WorldWideScience

Sample records for surveyor images reveal

  1. ASTRO-F : Infrared Imaging Surveyor (IRIS) Mission

    Science.gov (United States)

    Onaka, T.

    The ASTRO-F (also known as Infrared Imaging Surveyor: IRIS) is the second infrared satellite mission of the Institute of Space and Astronautical Science, Japan to be launched early 2004 with the M-V rocket and is planned as a second generation infrared sky survey mission. It has a 67-cm aperture telescope and is cooled by 170-liter liquid helium and Stirling-cycle coolers. Two scientific instruments share the focal plane. The infrared camera (IRC) covers 2 to 26 μm range with large two-dimensional arrays in the imaging and low-resolution spectroscopic modes and will perform deep sky surveys of selected areas of the sky with a wide field of view (10' × 10') at unprecedented sensitivity. The far-infrared Surveyor (FIS), consisting of an imaging scanner and a Fourier transform spectrometer, covers 50 to 200 μm range and makes a whole sky survey in four far-infrared bands, which is higher by more than 10 in sensitivity (20 110 mJy), better by several in the spatial resolution (30'' 50''), and longer in the spectral coverage (200 μm) than IRAS. A brief description and the current status of the ASTRO-F mission are presented.

  2. The Infrared Imaging Surveyor (Iris) Project: Astro-F

    Science.gov (United States)

    Shibai, H.

    IRIS (Infrared Imaging Surveyor) is the first Japanese satellite dedicated solely to infrared astronomy. The telescope has 70-cm aperture, and is cooled down to 6 K with super-fluid helium assisted by two-stage Stirling cycle coolers. On the focal plane, the two instruments, the InfraRed Camera (IRC) and the Far-Infrared Surveyor (FIS), are mounted. IRC is a near- and mid-infrared camera for deep imaging-surveys in the wavelength region from 2 to 25 microns. FIS is a far-infrared instrument for a whole sky survey in the wavelength region from 50 to 200 microns. The diffraction-limited spatial resolution is achieved except in the shortest waveband. The point source sensitivity and the survey coverage are significantly improved compared to previous missions. The primary scientific objective is to investigate birth and evolution of galaxies in the early universe by surveys of young normal galaxies and starburst galaxies. IRIS is thrown by a Japanese M-V rocket into a sun-synchronous orbit, in which the cooled telescope can avoid huge emissions from the Sun and the Earth. The expected holding time of the super-fluid helium is more than one year. After consumption of the helium, the near-infrared observation can be continued by the mechanical coolers

  3. CHISL: The Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor

    CERN Document Server

    France, Kevin; Hoadley, Keri

    2016-01-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (primary diameter 12 m, 1000 Ang - 2 micron spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a high-resolution (R 120,000; 1000 - 1700 Ang) point-source spectroscopy channel and a ...

  4. CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor

    Science.gov (United States)

    France, Kevin; Fleming, Brian; Hoadley, Keri

    2016-07-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (dprimary ≍ 12 m, Δλ ≍ 1000 Å - 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of a LUVOIR Surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a highresolution (R ≍ 120,000; 1000 - 1700Å) point-source spectroscopy channel and a medium resolution (R >= 14,000 from 1000 - 2000 Å in a single observation and R 24,000 - 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under

  5. Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept

    Science.gov (United States)

    Bandler, Simon R.; Adams, Joseph S.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Betancourt-Martinez, Gabriele; Miniussi, Antoine R.; Porter, Frederick S.; Sadleir, John E.; Sakai, Kazuhiro; Smith, Stephen J.; Stevenson, Thomas R.; Wakeham, Nicholas A.; Wassell, Edward J.; Yoon, Wonsik; Becker, Dan; Bennett, Douglas; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathan D.; Hilton, Gene C.; Mates, Benjamin; Morgan, Kelsey M.; Reintsema, Carl D.; Swetz, Daniel; Ullom, Joel N.; Chaudhuri, Saptarshi; Irwin, Kent D.; Lee, Sang-Jun; Vikhlinin, Alexey

    2016-07-01

    Four astrophysics missions are currently being studied by NASA as candidate large missions to be chosen in the 2020 astrophysics decadal survey.1 One of these missions is the "X-Ray Surveyor" (XRS), and possible configurations of this mission are currently under study by a science and technology definition team (STDT). One of the key instruments under study is an X-ray microcalorimeter, and the requirements for such an instrument are currently under discussion. In this paper we review some different detector options that exist for this instrument, and discuss what array formats might be possible. We have developed one design option that utilizes either transition-edge sensor (TES) or magnetically coupled calorimeters (MCC) in pixel array-sizes approaching 100 kilo-pixels. To reduce the number of sensors read out to a plausible scale, we have assumed detector geometries in which a thermal sensor such a TES or MCC can read out a sub-array of 20-25 individual 1" pixels. In this paper we describe the development status of these detectors, and also discuss the different options that exist for reading out the very large number of pixels.

  6. The Rapid Transient Surveyor

    CERN Document Server

    Baranec, Christoph; Wright, Shelley A; Tonry, John; Tully, R Brent; Szapudi, István; Takamiya, Marianne; Hunter, Lisa; Riddle, Reed; Chen, Shaojie; Chun, Mark

    2016-01-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of ~4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z < 0.1 universe. RTS will comprise an upgraded version of the Robo-AO laser AO system and will respond quickly to target-of-opportunity events, minimizing the time between discovery and characterization. RTS will acquire simultaneous-multicolor images with a...

  7. The Rapid Transient Surveyor

    Science.gov (United States)

    Baranec, Christoph; Tonry, John; Wright, Shelley; Tully, R. Brent; Lu, Jessica R.; Takamiya, Marianne Y.; Hunter, Lisa

    2016-01-01

    The next decade of astronomy will be dominated by large area surveys (see the detailed discussion in the Astro-2010 Decadal survey and NRC's recent OIR System Report). Ground-based optical transient surveys, e.g., LSST, ZTF and ATLAS and space-based exoplanet, supernova, and lensing surveys such as TESS and WFIRST will join the Gaia all-sky astrometric survey in producing a flood of data that will enable leaps in our understanding of the universe. There is a critical need for further characterization of these discoveries through high angular resolution images, deeper images, spectra, or observations at different cadences or periods than the main surveys. Such follow-up characterization must be well matched to the particular surveys, and requires sufficient additional observing resources and time to cover the extensive number of targets.We describe plans for the Rapid Transient Surveyor (RTS), a permanently mounted, rapid-response, high-cadence facility for follow-up characterization of transient objects on the U. of Hawai'i 2.2-m telescope on Maunakea. RTS will comprise an improved robotic laser adaptive optics system, based on the prototype Robo-AO system (formerly at the Palomar 1.5-m and now at the Kitt Peak 2.2-m telescope), with simultaneous visible and near-infrared imagers as well as a near-infrared integral field spectrograph (R~100, λ = 850 - 1830 nm, 0.15″ spaxels, 8.7″×6.0″ FoV). RTS will achieve an acuity of ~0.07″ in visible wavelengths and automated detection and characterization of astrophysical transients during a sustained observing campaign will yield the necessary statistics to precisely map dark matter in the local universe.

  8. Development Status of Adjustable X-ray Optics with 0.5 Arcsec Imaging for the X-ray Surveyor Mission Concept

    Science.gov (United States)

    Reid, Paul B.; Allured, Ryan; ben-Ami, Sagi; Cotroneo, Vincenzo; Schwartz, Daniel A.; Tananbaum, Harvey; Vikhlinin, Alexey; Trolier-McKinstry, Susan; Wallace, Margeaux L.; Jackson, Tom

    2016-04-01

    The X-ray Surveyor mission concept is designed as a successor to the Chandra X-ray Observatory. As currently envisioned, it will have as much as 30-50 times the collecting area of Chandra with the same 0.5 arcsec imaging resolution. This combination of telescope area and imaging resolution, along with a detector suite for imaging and dispersive and non-dispersive imaging spectroscopy, will enable a wide range of astrophysical observations. These observations will include studies of the growth of large scale structure, early black holes and the growth of SMBHs, and high resolution spectroscopy with arcsec resolution, among many others. We describe the development of adjustable grazing incidence X-ray optics, a potential technology for the high resolution, thin, lightweight mirrors. We discuss recent advancements including the demonstration of deterministic figure correction via the use of the adjusters, the successful demonstration of integrating control electronics directly on the actuator cells to enable row-column addressing, and discuss the feasibility of on-orbit piezoelectric performance and figure monitoring via integrated semiconductor strain gauges. We also present the telescope point design and progress in determining the telescope thermal sensitivities and achieving alignment and mounting requirements.

  9. Discovery Mondays: Surveyors' Tools

    CERN Multimedia

    2003-01-01

    Surveyors of all ages, have your rulers and compasses at the ready! This sixth edition of Discovery Monday is your chance to learn about the surveyor's tools - the state of the art in measuring instruments - and see for yourself how they work. With their usual daunting precision, the members of CERN's Surveying Group have prepared some demonstrations and exercises for you to try. Find out the techniques for ensuring accelerator alignment and learn about high-tech metrology systems such as deviation indicators, tracking lasers and total stations. The surveyors will show you how they precisely measure magnet positioning, with accuracy of a few thousandths of a millimetre. You can try your hand at precision measurement using different types of sensor and a modern-day version of the Romans' bubble level, accurate to within a thousandth of a millimetre. You will learn that photogrammetry techniques can transform even a simple digital camera into a remarkable measuring instrument. Finally, you will have a chance t...

  10. The rapid transient surveyor

    Science.gov (United States)

    Baranec, C.; Lu, J. R.; Wright, S. A.; Tonry, J.; Tully, R. B.; Szapudi, I.; Takamiya, M.; Hunter, L.; Riddle, R.; Chen, S.; Chun, M.

    2016-07-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of 4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z efficiency prism integral field unit spectrograph: R = 70-140 over a total bandpass of 840-1830nm with an 8.7" by 6.0" field of view (0.15" spaxels). The AO correction boosts the infrared point-source sensitivity of the spectrograph against the sky background by a factor of seven for faint targets, giving the UH 2.2-m the H-band sensitivity of a 5.7-m telescope without AO.

  11. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  12. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-07-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  13. Mutation detection using Surveyor nuclease.

    Science.gov (United States)

    Qiu, Peter; Shandilya, Harini; D'Alessio, James M; O'Connor, Kevin; Durocher, Jeffrey; Gerard, Gary F

    2004-04-01

    We have developed a simple and flexible mutation detection technology for the discovery and mapping of both known and unknown mutations. This technology is based on a new mismatch-specific DNA endonuclease from celery, Surveyor nuclease, which is a member of the CEL nuclease family of plant DNA endonucleases. Surveyor nuclease cleaves with high specificity at the 3' side of any mismatch site in both DNA strands, including all base substitutions and insertion/deletions up to at least 12 nucleotides. Surveyor nuclease technology involves four steps: (i) PCR to amplify target DNA from both mutant and wild-type reference DNA; (ii) hybridization to form heteroduplexes between mutant and wild-type reference DNA; (iii) treatment of annealed DNA with Surveyor nuclease to cleave heteroduplexes; and (iv) analysis of digested DNA products using the detection/separation platform of choice. The technology is highly sensitive, detecting rare mutants present at as low as 1 in 32 copies. Unlabeled Surveyor nuclease digestion products can be analyzed using conventional gel electrophoresis or high-performance liquid chromatography (HPLC), while end labeled digestion products are suitable for analysis by automated gel or capillary electrophoresis. The entire protocol can be performed in less than a day and is suitable for automated and high-throughput procedures.

  14. CERN’s surveyors send sparks flying

    CERN Document Server

    Anaïs Schaeffer

    2013-01-01

    A few weeks ago, we published an article on the three-dimensional laser scanner technique used at CERN to produce 3D images of the LHC tunnels and experiments (see the article here). Photogrammetry is another technique in the CERN surveyors’ arsenal.   The ATLAS wheel during a photogrammetry measurement campaign. The white spots (see red arrows) dotted across the wheel are the retro-reflective "dot" targets. Used in a number of fields including topography, architecture, geology and archaeology, photogrammetry is a stereoscopy technique whereby 2D images taken from different angles can be used to reconstruct a 3D image of an object. Surveyors at CERN have been using this technique for over 15 years as a way of gaining precise information on the shape, size, deformation and position of the LHC detectors and their composite elements. The photogrammetry used at CERN is relatively “light” in terms of the equipment required, w...

  15. Challenges to Building Surveyors From The Perspectives Of Non Surveyors

    Directory of Open Access Journals (Sweden)

    Isnin Zarina

    2016-01-01

    Full Text Available Awareness on the importance of Building Surveyors in Malaysia is still low as the role and skills of this profession are not fully understood. Although studies indicated that Building Surveyors are still in demand, even without the Building Surveyor Act, many graduates are experiencing inadequate employment opportunities in the current economic situation. Little is known on the views from other stakeholders about BS. This research aims to examine the awareness and opinions on BS in Malaysia amongst construction stakeholders. Questionnaire surveys were collected from 120 respondents from construction, maintenance and insurance companies and interviews were conducted to selected built environment respondents. It was found that awareness and knowledge on BS are still low as they lack information on the profession and professional recognitions. Some views indicated on a major identity crisis for having fragmented and disparate range of modules. The cause may have resulted in problems on public recognition, poor understanding of the surveyor’s skills, and fewer job opportunities. Several suggested the profession to have a clear, coherent and relevant identity, with strong professional structures in order for the profession to survive and gain recognition from the government. Graduates are also recommended to acquire other skills and training in order for them to be significant to the construction industry.

  16. 46 CFR 153.1101 - Procedures for getting a Surveyor: Approval of Surveyors.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Procedures for getting a Surveyor: Approval of Surveyors. 153.1101 Section 153.1101 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Approval of Surveyors...

  17. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  18. Rapid Geophysical Surveyor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  19. Screening for mutations in kidney-related genes using SURVEYOR nuclease for cleavage at heteroduplex mismatches.

    Science.gov (United States)

    Voskarides, Konstantinos; Deltas, Constantinos

    2009-07-01

    SURVEYOR is a new mismatch-specific plant DNA endonuclease that is very efficient for mutation scanning in heteroduplex DNA. It is much faster, cheaper, more sensitive, and easier to perform than other "traditional" mutation detection methods such as single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, heteroduplex analysis, and phage resolvases. This is the first comprehensive report on the use of SURVEYOR for screening genes implicated in a spectrum of inherited renal diseases. Of the 48.2 kb screened, 44 variations were identified, accounting for one variation per 1.1 kb. The re-sequencing of multiple samples did not reveal any variation that had not been identified by SURVEYOR, attesting to its high fidelity. Additionally, we tested this enzyme against 15 known variants, 14 of which it identified, thus showing a sensitivity of 93%. We showed that the genetic heterogeneity of renal diseases can be easily overcome using this enzyme with a high degree of confidence and no bias for any specific variations. We also showed for the first time that SURVEYOR does not demonstrate any preference regarding mismatch cleavage at specific positions. Disadvantages of using SURVEYOR include enhanced exonucleolytic activity for some polymerase chain reaction products and less than 100% sensitivity. We report that SURVEYOR can be used as a mutation detection method with a high degree of confidence, offering an excellent alternative for low-budget laboratories and for the rapid manipulation of multiple genes.

  20. The Mars Surveyor '01 Rover and Robotic Arm

    Science.gov (United States)

    Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.

    1999-01-01

    The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment

  1. The X-Ray Surveyor Mission: A Concept Study

    Science.gov (United States)

    Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.; Heinz, Sebastian; Hopkins, Randall C.; Kilbourne, Caroline A.; Kouveliotou, Chryssa; Kraft, Ralph P.; Kravtsov, Andrey V.; McEntaffer, Randall L.; Natarajan, Priyamvada; O'Dell, Stephen L.; Petre, Robert; Prieskorn, Zachary R.; Ptak, Andrew F.; Ramsey, Brian D.; Reid, Paul B.; Schnell, Andrew R.; Schwartz, Daniel A.; Townsley, Leisa K.

    2015-01-01

    NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

  2. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.

  3. Mars Surveyor '98 MVACS Robotic Arm Control System Design Concepts

    Science.gov (United States)

    Bonitz, Robert G.

    1997-01-01

    This paper describes the control system design concepts for the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm which supports the scientific investigations to be conducted as part of the Mars Surveyor '98 Lander project. Novel solutions are presented to some of the unique problems encountered in this demanding space application with its tight constraints on mass, power, volume, and computing power.

  4. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.

  5. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  6. The surveyors' quest for perfect alignment

    CERN Multimedia

    2003-01-01

    Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...

  7. Forecasting the manpower demand for quantity surveyors in Hong Kong

    Directory of Open Access Journals (Sweden)

    Paul H K Ho

    2013-09-01

    Full Text Available Recently, there has been a massive infrastructure development and an increasing demand for public and private housing, resulting in a shortage of qualified quantity surveyors. This study aims to forecast the demand for qualified quantity surveyors in Hong Kong from 2013 to 2015. Literature review indicates that the demand for quantity surveyors is a function of the gross values of building, civil engineering and maintenance works. The proposed forecasting method consists of two steps. The first step is to estimate the gross values of building, civil engineering and maintenance works by time series methods and the second step is to forecast the manpower demand for quantity surveyors by causal methods. The data for quantity surveyors and construction outputs are based on the ‘manpower survey reports of the building and civil engineering industry’ and the ‘gross value of construction works performed by main contractors’ respectively. The forecasted manpower demand for quantity surveyors in 2013, 2014 and 2015 are 2,480, 2,632 and 2,804 respectively. Due to the low passing rate of the assessment of professional competence (APC and the increasing number of retired qualified members, there will be a serious shortage of qualified quantity surveyors in the coming three years.

  8. Forecasting the manpower demand for quantity surveyors in Hong Kong

    Directory of Open Access Journals (Sweden)

    Paul H K Ho

    2013-09-01

    Full Text Available Recently, there has been a massive infrastructure development and an increasing demand for public and private housing, resulting in a shortage of qualified quantity surveyors. This study aims to forecast the demand for qualified quantity surveyors in Hong Kong from 2013 to 2015. Literature review indicates that the demand for quantity surveyors is a function of the gross values of building, civil engineering and maintenance works. The proposed forecasting method consists of two steps. The first step is to estimate the gross values of building, civil engineering and maintenance works by time series methods and the second step is to forecast the manpower demand for quantity surveyors by causal methods. The data for quantity surveyors and construction outputs are based on the ‘manpower survey reports of the building and civil engineering industry’ and the ‘gross value of construction works performed by main contractors’ respectively. The forecasted manpower demand for quantity surveyors in 2013, 2014 and 2015 are 2,480, 2,632 and 2,804 respectively. Due to the low passing rate of the assessment of professional competence (APC and the increasing number of retired qualified members, there will be a serious shortage of qualified quantity surveyors in the coming three years.

  9. The surveyors get the measure of the LHC

    CERN Multimedia

    2002-01-01

    The first to start work in the LHC tunnel, the surveyors are precisely marking out the positions of the future accelerator's magnets. A total of 7000 reference points will have to be marked out over two years.

  10. an examination of estate surveyors and valuers' perception of flood ...

    African Journals Online (AJOL)

    Osondu

    2013-11-27

    Nov 27, 2013 ... Key words: Estate Surveyors, Perception, Flood risk, Residential ... financial service sector (banking, insurance, etc.) ... 1Department of Estate Management, College of Science .... institutions (Ayida-Otobo, 2009), Lagos State.

  11. Research Ship Southern Surveyor Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Southern Surveyor Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  12. The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...

  13. CLASS: The Cosmology Large Angular Scale Surveyor

    CERN Document Server

    Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...

  14. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  16. The CAMbridge Emission Line Surveyor (CAMELS)

    CERN Document Server

    Thomas, C N; Maiolino, R; Goldie, D J; Acedo, E de Lera; Wagg, J; Blundell, R; Paine, S; Zeng, L

    2014-01-01

    The CAMbridge Emission Line Surveyor (CAMELS) is a pathfinder program to demonstrate on-chip spectrometry at millimetre wavelengths. CAMELS will observe at frequencies from 103-114.7 GHz, providing 512 channels with a spectral resolution of R = 3000. In this paper we describe the science goals of CAMELS, the current system level design for the instrument and the work we are doing on the detailed designs of the individual components. In addition, we will discuss our efforts to understand the impact that the design and calibration of the filter bank on astronomical performance. The shape of the filter channels, the degree of overlap and the nature of the noise all effect how well the parameters of a spectral line can be recovered. We have developed a new and rigorous method for analysing performance, based on the concept of Fisher information. This can in be turn coupled to a detailed model of the science case, allowing design trade-offs to be properly investigated.

  17. Image registration reveals central lens thickness minimally increases during accommodation

    Directory of Open Access Journals (Sweden)

    Schachar RA

    2017-09-01

    Full Text Available Ronald A Schachar,1 Majid Mani,2 Ira H Schachar31Department of Physics, University of Texas at Arlington, Arlington, TX, 2California Retina Associates, El Centro, 3Byers Eye Institute of Stanford University, Palo Alto, CA, USAPurpose: To evaluate anterior chamber depth, central crystalline lens thickness and lens curvature during accommodation.Setting: California Retina Associates, El Centro, CA, USA.Design: Healthy volunteer, prospective, clinical research swept-source optical coherence biometric image registration study of accommodation.Methods: Ten subjects (4 females and 6 males with an average age of 22.5 years (range: 20–26 years participated in the study. A 45° beam splitter attached to a Zeiss IOLMaster 700 (Carl Zeiss Meditec Inc., Jena, Germany biometer enabled simultaneous imaging of the cornea, anterior chamber, entire central crystalline lens and fovea in the dilated right eyes of subjects before, and during focus on a target 11 cm from the cornea. Images with superimposable foveal images, obtained before and during accommodation, that met all of the predetermined alignment criteria were selected for comparison. This registration requirement assured that changes in anterior chamber depth and central lens thickness could be accurately and reliably measured. The lens radii of curvatures were measured with a pixel stick circle.Results: Images from only 3 of 10 subjects met the predetermined criteria for registration. Mean anterior chamber depth decreased, −67 µm (range: −0.40 to −110 µm, and mean central lens thickness increased, 117 µm (range: 100–130 µm. The lens surfaces steepened, anterior greater than posterior, while the lens, itself, did not move or shift its position as appeared from the lack of movement of the lens nucleus, during 7.8 diopters of accommodation, (range: 6.6–9.7 diopters.Conclusion: Image registration, with stable invariant references for image correspondence, reveals that during accommodation a

  18. Schmidt Crater: Using Data from the Mars Global Surveyor

    Science.gov (United States)

    Thomas, Fred

    2001-10-01

    In the Physics Department at Sinclair Community College in Dayton, the most popular general-education course is a three-quarter astronomy sequence. The course is designed to incorporate significant elements of conceptual physics, scientific methods, and quantitative reasoning, along with the content of astronomy. In cooperation with faculty from mathematics and sociology, the author developed new lab activities that engage students in making "practical" plans for the colonization of Mars. The activities are intended to be low-cost, to be suitable for either on-campus or distance-learning environments, and to be fun for both students and instructors. The Schmidt Crater region, an Ohio-sized area near the South Pole of Mars, was selected as a potential site for obtaining large quantities of water. Topographic data for the region was extracted from the 36 CD's of laser altimeter data obtained by the Mars Global Surveyor, and ArcView was used to produce detailed maps. Wide and narrow angle photos of the region from the Mars Orbiter Camera were integrated with the topographic maps. Both the maps and the photographs were therefore made accessible to students who can use free software packages, such as ArcExplorer and Scion Image With access to up-to-date data for this region, students complete a series of "authentic learning tasks" that include calculating water needs for a Martian city, identifying likely water sources, planning transportation methods, and selecting a "homestead" for their own personal use.

  19. The Transient High Energy Sky and Early Universe Surveyor (THESEUS)

    Science.gov (United States)

    Amati, Lorenzo; O'Brien, Paul T.; Götz, Diego

    2016-07-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 9-10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.

  20. Correlates of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2012-05-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Job satisfaction is the sense of well- being, good feeling and positive mental state that emerge in an incumbent worker when his obtained reward consequent upon his performance is congruent with his equitable reward.The aim of this study is to ascertain the levels of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria. Biographical and job descriptive index questionnaires (JDI were administered to gather the data. The JDI measures job satisfaction on five facets, namely, pay, promotions, supervision, co-workers and the work itself. A total of 100 questionnaires were collected and used for the study. The survey covered quantity surveyors in consulting firms in Lagos and the respondents were selected using stratified random sampling technique. Data collected were analysed using descriptive statistics, correlation matrix, t-test and one way anova. Findings of the study revealed that the respondents were satisfied with the relationship with co-workers, nature of work and the supervision they receive. Major sources of dissatisfaction are promotion and salaries of the respondents. This finding is a bold step and necessary benchmark for resolving major sources of dissatisfaction among quantity surveyors in consulting firms. The roles of other contextual factors on job satisfaction need to be contemplated for future research.

  1. Correlates of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2012-05-01

    Full Text Available Job satisfaction is the sense of well- being, good feeling and positive mental state that emerge in an incumbent worker when his obtained reward consequent upon his performance is congruent with his equitable reward.The aim of this study is to ascertain the levels of job satisfaction amongst quantity surveyors in consulting firms in Lagos, Nigeria. Biographical and job descriptive index questionnaires (JDI were administered to gather the data. The JDI measures job satisfaction on five facets, namely, pay, promotions, supervision, co-workers and the work itself. A total of 100 questionnaires were collected and used for the study. The survey covered quantity surveyors in consulting firms in Lagos and the respondents were selected using stratified random sampling technique. Data collected were analysed using descriptive statistics, correlation matrix, t-test and one way anova. Findings of the study revealed that the respondents were satisfied with the relationship with co-workers, nature of work and the supervision they receive. Major sources of dissatisfaction are promotion and salaries of the respondents. This finding is a bold step and necessary benchmark for resolving major sources of dissatisfaction among quantity surveyors in consulting firms. The roles of other contextual factors on job satisfaction need to be contemplated for future research.

  2. Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging.

    Science.gov (United States)

    Bergmann, U; Morton, R W; Manning, P L; Sellers, W I; Farrar, S; Huntley, K G; Wogelius, R A; Larson, P

    2010-05-18

    Evolution of flight in maniraptoran dinosaurs is marked by the acquisition of distinct avian characters, such as feathers, as seen in Archaeopteryx from the Solnhofen limestone. These rare fossils were pivotal in confirming the dinosauria-avian lineage. One of the key derived avian characters is the possession of feathers, details of which were remarkably preserved in the Lagerstätte environment. These structures were previously simply assumed to be impressions; however, a detailed chemical analysis has, until now, never been completed on any Archaeopteryx specimen. Here we present chemical imaging via synchrotron rapid scanning X-ray fluorescence (SRS-XRF) of the Thermopolis Archaeopteryx, which shows that portions of the feathers are not impressions but are in fact remnant body fossil structures, maintaining elemental compositions that are completely different from the embedding geological matrix. Our results indicate phosphorous and sulfur retention in soft tissue as well as trace metal (Zn and Cu) retention in bone. Other previously unknown chemical details of Archaeopteryx are also revealed in this study including: bone chemistry, taphonomy (fossilization process), and curation artifacts. SRS-XRF represents a major advancement in the study of the life chemistry and fossilization processes of Archaeopteryx and other extinct organisms because it is now practical to image the chemistry of large specimens rapidly at concentration levels of parts per million. This technique has wider application to the archaeological, forensic, and biological sciences, enabling the mapping of "unseen" compounds critical to understanding biological structures, modes of preservation, and environmental context.

  3. Diffusion tensor imaging reveals evolution of primate brain architectures.

    Science.gov (United States)

    Zhang, Degang; Guo, Lei; Zhu, Dajiang; Li, Kaiming; Li, Longchuan; Chen, Hanbo; Zhao, Qun; Hu, Xiaoping; Liu, Tianming

    2013-11-01

    Evolution of the brain has been an inherently interesting problem for centuries. Recent studies have indicated that neuroimaging is a powerful technique for studying brain evolution. In particular, a variety of reports have demonstrated that consistent white matter fiber connection patterns derived from diffusion tensor imaging (DTI) tractography reveal common brain architecture and are predictive of brain functions. In this paper, based on our recently discovered 358 dense individualized and common connectivity-based cortical landmarks (DICCCOL) defined by consistent fiber connection patterns in DTI datasets of human brains, we derived 65 DICCCOLs that are common in macaque monkey, chimpanzee and human brains and 175 DICCCOLs that exhibit significant discrepancies amongst these three primate species. Qualitative and quantitative evaluations not only demonstrated the consistencies of anatomical locations and structural fiber connection patterns of these 65 common DICCCOLs across three primates, suggesting an evolutionarily preserved common brain architecture but also revealed regional patterns of evolutionarily induced complexity and variability of those 175 discrepant DICCCOLs across the three species.

  4. Analysis of Surveyor 3 television cable after residence on the moon

    Science.gov (United States)

    Gross, F. C.; Park, J. J.

    1972-01-01

    The Apollo 12 astronauts brought the Surveyor III television camera back from the moon in November 1969. Chemical analyses of a portion of television cable revealed changes in the glass fabric sleeve and in the wire insulation as a result of exposure to the lunar environment. Loss of volatile constituents from the glass fabric and a discoloration of the glass occurred. The Teflon layer on the wire showed a slight discoloration and possibly a slight change in its infrared spectrum. Both the polyimide layer and the Teflon layer of the wire insulation showed changes in tensile strength and elongation.

  5. Ancient Pb and Ti mobilization revealed by Scanning Ion Imaging

    Science.gov (United States)

    Kusiak, Monika A.; Whitehouse, Martin J.; Wilde, Simon A.

    2014-05-01

    Zircons from strongly layered early Archean ortho- and paragneisses in ultra-high temperature (UHT) metamorphic rocks of the Napier Complex, Enderby Land, East Antarctica are characterized by complex U-Th-Pb systematics [1,2,3]. A large number of zircons from three samples, Gage Ridge, Mount Sones and Dallwitz Nunatak, are reversely discordant (U/Pb ages older than 207Pb/206Pb ages) with the oldest date of 3.9 Ga [4] (for the grain from Gage Ridge orthogneiss). To further investigate this process, we utilized a novel high spatial resolution Scanning Ion Imaging technique on the CAMECA IMS 1280 at the Natural History Museum in Stockholm. Areas of 70 μm x 70 μm were selected for imaging in mono- and multicollection modes using a ~2 μm rastered primary beam to map out the distribution of 48Ti, 89Y, 180Hf, 232Th, 238U, 204Pb, 206Pb and 207Pb. The ion maps reveal variable distribution of certain elements within analysed grains that can be compared to their CL response. Yttrium, together with U and Th, exhibits zonation visible on the CL images, Hf shows expected minimal variation. Unusual patchiness is visible in the map for Ti and Pb distribution. The bright patches with enhanced signal do not correspond to any zones or to crystal imperfections (e.g. cracks). The presence of patchy titanium is likely to affect Ti-in-zircon thermometry, and patchy Pb affecting 207Pb/206Pb ages, usually considered as more robust for Archean zircons. Using the WinImage program, we produced 207Pb/206Pb ratio maps that allow calculation of 207Pb/206Pb ages for spots of any size within the frame of the picture and at any time after data collection. This provides a new and unique method for obtaining age information from zircon. These maps show areas of enhanced brightness where the 207Pb/206Pb ratio is higher and demonstrate that within these small areas (μm scale) the apparent 207Pb/206Pb age is older, in some of these patches even > 4 Ga. These data are a result of ancient Pb

  6. The Transient High Energy Sky and Early Universe Surveyor

    Science.gov (United States)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  7. Surveyor television camera, selected materials and electronic components, Appendix C

    Science.gov (United States)

    Carroll, W. F.

    1972-01-01

    The locations of various parts of the Surveyor camera are presented. Tables were prepared with emphasis on: (1) exterior parts and surfaces that are directly exposed to space, (2) parts that shield others from space radiation, (3) representative or unique materials, and (4) electronic devices that may contain unique or well-characterized materials.

  8. Caspar Wessel (1745-1818). Surveyor and Mathematician

    DEFF Research Database (Denmark)

    Branner, Bodil; Johansen, Nils Voje

    1999-01-01

    This is a biography. It focus on Caspar Wessel's work as surveyor under the auspices of the Royal Danish Academy of Sciences and Letters, in particular on some of his theoretical investigations of geodesy that lead him to use complex numbers to represent directions in a plane at least as early...

  9. Core skills requirement and competencies expected of quantity surveyors: perspectives from quantity surveyors, allied professionals and clients in Nigeria

    Directory of Open Access Journals (Sweden)

    Joshua Oluwasuji Dada

    2015-10-01

    Full Text Available Abstract Deployment of appropriate skills and competencies is crucial and germane to the development and continuous relevance of any profession. In the built environment, the science for selecting the required skills and competencies expected of quantity surveyors and understanding the inherent dependencies between them remains a research issue. The purpose of this study was to determine the skill requirements and competencies expected of quantity surveyors. A structured questionnaire was administered among quantity surveyors, architects, engineers, builders and clients in Nigeria. The respondents were asked to give rating, on a 5 point Likert scale, on usual skills and competencies required of quantity surveyors. A secondary objective of the study was to examine the important skills and competencies and categorized them into core skill, basic skill, core competence, optional competence and special competence. The results of the study indicate the important skills as computer literacy, building engineering, information technology, economics, measurement/quantification and knowledge of civil/heavy engineering works. The results also indicate the important competencies as cost planning and control, estimating, construction procurement system, contract documentation, contract administration and project management. It is emphasized that the findings of the research have considerable implications on the training and practice of quantity surveying in Nigeria.

  10. Core skills requirement and competencies expected of quantity surveyors: perspectives from quantity surveyors, allied professionals and clients in Nigeria

    Directory of Open Access Journals (Sweden)

    Joshua Oluwasuji Dada

    2012-12-01

    Full Text Available AbstractDeployment of appropriate skills and competencies is crucial and germane to the development and continuous relevance of any profession. In the built environment, the science for selecting the required skills and competencies expected of quantity surveyors and understanding the inherent dependencies between them remains a research issue. The purpose of this study was to determine the skill requirements and competencies expected of quantity surveyors. A structured questionnaire was administered among quantity surveyors, architects, engineers, builders and clients in Nigeria. The respondents were asked to give rating, on a 5 point Likert scale, on usual skills and competencies required of quantity surveyors. A secondary objective of the study was to examine the important skills and competencies and categorized them into core skill, basic skill, core competence, optional competence and special competence. The results of the study indicate the important skills as computer literacy, building engineering, information technology, economics, measurement/quantification and knowledge of civil/heavy engineering works. The results also indicate the important competencies as cost planning and control, estimating, construction procurement system, contract documentation, contract administration and project management. It is emphasized that the findings of the research have considerable implications on the training and practice of quantity surveying in Nigeria.

  11. Automated live cell imaging systems reveal dynamic cell behavior.

    Science.gov (United States)

    Chirieleison, Steven M; Bissell, Taylor A; Scelfo, Christopher C; Anderson, Jordan E; Li, Yong; Koebler, Doug J; Deasy, Bridget M

    2011-07-01

    Automated time-lapsed microscopy provides unique research opportunities to visualize cells and subcellular components in experiments with time-dependent parameters. As accessibility to these systems is increasing, we review here their use in cell science with a focus on stem cell research. Although the use of time-lapsed imaging to answer biological questions dates back nearly 150 years, only recently have the use of an environmentally controlled chamber and robotic stage controllers allowed for high-throughput continuous imaging over long periods at the cell and subcellular levels. Numerous automated imaging systems are now available from both companies that specialize in live cell imaging and from major microscope manufacturers. We discuss the key components of robots used for time-lapsed live microscopic imaging, and the unique data that can be obtained from image analysis. We show how automated features enhance experimentation by providing examples of uniquely quantified proliferation and migration live cell imaging data. In addition to providing an efficient system that drastically reduces man-hours and consumes fewer laboratory resources, this technology greatly enhances cell science by providing a unique dataset of temporal changes in cell activity. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  12. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  13. Neutron Star Science with the X-ray Surveyor

    Science.gov (United States)

    Ozel, Feryal

    2015-10-01

    Probing the interiors and magnetic fields of neutron stars and characterizing their populations in the Galaxy is an important science goal for the next generation X-ray telescopes. I will discuss how the capabilities of the X-ray Surveyor Mission are crucial for making significant advances in these fields and how we can address the open questions with a dataset that will become available with such a mission.

  14. Deep optical images of Malin 1 reveal new features

    CERN Document Server

    Galaz, Gaspar; Suc, Vincent; Busta, Luis; Lizana, Guadalupe; Infante, Leopoldo; Royo, Santiago

    2015-01-01

    We present Megacam deep optical images (g and r) of Malin 1 obtained with the 6.5m Magellan/Clay telescope, detecting structures down to ~ 28 B mag arcsec-2. In order to enhance galaxy features buried in the noise, we use a noise reduction filter based on the total generalized variation regularizator. This method allows us to detect and resolve very faint morphological features, including spiral arms, with a high visual contrast. For the first time, we can appreciate an optical image of Malin 1 and its morphology in full view. The images provide unprecedented detail, compared to those obtained in the past with photographic plates and CCD, including HST imaging. We detect two peculiar features in the disk/spiral arms. The analysis suggests that the first one is possibly a background galaxy, and the second is an apparent stream without a clear nature, but could be related to the claimed past interaction between Malin 1 and the galaxy SDSSJ123708.91 + 142253.2. Malin 1 exhibits features suggesting the presence o...

