in the early universe, including axion couplings to all Standard Model (SM>) particles. Concerning the axion coupling to gluons, we find that thermal effects enhance the axion production rate by a factor of few with respect to previous computations performed in the limit of small strong gauge coupling. Furthermore, we find that the top Yukawa coupling induces a much larger axion production rate, unless the axion couples to SM particles only via anom...

  10. Thermal flow micro sensors

    OpenAIRE

    Elwenspoek, M.

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow sensors and time of flight flow sensors. Anemometers may comprise several heaters and temperature sensors and from a geometric point of view are similar sometimes for calorimetric flow sensors. We fi...

  11. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    search procedure, the combination of materials and their bonding temperature is found in relation to the envelope effect on a thermal environment inside a defined space. This allows the designer to articulate dynamic composites with time-based thermal functionality, related to the material dynamics......, environmental dynamics and occupancy dynamics. Lastly, a physical prototype is created, which illustrates the physical expression of the bi-materials and the problems related to manufacturing of these composite structures....

  12. Thermal conveyance systems

    Energy Technology Data Exchange (ETDEWEB)

    Meador, J.T.

    1978-09-01

    The purpose of the evaluation is to characterize modern technology for long-distance, large-diameter, underground steam and high-temperature water (HTW) transport systems and for hot-water and chilled-water systems that distribute thermal energy within communities. Data on the status of existing systems have been compiled and compared with recommended design factors for fluid flow to aid in parameter selection for assessing performance in transporting and distributing thermal energy.

  13. LISA thermal design

    Energy Technology Data Exchange (ETDEWEB)

    Peabody, Hume [Swales Aerospace, Inc., 5050 Powder Mill Road, Beltsville, MD 20705 (United States); Merkowitz, Stephen [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2005-05-21

    The Laser Interferometer Space Antenna (LISA) mission, a space-based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. The total acceleration disturbance to each proof mass is required to be below 3 x 10{sup -15} m s{sup -2} Hz{sup -1/2} at 0.1 mHz. Optical path length variations on each optical bench must be kept below about 40 pm Hz{sup -1/2} over 1-100 mHz. Noise due to spacecraft thermal distortions, temperature difference variations across the proof mass housing and other thermal effects are expected to be significant contributors to these noise budgets. The LISA Integrated Modelling team developed a detailed thermal model that is currently being used to drive the design of LISA. Several new thermal analysis techniques are also being developed in order to achieve model accuracies to LISA levels. We present here an overview of the LISA thermal design and modelling efforts. The latest thermal results calculated using the current baseline design of LISA are also discussed.

  14. Nanoscale thermal probing

    Directory of Open Access Journals (Sweden)

    Yanan Yue

    2012-03-01

    Full Text Available Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem.

  15. Thermal Mud Molecular Overview

    Directory of Open Access Journals (Sweden)

    Ersin Odabasi

    2014-06-01

    Full Text Available Thermal mud (peloids, which are frequently used for thermal therapy purposes consist of organic and inorganic (minerals compounds in general. Organic structure is formed after a variety of chemical processes occurring in decades and comprise of a very complex structure. Stagnant water environment, herbal diversity, microorganism multiplicity and time are crucial players to form the structure. Data regarding description of organic compounds are very limited. Nowadays, it was clearly understood that a variety of compounds those are neglected in daily practice are found in thermal mud after GC-MS and similar methods are being frequently used. Those compounds which are biologically active are humic compounds, carboxylic acids, terpenoids, steroids and fatty acids. By comprising the thermal mud, these different compound groups which are related to divers areas from cosmetology to inflammation, make the thermal mud very meaningful in the treatment of human disease. In this review, it was tried to put forward the effects of several molecule groups those consisting of the thermal mud structure. [TAF Prev Med Bull 2014; 13(3.000: 257-264

  16. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  17. An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques

    Directory of Open Access Journals (Sweden)

    Eriita Jones

    2014-06-01

    Full Text Available Thermal inertia and albedo provide information on the distribution of surface materials on Mars. These parameters have been mapped globally on Mars by the Thermal Emission Spectrometer (TES onboard the Mars Global Surveyor. Two-dimensional clusters of thermal inertia and albedo reflect the thermophysical attributes of the dominant materials on the surface. In this paper three automated, non-deterministic, algorithmic classification methods are employed for defining thermophysical units: Expectation Maximisation of a Gaussian Mixture Model; Iterative Self-Organizing Data Analysis Technique (ISODATA; and Maximum Likelihood. We analyse the behaviour of the thermophysical classes resulting from the three classifiers, operating on the 2007 TES thermal inertia and albedo datasets. Producing a rigorous mapping of thermophysical classes at ~3 km/pixel resolution remains important for constraining the geologic processes that have shaped the Martian surface on a regional scale, and for choosing appropriate landing sites. The results from applying these algorithms are compared to geologic maps, surface data from lander missions, features derived from imaging, and previous classifications of thermophysical units which utilized manual (and potentially more time consuming classification methods. These comparisons comprise data suitable for validation of our classifications. Our work shows that a combination of the algorithms—ISODATA and Maximum Likelihood—optimises the sensitivity to the underlying dataspace, and that new information on Martian surface materials can be obtained by using these methods. We demonstrate that the algorithms used here can be applied to define a finer partitioning of albedo and thermal inertia for a more detailed mapping of surface materials, grain sizes and thermal behaviour of the Martian surface and shallow subsurface, at the ~3 km scale.

  18. Thermal management of space stations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thermal management aims at making full use of energy resources available in the space station to reduce energy consumption, waste heat rejection and the weight of the station. It is an extension of the thermal control. This discussion introduces the concept and development of thermal management, presents the aspects of thermal management and further extends its application to subsystems of the space station.

  19. Thermal conductivity of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Klemens, P.G.; Gell, M. [Connecticut Univ., Storrs, CT (United States). Inst. of Materials Science

    1998-05-01

    In thermal barrier coatings and other ceramic oxides, heat is conducted by lattice waves, and also by a radiative component which becomes significant at high temperatures. The theory of heat conduction by lattice waves is reviewed in the equipartition limit (above room temperature). The conductivity is composed of contributions from a spectrum of waves, determined by the frequency dependent attenuation length. Interaction between lattice waves (intrinsic processes), scattering by atomic scale point defects and scattering by extended imperfections such as grain boundaries, each limit the attenuation length in different parts of the spectrum. Intrinsic processes yield a spectral conductivity which is independent of frequency. Point defects reduce the contribution of the high frequency spectrum, grain boundaries and other extended defects that of the low frequencies. These reductions are usually independent of each other. Estimates will be given for zirconia containing 7wt% Y{sub 2}O{sub 3}, and for yttrium aluminum garnet. They will be compared to measurements. The effects of grain size, cracks and porosity will be discussed both for the lattice and the radiative components. While the lattice component of the thermal conductivity is reduced substantially by decreasing the grain size to nanometers, the radiative component requires pores or other inclusions of micrometer scale. (orig.) 9 refs.

  20. Thermal Magnifier and Minifier

    Science.gov (United States)

    Shen, Xiang-Ying; Chen, Yi-Xuan; Huang, Ji-Ping

    2016-03-01

    For thermal conduction cases, one can detect the size of an object explicitly by measuring the temperature distribution around it. If the temperature is the only signature we can obtain, we will give an incorrect judgment on the shape or size of the object by disturbing the distribution of it. According to this principle, in this article, we develop a transformation method and design a dual-functional thermal device, which can create a thermal illusion that the object inside it “seems” to appear bigger or smaller than its original size. This device can functionally switch among magnifier and minifier at will. The proposed device consists of two layers: the cloak and the complementary material. A thermal cloak can make the internal region thermally “invisible” while the complementary layer offsets this effect. The combination leads to the illusion of magnification and minification. As a result of finite element simulations, the performances of the illusions are confirmed. Support by the National Natural Science Foundation of China under Grant No. 11222544, by the Fok Ying Tung Education Foundation under Grant No. 131008, by the Program for New Century Excellent Talents in University (NCET-12-0121), and by the Chinese National Key Basic Research Special Fund under Grant No. 2011CB922004

  1. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  2. Thermal transport in graphene

    Science.gov (United States)

    Sadeghi, Mir Mohammad; Pettes, Michael Thompson; Shi, Li

    2012-08-01

    The recent advances in graphene isolation and synthesis methods have enabled potential applications of graphene in nanoelectronics and thermal management, and have offered a unique opportunity for investigation of phonon transport in two-dimensional materials. In this review, current understanding of phonon transport in graphene is discussed along with associated experimental and theoretical investigation techniques. Several theories and experiments have suggested that the absence of interlayer phonon scattering in suspended monolayer graphene can result in higher intrinsic basal plane thermal conductivity than that for graphite. However, accurate experimental thermal conductivity data of clean suspended graphene at different temperatures are still lacking. It is now known that contact of graphene with an amorphous solid or organic matrix can suppress phonon transport in graphene, although further efforts are needed to better quantify the relative roles of interface roughness scattering and phonon leakage across the interface and to examine the effects of other support materials. Moreover, opportunities remain to verify competing theories regarding mode specific scattering mechanisms and contributions to the total thermal conductivity of suspended and supported graphene, especially regarding the contribution from the flexural phonons. Several measurements have yielded consistent interface thermal conductance values between graphene and different dielectrics and metals. A challenge has remained in establishing a comprehensive theoretical model of coupled phonon and electron transport across the highly anisotropic and dissimilar interface.

  3. On the possible thermal tachyons

    OpenAIRE

    Kozlowski, Miroslaw; Marciak-Kozlowska, Janina

    2006-01-01

    In this paper the existence of the thermal tachyons i.e. quanta of temperature field, with is described in the theoretical frame of hyperbolic thermal equation. The modified Lorentz transformation are developed. It is argued that thermal tachyons can exist in accordance with modified Lorentz transformation after change . The thermal tachyons fulfill the hyperbolic heat transport equation and in principle can be created by attosecond laser pulses. Key words: Tachyons; Thermal processes; Attose...

  4. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    Science.gov (United States)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  5. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  6. Thermally stable deployable structure

    Science.gov (United States)

    Kegg, Colleen M.

    1988-01-01

    A deployable structure which meets stringent thermal and strength requirements in a space environment was developed. A mast with a very low coefficient of thermal expansion (CTE) was required to limit the movement from thermal distortion over the temperature range of -200 C to 80 C to .064 cm (.025 in). In addition, a high bending strength over the temperature range and weight less than 18.1 kg (40 lbs) was needed. To meet all of the requirements, a composite, near-zero CTE structure was developed. The measured average CTE over the temperature range for the mast was .70 x .000001/C (.38 x .000001/F). The design also has the advantage of being adjustable to attain other specific CTE if desired.

  7. Highly Thermal Conductive Nanocomposites

    Science.gov (United States)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  8. Thermal Responsive Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    The paper presents an architectural computational method and model, which, through additive and subtractive processes, create composite elements with bending behaviour based on thermal variations in the surrounding climatic environment. The present effort is focused on the manipulation of assembly...... composite layers and their relative layer lengths thereby embedding the merged material effect to create a responsive behavioural architectural envelope. Copper and polypropylene are used as base materials for the composite structure due to their high differences in thermal expansion, surface emissivity...... alterations, their respective durability and copper’s architectural (visual and transformative) aesthetic qualities. Through the use of an evolutionary solver, the composite structure of the elements are organised to find the bending behaviour specified by and for the thermal environments. The entire model...

  9. Concepts in Thermal Physics

    CERN Document Server

    Blundell, Stephen J

    2006-01-01

    This modern introduction to thermal physics contains a step-by-step presentation of the key concepts. The text is copiously illustrated and each chapter contains several worked examples. - ;An understanding of thermal physics is crucial to much of modern physics, chemistry and engineering. This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics, and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as. diverse as stellar astrophysics, information and communication theory, condensed matter physics, and climate change. Each chapter concludes with detailed exercises. -

  10. Thermal test options

    Energy Technology Data Exchange (ETDEWEB)

    Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

    1993-02-01

    Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

  11. Thermal Nanosystems and Nanomaterials

    CERN Document Server

    Volz, Sebastian

    2009-01-01

    Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.

  12. THERMALLY CLEAVABLE HYBRID MATERIALS

    Directory of Open Access Journals (Sweden)

    Constantin Gaina

    2011-12-01

    Full Text Available Thermally cleavable hybrid materials were prepared by the Diels-Alder cycloaddition reaction of poly(vinyl furfural to N phenylmaleimido-N’-(triethoxysilylpropylurea followed by the sol-gel condensation reaction of trietoxysilyl groups with water and acetic acid. Thermal and dynamic mechanical analysis, dielectric and FTIR spectroscopy were used to characterize the structure and properties of the composites. The size of the inorganic silica particles in the hybrid material varied dependent on the silica content. The DSC study of the prepared materials revealed that the cleavage process of the formed cycloadducts takes place at temperatures varying between 143-165°C and is an endothermic process.

  13. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  14. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  15. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  16. Occupant thermal comfort evaluation

    Science.gov (United States)

    Ghiardi, Gena L.

    1999-03-01

    Throughout the automotive industry there has been an increasing concern and focus on the thermal comfort of occupants. Manufacturers are continuously striving to improve heating and air conditioning performance to comply with expanding customer needs. To optimize these systems, the technology to acquire data must also be enhanced. In this evaluation, the standard use of isolated thermocouple location technology is compared to utilizing infrared thermal vision in an air conditioning performance assessment. Infrared data on an actual occupant is correlated to breath and air conditioning output temperatures measured by positioned thermocouples. The use of infrared thermal vision highlights various areas of comfort and discomfort experienced by the occupant. The evaluation involves utilizing an infrared thermal vision camera to film an occupant in the vehicle as the following test procedure is run. The vehicle is soaked in full sun load until the interior temperature reaches a minimum of 150 degrees F (65.6 degrees Celsius). The occupant enters the vehicle and takes an initial temperature reading. The air conditioning is turned on to full cold, full fan speed, and recirculation mode. While being filmed, the driver drives for sixty minutes at 30 miles per hour (48.3 kph). The thermocouples acquire data in one minute intervals while the infrared camera films the cooling process of the occupant.

  17. Solar thermal financing guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  18. Thermally assisted MRAM

    Energy Technology Data Exchange (ETDEWEB)

    Prejbeanu, I L [Spintec, URA 2512 CEA/CNRS, CEA-Grenoble, 17 r. des Martyrs, 38054 Grenoble Cedex 9 (France); Kerekes, M [Spintec, URA 2512 CEA/CNRS, CEA-Grenoble, 17 r. des Martyrs, 38054 Grenoble Cedex 9 (France); Sousa, R C [Spintec, URA 2512 CEA/CNRS, CEA-Grenoble, 17 r. des Martyrs, 38054 Grenoble Cedex 9 (France); Sibuet, H [LIMN, DRT/Leti/DIHS, CEA-Grenoble, 17 r. des Martyrs, 38054 Grenoble Cedex 9 (France); Redon, O [LIMN, DRT/Leti/DIHS, CEA-Grenoble, 17 r. des Martyrs, 38054 Grenoble Cedex 9 (France); Dieny, B [Spintec, URA 2512 CEA/CNRS, CEA-Grenoble, 17 r. des Martyrs, 38054 Grenoble Cedex 9 (France); Nozieres, J P [Crocus Technology, 5 Place Robert Schumann, BP 1510, 38025 Grenoble Cedex 1 (France)

    2007-04-23

    Magnetic random access memories (MRAMs) are a new non-volatile memory technology trying establish itself as a mainstream technology. MRAM cell operation using a thermally assisted writing scheme (TA-MRAM) is described in this review as well as its main design challenges. This approach is compared to conventional MRAM, highlighting the improvements in write selectivity, power consumption and thermal stability. The TA-MRAM writing was tested and validated in the dynamic regime down to 500 ps write pulses. The heating process was investigated for the influence of the voltage pulse width, junction area and lead volume looking at the required write power density. The possibilities to control and reduce the write power density are described. The most promising solution to optimize the heating process and reduce the power consumption is to insert two thermal barrier layers at both ends of the MTJ layer stack, between the junction and the electrical leads, using low thermal conductivity materials. This minimizes the heating losses and improves the heating efficiency.

  19. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  20. Ecology: Insect thermal baggage

    Science.gov (United States)

    Williams, Caroline

    2016-06-01

    Strong positive selection on cold hardiness and relaxed selection on heat hardiness experienced by range-expanding populations may help to explain why ectothermic animals generally have broader thermal tolerance towards the poles, and shed new light on their climate vulnerabilities.

  1. Advanced Thermal Conversion Systems

    Science.gov (United States)

    2015-03-18

    Research Triangle Park , NC 27709-2211 PETE process, Solar , thermal isolation, optimal cathode-anode separation REPORT DOCUMENTATION PAGE 11...SECURITY CLASSIFICATION OF: This project evaluated the scientific and technical feasibility of a solar energy converter based on photon enhanced...demonstrating that a structurally stable solar -enhanced converters can be created using microfabrication techniques and (2) Identifying materials that

  2. Thermal Analysis of Plastics

    Science.gov (United States)

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  3. The thermal tube

    Energy Technology Data Exchange (ETDEWEB)

    Semena, M.G.

    1980-08-30

    A thermal tube is proposed which contains a layer of dielectric, capillary porous material located on the internal surface of the body. To increase the heat transmitting capability, the layer of capillary porous material is made in the form of a felting, formed by hollow fibers from a non-alkaline, borosilicate glass.

  4. Photon thermal Hall effect

    CERN Document Server

    Ben-Abdallah, Philippe

    2015-01-01

    A near-field thermal Hall effect (i.e.Righi-Leduc effect) in lattices of magneto-optical particles placed in a constant magnetic field is predicted. This effect is related to a symetry breaking in the system induced by the magnetic field which gives rise to preferential channels for the heat-transport by photon tunneling thanks to the particles anisotropy tuning.

  5. Optical Thermal Ratchet

    Science.gov (United States)

    Faucheux, L. P.; Bourdieu, L. S.; Kaplan, P. D.; Libchaber, A. J.

    1995-02-01

    We present an optical realization of a thermal ratchet. Directed motion of Brownian particles in water is induced by modulating in time a spatially periodic but asymmetric optical potential. The net drift shows a maximum as a function of the modulation period. The experimental results agree with a simple theoretical model based on diffusion.

  6. Thermal Analysis of Plastics

    Science.gov (United States)

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  7. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  8. Colloidal Thermal Fluids

    Science.gov (United States)

    Lotzadeh, Saba

    In this dissertation, a reversible system with a well controlled degree of particle aggregation was developed. By surface modification of colloidal silica with aminosilanes, interactions among the particles were tuned in a controlled way to produce stable sized clusters at different pH values ranges from well-disposed to a colloidal gel. N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMPE) monolayer on particle surface not only removes all the reactive sites to prevent chemical aggregation, also provides steric stabilization in the absence of any repulsion. After surface modification, electrokinetic behavior of silica particles were changed to that of amino groups, positive in acidic pH and neutral at basic pH values. By tuning the pH, the balance between electrostatic repulsion and hydrophobic interactions was reversibly controlled. As a result, clusters with different sizes were developed. The effect of clustering on the thermal conductivity of colloidal dispersions was quantified using silane-treated silica, a system engineered to exhibit reversible clustering under well-controlled conditions. Thermal conductivity of this system was measured by transient hot wire, the standard method of thermal conductivity measurements in liquids. We show that the thermal conductivity increases monotonically with cluster size and spans the entire range between the two limits of Maxwell's theory. The results, corroborated by numerical simulation, demonstrate that large increases of the thermal conductivity of colloidal dispersions are possible, yet fully within the predictions of classical theory. Numerical calculations were performed to evaluate the importance of structural properties of particles/aggregates on thermal conduction in colloidal particles. Thermal conductivity of non-spherical particles including hollow particles, cubic particles and rods was studied using a Monte Carlo algorithm. We show that anisotropic shapes, increase conductivity above that of isotropic

  9. Enhanced performance thermal diode via thermal boundary resistance at nanoscale

    Science.gov (United States)

    Tovar-Padilla, M.; Licea-Jimenez, L.; Pérez-Garcia, S. A.; Alvarez-Quintana, J.

    2015-08-01

    Hypothetically, a thermal rectifier is a device which leads a greater heat flux in one direction than another one, similarly as the electrical diode works for the electrical flux. Here, a drastic increment in the rectification factor has been obtained in nanoscale layered thermal diodes due to the effect of thermal boundary resistance present on an asymmetrical stack of nanofilms. Measurements show a thermal rectification factor as large as 3.3 under a temperature bias well below 1 K, which is the biggest thermal rectification factor reported at room temperature compared to previously reported thermal diodes so far. According to the direction of the applied heat flux, the observed impact of the thermal boundary resistance on the device is manifested through the presence of an asymmetric temperature rise along the heat transfer axis. Such effect provides an alternative route for the development of high performance thermal diodes.

  10. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes

    CERN Document Server

    Zhang, Teng

    2015-01-01

    The realization of phononic computing is held hostage by the lack of high performance thermal devices. Here we show through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (< 20 oC) across the device, which is a significant advantage over other thermal diodes which need temperature biases on the order of the operating temperature. Taking this into consideration, we show that the dimensionless temperature-scaled rectification factors of the polymer nanofiber diodes range from 12 to 25 - much larger than other thermal diodes (< 8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized t...

  11. Preliminary requirements for thermal storage subsystems in solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, R.J.