  15. Spectral Imaging for Revealing and Preserving World Cultural Heritage

    Science.gov (United States)

    2011-09-01

    characterization of manuscripts” Symposium on Digital Imaging of Ancient Textual Heritage, Helsinki, Finland, 2010, pp. 51-64. [4] R. L. Easton et. al...America, Giles, London, United Kingdom, 2008. 5. CONCLUSION [6] E. Harris , “The Waldseemüller Map – A typographic ap- praisal” Imago Mundi, Vol. 37

  16. Inside Out: Modern Imaging Techniques to Reveal Animal Anatomy

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Hansen, Kasper; Wang, Tobias

    2011-01-01

    allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI, CT and mCT to create advanced representation of animal anatomy, including bones, inner organs......Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also...... and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different...

  17. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  18. Characteristics of ripple structures revealed in OH airglow images

    Science.gov (United States)

    Li, Jing; Li, Tao; Dou, Xiankang; Fang, Xin; Cao, Bing; She, Chiao-Yao; Nakamura, Takuji; Manson, Alan; Meek, Chris; Thorsen, Denise

    2017-03-01

    Small-scale ripple structures observed in OH airglow images are most likely induced by either dynamic instability due to large wind shear or convective instability due to superadiabatic lapse rate. Using the data set taken in the mesopause region with an OH all-sky imager at Yucca Ridge Field Station, Colorado (40.7°N, 104.9°W), from September 2003 to December 2005, we study the characteristics and seasonal variations of ripple structures. By analyzing the simultaneous background wind and temperature observed by the nearby sodium temperature/wind lidar at Fort Collins, Colorado (40.6°N, 105°W), and a nearby medium-frequency radar at Platteville, Colorado (40.2°N, 105.8°W), we are able to statistically study the possible relation between ripples and the background atmosphere conditions. Characteristics and seasonal variations of ripples are presented in detail in this study. The occurrence frequency of ripples exhibits clear seasonal variability, with peak in autumn. The occurrence of ripples shows a local time dependence, which is most likely associated with the solar tides. The lifetime and spatial scale of these ripples are typically 5-20 min and 5-10 km, respectively, and most of the ripples move preferentially either southward or northward. However, more than half of the observed ripples do not advect with background flow; they have higher Richardson numbers than those ripples that advect with background flow. It is possible that they are not instability features but wave structures that are hard to be distinguished from the real instability features.

  19. Maturation of the limbic system revealed by MR FLAIR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jacques F.; Vergesslich, Klara [University Children' s Hospital UKBB, Department of Paediatric Radiology, Basel (Switzerland)

    2007-04-15

    Cortical signal intensity (SI) of the limbic system in adults is known to be higher than in neocortical structures, but time-related changes in SI during childhood have not been described. To detect maturation-related SI changes within the limbic system using a fluid-attenuated inversion recovery (FLAIR) MR sequence. Twenty children (10 boys, 10 girls; age 3.5-18 years, mean 11.2 years) with no neurological abnormality and normal MR imaging examination were retrospectively selected. On two coronal FLAIR slices, ten regions of interest (ROI) with a constant area of 10 mm{sup 2} were manually placed in the archeocortex (hippocampus), periarcheocortex (parahippocampal gyrus, subcallosal area, cingulate gyrus) and in the neocortex at the level of the superior frontal gyrus on both sides. Significant SI gradients were observed with a higher intensity in the archeocortex, intermediate intensity in the periarcheocortex and low intensity in the neocortex. Significant higher SI values in hippocampal and parahippocampal structures were detected in children up to 10 years of age. These differences mainly reflected differences in cortical structure and myelination state. Archeocortical structures especially showed significant age-related intensity progression suggesting ongoing organization and/or myelination until early adolescence. (orig.)

  20. Functional imaging reveals movement preparatory activity in the vegetative state

    Directory of Open Access Journals (Sweden)

    Tristan A Bekinschtein

    2011-01-01

    Full Text Available The Vegetative State (VS is characterized by the absence of awareness of self or the environment and preserved autonomic functions. The diagnosis relies critically on the lack of consistent signs of purposeful behavior in response to external stimulation. Yet, given that patients with disorders of consciousness often exhibit fragmented movement patterns, voluntary actions may go unnoticed. Here we designed a simple motor paradigm that could potentially detect residual conscious awareness in VS patients with mild to severe brain damage by examining the neural correlates of motor preparation in response to verbal commands. Twenty-four patients who met the diagnostic criteria for VS were recruited for this study. Eleven of these patients showing preserved auditory evoked potentials underwent functional magnetic resonance imaging (fMRI to test for basic speech processing. Five of these patients, who showed word related activity, were included in a second fMRI study aimed at detecting functional changes in premotor cortex elicited by specific verbal instructions to move either their left or their right hand. Despite the lack of overt muscle activity, two patients out of five activated the dorsal premotor cortex contralateral to the instructed hand, consistent with movement preparation. Given that movement preparation in response to a motor command is a sign of purposeful behavior, our results are consistent with residual conscious awareness in these patients. We believe that the identification of positive results with fMRI using this simple task, may complement the clinical assessment by helping attain a more precise diagnosis in patients with disorders of consciousness.

  1. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera

    OpenAIRE

    Wang, Huiqun; Ingersoll, Andrew P.

    2002-01-01

    We have made daily global maps that cover both polar and equatorial regions of Mars for Ls 135°–360° and 0°–111° using the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red and blue wide-angle swaths taken from May 1999 to January 2001. We study the seasonal distribution of condensate clouds and dust clouds during roughly 1 Martian year using these daily global maps. We present the development and decay of the tropical cloud belt and the polar hoods, the spatial and temporal distributi...

  2. Testing the principle of equivalence with Planck surveyor

    CERN Document Server

    Popa, L A; Mandolesi, N

    2002-01-01

    We consider the effect of the violation of the equivalence principle (VEP) by the massive neutrino component on the Cosmic Microwave Background angular power specrum. We show that in the presence of adiabatic and isocurvature primordial density perturbations the Planck surveyor can place limits on the maximal VEP by the massive neutrino component at the level of 10^ -5, valid in the general relativity, for the case in which the gravity is the single source of VEP. This work has been performed within the framework of the {\\sc Planck}/LFI activities.

  3. Energetic particles detected by the Electron Reflectometer instrument on the Mars Global Surveyor, 1999-2006

    DEFF Research Database (Denmark)

    Delory, Gregory T.; Luhmann, Janet G.; Brain, David

    2012-01-01

    We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... Reflectometer also measured particles with energies >30 MeV that penetrated the aluminum housing of the instrument and were detected directly by microchannel plates in the instrument interior. Using a combination of theoretical and experimental results, we show how the Electron Reflectometer microchannel plates...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...

  4. CERN's surveyors are pushing back the frontiers of precision

    CERN Multimedia

    2001-01-01

    Aiming at a target on the other side of the Alps, 730 kilometres from CERN, or controlling the positions of thousands of devices to a precision of one tenth of a millimetre, these are just some of the painstaking tasks undertaken by the surveyors in the Positioning Metrology and Surveying Group. These masters of measurement are pushing precision to its very limit.Go down into the LEP tunnel, walk about half a mile and then try to imagine how you could possibly take precise aim at something hundreds of kilometres away without any reference to the surface. Absurd, you might think? Not entirely, for that, in a nutshell, is the geodetic challenge of the Gran Sasso project. Indeed it is just one of the challenges faced by the surveyors in CERN's Positioning Metrology and Surveying Group, whose task it will be to aim a neutrino beam at a detector located in an underground cavern 732 kilometres away at INFN's Gran Sasso laboratory in Italy. The tools for solving such problems are provided by geodetics, the branch of...

  5. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    OpenAIRE

    Paul, F

    2015-01-01

    Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider...

  6. The Digital Cadastral Databse and the Role of the Private Licensed Surveyors in Denmark

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    This article presents the cadastral system and the role of the private licensed surveyors in Denmark as a basis for discussion of its relevance to Ireland......This article presents the cadastral system and the role of the private licensed surveyors in Denmark as a basis for discussion of its relevance to Ireland...

  7. Are Quantity Surveyors Competent to Value for Civil Engineering Works? Evaluating QSs' Competencies and Militating Factors

    Science.gov (United States)

    Olawumi, Timothy Oluwatosin; Ayegun, Olaleke Amos

    2016-01-01

    The role of the quantity surveyor is one that is often unclear amongst the general public. This study discussed the competencies of the quantity surveyor in measuring and managing civil engineering works and also carrying out the financial management for civil engineering construction projects; also outlined the various competencies and skills…

  8. The link between quality and accreditation of residency programs: the surveyors' perceptions.

    Science.gov (United States)

    Dos Santos, Renato Antunes; Snell, Linda; Tenorio Nunes, Maria do Patrocinio

    2017-01-01

    Accreditation of medical residency programs has become globally important. Currently it is moving from the goal of attaining minimal standards to a model of continuous improvement. In some countries, the accreditation system engages peers (physicians) to survey residency programs. The surveyors are sometimes volunteers, usually engaged in multiple clinical and education activities. Few studies have investigated the benefits of residency program evaluation and accreditation from the perspective of the surveyors. As peers they both conduct and receive accreditation surveys, which puts them in a privileged position in that it provides the surveyor with an opportunity to share experiences and knowledge and apply what is learned in their own context. The objective of this study is to obtain the perceptions of these surveyors about the impact of an accreditation system on residency programs. Surveyors participated in semi-structured interviews. A thematic analysis was performed on the interview data, and resulting topics were grouped into five themes: Burden (of documentation and of time needed); Efficiency and efficacy of the accreditation process; Training and experience of surveyors; Being a peer; Professional skills and recognition of surveyors. These categories were organized into two major themes: 'Structure and Process' and 'Human Resources'. The study participants proposed ways to improve efficiency including diminish the burden of documentation to the physicians involved in the process and to increase efforts on training programs and payment for surveyors and program directors. Based on the results we propose a conceptual framework to improve accreditation systems.

  9. A Map-Making for the Planck Surveyor

    CERN Document Server

    Natoli, P; Gheller, C; Vittorio, N

    2001-01-01

    We present a parallel implementation of a map-making algorithm for CMB anisotropy experiments which is both fast and efficient. We show for the first time a Maximum Likelihood, minimum variance map obtained by processing the entire data stream expected from the Planck Surveyor, under the assumption of a symmetric beam profile. Here we restrict ourselves to the case of the 30 GHz channel of the Planck Low Frequency Instrument. The extension to Planck higher frequency channels is straightforward. If the satellite pointing periodicity is good enough to average data that belong to the same sky circle, then the code runs very efficiently on workstations. The serial version of our code also runs on very competitive time-scales the map-making pipeline for current and forthcoming balloon borne experiments.

  10. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    CERN Document Server

    Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...

  11. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    Science.gov (United States)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  12. Uremic encephalopathy with isolated brainstem involvement revealed by magnetic resonance image: a case report.

    Science.gov (United States)

    Jia, Li-Jing; Qu, Zhen-Zhen; Zhang, Xue-Qian; Tian, Yu-Juan; Wang, Ying

    2017-08-08

    Uremic Encephalopathy (UE) is a neurological complication associated with acute or chronic renal failure. Imaging findings of UE may present involvement of the basal ganglia, cortical or subcortical regions, and white matter. We report a rare case of UE caused by neurogenic bladder with isolated brainstem involvement revealed by magnetic resonance imaging (MRI). Immediate therapy resulted in full recovery of neurological signs and changes on MRI. A 14-year-old Han Chinese woman with a history of chronic renal failure caused by neurogenic bladder. On admission, she was unconscious and her pupils presented different sizes, while her vital signs were normal. MRI showed high signal in the dorsal pontine base and in the mid brain on fluid-attenuated inversion-recovery (FLAIR) imaging and on T2-weighted imaging while the signal was normal on diffusion-weighted images (DWI). Blood analysis revealed renal failure and acidosis. After urinary retention treatment and acidosis correction, the patient soon recovered. Follow-up MRI 2 months after the discharge revealed complete resolution of UE in the brainstem. We reported a rare case of a patient with UE that had unusual imaging manifestations for whom timely diagnosis and treatment assured recovery.

  13. Effect of the search image on the lizard ability to reveal a Batesian mimic

    OpenAIRE

    Beneš, Josef

    2016-01-01

    The effect of the search image on the ability of hand reared skinks (Chalcides sexlineatus) to reveal a "fake" Batesian mimic was tested with respect to their previous experience with palatable experimental prey (Guyana spotted cockroach Blaptica dubia) which served as a motivational prey as well as midsized mealworm beetle larvae (Tenebrio molitor). The red firebug (Pyrrhocoris apterus) was used as an aposematic model.

  14. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity

    National Research Council Canada - National Science Library

    Matthew T. Weinstock; Michael T. Jacobsen; Michael S. Kay

    2014-01-01

    .... Impressively, GroEL/ES folds both L-and D-DapA. This work extends the limits of chemical protein synthesis, reveals ambidextrous GroEL/ES folding activity, and provides a valuable tool to fold D-proteins for drug development and mirror-image synthetic biology applications.

  15. Complex patterns in fossilized stromatolites revealed by hyperspectral imaging (400-2496 nm).

    Science.gov (United States)

    Murphy, R J; Van Kranendonk, M J; Kelloway, S J; Wainwright, I E

    2016-09-01

    Hyperspectral imaging (400-2496 nm) was used to quantitatively map surface textures and compositional variations in stromatolites to determine whether complexity of textures could be used as evidence to support biogenicity in the absence of preserved biomarkers. Four samples of 2.72-2.4 Ga stromatolites from a variety of settings, encompassing marine and lacustrine environments, were selected for hyperspectral imaging. Images of the sawn surfaces of samples were processed to identify reflectance and mineral absorption features and quantify their intensity (as an index of mineral abundance) using automated feature extraction. Amounts of ferrous iron were quantified using a ratio of reflectance at 1650 and 1299 nm. Visible near infrared imagery (400-970 nm) did not reveal additional textural patterns to those obtained from visual inspection. Shortwave infrared imagery (1000-2496 nm), however, revealed complex laminar and convoluted patterns, including a distinctive texture of sharp peaks and broad, low troughs in one sample, similar to living tufted microbial mats. Spectral analysis revealed another sample to be composed of dolomite. Two other samples were dominated by calcite or chlorite ± illite. Large variations in amounts of ferrous iron were found, but ferric iron was exclusively located in the oxidation crust. Hyperspectral imaging revealed large differences between parts of a sample of biogenic and non-biogenic origin. The former was characterized by calcite with varying amounts of ferrous iron, distributed in lenticular, convoluted patterns; the latter by Mg-Fe chlorite with large amounts of aluminium silicate, distributed as fine laminar layers. All minerals identified by hyperspectral imaging were confirmed by thin section petrography and XRD analyses. Spatial statistics generated from quantitative minerals maps showed different patterns between these different parts of the sample. Thus, hyperspectral imaging was shown to be a powerful tool for

  16. The Far-Infrared Surveyor Mission Study: Paper I, the Genesis

    Science.gov (United States)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; hide

    2017-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some preliminary highlights here. We note key areas for technological innovation and improvements necessary to make a Far-Infrared Surveyor mission a reality.

  17. The Far-Infrared Surveyor Mission study: paper I, the genesis

    Science.gov (United States)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; Ennico, K.; Melnick, G. J.; Milam, S.; Narayanan, D.; Pontoppidan, K.; Pope, A.; Roellig, T.; Sandstrom, K.; Su, K. Y. L.; Vieira, J.; Wright, E.; Zmuidzinas, J.; Alato, S.; Carey, S.; Gerin, M.; Helmich, F.; Menten, K.; Scott, D.; Sakon, I.; Vavrek, R.

    2016-07-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some preliminary highlights here. We note key areas for technological innovation and improvements necessary to make a Far-Infrared Surveyor mission a reality.

  18. The Far-Infrared Surveyor Mission Study: Paper I, the Genesis

    CERN Document Server

    Meixner, M; Carter, R; DiPirro, M; Flores, A; Leisawitz, D; Armus, L; Battersby, C; Bergin, E; Bradford, C M; Ennico, K; Melnick, G J; Milam, S; Narayanan, D; Pontoppidan, K; Pope, A; Roellig, T; Sandstrom, K; Su, K Y L; Vieira, J; Wright, E; Zmuidzinas, J; Alato, S; Carey, S; Gerin, M; Helmich, F; Menten, K; Scott, D; Sakon, I; Vavrek, R

    2016-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some preliminary highlights here. We note key areas for technological innovation and improvements necessary to make a Far-Infrared Surveyor mission a reality.

  19. Screening for Mutations in Kidney-Related Genes Using SURVEYOR Nuclease for Cleavage at Heteroduplex Mismatches

    OpenAIRE

    Voskarides, Konstantinos; DELTAS, Constantinos

    2009-01-01

    SURVEYOR is a new mismatch-specific plant DNA endonuclease that is very efficient for mutation scanning in heteroduplex DNA. It is much faster, cheaper, more sensitive, and easier to perform than other “traditional” mutation detection methods such as single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, heteroduplex analysis, and phage resolvases. This is the first comprehensive report on the use of SURVEYOR for screening genes implicated in a sp...

  20. The Far-Infrared Surveyor (FIS) for AKARI

    CERN Document Server

    Kawada, Mitsunobu; Barthel, Peter D; Clements, David; Cohen, Martin; Doi, Yasuo; Figueredo, Elysandra; Fujiwara, Mikio; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Jeong, Woong-Seob; Kaneda, Hidehiro; Kawai, Toshihide; Kawamura, Akiko; Kester, Do; Kii, Tsuneo; Kobayashi, Hisato; Kwon, Suk Minn; Lee, Hyung Mok; Makiuti, Sin'itirou; Matsuo, Hiroshi; Matsuura, Shuji; Müller, Thomas G; Murakami, Noriko; Nagata, Hirohisa; Nakagawa, Takao; Narita, Masanao; Noda, Manabu; Oh, Sang Hoon; Okada, Yoko; Okuda, Haruyuki; Oliver, Sebastian; Ootsubo, Takafumi; Pak, Soojong; Park, Yong-Sun; Pearson, Chris P; Rowan-Robinson, Michael; Saito, Toshinobu; Salama, Alberto; Sato, Shinji; Savage, Richard S; Serjeant, Stephen; Shibai, Hiroshi; Shirahata, Mai; Sohn, Jungjoo; Suzuki, Toyoaki; Takagi, Toshinobu; Takahashi, Hidenori; Thomson, Matthew; Usui, Fumihiko; Verdugo, Eva; Watabe, Toyoki; White, Glenn J; Wang, Lingyu; Yamamura, Issei; Yamamuchi, Chisato; Yasuda, Akiko

    2007-01-01

    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, i...

  1. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  2. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2016-08-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  3. Detector architecture of the cosmology large angular scale surveyor

    Science.gov (United States)

    Rostem, K.; Bennett, C. L.; Chuss, D. T.; Costen, N.; Crowe, E.; Denis, K. L.; Eimer, J. R.; Lourie, N.; Essinger-Hileman, T.; Marriage, T. A.; Moseley, S. H.; Stevenson, T. R.; Towner, D. W.; Voellmer, G.; Wollack, E. J.; Zeng, L.

    2012-09-01

    The cosmic microwave background (CMB) provides a powerful tool for testing modern cosmology. In particular, if inflation has occurred, the associated gravitational waves would have imprinted a specific polarized pattern on the CMB. Measurement of this faint polarized signature requires large arrays of polarization-sensitive, background- limited detectors, and an unprecedented control over systematic effects associated with instrument design. To this end, the ground-based Cosmology Large Angular Scale Surveyor (CLASS) employs large-format, feedhorn- coupled, background-limited Transition-Edge Sensor (TES) bolometer arrays operating at 40, 90, and 150 GHz bands. The detector architecture has several enabling technologies. An on-chip symmetric planar orthomode transducer (OMT) is employed that allows for highly symmetric beams and low cross-polarization over a wide bandwidth. Furthermore, the quarter-wave backshort of the OMT is integrated using an innovative indium bump bonding process at the chip level that ensures minimum loss, maximum repeatability and performance uniformity across an array. Care has been taken to reduce stray light and on-chip leakage. In this paper, we report on the architecture and performance of the first prototype detectors for the 40 GHz focal plane.

  4. Live cell CRISPR-imaging in plants reveals dynamic telomere movements

    KAUST Repository

    Dreissig, Steven

    2017-05-16

    Elucidating the spatio-temporal organization of the genome inside the nucleus is imperative to understand the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies which reveal genomic information and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial CRISPR-Cas9 system. By fusing eGFP/mRuby2 to the catalytically inactive version of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm within 30 minutes during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for imaging of multiple genomic loci in live plants cells. CRISPR-imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells.

  5. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods

    Directory of Open Access Journals (Sweden)

    Blanca eLizarbe

    2013-06-01

    Full Text Available We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI and Spectroscopy (MRS methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main Magnetic Resonance Imaging and Spectroscopy strategies that have been used to investigate appetite regulation. Manganese enhanced magnetic resonance imaging (MEMRI, Blood oxygenation level dependent contrast (BOLD and Diffusion weighted magnetic resonance imaging (DWI have revealed Mn2+accumulations, augmented oxygen consumptions and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks, becoming eventually MRI and MRS detectable.

  6. Mars Global Surveyor measurements of solar storms and their effects

    Science.gov (United States)

    Brain, D. A.; Delory, G. T.; Lillis, R. J.; Ulusen, D.; Mitchell, D.; Luhmann, J. G.; Falkenberg, T. V.

    2010-12-01

    Space weather events in the form of solar photons and energetic charged particles provide brief but relatively intense periods of energy input to the Martian plasma environment and atmosphere, with implications for a number of science and exploration-related issues. The Mars Global Surveyor (MGS) spacecraft orbited Mars for more than 9 years, and was capable of indirectly detecting space weather events and their effects. Shocks associated with passing coronal mass ejections are evident in MGS magnetometer data, and in proxies for upstream solar wind pressure at 1.5 AU derived from magnetometer measurements. Fluxes of solar energetic particles with energies greater than ˜30 MeV are sometimes evident in the background count rates of the MGS electron instrument. Measurements of the background count rates at altitudes of ˜400 km over a seven year period provide an unprecedented long-baseline data set of the energetic particle environment at Mars over a significant fraction of a solar cycle. We will present results of analyses pertaining to three main uses of MGS observations of solar storms. First, by combining MGS measurements of solar storms with terrestrial and solar measurements, we have analyzed the propagation of individual solar storm events from the Sun throughout the inner heliosphere. Next, we have used MGS particle and field measurements to study the effect of solar storms on the Martian plasma environment - including increased fluxes of 10-20 keV electrons close to the planet and influences on auroral activity. Finally, we have studied the influence of solar storms on the Martian upper atmosphere - including suprathermal electrons produced in the atmosphere via impact ionization and a correlation of solar storm periods with ionospheric electron density profiles.

  7. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    Science.gov (United States)

    Paul, F.

    2015-11-01

    Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider public. For this study, animated image sequences were created for four regions in the central Karakoram mountain range over a 25-year time period (1990-2015) from freely available image quick-looks of orthorectified Landsat scenes. The animations play automatically in a web browser and reveal highly complex patterns of glacier flow and surge dynamics that are difficult to obtain by other methods. In contrast to other regions, surging glaciers in the Karakoram are often small (10 km2 or less), steep, debris-free, and advance for several years to decades at relatively low annual rates (about 100 m a-1). These characteristics overlap with those of non-surge-type glaciers, making a clear identification difficult. However, as in other regions, the surging glaciers in the central Karakoram also show sudden increases of flow velocity and mass waves travelling down glacier. The surges of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few decades.

  8. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods

    Science.gov (United States)

    Lizarbe, Blanca; Benitez, Ania; Peláez Brioso, Gerardo A.; Sánchez-Montañés, Manuel; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián

    2013-01-01

    We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable. PMID:23781199

  9. Perancangan Aplikasi Komputer Berbasis Android untuk Survei Kondisi Kapal oleh Owner Surveyor

    Directory of Open Access Journals (Sweden)

    Paul Stevan Haloho

    2017-01-01

    Full Text Available Survei kondisi kapal adalah survei yang dilakukan oleh seorang Owner Surveyor untuk melaporkan kondisi aktual kapal beserta bagian-bagiannya. Proses survei yang dilakukan saat ini masih dilakukan secara manual dimana seorang Owner Surveyor melakukan survei berdasarkan daftar survei yang diterbitkan oleh perusahaan pemilik kapal. Hasil survei kondisi akan disajikan dalam bentuk laporan yang nantinya akan diserahkan kepada pemilik kapal sebagai bahan pertimbangan untuk dilakukannya “repair” dan “maintenance”. Proses survei yang dilakukan saat ini tentu saja kurang efektif untuk dilakukan, mengingat tidak semua Owner Surveyor memiliki pengetahuan dan pengalaman yang sama serta proses pembuatan laporan hasil survei yang sering memakan waktu lama. Penelitian ini bertujuan untuk merancang sebuah aplikasi komputer berbasis android yang dapat membantu seorang Owner Surveyor dalam melakukan proses survei kondisi. Dalam aplikasi ini memuat fasilitas daftar survei, review survei, updating survei, dan menu untuk menambahkan Owner Surveyor. Aplikasi ini telah diujicobakan kepada beberapa responden yang memiliki pengalaman survei kapal dan pihak-pihak yang memiliki latar belakang pendidikan di bidang perkapalan. Pengujian ini dilakukan dalam bentuk kuisioner yang bertujuan untuk mengetahui penilaian para responden terhadap aplikasi ini. Dari hasil kuisioner dapat disimpulkan bahwa aplikasi ini sangat diperlukan dalam mendukung kegiatan survei kondisi kapal.

  10. Quantitative studies of volcanic processes on Mars using data from the Mars Global Surveyor

    Science.gov (United States)

    Bishop, Louise Jane

    Volcanic processes on Mars were investigated using topographic profiles derived with the help of IDL software from data collected by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor Mission (MGS) in 1997-2001 and images obtained by the MGS Mars Orbiter Camera (MOC) and by the earlier Viking mission. Thickness and slope values for lava flows at both Elysium Mons and Alba Patera made it possible to compute flow emplacement times and effusion rates using the flow growth model proposed by C. R. J. Kilburn and R. M. C Lopes in 1990. Geological mapping of the Elysium volcanic region showed that Elysium Mons was emplaced as a result of a single shift in vent position on top of an older volcanic edifice, here termed the Ancient Volcanic Edifice (AVE). This implies that there have been substantial variations in both position and time for the magma supply. Calculations suggest that the flows at Alba Patera were emplaced more quickly than those at Elysium Mons, possibly owing to differences in fissure width and lava composition. There is evidence for both aa and pahoehoe on the summit areas of Elysium Mons and Alba Patera. The presence of aa is consistent with the view that long lava flows on Mars are emplaced quickly. Pahoehoe flows imply slow emplacement, and their inferred presence on Mars provides support for the theory that long terrestrial lavas are often emplaced as sheets of inflated pahoehoe. MOC image analysis indicated that late-stage explosive activity has occurred at several Martian volcanoes where it was previously undetected, contrary to the prevalent view that Martian volcanism evolves from explosive to effusive activity. To resolve the many ambiguities inherent in morphological data and imagery the need remains for ground truthing by experienced observers and detailed geochemical analyses in situ or by means of a sample return mission

  11. Long-term time-lapse live imaging reveals extensive cell migration during annelid regeneration.

    Science.gov (United States)

    Zattara, Eduardo E; Turlington, Kate W; Bely, Alexandra E

    2016-03-23

    Time-lapse imaging has proven highly valuable for studying development, yielding data of much finer resolution than traditional "still-shot" studies and allowing direct examination of tissue and cell dynamics. A major challenge for time-lapse imaging of animals is keeping specimens immobile yet healthy for extended periods of time. Although this is often feasible for embryos, the difficulty of immobilizing typically motile juvenile and adult stages remains a persistent obstacle to time-lapse imaging of post-embryonic development. Here we describe a new method for long-duration time-lapse imaging of adults of the small freshwater annelid Pristina leidyi and use this method to investigate its regenerative processes. Specimens are immobilized with tetrodotoxin, resulting in irreversible paralysis yet apparently normal regeneration, and mounted in agarose surrounded by culture water or halocarbon oil, to prevent dehydration but allowing gas exchange. Using this method, worms can be imaged continuously and at high spatial-temporal resolution for up to 5 days, spanning the entire regeneration process. We performed a fine-scale analysis of regeneration growth rate and characterized cell migration dynamics during early regeneration. Our studies reveal the migration of several putative cell types, including one strongly resembling published descriptions of annelid neoblasts, a cell type suggested to be migratory based on "still-shot" studies and long hypothesized to be linked to regenerative success in annelids. Combining neurotoxin-based paralysis, live mounting techniques and a starvation-tolerant study system has allowed us to obtain the most extensive high-resolution longitudinal recordings of full anterior and posterior regeneration in an invertebrate, and to detect and characterize several cell types undergoing extensive migration during this process. We expect the tetrodotoxin paralysis and time-lapse imaging methods presented here to be broadly useful in studying

  12. HUBBLE WATCHES THE RED PLANET AS MARS GLOBAL SURVEYOR BEGINS AEROBRAKING

    Science.gov (United States)

    2002-01-01

    his NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere). This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations. Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking. Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds. Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view. The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this observation. Mars was 158

  13. The phenotypic flexibility of the visceral organs of pythons during digestion revealed by modern imaging techniques

    DEFF Research Database (Denmark)

    Hansen, Kasper; Lauridsen, Henrik; Nielsen, Tobias Wang

    the visceral organs and intestines. Fasting Burmese pythons (Python molurus) were scanned before and at 2, 16, 24, 40, 48, 72 and 132 hours after ingestion of one rat. Acquired images revealed a gradual disappearance of the meal accompanied by an overall expansion of the intestine, shrinking of the gallbladder......, and a 30% increase in heart volume. These immediate responses following ingestion are consistent with previous invasive studies of pythons. In conclusion, our study showed that MRI and CT are capable to repeatedly and non-invasively image the phenotypic flexibility of internal organs in vertebrates.......Pythons, renowned for their abilities to fast for manybmonths and ingest very large meals, exhibit extreme physiological adaptations to their “sit-and-wait predator” lifestyle. In particular, the size and function of their visceral organs are rapidly up- and downregulated during the transitions...

  14. The phenotypic flexibility of the visceral organs of pythons during digestion revealed by modern imaging techniques

    DEFF Research Database (Denmark)

    Hansen, Kasper; Lauridsen, Henrik; Nielsen, Tobias Wang

    Pythons, renowned for their abilities to fast for manybmonths and ingest very large meals, exhibit extreme physiological adaptations to their “sit-and-wait predator” lifestyle. In particular, the size and function of their visceral organs are rapidly up- and downregulated during the transitions...... the visceral organs and intestines. Fasting Burmese pythons (Python molurus) were scanned before and at 2, 16, 24, 40, 48, 72 and 132 hours after ingestion of one rat. Acquired images revealed a gradual disappearance of the meal accompanied by an overall expansion of the intestine, shrinking of the gallbladder......, and a 30% increase in heart volume. These immediate responses following ingestion are consistent with previous invasive studies of pythons. In conclusion, our study showed that MRI and CT are capable to repeatedly and non-invasively image the phenotypic flexibility of internal organs in vertebrates....

  15. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  16. SAIC收购危险物探测系统提供商Reveal Imaging

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    SAIC(Science Applications International Corporation)公司收购了一家从事危险物探测系统以及服务提供商Reveal Imaging Technologies。Reveal公司重点开发准确、高效的机场行李扫描安检技术,2004年美国运输安全署(TSA)认可其爆炸物探测系统用于行李安检,至今其爆炸物探测系统和自动化危险探测技术仍服务于TSA。

  17. Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging

    Science.gov (United States)

    Yan, Zewu; Ju, Li; Eon, François; Gras, Slawomir; Zhao, Chunnong; Jacob, John; Blair, David G.

    2004-03-01

    Rayleigh scattering in test masses can introduce noise and reduce the sensitivity of laser interferometric gravitational wave detectors. In this paper, we present laser Rayleigh scattering imaging as a technique to investigate sapphire test masses. The system provides three-dimensional Rayleigh scattering mapping of entire test masses and quantitative evaluation of the Rayleigh scattering coefficient. Rayleigh scattering mapping of two sapphire samples reveals point defects as well as inhomogeneous structures in the samples. We present results showing significant non-uniform scattering within two 4.5 kg sapphire test masses manufactured by the heat exchanger method.

  18. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    Science.gov (United States)

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-10-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene-graphene and graphene-substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.

  19. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    Science.gov (United States)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2011-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor 1lI spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor 1lI camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the Apollo 12 LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing were reexamined by a KSC research team using SEM/EDS and XPS analysis. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues. Several likely scenarios are proposed to explain the Surveyor III dust observations. These include electrostatic attraction of the dust to the surface of the Surveyor as a result of electrostatic charging of the jet gas exiting the engine nozzle during descent; dust blown by the Apollo 12 LM fly-by while on its descent trajectory; dust ejected from the lunar surface due to gas forced into the soil by the Surveyor 1lI rocket nozzle, based on Darcy's law; and mechanical movement of dust during the Surveyor landing. Even though an absolute answer is not possible based on available data and theory, various computational models are employed to estimate the feasibility of each of these proposed mechanisms. Scenarios are then discussed which combine multiple mechanisms to produce results consistent with observations.

  20. Gaps in the HD169142 protoplanetary disk revealed by polarimetric imaging: Signs of ongoing planet formation?

    CERN Document Server

    Quanz, Sascha P; Buenzli, Esther; Garufi, Antonio; Schmid, Hans Martin; Wolf, Sebastian

    2013-01-01

    We present H-band VLT/NACO polarized light images of the Herbig Ae/Be star HD169142 probing its protoplanetary disk as close as ~0.1" to the star. Our images trace the face-on disk out to ~1.7" (~250 AU) and reveal distinct sub-structures for the first time: 1) the inner disk (<20 AU) appears to be depleted in scattering dust grains; 2) an unresolved disk rim is imaged at ~25 AU; 3) an annular gap extends from ~40 - 70 AU; 4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting - but yet to be proven - one. Outside of ~85 AU the surface brightness drops off roughly r^{-3.3}, but describing the disk regions between 85-120 AU / 120-250 AU separately with power-laws r^{-2.6} / r^{-3.9} provides a better fit hinting towards another discontinuity in the disk surface. The flux ratio between the disk integrated polarized light and the central star is ~4.1 * 10^{-3}. Finally, com...

  1. Psychophysics reveals a right hemispheric contribution to body image distortions in women but not men.

    Science.gov (United States)

    Mohr, Christine; Porter, Gillian; Benton, Christopher P

    2007-10-01

    We tested the hypothesis that the right cerebral hemisphere contributes to the enhanced body image distortions seen in women when compared to men. Using classical psychophysics, 60 right-handed healthy participants (30 women) were briefly presented with size-distorted pictures of themselves, another person (an experimenter), and a non-corporal, familiar object (a coke bottle) to the central, right, and left visual field. Participants had to decide whether the presented stimulus was fatter or thinner than the real body/object, and thus compare the presented picture with the stored representation of the stimulus from memory. From these data we extracted the amount of image distortion at which participants judged the various stimuli to be veridical. We found that right visual field presentations (initial left hemisphere processing) revealed a general "fatter" bias, which was more evident for bodies than for objects. Crucially, a "fatter" bias with own body presentations in the left visual field (initial right hemisphere processing) was only found for women. Our findings suggest that right visual field presentation results in a general size overestimation, and that this overestimation is more pronounced for bodies than for objects. Moreover, the particular "fatter" bias after own body presentations to the left visual field in women supports the notion of a specific role of the right hemisphere in sex-specific body image distortion.

  2. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles.

    Science.gov (United States)

    Lin, Shih-Ping; Lin, Yi-Hsun; Fan, Shih-Chen; Huang, Bu-Miin; Lin, Wei-Yin; Wang, Shyh-Hau; Shung, K Kirk; Su, Fong-Chin; Wu, Chia-Ching

    2016-01-01

    Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP) for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis.

  3. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles

    Directory of Open Access Journals (Sweden)

    Shih-Ping Lin

    2016-01-01

    Full Text Available Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis.

  4. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mathieu Salaün

    Full Text Available Several matrix metalloproteinases (MMPs are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging.To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma.K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors.In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27, but in none of the non-invasive (0/4 (p=0.001.MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer.

  5. Evaluation of Cast Re-Orientation on a Dental Surveyor Using Three Tripod Techniques: A Survey and In Vitro Study.

    Science.gov (United States)

    Sayed, Mohammed E; Busaily, Idris A; Nahari, Rana J; Hakami, Ruaa O; Maashi, Sami M; Ramireddy, Naveen R

    2017-01-18

    curriculum. Wilcoxon Matched-pairs test revealed that technique C was the least difficult and most practical (p = 0.0001, 0.0427, respectively). One-way ANOVA revealed significance in angle differences from the set position for technique A in lateral tilt and techniques A and B in AP tilt (p = 0.0466, 0.0194, 0.0424, respectively). A comparison of positivity (overtilt) and negativity (undertilt) between the three techniques in lateral and AP tilts using Chi-square test resulted in significant differences in both directions of tilt (p Technique C resulted in remounting the casts at the control position in 15.64% in both directions; this was a higher percentage than the other two techniques (A and B). Wilcoxon Matched-pairs test was used to compare between the techniques relative to angle differences from the standard position. No differences were found between technique A and B in lateral tilt position (p = 0.9271), while significance was detected in AP tilt (p technique C in comparison to A (p technique C (cemented post technique) was more favored among the respondents across all educational levels. This technique presented high potential in accurately reorienting casts on the dental surveyor in comparison to the tripod points and scoring techniques (p < 0.0001). © 2017 by the American College of Prosthodontists.

  6. The organization of thinking: what functional brain imaging reveals about the neuroarchitecture of complex cognition.

    Science.gov (United States)

    Just, Marcel Adam; Varma, Sashank

    2007-09-01

    Recent findings in brain imaging, particularly in fMRI, are beginning to reveal some of the fundamental properties of the organization of the cortical systems that underpin complex cognition. We propose an emerging set of operating principles that govern this organization, characterizing the system as a set of collaborating cortical centers that operate as a large-scale cortical network. Two of the network's critical features are that it is resource constrained and dynamically configured, with resource constraints and demands dynamically shaping the network topology. The operating principles are embodied in a cognitive neuroarchitecture, 4CAPS, consisting of a number of interacting computational centers that correspond to activating cortical areas. Each 4CAPS center is a hybrid production system, possessing both symbolic and connectionist attributes. We describe 4CAPS models of sentence comprehension, spatial problem solving, and complex multitasking and compare the accounts of these models with brain activation and behavioral results. Finally, we compare 4CAPS with other proposed neuroarchitectures.

  7. Fragmentation process during Ho:YAG laser lithotripsy revealed by time-resolved imaging

    Science.gov (United States)

    Beghuin, Didier; Delacretaz, Guy P.; Schmidlin, Franz R.; Rink, Klaus

    1998-01-01

    The stone fragmentation process induced during Ho:YAG laser lithotripsy was observed by time-resolved flash video imaging. Possible acoustic transient occurrence was simultaneously monitored with a PVDF needle hydrophone. We used artificial and cystine kidney stones. We observed that, although the fragmentation process is accompanied with the formation of a cavitation bubble, cavitation has a minimal incidence on stone fragmentation. Fragment ejection is mainly due to a direct laser stone heating and vaporization of stone organic constituents and interstitial water. The minimal effect of the cavitation bubble for fragmentation is confirmed by acoustic transients measurements, which reveal weak pressure transients. This is in contrast with the fragmentation mechanisms induced by laser of shorter pulse duration.

  8. Adenovirus Structure as Revealed by X-Ray Crystallography, Electron Microscopy, and Difference Imaging

    Science.gov (United States)

    Stewart, Phoebe L.; Burnett, Roger M.

    1993-03-01

    The three-dimensional structure of human type 2 adenovirus was studied by combining X-ray crystallography and electron microscopy in a novel way. The 2.9 Å crystal structure of the major capsid protein, hexon, was positioned into a three-dimensional image reconstruction of the intact virus that was derived from cryo-electron micrographs. A three-dimensional difference map was generated by subtracting 240 copies of the crystallographic hexon from the density of the intact virus. This map revealed several minor structural proteins acting as “cement” to stabilize the assembly. The current state of structural knowledge concerning the location of the polypeptide components and the viral DNA is presented.

  9. Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging

    Science.gov (United States)

    Mocella, Vito; Brun, Emmanuel; Ferrero, Claudio; Delattre, Daniel

    2015-01-01

    Hundreds of papyrus rolls, buried by the eruption of Mount Vesuvius in 79 AD and belonging to the only library passed on from Antiquity, were discovered 260 years ago at Herculaneum. These carbonized papyri are extremely fragile and are inevitably damaged or destroyed in the process of trying to open them to read their contents. In recent years, new imaging techniques have been developed to read the texts without unwrapping the rolls. Until now, specialists have been unable to view the carbon-based ink of these papyri, even when they could penetrate the different layers of their spiral structure. Here for the first time, we show that X-ray phase-contrast tomography can reveal various letters hidden inside the precious papyri without unrolling them. This attempt opens up new opportunities to read many Herculaneum papyri, which are still rolled up, thus enhancing our knowledge of ancient Greek literature and philosophy.

  10. The role of quantity surveyors in public–private partnerships in South Africa

    Directory of Open Access Journals (Sweden)

    Hoffie Cruywagen

    2017-05-01

    Full Text Available Background: Quantity surveyors play an important role in providing cost and contractual advice in the built environment. This article seeks to investigate the current extent of their involvement in public–private partnerships (PPPs in South Africa. Aim: The study intends to establish factors that influence quantity surveyors’ participation in PPPs. Methodology: A mixed-methods research approach was followed by firstly conducting a survey amongst South African quantity surveyors in order to determine their level of participation in PPPs. For triangulation purposes, a case study was also conducted. Results: The results of the research show that, although quantity surveyors have the corresponding skills and competencies required in a PPP project, their current involvement in PPPs in South Africa is limited and that there is a greater role they can play in future. Conclusion: Quantity surveyors are uniquely positioned to play a bigger role in the implementation of PPPs in South Africa.

  11. 120 Years of Education for Mine Surveyors in South Africa A ...

    African Journals Online (AJOL)

    Grobler, Hennie

    identified as the new centre of gravity of mining activities, where in 1903, it was ... 1The NQF level is stated as an approximate value as these qualifications have ..... in the survey department, …after obtaining his mine surveyors certificate, ...

  12. The Far-Infrared Surveyor Mission study: paper I, the genesis

    NARCIS (Netherlands)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; Ennico, K.; Melnick, G. J.; Milam, S.; Narayanan, D.; Pontoppidan, K.; Pope, A.; Roellig, T.; Sandstrom, K.; Su, K. Y. L.; Vieira, J.; Wright, E.; Zmuidzinas, J.; Alato, S.; Carey, S.; Gerin, M.; Helmich, F.; Menten, K.; Scott, D.; Sakon, I.; Vavrek, R.

    2016-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some prelimin

  13. The Far-Infrared Surveyor Mission study: paper I, the genesis

    NARCIS (Netherlands)

    Meixner, M.; Cooray, A.; Carter, R.; DiPirro, M.; Flores, A.; Leisawitz, D.; Armus, L.; Battersby, C.; Bergin, E.; Bradford, C. M.; Ennico, K.; Melnick, G. J.; Milam, S.; Narayanan, D.; Pontoppidan, K.; Pope, A.; Roellig, T.; Sandstrom, K.; Su, K. Y. L.; Vieira, J.; Wright, E.; Zmuidzinas, J.; Alato, S.; Carey, S.; Gerin, M.; Helmich, F.; Menten, K.; Scott, D.; Sakon, I.; Vavrek, R.

    2016-01-01

    This paper describes the beginning of the Far-Infrared Surveyor mission study for NASA's Astrophysics Decadal 2020. We describe the scope of the study, and the open process approach of the Science and Technology Definition Team. We are currently developing the science cases and provide some

  14. Identifying and Describing Tutor Archetypes: The Pragmatist, the Architect, and the Surveyor

    Science.gov (United States)

    Harootunian, Jeff A.; Quinn, Robert J.

    2008-01-01

    In this article, the authors identify and anecdotally describe three tutor archetypes: the pragmatist, the architect, and the surveyor. These descriptions, based on observations of remedial mathematics tutors at a land-grant university, shed light on a variety of philosophical beliefs regarding and pedagogical approaches to tutoring. An analysis…

  15. Microstructural mechanisms of analgesia in percutaneous cervical cordotomy revealed by diffusion tensor imaging.

    Science.gov (United States)

    Gebarski, Stephen S; Chiravuri, Srinivas; Foerster, Bradley R; Patil, Parag G

    2017-09-05

    The purpose of this study is to demonstrate the potential of diffusion tensor imaging (DTI) to reveal structural mechanisms underlying spinal ablative procedures, including percutaneous radiofrequency cordotomy (PRFC). PRFC is a surgical procedure that produces analgesia through focal ablation of the lateral spinothalamic tract (STT), thereby interrupting the flow of pain information from the periphery to the brain. To date, studies regarding mechanisms of analgesia after PRFC have been limited to postmortem cadaveric dissection and histology. However, with recent advances in DTI, the opportunity has arisen to study the STT non-invasively in vivo. In this technical note, an individual with successful pain relief following unilateral STT PRFC was examined using DTI, with the contralateral STT serving as an internal control. PRFC substantially reduced rostrocaudal directional DTI signal in the STT from the lesion in the cervical spinal cord through the pons and mesencephalon. Our findings confirm that focal ablation and anterograde degeneration accompany the analgesic effects of PRFC. In vivo imaging of the STT with DTI may contribute to surgical targeting for PRFC procedures, better understanding of the therapeutic and untoward effects of PRFC, and a deeper understanding of spinothalamic contributions to nociception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Repeated Structural Imaging Reveals Nonlinear Progression of Experience-Dependent Volume Changes in Human Motor Cortex.

    Science.gov (United States)

    Wenger, Elisabeth; Kühn, Simone; Verrel, Julius; Mårtensson, Johan; Bodammer, Nils Christian; Lindenberger, Ulman; Lövdén, Martin

    2017-05-01

    Evidence for experience-dependent structural brain change in adult humans is accumulating. However, its time course is not well understood, as intervention studies typically consist of only 2 imaging sessions (before vs. after training). We acquired up to 18 structural magnetic resonance images over a 7-week period while 15 right-handed participants practiced left-hand writing and drawing. After 4 weeks, we observed increases in gray matter of both left and right primary motor cortices relative to a control group; 3 weeks later, these differences were no longer reliable. Time-series analyses revealed that gray matter in the primary motor cortices expanded during the first 4 weeks and then partially renormalized, in particular in the right hemisphere, despite continued practice and increasing task proficiency. Similar patterns of expansion followed by partial renormalization are also found in synaptogenesis, cortical map plasticity, and maturation, and may qualify as a general principle of structural plasticity. Research on human brain plasticity needs to encompass more than 2 measurement occasions to capture expansion and potential renormalization processes over time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Fish population dynamics revealed by instantaneous continental-shelf scale acoustic imaging

    Science.gov (United States)

    Ratilal, Purnima; Symonds, Deanelle; Makris, Nicholas C.; Nero, Redwood

    2005-04-01

    Video images of fish population densities over vast areas of the New Jersey continental shelf have been produced from acoustic data collected on a long range bistatic sonar system during the Acoustic Clutter 2003 experiment. Areal fish population densities were obtained after correcting the acoustic data for two-way transmission loss modeled using the range-dependent parabolic equation, spatially varying beampattern of the array, source level and mean target strength per fish. The wide-area fish density images reveal the temporal evolution of fish school distributions, their migration, as well as shoal formation and fragmentation at 50 s interval. Time series of the fish population within various density thresholds were made over the period of a day in an area containing millions of fish that at some instances formed a massive shoal extending over 12 km. The analysis shows that fish population in the area can be decomposed into a stable ambient population from lower-fish-density regions and a time-varying population composed from higher-density regions. Estimates of the differential speed between population centers of various shoals show that the average speed is on the order of a slow-moving surface vessel or submarine.

  18. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    Science.gov (United States)

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  19. Lateral and medial ventral occipitotemporal regions interact during the recognition of images revealed from noise

    Directory of Open Access Journals (Sweden)

    Barbara eNordhjem

    2016-01-01

    Full Text Available Several studies suggest different functional roles for the medial and the lateral ventral sections in object recognition. Texture and surface information is processed in medial regions, while shape information is processed in lateral sections. This begs the question whether and how these functionally specialized sections interact with each other and with early visual cortex to facilitate object recognition. In the current research, we set out to answer this question. In an fMRI study, thirteen subjects viewed and recognized images of objects and animals that were gradually revealed from noise while their brains were being scanned. We applied dynamic causal modeling (DCM – a method to characterize network interactions – to determine the modulatory effect of object recognition on a network comprising the primary visual cortex (V1, the lingual gyrus (LG in medial ventral cortex and the lateral occipital cortex (LO. We found that object recognition modulated the bilateral connectivity between LG and LO. Moreover, the feed-forward connectivity from V1 to LG and LO was modulated, while there was no evidence for feedback from these regions to V1 during object recognition. In particular, the interaction between medial and lateral areas supports a framework in which visual recognition of objects is achieved by networked regions that integrate information on image statistics, scene content and shape – rather than by a single categorically specialized region – within the ventral visual cortex.

  20. Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria.

    Science.gov (United States)

    Keil, Vera C; Funke, Frank; Zeug, Andre; Schild, Detlev; Müller, Michael

    2011-11-01

    Using the mitochondrial potential (ΔΨ(m)) marker JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide) and high-resolution imaging, we functionally analyzed mitochondria in cultured rat hippocampal astrocytes. Ratiometric detection of JC-1 fluorescence identified mitochondria with high and low ΔΨ(m). Mitochondrial density was highest in the perinuclear region, whereas ΔΨ(m) tended to be higher in peripheral mitochondria. Spontaneous ΔΨ(m) fluctuations, representing episodes of increased energization, appeared in individual mitochondria or synchronized in mitochondrial clusters. They continued upon withdrawal of extracellular Ca(2+), but were antagonized by dantrolene or 2-aminoethoxydiphenylborate (2-APB). Fluo-3 imaging revealed local cytosolic Ca(2+) transients with similar kinetics that also were depressed by dantrolene and 2-APB. Massive cellular Ca(2+) load or metabolic impairment abolished ΔΨ(m) fluctuations, occasionally evoking heterogeneous mitochondrial depolarizations. The detected diversity and ΔΨ(m) heterogeneity of mitochondria confirms that even in less structurally polarized cells, such as astrocytes, specialized mitochondrial subpopulations coexist. We conclude that ΔΨ(m) fluctuations are an indication of mitochondrial viability and are triggered by local Ca(2+) release from the endoplasmic reticulum. This spatially confined organelle crosstalk contributes to the functional heterogeneity of mitochondria and may serve to adapt the metabolism of glial cells to the activity and metabolic demand of complex neuronal networks. The established ratiometric JC-1 imaging-especially combined with two-photon microscopy-enables quantitative functional analyses of individual mitochondria as well as the comparison of mitochondrial heterogeneity in different preparations and/or treatment conditions.

  1. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs.

    Science.gov (United States)

    de Winde, Charlotte M; Zuidscherwoude, Malou; Vasaturo, Angela; van der Schaaf, Alie; Figdor, Carl G; van Spriel, Annemiek B

    2015-08-01

    Multispectral imaging is a novel microscopy technique that combines imaging with spectroscopy to obtain both quantitative expression data and tissue distribution of different cellular markers. Tetraspanins CD37 and CD53 are four-transmembrane proteins involved in cellular and humoral immune responses. However, comprehensive immunohistochemical analyses of CD37 and CD53 in human lymphoid organs have not been performed so far. We investigated CD37 and CD53 protein expression on primary human immune cell subsets in blood and in primary and secondary lymphoid organs. Both tetraspanins were prominently expressed on antigen-presenting cells, with highest expression of CD37 on B lymphocytes. Analysis of subcellular distribution showed presence of both tetraspanins on the plasma membrane and on endosomes. In addition, CD53 was also present on lysosomes. Quantitative analysis of expression and localization of CD37 and CD53 on lymphocytes within lymphoid tissues by multispectral imaging revealed high expression of both tetraspanins on CD20(+) cells in B cell follicles in human spleen and appendix. CD3(+) T cells within splenic T cell zones expressed lower levels of CD37 and CD53 compared to T cells in the red pulp of human spleen. B cells in human bone marrow highly expressed CD37, whereas the expression of CD53 was low. In conclusion, we demonstrate differential expression of CD37 and CD53 on primary human immune cells, their subcellular localization and their quantitative distribution in human lymphoid organs. This study provides a solid basis for better insight into the function of tetraspanins in the human immune response.

  2. Mars Global Surveyor Ka-Band Frequency Data Analysis

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  3. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    Science.gov (United States)

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-01-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite. PMID:27759024

  4. Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging

    KAUST Repository

    Hajjar, Dina

    2017-06-13

    Natural products have been used for medical applications since ancient times. Commonly, natural products are structurally complex chemical compounds that efficiently interact with their biological targets, making them useful drug candidates in cancer therapy. Here, we used cell-based phenotypic profiling and image-based high-content screening to study the mode of action and potential cellular targets of plants historically used in Saudi Arabia\\'s traditional medicine. We compared the cytological profiles of fractions taken from Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam), and Citrullus colocynthis (Hanzal) with a set of reference compounds with established modes of action. Cluster analyses of the cytological profiles of the tested compounds suggested that these plants contain possible topoisomerase inhibitors that could be effective in cancer treatment. Using histone H2AX phosphorylation as a marker for DNA damage, we discovered that some of the compounds induced double-strand DNA breaks. Furthermore, chemical analysis of the active fraction isolated from Juniperus phoenicea revealed possible anti-cancer compounds. Our results demonstrate the usefulness of cell-based phenotypic screening of natural products to reveal their biological activities.

  5. Locations and types of ruptures involved in the 2008 Wenchuan earthquake revealed by SAR image matching

    Science.gov (United States)

    Kobayashi, T.; Takada, Y.; Furuya, M.; Murakami, M.

    2009-12-01

    Introduction: A catastrophic earthquake with a moment magnitude of 7.9 struck China’s Sichuan area on 12 May 2008. The rupture was thought to proceed northeastward along the Longmen Shan fault zone (LMSFZ), but it remained uncertain where and how the faults were involved in the seismic event. Interferometric SAR (InSAR) analysis has an advantage of detecting ground deformation in a vast region with high precision. However, for the Sichuan event, the standard InSAR approach was not helpful in knowing the faults directly related to the seismic rupture, due to a wide coherent loss area in the proximity of the fault zone. Thus, in order to reveal the unknown surface displacements, we conducted a SAR image matching procedure that enables us to robustly detect large ground deformation even in an incoherent area. Although similar approaches can be taken with optical images to detect surface displacements, SAR images are advantageous because of the radar’s all-weather detection capability. In this presentation we will show a strong advantage of SAR data for inland large earthquakes. Analysis Method: We use ALOS/PALSAR data on the ascending orbital paths. We process the SAR data from a level-1.0 product using a software package Gamma. After conducting coregistration between two images acquired before and after the mainshock, we divide the single-look SAR amplitude images into patches and calculate an offset between the corresponding patches by an intensity tracking method. This method is performed by cross-correlating samples of backscatter intensity of a master image with those of a slave image. To reduce the artificial offsets in range component, we apply an elevation dependent correction incorporating SRTM3 DEM data. Results: We have successfully obtained the surface deformation in range component: A sharp displacement discontinuity with a relative motion of 1-2 m appears over a length of 200 km along the LMSFZ, which demonstrates that the main rupture has proceeded

  6. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    Science.gov (United States)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-11-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports

  7. What Images Reveal: a Comparative Study of Science Images between Australian and Taiwanese Junior High School Textbooks

    Science.gov (United States)

    Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua; Chang, Huey-Por

    2017-07-01

    From a social semiotic perspective, image designs in science textbooks are inevitably influenced by the sociocultural context in which the books are produced. The learning environments of Australia and Taiwan vary greatly. Drawing on social semiotics and cognitive science, this study compares classificational images in Australian and Taiwanese junior high school science textbooks. Classificational images are important kinds of images, which can represent taxonomic relations among objects as reported by Kress and van Leeuwen (Reading images: the grammar of visual design, 2006). An analysis of the images from sample chapters in Australian and Taiwanese high school science textbooks showed that the majority of the Taiwanese images are covert taxonomies, which represent hierarchical relations implicitly. In contrast, Australian classificational images included diversified designs, but particularly types with a tree structure which depicted overt taxonomies, explicitly representing hierarchical super-ordinate and subordinate relations. Many of the Taiwanese images are reminiscent of the specimen images in eighteenth century science texts representing "what truly is", while more Australian images emphasize structural objectivity. Moreover, Australian images support cognitive functions which facilitate reading comprehension. The relationships between image designs and learning environments are discussed and implications for textbook research and design are addressed.

  8. Analysis of neurogenesis during experimental autoimmune encephalomyelitis reveals pitfalls of bioluminescence imaging.

    Science.gov (United States)

    Ayzenberg, Ilya; Schlevogt, Sibylle; Metzdorf, Judith; Stahlke, Sarah; Pedreitturia, Xiomara; Hunfeld, Anika; Couillard-Despres, Sebastien; Kleiter, Ingo

    2015-01-01

    Bioluminescence imaging is a sensitive approach for longitudinal neuroimaging. Transgenic mice expressing luciferase under the promoter of doublecortin (DCX-luc), a specific marker of neuronal progenitor cells (NPC), allow monitoring of neurogenesis in living mice. Since the extent and time course of neurogenesis during autoimmune brain inflammation are controversial, we investigated neurogenesis in MOG-peptide induced experimental allergic encephalomyelitis (EAE) using DCX-luc reporter mice. We observed a marked, 2- to 4-fold increase of the bioluminescence signal intensity 10 days after EAE induction and a gradual decline 1-2 weeks thereafter. In contrast, immunostaining for DCX revealed no differences between EAE and control mice 2 and 4 weeks after immunization in zones of adult murine neurogenesis such as the dentate gyrus. Ex vivo bioluminescence imaging showed similar luciferase expression in brain homogenates of EAE and control animals. Apart from complete immunization including MOG-peptide also incomplete immunization with complete Freund´s adjuvant and pertussis toxin resulted in a rapid increase of the in vivo bioluminescence signal. Blood-brain barrier (BBB) leakage was demonstrated 10 days after both complete and incomplete immunization and might explain the increased bioluminescence signal in vivo. We conclude, that acute autoimmune inflammation in EAE does not alter neurogenesis, at least at the stage of DCX-expressing NPC. Effects of immunization on the BBB integrity must be considered when luciferase is used as a reporter within the CNS during the active stage of EAE. Models with stable CNS-restricted luciferase expression could serve as technically convenient way to evaluate BBB integrity in a longitudinal manner.

  9. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent adult stem cells which are recruited to the tumor microenvironment (TME and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

  10. Phase contrast imaging reveals low lung volumes and surface areas in the developing marsupial.

    Directory of Open Access Journals (Sweden)

    Shannon J Simpson

    Full Text Available Marsupials are born with immature lungs when compared to eutherian mammals and rely, to various extents, on cutaneous gas exchange in order to meet metabolic requirements. Indeed, the fat-tailed dunnart is born with lungs in the canalicular stage of development and relies almost entirely on the skin for gas exchange at birth; consequently undergoing the majority of lung development in air. Plane radiographs and computed tomography data sets were acquired using phase contrast imaging with a synchrotron radiation source for two marsupial species, the fat-tailed dunnart and the larger tammar wallaby, during the first weeks of postnatal life. Phase contrast imaging revealed that only two lung sacs contain air after the first hour of life in the fat-tailed dunnart. While the lung of the tammar wallaby was comparatively more developed, both species demonstrated massive increases in air sac number and architectural complexity during the postnatal period. In addition, both the tammar wallaby and fat-tailed dunnart had lower lung volumes and parenchymal surface areas than were expected from morphometrically determined allometric equations relating these variables to body mass during the neonatal period. However, lung volume is predicted to scale with mass as expected after the neonatal marsupial reaches a body mass of ∼1 g and no longer relies on the skin for gas exchange. Decreased lung volume in the marsupial neonate further supports the maxim that cutaneous gas exchange occurs in the marsupial neonate because the respiratory apparatus is not yet capable of meeting the gas exchange requirements of the newborn.

  11. The electromagnetic environment of Magnetic Resonance Imaging systems. Occupational exposure assessment reveals RF harmonics

    Science.gov (United States)

    Gourzoulidis, G.; Karabetsos, E.; Skamnakis, N.; Kappas, C.; Theodorou, K.; Tsougos, I.; Maris, T. G.

    2015-09-01

    Magnetic Resonance Imaging (MRI) systems played a crucial role in the postponement of the former occupational electromagnetic fields (EMF) European Directive (2004/40/EC) and in the formation of the latest exposure limits adopted in the new one (2013/35/EU). Moreover, the complex MRI environment will be finally excluded from the implementation of the new occupational limits, leading to an increased demand for Occupational Health and Safety (OHS) surveillance. The gradient function of MRI systems and the application of the RF excitation frequency result in low and high frequency exposures, respectively. This electromagnetic field exposure, in combination with the increased static magnetic field exposure, makes the MRI environment a unique case of combined EMF exposure. The electromagnetic field levels in close proximity of different MRI systems have been assessed at various frequencies. Quality Assurance (QA) & safety issues were also faced. Preliminary results show initial compliance with the forthcoming limits in each different frequency band, but also revealed peculiar RF harmonic components, of no safety concern, to the whole range detected (20-1000MHz). Further work is needed in order to clarify their origin and characteristics.

  12. In Vivo Imaging Reveals Composite Coding for Diagonal Motion in the Drosophila Visual System

    Science.gov (United States)

    Zhou, Wei; Chang, Jin

    2016-01-01

    Understanding information coding is important for resolving the functions of visual neural circuits. The motion vision system is a classic model for studying information coding as it contains a concise and complete information-processing circuit. In Drosophila, the axon terminals of motion-detection neurons (T4 and T5) project to the lobula plate, which comprises four regions that respond to the four cardinal directions of motion. The lobula plate thus represents a topographic map on a transverse plane. This enables us to study the coding of diagonal motion by investigating its response pattern. By using in vivo two-photon calcium imaging, we found that the axon terminals of T4 and T5 cells in the lobula plate were activated during diagonal motion. Further experiments showed that the response to diagonal motion is distributed over the following two regions compared to the cardinal directions of motion—a diagonal motion selective response region and a non-selective response region—which overlap with the response regions of the two vector-correlated cardinal directions of motion. Interestingly, the sizes of the non-selective response regions are linearly correlated with the angle of the diagonal motion. These results revealed that the Drosophila visual system employs a composite coding for diagonal motion that includes both independent coding and vector decomposition coding. PMID:27695103

  13. Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth.

    Directory of Open Access Journals (Sweden)

    Elias Gounaris

    Full Text Available It has been estimated that up to 30% of detectable polyps in patients regress spontaneously. One major challenge in the evaluation of effective therapy of cancer is the readout for tumor regression and favorable biological response to therapy. Inducible near infra-red (NIR fluorescent probes were utilized to visualize intestinal polyps of mice hemizygous for a novel truncation of the Adenomatous Polyposis coli (APC gene. Laser Scanning Confocal Microscopy in live mice allowed visualization of cathepsin activity in richly vascularized benign dysplastic lesions. Using biotinylated suicide inhibitors we quantified increased activities of the Cathepsin B & Z in the polyps. More than (3/4 of the probe signal was localized in CD11b(+Gr1(+ myeloid derived suppressor cells (MDSC and CD11b(+F4/80(+ macrophages infiltrating the lesions. Polyposis was attenuated through genetic ablation of cathepsin B, and suppressed by neutralization of TNFalpha in mice. In both cases, diminished probe signal was accounted for by loss of MDSC. Thus, in vivo NIR imaging of focal cathepsin activity reveals inflammatory reactions etiologically linked with cancer progression and is a suitable approach for monitoring response to therapy.

  14. Computational imaging reveals shape differences between normal and malignant prostates on MRI

    Science.gov (United States)

    Rusu, Mirabela; Purysko, Andrei S.; Verma, Sadhna; Kiechle, Jonathan; Gollamudi, Jay; Ghose, Soumya; Herrmann, Karin; Gulani, Vikas; Paspulati, Raj; Ponsky, Lee; Böhm, Maret; Haynes, Anne-Maree; Moses, Daniel; Shnier, Ron; Delprado, Warick; Thompson, James; Stricker, Phillip; Madabhushi, Anant

    2017-01-01

    We seek to characterize differences in the shape of the prostate and the central gland (combined central and transitional zones) between men with biopsy confirmed prostate cancer and men who were identified as not having prostate cancer either on account of a negative biopsy or had pelvic imaging done for a non-prostate malignancy. T2w MRI from 70 men were acquired at three institutions. The cancer positive group (PCa+) comprised 35 biopsy positive (Bx+) subjects from three institutions (Gleason scores: 6–9, Stage: T1–T3). The negative group (PCa−) combined 24 biopsy negative (Bx−) from two institutions and 11 subjects diagnosed with rectal cancer but with no clinical or MRI indications of prostate cancer (Cl−). The boundaries of the prostate and central gland were delineated on T2w MRI by two expert raters and were used to construct statistical shape atlases for the PCa+, Bx− and Cl− prostates. An atlas comparison was performed via per-voxel statistical tests to localize shape differences (significance assessed at p < 0.05). The atlas comparison revealed central gland hypertrophy in the Bx− subpopulation, resulting in significant volume and posterior side shape differences relative to PCa+ group. Significant differences in the corresponding prostate shapes were noted at the apex when comparing the Cl− and PCa+ prostates. PMID:28145532

  15. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    Science.gov (United States)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  16. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling.

    Science.gov (United States)

    Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin

    2017-07-01

    The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.

  17. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    Science.gov (United States)

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  18. Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer.

    Science.gov (United States)

    Kothari, Sonal; Phan, John H; Young, Andrew N; Wang, May D

    2011-11-01

    Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided diagnosis.

  19. Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge.

    Science.gov (United States)

    Michel, K; Michaelis, M; Mazzuoli, G; Mueller, K; Vanden Berghe, P; Schemann, M

    2011-12-15

    Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.

  20. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    Science.gov (United States)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2012-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.

  1. Solar wind rare gas analysis: Trapped solar wind helium and neon in Surveyor 3 material

    Science.gov (United States)

    Buehler, F.; Eberhardt, P.; Geiss, J.; Schwarzmueller, J.

    1972-01-01

    The He-4 and Ne-20 contents in sections of the Surveyor 3 support strut samples were determined by optical and scanning electron microscopy and are compared to the results of the Apollo solar wind composition (SWC) experiments. The He-4/Ne-20 ratio in the samples from the sunlit side of the strut was approximately 300; the ratios determined in Apollo 12 lunar fines and SWC foil were below 100. The He-4/He-3 ratios were also determined, and the ratio obtained from Surveyor 3 material is higher than those found with Apollo 11 and 12 SWC experiments. The effects of spallation by cosmic rays or solar protons, stripping by cosmic ray or energetic solar alpha particles, recycling of solar wind He and radiogenic Ne, He from terrestrial atmosphere, mass discrimination near the moon, mass dependence of trapping probability, diffusion, and contamination by lunar dust are considered.

  2. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz detector array of bolometric polarimeters

    CERN Document Server

    Appel, John W; Amiri, Mandana; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseleyb, Samuel H; Novakh, Giles; Reintsemad, Carl; Rostemab, Karwan; Stevensonb, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  3. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  4. The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)

    Science.gov (United States)

    Peterson, Bradley M.; Fischer, Debra; LUVOIR Science and Technology Definition Team

    2017-01-01

    LUVOIR is one of four potential large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. LUVOIR will have an 8 to16-m segmented primary mirror and operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The notional initial complement of instruments will include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a multi-resolution optical/NIR spectrograph. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable and upgradable. This is the first report by the LUVOIR STDT to the community on the top-level architectures we are studying, including preliminary capabilities of a mission with those parameters. The STDT seeks feedback from the astronomical community for key science investigations that can be undertaken with the notional instrument suite and to identify desirable capabilities that will enable additional key science.

  5. Assessment of Cost Management Functions of Quantity Surveyors with Lean Methodology

    Directory of Open Access Journals (Sweden)

    Maroof Opeyemi Anifowose

    2013-11-01

    Full Text Available The Construction industry in Nigeria is made up of a wide variety of activities which include the provision of professional and technical services to clients in the built environment. Despite the provision of these services to a large number of clients worldwide, the construction industry is still awash by the chronic problems of low productivity, insufficient quality, time over-runs, and poor safety, which hinder customer delivered value. The Just-In-Time phenomenon is a characteristic of lean production systems which operate with very little “fat” (e.g. excess inventory extra workers, wasted space.This study aimed at assessing the construction management function of the quantity surveyor in line with the principle of lean methodology (Just-In-Time. This was achieved by exploring the cost management function of the quantity surveyor, to investigate the current practice of cost management by quantity surveying firms. Data for the study were sourced primarily with the use of questionnaire and the subsequent data analysis, which employed the use of descriptive analysis of presenting the data as obtained on tables during the field survey and attempts a rudimentary establishment of patterns using percentages. The study concluded amongst others, that: all activities involved in the cost management function of the quantity surveyor are important, and value adding, corresponding to conversion activities in line with the Just-In-time/lean methodology

  6. Perancangan Aplikasi Komputer Berbasis Android untuk Panduan Pengawasan Pembangunan Kapal Baru oleh Owner Surveyor

    Directory of Open Access Journals (Sweden)

    Joshua Adrian Lasuardi

    2017-01-01

    Full Text Available Kegiatan pengawasan pembangunan kapal baru yang ada saat ini masih dilakukan secara manual dimana seorang owner surveyor melakukan pengawasan mengacu pada form pengawasan. Kegiatan pengawasan yang ada saat ini kurang efektif untuk dilakukan pada proses pembangunan kapal baru, hal ini dikarenakan tidak semua owner surveyor memiliki pengetahuan dan pengalaman yang sama. Tujuan dari tugas akhir ini adalah melakukan observasi sistem pengawasan pembangunan kapal baru yang ada saat ini, merancang aplikasi komputer berbasis android untuk panduan pengawasan pembangunan kapal baru, dan melakukan uji validitas aplikasi tersebut dalam meningkatkan efektivitas pengawasan pembangunan kapal baru. Perancangan aplikasi dilakukan dengan pembuatan mock up aplikasi, desain interface, perancangan database, dan pengkodingan aplikasi tersebut. Aplikasi ini memiliki fitur daftar proses pengawasan, review hasil pengawasan, progress pembangunan kapal, dan menu untuk menambahkan owner surveyor. Uji coba aplikasi ini dilakukan kepada beberapa responden yang memiliki pengalaman pengawasan pembangunan kapal baru dan pihak-pihak yang memiliki latar belakang pendidikan di bidang perkapalan. Dari hasil pengujian menggunakan kuisoner tersebut diperoleh kesimpulan bahwa aplikasi ini perlu diaplikasikan dalam mendukung proses pengawasan pembangunan kapal baru.

  7. Stepwise multi-photon activation fluorescence reveals a new method of melanoma imaging for dermatologists

    Science.gov (United States)

    Lai, Zhenhua; Lian, Christine; Ma, Jie; Yu, Jingyi; Gu, Zetong; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2014-02-01

    Previous research has shown that the stepwise multi-photon activated fluorescence (SMPAF) of melanin, activated by a continuous-wave (CW) mode near infrared (NIR) laser, is a low cost and reliable method of detecting melanin. SMPAF images of melanin in a mouse hair and a formalin fixed mouse melanoma were compared with conventional multiphoton fluorescence microscopy (MPFM) images and confocal reflectance microscopy (CRM) images, all of which were acquired at an excitation wavelength of 920 nm, to further prove the effectiveness of SMPAF in detecting melanin. SMPAF images add specificity for melanin detection to MPFM images and CRM images. Melanin SMPAF can be a promising technology to enable melanoma imaging for dermatologists.

  8. In vivo imaging reveals mitophagy independence in the maintenance of axonal mitochondria during normal aging.

    Science.gov (United States)

    Cao, Xu; Wang, Haiqiong; Wang, Zhao; Wang, Qingyao; Zhang, Shuang; Deng, Yuanping; Fang, Yanshan

    2017-10-01

    Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1-Parkin dependent or independent. In contrast, downregulation of mitochondrial fission-fusion genes caused age-dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult-onset, neuronal downregulation of the fission-fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy-independent mechanisms such as fission-fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging

    Science.gov (United States)

    Schmidlin, Franz R.; Beghuin, Didier; Delacretaz, Guy P.; Venzi, Giordano; Jichlinski, Patrice; Rink, Klaus; Leisinger, Hans-Juerg; Graber, Peter

    1998-07-01

    Improvements of endoscopic techniques have renewed the interest of urologists in laser lithotripsy in recent years. Laser energy can be easily transmitted through flexible fibers thereby enabling different surgical procedures such as cutting, coagulating and lithotripsy. The Ho:YAG laser offers multiple medical applications in Urology, among them stone fragmentation. However, the present knowledge of its fragmentation mechanism is incomplete. The objective was therefore to analyze the fragmentation process and to discuss the clinical implications related to the underlying fragmentation mechanism. The stone fragmentation process during Ho:YAG laser lithotripsy was observed by time resolved flash video imaging. Possible acoustic transient occurrence was simultaneously monitored with a PVDF-needle hydrophone. Fragmentation was performed on artificial and cystine kidney stones in water. We observed that though the fragmentation process is accompanied with the formation of a cavitation bubble, cavitation has only a minimal effect on stone fragmentation. Fragment ejection is mainly due to direct laser stone heating leading to vaporization of organic stone constituents and interstitial water. The minimal effect of the cavitation bubble is confirmed by acoustic transients measurements, which reveal weak pressure transients. Stone fragmentation with the Holmium laser is the result of vaporization of interstitial (stone) water and organic stone constituents. It is not due to the acoustic effects of a cavitation bubble or plasma formation. The fragmentation process is strongly related with heat production thereby harboring the risk of undesired thermal damage. Therefore, a solid comprehension of the fragmentation process is needed when using the different clinically available laser types of lithotripsy.

  10. Laterality of brain areas associated with arithmetic calculations revealed by functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; ZHANG Quan; ZHANG Jing; LI Wei

    2005-01-01

    Background Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions: arithmetic calculation may be one of these phenomena. In this study, first, laterality of brain areas associated with arithmetic calculations was revealed by functional magnetic resonance imaging (fMRI). Second, the relationship among laterality, handedness, and types of arithmetic task was assessed. Third, we postulate possible reasons for laterality.Methods Using a block-designed experiment, twenty-five right-handed and seven left-handed healthy volunteers carried out simple calculations, complex calculations and proximity judgments. T1WI and GRE-EPI fMRI were performed with a GE 1.5T whole body MRI scanner. Statistical parametric mapping (SPM99) was used to process data and localize functional areas. Numbers of activated voxels were recorded to calculate laterality index for evaluating the laterality of functional brain areas.Results For both groups, the activation of functional areas in the frontal lobe showed a tendency towards the nonpredominant hand side, but the functional areas in the inferior parietal lobule had left laterality. During simple and complex calculations, the laterality indices of the prefrontal cortex and premotor area were higher in the right-handed group than that in the left-handed group, whereas the laterality of the inferior parietal lobule had no such significant difference. In both groups, when the difficulty of the task increased, the laterality of the prefrontal cortex, premotor area, and inferior parietal lobule decreased, but the laterality of posterior part of the inferior frontal gyrus increased.Conclusions The laterality of the functional brain areas associated with arithmetic calculations can be detected with fMRI. The laterality of the functional areas was related to handedness and task difficulty.