    1980-04-01

    Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

  12. Comparison of Testing Clothing Thermal Resistance on 2 Thermal Manikins

    Institute of Scientific and Technical Information of China (English)

    SHEN Yu-hong(谌玉红); JIANG Zhi-hua(姜志华); WU Zhi-xiao(吴志孝); Ingvar Holmer; Kalev Kuklane

    2003-01-01

    The paper compares clothing thermal resistance of the same ensemble tested by different thermal manikins in different laboratories. It also examines the consistence of the two groups of total thermal resistance by Paired-Sample T Test method, which proves that there is no remarkable difference in testing results under the same experiment method and requirement. It is of great significance in promoting the application of thermal manikin testing technology and academic exchange among different institutes.

  13. Bunge Dunes

    Science.gov (United States)

    2004-01-01

    21 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows low albedo (dark), windblown sand dunes on the floor of Bunge Crater, located near 33.8oS, 48.9oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  14. Mars at Ls 341o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2005-01-01

    13 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a banded surface in Argyre Planitia, the second largest impact basin in the martian southern hemisphere. The bands are the erosional expression of layered, perhaps sedimentary, rock. Season: Northern Winter/Southern Summer

  15. Ophir Landslide

    Science.gov (United States)

    2005-01-01

    4 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small landslide off a steep slope in southwestern Ophir Chasma. Location near: 4.6oS, 72.8oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  16. Tithonium Landslide

    Science.gov (United States)

    2006-01-01

    12 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a large landslide deposit on the floor of western Tithonium Chasma. Location near: 4.3oS, 87.9oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  17. Lithospheric Thickness Variations from Gravity and Topography in Areas of High Crustal Remanent Magnetization on Mars

    Science.gov (United States)

    Smrekar, S. E.; Raymond, C. A.

    2001-01-01

    Large regions of intense crustal re- manent magnetization were fortuitously discovered on Mars by the Mars Global Surveyor (MGS) spacecraft. Gravity and topography admittance studies are used to examine lithospheric structure in the areas of intense magnetization. Areas with positively magnetized crust appear to have thinner crust and elastic lithosphere than negatively magnetized crust. Additional information is contained in the original extended abstract.

  18. Quantum thermal rectification to design thermal diodes and transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, Karl; Ezzahri, Younes; Ordonez-Miranda, Jose [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We study in this article how heat can be exchanged between two-level systems, each of them being coupled to a thermal reservoir. Calculations are performed solving a master equation for the density matrix using the Born-Markov approximation. We analyse the conditions for which a thermal diode and a thermal transistor can be obtained as well as their optimisation.

  19. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  20. National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1989-12-31

    This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

  1. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  2. Thermal rectification in graded materials.

    Science.gov (United States)

    Wang, Jiao; Pereira, Emmanuel; Casati, Giulio

    2012-07-01

    In order to identify the basic conditions for thermal rectification we investigate a simple model with nonuniform, graded mass distribution. The existence of thermal rectification is theoretically predicted and numerically confirmed, suggesting that thermal rectification is a typical occurrence in graded systems, which are likely to be natural candidates for the actual fabrication of thermal diodes. In view of practical implications, the dependence of rectification on the asymmetry and system's size is studied.

  3. Thermal Radiation Source Test Facility,

    Science.gov (United States)

    1984-01-01

    KEY WORDS (Continu on revers side I eesr and identify by block nuMb.,) Thermal Radiation Source Thermal Test Facility 20 ABSTRACT (Continue on reverse...SECTION 1 INTRODUCTION 1-1 GENERAL Defense Nuclear Agency’s Field Command, located at Kirtland AFB in New Mexico, has recently upgraded its thermal test facility...is used to evaluate damage and survivability in a nuclear environment. The thermal test facility was first established in 1979 and used O large

  4. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  5. Solar thermal system engineering guidebook

    Science.gov (United States)

    Selcuk, M. K.; Bluhm, S. A.

    1983-05-01

    This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and parabolic dish solar thermal technologies are considered.

  6. THERMAL CONTINENTALISM IN EUROPE

    Directory of Open Access Journals (Sweden)

    APOSTOL L.

    2015-03-01

    Full Text Available In the context of current climate changes, this article aims to highlight the continental characteristics of Europe’s climate (including a temporal evolution, regarding the multiannual thermal averages. For this purpose, 78 meteorological stations have been selected, placed approximately on two pairs of transects on West-East and South-North directions. The data were extracted from www.giss.nasa.gov (NASA Goddard Institute for Space Studies, statistically processed (Open Office and mapped (www.saga-gis.org. For the lapse of time 1961-2010, the analysis of multiannual temperature averages has shown the following: if the multiannual average temperature is strongly influenced by latitude, its deviations are more dependent on longitude; the multiannual average thermal amplitude, as well as the Gorczynski continentality index, are strongly related to longitude; their temporal evolution has shown a significant decrease in the Eastern half of the continent and an increase (although less significant in Western Europe.

  7. Thermal worldline holography

    CERN Document Server

    Dietrich, Dennis D

    2015-01-01

    For a quantum field theory over four-dimensional Minkowski space at zero temperature worldline holography states, that it can be expressed as a field theory of its sources over five-dimensional AdS space to all orders in its elementary fields, the fifth dimension being Schwinger's proper time of the worldline formalism. For the finite temperatures studied here worldline holography yields either a thermal AdS space or an AdS black hole as five-dimensional manifolds. Comparing the values of the five-dimensional action for the two alternatives, the AdS black hole is preferred, if there are more bosonic elementary degrees of freedom; and the thermal AdS space is preferred, if there are more fermionic ones. If the dominance of bosons versus fermions changes with temperature, a transition between the two spaces takes place.

  8. Thermalization through parton transport

    CERN Document Server

    Zhang, Bin

    2009-01-01

    A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate alpha_s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

  9. Thermal effects in supercapacitors

    CERN Document Server

    Xiong, Guoping; Fisher, Timothy S

    2015-01-01

    This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and  replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.

  10. Thermal microstructure measurement system

    Science.gov (United States)

    Carver, Michael J. (Inventor)

    1985-01-01

    A thermal microstructure measurement system (TMMS) operates autonomously h its own internal power supply and telemeters data to a platform. A thermal array is mounted on a cross-braced frame designed to orient itself normal to existing currents with fixed sensor positioning bars protruding from the cross bars. A plurality of matched thermistors, conductivity probes and inclinometers are mounted on the frame. A compass and pressure transducer are contained in an electronics package suspended below the array. The array is deployed on a taut mooring below a subsurface float. Data are digitized, transmitted via cable to a surface buoy and then telemetered to the platform where the data is processed via a computer, recorded and/or displayed. The platform computer also sends commands to the array via telemetry.

  11. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  12. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  13. Inhomogeneous Thermal Quenches

    CERN Document Server

    Sohrabi, Kiyoumars A

    2015-01-01

    We describe holographic thermal quenches that are inhomogeneous in space. The main characteristic of the quench is to take the system far from its equilibrium configuration. Except special extreme cases, the problem has no analytic solution. Using the numerical holography methods, we study different observables that measure thermalization such as the time evolution of the horizon, two-point Wightman function and entanglement entropy (EE). Having an extra nontrivial spacial direction, allows us to study this peculiar generalization since we categorize the problem based on whether we do the measurements along this special direction or perpendicular to it. Exciting new features appear that are absent in the common computations in the literature, the appearance of negative EE valleys surrounding the positive EE hills and abrupt quenches that occupy the whole space at their universal limit are some of the results of this paper. We have tried to provide physical explanations wherever possible. The physical picture ...

  14. Thermal Analysis System

    Science.gov (United States)

    DiStefano, III, Frank James (Inventor); Wobick, Craig A. (Inventor); Chapman, Kirt Auldwin (Inventor); McCloud, Peter L. (Inventor)

    2014-01-01

    A thermal fluid system modeler including a plurality of individual components. A solution vector is configured and ordered as a function of one or more inlet dependencies of the plurality of individual components. A fluid flow simulator simulates thermal energy being communicated with the flowing fluid and between first and second components of the plurality of individual components. The simulation extends from an initial time to a later time step and bounds heat transfer to be substantially between the flowing fluid, walls of tubes formed in each of the individual components of the plurality, and between adjacent tubes. Component parameters of the solution vector are updated with simulation results for each of the plurality of individual components of the simulation.

  15. Encyclopedia of thermal stresses

    CERN Document Server

    2014-01-01

    The Encyclopedia of Thermal Stresses is an important interdisciplinary reference work.  In addition to topics on thermal stresses, it contains entries on related topics, such as the theory of elasticity, heat conduction, thermodynamics, appropriate topics on applied mathematics, and topics on numerical methods. The Encyclopedia is aimed at undergraduate and graduate students, researchers and engineers. It brings together well established knowledge and recently received results. All entries were prepared  by leading experts from all over the world, and are presented in an easily accessible format. The work is lavishly illustrated, examples and applications are given where appropriate, ideas for further development abound, and the work will challenge many students and researchers to pursue new results of their own. This work can also serve as a one-stop resource for all who need succinct, concise, reliable and up to date information in short encyclopedic entries, while the extensive references will be of inte...

  16. Physics with thermal antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, M.V.; Campbell, L.J.

    1988-01-01

    The same beam cooling techniques that have allowed for high luminosity antiproton experiments at high energy also provide the opportunity for experiments at ultra-low energy. Through a series of deceleration stages, antiprotons collected and cooled at the peak momentum for production can by made available at thermal or sub-thermal energies. In particular, the CERN, PS-200 collaboration is developing an RFO-plused ion trap beam line for the antiproton gravitational mass experiment at LEAR that will provide beams of antiprotons in the energy range 0.001--1000.0 eV. Antiprotons at these energies make these fundamentals particles available for experiments in condensed matter and atomic physics. The recent speculation that antiprotons may form metastable states in some forms of normal matter could open many new avenues of basic and applied research. 7 refs., 3 figs.

  17. Solar thermal collectors

    Science.gov (United States)

    Aranovitch, E.

    Thermal processes in solar flat plate collectors are described and evaluated analytically, and numerical models are presented for evaluating the performance of various designs. A flat plate collector consists of a black absorber plate which transfers absorbed heat to a fluid, a cover which limits thermal losses, and insulation to prevent backlosses. Calculated efficiencies for the collectors depend on the radiation absorbed, as well as IR losses due to natural convection, conduction, and radiation out of the collector. Formulations for the global emittance and heat transfer, as well as losses and their dependence on the Nusselt number and Grashof number are defined. Consideration is given to radiation transmission through transparent covers and Fresnel reflections at interfaces in the cover material. Finally, the performance coefficients for double-glazed and selective surface flat plate collectors are examined.

  18. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  19. Thermal Simulation Facilities Handbook.

    Science.gov (United States)

    1983-02-01

    as much ultraviolet radiation as possible In the concentrated solar beam. The heliostat automatically tracks the source, the sun or the moon...individually positioned to concentrate the thermal energy at the test object focal plane and are front surfaced the same as the heliostat mirrors. The...energy and redistribute it uniformly over the target area. A beam douser is mounted above the light pipe. The douser, initially positioned to block the

  20. Solar Thermal Concept Evaluation

    Science.gov (United States)

    Hawk, Clark W.; Bonometti, Joseph A.

    1995-01-01

    Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations

  1. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  2. Thermal distortion test facility

    Science.gov (United States)

    Stapp, James L.

    1995-02-01

    The thermal distortion test facility (TDTF) at Phillips Laboratory provides precise measurements of the distortion of mirrors that occurs when their surfaces are heated. The TDTF has been used for several years to evaluate mirrors being developed for high-power lasers. The facility has recently undergone some significant upgrades to improve the accuracy with which mirrors can be heated and the resulting distortion measured. The facility and its associated instrumentation are discussed.

  3. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke

    2005-06-01

    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  4. Thermal reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  5. Multifunctional Thermally Remendable Nanocomposites

    Directory of Open Access Journals (Sweden)

    Edward D. Sosa

    2014-01-01

    Full Text Available Challenges associated with damage tolerance in polymer matrix composites must be successfully addressed in order to ensure highly reliable structures with significant weight savings. Self-healing materials provide a viable means to surmount damage tolerance concerns, thereby allowing for the realization of the mass reduction such structures have promised but not yet achieved. Introduction of multifunctional properties into self-healing composites can further extend their usefulness. This study examines the incorporation of carbon nanotubes into a self-healing composite in order to achieve this. Composite panels were fabricated with carbon fibers, a bismaleimide tetrafuran (2MEP4F polymer resin, and various carbon nanotube materials. The composites exhibit enhancement in electrical, mechanical, and thermal properties. The healing mechanism is a thermally activated reversible polymerization of the 2MEP4F resin. The proposed method of heating exploits the enhanced microwave absorption inherent to carbon nanotubes to provide the thermal energy required for the reversible polymerization. Microwave testing demonstrated that the heating efficiency is increased, allowing uniform heating to the required temperature for polymer healing. Impacted composites show localized heating at the damage site, which implies that microwave heating can also be used as a means for damage detection and potential structural health monitoring.

  6. Thermal Vibrational Convection

    Science.gov (United States)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  7. Thermal Contact Conductance

    Science.gov (United States)

    Salerno, Louis J.; Kittel, Peter

    1997-01-01

    The performance of cryogenic instruments is often a function of their operating temperature. Thus, designers of cryogenic instruments often are required to predict the operating temperature of each instrument they design. This requires accurate thermal models of cryogenic components which include the properties of the materials and assembly techniques used. When components are bolted or otherwise pressed together, a knowledge of the thermal performance of such joints are also needed. In some cases, the temperature drop across these joints represents a significant fraction of the total temperature difference between the instrument and its cooler. While extensive databases exist on the thermal properties of bulk materials, similar databases for pressed contacts do not. This has often lead to instrument designs that avoid pressed contacts or to the over-design of such joints at unnecessary expense. Although many people have made measurements of contact conductances at cryogenic temperatures, this data is often very narrow in scope and even more often it has not been published in an easily retrievable fashion, if published at all. This paper presents a summary of the limited pressed contact data available in the literature.

  8. Thermally regenerative fuel cells

    Science.gov (United States)

    Ludwig, F. A.; Kindler, A.; McHardy, J.

    1991-10-01

    The three phase project was undertaken to investigate solventless ionic liquids as possible working fluids for a new type of thermally regenerative fuel cell (TRFC). The heart of the new device, invented at Hughes Aircraft Company in 1983, is an electrochemical concentration cell where acid and base streams react to produce electrical energy. Thermal energy is then used to decompose the resulting salts and regenerate the cell reactants. In principle, a TRFC can be matched to any source of thermal energy simply by selecting working fluids with the appropriate regeneration temperature. However, aqueous working fluids (the focus of previous studies) impose limitations on both the operating temperatures and the achievable energy densities. It was the need to overcome these limitations that prompted the present investigation. Specific aims were to identify possible working fluids for TRFC systems with both low and high regeneration temperatures. A major advantage of our aqueous-fluid TRFC systems has been the ability to use hydrogen electrodes. The low activation and mass transfer losses of these electrodes contribute substantially to overall system efficiency.

  9. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2017-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal distribution under long-term studies. Meanwhile the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three...

  10. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2017-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal distribution under long-term studies. Meanwhile the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real-field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three...

  11. Thermal Properties of oil sand

    Science.gov (United States)

    LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.

    2013-12-01

    Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.

  12. Thermal systems; Systemes thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)

    2005-07-01

    This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of

  13. Thermal activity on Enceladus

    Science.gov (United States)

    Tobie, G.; Besserer, J.; Behounkova, M.; Cadek, O.; Choblet, G.; Sotin, C.

    2009-04-01

    Observations by Cassini have revealed that Enceladus' souh pole is highly active, with jets of icy particles and water vapour emanated from narrow tectonic ridges, called "tiger stripes". This jet activity is associated to a very high thermal emission mainly focused along the tectonic ridges. Heat power required to sustain such an activity is probably related to the dissipation of mechanical energy due to tidal forces exerted by Saturn. However, the dissipation process and its relation to the tectonic features are not clearly established. Both shear heating along the tectonic ridges and viscous dissipation in the convective part of the ice shell could contribute to the energy budget (Nimmo et al. 2007, Tobie et al. 2008). Tobie et al. (2008) pointed out that only interior models with a liquid water layer at depth, covering at least ~2/3 of the southern hemisphere, can explain the observed magnitude of dissipation and its particular location at the south pole. However, the long term stability of such a liquid reservoir remains problematic (Roberts and Nimmo 2007) and the possible link between the liquid reservoir and the surface activities is unknown. Concentration of tidal stresses along the tiger ridges have also been invoked as a mechanism to trigger the eruptive processes (Hurtford et al. 2007, Smith-Konter et al. 2008). However, those models do not take into account a realistic rheological structure for the ice shell when computing the fluctuating stress field. Moreover, the effect of the faults on the background tidal stress is neglected. In particular, low viscosity values are expected to be associated with the shear zone along the tiger stripes and may have a significant impact of the global tidal stress field. In order to self-consistently determine the tidal deformation and its impact on the thermal activity on Enceladus, we are currently developing a 3D model that combines a thermal convection code in spherical geometry (Choblet et al. 2007) and a

  14. Thermal control structure and garment

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  15. Thermal Phase in Bubbling Geometries

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-Yong

    2008-01-01

    We use matrix model to study thermal phase in bubbling half-BPS type IIB geometries with SO(4)×SO(4) symmetry.Near the horizon limit,we find that thermal vacua of bubbling geometries have disjoint parts,and each part is one kind of phase of the thermal system.We connect the thermal dynamics of bubbling geometries with one-dimensional fermions thermal system.Finally,we try to give a new possible way to resolve information loss puzzle.

  16. Thermal management systems and methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  17. Holographic thermalization in noncommutative geometry

    CERN Document Server

    Zeng, Xiao-Xiong; Liu, Wen-Biao

    2014-01-01

    Gravitational collapse of a dust shell in noncommutative geometry is probed by the renormalized geodesic length and minimal area surface, which are dual to the two-point correlation function and expectation value of Wilson loop in the dual conformal field theory. For the spacetime without a horizon, we find the shell will not collapse all the time but will stop in a stable state. For the spacetime with a horizon, we investigate how the noncommutative parameter affects the thermalization process in detail. From the numeric results, we find that larger the noncommutative parameter is, longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. From the fitted functions of the thermalization curve, we find for both thermalization probes, there is a phase transition point during the thermalization process, which divides the thermalization into an acceleration phase and a deceleration phase. During the acceleration phase, the acceleration is found to ...

  18. Thermomechanical measurements on thermal microactuators.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Epp, David S.; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2009-01-01

    Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements for thermal microactuators were not available for a single microactuator design, a comprehensive suite of thermal and mechanical experimental data was taken and compiled for model validation purposes. Three thermal microactuator designs were selected and fabricated using the SUMMiT V{sup TM} process at Sandia National Laboratories. Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal microactuators are reported, including displacement, overall actuator electrical resistance, force, temperature profiles along microactuator legs in standard laboratory air pressures and reduced pressures down to 50 mTorr, resonant frequency, out-of-plane displacement, and dynamic displacement response to applied voltages.

  19. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  20. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes.

    Science.gov (United States)

    Zhang, Teng; Luo, Tengfei

    2015-09-01

    The realization of phononic computing is held hostage by the lack of high-performance thermal devices. Here, it is shown through theoretical analysis and molecular dynamics simulations that unprecedented thermal rectification factors (as large as 1.20) can be achieved utilizing the phase-dependent thermal conductivity of polyethylene nanofibers. More importantly, such high thermal rectifications only need very small temperature differences (rectification factors of the polymer nanofiber diodes range from 12 to 25-much larger than those of other thermal diodes (<8). The polymer nanofiber thermal diode consists of a crystalline portion whose thermal conductivity is highly phase-sensitive and a cross-linked portion which has a stable phase. Nanoscale size effect can be utilized to tune the phase transition temperature of the crystalline portion, enabling thermal diodes capable of operating at different temperatures. This work will be instrumental to the design of high performance, inexpensive, and easily processible thermal devices, based on which thermal circuits can be built to ultimately enable phononic computing.

  1. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  2. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  3. Thermal contact conductance

    CERN Document Server

    Madhusudana, Chakravarti V

    2013-01-01

    The work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.

  4. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  5. Multispectral thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  6. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  7. Thermally cleavable surfactants

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  8. Thermal transient anemometer

    Science.gov (United States)

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  9. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  10. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  11. Effect of Sintering on Thermal Conductivity and Thermal Barrier Effects of Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; PENG Hui; GUO Hongbo; GONG Shengkai

    2012-01-01

    Thermal barrier coatings (TBCs) are mostly applied to hot components of advanced turbine engines to insulate the components from hot gas.The effect of sintering on thermal conductivity and thermal barrier effects of conventional plasma sprayed and nanostructured yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are investigated.Remarkable increase in thermal conductivity occurs to both typical coatings after heat treatment.The change of porosity is just the opposite.The grain size of the nanostructured zirconia coating increases more drastically with annealing time compared to that of the conventional plasma sprayed coating,which indicates that coating sintering makes more contributions to the thermal conductivity of the nanostructured coating than that of the conventional coating.Thermal barrier effect tests using temperature difference technique are performed on both coatings.The thermal barrier effects decrease with the increase of thermal conductivity after heat treatment and the decline seems more drastic in low thermal conductivity range.The decline in thermal barrier effects is about 80 ℃for nanostructured coating after 100 h heat treatment,while the conventional coating reduces by less than 60 ℃ compared to the as-sprayed coating.