  11. Accretion and Preservation of Organic Matter in Carbonaceous Chondrites as Revealed by NanoSIMS Imaging.

    Science.gov (United States)

    Remusat, L.; Guan, Y.; Eiler, J.

    2008-12-01

    Carbonaceous chondrites are the most primitive known meteorites. Their parent bodies accreted several discrete components of the early solar system: CAIs, other silicates, oxides, sulfides, ice, organics, and noble gases. Radioactive decay of short live radionucleides quickly heated these parent bodies and drove thermal metamorphism and aqueous alteration of their constituents. Despite this post-acretionary modification, at least some components of the organic matter in the carbaceous chondrites retained distinctive isotopic and molecular properties that may relate to their pre-acretionary origins in the protosolar nebula or in the molecular cloud that gave birth to it [1]. These processes that gave rise to early solar-system organic matter and the extent to which it was modified by parent body processes are still a matter of debate [2]. We have acquired NanoSIMS images of matrices of several CI, CM, CR and CV chondrites to document, in- situ, the distribution of organics and their textural and chemical relationships to co-existing inorganic components. Importantly, we performed these analyses on essentially unmodified fragments of matrix material pressed into indium, rather than on extracts, which have been the focus of most previous work on meteoritic organic matter. Specifically, we simultaneously collected H, D, 12C, 18O, 26CN, 28Si and 32S with a spatial resolution of 200 nm. Inorganic constituents of the imaged domains were determined by SEM imaging and EDS analysis. We identify two textural classes of organic constituents: diffuse organic matter and organic particles ~ 1 micron in diameter. The particles are common and do not exhibit any textural association with any inorganic matrix constituent. This distribution is consistent with previous observations by fluorescence optical microscopy [3]. These organic particles are likely primarily composed of insoluble organic matter (IOM) that grew prior to accretion as pure organic particules and was preserved in

  12. Wall-E Surveyor Robot using Wireless Networks

    Directory of Open Access Journals (Sweden)

    Aatish Chandak

    2014-12-01

    Full Text Available The methods for autonomous navigation of a robot in a real world environment is an area of interest for current researchers. Although there have been a variety of models developed, there are problems with regards to the integration of sensors for navigation in an outdoor environment like moving obstacles, sensor and component accuracy. This paper details an attempt to develop an autonomous robot prototype using only ultrasonic sensors for sensing the environment and GPS/ GSM and a digital compass for position and localization. An algorithm for the navigation based on reactive behaviour is presented. Once the robot has navigated to its final location based on remote access by the owner, it surveys the geographical region and uploads the real time images to the owner using an API that is developed for the Raspberry PI’s kernel.

  13. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses

    DEFF Research Database (Denmark)

    Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen

    2009-01-01

    We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted int...

  14. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke

    National Research Council Canada - National Science Library

    Srinivasan, Vivek J; Mandeville, Emiri T; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    .... A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described...

  15. A Multimodal Data Mining Framework for Revealing Common Sources of Spam Images

    Directory of Open Access Journals (Sweden)

    Chengcui Zhang

    2009-10-01

    Full Text Available This paper proposes a multimodal framework that clusters spam images so that ones from the same spam source/cluster are grouped together. By identifying the common sources of spam images, we can provide evidence in tracking spam gangs. For this purpose, text recognition and visual feature extraction are performed. Subsequently, a two-level clustering method is applied where images with visually similar illustrations are first grouped together. Then the clustering result from the first level is further refined using the textual clues (if applicable contained in spam images. Our experimental results show the effectiveness of the proposed framework.

  16. Lunar Proton Albedo Anomalies: Soil, Surveyors, and Statistics

    Science.gov (United States)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Case, A. W.; Golightly, M. J.; Jordan, A.; Looper, M. D.; Petro, N. E.; Robinson, M. S.; Stubbs, T. J.; Zeitlin, C. J.; Blake, J. B.; Kasper, J. C.; Mazur, J. E.; Smith, S. S.; Townsend, L. W.

    2014-12-01

    Since the launch of LRO in 2009, the CRaTER instrument has been mapping albedo protons (~100 MeV) from the Moon. These protons are produced by nuclear spallation, a consequence of galactic cosmic ray (GCR) bombardment of the lunar regolith. Just as spalled neutrons and gamma rays reveal elemental abundances in the lunar regolith, albedo protons may be a complimentary method for mapping compositional variations. We presently find that the lunar maria have an average proton yield 0.9% ±0.3% higher than the average yield in the highlands; this is consistent with neutron data that is sensitive to the regolith's average atomic weight. We also see cases where two or more adjacent pixels (15° × 15°) have significantly anomalous yields above or below the mean. These include two high-yielding regions in the maria, and three low-yielding regions in the far-side highlands. Some of the regions could be artifacts of Poisson noise, but for completeness we consider possible effects from compositional anomalies in the lunar regolith, including pyroclastic flows, antipodes of fresh craters, and so-called "red spots". We also consider man-made landers and crash sites that may have brought elements not normally found in the lunar regolith.

  17. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis

    NARCIS (Netherlands)

    Ritsma, L.; Steller, E.J.; Beerling, E.; Loomans, C.J.; Zomer, A.; Gerlach, C.; Vrisekoop, N.; Seinstra, D.; van Gurp, L.; Schafer, R.; Raats, D.A.; de Graaff, A.; Schumacher, T.N.; de Koning, E.; Rinkes, I.H.; Kranenburg, O.; van Rheenen, J.

    2012-01-01

    Cell dynamics in subcutaneous and breast tumors can be studied through conventional imaging windows with intravital microscopy. By contrast, visualization of the formation of metastasis has been hampered by the lack of long-term imaging windows for metastasis-prone organs, such as the liver. We

  18. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs

    NARCIS (Netherlands)

    Winde, C.M. de; Zuidscherwoude, M.C.; Vasaturo, A.; Schaaf, A. van der; Figdor, C.G.; Spriel, A.B. van

    2015-01-01

    Multispectral imaging is a novel microscopy technique that combines imaging with spectroscopy to obtain both quantitative expression data and tissue distribution of different cellular markers. Tetraspanins CD37 and CD53 are four-transmembrane proteins involved in cellular and humoral immune response

  19. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer

    Directory of Open Access Journals (Sweden)

    Katsinis Constantine

    2006-10-01

    Full Text Available Abstract Background Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E stained tissue sections based on cancer tissue texture features. Methods Image processing of histology slide images was used to detect and identify adipose tissue, extracellular matrix, morphologically distinct cell nuclei types, and the tubular architecture. The texture parameters derived from image analysis were then applied to classify images in a supervised classification scheme using histologic grade of a testing set as guidance. Results The histologic grade assigned by pathologists to invasive breast carcinoma images strongly correlated with both the presence and extent of cell nuclei with dispersed chromatin and the architecture, specifically the extent of presence of tubular cross sections. The two parameters that differentiated tumor grade found in this study were (1 the number density of cell nuclei with dispersed chromatin and (2 the number density of tubular cross sections identified through image processing as white blobs that were surrounded by a continuous string of cell nuclei. Classification based on subdivisions of a whole slide image containing a high concentration of cancer cell nuclei consistently agreed with the grade classification of the entire slide. Conclusion The automated image analysis and classification presented in this study demonstrate the feasibility of developing clinically relevant classification of histology images based on micro- texture. This method provides pathologists an invaluable quantitative tool for evaluation of the components of the Nottingham system for breast tumor grading and avoid intra-observer variability thus increasing the consistency of the decision-making process.

  20. Growth behavior of intermetallic compounds at Sn–Ag/Cu joint interfaces revealed by 3D imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.K., E-mail: qkzhang@alum.imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); State Key Laboratory of Advanced Brazing Filler Metals & Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001 (China); Long, W.M. [State Key Laboratory of Advanced Brazing Filler Metals & Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001 (China); Zhang, Z.F., E-mail: zhfzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-10-15

    In this study, the morphologies of intermetallic compounds (IMCs) at the as-soldered and thermal aged Sn–Ag/Cu joint interfaces were observed by SEM and measured using Laser Confocal Microscope, and their three-dimensional (3D) shapes were revealed using 3D imaging technology. The observation reveal that during the soldering process the Cu{sub 6}Sn{sub 5} grains at the joint interface evolve from hemispheroid to a bamboo shoot-shaped body with increasing liquid state reacting time, and their grain size increases sharply. After thermal aging, the Cu{sub 6}Sn{sub 5} grains change into equiaxed grains, while the top of some prominent Cu{sub 6}Sn{sub 5} grains changes little. Due to the higher active energy of the Sn atoms at the grain boundary, the growth rate of IMC grains around the grain boundaries of the solder is higher during the aging process. From the evolution in morphology of the IMC layer, it is demonstrated that the IMC layer grows through grain boundary diffusion of the Cu and Sn atoms during the aging process, and the volume diffusion is very little. The 3D imaging technology is used to reveal the shape and dimension of the IMC grains. - Highlights: • Morphologies of IMCs at the Sn–Ag/Cu interface were revealed by 3D imaging. • Preferential growth of IMCs around the solder grain boundaries was observed. • Growth behaviors of IMCs during reflowing and aging process were investigated.

  1. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    Science.gov (United States)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  2. Revealing a strongly reddened, faint active galactic nucleus population by stacking deep co-added images

    CERN Document Server

    Varga, József; Dobos, László; 10.1111/j.1365-2966.2012.21560.x

    2012-01-01

    More than half of the sources identified by recent radio sky surveys have not been detected by wide-field optical surveys. We present a study based on our co-added image stacking technique, in which our aim is to detect the optical emission from unresolved, isolated radio sources of the Very Large Array (VLA) Faint Images of the Radio Sky at Twenty-cm (FIRST) survey that have no identified optical counterparts in the Sloan Digital Sky Survey (SDSS) Stripe 82 co-added data set. From the FIRST catalogue, 2116 such radio point sources were selected, and cut-out images, centred on the FIRST coordinates, were generated from the Stripe 82 images. The already co-added cut-outs were stacked once again to obtain images of high signal-to-noise ratio, in the hope that optical emission from the radio sources would become detectable. Multiple stacks were generated, based on the radio luminosity of the point sources. The resulting stacked images show central peaks similar to point sources. The peaks have very red colours w...

  3. Revealing of steganograms with data, which are hidden in transformation domain of digital images

    Directory of Open Access Journals (Sweden)

    D. O. Progonov

    2014-06-01

    Full Text Available Introduction. The paper is devoted to analysis the correlation and fractal properties of bright¬ness fluctuation the steganograms. The case of multistage embedding the modified stegodata in transformation domain of digital images is considered. Data hiding in transformation domain of digital images. The Gunjal method of message hiding in digital images is investigated. The method is based on usage of Arnold transform for mangling the stegodata. Embedding of modified message is carried out by applying of two-dimensional discrete wavelet transform and block two-dimensional discrete cosine transform. Multifractal detrended fluctuation analysis of digital images. The correlation and fractal characteristics of the digital images noise components are consider. It is shown the advanta¬ges of multifractal detrended fluctuation analysis over classic detrended fluctuation analysis – the representation of signal fluctuation as set of monofractal aggregates with corresponding generalized Hurst exponents. Conclusion. Data hiding in transformation domain of digital images leads to smoothing of spectrum the generalized Hurst exponents and narrowing the multifractal spectrum of fluctuations. It is established that ascertained disclosure features do not depend on degree of container filling.

  4. 5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila

    Science.gov (United States)

    Huang, Yu Shan; Ku, Hui Yu; Tsai, Yun Chi; Chang, Chin Hao; Pao, Sih Hua; Sun, Y. Henry; Chiou, Arthur

    2017-03-01

    5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.

  5. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses.

    Directory of Open Access Journals (Sweden)

    Megumi Hatori

    Full Text Available Rod/cone photoreceptors of the outer retina and the melanopsin-expressing retinal ganglion cells (mRGCs of the inner retina mediate non-image forming visual responses including entrainment of the circadian clock to the ambient light, the pupillary light reflex (PLR, and light modulation of activity. Targeted deletion of the melanopsin gene attenuates these adaptive responses with no apparent change in the development and morphology of the mRGCs. Comprehensive identification of mRGCs and knowledge of their specific roles in image-forming and non-image forming photoresponses are currently lacking. We used a Cre-dependent GFP expression strategy in mice to genetically label the mRGCs. This revealed that only a subset of mRGCs express enough immunocytochemically detectable levels of melanopsin. We also used a Cre-inducible diphtheria toxin receptor (iDTR expression approach to express the DTR in mRGCs. mRGCs develop normally, but can be acutely ablated upon diphtheria toxin administration. The mRGC-ablated mice exhibited normal outer retinal function. However, they completely lacked non-image forming visual responses such as circadian photoentrainment, light modulation of activity, and PLR. These results point to the mRGCs as the site of functional integration of the rod/cone and melanopsin phototransduction pathways and as the primary anatomical site for the divergence of image-forming and non-image forming photoresponses in mammals.

  6. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    Science.gov (United States)

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J.W.; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  7. Structural Angle and Power Images Reveal Interrelated Gray and White Matter Abnormalities in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Lai Xu

    2012-01-01

    Full Text Available We present a feature extraction method to emphasize the interrelationship between gray and white matter and identify tissue distribution abnormalities in schizophrenia. This approach utilizes novel features called structural phase and magnitude images. The phase image indicates the relative contribution of gray and white matter, and the magnitude image reflects the overall tissue concentration. Three different analyses are applied to the phase and magnitude images obtained from 120 healthy controls and 120 schizophrenia patients. First, a single-subject subtraction analysis is computed for an initial evaluation. Second, we analyze the extracted features using voxel based morphometry (VBM to detect voxelwise group differences. Third, source based morphometry (SBM analysis was used to determine abnormalities in structural networks that co-vary in a similar way. Six networks were identified showing significantly lower white-to-gray matter in schizophrenia, including thalamus, right precentral-postcentral, left pre/post-central, parietal, right cuneus-frontal, and left cuneus-frontal sources. Interestingly, some networks look similar to functional patterns, such as sensory-motor and vision. Our findings demonstrate that structural phase and magnitude images can naturally and efficiently summarize the associated relationship between gray and white matter. Our approach has wide applicability for studying tissue distribution differences in the healthy and diseased brain.

  8. Structural angle and power images reveal interrelated gray and white matter abnormalities in schizophrenia.

    Science.gov (United States)

    Xu, Lai; Adali, Tülay; Schretlen, David; Pearlson, Godfrey; Calhoun, Vince D

    2012-01-01

    We present a feature extraction method to emphasize the interrelationship between gray and white matter and identify tissue distribution abnormalities in schizophrenia. This approach utilizes novel features called structural phase and magnitude images. The phase image indicates the relative contribution of gray and white matter, and the magnitude image reflects the overall tissue concentration. Three different analyses are applied to the phase and magnitude images obtained from 120 healthy controls and 120 schizophrenia patients. First, a single-subject subtraction analysis is computed for an initial evaluation. Second, we analyze the extracted features using voxel based morphometry (VBM) to detect voxelwise group differences. Third, source based morphometry (SBM) analysis was used to determine abnormalities in structural networks that co-vary in a similar way. Six networks were identified showing significantly lower white-to-gray matter in schizophrenia, including thalamus, right precentral-postcentral, left pre/post-central, parietal, right cuneus-frontal, and left cuneus-frontal sources. Interestingly, some networks look similar to functional patterns, such as sensory-motor and vision. Our findings demonstrate that structural phase and magnitude images can naturally and efficiently summarize the associated relationship between gray and white matter. Our approach has wide applicability for studying tissue distribution differences in the healthy and diseased brain.

  9. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  10. Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo.

    Science.gov (United States)

    Yang, Helen H; St-Pierre, François; Sun, Xulu; Ding, Xiaozhe; Lin, Michael Z; Clandinin, Thomas R

    2016-06-30

    A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise.

  11. Jupiter's Upper Atmospheric Winds Revealed in Ultraviolet Images by Hubble Telescope

    Science.gov (United States)

    1994-01-01

    These four NASA Hubble Space Telescope images of Jupiter, as seen in visible (violet) and far-ultraviolet (UV) wavelengths, show the remarkable spreading of the clouds of smoke and dust thrown into the atmosphere after the impacts of the fragments of comet P/Shoemaker-Levy 9. These dark regions provide the only information ever obtained on the wind direction and speed in Jupiter's upper atmosphere.TOP Three impact sites appear as dark smudges lined up along Jupiter's southern hemisphere (from left to right, sites C, A, and E). This pair of images was obtained on 17 July, several hours after the E impact. These 3 impact sites appear strikingly darker in the far-ultraviolet images to the right. This is because the smoke and dust rising from the fireballs absorbs UV light more strongly than violet light, so that the clouds appear both darker and larger in the UV images. Apparently, the fireball and plume threw large amounts of material completely above the atmosphere. This material diffused back down through the atmosphere with the smaller and lighter particles suspended at high altitudes.BOTTOM Hubble's view of the same hemisphere of Jupiter 12-13 days later shows that the smoke and dust have now been spread mainly in the east/west direction by the prevailing winds at the altitude where the dark material is suspended or 'floating' in the atmosphere.HST shows that winds in Jupiter's upper atmosphere carry the high altitude smoke and dust in different directions than in the lower atmosphere. For example, the UV image shows a fainter cloud near 45 deg. south latitude, which does not appear in the violet image. The fainter cloud may be due to high altitude material which is drifting with the upper atmospheric winds to the north away from the polar regions. However, in the left-hand impact regions the clouds being observed are lower in the atmosphere where there is apparently no such northerly wind.The violet images show the Great Red Spot, on the eastern (right) limb

  12. Fra Angelico's painting technique revealed by terahertz time-domain imaging (THz-TDI)

    Science.gov (United States)

    Koch Dandolo, Corinna Ludovica; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd

    2016-10-01

    We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding technique used by the eminent artist, as well as the plastering technique used during the nineteenth-century restoration intervention. The evidence obtained from THz-TDI scans was correlated with the available documentation on the preservation history of the art piece. Erosion and damages documented for the wooden support, especially in the lower margin, found confirmation in the THz-TD images.

  13. Arterial Spin Labeling Perfusion Magnetic Resonance Imaging Performed in Acute Perinatal Stroke Reveals Hyperperfusion Associated With Ischemic Injury.

    Science.gov (United States)

    Watson, Christopher G; Dehaes, Mathieu; Gagoski, Borjan A; Grant, P Ellen; Rivkin, Michael J

    2016-06-01

    Perfusion-weighted imaging in adults with acute stroke often reveals hypoperfusion in the ischemic core and in a surrounding area of nondiffusion-restricted penumbral tissue. Perinatal stroke is common, but the perfusion pattern is rarely documented. We aimed to describe the perfusion pattern in newborns with perinatal stroke. Neonates with clinical features of acute stroke underwent magnetic resonance imaging. Perfusion data were obtained using pseudocontinuous arterial spin labeling. Strokes were classified as arterial, venous, or both. Core infarction was determined by the presence of restricted diffusion on diffusion-weighted imaging. Perfusion-weighted imaging and susceptibility-weighted imaging signal in the ischemic area were visually compared with the homologous region in the contralesional hemisphere. Electroencephalogram data were evaluated for seizure activity. In 25 neonates with acute stroke, 8 of 11 (73%) with arterial ischemic stroke demonstrated hyperperfusion, 1 of 9 (11%) with venous stroke, and 4 of 5 (80%) with both. Hypoperfusion was observed in 3 of 9 (33%) with venous and none with arterial ischemic stroke. Perfusion was normal in 4 of 9 (45%) with venous and 1 of 5 (20%) with both. Twenty-one of 24 patients (88%) with electroencephalogram data had either electrographic seizures or focal sharp waves in the ipsilesional hemisphere (11/11 arterial ischemic stroke, 6/9 venous, and 4/5 both). Perfusion-weighted imaging can be obtained in neonates with acute stroke and often reveals hyperperfusion in the infarct core. Penumbra in arterial ischemic stroke is seldom found. Hyperperfusion may be caused by poststroke reperfusion or to neuronal hyperexcitability of stroke-associated seizure. Its identification may be useful for consideration of therapy for acute neonatal stroke. © 2016 American Heart Association, Inc.

  14. Surveyor Manual

    DEFF Research Database (Denmark)

    Blyt, Henrik; Hessellund, Regner Bæk

    providing the qualification of ‘building maintenance technician’. Being addressed to people seeking jobs, but also to professionals already working in domains connected to the administration and maintenance of building stock, such as local administration, public and private companies owning buildings, SMEs...

  15. Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging

    NARCIS (Netherlands)

    Ordonez Alvarez, Soledad; Amarullah, Ilham H; Wubbolts, Richard W; Veldhuizen, Edwin J A; Haagsman, Henk P

    2014-01-01

    Antifungal mechanisms of action of two cathelicidins, chicken CATH-2 and human LL-37, were studied and compared with the mode of action of the salivary peptide histatin 5 (Hst5). Candida albicans was used as a model organism for fungal pathogens. Analysis by live-cell imaging showed that the peptide

  16. Fra Angelico’s painting technique revealed by terahertz time-domain imaging (THz-TDI)

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza

    2016-01-01

    We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding te...

  17. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging.

    Science.gov (United States)

    Timmers, Inge; Zhang, Hui; Bastiani, Matteo; Jansma, Bernadette M; Roebroeck, Alard; Rubio-Gozalbo, M Estela

    2015-03-01

    White matter abnormalities have been observed in patients with classic galactosemia, an inborn error of galactose metabolism. However, magnetic resonance imaging (MRI) data collected in the past were generally qualitative in nature. Our objective was to investigate white matter microstructure pathology and examine correlations with outcome and behaviour in this disease, by using multi-shell diffusion weighted imaging. In addition to standard diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) was used to estimate density and orientation dispersion of neurites in a group of eight patients (aged 16-21 years) and eight healthy controls (aged 15-20 years). Extensive white matter abnormalities were found: neurite density index (NDI) was lower in the patient group in bilateral anterior areas, and orientation dispersion index (ODI) was increased mainly in the left hemisphere. These specific regional profiles are in agreement with the cognitive profile observed in galactosemia, showing higher order cognitive impairments, and language and motor impairments, respectively. Less favourable white matter properties correlated positively with age and age at onset of diet, and negatively with behavioural outcome (e.g. visual working memory). To conclude, this study provides evidence of white matter pathology regarding density and dispersion of neurites in these patients. The results are discussed in light of suggested pathophysiological mechanisms.

  18. Therapeutic imaging window of cerebral infarction revealed by multisequence magnetic resonance imaging An animal and clinical study

    Institute of Scientific and Technical Information of China (English)

    Hong Lu; Hui Hu; Zhanping He; Xiangjun Han; Jing Chen; Rong Tu

    2012-01-01

    In this study, we established a Wistar rat model of right middle cerebral artery occlusion and observed pathological imaging changes (T2-weighted imaging [T2WI], T2FLAIR, and diffusion-weighted imaging [DWI]) following cerebral infarction. The pathological changes were divided into three phases: early cerebral infarction, middle cerebral infarction, and late cerebral infarction. In the early cerebral infarction phase (less than 2 hours post-infarction), there was evidence of intracellular edema, which improved after reperfusion. This improvement was defined as the ischemic penumbra. In this phase, a high DWI signal and a low apparent diffusion coefficient were observed in the right basal ganglia region. By contrast, there were no abnormal T2WI and T2FLAIR signals. For the middle cerebral infarction phase (2–4 hours post-infarction), a mixed edema was observed. After reperfusion, there was a mild improvement in cell edema, while the angioedema became more serious. A high DWI signal and a low apparent diffusion coefficient signal were observed, and some rats showed high T2WI and T2FLAIR signals. For the late cerebral infarction phase (4–6 hours post-infarction), significant angioedema was visible in the infarction site. After reperfusion, there was a significant increase in angioedema, while there was evidence of hemorrhage and necrosis. A mixed signal was observed on DWI, while a high apparent diffusion coefficient signal, a high T2WI signal, and a high T2FLAIR signal were also observed. All 86 cerebral infarction patients were subjected to T2WI, T2FLAIR, and DWI. MRI results of clinic data similar to the early infarction phase of animal experiments were found in 51 patients, for which 10 patients (10/51) had an onset time greater than 6 hours. A total of 35 patients had MRI results similar to the middle and late infarction phase of animal experiments, of which eight patients (8/35) had an onset time less than 6 hours. These data suggest that defining the

  19. Long-Term Spatiotemporal Reconfiguration of Neuronal Activity Revealed by Voltage-Sensitive Dye Imaging in the Cerebellar Granular Layer

    Directory of Open Access Journals (Sweden)

    Daniela Gandolfi

    2015-01-01

    Full Text Available Understanding the spatiotemporal organization of long-term synaptic plasticity in neuronal networks demands techniques capable of monitoring changes in synaptic responsiveness over extended multineuronal structures. Among these techniques, voltage-sensitive dye imaging (VSD imaging is of particular interest due to its good spatial resolution. However, improvements of the technique are needed in order to overcome limits imposed by its low signal-to-noise ratio. Here, we show that VSD imaging can detect long-term potentiation (LTP and long-term depression (LTD in acute cerebellar slices. Combined VSD imaging and patch-clamp recordings revealed that the most excited regions were predominantly associated with granule cells (GrCs generating EPSP-spike complexes, while poorly responding regions were associated with GrCs generating EPSPs only. The correspondence with cellular changes occurring during LTP and LTD was highlighted by a vector representation obtained by combining amplitude with time-to-peak of VSD signals. This showed that LTP occurred in the most excited regions lying in the core of activated areas and increased the number of EPSP-spike complexes, while LTD occurred in the less excited regions lying in the surround. VSD imaging appears to be an efficient tool for investigating how synaptic plasticity contributes to the reorganization of multineuronal activity in neuronal circuits.

  20. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    Science.gov (United States)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  1. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    Science.gov (United States)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  2. Non-contact wide-field hemodynamic imaging reveals the inverted jugular venous pulse waveform

    CERN Document Server

    Amelard, Robert; Greaves, Danielle K; Pfisterer, Kaylen J; Leung, Jason; Clausi, David A; Wong, Alexander

    2016-01-01

    Cardiovascular disease is the leading cause of death globally. Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pressure waveform (JVP) is able to provide important information about cardiac health. Factors such as mechanical deformations, electric abnormalities, and irregular external forces change the fundamental shape of the JVP. However, current methods for measuring the JVP require invasive catheter insertion, or subjective qualitative visual inspection of the patient's jugular pulse. Thus, JVP are not routinely performed, and are scheduled only when there is probable cause for catheterisation. Non-invasive monitoring methods would benefit JVP monitoring. Recently, there has been a surge in focus on photoplethysmographic imaging (PPGI) systems. These systems are non-contact wide-field imaging systems able to assess blood pulse waveforms across a large area of the body. However, PPGI has not been previously explored for measuring jugular venous pulse. In this...

  3. Blood flow activation in rat somatosensory cortex under sciatic nerve stimulation revealed by laser speckle imaging

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In many functional neuroimaging research the change of local cerebral blood flow (CBF) induced by sensory stimulation is regarded as an indicator of the change in cortical neuronal activity although a precise and full spatio-temporal description of local CBF response coupled to neural activity has still not been laid out. Using the laser speckle imaging technique a relatively large exposed area in somatosensory cortex of rat was imaged for the observation of the variations of CBF during sciatic nerve stimulation. The results showed that cerebral blood flow activation was spatially localized and discretely distributed in the targeted microvasculature. Individual arteries, veins and capillaries in different diameters were activated with the time going. The response pattern of CBF related to the function of brain activity and energy metabolism is delineated exactly.

  4. The LCROSS Ejecta Plume Revealed: First Characterization from Earth-based Imaging

    Science.gov (United States)

    Miller, C.; Chanover, N.; Hermalyn, B.; Strycker, P. D.; Hamilton, R. T.; Suggs, R. M.

    2012-12-01

    On October 9, 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) struck the floor of Cabeus crater. We observed the LCROSS impact site at 0.5-second intervals throughout the time of impact in the V-band (491 to 591 nm) using the Agile camera on the 3.5 m telescope at the Apache Point Observatory. Our initial analysis of these images showed that the ejecta plume could be no brighter than 9.5 magnitudes/arcsec^2. (Chanover et al. 2011, JGR). We subsequently applied a Principal Component Analysis (PCA) technique to filter out time-varying seeing distortions and image registration errors from an 8-minute sequence of images centered on the LCROSS impact time and unambiguously detected the evolving plume below the noise threshold. This is the first and only reported image detection of the LCROSS plume from ground-based instruments. Our detection is consistent with an ejecta plume that reaches peak brightness between 12 and 20 seconds after impact and fades to an undetectable level within 90 seconds after impact. This is consistent with in situ observations made by the LCROSS Shepherding Satellite (LCROSS S/SC) and the Lunar Reconnaissance Orbiter (LRO) that observed the impact from above (Colaprete et al., and Hayne et. al., 2010, Science). To test our detection method, we compared the brightness profiles derived from our impact image sequence to those extracted from a sequence with a simulated ejecta pattern. We performed 3-D ballistic simulations of trial impacts, starting with initial particle ejection angles and velocities derived from laboratory measurements made with the NASA Ames Vertical Gun of impacts of hollow test projectiles (Hermalyn et. al., 2012, Icarus). We extracted images from these simulations at 0.5-second intervals, combined them with a computer generated lunar landscape, and introduced image distortions due to time-varying seeing conditions and instrumental noise sources to produce a synthetic ejecta image sequence. We then re

  5. HIGH-SPEED SINGLE QUANTUM DOT IMAGING OF IN LIVE CELLS REVEAL HOP DIFFUSION

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Clausen, Mathias P.

    2011-01-01

    Ultra high-speed single particle tracking (image frame rates 40-50 kHz) experiments with 40 nm gold particles has indicated that lipids and proteins in the plasma membrane undergo hop-diffusion between nanometer sized compartments (Fujiwara et al. (2002) J Cell Biol. 157:1071-81). These findings...... have yet to be independently confirmed. In this work, we show that high-speed single particle tracking with quantum dots (QDs) and using a standard wide-field fluorescence microscope and an EMCCD is possible at image acquisition rates of up to ~2000 Hz. The spatial precision in these experiments is ~40...... nm (as determined from the standard deviation of repeated position measurements of an immobile QD on a cell). Using this system, we show that membrane proteins and lipids, which have been exogenously labeled with functionalized QDs, show examples of three types of motion in the plasma membrane...

  6. Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media.

    Science.gov (United States)

    Vandsburger, Moriel; Vandoorne, Katrien; Oren, Roni; Leftin, Avigdor; Mpofu, Senzeni; Delli Castelli, Daniela; Aime, Silvio; Neeman, Michal

    2015-01-01

    Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans. © 2013 American Heart Association, Inc.

  7. [18F]DPA 714 PET Imaging Reveals Global Neuroinflammation in Zika Virus Infected Mice

    Science.gov (United States)

    2017-09-12

    sensitivity of positron emission tomography (PET) imaging using [18F]DPA-714, a translocator protein (TSPO) 18 kDa radioligand, to detect and quantify...provide a noninvasive, spatiotemporal measurement of pathogen infection and its effects on key biological processes such as metabolism and...of glucose that accumulates preferentially in cells based on their metabolic activity rather than their cell type, and has been used to assess tissue

  8. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling

    OpenAIRE

    2014-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of p...

  9. Analysis of image versus position, scale and direction reveals pattern texture anisotropy

    Directory of Open Access Journals (Sweden)

    Roland eLehoucq

    2015-01-01

    Full Text Available Pattern heterogeneities and anisotropies often carry significant physical information. We provide a toolbox which: (i cumulates analysis in terms of position, direction and scale; (ii is as general as possible; (iii is simple and fast to understand, implement, execute and exploit.It consists in dividing the image into analysis boxes at a chosen scale; in each box an ellipse (the inertia tensor is fitted to the signal and thus determines the direction in which the signal is more present. This tensor can be averaged in position and/or be used to study the dependence with scale. This choice is formally linked with Leray transforms and anisotropic wavelet analysis. Such protocol is intutively interpreted and consistent with what the eye detects: relevant scales, local variations in space, priviledged directions. It is fast and parallelizable.Its several variants are adaptable to the user's data and needs. It is useful to statistically characterize anisotropies of 2D or 3D patterns in which individual objects are not easily distinguished, with only minimal pre-processing of the raw image, and more generally applies to data in higher dimensions.It is less sensitive to edge effects, and thus better adapted for a multiscale analysis down to small scale boxes, than pair correlation function or Fourier transform.Easy to understand and implement,it complements more sophisticated methods such as Hough transform or diffusion tensor imaging.We use it on various fracture patterns (sea ice cover, thin sections of granite, granular materials, to pinpoint the maximal anisotropy scales. The results are robust to noise and to user choices. This toolbox could turn also useful for granular materials, hard condensed matter, geophysics, thin films, statistical mechanics, characterisation of networks, fluctuating amorphous systems, inhomogeneous and disordered systems, or medical imaging, among others.

  10. Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy.

    Science.gov (United States)

    Mitra, Soumya; Modi, Kshitij D; Foster, Thomas H

    2013-10-01

    We demonstrate the use of an enzyme-activatable fluorogenic probe, Neutrophil Elastase 680 FAST (NE680), for in vivo imaging of neutrophil elastase (NE) activity in tumors subjected to photodynamic therapy (PDT). NE protease activity was assayed in SCC VII and EMT6 tumors established in C3H and BALB/c mice, respectively. Four nanomoles of NE680 was injected intravenously immediately following PDT irradiation. 5 h following administration of NE680, whole-mouse fluorescence imaging was performed. At this time point, levels of NE680 fluorescence were at least threefold greater in irradiated versus unirradiated SCC VII and EMT6 tumors sensitized with Photofrin. To compare possible photosensitizer-specific differences in therapy-induced elastase activity, EMT6 tumors were also subjected to 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-PDT. NE levels measured in HPPH-PDT-treated tumors were twofold higher than in unirradiated controls. Ex vivo labeling of host cells using fluorophore-conjugated antibodies and confocal imaging were used to visualize Gr1+ cells in Photofrin-PDT-treated EMT6 tumors. These data were compared with recently reported analysis of Gr1+ cell accumulation in EMT6 tumors subjected to HPPH-PDT. The population density of infiltrating Gr1+ cells in treated versus unirradiated drug-only control tumors suggests that the differential in NE680 fold enhancement observed in Photofrin versus HPPH treatment may be attributed to the significantly increased inflammatory response induced by Photofrin-PDT. The in vivo imaging of NE680, which is a fluorescent reporter of NE extracellular release caused by neutrophil activation, demonstrates that PDT results in increased NE levels in treated tumors, and the accumulation of the cleaved probe tracks qualitatively with the intratumor Gr1+ cell population.

  11. Status epilepticus induces increasing neuronal excitability and hypersynchrony as revealed by optical imaging.

    Science.gov (United States)

    Holtkamp, M; Buchheim, K; Elsner, M; Matzen, J; Weissinger, F; Meierkord, H

    2011-07-01

    In the wake of acquired brain insults such as status epilepticus (SE), time-dependent neuronal network alterations may occur resulting in cortical hyperexcitability and enhanced synchrony merging into chronic epilepsy. To better understand the underlying processes, we performed electrophysiological and optical imaging studies on combined hippocampal-entorhinal cortex slices. These were prepared from rats 1, 4 and 8 weeks after electrically-induced SE. Non-invasive imaging using intrinsic optical signal changes allowed detailed analysis of onset and spread patterns of seizure-like events (SLE) since coverage of the entire preparation is possible. The latency to occurrence of first SLEs after omission of Mg(2+) from the artificial cerebrospinal fluid was significantly reduced at 4 and 8 weeks after SE compared with all other groups indicating increased brain excitability. Optical imaging displayed multiregional onset and discontiguous propagation of SLEs 8 weeks after SE. Such patterns indicate neuronal hypersynchrony and are not encountered in naïve rodents in which SLEs commonly begin in the entorhinal cortex and display contiguous spread to invade adjacent regions. The electrophysiological and optical findings of the current study indicate evolving fundamental brain plasticity changes after the detrimental event predisposing to chronic epilepsy. The current results should be incorporated in any strategies aiming at prevention of chronic epilepsy.

  12. Speech processing asymmetry revealed by dichotic listening and functional brain imaging.

    Science.gov (United States)

    Hugdahl, Kenneth; Westerhausen, René

    2016-12-01

    In this article, we review research in our laboratory from the last 25 to 30 years on the neuronal basis for laterality of speech perception focusing on the upper, posterior parts of the temporal lobes, and its functional and structural connections to other brain regions. We review both behavioral and brain imaging data, with a focus on dichotic listening experiments, and using a variety of imaging modalities. The data have come in most parts from healthy individuals and from studies on normally functioning brain, although we also review a few selected clinical examples. We first review and discuss the structural model for the explanation of the right-ear advantage (REA) and left hemisphere asymmetry for auditory language processing. A common theme across many studies have been our interest in the interaction between bottom-up, stimulus-driven, and top-down, instruction-driven, aspects of hemispheric asymmetry, and how perceptual factors interact with cognitive factors to shape asymmetry of auditory language information processing. In summary, our research have shown laterality for the initial processing of consonant-vowel syllables, first observed as a behavioral REA when subjects are required to report which syllable of a dichotic syllable-pair they perceive. In subsequent work we have corroborated the REA with brain imaging, and have shown that the REA is modulated through both bottom-up manipulations of stimulus properties, like sound intensity, and top-down manipulations of cognitive properties, like attention focus.