  12. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2002-01-01

    Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  13. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  14. Thermal Properties of Bazhen fm. Sediments from Thermal Core Logging

    Science.gov (United States)

    Spasennykh, Mikhail; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Romushkevich, Raisa; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Zhukov, Vladislav; Karpov, Igor; Saveliev, Egor; Gabova, Anastasia

    2016-04-01

    The Bazhen formation (B. fm.) is the hugest self-contained source-and-reservoir continuous petroleum system covering by more than 1 mln. km2 (West Siberia, Russia). High lithological differentiation in Bazhen deposits dominated by silicic shales and carbonates accompanied by extremely high total organic carbon values (of up to 35%), pyrite content and brittle mineralogical composition deteriorate standard thermal properties assessment for low permeable rocks. Reliable information of unconventional system thermal characteristics is the necessary part of works such as modelling of different processes in reservoir under thermal EOR for accessing their efficiency, developing and optimizing design of the oil recovery methods, interpretation of the well temperature logging data and for the basin petroleum modelling. A unique set of data including thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy for the B.fm. rocks was obtained from thermal core logging (high resolution continuous thermal profiling) on more than 4680 core samples (2000 of B.fm. samples are among) along seven wells for four oil fields. Some systematic peculiarities of the relation between thermal properties of the B.fm. rocks and their mineralogical composition, structural and texture properties were obtained. The high-resolution data are processed jointly with the standard petrophysical logging that allowed us to provide better separation of the formation. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  15. SCD 02 thermal design

    Science.gov (United States)

    Cardoso, Humberto Pontes

    1990-01-01

    The Satelite de Coleta de Dados (SCD) 02 (Data Collection Satellite) has the following characteristics: 115 kg weight, octagonal prism shape, 1 m diameter, and 0.67 m height. Its specified orbit is nearly circular, 700 km altitude, is inclined 25 deg with respect to the equator line, and has 100 min period. The electric power is supplied by eight solar panels installed on the lateral sides of the satellite. The equipment is located on the central (both faces) and lower (internal face) panels. The satellite is spin stabilized and its attitude control is such that during its lifetime, the solar aspect angle will vary between 80 and 100 deg with respect to its spin axis. Two critical cases were selected for thermal control design purposes: Hot case (maximum solar constant, solar aspect angle equal to 100 deg, minimum eclipse time and maximum internal heat dissipation); and a passive thermal design concept was achieved and the maximum and minimum equipment operating temperatures were obtained through a 109 node finite difference mathematical model.

  16. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  17. Thermal Control Using Electrochromism

    Science.gov (United States)

    Vaidyanathan, Hari; Rao, Gopalakrishna

    1999-01-01

    The applicability of a charge balanced electrochromic device to modulate the frequencies in the thermal infrared region is examined in this study. The device consisted of a transparent conductor, WO3, anode, PMMA/LiClO4 electrolyte, V2O5 cathode and transparent conductor. The supporting structure in the device is SnO2 coated glass and the edges are sealed with epoxy to reduce moisture absorption. The performance evaluation comprised of cyclic voltammetric measurements and determination of transmittance at various wavelengths. The device was subjected to anodic and cathodic polarization by sweeping the potential at a rate of 10 mV/sec from -0.8V to 1.8V. The current versus voltage profile indicated no reaction between -0.5 and +0.5 V. The device is colored green at 1.8 V with a transmittance of 5% at a wavelength, lambda = 900 nm and colorless at -0.8 V with a transmittance of 74% at lambda = 500 nm. The optical modulation is limited to 400-1500 nm and there is no activity in the thermal infrared. The switching time is a function of temperature and time for coloring reaction was slower than the bleaching reaction. The device yielded reproducible values for transmittance when cycled between colored and bleached states by application of 1.8V and -0.8V, respectively.

  18. Thermal Tachyacoustic Cosmology

    CERN Document Server

    Agarwal, Abhineet

    2014-01-01

    An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...

  19. Thermal tachyacoustic cosmology

    Science.gov (United States)

    Agarwal, Abhineet; Afshordi, Niayesh

    2014-08-01

    An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).

  20. Anisotropic Thermal Diffusion

    Science.gov (United States)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  1. Thermal equilibrium of goats.

    Science.gov (United States)

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation.

  2. Comparison of the mineral composition of the sediment found in two Mars dunefields: Ogygis Undae and Gale crater - three distinct endmembers identified

    Science.gov (United States)

    Charles, Heather; Titus, Timothy; Hayward, Rosalyn; Edwards, Christopher; Ahrens, Caitlin

    2017-01-01

    The composition of two dune fields, Ogygis Undae and the NE-SW trending dune field in Gale crater (the "Bagnold Dune Field" and "Western Dune Field"), were analyzed using thermal emission spectra from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). The Gale crater dune field was used as a baseline as other orbital compositional analyses have been conducted, and in situ sampling results will soon be available. Results from unmixing thermal emission spectra showed a spatial variation between feldspar mineral abundances and pyroxene mineral abundances in Ogygis Undae. Other datasets, including nighttime thermal inertia values, also showed variation throughout the dune field. One explanation proposed for this variation is a bimodal distribution of two sand populations. This distribution is seen in some terrestrial dune fields. The two dune fields varied in both mineral types present and in uniformity of composition. These differences point to different source lithologies and different distances travelled from source material. Examining these differences further will allow for a greater understanding of aeolian processes on Mars.

  3. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data

    Science.gov (United States)

    Christensen, P.R.; Bandfield, J.L.; Smith, M.D.; Hamilton, V.E.; Clark, R.N.

    2000-01-01

    The Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument collected 4.8 ?? 106 spectra of Mars during the initial aerobraking and science-phasing periods of the mission (September 14, 1997, through April 29, 1998). Two previously developed atmosphere-removal models were applied to data from Cimmeria Terra (25?? S, 213?? W). The surface spectra derived for these two models agree well, indicating that the surface and atmosphere emission can be separated and that the exact atmosphere-removal model used has little effect on the derived surface composition. The Cimmeria spectra do not match terrestrial high-silica igneous rocks (granite and rhyolite), ultramafic igneous rocks, limestone, or quartz- and clay-rich sandstone and siltstone. A particulate (sand-sized) sample of terrestrial flood basalt does provide an excellent match in both spectral shape and band depth to the Cimmeria spectrum over the entire TES spectral range. No unusual particle size effects are required to account for the observed spectral shape and depth. The implied grain size is consistent with the thermal inertia and albedo of this region, which indicate a sand-sized surface with little dust. The identification of basalt is consistent with previous indications of pyroxene and basalt-like compositions from visible/ near-infrared and thermal-infrared spectral measurements. A linear spectral deconvolution model was applied to both surface-only Cimmeria spectra using a library of 60 minerals to determine the composition and abundance of the component minerals. Plagioclase feldspar (45%; 53%) and clinopyroxene (26%; 19%) were positively identified above an estimated detection threshold of 10-15% for these minerals. The TES observations provide the first identification of feldspars on Mars. The best fit to the Mars data includes only clinopyroxene compositions; no orthopyroxene compositions are required to match the Cimmeria spectra. Olivine (12%; 12%) and sheet silicate (15%; 11%) were

  4. Advanced solderless flexible thermal link

    Science.gov (United States)

    Williams, Brian G.; Jensen, Scott M.; Batty, J. Clair

    1996-10-01

    Flexible thermal links play an important role int he thermal management of cryogenically cooled components. The purpose of these links is to provide a means of transferring heat from a cooled component to a cooler reservoir with little increase in temperature. The standard soldered approach although effective proves to be time consuming and contributes to added thermal impedances which degrade the performance of the link. For system with little tolerance for temperature differences between cooled components and a cooling source this is undesirable. The authors of this paper have developed a technique by which thin metal foil or braided wire can be attached to metal end blocks without any solder using the swaging process. Swaging provides a fast, simple method for providing a low thermal impedance between the foils and blocks. This paper describes the characteristics of these thermal links in terms of length, mass, thermal resistance, flexibility, and survivability.

  5. Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  6. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  7. Optimal control in thermal engineering

    CERN Document Server

    Badescu, Viorel

    2017-01-01

    This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.

  8. The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits

    Science.gov (United States)

    Cardell, G.; Hecht, M. H.; Carsey, F. D.; Engelhardt, H.; Fisher, D.; Terrell, C.; Thompson, J.

    2004-01-01

    The distinctive layering visible in images from Mars Global Surveyor of the Martian polar caps, and particularly in the north polar cap, indicates that the stratigraphy of these polar layered deposits may hold a record of Martian climate history covering millions of years. On Earth, ice sheets are cored to retrieve a pristine record of the physical and chemical properties of the ice at depth, and then studied in exacting detail in the laboratory. On the Martian north polar cap, coring is probably not a practical method for implementation in an autonomous lander. As an alternative, thermal probes that drill by melting into the ice are feasible for autonomous operation, and are capable of reasonable approximations to the scientific investigations performed on terrestrial cores, while removing meltwater to the surface for analysis. The Subsurface Ice Probe (SIPR) is such a probe under development at JPL. To explore the dominant climate cycles, it is postulated that tens of meters of depth should be profiled, as this corresponds to the vertical separation of the major layers visible in the MOC images [1]. Optical and spectroscopic analysis of the layers, presumably demarcated by embedded dust and possibly by changes in the ice properties, would contribute to the construction of a chronology. Meltwater analysis may be used to determine the soluble chemistry of the embedded dust, and to monitor gradients of atmospheric gases, particularly hydrogen and oxygen, and isotopic variations that reflect atmospheric conditions at the time the layer was deposited. Thermal measurements can be used to determine the geothermal gradient and the bulk mechanical properties of the ice.

  9. Thermal expansion of glassy polymers.

    Science.gov (United States)

    Davy, K W; Braden, M

    1992-01-01

    The thermal expansion of a number of glassy polymers of interest in dentistry has been studied using a quartz dilatometer. In some cases, the expansion was linear and therefore the coefficient of thermal expansion readily determined. Other polymers exhibited non-linear behaviour and values appropriate to different temperature ranges are quoted. The linear coefficient of thermal expansion was, to a first approximation, a function of both the molar volume and van der Waal's volume of the repeating unit.

  10. Calibrating thermal behavior of electronics

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  11. Calibrating thermal behavior of electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2017-07-11

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  12. Thermal modeling environment for TMT

    OpenAIRE

    Vogiatzis, Konstantinos

    2010-01-01

    In a previous study we had presented a summary of the TMT Aero-Thermal modeling effort to support thermal seeing and dynamic loading estimates. In this paper a summary of the current status of Computational Fluid Dynamics (CFD) simulations for TMT is presented, with the focus shifted in particular towards the synergy between CFD and the TMT Finite Element Analysis (FEA) structural and optical models, so that the thermal and consequent optical deformations of the telescope can be calculated. T...