  13. The architecture of the LkCa 15 transitional disk revealed by high-contrast imaging

    CERN Document Server

    Thalmann, C; Hodapp, K; Janson, M; Grady, C A; Min, M; Ovelar, M de Juan; Carson, J; Brandt, T; Bonnefoy, M; McElwain, M W; Leisenring, J; Dominik, C; Henning, T; Tamura, M

    2014-01-01

    We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15, and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Greenstein g = 0.67 [-0.11,+0.18]) and a significantly tapered gap edge ('round wall'), but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images. We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27 [-20,+19] mas) is notably lower than that found in our earlier H-band images (Thalmann et al. 2010). Intriguingly, we also find, at high significance, an offset of y = 69 [-25, +49] mas perpendicular to the line of nodes. If confirmed by future observations, this would imply a highly elliptical -- or otherwise asymmetric -- disk gap with an effective eccentricity ...

  14. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.

    Science.gov (United States)

    Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L

    2010-11-01

    Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy.

  15. Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections

    Science.gov (United States)

    Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.

    2017-02-01

    Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically

  16. The action sites of propofol in the normal human brain revealed by functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Hui; Wang, Wei; Zhao, Zhijing; Ge, Yali; Zhang, Jinsong; Yu, Daihua; Chai, Wei; Wu, Shengxi; Xu, Lixian

    2010-12-01

    Propofol has been used for many years but its functional target in the intact brain remains unclear. In the present study, we used functional magnetic resonance imaging to demonstrate blood oxygen level dependence signal changes in the normal human brain during propofol anesthesia and explored the possible action targets of propofol. Ten healthy subjects were enrolled in two experimental sessions. In session 1, the Observer's Assessment of Alertness/Sedation Scale was performed to evaluate asleep to awake/alert status. In session 2, images with blood oxygen level dependence contrast were obtained with echo-planar imaging on a 1.5-T Philips Gyroscan Magnetic Resonance System and analyzed. In both sessions, subjects were intravenously administered with saline (for 3 min) and then propofol (for 1.5 min) and saline again (for 10.5 min) with a constant speed infusion pump. Observer's Assessment of Alertness/Sedation Scale scoring showed that the subjects experienced conscious–sedative–unconscious–analepsia, which correlated well with the signal decreases in the anesthesia states. Propofol induced significant signal decreases in hypothalamus (18.2%±3.6%), frontal lobe (68.5%±11.2%), and temporal lobe (34.7%±6.1%). Additionally, the signals at these three sites were fulminant and changed synchronously. While in the thalamus, the signal decrease was observed in 5 of 10 of the subjects and the magnitude of decrease was 3.9%±1.6%. These results suggest that there is most significant inhibition in hypothalamus, frontal lobe, and temporal in propofol anesthesia and moderate inhibition in thalamus. These brain regions might be the targets of propofol anesthesia in human brain.

  17. Decreased regional homogeneity in major depression as revealed by resting-state functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    PENG Dai-hui; JIANG Kai-da; FANG Yi-ru; XU Yi-feng; SHEN Ting; LONG Xiang-yu; LIU Jun; ZANG Yu-feng

    2011-01-01

    Backgroud Functional imaging studies indicate abnormal activities in cortico-limbic network in depression during either task or resting state. The present work was to explore the abnormal spontaneous activity shown with regional homogeneity (ReHo) in depression by resting-state functional magnetic resonance imaging (fMRI).Methods Using fMRI, the differences of regional brain activity were measured in resting state in depressed vs. healthy participants. Sixteen participants firstly diagnosed with major depressive disorder and 16 controls were scanned during resting state. A novel method based on ReHo was used to detect spontaneous hemodynamic responses across the whole brain.Results ReHo in the left thalamus, left temporal lobe, left cerebellar posterior lobe, and the bilateral occipital lobe was found to be significantly decreased in depression compared to healthy controls in resting state of depression.Conclusions Abnormal spontaneous activity exists in the left thalamus, left temporal lobe, left cerebellar posterior lobe,and the bilateral occipital lobe. And the ReHo may be a potential reference in understanding the distinct brain activity in resting state of depression.

  18. Magnetization transfer imaging reveals geniculocalcarine and striate area degeneration in primary glaucoma: a preliminary study

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-09-01

    Full Text Available Background Glaucoma is a neurodegenerative disease that affects both the retina and central visual pathway. Magnetization transfer imaging (MTI is a sensitive magnetic resonance imaging (MRI technique that can detect degenerative changes in the brain. Purpose To investigate the geniculocalcarine (GCT and striate areas in primary glaucoma patients using region of interest (ROI analysis of magnetization transfer ratio (MTR. Material and Methods Twenty patients with primary glaucoma in both eyes were compared with 31 healthy control patients. All of the participants were examined on a 3.0 T scanner using a three-dimensional T1-weighted spoiled gradient recalled acquisition (SPGR with and without a MT saturation pulse. A two-sample t-test was used to evaluate the MTR difference between the groups. P < 0.05 was used to determine statistical significance. Results The MTR of the glaucoma group was lower than the healthy controls in both the bilateral GCT (t = 3.781, P = 0.001 and striate areas (t = 4.177, P = 0.000. Conclusion The MTR reductions in the bilateral GCT and striate areas suggest that there is GCT demyelination and striate area degeneration in primary glaucoma. These neurodegenerative effects may be induced as a direct effect of retrograde axonal degeneration along with the indirect effect of anterograde trans-synaptic degeneration.

  19. Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock.

    Science.gov (United States)

    Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi

    2017-01-30

    Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.

  20. Seeing the Whole Elephant: Imaging Flow Cytometry Reveals Extensive Morphological Diversity within Blastocystis Isolates.

    Science.gov (United States)

    Yason, John Anthony; Tan, Kevin Shyong Wei

    2015-01-01

    Blastocystis is a common protist isolated in humans and many animals. The parasite is a species complex composed of 19 subtypes, 9 of which have been found in humans. There are biological and molecular differences between Blastocystis subtypes although microscopy alone is unable to distinguish between these subtypes. Blastocystis isolates also display various morphological forms. Several of these forms, however, have not been properly evaluated on whether or not these play significant functions in the organism's biology. In this study, we used imaging flow cytometry to analyze morphological features of Blastocystis isolates representing 3 subtypes (ST1, ST4 and ST7). We also employed fluorescence dyes to discover new cellular features. The profiles from each of the subtypes exhibit considerable differences with the others in terms of shape, size and granularity. We confirmed that the classical vacuolar form comprises the majority in all three subtypes. We have also evaluated other morphotypes on whether these represent distinct life stages in the parasite. Irregularly-shaped cells were identified but all of them were found to be dying cells in one isolate. Granular forms were present as a continuum in both viable and non-viable populations, with non-viable forms displaying higher granularity. By analyzing the images, rare morphotypes such as multinucleated cells could be easily observed and quantified. These cells had low granularity and lower DNA content. Small structures containing nucleic acid were also identified. We discuss the possible biological implications of these unusual forms.

  1. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake[S

    Science.gov (United States)

    Pompey, Shanica; Zhao, Zhenze; Luby-Phelps, Kate; Michaely, Peter

    2013-01-01

    The LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL. We find that lipoprotein release is rapid, with most release occurring prior to entry of lipoprotein into early endosomes. Published biochemical studies have identified two mechanisms of lipoprotein release: one that involves the β-propeller module of the LDLR and a second that is independent of this module. Quantitative imaging comparing uptake supported by the normal LDLR or by an LDLR variant incapable of β-propeller-dependent release shows that the β-propeller-independent process is sufficient for release for both lipoproteins but that the β-propeller process accelerates both LDL and β-VLDL release. Together these findings define where, when, and how lipoprotein release occurs and provide a generalizable methodology for visualizing endocytic handling in situ. PMID:23296879

  2. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake.

    Science.gov (United States)

    Pompey, Shanica; Zhao, Zhenze; Luby-Phelps, Kate; Michaely, Peter

    2013-03-01

    The LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL. We find that lipoprotein release is rapid, with most release occurring prior to entry of lipoprotein into early endosomes. Published biochemical studies have identified two mechanisms of lipoprotein release: one that involves the β-propeller module of the LDLR and a second that is independent of this module. Quantitative imaging comparing uptake supported by the normal LDLR or by an LDLR variant incapable of β-propeller-dependent release shows that the β-propeller-independent process is sufficient for release for both lipoproteins but that the β-propeller process accelerates both LDL and β-VLDL release. Together these findings define where, when, and how lipoprotein release occurs and provide a generalizable methodology for visualizing endocytic handling in situ.

  3. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aldhafeeri, Faten M. [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Khalid General Hospital, Ministry of Health, Radiology Department, Hafral-batin (Saudi Arabia); Mackenzie, Ian; Kay, Tony [Aintree University Hospitals NHS Foundation Trust, Liverpool (United Kingdom); Alghamdi, Jamaan [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Abdul Aziz University, Physics Department, Faculty of Sciences, Jeddah (Saudi Arabia); Sluming, Vanessa [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, Liverpool (United Kingdom)

    2012-08-15

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  4. Classification images reveal decision variables and strategies in forced choice tasks.

    Science.gov (United States)

    Pritchett, Lisa M; Murray, Richard F

    2015-06-09

    Despite decades of research, there is still uncertainty about how people make simple decisions about perceptual stimuli. Most theories assume that perceptual decisions are based on decision variables, which are internal variables that encode task-relevant information. However, decision variables are usually considered to be theoretical constructs that cannot be measured directly, and this often makes it difficult to test theories of perceptual decision making. Here we show how to measure decision variables on individual trials, and we use these measurements to test theories of perceptual decision making more directly than has previously been possible. We measure classification images, which are estimates of templates that observers use to extract information from stimuli. We then calculate the dot product of these classification images with the stimuli to estimate observers' decision variables. Finally, we reconstruct each observer's "decision space," a map that shows the probability of the observer's responses for all values of the decision variables. We use this method to examine decision strategies in two-alternative forced choice (2AFC) tasks, for which there are several competing models. In one experiment, the resulting decision spaces support the difference model, a classic theory of 2AFC decisions. In a second experiment, we find unexpected decision spaces that are not predicted by standard models of 2AFC decisions, and that suggest intrinsic uncertainty or soft thresholding. These experiments give new evidence regarding observers' strategies in 2AFC tasks, and they show how measuring decision variables can answer long-standing questions about perceptual decision making.

  5. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces.

    Science.gov (United States)

    Marzluff, John M; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J

    2012-09-25

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal's brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior.

  6. Brain imaging reveals neuronal circuitry underlying the crow’s perception of human faces

    Science.gov (United States)

    Marzluff, John M.; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J.

    2012-01-01

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal’s brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior. PMID:22984177

  7. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)

    2010-04-15

    Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

  8. Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree.

    Science.gov (United States)

    Hesse, Linnea; Masselter, Tom; Leupold, Jochen; Spengler, Nils; Speck, Thomas; Korvink, Jan Gerrit

    2016-09-08

    Magnetic resonance imaging (MRI) was used to gain in vivo insight into load-induced displacements of inner plant tissues making a non-invasive and non-destructive stress and strain analysis possible. The central aim of this study was the identification of a possible load-adapted orientation of the vascular bundles and their fibre caps as the mechanically relevant tissue in branch-stem-attachments of Dracaena marginata. The complex three-dimensional deformations that occur during mechanical loading can be analysed on the basis of quasi-three-dimensional data representations of the outer surface, the inner tissue arrangement (meristem and vascular system), and the course of single vascular bundles within the branch-stem-attachment region. In addition, deformations of vascular bundles could be quantified manually and by using digital image correlation software. This combination of qualitative and quantitative stress and strain analysis leads to an improved understanding of the functional morphology and biomechanics of D. marginata, a plant that is used as a model organism for optimizing branched technical fibre-reinforced lightweight trusses in order to increase their load bearing capacity.

  9. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  10. The HDUV Survey: Six Lyman Continuum Emitter Candidates at z~2 Revealed by HST UV Imaging

    CERN Document Server

    Naidu, R P; Reddy, N; Holden, B; Steidel, C C; Montes, M; Atek, H; Bouwens, R J; Carollo, C M; Cibinel, A; Illingworth, G D; Labbe, I; Magee, D; Morselli, L; Nelson, E J; van Dokkum, P G; Wilkins, S

    2016-01-01

    We present six galaxies at z~2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multi-wavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high -- typically >60% (>13% for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies to show high escape fraction. These six galaxies comprise the largest sample yet of LyC leaking candidates at z~2 whose inferred LyC flux has been cleanly observed at HST resolution. While three of our six candidates show evidenc...

  11. Images From a Jointly-Arousing Collective Ritual Reveal Affective Polarization

    Directory of Open Access Journals (Sweden)

    Joseph A. Bulbulia

    2013-12-01

    Full Text Available Collective rituals are biologically ancient and culturally pervasive, yet few studies have quantified effects on participants. We assessed two plausible models from qualitative anthropology: ritual empathy predicts affective convergence among all ritual participants irrespective of ritual role; rite-of-passage predicts emotional differences, specifically that ritual initiates will express relatively negatively valence when compared with non-initiates. To evaluate model predictions, images of participants in a Spanish fire-walking ritual were extracted from video data and assessed by nine Spanish raters for arousal and valence. Consistent with rite-of-passage, we found that arousal jointly increased for all participants but that valence differed by ritual role: fire-walkers exhibited increasingly positive arousal and increasingly negative valence when compared with passengers. This result offers the first quantified evidence for rite of passage dynamics within a highly arousing collective ritual. Methodologically, we show that surprisingly simple and non-invasive data structures (rated video images may be combined with methods from evolutionary ecology (Bayesian Generalized Linear Mixed Effects models to clarify poorly understood dimensions of the human condition.

  12. Images from a jointly-arousing collective ritual reveal affective polarization.

    Science.gov (United States)

    Bulbulia, Joseph A; Xygalatas, Dimitris; Schjoedt, Uffe; Fondevila, Sabela; Sibley, Chris G; Konvalinka, Ivana

    2013-01-01

    Collective rituals are biologically ancient and culturally pervasive, yet few studies have quantified their effects on participants. We assessed two plausible models from qualitative anthropology: ritual empathy predicts affective convergence among all ritual participants irrespective of ritual role; rite-of-passage predicts emotional differences, specifically that ritual initiates will express relatively negative valence when compared with non-initiates. To evaluate model predictions, images of participants in a Spanish fire-walking ritual were extracted from video footage and assessed by nine Spanish raters for arousal and valence. Consistent with rite-of-passage predictions, we found that arousal jointly increased for all participants but that valence differed by ritual role: fire-walkers exhibited increasingly positive arousal and increasingly negative valence when compared with passengers. This result offers the first quantified evidence for rite of passage dynamics within a highly arousing collective ritual. Methodologically, we show that surprisingly simple and non-invasive data structures (rated video images) may be combined with methods from evolutionary ecology (Bayesian Generalized Linear Mixed Effects models) to clarify poorly understood dimensions of the human condition.

  13. Quantitative Analysis of Fundus-Image Sequences Reveals Phase of Spontaneous Venous Pulsations

    Science.gov (United States)

    Moret, Fabrice; Reiff, Charlotte M.; Lagrèze, Wolf A.; Bach, Michael

    2015-01-01

    Purpose Spontaneous venous pulsation correlates negatively with elevated intracranial pressure and papilledema, and it relates to glaucoma. Yet, its etiology remains unclear. A key element to elucidate its underlying mechanism is the time at which collapse occurs with respect to the heart cycle, but previous reports are contradictory. We assessed this question in healthy subjects using quantitative measurements of both vein diameters and artery lateral displacements; the latter being used as the marker of the ocular systole time. Methods We recorded 5-second fundus sequences with a near-infrared scanning laser ophthalmoscope in 12 young healthy subjects. The image sequences were coregistered, cleaned from microsaccades, and filtered via a principal component analysis to remove nonpulsatile dynamic features. Time courses of arterial lateral displacement and of diameter at sites of spontaneous venous pulsation or proximal to the disk were retrieved from those image sequences and compared. Results Four subjects displayed both arterial and venous pulsatile waveforms. On those, we observed venous diameter waveforms differing markedly among the subjects, ranging from a waveform matching the typical intraocular pressure waveform to a close replica of the arterial waveform. Conclusions The heterogeneity in waveforms and arteriovenous phases suggests that the mechanism governing the venous outflow resistance differs among healthy subjects. Translational relevance Further characterizations are necessary to understand the heterogeneous mechanisms governing the venous outflow resistance as this resistance is altered in glaucoma and is instrumental when monitoring intracranial hypertension based on fundus observations. PMID:26396929

  14. Worldwide widespread decadal-scale decrease of glacier speed revealed using repeat optical satellite images

    Directory of Open Access Journals (Sweden)

    T. Heid

    2011-10-01

    Full Text Available Matching of repeat optical satellite images to derive glacier velocities is an approach that is much used within glaciology. Lately, focus has been put into developing, improving, automating and comparing different image matching methods. This makes it now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have decreased their speeds over the last decades, Pamir by 43 % in average per decade, Caucasus by 8 % in average per decade, Penny Ice Cap by 25 % in average per decade, Alaska Range by 11 % in average per decade and Patagonia by 20 % in average per decade. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area.

  15. History of Mexican Easel Paintings from an Altarpiece Revealed by Non-invasive Terahertz Time-Domain Imaging

    Science.gov (United States)

    Gomez-Sepulveda, A. M.; Hernandez-Serrano, A. I.; Radpour, R.; Koch-Dandolo, C. L.; Rojas-Landeros, S. C.; Ascencio-Rojas, L. F.; Zarate, Alvaro; Hernandez, Gerardo; Gonzalez-Tirado, R. C.; Insaurralde-Caballero, M.; Castro-Camus, E.

    2016-12-01

    Four easel paintings attributed to Hermenegildo Bustos (Purísima del Rincón, Guanajuato, Mexico), one of the most renowned painters of the late nineteenth and early twentieth century Mexican art, have been investigated by means of terahertz time-domain imaging (THz-TDI) and standard imaging techniques, such as near-IR reflectography and X-ray radiography. The archival sources and the recent studies on the paintings suggest that the artworks were created in the eighteenth century and underwent several modifications since then until the intervention of Bustos who authored the currently visible depictions. By combining the records of the paintings obtained by imaging with the different methodologies, aspects of the previous depictions and further details on the paintings' history have been revealed, with THz-TDI playing a key role in attributing a chronological evolution of the images. The paintings of Purísima are the first THz-TDI-scanned paintings belonging to the Mexican cultural heritage.

  16. History of Mexican Easel Paintings from an Altarpiece Revealed by Non-invasive Terahertz Time-Domain Imaging

    Science.gov (United States)

    Gomez-Sepulveda, A. M.; Hernandez-Serrano, A. I.; Radpour, R.; Koch-Dandolo, C. L.; Rojas-Landeros, S. C.; Ascencio-Rojas, L. F.; Zarate, Alvaro; Hernandez, Gerardo; Gonzalez-Tirado, R. C.; Insaurralde-Caballero, M.; Castro-Camus, E.

    2017-04-01

    Four easel paintings attributed to Hermenegildo Bustos ( Purísima del Rincón, Guanajuato, Mexico), one of the most renowned painters of the late nineteenth and early twentieth century Mexican art, have been investigated by means of terahertz time-domain imaging (THz-TDI) and standard imaging techniques, such as near-IR reflectography and X-ray radiography. The archival sources and the recent studies on the paintings suggest that the artworks were created in the eighteenth century and underwent several modifications since then until the intervention of Bustos who authored the currently visible depictions. By combining the records of the paintings obtained by imaging with the different methodologies, aspects of the previous depictions and further details on the paintings' history have been revealed, with THz-TDI playing a key role in attributing a chronological evolution of the images. The paintings of Purísima are the first THz-TDI-scanned paintings belonging to the Mexican cultural heritage.

  17. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    Science.gov (United States)

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  18. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation.

    Science.gov (United States)

    Bomphrey, Richard J; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-12-07

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.

  19. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    Science.gov (United States)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  20. Non-Invasive MRI and Spectroscopy of mdx Mice Reveal Temporal Changes in Dystrophic Muscle Imaging and in Energy Deficits

    Science.gov (United States)

    Heier, Christopher R.; Guerron, Alfredo D.; Korotcov, Alexandru; Lin, Stephen; Gordish-Dressman, Heather; Fricke, Stanley; Sze, Raymond W.; Hoffman, Eric P.; Wang, Paul; Nagaraju, Kanneboyina

    2014-01-01

    In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy. PMID:25390038

  1. Motor dysfunction in the tottering mouse is linked to cerebellar spontaneous low frequency oscillations revealed by flavoprotein autofluorescence optical imaging

    Science.gov (United States)

    Chen, Gang; Popa, Laurentiu S.; Wang, Xinming; Gao, Wangcai; Barnes, Justin; Hendrix, Claudia M.; Hess, Ellen J.; Ebner, Timothy J.

    2009-02-01

    Flavoprotein autofluorescence optical imaging is developing into a powerful research tool to study neural activity, particularly in vivo. In this study we used this imaging technique to investigate the neuronal mechanism underlying the episodic movement disorder that is characteristic of the tottering (tg) mouse, a model of episodic ataxia type 2. Both EA2 and the tg mouse are caused by mutations in the gene encoding Cav2.1 (P/Q-type) voltage-gated Ca2+ channels. These mutations result in a reduction in P/Q Ca2+ channel function. Both EA2 patients and tg mice have a characteristic phenotype consisting of transient motor attacks triggered by stress, caffeine or ethanol. The neural events underlying these episodes of dystonia are unknown. Flavoprotein autofluorescence optical imaging revealed spontaneous, transient, low frequency oscillations in the cerebellar cortex of the tg mouse. Lasting from 30 - 120 minutes, the oscillations originate in one area then spread to surrounding regions over 30 - 60 minutes. The oscillations are reduced by removing extracellular Ca2+ and blocking Cav 1.2/1.3 (L-type) Ca2+ channels. The oscillations are not affected by blocking AMPA receptors or by electrical stimulation of the parallel fiber - Purkinje cell circuit, suggesting the oscillations are generated intrinsically in the cerebellar cortex. Conversely, L-type Ca2+ agonists generate oscillations with similar properties. In the awake tg mouse, transcranial flavoprotein imaging revealed low frequency oscillations that are accentuated during caffeine induced attacks of dystonia. The oscillations increase during the attacks of dystonia and are coupled to oscillations in face and hindlimb EMG activity. These transient oscillations and the associated cerebellar dysfunction provide a novel mechanism by which an ion channel disorder results in episodic motor dysfunction.

  2. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  3. Dynamics of supersonic microparticle impact on elastomers revealed by real-time multi-frame imaging.

    Science.gov (United States)

    Veysset, David; Hsieh, Alex J; Kooi, Steven; Maznev, Alexei A; Masser, Kevin A; Nelson, Keith A

    2016-05-09

    Understanding high-velocity microparticle impact is essential for many fields, from space exploration to medicine and biology. Investigations of microscale impact have hitherto been limited to post-mortem analysis of impacted specimens, which does not provide direct information on the impact dynamics. Here we report real-time multi-frame imaging studies of the impact of 7 μm diameter glass spheres traveling at 700-900 m/s on elastomer polymers. With a poly(urethane urea) (PUU) sample, we observe a hyperelastic impact phenomenon not seen on the macroscale: a microsphere undergoes a full conformal penetration into the specimen followed by a rebound which leaves the specimen unscathed. The results challenge the established interpretation of the behaviour of elastomers under high-velocity impact.

  4. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts.

    Science.gov (United States)

    Dong, Guangheng; DeVito, Elise; Huang, Jie; Du, Xiaoxia

    2012-09-01

    Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N = 16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N = 15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. AFM imaging reveals the tetrameric structure of the TRPM8 channel

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Andrew P.; Egressy, Kinga; Lim, Annabel [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom); Edwardson, J. Michael, E-mail: jme1000@cam.ac.uk [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom)

    2010-04-02

    Several members of the transient receptor potential (TRP) channel superfamily have been shown to assemble as tetramers. Here we have determined the subunit stoichiometry of the transient receptor potential M8 (TRPM8) channel using atomic force microscopy (AFM). TRPM8 channels were isolated from transfected cells, and complexes were formed between the channels and antibodies against a V5 epitope tag present on each subunit. The complexes were then subjected to AFM imaging. A frequency distribution of the molecular volumes of antibody decorated channels had a peak at 1305 nm{sup 3}, close to the expected size of a TRPM8 tetramer. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 93{sup o} and 172{sup o}, confirming that the channel assembles as a tetramer. We suggest that this assembly pattern is common to all members of the TRP channel superfamily.

  6. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging

    Science.gov (United States)

    Berthing, Trine; Bonde, Sara; Rostgaard, Katrine R.; Hannibal Madsen, Morten; Sørensen, Claus B.; Nygård, Jesper; Martinez, Karen L.

    2012-10-01

    The perspectives offered by vertical arrays of nanowires for biosensing applications in living cells depend on the access of individual nanowires to the cell interior. Recent results on electrical access and molecular delivery suggest that direct access is not always obtained. Here, we present a generic approach to directly visualize the membrane conformation of living cells interfaced with nanowire arrays, with single nanowire resolution. The method combines confocal z-stack imaging with an optimized cell membrane labelling strategy which was applied to HEK293 cells interfaced with 2-11 μm long and 3-7 μm spaced nanowires with various surface coatings (bare, aminosilane-coated or polyethyleneimine-coated indium arsenide). We demonstrate that, for all commonly used nanowire lengths, spacings and surface coatings, nanowires generally remain enclosed in a membrane compartment, and are thereby not in direct contact with the cell interior.

  7. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression.

    Science.gov (United States)

    Airan, Raag D; Meltzer, Leslie A; Roy, Madhuri; Gong, Yuqing; Chen, Han; Deisseroth, Karl

    2007-08-10

    The hippocampus is one of several brain areas thought to play a central role in affective behaviors, but the underlying local network dynamics are not understood. We used quantitative voltage-sensitive dye imaging to probe hippocampal dynamics with millisecond resolution in brain slices after bidirectional modulation of affective state in rat models of depression. We found that a simple measure of real-time activity-stimulus-evoked percolation of activity through the dentate gyrus relative to the hippocampal output subfield-accounted for induced changes in animal behavior independent of the underlying mechanism of action of the treatments. Our results define a circuit-level neurophysiological endophenotype for affective behavior and suggest an approach to understanding circuit-level substrates underlying psychiatric disease symptoms.

  8. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.

    Science.gov (United States)

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J

    2015-07-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings.

  9. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damageinto Nuclear Sub-Domains

    Energy Technology Data Exchange (ETDEWEB)

    Costes Sylvain V., Ponomarev Artem, Chen James L.; Nguyen, David; Cucinotta, Francis A.; Barcellos-Hoff, Mary Helen

    2007-08-03

    Several proteins involved in the response to DNA doublestrand breaks (DSB) f orm microscopically visible nuclear domains, orfoci, after exposure to ionizing radiation. Radiation-induced foci (RIF)are believed to be located where DNA damage occurs. To test thisassumption, we analyzed the spatial distribution of 53BP1, phosphorylatedATM, and gammaH2AX RIF in cells irradiated with high linear energytransfer (LET) radiation and low LET. Since energy is randomly depositedalong high-LET particle paths, RIF along these paths should also berandomly distributed. The probability to induce DSB can be derived fromDNA fragment data measured experimentally by pulsed-field gelelectrophoresis. We used this probability in Monte Carlo simulations topredict DSB locations in synthetic nuclei geometrically described by acomplete set of human chromosomes, taking into account microscope opticsfrom real experiments. As expected, simulations produced DNA-weightedrandom (Poisson) distributions. In contrast, the distributions of RIFobtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) werenon-random. This deviation from the expected DNA-weighted random patterncan be further characterized by "relative DNA image measurements." Thisnovel imaging approach shows that RIF were located preferentially at theinterface between high and low DNA density regions, and were morefrequent than predicted in regions with lower DNA density. The samepreferential nuclear location was also measured for RIF induced by 1 Gyof low-LET radiation. This deviation from random behavior was evidentonly 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AXand 53BP1 RIF showed pronounced deviations up to 30 min after exposure.These data suggest that DNA damage induced foci are restricted to certainregions of the nucleus of human epithelial cells. It is possible that DNAlesions are collected in these nuclear sub-domains for more efficientrepair.

  10. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains.

    Directory of Open Access Journals (Sweden)

    Sylvain V Costes

    2007-08-01

    Full Text Available Several proteins involved in the response to DNA double strand breaks (DSB form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF are believed to be located where DNA damage occurs. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM, and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET radiation and low LET. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by "relative DNA image measurements." This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that DNA damage-induced foci are restricted to certain regions of the nucleus of human epithelial cells. It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair.

  11. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  12. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    Science.gov (United States)

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  13. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.;

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...... penetrating radar survey profiled 20 m into lake ice and facilitated bathymetric mapping of the upper lake basin. An airborne transient electromagnetic survey revealed a low-resistivity zone 30-100 m beneath the lake surface. Based on previous knowledge of brine chemistry and local geology, we interpret...

  14. Spatial frequency filtered images reveal differences between masked and unmasked processing of emotional information.

    Science.gov (United States)

    Rohr, Michaela; Wentura, Dirk

    2014-10-01

    High and low spatial frequency information has been shown to contribute differently to the processing of emotional information. In three priming studies using spatial frequency filtered emotional face primes, emotional face targets, and an emotion categorization task, we investigated this issue further. Differences in the pattern of results between short and masked, and short and long unmasked presentation conditions emerged. Given long and unmasked prime presentation, high and low frequency primes triggered emotion-specific priming effects. Given brief and masked prime presentation in Experiment 2, we found a dissociation: High frequency primes caused a valence priming effect, whereas low frequency primes yielded a differentiation between low and high arousing information within the negative domain. Brief and unmasked prime presentation in Experiment 3 revealed that subliminal processing of primes was responsible for the pattern observed in Experiment 2. The implications of these findings for theories of early emotional information processing are discussed.

  15. Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging.

    Directory of Open Access Journals (Sweden)

    Margaret Clarke

    Full Text Available BACKGROUND: The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY: To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS: We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE: Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.

  16. Properties of Starless and Prestellar Cores in Taurus Revealed by Herschel SPIRE/PACS Imaging

    CERN Document Server

    Marsh, K A; Palmeirim, P; André, Ph; Kirk, J; Stamatellos, D; Ward-Thompson, D; Roy, A; Bontemps, S; Di Francesco, J; Elia, D; Hill, T; Konyves, V; Motte, F; Nguyen-Luong, Q; Peretto, N; Pezzuto, S; Rivera-Ingraham, A; Schneider, N; Spinoglio, L; White, G

    2014-01-01

    The density and temperature structures of dense cores in the L1495 cloud of the Taurus star-forming region are investigated using Herschel SPIRE and PACS images in the 70 $\\mu$m, 160 $\\mu$m, 250 $\\mu$m, 350 $\\mu$m and 500 $\\mu$m continuum bands. A sample consisting of 20 cores, selected using spectral and spatial criteria, is analysed using a new maximum likelihood technique, COREFIT, which takes full account of the instrumental point spread functions. We obtain central dust temperatures, $T_0$, in the range 6-12 K and find that, in the majority of cases, the radial density falloff at large radial distances is consistent with the $r^{-2}$ variation expected for Bonnor-Ebert spheres. Two of our cores exhibit a significantly steeper falloff, however, and since both appear to be gravitationally unstable, such behaviour may have implications for collapse models. We find a strong negative correlation between $T_0$ and peak column density, as expected if the dust is heated predominantly by the interstellar radiatio...

  17. Automated multidimensional image analysis reveals a role for Abl in embryonic wound repair.

    Science.gov (United States)

    Zulueta-Coarasa, Teresa; Tamada, Masako; Lee, Eun J; Fernandez-Gonzalez, Rodrigo

    2014-07-01

    The embryonic epidermis displays a remarkable ability to repair wounds rapidly. Embryonic wound repair is driven by the evolutionary conserved redistribution of cytoskeletal and junctional proteins around the wound. Drosophila has emerged as a model to screen for factors implicated in wound closure. However, genetic screens have been limited by the use of manual analysis methods. We introduce MEDUSA, a novel image-analysis tool for the automated quantification of multicellular and molecular dynamics from time-lapse confocal microscopy data. We validate MEDUSA by quantifying wound closure in Drosophila embryos, and we show that the results of our automated analysis are comparable to analysis by manual delineation and tracking of the wounds, while significantly reducing the processing time. We demonstrate that MEDUSA can also be applied to the investigation of cellular behaviors in three and four dimensions. Using MEDUSA, we find that the conserved nonreceptor tyrosine kinase Abelson (Abl) contributes to rapid embryonic wound closure. We demonstrate that Abl plays a role in the organization of filamentous actin and the redistribution of the junctional protein β-catenin at the wound margin during embryonic wound repair. Finally, we discuss different models for the role of Abl in the regulation of actin architecture and adhesion dynamics at the wound margin.

  18. Structural imaging reveals anatomical alterations in inferotemporal cortex in congenital prosopagnosia.

    Science.gov (United States)

    Behrmann, Marlene; Avidan, Galia; Gao, Fuqiang; Black, Sandra

    2007-10-01

    Congenital prosopagnosia (CP) refers to the lifelong impairment in face recognition in individuals who have intact low-level visual processing, normal cognitive abilities, and no known neurological disorder. Although the face recognition impairment is profound and debilitating, its neural basis remains elusive. To investigate this, we conducted detailed morphometric and volumetric analyses of the occipitotemporal (OT) cortex in a group of CP individuals and matched control subjects using high-spatial resolution magnetic resonance imaging. Although there were no significant group differences in the depth or deviation from the midline of the OT or collateral sulci, the CP individuals evince a larger anterior and posterior middle temporal gyrus and a significantly smaller anterior fusiform (aF) gyrus. Interestingly, this volumetric reduction in the aF gyrus is correlated with the behavioral decrement in face recognition. These findings implicate a specific cortical structure as the neural basis of CP and, in light of the familial history of CP, target the aF gyrus as a potential site for further, focused genetic investigation.

  19. Microcolony imaging of Aspergillus fumigatus treated with echinocandins reveals both fungistatic and fungicidal activities.

    Directory of Open Access Journals (Sweden)

    Colin J Ingham

    Full Text Available BACKGROUND: The echinocandins are lipopeptides that can be employed as antifungal drugs that inhibit the synthesis of 1,3-β-glucans within the fungal cell wall. Anidulafungin and caspofungin are echinocandins used in the treatment of Candida infections and have activity against other fungi including Aspergillus fumigatus. The echinocandins are generally considered fungistatic against Aspergillus species. METHODS: Culture of A. fumigatus from conidia to microcolonies on a support of porous aluminium oxide (PAO, combined with fluorescence microscopy and scanning electron microscopy, was used to investigate the effects of anidulafungin and caspofungin. The PAO was an effective matrix for conidial germination and microcolony growth. Additionally, PAO supports could be moved between agar plates containing different concentrations of echinocandins to change dosage and to investigate the recovery of fungal microcolonies from these drugs. Culture on PAO combined with microscopy and image analysis permits quantitative studies on microcolony growth with the flexibility of adding or removing antifungal agents, dyes, fixatives or osmotic stresses during growth with minimal disturbance of fungal microcolonies. SIGNIFICANCE: Anidulafungin and caspofungin reduced but did not halt growth at the microcony level; additionally both drugs killed individual cells, particularly at concentrations around the MIC. Intact but not lysed cells showed rapid recovery when the drugs were removed. The classification of these drugs as either fungistatic or fungicidal is simplistic. Microcolony analysis on PAO appears to be a valuable tool to investigate the action of antifungal agents.

  20. Effective cerebral connectivity during silent speech reading revealed by functional magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Ying-Hua Chu

    Full Text Available Seeing the articulatory gestures of the speaker ("speech reading" enhances speech perception especially in noisy conditions. Recent neuroimaging studies tentatively suggest that speech reading activates speech motor system, which then influences superior-posterior temporal lobe auditory areas via an efference copy. Here, nineteen healthy volunteers were presented with silent videoclips of a person articulating Finnish vowels /a/, /i/ (non-targets, and /o/ (targets during event-related functional magnetic resonance imaging (fMRI. Speech reading significantly activated visual cortex, posterior fusiform gyrus (pFG, posterior superior temporal gyrus and sulcus (pSTG/S, and the speech motor areas, including premotor cortex, parts of the inferior (IFG and middle (MFG frontal gyri extending into frontal polar (FP structures, somatosensory areas, and supramarginal gyrus (SMG. Structural equation modelling (SEM of these data suggested that information flows first from extrastriate visual cortex to pFS, and from there, in parallel, to pSTG/S and MFG/FP. From pSTG/S information flow continues to IFG or SMG and eventually somatosensory areas. Feedback connectivity was estimated to run from MFG/FP to IFG, and pSTG/S. The direct functional connection from pFG to MFG/FP and feedback connection from MFG/FP to pSTG/S and IFG support the hypothesis of prefrontal speech motor areas influencing auditory speech processing in pSTG/S via an efference copy.