  13. Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    2007-11-02

    NUCLEAR THERMAL ROCKET PROPULSION SYSTEMS, IAA WHITE PAPER PARIS, FRANCE, MARCH 2005 Lt Col Timothy J. Lawrence U.S. Air Force Academy...YYYY) 18-03-2005 2. REPORT TYPE White Paper 3. DATES COVERED (From - To) 18 Mar 2005 4. TITLE AND SUBTITLE NUCLEAR THERMAL ROCKET PROPULSION...reduce radiation exposure, is to have a high energy system like a nuclear thermal rocket that can get the payload to the destination in the fastest

  14. Thermal energy storage test facility

    Science.gov (United States)

    Ternes, M. P.

    1981-03-01

    Two loops making up the facility, using either air or liquid as the thermal transport fluid, are described. These loops will be capable of cycling residential-size thermal energy storage units through conditions simulating solar or off-peak electricity applications to evaluate the unit's performance. Construction of the liquid cycling loop was completed, and testing of thermal stratification techniques for hot and cold water is reported.

  15. Calibrating thermal behavior of electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2017-01-03

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  16. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    National Research Council Canada - National Science Library

    Ishizuka, Masaru; Hatakeyama, Tomoyuki; Funawatashi, Yuichi; Koizumi, katsuhiro

    2011-01-01

    .... This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  17. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  18. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even if the wi......With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even...

  19. Thermal Relaxation in Autofrettaged Cylinders

    Science.gov (United States)

    1982-03-01

    the Thermal Test Conditions, OD/ID - 2.14. 15. Residual Stress versus Percent OverstrAir. for Lhe Thermal Test Conditions, OD/ID - 1.82. 16. Residual...Stress Ratio versus Bore Enlargement Ratio for the Thermal Test Conditions, OD/ID - 2.14. 17. Residual Stress Ratio versus Bore Enlargement Ratio for...the Thermal Test Conditions, OD/ID - 1.82. ii • • •’ .. . .. . . ’ ’It ACKNOWLEDGEMENT 1 This work was performed under funding from Project Number

  20. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  1. LASER INDUCED THERMAL LENS EFFECT

    Institute of Scientific and Technical Information of China (English)

    沈俊; 黄孟才; 江景云; 施教芳

    1991-01-01

    The thermal lens effect has emerged in recent years as a novel ,highly sensitive tool for the study of the very weak molecular absorption of light energy,This paper discusses the theory and technique of the thermal lens measurement.Some opplications of the thermal lens measurement are described.A mode-mismatched dual-beam thermal lens experimental arragement with a modulated probe beam ,designed by the authors.for trace analysis is presented,and its detection limit was found to be 4.1×10-7 for Cu(Ⅱ) in ethanol and 80 mW excitation power.

  2. The Distribution of Crystalline Hematite on Mars from the Thermal Emission Spectrometer: Evidence for Liquid Water

    Science.gov (United States)

    Christensen, P. R.; Malin, M.; Morris, D.; Bandfield, J.; Lane, M.; Edgett, K.

    2000-01-01

    Crystalline hematite on Mars has been mapped using the MGS TES. Two major, and several minor areas of significant accumulation are identified. We favor precipitation models involving Fe-rich water, providing direct mineralogic evidence for large-scale water interactions.

  3. Plastic Sealed Thermal Expansion Packer for Thermal Recovery

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Jiang Hua

    1995-01-01

    @@ According to the requirements of wellbore heatinsulation technique and selective zonal steaminjection technique in heavy-oil steam-injection recovery process, the Oil Recovery Technique Department of Liaohe Petroleum Exploration and Production Bureau and Shuguang Oil Recovery Plant have cooperatively designed and developed a plastic sealed thermal expansion packer for thermal recovery.

  4. Thermal performance and heat transport in aquifer thermal energy storage

    NARCIS (Netherlands)

    Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; Gaans, van P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as t

  5. The Effect of Core Configuration on Thermal Barrier Thermal Performance

    Science.gov (United States)

    DeMange, Jeffrey J.; Bott, Robert H.; Druesedow, Anne S.

    2015-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize heat transfer through interfaces and gaps and protect underlying temperature-sensitive components. The core insulation has a significant impact on both the thermal and mechanical properties of compliant thermal barriers. Proper selection of an appropriate core configuration to mitigate conductive, convective and radiative heat transfer through the thermal barrier is challenging. Additionally, optimization of the thermal barrier for thermal performance may have counteracting effects on mechanical performance. Experimental evaluations have been conducted to better understand the effect of insulation density on permeability and leakage performance, which can significantly impact the resistance to convective heat transfer. The effect of core density on mechanical performance was also previously investigated and will be reviewed. Simple thermal models were also developed to determine the impact of various core parameters on downstream temperatures. An extended understanding of these factors can improve the ability to design and implement these critical TPS components.

  6. Thermal behavior of polytriazole films: a thermal analysis study

    NARCIS (Netherlands)

    Gebben, B.; Mulder, M.H.V.; Smolders, C.A.

    1989-01-01

    The thermal behavior of poly(1,3-phenyl-1,4-phenyl)-4-phenyl-1,2,4-triazole has been investigated using different scanning calorimetry (DSC) and thermogravimetry (TG). Processes are studied for this thermally stable polymer that take place between 200 and 500°C. While the polycondensation reaction

  7. Thermal analysis of peat

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, K.; Albano, C. (Swedish University of Agricultural Science, Umea (Sweden))

    1993-02-01

    Thermal analysis has been performed on samples of plants, peat, chemical fractions of peat, and coal. Simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) technique has proved to be useful in classifying and separating the samples. Due to probable redundant information in the TG and DSC signals the sampling frequency has been investigated. Quantitative predictions of 15 chemical and physical constituents in peat are performed using partial least squares regression (PLSR). Prediction properties are compared with near infrared reflectance spectroscopy (NIR) which shows that TG/DSC and NIR are comparable in predictability of investigated constituents. The use of simultaneous TG and DSC signals in predictions, compared using TG or DSC separately, shows that the combination leads to increases in the predictability, as shown by the use of standard error of prediction (SEP) values.

  8. Thermally induced photon splitting

    CERN Document Server

    Elmfors, P; Elmfors, Per; Skagerstam, Bo-Sture

    1998-01-01

    We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

  9. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  10. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  11. Thermally stabilized heliostat

    Science.gov (United States)

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  12. Hagedorn States and Thermalization

    CERN Document Server

    Noronha-Hostler, Jacquelyn

    2010-01-01

    In recent years Hagedorn states have been used to explain the physics close to the critical temperature within a hadron gas. Because of their large decay widths these massive resonances lower $\\eta/s$ to near the AdS/CFT limit within the hadron gas phase. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both Tc =176 MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. In this paper we also observe the effects of Hagedorn States on the $K^+/\\pi^+$ horn seen at AGS, SPS, and RHIC.

  13. AND THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  14. Modeling Thermal Contact Resistance

    Science.gov (United States)

    Kittel, Peter; Sperans, Joel (Technical Monitor)

    1994-01-01

    One difficulty in using cryocoolers is making good thermal contact between the cooler and the instrument being cooled. The connection is often made through a bolted joint. The temperature drop associated with this joint has been the subject of many experimental and theoretical studies. The low temperature behavior of dry joints have shown some anomalous dependence on the surface condition of the mating parts. There is also some doubts on how well one can extrapolate from the test samples to predicting the performance of a real system. Both finite element and analytic models of a simple contact system have been developed. The model assumes (a) the contact is dry (contact limited to a small portion of the total available area and the spaces in-between the actual contact patches are perfect insulators), (b) contacts are clean (conductivity of the actual contact is the same as the bulk), (c) small temperature gradients (the bulk conductance may be assumed to be temperature independent), (d) the absolute temperature is low (thermal radiation effects are ignored), and (e) the dimensions of the nominal contact area are small compared to the thickness of the bulk material (the contact effects are localized near the contact). The models show that in the limit of actual contact area much less than the nominal area (a much less than A), that the excess temperature drop due to a single point of contact scales as a(exp -1/2). This disturbance only extends a distance approx. A(exp 1/2) into the bulk material. A group of identical contacts will result in an excess temperature drop that scales as n(exp -1/2), where n is the number of contacts and n dot a is constant. This implies that flat rough surfaces will have a lower excess temperature drop than flat polished surfaces.

  15. Subcontinuum thermal transport in tip-based thermal engineering

    Science.gov (United States)

    Hamian, Sina

    For the past two decades, tip-based thermal engineering has made remarkable advances to realize unprecedented nanoscale thermal applications, such as thermomechanical data storage, thermophysical/chemical property characterization of materials in nanometer scale, and scanning thermal imaging and analysis. All these applications involve localized heating with elevated temperature, generally in the order of mean free paths of heat carriers, thus necessitates fundamental understanding of sub-continuum thermal transport across point constrictions and within thin films. Considering the demands, this dissertation is divided into three main scopes providing: (1) a numerical model that provides insight onto nanoscale thermal transport, (2) an electrothermal characterization of a heated microcantilever as a localized heating source, and (3) qualitative measurement of tip-substrate thermal transport using high resolution nanothermometer/heater. This dissertation starts with a literature review on the three aforementioned scopes followed by a numerical model for two-dimensional transient ballistic-diffusive heat transfer combining finite element analysis with discrete ordinate method (DOM-FEA), seeking to provide insight on subcontinuum thermal transport. The phonon Boltzmann transport equation (BTE) under grey relaxation time approximation is solved for different Knudsen numbers. Next, a thermal microcantilever, as one of the main tools in tip-based thermal engineering, is characterized under periodic heating operation in air and vacuum using 3o technique. A three-dimensional FEA simulation of a thermal microcantilever is used to model heat transfer in frequency domain resulting in good agreement with the experiment. Next, quantitative thermal transport is measured by a home-built nanothermometer fabricated using combination of electron-beam lithography and photolithography. An atomic force microscope (AFM) cantilever is used to scan over the sensing probe of the

  16. Thermal resistance of light emitting diode PCB with thermal vias.

    Science.gov (United States)

    Lee, Hyo Soo; Shin, Hyung Won; Jung, Seung Boo

    2012-04-01

    Light emitting diodes (LEDs) are already familiar for use as lighting sources in various electronic devices and displays. LEDs have many advantages such as long life, low power consumption, and high reliability. In the future, as an alternative to fluorescent lighting, LEDs are certain to receive much attention. However, in components related to advanced LED packages or modules there has been an issue regarding the heat from the LED chip. The LED chip is still being developed for use in high-power devices which generate more heat. In this study, we investigate the variation of thermal resistance in LED modules embedded with thermal vias. Through the analysis of thermal resistance with various test vehicles, we obtained the concrete relationship between thermal resistance and the thermal via structure.

  17. Thermal diffusivity study of cheese fats by thermal lens detection

    Science.gov (United States)

    Jiménez Pérez, J. L.; Rangel Vargas, E.; Gutiérrez Fuentes, R.; Cruz-Orea, A.; Bautista de León, H.