  1. On the Physiology of Normal Swallowing as Revealed by Magnetic Resonance Imaging in Real Time

    Directory of Open Access Journals (Sweden)

    Arno Olthoff

    2014-01-01

    Full Text Available The aim of this study was to assess the physiology of normal swallowing using recent advances in real-time magnetic resonance imaging (MRI. Therefore ten young healthy subjects underwent real-time MRI and flexible endoscopic evaluations of swallowing (FEES with thickened pineapple juice as oral contrast bolus. MRI movies were recorded in sagittal, coronal, and axial orientations during successive swallows at about 25 frames per second. Intermeasurement variation was analyzed and comparisons between real-time MRI and FEES were performed. Twelve distinct swallowing events could be quantified by real-time MRI (start time, end time, and duration. These included five valve functions: oro-velar opening, velo-pharyngeal closure, glottal closure, epiglottic retroflexion, and esophageal opening; three bolus transports: oro-velar transit, pharyngeal delay, pharyngeal transit; and four additional events: laryngeal ascent, laryngeal descent, vallecular, and piriform sinus filling and pharyngeal constriction. Repetitive measurements confirmed the general reliability of the MRI method with only two significant differences for the start times of the velo-pharyngeal closure (t(8=-2.4, P≤0.046 and laryngeal ascent (t(8=-2.6, P≤0.031. The duration of the velo-pharyngeal closure was significantly longer in real-time MRI compared to FEES (t(8=-3.3, P≤0.011. Real-time MRI emerges as a simple, robust, and reliable tool for obtaining comprehensive functional and anatomical information about the swallowing process.

  2. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.

    Science.gov (United States)

    Pfender, Sybille; Kuznetsov, Vitaliy; Pasternak, Michał; Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-08-13

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down's syndrome. Which genes safeguard accurate progression through meiosis is largely unclear. Here we develop high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNA interference within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated data set of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and allows systematic studies of meiosis in mammals.

  3. Resistivity imaging reveals complex pattern of saltwater intrusion along Monterey coast

    Science.gov (United States)

    Goebel, Meredith; Pidlisecky, Adam; Knight, Rosemary

    2017-08-01

    Electrical Resistivity Tomography data were acquired along 40 km of the Monterey Bay coast in central California. These data resulted in electrical resistivity images to depths of approximately 280 m.b.s.l., which were used to understand the distribution of freshwater and saltwater in the subsurface, and factors controlling this distribution. The resulting resistivity sections were interpreted in conjunction with existing data sets, including well logs, seismic reflection data, geologic reports, hydrologic reports, and land use maps from the region. Interpretation of these data shows a complex pattern of saltwater intrusion resulting from geology, pumping, and recharge. The resistivity profiles were used to identify geological flow conduits and barriers such as palaeo-channels and faults, localized saltwater intrusion from individual pumping wells, infiltration zones of surface fresh and brackish water, and regions showing improvements in water quality due to management actions. The use of ERT data for characterizing the subsurface in this region has led to an understanding of the spatial distribution of freshwater and saltwater at a level of detail unattainable with the previously deployed traditional well based salinity mapping and monitoring techniques alone. Significant spatial variability in the extent and geometry of intrusion observed in the acquired data highlights the importance of adopting continuous subsurface characterization methods such as this one.

  4. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging

    Science.gov (United States)

    Ritsma, Laila; Ellenbroek, Saskia I. J.; Zomer, Anoek; Snippert, Hugo J.; de Sauvage, Frederic J.; Simons, Benjamin D.; Clevers, Hans; van Rheenen, Jacco

    2014-03-01

    The rapid turnover of the mammalian intestinal epithelium is supported by stem cells located around the base of the crypt. In addition to the Lgr5 marker, intestinal stem cells have been associated with other markers that are expressed heterogeneously within the crypt base region. Previous quantitative clonal fate analyses have led to the proposal that homeostasis occurs as the consequence of neutral competition between dividing stem cells. However, the short-term behaviour of individual Lgr5+ cells positioned at different locations within the crypt base compartment has not been resolved. Here we establish the short-term dynamics of intestinal stem cells using the novel approach of continuous intravital imaging of Lgr5-Confetti mice. We find that Lgr5+ cells in the upper part of the niche (termed `border cells') can be passively displaced into the transit-amplifying domain, after the division of proximate cells, implying that the determination of stem-cell fate can be uncoupled from division. Through quantitative analysis of individual clonal lineages, we show that stem cells at the crypt base, termed `central cells', experience a survival advantage over border stem cells. However, through the transfer of stem cells between the border and central regions, all Lgr5+ cells are endowed with long-term self-renewal potential. These findings establish a novel paradigm for stem-cell maintenance in which a dynamically heterogeneous cell population is able to function long term as a single stem-cell pool.

  5. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  6. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    Science.gov (United States)

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  7. Noninvasive In Toto Imaging of the Thymus Reveals Heterogeneous Migratory Behavior of Developing T Cells.

    Science.gov (United States)

    Bajoghli, Baubak; Kuri, Paola; Inoue, Daigo; Aghaallaei, Narges; Hanelt, Marleen; Thumberger, Thomas; Rauzi, Matteo; Wittbrodt, Joachim; Leptin, Maria

    2015-09-01

    The migration of developing T cells (thymocytes) between distinct thymic microenvironments is crucial for their development. Ex vivo studies of thymus tissue explants suggest two distinct migratory behaviors of thymocytes in the thymus. In the cortex, thymocytes exhibit a stochastic migration, whereas medullary thymocytes show confined migratory behavior. Thus far, it has been difficult to follow all thymocytes in an entire thymus and relate their differentiation steps to their migratory dynamics. To understand the spatial organization of the migratory behavior and development of thymocytes in a fully functional thymus, we developed transgenic reporter lines for the chemokine receptors ccr9a and ccr9b, as well as for rag2, and used them for noninvasive live imaging of the entire thymus in medaka (Oryzias latipes). We found that the expression of these two chemokine receptors in the medaka juvenile thymus defined two spatially distinct subpopulations of thymocytes. Landmark events of T cell development including proliferation, somatic recombination, and thymic selection can be mapped to subregions of the thymus. The migratory behavior of thymocytes within each of the subpopulations is equally heterogeneous, and specific migratory behaviors are not associated with particular domains in the thymus. During the period when thymocytes express rag2 their migratory behavior was more homogeneous. Therefore, the migratory behavior of thymocytes is partly correlated with their developmental stage rather than being defined by their spatial localization.

  8. In situ imaging reveals the biomass of giant protists in the global ocean.

    Science.gov (United States)

    Biard, Tristan; Stemmann, Lars; Picheral, Marc; Mayot, Nicolas; Vandromme, Pieter; Hauss, Helena; Gorsky, Gabriel; Guidi, Lionel; Kiko, Rainer; Not, Fabrice

    2016-04-28

    Planktonic organisms play crucial roles in oceanic food webs and global biogeochemical cycles. Most of our knowledge about the ecological impact of large zooplankton stems from research on abundant and robust crustaceans, and in particular copepods. A number of the other organisms that comprise planktonic communities are fragile, and therefore hard to sample and quantify, meaning that their abundances and effects on oceanic ecosystems are poorly understood. Here, using data from a worldwide in situ imaging survey of plankton larger than 600 μm, we show that a substantial part of the biomass of this size fraction consists of giant protists belonging to the Rhizaria, a super-group of mostly fragile unicellular marine organisms that includes the taxa Phaeodaria and Radiolaria (for example, orders Collodaria and Acantharia). Globally, we estimate that rhizarians in the top 200 m of world oceans represent a standing stock of 0.089 Pg carbon, equivalent to 5.2% of the total oceanic biota carbon reservoir. In the vast oligotrophic intertropical open oceans, rhizarian biomass is estimated to be equivalent to that of all other mesozooplankton (plankton in the size range 0.2-20 mm). The photosymbiotic association of many rhizarians with microalgae may be an important factor in explaining their distribution. The previously overlooked importance of these giant protists across the widest ecosystem on the planet changes our understanding of marine planktonic ecosystems.

  9. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  10. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  11. Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils

    Science.gov (United States)

    Zuber, Marcus; Laaß, Michael; Hamann, Elias; Kretschmer, Sophie; Hauschke, Norbert; van de Kamp, Thomas; Baumbach, Tilo; Koenig, Thomas

    2017-01-01

    Non-destructive imaging techniques can be extremely useful tools for the investigation and the assessment of palaeontological objects, as mechanical preparation of rare and valuable fossils is precluded in most cases. However, palaeontologists are often faced with the problem of choosing a method among a wide range of available techniques. In this case study, we employ x-ray computed tomography (CT) and computed laminography (CL) to study the first fossil xiphosuran from the Muschelkalk (Middle Triassic) of the Netherlands. The fossil is embedded in micritic limestone, with the taxonomically important dorsal shield invisible, and only the outline of its ventral part traceable. We demonstrate the complementarity of CT and CL which offers an excellent option to visualize characteristic diagnostic features. We introduce augmented laminography to correlate complementary information of the two methods in Fourier space, allowing to combine their advantages and finally providing increased anatomical information about the fossil. This method of augmented laminography enabled us to identify the xiphosuran as a representative of the genus Limulitella. PMID:28128302

  12. Length and activity of the root apical meristem revealed in vivo by infrared imaging.

    Science.gov (United States)

    Bizet, François; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice

    2015-03-01

    Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length.

  13. Summer monsoon intraseasonal oscillation over eastern Arabian Sea – as revealed by TRMM microwave imager products

    Indian Academy of Sciences (India)

    S H Rahman; B Simon

    2006-10-01

    The time evolution of atmospheric parameters on intraseasonal time scale in the eastern Arabian Sea (EAS) is studied during the summer monsoon seasons of 1998–2003 using Tropical Rainfall Measuring Mission Microwave Imager (TMI) data. This is done using the spectral and wavelet analysis. Analysis shows that over EAS, total precipitable water vapour (TWV) and sea surface wind speed (SWS) have a periodicity of 8–15 days, 15–30 days and 30–60 days during the monsoon season. Significant power is seen in the 8–15-day time scale in TWV during onset and retreat of the summer monsoon. Analysis indicates that the timings of the intensification of 8–15, 15–30, and 30–60 days oscillations have a profound effect on the evolution of the daily rainfall over west coast of India. The positive and negative phases of these oscillations are directly related to the active and dry spells of rainfall along the west coast of India. The spectral analysis shows interannual variation of TWV and SWS. Heavy rainfall events generally occur over the west coast of India when positive phases of both 30–60 days and 15–30 days modes of TWV and SWS are simultaneously present.

  14. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds

    Directory of Open Access Journals (Sweden)

    T. Heid

    2012-04-01

    Full Text Available By matching of repeat optical satellite images it is now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have over the last decades decreased their velocity at an average rate per decade of: 43 % in the Pamir, 8 % in the Caucasus, 25 % on Penny Ice Cap, 11 % in the Alaska Range and 20 % in Patagonia. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area. Therefore the calculated average speed change is not representative for this area.

  15. Effective cerebral connectivity during silent speech reading revealed by functional magnetic resonance imaging.

    Science.gov (United States)

    Chu, Ying-Hua; Lin, Fa-Hsuan; Chou, Yu-Jen; Tsai, Kevin W-K; Kuo, Wen-Jui; Jääskeläinen, Iiro P

    2013-01-01

    Seeing the articulatory gestures of the speaker ("speech reading") enhances speech perception especially in noisy conditions. Recent neuroimaging studies tentatively suggest that speech reading activates speech motor system, which then influences superior-posterior temporal lobe auditory areas via an efference copy. Here, nineteen healthy volunteers were presented with silent videoclips of a person articulating Finnish vowels /a/, /i/ (non-targets), and /o/ (targets) during event-related functional magnetic resonance imaging (fMRI). Speech reading significantly activated visual cortex, posterior fusiform gyrus (pFG), posterior superior temporal gyrus and sulcus (pSTG/S), and the speech motor areas, including premotor cortex, parts of the inferior (IFG) and middle (MFG) frontal gyri extending into frontal polar (FP) structures, somatosensory areas, and supramarginal gyrus (SMG). Structural equation modelling (SEM) of these data suggested that information flows first from extrastriate visual cortex to pFS, and from there, in parallel, to pSTG/S and MFG/FP. From pSTG/S information flow continues to IFG or SMG and eventually somatosensory areas. Feedback connectivity was estimated to run from MFG/FP to IFG, and pSTG/S. The direct functional connection from pFG to MFG/FP and feedback connection from MFG/FP to pSTG/S and IFG support the hypothesis of prefrontal speech motor areas influencing auditory speech processing in pSTG/S via an efference copy.

  16. Knowledge and Attitudes of Nursing Home Staff and Surveyors about the Revised Federal Guidance for Incontinence Care

    Science.gov (United States)

    DuBeau, Catherine E.; Ouslander, Joseph G.; Palmer, Mary H.

    2007-01-01

    Purpose: We assessed nursing home staff and state nursing home surveyors regarding their knowledge and attitudes about urinary incontinence, its management, and the revised federal Tag F315 guidance for urinary incontinence. Design and Methods: We conducted a questionnaire survey of a convenience sample of nursing home staff and state nursing home…

  17. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases.

    Science.gov (United States)

    Vouillot, Léna; Thélie, Aurore; Pollet, Nicolas

    2015-01-07

    Genome editing using engineered nucleases is used for targeted mutagenesis. But because genome editing does not target all loci with similar efficiencies, the mutation hit-rate at a given locus needs to be evaluated. The analysis of mutants obtained using engineered nucleases requires specific methods for mutation detection, and the enzyme mismatch cleavage method is used commonly for this purpose. This method uses enzymes that cleave heteroduplex DNA at mismatches and extrahelical loops formed by single or multiple nucleotides. Bacteriophage resolvases and single-stranded nucleases are used commonly in the assay but have not been compared side-by-side on mutations obtained by engineered nucleases. We present the first comparison of the sensitivity of T7E1 and Surveyor EMC assays on deletions and point mutations obtained by zinc finger nuclease targeting in frog embryos. We report the mutation detection limits and efficiencies of T7E1 and Surveyor. In addition, we find that T7E1 outperforms the Surveyor nuclease in terms of sensitivity with deletion substrates, whereas Surveyor is better for detecting single nucleotide changes. We conclude that T7E1 is the preferred enzyme to scan mutations triggered by engineered nucleases.

  18. X-ray fluorescence imaging reveals subcellular biometal disturbances in a childhood neurodegenerative disorder.

    Science.gov (United States)

    Grubman, A; James, S A; James, J; Duncan, C; Volitakis, I; Hickey, J L; Crouch, P J; Donnelly, P S; Kanninen, K M; Liddell, J R; Cotman, S L; de Jonge; White, A R

    2014-06-01

    Biometals such as zinc, iron, copper and calcium play key roles in diverse physiological processes in the brain, but can be toxic in excess. A hallmark of neurodegeneration is a failure of homeostatic mechanisms controlling the concentration and distribution of these elements, resulting in overload, deficiency or mislocalization. A major roadblock to understanding the impact of altered biometal homeostasis in neurodegenerative disease is the lack of rapid, specific and sensitive techniques capable of providing quantitative subcellular information on biometal homeostasis in situ. Recent advances in X-ray fluorescence detectors have provided an opportunity to rapidly measure biometal content at subcellular resolution in cell populations using X-ray Fluorescence Microscopy (XFM). We applied this approach to investigate subcellular biometal homeostasis in a cerebellar cell line isolated from a natural mouse model of a childhood neurodegenerative disorder, the CLN6 form of neuronal ceroid lipofuscinosis, commonly known as Batten disease. Despite no global changes to whole cell concentrations of zinc or calcium, XFM revealed significant subcellular mislocalization of these important biological second messengers in cerebellar Cln6(nclf) (CbCln6(nclf) ) cells. XFM revealed that nuclear-to-cytoplasmic trafficking of zinc was severely perturbed in diseased cells and the subcellular distribution of calcium was drastically altered in CbCln6(nclf) cells. Subtle differences in the zinc K-edge X-ray Absorption Near Edge Structure (XANES) spectra of control and CbCln6(nclf) cells suggested that impaired zinc homeostasis may be associated with an altered ligand set in CbCln6(nclf) cells. Importantly, a zinc-complex, Zn(II)(atsm), restored the nuclear-to-cytoplasmic zinc ratios in CbCln6(nclf) cells via nuclear zinc delivery, and restored the relationship between subcellular zinc and calcium levels to that observed in healthy control cells. Zn(II)(atsm) treatment also resulted in a

  19. High-content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics.

    Science.gov (United States)

    Harkness, Ty; McNulty, Jason D; Prestil, Ryan; Seymour, Stephanie K; Klann, Tyler; Murrell, Michael; Ashton, Randolph S; Saha, Krishanu

    2015-10-01

    Understanding the mechanisms underpinning cellular responses to microenvironmental cues requires tight control not only of the complex milieu of soluble signaling factors, extracellular matrix (ECM) connections and cell-cell contacts within cell culture, but also of the biophysics of human cells. Advances in biomaterial fabrication technologies have recently facilitated detailed examination of cellular biophysics and revealed that constraints on cell geometry arising from the cellular microenvironment influence a wide variety of human cell behaviors. Here, we create an in vitro platform capable of precise and independent control of biochemical and biophysical microenvironmental cues by adapting microcontact printing technology into the format of standard six- to 96-well plates to create MicroContact Printed Well Plates (μCP Well Plates). Automated high-content imaging of human cells seeded on μCP Well Plates revealed tight, highly consistent control of single-cell geometry, cytoskeletal organization, and nuclear elongation. Detailed subcellular imaging of the actin cytoskeleton and chromatin within live human fibroblasts on μCP Well Plates was then used to describe a new relationship between cellular geometry and chromatin dynamics. In summary, the μCP Well Plate platform is an enabling high-content screening technology for human cell biology and cellular engineering efforts that seek to identify key biochemical and biophysical cues in the cellular microenvironment.

  20. Proton Cyclotron Waves Upstream from Mars: Observations from Mars Global Surveyor

    CERN Document Server

    Romanelli, Norberto; Gomez, Daniel; Mazelle, Christian; Delva, Magda

    2013-01-01

    We present a study on the properties of electromagnetic plasma waves in the region upstream of the Martian bow shock, detected by the magnetometer and electron reflectometer (MAG / ER) onboard the Mars Global Surveyor (MGS) spacecraft during the period known as Science Phasing Orbits (SPO). The frequency of these waves, measured in the MGS reference frame (SC), is close to the local proton cyclotron frequency. Minimum variance analysis (MVA) shows that these 'proton cyclotron frequency' waves (PCWs) are characterized - in the SC frame - by a left-hand, elliptical polarization and propagate almost parallel to the background magnetic field. They also have a small degree of compressibility and an amplitude that decreases with the increase of the interplanetary magnetic field (IMF) cone angle and radial distance from the planet. The latter result supports the idea that the source of these waves is Mars. In addition, we find that these waves are not associated with the foreshock . Empirical evidence and theoretica...

  1. Lybia Montes: A Safe, Ancient Cratered Terrain, Mars Surveyor Landing Site at the Isidis Basin Rim

    Science.gov (United States)

    Haldemann, A. F. C.; Anderson, R. C.; Harbert, W.

    2000-01-01

    The Isidis basin rim may be key to understanding Mars' past with future lander missions: this area enables the mission objective to explore Mars' climatic and geologic history, including the search for liquid water and evidence of prior or extant life in ancient terrains. While two safe candidate landIng sites for Mars Pathfinder were identified in Isidis Planitia, and one is being pursued for the Mars Surveyor 2001 Lander, the region around Isidis Planitia. in contrast to Tharsis for example, has only been lightly studied. The advent of new high resolution data sets provides an opportunity to re-assess the geologic context of this Impact basin and its rim within the Martian geologic sequence as a candidate site for studying Mars' ancient cratered terrain and ancient hydrosphere. This reexamination is warranted by the various hypotheses that Isidis was once filled with ice or water.

  2. Does my face FIT?: a face image task reveals structure and distortions of facial feature representation.

    Directory of Open Access Journals (Sweden)

    Christina T Fuentes

    Full Text Available Despite extensive research on face perception, few studies have investigated individuals' knowledge about the physical features of their own face. In this study, 50 participants indicated the location of key features of their own face, relative to an anchor point corresponding to the tip of the nose, and the results were compared to the true location of the same individual's features from a standardised photograph. Horizontal and vertical errors were analysed separately. An overall bias to underestimate vertical distances revealed a distorted face representation, with reduced face height. Factor analyses were used to identify separable subconfigurations of facial features with correlated localisation errors. Independent representations of upper and lower facial features emerged from the data pattern. The major source of variation across individuals was in representation of face shape, with a spectrum from tall/thin to short/wide representation. Visual identification of one's own face is excellent, and facial features are routinely used for establishing personal identity. However, our results show that spatial knowledge of one's own face is remarkably poor, suggesting that face representation may not contribute strongly to self-awareness.

  3. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye.

    Science.gov (United States)

    Imanishi, Yoshikazu; Batten, Matthew L; Piston, David W; Baehr, Wolfgang; Palczewski, Krzysztof

    2004-02-01

    Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.

  4. The sources of sodium escaping from Io revealed by spectral high definition imaging.

    Science.gov (United States)

    Mendillo, Michael; Laurent, Sophie; Wilson, Jody; Baumgardner, Jeffrey; Konrad, Janusz; Karl, W Clem

    2007-07-19

    On Jupiter's moon Io, volcanic plumes and evaporating lava flows provide hot gases to form an atmosphere that is subsequently ionized. Some of Io's plasma is captured by the planet's strong magnetic field to form a co-rotating torus at Io's distance; the remaining ions and electrons form Io's ionosphere. The torus and ionosphere are also depleted by three time-variable processes that produce a banana-shaped cloud orbiting with Io, a giant nebula extending out to about 500 Jupiter radii, and a jet close to Io. No spatial constraints exist for the sources of the first two; they have been inferred only from modelling the patterns seen in the trace gas sodium observed far from Io. Here we report observations that reveal a spatially confined stream that ejects sodium only from the wake of the Io-torus interaction, together with a visually distinct, spherically symmetrical outflow region arising from atmospheric sputtering. The spatial extent of the ionospheric wake that feeds the stream is more than twice that observed by the Galileo spacecraft and modelled successfully. This implies considerable variability, and therefore the need for additional modelling of volcanically-driven, episodic states of the great jovian nebula.

  5. In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins.

    Science.gov (United States)

    Granstedt, Andrea E; Bosse, Jens B; Thiberge, Stephan Y; Enquist, Lynn W

    2013-09-10

    A clinical hallmark of human alphaherpesvirus infections is peripheral pain or itching. Pseudorabies virus (PRV), a broad host range alphaherpesvirus, causes violent pruritus in many different animals, but the mechanism is unknown. Previous in vitro studies have shown that infected, cultured peripheral nervous system (PNS) neurons exhibited aberrant electrical activity after PRV infection due to the action of viral membrane fusion proteins, yet it is unclear if such activity occurs in infected PNS ganglia in living animals and if it correlates with disease symptoms. Using two-photon microscopy, we imaged autonomic ganglia in living mice infected with PRV strains expressing GCaMP3, a genetically encoded calcium indicator, and used the changes in calcium flux to monitor the activity of many neurons simultaneously with single-cell resolution. Infection with virulent PRV caused these PNS neurons to fire synchronously and cyclically in highly correlated patterns among infected neurons. This activity persisted even when we severed the presynaptic axons, showing that infection-induced firing is independent of input from presynaptic brainstem neurons. This activity was not observed after infections with an attenuated PRV recombinant used for circuit tracing or with PRV mutants lacking either viral glycoprotein B, required for membrane fusion, or viral membrane protein Us9, required for sorting virions and viral glycoproteins into axons. We propose that the viral fusion proteins produced by virulent PRV infection induce electrical coupling in unmyelinated axons in vivo. This action would then give rise to the synchronous and cyclical activity in the ganglia and contribute to the characteristic peripheral neuropathy.

  6. Combined structural and functional imaging reveals cortical deactivations in grapheme-colour synaesthesia

    Directory of Open Access Journals (Sweden)

    Erik eO'Hanlon

    2013-10-01

    Full Text Available Synaesthesia is a heritable condition in which particular stimuli generate specific and consistent sensory percepts or associations in another modality or processing stream. Functional neuroimaging studies have identified potential correlates of these experiences, including, in some but not all cases, the hyperactivation of visuotemporal areas and of parietal areas thought to be involved in perceptual binding. Structural studies have identified a similarly variable spectrum of differences between synaesthetes and controls. However, it remains unclear the extent to which these neural correlates reflect the synaesthetic experience itself or additional phenotypes associated with the condition. Here, we acquired both structural and functional neuroimaging data comparing thirteen grapheme-colour synaesthetes with eleven non-synaesthetes. Using voxel-based morphometry and diffusion tensor imaging, we identify a number of clusters of increased volume of grey matter, of white matter or of increased fractional anisotropy in synaesthetes versus controls. To assess the possible involvement of these areas in the synaesthetic experience, we used nine areas of increased grey matter volume as regions of interest in an fMRI experiment that characterised the contrast in response to stimuli which induced synaesthesia (i.e. letters versus those which did not (non-meaningful symbols. Two of these areas, in left lateral occipital cortex and in postcentral gyrus, showed sensitivity to this contrast in synaesthetes but not controls. Unexpectedly, in both regions, the letter stimuli produced a strong negative BOLD signal in synaesthetes. An additional whole-brain fMRI analysis identified fourteen areas, three of which were driven mainly by a negative BOLD response to letters in synaesthetes. Our findings suggest that cortical deactivations may be involved in the conscious experience of internally generated synaesthetic percepts

  7. Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex.

    Science.gov (United States)

    Bridge, Holly; Cowey, Alan; Ragge, Nicola; Watkins, Kate

    2009-12-01

    The functional specialization of the human brain means that many regions are dedicated to processing a single sensory modality. When a modality is absent, as in congenital total blindness, 'visual' regions can be reliably activated by non-visual stimuli. The connections underlying this functional adaptation, however, remain elusive. In this study, using structural and diffusion-weighted magnetic resonance imaging, we investigated the structural differences in the brains of six bilaterally anophthalmic subjects compared with sighted subjects. Surprisingly, the gross structural differences in the brains were small, even in the occipital lobe where only a small region of the primary visual cortex showed a bilateral reduction in grey matter volume in the anophthalmic subjects compared with controls. Regions of increased cortical thickness were apparent on the banks of the Calcarine sulcus, but not in the fundus. Subcortically, the white matter volume around the optic tract and internal capsule in anophthalmic subjects showed a large decrease, yet the optic radiation volume did not differ significantly. However, the white matter integrity, as measured with fractional anisotropy showed an extensive reduction throughout the brain in the anophthalmic subjects, with the greatest difference in the optic radiations. In apparent contradiction to the latter finding, the connectivity between the lateral geniculate nucleus and primary visual cortex measured with diffusion tractography did not differ between the two populations. However, these findings can be reconciled by a demonstration that at least some of the reduction in fractional anisotropy in the optic radiation is due to an increase in the strength of fibres crossing the radiations. In summary, the major changes in the 'visual' brain in anophthalmic subjects may be subcortical, although the evidence of decreased fractional anisotropy and increased crossing fibres could indicate considerable re-organization.

  8. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  9. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia.

    Science.gov (United States)

    Zhang, Duan-Sun; Piazza, Valeria; Perrin, Benjamin J; Rzadzinska, Agnieszka K; Poczatek, J Collin; Wang, Mei; Prosser, Haydn M; Ervasti, James M; Corey, David P; Lechene, Claude P

    2012-01-15

    Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a β-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at hair cells expressing β-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of β- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.

  10. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    Science.gov (United States)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  11. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging.

    Science.gov (United States)

    Francisco, Amanda Fortes; Lewis, Michael D; Jayawardhana, Shiromani; Taylor, Martin C; Chatelain, Eric; Kelly, John M

    2015-08-01

    The antifungal drug posaconazole has shown significant activity against Trypanosoma cruzi in vitro and in experimental murine models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when parasite burden is extremely low and tissue distribution is ill defined. To better assess posaconazole efficacy against acute and chronic Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy than other methods, including PCR-based approaches. Mice inoculated with bioluminescent T. cruzi were assessed by in vivo and ex vivo imaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posaconazole was found to be significantly inferior to benznidazole as a treatment for both acute and chronic T. cruzi infections. Whereas 20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treatment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the absence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudescence in mice treated with posaconazole in the acute, but not the chronic stage of infection. This in vivo screening model for Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that drugs are not advanced prematurely into clinical trial.

  12. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    Science.gov (United States)

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  13. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    Science.gov (United States)

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma.

  14. A NEW APPROACH TO FAST MOSAIC UAV IMAGES

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2012-09-01

    Full Text Available Unmanned Aerial Vehicles (UAVs have been widely used to acquire high quality terrain images of the areas of interest, particularly when such a task could potentially risk human life or even impossible as the areas cannot be accessed easily by surveyors. Once the images have been obtained, traditional photogrammetric processing process can be used to establish a relative orientation model and then, absolute orientation model with the procedures of space resection and intersection. In many such applications, the geo- referenced images which are stitched together to represent the geospatial relationships for the feature objects are sufficient. A fast or near real-time processing approach for UAV images using GPS/INS data has being investigated for years. One beneficial application of such approach is the capability of quick production of geo-referenced images for various engineering or business activities, such as urban and road planning, the site selection of factories and bridges, etc. In this paper, we have proposed a new fast processing approach for the UAV images collected with an integrated GPS/INS/Vision system. The approach features that the corresponding points between images have been determined, and then coordinate transformation is carried out to implement image stitching. The accuracy of corresponding points normally affects the quality of stitched images, but the results of our experiments revealed that the image stitching errors were obvious even the accuracy of corresponding points was high. The stitching errors could be caused by the changes of surface elevation.

  15. Cascade of neural events leading from error commission to subsequent awareness revealed using EEG source imaging.

    Directory of Open Access Journals (Sweden)

    Monica Dhar

    Full Text Available The goal of the present study was to shed light on the respective contributions of three important action monitoring brain regions (i.e. cingulate cortex, insula, and orbitofrontal cortex during the conscious detection of response errors. To this end, fourteen healthy adults performed a speeded Go/Nogo task comprising Nogo trials of varying levels of difficulty, designed to elicit aware and unaware errors. Error awareness was indicated by participants with a second key press after the target key press. Meanwhile, electromyogram (EMG from the response hand was recorded in addition to high-density scalp electroencephalogram (EEG. In the EMG-locked grand averages, aware errors clearly elicited an error-related negativity (ERN reflecting error detection, and a later error positivity (Pe reflecting conscious error awareness. However, no Pe was recorded after unaware errors or hits. These results are in line with previous studies suggesting that error awareness is associated with generation of the Pe. Source localisation results confirmed that the posterior cingulate motor area was the main generator of the ERN. However, inverse solution results also point to the involvement of the left posterior insula during the time interval of the Pe, and hence error awareness. Moreover, consecutive to this insular activity, the right orbitofrontal cortex (OFC was activated in response to aware and unaware errors but not in response to hits, consistent with the implication of this area in the evaluation of the value of an error. These results reveal a precise sequence of activations in these three non-overlapping brain regions following error commission, enabling a progressive differentiation between aware and unaware errors as a function of time elapsed, thanks to the involvement first of interoceptive or proprioceptive processes (left insula, later leading to the detection of a breach in the prepotent response mode (right OFC.

  16. Seasonal Transport in Mars' Mesosphere revealed by Nitric Oxide Nightglow vertical profiles and global images from IUVS/MAVEN

    Science.gov (United States)

    Stiepen, Arnaud; Stewart, Ian; Jain, Sonal; Schneider, Nicholas; Deighan, Justin; Gonzàlez-Galindo, Francisco; Gérard, Jean-Claude; Stevens, Michael; Bougher, Stephen; Milby, Zachariah; Evans, Scott; Chaffin, Michael; McClintock, William; Clarke, John; Holsclaw, Greg; Montmessin, Franck; Lefèvre, Franck; Lo, Daniel; Jakosky, Bruce

    2017-04-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through Nitric Oxide (NO) δ and γ bands emissions. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation partly dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They preferentially descend in the nightside mesosphere in the winter hemisphere, where they can radiatively recombine to form NO(C2Π). The excited molecules promptly relax by emitting photons in the UV δ bands and in the γ bands through cascades via the A2Σ, v' = 0 state. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the winter descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015). Observations of these emissions have been accumulated on a large dataset of nightside disk images and vertical profiles obtained at the limb by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) instrument when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at its apoapsis and its periapsis phases along its orbit, respectively. We present discussion on the variability in the brightness, altitude and topside scale height of the emission with season, geographical position and local time and possible interpretation for local and global changes in the mesosphere dynamics. IUVS images and limb scans reveal unexpected complex structure of the emission. The brightest emission is observed close to the winter pole. The emission is also surprisingly more intense in some sectors located close to the equator : at 120˚ and 150˚ longitude. Observations also reveal spots and streaks, indicating irregularities in the wind circulation pattern and possible impact of waves and tides. The disk images and limb profiles are compared to

  17. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?

    Energy Technology Data Exchange (ETDEWEB)

    MacGillavry, Harold D., E-mail: h.d.macgillavry@uu.nl; Hoogenraad, Casper C., E-mail: c.hoogenraad@uu.nl

    2015-07-15

    The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spine architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.

  18. Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging.

    Science.gov (United States)

    Han, Meng; Giese, Guenter; Schmitz-Valckenberg, Steffen; Bindewald-Wittich, Almut; Holz, Frank G; Yu, Jiayi; Bille, Josef F; Niemz, Markolf H

    2007-01-01

    The intensive metabolism of photoreceptors is delicately maintained by the retinal pigment epithelium (RPE) and the choroid. Dysfunction of either the RPE or choroid may lead to severe damage to the retina. Two-photon excited autofluorescence (TPEF) from endogenous fluorophores in the human retina provides a novel opportunity to reveal age-related structural abnormalities in the retina-choroid complex prior to apparent pathological manifestations of age-related retinal diseases. In the photoreceptor layer, the regularity of the macular photoreceptor mosaic is preserved during aging. In the RPE, enlarged lipofuscin granules demonstrate significantly blue-shifted autofluorescence, which coincides with the depletion of melanin pigments. Prominent fibrillar structures in elderly Bruch's membrane and choriocapillaries represent choroidal structure and permeability alterations. Requiring neither slicing nor labeling, TPEF imaging is an elegant and highly efficient tool to delineate the thick, fragile, and opaque retina-choroid complex, and may provide clues to the trigger events of age-related macular degeneration.

  19. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  20. Voltage-sensitive dye imaging reveals shifting spatiotemporal spread of whisker-induced activity in rat barrel cortex.

    Science.gov (United States)

    Lustig, Brian R; Friedman, Robert M; Winberry, Jeremy E; Ebner, Ford F; Roe, Anna W

    2013-05-01

    In rats, navigating through an environment requires continuous information about objects near the head. Sensory information such as object location and surface texture are encoded by spike firing patterns of single neurons within rat barrel cortex. Although there are many studies using single-unit electrophysiology, much less is known regarding the spatiotemporal pattern of activity of populations of neurons in barrel cortex in response to whisker stimulation. To examine cortical response at the population level, we used voltage-sensitive dye (VSD) imaging to examine ensemble spatiotemporal dynamics of barrel cortex in response to stimulation of single or two adjacent whiskers in urethane-anesthetized rats. Single whisker stimulation produced a poststimulus fluorescence response peak within 12-16 ms in the barrel corresponding to the stimulated whisker (principal whisker). This fluorescence subsequently propagated throughout the barrel field, spreading anisotropically preferentially along a barrel row. After paired whisker stimulation, the VSD signal showed sublinear summation (less than the sum of 2 single whisker stimulations), consistent with previous electrophysiological and imaging studies. Surprisingly, we observed a spatial shift in the center of activation occurring over a 10- to 20-ms period with shift magnitudes of 1-2 barrels. This shift occurred predominantly in the posteromedial direction within the barrel field. Our data thus reveal previously unreported spatiotemporal patterns of barrel cortex activation. We suggest that this nontopographical shift is consistent with known functional and anatomic asymmetries in barrel cortex and that it may provide an important insight for understanding barrel field activation during whisking behavior.

  1. Prox1 expression in the endolymphatic sac revealed by whole-mount fluorescent imaging of Prox1-GFP transgenic mice.

    Science.gov (United States)

    Miyashita, Takenori; Burford, James L; Hong, Young-Kwon; Gevorgyan, Haykanush; Lam, Lisa; Hoshikawa, Hiroshi; Mori, Nozomu; Peti-Peterdi, Janos

    2015-01-30

    This study describes a technical breakthrough in endolymphatic sac research, made possible by the use of the recently generated Prox1-GFP transgenic mouse model. Whole-mount imaging techniques through the decalcified temporal bone and three-dimensional observations of Prox1-GFP mouse tissue revealed the positive labeling of the endolymphatic sac in adult stage, and allowed, for the first time, the GFP-based identification of endolymphatic sac epithelial cells. Prox1 expression was observed in all parts of the endolymphatic sac epithelia. In intermediate portion of the endolymphatic sac, mitochondria-rich cells did not express Prox1, although ribosome-rich cells showed strong GFP labeling. The anatomical relationship between the endolymphatic sac and the surrounding vasculature was directly observed. In the endolymphatic sac, expression of Prox1 may suggest progenitor cell-like pluripotency or developmental similarity to systemic lymphatic vessels in other organs. This whole-mount imaging technique of the endolymphatic sac can be combined with other conventional histological, sectioning, and labeling techniques and will be very useful for future endolymphatic sac research.

  2. High spatial dynamics-photoluminescence imaging reveals the metallurgy of the earliest lost-wax cast object

    Science.gov (United States)

    Thoury, M.; Mille, B.; Séverin-Fabiani, T.; Robbiola, L.; Réfrégiers, M.; Jarrige, J-F; Bertrand, L.