    2008-01-01

    In this paper we used thermal lens spectrometry to determine the thermal diffusivity of cheese fats. We have used equal concentrations of cheese fats from oaxaca, chihuahua, gouda, manchego and mozzarella cheeses at 42°C temperature. The two lasers mismatched mode experimental configuration was used with a He-Ne laser, as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data in order to obtain the thermal diffusivity of the cheese fat samples. This measured thermal property may contribute to a better understanding of the cheese fats quality, which is very important in food industry.

  18. Thermal effects and thermal compensation in the OSIRIS camera

    Science.gov (United States)

    González, J. Jesús; Tejada, Carlos; Farah, Alejandro; Rasilla, Jose L.; Fuentes, F. Javier

    2003-03-01

    Tight stability requirements for the imager/spectrograph OSIRIS (a Day One optical instrument for the GTC telescope) demand a careful treatment of thermal effects within the OSIRIS camera. Mostly due to the thermal response of refraction indices of its glasses (and not so much to curvature, spacing or thickness variations of the lenses), the camera optics alone degrades beyond requirements the image quality and plate scale under the expected ambient temperature variations (about 1.8 °C/hour). Thermal effects and thermal compensator studies of the OSIRIS camera are first summarized, before discussing how the motion (of a few microns per °C) of the 3rd camera doublet, as a sole compensator, practically eliminates thermal influences on both image quality and plate scale. A concept for the passive implementation of the compensator is also discussed.

  19. Electric mine motor thermal models aiding design and setting thermal protections

    National Research Council Canada - National Science Library

    R Krok

    2012-01-01

      Electric mine motor thermal models aiding design and setting thermal protections The paper presents original modified thermal networks for calculations of the temperature field in induction mine...

  20. Flexible-pile thermal sealant

    Science.gov (United States)

    Anderson, G. E.; Fell, D. M.; Tesinsky, J. S.

    1977-01-01

    Brushlike material insulates variable-width gaps where severe thermal stress is present. Weave-and-tuft strip has low thermal conductivity, working temperature range from -454 to 2,000 F, low load compressibility, and good inhibition of plasma flow.

  1. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  2. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  3. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... to be the only possible approach to obtain the volume flow in: thermal plumes in ventilated rooms....

  4. Thermal-Diode Sandwich Panel

    Science.gov (United States)

    Basiulis, A.

    1986-01-01

    Thermal diode sandwich panel transfers heat in one direction, but when heat load reversed, switches off and acts as thermal insulator. Proposed to control temperature in spacecraft and in supersonic missiles to protect internal electronics. In combination with conventional heat pipes, used in solar panels and other heat-sensitive systems.

  5. Thermal Transport in Refractory Carbides.

    Science.gov (United States)

    Thermal energy transport mechanisms in titanium carbide and zirconium carbide have been studied. Several compositions of vanadium carbide alloyed...with titanium carbide were used. The electronic component of the thermal conductivity exceeded the values computed using the classical value for L in

  6. THERMAL PROPERTIES OF REFRACTORY MATERIALS

    Science.gov (United States)

    1650 C. Data over this temperature range are presented on tantalum, titanium carbide , and zirconium carbide. The steady-state thermal conductivity...C. The thermal conductivity behavior of zirconium carbide is similar to that previously observed for titanium carbide . The data for titanium nitride

  7. Thermal anomalies in stressed Teflon.

    Science.gov (United States)

    Lee, S. H.; Wulff, C. A.

    1972-01-01

    In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.

  8. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...... data. The interpretation in the particle mode regime sheds light on the mechanisms for thermal conductivity in normal vitreous silica....

  9. Thermal Decomposition of Dicyclopentadienylarylvanadium Compounds

    NARCIS (Netherlands)

    Boekel, C.P.; Jelsma, A.; Teuben, J.H.; Liefde Meijer, H.J. de

    1977-01-01

    The thermolysis of compounds of the type Cp2VR (R = aryl) in the solid state has been studied. A distinct increase in thermal stability is observed upon substitution of the ortho-position of the aryl group. Thermal decomposition occurs with formation of RH, Cp2V, a vanadocene homologue with the

  10. Thermal modeling of stratospheric airships

    Science.gov (United States)

    Wu, Jiangtao; Fang, Xiande; Wang, Zhenguo; Hou, Zhongxi; Ma, Zhenyu; Zhang, Helei; Dai, Qiumin; Xu, Yu

    2015-05-01

    The interest in stratospheric airships has increased and great progress has been achieved since the late 1990s due to the advancement of modern techniques and the wide range of application demands in military, commercial, and scientific fields. Thermal issues are challenging for stratospheric airships, while there is no systematic review on this aspect found yet. This paper presents a comprehensive literature review on thermal issues of stratospheric airships. The main challenges of thermal issues on stratospheric airships are analyzed. The research activities and results on the main thermal issues are surveyed, including solar radiation models, environmental longwave radiation models, external convective heat transfer, and internal convective heat transfer. Based on the systematic review, guides for thermal model selections are provided, and topics worthy of attention for future research are suggested.

  11. Anomalous Thermalization in Ergodic Systems

    Science.gov (United States)

    Luitz, David J.; Bar Lev, Yevgeny

    2016-10-01

    It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

  12. Thermal currents in highly correlated systems

    OpenAIRE

    MORENO, J; Coleman, P.

    1996-01-01

    Conventional approaches to thermal conductivity in itinerant systems neglect the contribution to thermal current due to interactions. We derive this contribution to the thermal current and show how it produces important corrections to the thermal conductivity in anisotropic superconductors. We discuss the possible relevance of these corrections for the interpretation of the thermal conductivity of anisotropic superconductors.

  13. Thermal transport in layered materials for thermoelectrics and thermal management

    Science.gov (United States)

    Qui, Bo

    Atomic level thermal transport in layered materials, namely, Bi 2Te3 and graphene is investigated using first principles calculations, lattice dynamics (LD) calculations, molecular dynamics simulations, spectral phonon analysis and empirical modeling. These materials resemble geometrically while differ significantly in the nature of thermal transport. Because of their uniquely low/high thermal conductivities, they are of great interest in thermoelectrics and thermal management applications, respectively. Besides Bi2Te3 and graphene, many other materials in the family of layered materials also exhibit great promises for various applications in thermoelectrics, thermal management, and electronics. In order to investigate the thermal properties of general layered materials, we explore the use of tight-binding molecular dynamics (TBMD) approach, which neither relies on the availability of classical potentials nor demands significant computational resources as ab initio MD approach does. In addition, a general model for the effective phonon group velocities, which is relevant for the lattice thermal transport in general few-layer materials, is developed. First of all, two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride. The density functional theory with local-density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface and other experimental data, the Morse potential form is parameterized. The fitted empirical interatomic potentials are shown to reproduce the elastic and phonon data well. With the classical interatomic potentials developed, molecular dynamics simulations are performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree with experimental data well. To facilitate phonon-engineering, we predict the thermal conductivity of Bi2Te3

  14. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  15. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  16. Thermally Optimized Paradigm of Thermal Management (TOP-M)

    Science.gov (United States)

    2017-07-18

    for demonstrating the new thermal management approach. 1. Step 1 - Thermal characterization of Tower Jazz CMOS 0.18µm process The first step...was implemented using Tower Jazz 0.18µm CMOS process. The total circuit area is ~ 44 x 35 [µm x µm]. 20 40 60 80 100 120 140 0.28 0.3 0.32 0.34...achieved in the TOP-M project: -Thermal characterization of Tower Jazz CMOS 0.18 µm process, mainly the threshold voltage dependence upon temperature

  17. Thermal to electricity conversion using thermal magnetic properties

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  18. Solar Thermal Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  19. Solar Thermal Storage System

    Directory of Open Access Journals (Sweden)

    Arjun A. Abhyankar

    2012-06-01

    Full Text Available Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvements in solar technology offers a significant cost reduction, to a level where the solar system can compete with the energy costs from existing sources. The main goal of the project is to investigate new or advanced solutions for storing heat in systems providing heating. which can be achieved using phase change material(PCM.A phase change material with a melting/solidification temperature of 50ºC to 60ºC is used for solar heat storage. When the PCM undergoes the phase change, it can absorb or release a large amount of energy as latent heat. This heat can be used for further applications like water heating and space heating purposes. Thus solar thermal energy is widely use

  20. Thermal Performance Benchmarking: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert

    2016-04-08

    The goal for this project is to thoroughly characterize the performance of state-of-the-art (SOA) automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: Evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY15, the 2012 Nissan LEAF power electronics and electric motor thermal management systems were benchmarked. Testing of the 2014 Honda Accord Hybrid power electronics thermal management system started in FY15; however, due to time constraints it was not possible to include results for this system in this report. The focus of this project is to benchmark the thermal aspects of the systems. ORNL's benchmarking of electric and hybrid electric vehicle technology reports provide detailed descriptions of the electrical and packaging aspects of these automotive systems.

  1. Numerical simulation of the LAGEOS thermal behavior and thermal accelerations

    NARCIS (Netherlands)

    Andrés, J.I.; Noomen, R.; Vecellio None, S.

    2006-01-01

    The temperature distribution throughout the LAGEOS satellites is simulated numerically with the objective to determine the resulting thermal force. The different elements and materials comprising the spacecraft, with their energy transfer, have been modeled with unprecedented detail. The radiation i

  2. WMAP Observatory Thermal Design and On-Orbit Thermal Performance

    Science.gov (United States)

    Glazer, Stuart D.; Brown, Kimberly D.; Michalek, Theodore J.; Ancarrow, Walter C.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) observatory, launched June 30, 2001, is designed to measure the cosmic microwave background radiation with unprecedented precision and accuracy while orbiting the second Lagrange point (L2). The instrument cold stage must be cooled passively to <95K, and systematic thermal variations in selected instrument components controlled to less than 0.5 mK (rms) per spin period. This paper describes the thermal design and testing of the WMAP spacecraft and instrument. Flight thermal data for key spacecraft and instrument components are presented from launch through the first year of mission operations. Effects of solar flux variation due to the Earth's elliptical orbit about the sun, surface thermo-optical property degradations, and solar flares on instrument thermal stability are discussed.

  3. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous ...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  4. Industrial thermal insulation: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, R.G.; Tennery, V.J.; McElroy, D.L.; Godfrey, T.G.; Kolb, J.O.

    1976-03-01

    A large variety of thermal insulation materials is manufactured for application in various temperature ranges and environments. Additional and improved thermal insulation for steam systems is a key area with immediate energy conservation potential in several of the larger energy-consuming industries. Industrial thermal insulation technology was assessed by obtaining input from a variety of sources including insulation manufacturers, system designers, installers, users, consultants, measurement laboratories, open literature, and in-house knowledge. The assessment identified a number of factors relevant to insulation materials and usage that could contribute significantly to improved energy conservation.