    2016-01-01

    Photoluminescence spectroscopy is a key method to monitor defects in semiconductors from nanophotonics to solar cell systems. Paradoxically, its great sensitivity to small variations of local environment becomes a handicap for heterogeneous systems, such as are encountered in environmental, medical, ancient materials sciences and engineering. Here we demonstrate that a novel full-field photoluminescence imaging approach allows accessing the spatial distribution of crystal defect fluctuations at the crystallite level across centimetre-wide fields of view. This capacity is illustrated in archaeology and material sciences. The coexistence of two hitherto indistinguishable non-stoichiometric cuprous oxide phases is revealed in a 6,000-year-old amulet from Mehrgarh (Baluchistan, Pakistan), identified as the oldest known artefact made by lost-wax casting and providing a better understanding of this fundamental invention. Low-concentration crystal defect fluctuations are readily mapped within ZnO nanowires. High spatial dynamics-photoluminescence imaging holds great promise for the characterization of bulk heterogeneous systems across multiple disciplines. PMID:27843139

  3. High spatial dynamics-photoluminescence imaging reveals the metallurgy of the earliest lost-wax cast object

    Science.gov (United States)

    Thoury, M.; Mille, B.; Séverin-Fabiani, T.; Robbiola, L.; Réfrégiers, M.; Jarrige, J.-F.; Bertrand, L.

    2016-11-01

    Photoluminescence spectroscopy is a key method to monitor defects in semiconductors from nanophotonics to solar cell systems. Paradoxically, its great sensitivity to small variations of local environment becomes a handicap for heterogeneous systems, such as are encountered in environmental, medical, ancient materials sciences and engineering. Here we demonstrate that a novel full-field photoluminescence imaging approach allows accessing the spatial distribution of crystal defect fluctuations at the crystallite level across centimetre-wide fields of view. This capacity is illustrated in archaeology and material sciences. The coexistence of two hitherto indistinguishable non-stoichiometric cuprous oxide phases is revealed in a 6,000-year-old amulet from Mehrgarh (Baluchistan, Pakistan), identified as the oldest known artefact made by lost-wax casting and providing a better understanding of this fundamental invention. Low-concentration crystal defect fluctuations are readily mapped within ZnO nanowires. High spatial dynamics-photoluminescence imaging holds great promise for the characterization of bulk heterogeneous systems across multiple disciplines.

  4. Emerging Massive Star Clusters Revealed: High Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    CERN Document Server

    Reines, Amy E; Goss, W M

    2008-01-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high resolution imaging from the radio to the ultraviolet, we reveal these clusters in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense HII regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources towards NGC 4449 at 3.6 cm using the highest resolution (1.3") and sensitivity (RMS ~ 12 uJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and their physical properties are derived using both nebular emission from the HII regions and SED fitting to the stellar con...

  5. Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

    CERN Multimedia

    2004-01-01

    Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

  6. Longitudinal magnetic resonance imaging reveals striatal hypertrophy in a rat model of long-term stimulant treatment.

    Science.gov (United States)

    Biezonski, D; Shah, R; Krivko, A; Cha, J; Guilfoyle, D N; Hrabe, J; Gerum, S; Xie, S; Duan, Y; Bansal, R; Leventhal, B L; Peterson, B S; Kellendonk, C; Posner, J

    2016-09-06

    Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, 'Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy.

  7. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion.

    Science.gov (United States)

    Savalia, Neil K; Agres, Phillip F; Chan, Micaela Y; Feczko, Eric J; Kennedy, Kristen M; Wig, Gagan S

    2017-01-01

    Motion-contaminated T1-weighted (T1w) magnetic resonance imaging (MRI) results in misestimates of brain structure. Because conventional T1w scans are not collected with direct measures of head motion, a practical alternative is needed to identify potential motion-induced bias in measures of brain anatomy. Head movements during functional MRI (fMRI) scanning of 266 healthy adults (20-89 years) were analyzed to reveal stable features of in-scanner head motion. The magnitude of head motion increased with age and exhibited within-participant stability across different fMRI scans. fMRI head motion was then related to measurements of both quality control (QC) and brain anatomy derived from a T1w structural image from the same scan session. A procedure was adopted to "flag" individuals exhibiting excessive head movement during fMRI or poor T1w quality rating. The flagging procedure reliably reduced the influence of head motion on estimates of gray matter thickness across the cortical surface. Moreover, T1w images from flagged participants exhibited reduced estimates of gray matter thickness and volume in comparison to age- and gender-matched samples, resulting in inflated effect sizes in the relationships between regional anatomical measures and age. Gray matter thickness differences were noted in numerous regions previously reported to undergo prominent atrophy with age. Recommendations are provided for mitigating this potential confound, and highlight how the procedure may lead to more accurate measurement and comparison of anatomical features. Hum Brain Mapp 38:472-492, 2017. © 2016 Wiley Periodicals, Inc.

  8. IMAGING AND SPECTROSCOPIC DIAGNOSTICS ON THE FORMATION OF TWO MAGNETIC FLUX ROPES REVEALED BY SDO/AIA AND IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Ding, M. D.; Fang, C., E-mail: xincheng@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2015-05-10

    Helical magnetic flux rope (MFR) is a fundamental structure of coronal mass ejections (CMEs) and has been discovered recently to exist as a sigmoidal channel structure prior to its eruption in the EUV high-temperature passbands of the Atmospheric Imaging Assembly (AIA). However, when and where the MFR is built up are still elusive. In this paper, we investigate two MFRs (MFR1 and MFR2) in detail, whose eruptions produced two energetic solar flares and CMEs on 2014 April 18 and 2014 September 10, respectively. The AIA EUV images reveal that for a long time prior to their eruption, both MFR1 and MFR2 are under formation, which is probably through magnetic reconnection between two groups of sheared arcades driven by the shearing and converging flows in the photosphere near the polarity inversion line. At the footpoints of the MFR1, the Interface Region Imaging Spectrograph Si iv, C ii, and Mg ii lines exhibit weak to moderate redshifts and a non-thermal broadening in the pre-flare phase. However, a relatively large blueshift and an extremely strong non-thermal broadening are found at the formation site of the MFR2. These spectral features consolidate the proposition that the reconnection plays an important role in the formation of MFRs. For the MFR1, the reconnection outflow may propagate along its legs, penetrating into the transition region and the chromosphere at the footpoints. For the MFR2, the reconnection probably takes place in the lower atmosphere and results in the strong blueshift and non-thermal broadening for the Mg ii, C ii, and Si iv lines.

  9. Longitudinal magnetic resonance imaging reveals striatal hypertrophy in a rat model of long-term stimulant treatment

    Science.gov (United States)

    Biezonski, D; Shah, R; Krivko, A; Cha, J; Guilfoyle, D N; Hrabe, J; Gerum, S; Xie, S; Duan, Y; Bansal, R; Leventhal, B L; Peterson, B S; Kellendonk, C; Posner, J

    2016-01-01

    Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, ‘Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy. PMID:27598968

  10. The MESSIER surveyor: unveiling the ultra-low surface brightness universe

    Science.gov (United States)

    Valls-Gabaud, David; MESSIER Collaboration

    2017-03-01

    The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.

  11. Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study

    Science.gov (United States)

    Crooke, Julie A.; Roberge, Aki; Domagal-Goldman, Shawn D.; Mandell, Avi M.; Bolcar, Matthew R.; Rioux, Norman M.; Perez, Mario R.; Smith, Erin C.

    2016-07-01

    In preparation of the 2020 Astrophysics Decadal Survey, National Aeronautics and Space Administration (NASA) has commenced a process for the astronomical community to study several large mission concepts leveraging the lessons learned from past Decadal Surveys. This will enable the Decadal Survey committee to make more informed recommendations to NASA on its astrophysics science and mission priorities with respect to cost and risk. Four astrophysics large mission concepts were identified. Each of them had a Science and Technology Definition Teem (STDT) chartered to produce scientifically compelling, feasible, and executable design reference mission (DRM) concepts to present to the 2020 Decadal Survey. In addition, The Aerospace Corporation will perform an independent cost and technical evaluation (CATE) of each of these mission concept studies in advance of the 2020 Decadal Survey, by interacting with the STDTs to provide detailed technical details on certain areas for which "deep dives" are appropriate. This paper presents the status and path forward for one of the four large mission concepts, namely, the Large UltraViolet, Optical, InfraRed surveyor (LUVOIR).

  12. The Role of County Surveyors and County Drainage Boards in Addressing Water Quality

    Science.gov (United States)

    Dunn, Mike; Mullendore, Nathan; de Jalon, Silvestre Garcia; Prokopy, Linda Stalker

    2016-06-01

    Water quality problems stemming from the Midwestern U.S. agricultural landscape have been widely recognized and documented. The Midwestern state of Indiana contains tens of thousands of miles of regulated drains that represent biotic communities that comprise the headwaters of the state's many rivers and creeks. Traditional management, however, reduces these waterways to their most basic function as conveyances, ignoring their role in the ecosystem as hosts for biotic and abiotic processes that actively regulate the fate and transport of nutrients and farm chemicals. Novel techniques and practices such as the two-stage ditch, denitrifying bioreactor, and constructed wetlands represent promising alternatives to traditional management approaches, yet many of these tools remain underutilized. To date, conservation efforts and research have focused on increasing the voluntary adoption of practices among agricultural producers. Comparatively little attention has been paid to the roles of the drainage professionals responsible for the management of waterways and regulated drains. To address this gap, we draw on survey responses from 39 county surveyors and 85 drainage board members operating in Indiana. By examining the backgrounds, attitudes, and actions of these individuals, we consider their role in advocating and implementing novel conservation practices.

  13. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.

  14. Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission

    Science.gov (United States)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt; hide

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  15. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz optical design

    CERN Document Server

    Eimer, Joseph R; Chuss, David T; Marriage, Tobias A; Wollack, Edward J; Zeng, Lingzhen; 10.1117/12.925464

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19deg x 14deg with a resolution for each beam on the sky of 1.5deg FWHM.

  16. Future Japanese X-ray TES Calorimeter Satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor)

    Science.gov (United States)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Miyazaki, N.; Kuwabara, K.; Kuromaru, G.; Suzuki, S.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Sakai, K.; Nagayoshi, K.; Yamamoto, R.; Hayashi, T.; Muramatsu, H.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Nakamichi, R.; Bandai, A.; Yuasa, T.; Ota, N.

    2016-08-01

    We present the latest update and progress on the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS). DIOS is proposed to JAXA as a small satellite mission, and would be launched with an Epsilon rocket. DIOS would carry on the legacy of ASTRO-H, which carries semiconductor-based microcalorimeters and is scheduled to be launched in 2016, in high-resolution X-ray spectroscopy. A 400-pixel array of transition-edge sensors (TESs) would be employed, so DIOS would also provide valuable lessons for the next ESA X-ray mission ATHENA on TES operation and cryogen-free cooling in space. We have been sophisticating the entire design of the satellite to meet the requirement for the Epsilon payload for the next call. The primary goal of the mission is to search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy by detecting redshifted emission lines from OVII and OVIII ions. The results would have significant impacts on our understanding of the nature of "dark baryons," their total amount and spatial distribution, as well as their evolution over cosmological timescales.

  17. The cosmology large angular scale surveyor (CLASS): 40 GHz optical design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-09-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19° x 14° with a resolution for each beam on the sky of 1.5° FWHM.

  18. Detailed Geophysical Imaging in San Pablo Bay Reveals a New Strand of the Hayward-Rodgers Creek Fault Zone

    Science.gov (United States)

    Watt, J. T.; Ponce, D. A.; Hart, P. E.; Denton, K. M.; Parsons, T.; Graymer, R. W.

    2015-12-01

    High-resolution chirp seismic-reflection and marine magnetic data collected in San Pablo Bay reveal a new strand of the Hayward fault that helps constrain the geometry and connectivity of the Hayward-Rodgers Creek fault zone, one of the most hazardous faults in California. Over 1,200 km of marine magnetic data were collected in San Pablo Bay along NE-trending traverses spaced 200-m apart, and approximately 200 km of chirp data were collected along similarly oriented profiles spaced 1-km apart. Data were acquired using a 0.7-12 kHz sweep with a 20 ms length fired at 6 times per second. Due to attenuation of the acoustic signal by bay muds and persistent natural gas layers in San Pablo Bay, chirp data are only able to image the upper 2 to 5 meters of the sub-seafloor. Offset and warping of near-surface reflections delineates a previously unrecognized NW-trending strand of the Hayward fault that extends across San Pablo Bay, from Point Pinole to Lower Tubbs Island. Vertical offset along the fault varies in both direction and magnitude, with some indication of increasing offset with depth. The fault imaged in the chirp data corresponds to gravity, magnetic, and tomographic gradients in the bay. Relocated seismicity is aligned with the surface trace of the fault and repeating earthquakes along this trend suggest this strand of the Hayward fault is creeping. A northwestward onshore projection of this fault is coincident with gravity and topographic gradients that align with a SSE-trending splay of the Rodgers Creek Fault, suggesting the Hayward and Rodgers Creek faults may connect directly rather than through a wide step-over zone. Even if the faults do not directly connect, these new data indicate that the faults are much closer together (2 km vs 4 km) than previously thought, making a through-going rupture more plausible.

  19. Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria.

    Directory of Open Access Journals (Sweden)

    Akinobu Watanabe

    Full Text Available Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT imaging. Complementary examination of external and internal osteology reveals (1 highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2 anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3 apneumatic sacral vertebrae; and (4 a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird

  20. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon

    Science.gov (United States)

    Kapp, Nikki; Barnes, William J.; Richard, Tom L.; Anderson, Charles T.

    2015-01-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. PMID:25922482

  1. Physical and Chemical Properties of Jupiter's Polar Vortices and Regions of Auroral Influence Revealed Through High-Resolution Infrared Imaging

    Science.gov (United States)

    Fernandes, Josh; Orton, Glenn S.; Sinclair, James; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya; Momary, Thomas W.; Yanamandra-Fisher, Padma A.

    2016-10-01

    We report characterization of the physical and chemical properties of Jupiter's polar regions derived from mid-infrared imaging of Jupiter covering all longitudes at unprecedented spatial resolution using the COMICS instrument at the Subaru Telescope on the nights of January 24 and 25, 2016 (UT). Because of Jupiter's slight axial tilt of 3°, the low angular resolution and incomplete longitudinal coverage of previous mid-infrared observations, the physical and chemical properties of Jupiter's polar regions have been poorly characterized. In advance of the Juno mission's exploration of the polar regions, this study focuses on mapping the 3-dimensional structure of Jupiter's polar regions, specifically to characterize the polar vortices and compact regions of auroral influence. Using mid-infrared images taken in the 7.8 - 24.2 µm range, we determined the 3-dimensional temperature field, mapped the para-H2 fraction and aerosol opacity at 700 mbar and lower pressures, and constrained the distribution of gaseous NH3 in Jupiter's northern and southern polar regions. Retrievals of these atmospheric parameters was performed using NEMESIS, a radiative transfer forward model and retrieval code. Preliminary results indicate that there are vortices at both poles, each with very distinct low-latitude boundaries approximately 60° (planetocentric) from the equator, which can be defined by sharp thermal gradients extending at least from the upper troposphere (500 mbar) and into the stratosphere (0.1 mbar). These polar regions are characterized by lower temperatures, lower aerosol number densities, and lower NH3 volume mixing ratios, compared with the regions immediately outside the vortex boundaries. These images also provided the highest resolution of prominent auroral-related stratospheric heating to date, revealing a teardrop-shaped morphology in the north and a sharp-edged oval shape in the south. Both appear to be contained inside the locus of H3+ auroral emission detected

  2. Novel cryo-imaging of the glioma tumor microenvironment reveals migration and dispersal pathways in vivid three-dimensional detail

    OpenAIRE

    Burden-Gulley, Susan M.; Qutaish, Mohammed Q.; Sullivant, Kristin E.; Lu, Hong; Wang, Jing; Craig, Sonya E. L.; Basilion, James P.; Wilson, David L.; Brady-Kalnay, Susann M

    2011-01-01

    Traditional methods of imaging cell migration in the tumor microenvironment include serial sections of xenografts and standard histological stains. Current molecular imaging techniques suffer from low resolution and difficulty in imaging through the skull. Here we show how computer algorithms can be used to reconstruct images from tissue sections obtained from mouse xenograft models of human glioma and can be rendered into 3-D images offering exquisite anatomic detail of tumor cell dispersal....

  3. Beyond the word and image: characteristics of a common meaning system for language and vision revealed by functional and structural imaging.

    Science.gov (United States)

    Jouen, A L; Ellmore, T M; Madden, C J; Pallier, C; Dominey, P F; Ventre-Dominey, J

    2015-02-01

    This research tests the hypothesis that comprehension of human events will engage an extended semantic representation system, independent of the input modality (sentence vs. picture). To investigate this, we examined brain activation and connectivity in 19 subjects who read sentences and viewed pictures depicting everyday events, in a combined fMRI and DTI study. Conjunction of activity in understanding sentences and pictures revealed a common fronto-temporo-parietal network that included the middle and inferior frontal gyri, the parahippocampal-retrosplenial complex, the anterior and middle temporal gyri, the inferior parietal lobe in particular the temporo-parietal cortex. DTI tractography seeded from this temporo-parietal cortex hub revealed a multi-component network reaching into the temporal pole, the ventral frontal pole and premotor cortex. A significant correlation was found between the relative pathway density issued from the temporo-parietal cortex and the imageability of sentences for individual subjects, suggesting a potential functional link between comprehension and the temporo-parietal connectivity strength. These data help to define a "meaning" network that includes components of recently characterized systems for semantic memory, embodied simulation, and visuo-spatial scene representation. The network substantially overlaps with the "default mode" network implicated as part of a core network of semantic representation, along with brain systems related to the formation of mental models, and reasoning. These data are consistent with a model of real-world situational understanding that is highly embodied. Crucially, the neural basis of this embodied understanding is not limited to sensorimotor systems, but extends to the highest levels of cognition, including autobiographical memory, scene analysis, mental model formation, reasoning and theory of mind. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers

    KAUST Repository

    Habuchi, Satoshi

    2015-04-21

    Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains. While the single-molecule fluorescence imaging experiment revealed that the diffusion of the 4-armed star polymer was described by a single Gaussian distribution, the diffusion of the 8-shaped polymer exhibited a double Gaussian distribution behaviour. We reasoned that the two 8-shaped polymeric isomers have distinct diffusion modes in the melt state, although ensemble-averaged experimental methods cannot detect differences in overall conformational state of the isomers. The single-molecule experiments suggested that one of the 8-shaped polymeric isomer, having the horizontally oriented form, causes an efficient threading with the linear matrix chains which leads to the slower diffusion compared with the corresponding 4-armed star polymer, while the other 8-shaped polymeric isomer, having the vertically oriented form, displayed faster diffusion by the suppression of effective threading with the linear matrix chains due to its contracted chain conformation.

  5. Fine-scale planktonic habitat partitioning at a shelf-slope front revealed by a high-resolution imaging system

    Science.gov (United States)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.

    2015-02-01

    Ocean fronts represent productive regions of the ocean, but predator-prey interactions within these features are poorly understood partially due to the coarse-scale and biases of net-based sampling methods. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to sample across a front near the Georges Bank shelf edge on two separate sampling days in August 2010. Salinity characterized the transition from shelf to slope water, with isopycnals sloping vertically, seaward, and shoaling at the thermocline. A frontal feature defined by the convergence of isopycnals and a surface temperature gradient was sampled inshore of the shallowest zone of the shelf-slope front. Zooplankton and larval fishes were abundant on the shelf side of the front and displayed taxon-dependent depth distributions but were rare in the slope waters. Supervised automated particle counting showed small particles with high solidity, verified to be zooplankton (copepods and appendicularians), aggregating near surface above the front. Salps were most abundant in zones of intermediate chlorophyll-a fluorescence, distinctly separate from high abundances of other grazers and found almost exclusively in colonial form (97.5%). Distributions of gelatinous zooplankton differed among taxa but tended to follow isopycnals. Fine-scale sampling revealed distinct habitat partitioning of various planktonic taxa, resulting from a balance of physical and biological drivers in relation to the front.

  6. Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging

    Science.gov (United States)

    Shagaghi, Nadin; Bhave, Mrinal; Palombo, Enzo A.; Clayton, Andrew H. A.

    2017-03-01

    To determine the mechanism(s) of action of antimicrobial peptides (AMPs) it is desirable to provide details of their interaction kinetics with cellular, sub-cellular and molecular targets. The synthetic peptide, PuroA, displays potent antimicrobial activities which have been attributed to peptide-induced membrane destabilization, or intracellular mechanisms of action (DNA-binding) or both. We used time-lapse fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM) to directly monitor the localization and interaction kinetics of a FITC- PuroA peptide on single Candida albicans cells in real time. Our results reveal the sequence of events leading to cell death. Within 1 minute, FITC-PuroA was observed to interact with SYTO-labelled nucleic acids, resulting in a noticeable quenching in the fluorescence lifetime of the peptide label at the nucleus of yeast cells, and cell-cycle arrest. A propidium iodide (PI) influx assay confirmed that peptide translocation itself did not disrupt the cell membrane integrity; however, PI entry occurred 25-45 minutes later, which correlated with an increase in fractional fluorescence of pores and an overall loss of cell size. Our results clarify that membrane disruption appears to be the mechanism by which the C. albicans cells are killed and this occurs after FITC-PuroA translocation and binding to intracellular targets.

  7. Spoken word memory traces within the human auditory cortex revealed by repetition priming and functional magnetic resonance imaging.

    Science.gov (United States)

    Gagnepain, Pierre; Chételat, Gael; Landeau, Brigitte; Dayan, Jacques; Eustache, Francis; Lebreton, Karine

    2008-05-14

    Previous neuroimaging studies in the visual domain have shown that neurons along the perceptual processing pathway retain the physical properties of written words, faces, and objects. The aim of this study was to reveal the existence of similar neuronal properties within the human auditory cortex. Brain activity was measured using functional magnetic resonance imaging during a repetition priming paradigm, with words and pseudowords heard in an acoustically degraded format. Both the amplitude and peak latency of the hemodynamic response (HR) were assessed to determine the nature of the neuronal signature of spoken word priming. A statistically significant stimulus type by repetition interaction was found in various bilateral auditory cortical areas, demonstrating either HR suppression and enhancement for repeated spoken words and pseudowords, respectively, or word-specific repetition suppression without any significant effects for pseudowords. Repetition latency shift only occurred with word-specific repetition suppression in the right middle/posterior superior temporal sulcus. In this region, both repetition suppression and latency shift were related to behavioral priming. Our findings highlight for the first time the existence of long-term spoken word memory traces within the human auditory cortex. The timescale of auditory information integration and the neuronal mechanisms underlying priming both appear to differ according to the level of representations coded by neurons. Repetition may "sharpen" word-nonspecific representations coding short temporal variations, whereas a complex interaction between the activation strength and temporal integration of neuronal activity may occur in neuronal populations coding word-specific representations within longer temporal windows.

  8. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure.

    Science.gov (United States)

    Flammang, Brooke E; Lauder, George V; Troolin, Daniel R; Strand, Tyson

    2011-12-22

    Understanding how moving organisms generate locomotor forces is fundamental to the analysis of aerodynamic and hydrodynamic flow patterns that are generated during body and appendage oscillation. In the past, this has been accomplished using two-dimensional planar techniques that require reconstruction of three-dimensional flow patterns. We have applied a new, fully three-dimensional, volumetric imaging technique that allows instantaneous capture of wake flow patterns, to a classic problem in functional vertebrate biology: the function of the asymmetrical (heterocercal) tail of swimming sharks to capture the vorticity field within the volume swept by the tail. These data were used to test a previous three-dimensional reconstruction of the shark vortex wake estimated from two-dimensional flow analyses, and show that the volumetric approach reveals a different vortex wake not previously reconstructed from two-dimensional slices. The hydrodynamic wake consists of one set of dual-linked vortex rings produced per half tail beat. In addition, we use a simple passive shark-tail model under robotic control to show that the three-dimensional wake flows of the robotic tail differ from the active tail motion of a live shark, suggesting that active control of kinematics and tail stiffness plays a substantial role in the production of wake vortical patterns.

  9. Atomic force microscopy imaging reveals the formation of ASIC/ENaC cross-clade ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Jeggle, Pia; Smith, Ewan St. J.; Stewart, Andrew P. [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom); Haerteis, Silke; Korbmacher, Christoph [Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 6, 91054 Erlangen (Germany); Edwardson, J. Michael, E-mail: jme1000@cam.ac.uk [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom)

    2015-08-14

    ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers. - Highlights: • There is evidence for a close association between ASIC and ENaC. • We used AFM to test whether ASIC1a and ENaC subunits form cross-clade ion channels. • Isolated proteins were incubated with subunit-specific antibodies and Fab fragments. • Some proteins were doubly decorated at ∼120° by an antibody and a Fab fragment. • Our results indicate the formation of ASIC1a/ENaC heterotrimers.

  10. Impaired integrity of the brain parenchyma in non-geriatric patients with major depressive disorder revealed by diffusion tensor imaging.

    Science.gov (United States)

    Tha, Khin K; Terae, Satoshi; Nakagawa, Shin; Inoue, Takeshi; Kitagawa, Nobuki; Kako, Yuki; Nakato, Yasuya; Akter Popy, Kawser; Fujima, Noriyuki; Zaitsu, Yuri; Yoshida, Daisuke; Ito, Yoichi M; Miyamoto, Tamaki; Koyama, Tsukasa; Shirato, Hiroki

    2013-06-30

    Diffusion tensor imaging (DTI) is considered to be able to non-invasively quantify white matter integrity. This study aimed to use DTI to evaluate white matter integrity in non-geriatric patients with major depressive disorder (MDD) who were free of antidepressant medication. DTI was performed on 19 non-geriatric patients with MDD, free of antidepressant medication, and 19 age-matched healthy subjects. Voxel-based and histogram analyses were used to compare fractional anisotropy (FA) and mean diffusivity (MD) values between the two groups, using two-sample t tests. The abnormal DTI indices, if any, were tested for correlation with disease duration and severity, using Pearson product-moment correlation analysis. Voxel-based analysis showed clusters with FA decrease at the bilateral frontal white matter, anterior limbs of internal capsule, cerebellum, left putamen and right thalamus of the patients. Histogram analysis revealed lower peak position of FA histograms in the patients. FA values of the abnormal clusters and peak positions of FA histograms of the patients exhibited moderate correlation with disease duration and severity. These results suggest the implication of frontal-subcortical circuits and cerebellum in MDD, and the potential utility of FA in evaluation of brain parenchymal integrity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging

    Science.gov (United States)

    Shagaghi, Nadin; Bhave, Mrinal; Palombo, Enzo A.; Clayton, Andrew H. A.

    2017-01-01

    To determine the mechanism(s) of action of antimicrobial peptides (AMPs) it is desirable to provide details of their interaction kinetics with cellular, sub-cellular and molecular targets. The synthetic peptide, PuroA, displays potent antimicrobial activities which have been attributed to peptide-induced membrane destabilization, or intracellular mechanisms of action (DNA-binding) or both. We used time-lapse fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM) to directly monitor the localization and interaction kinetics of a FITC- PuroA peptide on single Candida albicans cells in real time. Our results reveal the sequence of events leading to cell death. Within 1 minute, FITC-PuroA was observed to interact with SYTO-labelled nucleic acids, resulting in a noticeable quenching in the fluorescence lifetime of the peptide label at the nucleus of yeast cells, and cell-cycle arrest. A propidium iodide (PI) influx assay confirmed that peptide translocation itself did not disrupt the cell membrane integrity; however, PI entry occurred 25–45 minutes later, which correlated with an increase in fractional fluorescence of pores and an overall loss of cell size. Our results clarify that membrane disruption appears to be the mechanism by which the C. albicans cells are killed and this occurs after FITC-PuroA translocation and binding to intracellular targets. PMID:28252014

  12. Surface Brightness Correction for Compact Extended Sources Observed by the AKARI Far-Infrared Surveyor (FIS) in the Slow-Scan Mode

    CERN Document Server

    Ueta, Toshiya; Takita, Satoshi; Izumiura, Hideyuki; Shirahata, Mai; Fullard, Andrew; Yamamura, Issei; Matsuura, Shuji

    2016-01-01

    We present a general surface brightness correction method for compact extended sources imaged in the slow-scan pointed observation mode of the Far-Infrared Surveyor (FIS) aboard the AKARI Infrared Astronomical Satellite. Our method recovers correct surface brightness distribution maps by re-scaling archived raw FIS maps using the surface-brightness-dependent inverse FIS response function. The flux of a target source is then automatically corrected for as the simple sum of surface brightnesses within the adopted contour encircling the perimeter of the target (i.e., contour photometry). This correction method is contrasted to the previous aperture photometry method for point sources, which directly corrects for the target flux with a flux-dependent scaling law. The new surface brightness correction scheme is applicable to objects of any shape from unresolved point sources to resolved extended objects, as long as the target is not deemed diffuse, i.e., the total extent of the target source does not exceed too mu...

  13. Geometry of the Farallon Slab Revealed by Joint Interpretation of Wavefield Imaging and Tomography Results from the Earthscope Transportable Array

    Science.gov (United States)

    Pavlis, G. L.; Wang, Y.

    2015-12-01

    A significant number of P and S wave tomography models have been produced in the past decade using various subsets of data from the Earthscope USArray and different inversion algorithms. We focus here on published tomography results that span large portions of the final footprint of the USArray. We use 3D visualization techniques to search for common features in different tomography models. We also compare tomography results to features seen in our current generation wavefield images. Recent innovations of our plane wave migration method have yielded what is arguably the highest resolution image ever produced of the mantle in the vicinity of the transition zone. The new results reveal a rich collection of coherent, dipping structures seen throughout the upper mantle and transition zone. These dipping interfaces are judged significant according to a coherence metric. We treat these surfaces as strain markers to assess proposed models for geometry of the 3D geometry of the Farallon Slab under North America. We find the following geologic interpretations are well supported by independent results: 1. The old Farallon under eastern North America and below the base of transition zone is universally seen as a high velocity anomaly. 2. All results support a simple, 3D kinematic model of the updip limit of the Farallon slab window that follows a track from Cape Mendocino, across Nevada, and northern Arizona and New Mexico. 3. All models show a strong low-velocity mantle under the southwestern U.S. 4. A low-velocity features is universally seen related to the Yellowstone-Snake River system. Shorter wavelength features observed in different tomography models are inconsistent showing that the theme of this session is very important to understand what features are in current results are real. Isopach maps of the thickness of the transition show a systematic difference in transition zone thickness in the western and eastern US. The transition zone thickens in the eastern US in

  14. Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations

    Science.gov (United States)

    Steckiewicz, M.; Garnier, P.; André, N.; Mitchell, D. L.; Andersson, L.; Penou, E.; Beth, A.; Fedorov, A.; Sauvaud, J.-A.; Mazelle, C.; Brain, D. A.; Espley, J. R.; McFadden, J.; Halekas, J. S.; Larson, D. E.; Lillis, R. J.; Luhmann, J. G.; Soobiah, Y.; Jakosky, B. M.

    2017-01-01

    Nightside suprathermal electron depletions have been observed at Mars by three spacecraft to date: Mars Global Surveyor, Mars Express, and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. This spatial and temporal diversity of measurements allows us to propose here a comprehensive view of the Martian electron depletions through the first multispacecraft study of the phenomenon. We have analyzed data recorded by the three spacecraft from 1999 to 2015 in order to better understand the distribution of the electron depletions and their creation mechanisms. Three simple criteria adapted to each mission have been implemented to identify more than 134,500 electron depletions observed between 125 and 900 km altitude. The geographical distribution maps of the electron depletions detected by the three spacecraft confirm the strong link existing between electron depletions and crustal magnetic field at altitudes greater than 170 km. At these altitudes, the distribution of electron depletions is strongly different in the two hemispheres, with a far greater chance to observe an electron depletion in the Southern Hemisphere, where the strongest crustal magnetic sources are located. However, the unique MAVEN observations reveal that below a transition region near 160-170 km altitude the distribution of electron depletions is the same in both hemispheres, with no particular dependence on crustal magnetic fields. This result supports the suggestion made by previous studies that these low-altitudes events are produced through electron absorption by atmospheric CO2.

  15. Mirko Danijel Bogdanić (1760-1802, Astronomer, Mathematician, Surveyor and Croatian Educator

    Directory of Open Access Journals (Sweden)

    Tatjana Kren

    2010-12-01

    Full Text Available This article provides valuable information about the life and work of Mirko Danijel Bogdanić (Bogdanić Imre Dániel (Virovitica, 1762 – Buda, 1802 who was an astronomer, mathematician, surveyor and the author of a book on world history in Croatian. This article observes his life and work from the historical perspective of the time of Emperor Joseph II in Austria. From 1782 to 1785, Bogdanić studied mathematics, physics and astronomy in Buda and Pešt. He often worked with famous Croatian scientists such as Ivan Paskvić (János Pasquich, Franjo Bruna (Ferenc Bruna, Josip Mitterpacher (József Mitterpacher and others. Particular attention is paid to the period between approximately 1791 and 1796, which he spent in Vienna. At first, he focused on publishing the first volume of his history of the world in Croatian (Dogodjaji svieta (World events, 1792 in which he paid particular attention to astronomy and Croatian astronomical terminology. From 1793 to 1795, he studied astronomy at the University of Vienna. The following period was the most important in his life. He was second, then first assistant at the Buda Observatory (1796–1802 and also (1798–1802 appointed Imperial Assistant Astronomer to the cartographer János Lipszky, charged with conducting precise astronomical observations to determine the geographical coordinates for the geographical map of Hungary (Mappa Generalis Regni Hungariae. His observations, especially of latitudes, were considered excellent. He spent many long, hard hours working in the field under adverse weather conditions, leading to extreme exhaustion, which resulted in serious illness and his premature death.

  16. Global-scale external magnetic fields at Mars from Mars Global Surveyor data

    Science.gov (United States)

    Mittelholz, A.; Johnson, C. L.

    2015-12-01

    The martian magnetic field is unique among those of the terrestrial planets. It is the net result of the interaction of the solar wind and interplanetary magnetic field (IMF) with crustal remnant magnetization and a planetary ionosphere. Internal fields of crustal origin have been the subject of extensive studies; the focus of our work is identification and characterization of contributions from external magnetic fields using the Mars Global Surveyor (MGS) vector magnetic field data. We investigate the magnitude, average spatial structure and temporal variability of the external magnetic field at the MGS mapping altitude of 400 km by first subtracting expected contributions from crustal fields using existing global crustal field models. We identify contributions to the residual dayside fields from two sources: the draped IMF and a source that we interpret to be of ionospheric origin. As observed in previous work, nightside external fields are minimal at mapping orbit altitudes. The IMF contribution changes polarity every 13 days due to the geometry of the heliospheric magnetic field and Mars' orbit. This allows us to calculate the amplitude of the IMF at mapping orbit altitudes. The ionospheric contribution results in a quasi-steady dayside signal in the MGS observations because of the limited local time sampling of the MGS mapping orbit. The ionospheric contribution can be isolated by averaging the external fields over timescales longer than several Carrington rotations, to average out the IMF contribution. We present a global average of the ionopsheric field for the duration of the mapping orbit (2000-2006) and analyze daytime and nightime fields separately. We show that some structure in the time-averaged ionospheric field is organized in the Mars body-fixed frame, due for example, to the influence of crustal fields. We also show that the ionospheric fields vary in amplitude and geometry with martian season. Broader local time coverage over a restricted latitude

  17. The Cosmology Large Angular Scale Surveyor (CLASS): In search of the energy scale of inflation

    Science.gov (United States)

    Eimer, Joseph R.

    The hypothesis that the early universe underwent a period of accelerating expansion, called inflation, has become an essential mechanism for explaining the flatness and homogeneity of the universe and explaining the fluctuations found in the cosmic microwave background (CMB). Inflation predicts the existence of primordial gravitational waves that would have produced a unique polarization pattern on the CMB. Measurement of the amplitude of these gravitational waves can be used to infer the energy scale of the potential driving the expansion. Detection of this signal would be a dramatic confirmation of the inflation paradigm and significantly tighten constraints on inflationary models. The Cosmology Large Angular Scale Surveyor (CLASS) is a new ground-based instrument designed to search for the inflationary B-mode signal from the Atacama Desert in northern Chile (elevation ~ 5200 m). The CLASS instrument will observe over 60% of the sky to target the large scale polarization signal (> 10 deg), and consist of four separate telescopes: one observing at 40 GHz, two observing at 90 GHz and one observing at 150 GHz. The detectors for each band will be background limited antenna-coupled transition edge sensor bolometers. A variable-delay polarization modulator (VPM) will be placed as the first optical element in each of the telescopes. The front-end polarization modulator will mitigate many systematic effects and provide a powerful means of distinguishing the instrument response from the input signal. This dissertation contains an overview of the CLASS instrument. Specific emphasis is placed on the connection between the science goals and the instrument architecture. A description of the optical design of the 40 GHz telescope is given, and the application of the VPM technology to the CLASS instrument is described. We end with an overview of the detectors.

  18. Computational imaging analysis of fibrin matrices with the inclusion of erythrocytes from homozygous SS blood reveals agglomerated and amorphous structures.