  5. Rapid thermal processing by stamping

    Science.gov (United States)

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  6. Quantum thermal transport in stanene

    Science.gov (United States)

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2016-07-01

    By way of the nonequilibrium Green's function simulations and analytical expressions, the quantum thermal conductance of stanene is studied. We find that, due to the existence of Dirac fermion in stanene, the ratio of electron thermal conductance and electric conductance becomes a chemical-potential-dependent quantity, violating the Wiedemann-Franz law. This finding is applicable to any two-dimensional (2D) materials that possess massless Dirac fermions. In strong contrast to the negligible electronic contribution in graphene, surprisingly, the electrons and phonons in stanene carry a comparable heat current. The unusual behaviors in stanene widen our knowledge of quantum thermal transport in 2D materials.

  7. Ocean Thermal Extractable Energy Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Ascari, Matthew [Lockheed Martin Corporation, Bethesda, MD (United States)

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  8. Tomographic imaging and scanning thermal microscopy: thermal impedance tomography

    OpenAIRE

    2002-01-01

    The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a mm length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the data vector....

  9. Scattering Solar Thermal Concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  10. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  11. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    Science.gov (United States)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  12. High-G Thermal Characterization Centrifuge

    Data.gov (United States)

    Federal Laboratory Consortium — High-G testing of thermal components enables improved understanding of operating behavior under military-relevant environments. The High-G Thermal Characterization...

  13. High-G Thermal Characterization Centrifuge

    Data.gov (United States)

    Federal Laboratory Consortium — High-G testing of thermal components enables improved understanding of operating behavior under military-relevant environments. The High-G Thermal Characterization...

  14. A Thermal Switch for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Various planned NASA missions require thermal switches for active thermal control. As an example cryocoolers, including redundant coolers are incorporated on select...

  15. Measuring thermal conductivity of thin films by Scanning Thermal Microscopy combined with thermal spreading resistance analysis.

    Science.gov (United States)

    Juszczyk, J; Kaźmierczak-Bałata, A; Firek, P; Bodzenta, J

    2017-01-27

    While measuring the thermal properties of a thin film, one of the most often encountered problems is the influence of the substrate thermal properties on measured signal and the need for its separation. In this work an approach for determining the thermal conductivity κ of a thin layer is presented. It bases on Scanning Thermal Microscopy (SThM) measurement combined with thermal spreading resistance analysis for a system consisting of a single layer on a substrate. Presented approach allows to take into account the influence of the substrate thermal properties on SThM signal and to estimate the true value of a thin film κ. It is based on analytical solution of the problem being a function of dimensionless parameters and requires numerical solution of relatively simple integral equation. As the analysis utilizes a solution in dimensionless parameters it can be used for any substrate-layer system. As an example, the method was applied for determination of the thermal conductivities of 4 different thin layers of thicknesses from 12 to 100nm. The impact of model parameters on the uncertainty of the estimated final κ value was analyzed.

  16. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  17. Thermal Analysis for Mobile Reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Mobile reactor design in the paper is consisted of two grades of thermal electric conversion. The first grade is the thermionic conversion inside the core and the second grade is thermocouple conversion

  18. Alternate Propellant Thermal Rocket Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  19. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  20. Heat-transfer thermal switch

    Science.gov (United States)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  1. Thermally conducting electron transfer polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L.

    1969-01-01

    New polymeric material exhibits excellent physical shock protection, high electrical resistance, and thermal conductivity. It is especially useful for electronic circuitry, such as subminiaturization of components and modular construction of circuits.

  2. Thermally induced delamination of multilayers

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Sarraute, S.; Jørgensen, O.

    1998-01-01

    Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion coefficie...... coefficients may be an effective way of reducing the delamination energy release rate. Uneven layer thickness and increasing elastic mismatch are shown to raise the energy release rate. Experimental work confirms important trends of the model.......Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion...

  3. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  4. Advanced Spacecraft Thermal Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft developers who spend millions to billions of dollars per unit and require 3 to 7 years to deploy, the LoadPath reduced-order (RO) modeling thermal...

  5. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  6. Thermal Expansion of Polyurethane Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  7. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  8. Powerplant Thermal-Pollution Models

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.

    1982-01-01

    Three models predict nature of thermal plumes from powerplant discharge into water. Free-surface model accomodates major changes in ocean currents. Rigid-model accurately predicts changes in thermal plume caused by other inputs and outputs, such as pumped-water storage and hydroelectric-plant discharges. One-dimensional model predicts approximate stratification in lake with such inputs and outputs over a long period.

  9. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  10. Contamination Control for Thermal Engineers

    Science.gov (United States)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  11. Thermal treatment for nanofibrous membrane

    Directory of Open Access Journals (Sweden)

    Liu Hong-Ying

    2014-01-01

    Full Text Available Poly(vinylidene fluoride nanofibrous membranes with high porosity, large electrolyte solution uptake, and adequate mechanical properties were prepared by electrospinning. The physical properties of the electrospun poly(vinylidene fluoride membranes can be improved by thermal treatment. Results showed after the thermal treatment, there had appeared ever-increasing tensile strength and elongation of the poly(vinylidene fluoride membranes. The crystal structures of poly(vinylidene fluoride fibers were greatly improved.

  12. Powerplant Thermal-Pollution Models

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.

    1982-01-01

    Three models predict nature of thermal plumes from powerplant discharge into water. Free-surface model accomodates major changes in ocean currents. Rigid-model accurately predicts changes in thermal plume caused by other inputs and outputs, such as pumped-water storage and hydroelectric-plant discharges. One-dimensional model predicts approximate stratification in lake with such inputs and outputs over a long period.

  13. THERMAL CONDUCTIVITY OF METALLIC WIRES

    Institute of Scientific and Technical Information of China (English)

    LU XIANG; GU JI-HUA; CHU JUN-HAO

    2001-01-01

    The effect of radial thickness on the thermal conductivity of a free standing wire is investigated. The thermal conductivity is evaluated using the Boltzmann equation. A simple expression for the reduction in conductivity due to the increase of boundary scattering is presented. A comparison is made between the experimental results of indium wires and the theoretical calculations. It is shown that this decrease of conductivity in wires is smaller than that in film where heat flux is perpendicular to the surface.

  14. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  15. ISS qualified thermal carrier equipment

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  16. Geologic mapping using thermal images

    Science.gov (United States)

    Abrams, M. J.; Kahle, A. B.; Palluconi, F. D.; Schieldge, J. P.

    1984-01-01

    Thermal radiance data from the Heat Capacity Mapping Mission (HCMM) satellite has been used to measure surface reflectance data and to provide additional material composition information through remote sensing. The primary goal was to investigate the utility of HCMM data for geologic applications. Three techniques were used for displaying and combining thermal and visible near infrared (VNIR) data for two desert areas in southern California (Trona and Pisgah): color additive composites (CAC) for day and night IR and day VNIR, principal components, and calculation of thermal inertia images. The HCMM thermal data were more effective than Landsat data in producing separation of compositionally different areas including volcanic and intrusive rocks. The satellite CAC data produced an image for a 1 x 2 degree area, and the color picture was enlarged to a scale of 1:250,000. Playa composition, moisture content, presence of standing water, and vegetation cover were displayed in a variety of colors according to physical characteristics. Areas such as sand dunes were not distinguishable because of the coarse 500-mm HCMM resolution. HCMM thermal data have shown a new dimension to geologic remote sensing, and future satellite missions should allow the continued development of the thermal infrared data for geology.

  17. Composite Thermal Switch

    Science.gov (United States)

    McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael

    2011-01-01

    Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (switch (CTS(TradeMark)) coating can be incorporated in either the anode or cathode or both. The coating can be applied in a variety of different processes that permits incorporation in the cell and electrode manufacturing processes. The CTS responds quickly

  18. Thermal fatigue. Fluid-structure interaction at thermal mixing events

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, X.; Herter, K.H.; Moogk, S. [Stuttgart Univ. (Germany). MPA; Laurien, E.; Kloeren, D.; Kulenovic, R.; Kuschewski, M. [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems

    2012-07-01

    In the framework of the network research project ''Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue'' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behaviour under transient thermal-mechanical stress conditions (high cycle fatigue - HCF) are carried out. The project's background and its network of scientific working groups with their individual working tasks are briefly introduced. The main focus is especially on the joint research tasks within the sub-projects of MPA and IKE which are dealing with thermal mixing of flows in a T-junction configuration and the fluidstructure- interactions (FSI). Therefore, experiments were performed with the newly established FSI test facility at MPA which enables single-phase flow experiments of water in typical power plant piping diameters (DN40 and DN80) at high pressure (maximum 75 bar) and temperatures (maximum 280 C). The experimental results serve as validation data base for numerical modelling of thermal flow mixing by means of thermo-fluid dynamics simulations applying CFD techniques and carried out by IKE as well as for modelling of thermal and mechanical loads of the piping structure by structural mechanics simulations with FEM methods which are executed by MPA. The FSI test facility will be described inclusively the applied measurement techniques, e. g. in particular the novel near-wall LED-induced Fluorescence method for non-intrusive flow temperature measurements. First experimental data and numerical results from CFD and FEM simulations of the thermal mixing of flows in the T-junction are presented.

  19. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso

    2015-05-28

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  20. Brush/Fin Thermal Interfaces

    Science.gov (United States)

    Knowles, Timothy R.; Seaman, Christopher L.; Ellman, Brett M.

    2004-01-01

    Brush/fin thermal interfaces are being developed to increase heat-transfer efficiency and thereby enhance the thermal management of orbital replaceable units (ORUs) of electronic and other equipment aboard the International Space Station. Brush/fin thermal interfaces could also be used to increase heat-transfer efficiency in terrestrial electronic and power systems. In a typical application according to conventional practice, a replaceable heat-generating unit includes a mounting surface with black-anodized metal fins that mesh with the matching fins of a heat sink or radiator on which the unit is mounted. The fins do not contact each other, but transfer heat via radiation exchange. A brush/fin interface also includes intermeshing fins, the difference being that the gaps between the fins are filled with brushes made of carbon or other fibers. The fibers span the gap between intermeshed fins, allowing heat transfer by conduction through the fibers. The fibers are attached to the metal surfaces as velvet-like coats in the manner of the carbon fiber brush heat exchangers described in the preceding article. The fiber brushes provide both mechanical compliance and thermal contact, thereby ensuring low contact thermal resistance. A certain amount of force is required to intermesh the fins due to sliding friction of the brush s fiber tips against the fins. This force increases linearly with penetration distance, reaching 1 psi (6.9 kPa) for full 2-in. (5.1 cm) penetration for the conventional radiant fin interface. Removal forces can be greater due to fiber buckling upon reversing the sliding direction. This buckling force can be greatly reduced by biasing the fibers at an angle perpendicularly to the sliding direction. Means of containing potentially harmful carbon fiber debris, which is electrically conductive, have been developed. Small prototype brush/fin thermal interfaces have been tested and found to exhibit temperature drops about onesixth of that of conventional