    Science.gov (United States)

    Averett, Rodney D; Norton, David G; Fan, Natalie K; Platt, Manu O

    2017-01-01

    Sickle cell disease is a single point mutation disease that is known to alter the coagulation system, leading to hypercoagulable plasma conditions. These hypercoagulable conditions can lead to complications in the vasculature, caused by fibrin clots that form undesirably. There is a need to understand the morphology and structure of fibrin clots from patients with sickle cell disease, as this could lead to further discovery of treatments and life-saving therapies. In this work, a computational imaging analysis method is presented to evaluate fibrin agglomeration in the presence of erythrocytes (RBCs) homozygous for the sickle cell mutation (SS). Numerical algorithms were used to determine agglomeration of fibrin fibers within a matrix with SS RBCs to test the hypothesis that fibrin matrices with the inclusion of SS RBCs possess a more agglomerated structure than native fibrin matrices with AA RBCs. The numerical results showed that fibrin structures with SS RBCs displayed an overall higher degree of agglomeration as compared to native fibrin structures. The computational algorithm was also used to evaluate fibrin fiber overlap (aggregation) and anisotropy (orientation) in normal fibrin matrices compared to fibrin matrices polymerized around SS RBCs; however, there was no statistical difference. Ultrasound measurements of stiffness revealed rigid RBCs in the case of samples derived from homozygous SS blood, and densely evolving matrices, when compared to normal fibrin with the inclusion of AA RBCs. An agglomeration model is suggested to quantify the fibrin aggregation/clustering near RBCs for both normal fibrin matrices and for the altered structures. The results of this work are important in the sense that the understanding of aggregation and morphology in fibrin clots with incorporation of RBCs from persons living with sickle cell anemia may elucidate the complexities of comorbidities and other disease complications.

  19. Subcomponents and connectivity of the inferior fronto-occipital fasciculus revealed by diffusion spectrum imaging fiber tracking

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF are still controversial. In this study, we aimed to investigate the connectivity, asymmetry and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI analysis was performed on ten healthy adults and a 90-subject DSI template (NTU-90 Atlas. In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous standard definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient

  20. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging.

    Directory of Open Access Journals (Sweden)

    Rachid Rezgui

    Full Text Available As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab on 5' and 3'-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5' or 3' extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.

  1. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke: e71478

    National Research Council Canada - National Science Library

    Vivek J Srinivasan; Emiri T Mandeville; Anil Can; Francesco Blasi; Mihail Climov; Ali Daneshmand; Jeong Hyun Lee; Esther Yu; Harsha Radhakrishnan; Eng H Lo; Sava Sakadzic; Katharina Eikermann-Haerter; Cenk Ayata

    2013-01-01

    .... A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described...

  2. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search.

    Science.gov (United States)

    Forget, Anthony L; Kowalczykowski, Stephen C

    2012-02-08

    DNA breaks can be repaired with high fidelity by homologous recombination. A ubiquitous protein that is essential for this DNA template-directed repair is RecA. After resection of broken DNA to produce single-stranded DNA (ssDNA), RecA assembles on this ssDNA into a filament with the unique capacity to search and find DNA sequences in double-stranded DNA (dsDNA) that are homologous to the ssDNA. This homology search is vital to recombinational DNA repair, and results in homologous pairing and exchange of DNA strands. Homologous pairing involves DNA sequence-specific target location by the RecA-ssDNA complex. Despite decades of study, the mechanism of this enigmatic search process remains unknown. RecA is a DNA-dependent ATPase, but ATP hydrolysis is not required for DNA pairing and strand exchange, eliminating active search processes. Using dual optical trapping to manipulate DNA, and single-molecule fluorescence microscopy to image DNA pairing, we demonstrate that both the three-dimensional conformational state of the dsDNA target and the length of the homologous RecA-ssDNA filament have important roles in the homology search. We discovered that as the end-to-end distance of the target dsDNA molecule is increased, constraining the available three-dimensional (3D) conformations of the molecule, the rate of homologous pairing decreases. Conversely, when the length of the ssDNA in the nucleoprotein filament is increased, homology is found faster. We propose a model for the DNA homology search process termed 'intersegmental contact sampling', in which the intrinsic multivalent nature of the RecA nucleoprotein filament is used to search DNA sequence space within 3D domains of DNA, exploiting multiple weak contacts to rapidly search for homology. Our findings highlight the importance of the 3D conformational dynamics of DNA, reveal a previously unknown facet of the homology search, and provide insight into the mechanism of DNA target location by this member of a

  3. Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts.

    Science.gov (United States)

    Monserrate, Aitor; Casado, Santiago; Flors, Cristina

    2014-03-17

    Hybrid microscopy: A correlative microscopy tool that combines in situ super-resolution fluorescence microscopy based on single-molecule localization and atomic force microscopy is presented. Direct comparison with high- resolution topography allows the authors to improve fluorescence labeling and image analysis in super-resolution imaging.

  4. The Strategy for the Second Phase of Aerobraking Mars Global Surveyor

    Science.gov (United States)

    Johnston, M. D.; Esposito, P. B.; Alwar, V.; Demcak, S. W.; Graat, E. J.; Burkhart, P. D.; Portock, B. M.

    2000-01-01

    On February 19, 1999, the Mars Global Surveyor (MGS) spacecraft was able to propulsively establish its mapping orbit. This event followed the completion of the second phase of aerobraking for the MGS spacecraft on February 4, 1999. For the first time, a spacecraft at Mars had successfully employed aerobraking methods in order to reach its desired pre-launch mapping orbit. This was accomplished despite a damaged spacecraft solar array. The MGS spacecraft was launched on November 7, 1996, and after a ten month interplanetary transit was inserted into a highly elliptical capture orbit at Mars on September 12, 1997. Unlike other interplanetary missions, the MGS spacecraft was launched with a planned mission delta-V ((Delta)V) deficit of nearly 1250 m/s. To overcome this AV deficit, aerobraking techniques were employed. However, damage discovered to one of the spacecraft's two solar arrays after launch forced major revisions to the original aerobraking planning of the MGS mission. In order to avoid a complete structural failure of the array, peak dynamic pressure levels for the spacecraft were established at a major spacecraft health review in November 1997. These peak dynamic pressure levels were roughly one-third of the original mission design values. Incorporating the new dynamic pressure limitations into mission replanning efforts resulted in an 'extended' orbit insertion phase for the mission. This 'extended' orbit insertion phase was characterized by two distinct periods of aerobraking separated by an aerobraking hiatus that would last for several months in an intermediate orbit called the "Science Phasing Orbit" (SPO). This paper describes and focuses on the strategy for the second phase of aerobraking for the MGS mission called "Aerobraking Phase 2." This description will include the baseline aerobraking flight profile, the trajectory control methodology, as well as the key trajectory metrics that were monitored in order to successfully "guide' the spacecraft to

  5. The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA

  6. Improvement of job satisfaction and organisational commitment through work group identification: an examination of the quantity surveyors in Hong Kong

    Directory of Open Access Journals (Sweden)

    Wai Yee Betty Chiu

    2013-09-01

    Full Text Available Though extant literatures in other sectors indicatethat job satisfaction and organizational commitment are important fordetermining individual and organisational outcomes, limited related researchhas been conducted amongst quantity surveyors in Hong Kong. Given cooperativeworking arrangement in the quantity surveying profession, work groupidentification is regarded as an important antecedent for determining jobsatisfaction and organisational commitment. The aim of this study is to examinewhether work group identification improves job satisfaction and organisationalcommitment. A questionnaire survey is conducted to collect data from quantitysurveyors working in private sector. A total of 71 valid responses are obtainedfrom 509 contacted quantity surveyors in Hong Kong. Bivariate correlation andmultiple regression analyses are performed to find the significance ofrelationships among the variables. Data analysis results support mosthypotheses. Work group identification is found to have significant positiveeffect on job satisfaction, affective and normative commitment. The finding isa bold step for quantity surveying companies to improve their quantity surveyors’job satisfaction and commitment level. The role of other contextual and organisationalfactors on job satisfaction and organisational commitment needs to becomplemented for future research.

  7. A simple, high sensitivity mutation screening using Ampligase mediated T7 endonuclease I and Surveyor nuclease with microfluidic capillary electrophoresis.

    Science.gov (United States)

    Huang, Mo Chao; Cheong, Wai Chye; Lim, Li Shi; Li, Mo-Huang

    2012-03-01

    Mutation and polymorphism detection is of increasing importance for a variety of medical applications, including identification of cancer biomarkers and genotyping for inherited genetic disorders. Among various mutation-screening technologies, enzyme mismatch cleavage (EMC) represents a great potential as an ideal scanning method for its simplicity and high efficiency, where the heteroduplex DNAs are recognized and cleaved into DNA fragments by mismatch-recognizing nucleases. Thereby, the enzymatic cleavage activities of the resolving nucleases play a critical role for the EMC sensitivity. In this study, we utilized the unique features of microfluidic capillary electrophoresis and de novo gene synthesis to explore the enzymatic properties of T7 endonuclease I and Surveyor nuclease for EMC. Homoduplex and HE DNAs with specific mismatches at desired positions were synthesized using PCR (polymerase chain reaction) gene synthesis. The effects of nonspecific cleavage, preference of mismatches, exonuclease activity, incubation time, and DNA loading capability were systematically examined. In addition, the utilization of a thermostable DNA ligase for real-time ligase mediation was investigated. Analysis of the experimental results has led to new insights into the enzymatic cleavage activities of T7 endonuclease I and Surveyor nuclease, and aided in optimizing EMC conditions, which enhance the sensitivity and efficiency in screening of unknown DNA variations.

  8. PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution.

    Directory of Open Access Journals (Sweden)

    Jonathan M Guberman

    2008-11-01

    Full Text Available Live-cell imaging by light microscopy has demonstrated that all cells are spatially and temporally organized. Quantitative, computational image analysis is an important part of cellular imaging, providing both enriched information about individual cell properties and the ability to analyze large datasets. However, such studies are often limited by the small size and variable shape of objects of interest. Here, we address two outstanding problems in bacterial cell division by developing a generally applicable, standardized, and modular software suite termed Projected System of Internal Coordinates from Interpolated Contours (PSICIC that solves common problems in image quantitation. PSICIC implements interpolated-contour analysis for accurate and precise determination of cell borders and automatically generates internal coordinate systems that are superimposable regardless of cell geometry. We have used PSICIC to establish that the cell-fate determinant, SpoIIE, is asymmetrically localized during Bacillus subtilis sporulation, thereby demonstrating the ability of PSICIC to discern protein localization features at sub-pixel scales. We also used PSICIC to examine the accuracy of cell division in Esherichia coli and found a new role for the Min system in regulating division-site placement throughout the cell length, but only prior to the initiation of cell constriction. These results extend our understanding of the regulation of both asymmetry and accuracy in bacterial division while demonstrating the general applicability of PSICIC as a computational approach for quantitative, high-throughput analysis of cellular images.

  9. Dual-Phase 99MTc-MIBI Parathyroid Imaging Reveals Synchronous Parathyroid Adenoma and Papillary Thyroid Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Ming-Che Chang

    2008-10-01

    Full Text Available The possibility of a coincidental appearance of hyperparathyroidism and thyroid cancer is not often considered because of its low incidence. Here, we present a case of a 49-year-old woman with a parathyroid adenoma coexisting with two sites of papillary thyroid carcinoma. Dual-phase 99mTc-methoxyisobutylisonitrile (MIBI parathyroid imaging before the operation correctly visualized the site of the parathyroid adenoma. In addition, two papillary thyroid carcinomas showed faint uptake of 99mTc-MIBI on delayed image. Total thyroidectomy and parathyroidectomy of a solitary parathyroid adenoma were performed. The patient subsequently underwent radioiodine-131 ablation and was treated with T4 suppression. This case illustrates the need for clinical awareness of concomitant hyperparathyroidism and thyroid cancer. Dual-phase 99mTc-MIBI parathyroid imaging may be useful for detecting indolent thyroid cancer before it becomes a distinct disease.

  10. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  11. Surface brightness correction for compact extended sources observed by the AKARI Far-Infrared Surveyor in the slow-scan mode

    Science.gov (United States)

    Ueta, Toshiya; Tomasino, Rachael L.; Takita, Satoshi; Izumiura, Hideyuki; Shirahata, Mai; Fullard, Andrew; Yamamura, Issei; Matsuura, Shuji

    2017-02-01

    We present a general surface brightness correction method for compact extended sources imaged in the slow-scan pointed observation mode of the Far-Infrared Surveyor (FIS) aboard the AKARI infrared astronomical satellite. Our method recovers correct surface brightness distribution maps by rescaling archived raw FIS maps using the surface-brightness-dependent inverse FIS response function. The flux of a target source is then automatically corrected for as the simple sum of surface brightnesses within the adopted contour encircling the perimeter of the target (i.e., contour photometry). This correction method is contrasted with the previous aperture photometry method for point sources, which directly corrects for the target flux with a flux-dependent scaling law. The new surface brightness correction scheme is applicable to objects of any shape from unresolved point sources to resolved extended objects, as long as the target is not deemed diffuse, i.e., the total extent of the target source does not exceed too much more than a single FIS scan width of 10'. The new correction method takes advantage of the well-defined shape (i.e., the scale invariance) of the point spread function, which enables us to adopt a power-law FIS response function. We analyze the point source photometric calibrator data using the FIS AKARI Slow-scan Tool and constrain the parameters of the adopted power-law FIS response function. We conclude that the photometric accuracy of the new correction method is better than 10% error based on comparisons with the expected fluxes of the photometric calibrators, and that resulting fluxes without the present correction method can lead to up to 230% overestimates or down to 50% underestimates.

  12. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging

    Directory of Open Access Journals (Sweden)

    Alia Lemkaddem

    2014-01-01

    Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  13. 3D multi-isotope imaging mass spectrometry reveals penetration of 18O-trehalose in mouse sperm nucleus.

    Science.gov (United States)

    Lechene, Claude P; Lee, Gloria Y; Poczatek, J Collin; Toner, Mehmet; Biggers, John D

    2012-01-01

    The prevalence of genetically engineered mice in medical research has led to ever increasing storage costs. Trehalose has a significant beneficial effect in preserving the developmental potential of mouse sperm following partial desiccation and storage at temperatures above freezing. Using multi-isotope imaging mass spectrometry, we are able to image and measure trehalose in individual spermatozoa. We provide the first evidence that trehalose penetrates the nucleus of a mammalian cell, permitting tolerance to desiccation. These results have broad implications for long-term storage of mammalian cells.

  14. 3D multi-isotope imaging mass spectrometry reveals penetration of 18O-trehalose in mouse sperm nucleus.

    Directory of Open Access Journals (Sweden)

    Claude P Lechene

    Full Text Available The prevalence of genetically engineered mice in medical research has led to ever increasing storage costs. Trehalose has a significant beneficial effect in preserving the developmental potential of mouse sperm following partial desiccation and storage at temperatures above freezing. Using multi-isotope imaging mass spectrometry, we are able to image and measure trehalose in individual spermatozoa. We provide the first evidence that trehalose penetrates the nucleus of a mammalian cell, permitting tolerance to desiccation. These results have broad implications for long-term storage of mammalian cells.

  15. A feasibility study of NIR fluorescent image-guided surgery in head and neck cancer based on the assessment of optimum surgical time as revealed through dynamic imaging

    Directory of Open Access Journals (Sweden)

    Yokoyama J

    2013-04-01

    Full Text Available Junkichi Yokoyama,* Mitsuhisa Fujimaki,* Shinichi Ohba, Takashi Anzai, Ryota Yoshii, Shin Ito, Masataka Kojima, Katsuhisa IkedaDepartment of Otolaryngology-Head and Neck Surgery, Juntendo University School of Medicine, Tokyo, Japan *These authors contributed equally to this study Background: In order to minimize surgical stress and preserve organs, endoscopic or robotic surgery is often performed when conducting head and neck surgery. However, it is impossible to physically touch tumors or to observe diffusely invaded deep organs through the procedure of endoscopic or robotic surgery. In order to visualize and safely resect tumors even in these cases, we propose using an indocyanine green (ICG fluorescence method for navigation surgery in head and neck cancer. Objective: To determine the optimum surgical time for tumor resection after the administration of ICG based on the investigation of dynamic ICG fluorescence imaging. Methods: Nine patients underwent dynamic ICG fluorescence imaging for 360 minutes, assessing tumor visibility at 10, 30, 60, 120, 180, and 360 minutes. All cases were scored according to near-infrared (NIR fluorescence imaging visibility scored from 0 to 5. Results: Dynamic NIR fluorescence imaging under the HyperEye Medical System indicated that the greatest contrast in fluorescent images between tumor and normal tissue could be observed from 30 minutes to 1 hour after the administration of ICG. The optimum surgical time was determined to be between 30 minutes to 2 hours after ICG injection. These findings are particularly useful for detection and safe resection of tumors invading the parapharyngeal space. Conclusion: ICG fluorescence imaging is effective for the detection of head and neck cancer. Preliminary findings suggest that the optimum timing for surgery is from 30 minutes to 2 hours after the ICG injection. Keywords: indocyanine green (ICG, navigation surgery, robotic surgery, endoscopic surgery, minimally invasive

  16. Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex.

    Science.gov (United States)

    Osmanski, B F; Martin, C; Montaldo, G; Lanièce, P; Pain, F; Tanter, M; Gurden, H

    2014-07-15

    Topographic representation of the outside world is a key feature of sensory systems, but so far it has been difficult to define how the activity pattern of the olfactory information is distributed at successive stages in the olfactory system. We studied odor-evoked activation patterns in the main olfactory bulb and the anterior piriform cortex of rats using functional ultrasound (fUS) imaging. fUS imaging is based on the use of ultrafast ultrasound scanners and detects variations in the local blood volume during brain activation. It makes deep brain imaging of ventral structures, such as the piriform cortex, possible. Stimulation with two different odors (hexanal and pentylacetate) induced the activation of odor-specific zones that were spatially segregated in the main olfactory bulb. Interestingly, the same odorants triggered the activation of the entire anterior piriform cortex, in all layers, with no distinguishable odor-specific areas detected in the power Doppler images. These fUS imaging results confirm the spatial distribution of odor-evoked activity in the main olfactory bulb, and furthermore, they reveal the absence of such a distribution in the anterior piriform cortex at the macroscopic scale in vivo.

  17. Morphology and temporal variation of the polar oval of Venus revealed by VMC/Venus express visible and UV images

    Science.gov (United States)

    Muto, Keishiro; Imamura, Takeshi

    2017-10-01

    The morphology of the dark polar oval seen at the Venus cloud top in visible and ultraviolet wavelengths has been unclear because the portion of the oval on the nightside is invisible. We analyzed in detail the variability of the whole shape of the oval by connecting VMC/Venus Express visible images taken on different days after shifting the images in zonal direction based on the estimated zonal advection speed. The shape of the oval was found to be changing over time between elongated shape and near-circular shape. The dominant period of this variation changes with time in the range of 200-350 Earth days, and does not seem to coincide with the orbital period, the rotation period, and the length of the day. This suggests that the variation of the oval shape is driven by some internal nonlinear process. The mechanism of oval formation is discussed.

  18. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.

    Science.gov (United States)

    Lemkaddem, Alia; Daducci, Alessandro; Kunz, Nicolas; Lazeyras, François; Seeck, Margitta; Thiran, Jean-Philippe; Vulliémoz, Serge

    2014-01-01

    Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  19. Fluorescence Resonance Energy Transfer Imaging Reveals that Chemokine-Binding Modulates Heterodimers of CXCR4 and CCR5 Receptors

    OpenAIRE

    2008-01-01

    BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET) imaging ...

  20. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode

    Directory of Open Access Journals (Sweden)

    Kulthida Nunthayanon

    2015-01-01

    Full Text Available Objective. Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Methods. Ten healthy Japanese and Thai females (five each were evaluated with a 3-Tesla (3 T magnetic resonance imaging (MRI scanner while they produced vowel-consonant-vowel syllable (/asa/. A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. Results. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. Conclusions. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures.

  1. Endotoxemia increases the clearance of mPEGylated 5000-MW quantum dots as revealed by multiphoton microvascular imaging.

    Science.gov (United States)

    Bateman, Ryon M; Hodgson, Kevin C; Kohli, Kapil; Knight, Darryl; Walley, Keith R

    2007-01-01

    Imaging the microcirculation is becoming increasingly important in assessing life-threatening disease states. To address this issue in a highly light absorbing and light scattering tissue, we use laser scanning multiphoton microscopy and fluorescent 655-nm 5000-MW methoxy-PEGylated quantum dots to image the functional microcirculation deep in mouse hind limb skeletal muscle. Using this approach, we are able to minimize in vivo background tissue autofluorescence and visualize complete 3-D microvascular units, including feeding arterioles, capillary networks, and collecting venules to depths of 150 to 200 microm. In CD1 mice treated with lipopolysaccharide to model an endotoxemic response to bacterial infection, we find that these quantum dots accumulate at microvascular bifurcations and extravasate from the microcirculation in addition to accumulating in organs (liver, spleen, lung, and kidney). The quantum dots are cleared from the circulation with a first-order elimination rate constant seven times greater than under normal conditions, 1.6+/-0.06 compared to 0.23+/-0.05 h(-1), Pimaging time window. In vitro experiments using TNFalpha treated isolated leukocytes suggest that circulating monocytes (phagocytes) increased their nonspecific uptake of quantum dots when activated. In combination with multiphoton microscopy, quantum dots provide excellent in vivo imaging contrast of deep microvascular structures.

  2. A free-form lensing model of A370 revealing stellar mass dominated BCGs, in Hubble Frontier Fields images

    CERN Document Server

    Diego, Jose M; Broadhurst, Tom; Lam, Daniel; Vega-Ferrero, Jesus; Zheng, Wei; Lee, Slanger; Morishita, Takahiro; Bernstein, Gary; Lim, Jeremy; Silk, Joseph; Ford, Holland

    2016-01-01

    We derive a free-form mass distribution for the unrelaxed cluster A370 (z=0.375), using the latest Hubble Frontier Fields images and GLASS spectroscopy. Starting from a reliable set of 10 multiply lensed systems we produce a free-form lens model that identifies ~ 80 multiple-images. Good consistency is found between models using independent subsamples of these lensed systems, with detailed agreement for the well resolved arcs. The mass distribution has two very similar concentrations centred on the two prominent Brightest Cluster Galaxies (or BCGs), with mass profiles that are accurately constrained by a uniquely useful system of long radially lensed images centred on both BCGs. We show that the lensing mass profiles of these BCGs are mainly accounted for by their stellar mass profiles, with a modest contribution from dark matter within r<100 kpc of each BCG. This conclusion may favour a cooled cluster gas origin for BCGs, rather than via mergers of normal galaxies for which dark matter should dominate ove...

  3. DHPLC/SURVEYOR nuclease: a sensitive, rapid and affordable method to analyze BRCA1 and BRCA2 mutations in breast cancer families.

    Science.gov (United States)

    Pilato, Brunella; De Summa, Simona; Danza, Katia; Papadimitriou, Stavros; Zaccagna, Paolo; Paradiso, Angelo; Tommasi, Stefania

    2012-09-01

    Hereditary breast cancer accounts for about 10% of all breast cancers and BRCA1 and BRCA2 genes have been identified as validated susceptibility genes for this pathology. Testing for BRCA gene mutations is usually based on a pre-screening approach, such as the partial denaturation DHPLC method, and capillary direct sequencing. However, this approach is time consuming due to the large size of BRCA1 and BRCA2 genes. Recently, a new low cost and time saving DHPLC protocol has been developed to analyze gene mutations by using SURVEYOR(®) Nuclease digestion and DHPLC analysis. A subset of 90 patients, enrolled in the Genetic Counseling Program of the National Cancer Centre of Bari (Italy), was performed to validate this approach. Previous retrospective analysis showed that 9/90 patients (10%) were mutated in BRCA1 and BRCA2 genes and these data were confirmed by the present approach. DNA samples underwent touchdown PCR and, subsequently, SURVEYOR(®) nuclease digestion. BRCA1 and BRCA2 amplicons were divided into groups depending on amplicon size to allow multiamplicon digestion. The product of this reaction were analyzed on Transgenomic WAVE Nucleic Acid High Sensitivity Fragment Analysis System. The operator who performed the DHPLC surveyor approach did not know the sequencing results at that time. The SURVEYOR(®) Nuclease DHPLC approach was able to detect all alterations with a sensitivity of 95%. Furthermore, in order to save time and reagents, a multiamplicon setting preparation was validated.

  4. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    Science.gov (United States)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  5. Joint independent component analysis of structural and functional images reveals complex patterns of functional reorganisation in stroke aphasia.

    Science.gov (United States)

    Specht, Karsten; Zahn, Roland; Willmes, Klaus; Weis, Susanne; Holtel, Christiane; Krause, Bernd J; Herzog, Hans; Huber, Walter

    2009-10-01

    Previous functional activation studies in patients with aphasia have mostly relied on standard group comparisons of aphasic patients with healthy controls, which are biased towards regions showing the most consistent effects and disregard variability within groups. Groups of aphasic patients, however, show considerable variability with respect to lesion localisation and extent. Here, we use a novel method, joint independent component analysis (jICA), which allowed us to investigate abnormal patterns of functional activation with O(15)-PET during lexical decision in aphasic patients after middle cerebral artery stroke and to directly relate them to lesion information from structural MRI. Our results demonstrate that with jICA we could detect a network of compensatory increases in activity within bilateral anterior inferior temporal areas (BA20), which was not revealed by standard group comparisons. In addition, both types of analyses, jICA and group comparison, showed increased activity in the right posterior superior temporal gyrus in aphasic patients. Further, whereas standard analyses revealed no decreases in activation, jICA identified that left perisylvian lesions were associated with decreased activation of left posterior inferior frontal cortex, damaged in most patients, and extralesional remote decreases of activity within polar parts of the inferior temporal gyrus (BA38/20) and the occipital cortex (BA19). Taken together, our results demonstrate that jICA may be superior in revealing complex patterns of functional reorganisation in aphasia.

  6. Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum.

    Science.gov (United States)

    Roalf, D R; Nanga, R P R; Rupert, P E; Hariharan, H; Quarmley, M; Calkins, M E; Dress, E; Prabhakaran, K; Elliott, M A; Moberg, P J; Gur, R C; Gur, R E; Reddy, R; Turetsky, B I

    2017-01-24

    Psychosis commonly develops in adolescence or early adulthood. Youths at clinical high risk (CHR) for psychosis exhibit similar, subtle symptoms to those with schizophrenia (SZ). Malfunctioning neurotransmitter systems, such as glutamate, are implicated in the disease progression of psychosis. Yet, in vivo imaging techniques for measuring glutamate across the cortex are limited. Here, we use a novel 7 Tesla MRI glutamate imaging technique (GluCEST) to estimate changes in glutamate levels across cortical and subcortical regions in young healthy individuals and ones on the psychosis spectrum. Individuals on the psychosis spectrum (PS; n=19) and healthy young individuals (HC; n=17) underwent MRI imaging at 3 and 7 T. At 7 T, a single slice GluCEST technique was used to estimate in vivo glutamate. GluCEST contrast was compared within and across the subcortex, frontal, parietal and occipital lobes. Subcortical (χ(2) (1)=4.65, P=0.031) and lobular (χ(2) (1)=5.17, P=0.023) GluCEST contrast levels were lower in PS compared with HC. Abnormal GluCEST contrast levels were evident in both CHR (n=14) and SZ (n=5) subjects, and correlated differentially, across regions, with clinical symptoms. Our findings describe a pattern of abnormal brain neurochemistry early in the course of psychosis. Specifically, CHR and young SZ exhibit diffuse abnormalities in GluCEST contrast attributable to a major contribution from glutamate. We suggest that neurochemical profiles of GluCEST contrast across cortex and subcortex may be considered markers of early psychosis. GluCEST methodology thus shows promise to further elucidate the progression of the psychosis disease state.Molecular Psychiatry advance online publication, 24 January 2017; doi:10.1038/mp.2016.258.

  7. Cerebellum abnormalities in idiopathic generalized epilepsy with generalized tonic-clonic seizures revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    Full Text Available Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA of the fractional anisotropy (FA images derived from DTI. Second, we used a tract-based spatial statistics (TBSS method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS.

  8. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane.

    Science.gov (United States)

    Hellriegel, Christian; Caiolfa, Valeria R; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-09-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.

  9. Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer.

    Directory of Open Access Journals (Sweden)

    Amy E Frees

    Full Text Available When monitoring response to cancer therapy, it is important to differentiate changes in glucose tracer uptake caused by altered delivery versus a true metabolic shift. Here, we propose an optical imaging method to quantify glucose uptake and correct for in vivo delivery effects. Glucose uptake was measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylAmino-2-deoxy-D-glucose (2-NBDG in mice implanted with dorsal skin flap window chambers. Additionally, vascular oxygenation (SO2 was calculated using only endogenous hemoglobin contrast. Results showed that the delivery factor proposed for correction, "RD", reported on red blood cell velocity and injected 2-NBDG dose. Delivery-corrected 2-NBDG uptake (2-NBDG60/RD inversely correlated with blood glucose in normal tissue, indicating sensitivity to glucose demand. We further applied our method in metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. The ratio 2-NBDG60/RD was increased in 4T1 tumors relative to 4T07 tumors yet average SO2 was comparable, suggesting a shift toward a "Warburgian" (aerobic glycolysis metabolism in the metastatic 4T1 line. In heterogeneous regions of both 4T1 and 4T07, 2-NBDG60/RD increased slightly but significantly as vascular oxygenation decreased, indicative of the Pasteur effect in both tumors. These data demonstrate the utility of delivery-corrected 2-NBDG and vascular oxygenation imaging for differentiating metabolic phenotypes in vivo.

  10. Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins

    Science.gov (United States)

    Handfield, Louis-François; Chong, Yolanda T.; Simmons, Jibril; Andrews, Brenda J.; Moses, Alan M.

    2013-01-01

    Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images. PMID:23785265

  11. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins.

    Directory of Open Access Journals (Sweden)

    Louis-François Handfield

    Full Text Available Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images.

  12. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins.

    Directory of Open Access Journals (Sweden)

    Louis-François Handfield

    Full Text Available Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images.

  13. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins.

    Science.gov (United States)

    Handfield, Louis-François; Chong, Yolanda T; Simmons, Jibril; Andrews, Brenda J; Moses, Alan M

    2013-01-01

    Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images.

  14. Temperature-dependent differences in the nonlinear acoustic behavior of ultrasound contrast agents revealed by high-speed imaging and bulk acoustics.

    Science.gov (United States)

    Mulvana, Helen; Stride, Eleanor; Tang, Mengxing; Hajnal, Jo V; Eckersley, Robert

    2011-09-01

    Previous work by the authors has established that increasing the temperature of the suspending liquid from 20°C to body temperature has a significant impact on the bulk acoustic properties and stability of an ultrasound contrast agent suspension (SonoVue, Bracco Suisse SA, Manno, Lugano, Switzerland). In this paper the influence of temperature on the nonlinear behavior of microbubbles is investigated, because this is one of the most important parameters in the context of diagnostic imaging. High-speed imaging showed that raising the temperature significantly influences the dynamic behavior of individual microbubbles. At body temperature, microbubbles exhibit greater radial excursion and oscillate less spherically, with a greater incidence of jetting and gas expulsion, and therefore collapse, than they do at room temperature. Bulk acoustics revealed an associated increase in the harmonic content of the scattered signals. These findings emphasize the importance of conducting laboratory studies at body temperature if the results are to be interpreted for in vivo applications.

  15. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Masayuki Sugimoto

    Full Text Available Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2 is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18-C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18-C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.

  16. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice

    Science.gov (United States)

    Sugimoto, Masayuki; Wakabayashi, Masato; Shimizu, Yoichi; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Zhao, Songji; Sakai, Shota; Igarashi, Yasuyuki; Kuge, Yuji

    2016-01-01

    Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys. PMID:27010944

  17. 7T T₂*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer's disease.

    Science.gov (United States)

    van Rooden, Sanneke; Doan, Nhat Trung; Versluis, Maarten J; Goos, Jeroen D C; Webb, Andrew G; Oleksik, Ania M; van der Flier, Wiesje M; Scheltens, Philip; Barkhof, Frederik; Weverling-Rynsburger, Annelies W E; Blauw, Gerard Jan; Reiber, Johan H C; van Buchem, Mark A; Milles, Julien; van der Grond, Jeroen

    2015-01-01

    The aim of this study is to explore regional iron-related differences in the cerebral cortex, indicative of Alzheimer's disease pathology, between early- and late-onset Alzheimer's disease (EOAD, LOAD, respectively) patients using 7T magnetic resonance phase images. High-resolution T2(∗)-weighted scans were acquired in 12 EOAD patients and 17 LOAD patients with mild to moderate disease and 27 healthy elderly control subjects. Lobar peak-to-peak phase shifts and regional mean phase contrasts were computed. An increased peak-to-peak phase shift was found for all lobar regions in EOAD patients compared with LOAD patients (p iron accumulation, possibly related to an increased amyloid deposition, in specific cortical regions as compared with LOAD patients.

  18. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion.

    Science.gov (United States)

    Tapanila, Leif; Pruitt, Jesse; Pradel, Alan; Wilga, Cheryl D; Ramsay, Jason B; Schlader, Robert; Didier, Dominique A

    2013-04-23

    New CT scans of the spiral-tooth fossil, Helicoprion, resolve a longstanding mystery concerning the form and phylogeny of this ancient cartilaginous fish. We present the first three-dimensional images that show the tooth whorl occupying the entire mandibular arch, and which is supported along the midline of the lower jaw. Several characters of the upper jaw show that it articulated with the neurocranium in two places and that the hyomandibula was not part of the jaw suspension. These features identify Helicoprion as a member of the stem holocephalan group Euchondrocephali. Our reconstruction illustrates novel adaptations, such as lateral cartilage to buttress the tooth whorl, which accommodated the unusual trait of continuous addition and retention of teeth in a predatory chondrichthyan. Helicoprion exemplifies the climax of stem holocephalan diversification and body size in Late Palaeozoic seas, a role dominated today by sharks and rays.

  19. Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L. [CEA, Serv Hosp Frederic Joliot, UNAF, F-91406 Orsay (France); Dehaene-Lambertz, G. [INSERM, U562, Orsay (France); Dubois, J.; Dehaene-Lambertz, G.; Perrin, M.; Mangin, J.F.; Cointepas, Y.; Duchesnay, E.; Le Bihan, D.; Hertz-Pannier, L. [IFR49, Paris (France)

    2008-07-01

    Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatio-temporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1-4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spino-thalamic tract and fornix, and finally the cortico-spinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. (authors)

  20. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging*♦

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M.; Johnson, Aaron M.; Ren, Xiaojun

    2015-01-01

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes. PMID:26381410

  1. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    Science.gov (United States)

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein.

  2. Textures of rocks at Pahrump Hills, Gale Crater, Mars, as revealed by the Mars Hand Lens Imager

    Science.gov (United States)

    Aileen Yingst, R.; Kah, Linda; Stack Morgan, Kathryn; Edgett, Kenneth; McBride, Marie; Harker, David; Herkenhoff, Kenneth; Minitti, Michelle; Rowland, Scott

    2017-04-01

    Expressions of rock texture at the scale resolvable with a terrestrial hand lens (10 µm -10 mm) are critical to interpreting present and past geologic environments. The Mars Hand Lens Imager (MAHLI) acquired sub-mm/pixel scale color images of over 70 individual rocks and outcrops during Curiosity's first 1000 martian days, permitting the study of textures down to the scale of coarse silt. here we describe our investigation of the hand lens-scale the textures of lower Murray formation strata at the Pahrump Hills outcrop. The Curiosity traverse has crossed portions of two primary bedrock units (described by Grotinger et al., doi:10.1126/science.aac7575): the Bradbury group, which largely consists of fluvial sandstones and conglomerates; and the Mt. Sharp group, for which we have thus far examined about 200 m of the basal Murray formation. The Pahrump Hills outcrop provided our first detailed look at lower Murray strata. We explored 13 m of section at Pahrump Hills, perhaps the lowest 10% of the Murray formation. It is dominated by finely-laminated, very fine-grained rocks. These lower fine-grained layers are characterized by planar lamination in a very fine-grained matrix; the dominant grain size in this region is smaller than very fine sand. Evidence for diagenetic mineral precipitation was also prominent in these lower layers. Evidence for such activity includes likely in-situ precipitation of lenticular features, preferential cementation of laminae in several layers, precipitation of late-diagenetic crystal clusters, and secondary overprinting of previously-deposited crystals. The 30 cm thick capping upper layer is coarser-grained and varicolored. It is a thick cross-laminated sandstone, with moderately well-sorted, relatively rounded grains averaging 0.6-0.8 mm in diameter. Taken together, these characteristics are consistent with a depositional hypothesis of subaqueous, lacustrine environment capped by interfingered fluvial-deltaic progradation of a different

  3. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  4. The HDUV Survey: Six Lyman Continuum Emitter Candidates at z ∼ 2 Revealed by HST UV Imaging

    Science.gov (United States)

    Naidu, R. P.; Oesch, P. A.; Reddy, N.; Holden, B.; Steidel, C. C.; Montes, M.; Atek, H.; Bouwens, R. J.; Carollo, C. M.; Cibinel, A.; Illingworth, G. D.; Labbé, I.; Magee, D.; Morselli, L.; Nelson, E. J.; van Dokkum, P. G.; Wilkins, S.

    2017-09-01

    We present six galaxies at z∼ 2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multiwavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high—typically > 60 % (> 13 % for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies with high escape fraction. These six galaxies compose the largest sample yet of LyC leaking candidates at z∼ 2 whose inferred LyC flux has been observed at HST resolution. While three of our six candidates show evidence of hosting an active galactic nucleus, two of these are heavily obscured and their LyC emission appears to originate from star-forming regions rather than the central nucleus. Extensive multiwavelength data in the GOODS fields, especially the near-IR grism spectra from the 3D-HST survey, enable us to study the candidates in detail and tentatively test some recently proposed indirect methods to probe LyC leakage. High-resolution spectroscopic follow-up of our candidates will help constrain such indirect methods, which are our only hope of studying f esc at z∼ 5-9 in the JWST era. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  6. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.

  7. Delivery-Corrected Imaging of Fluorescently-Labeled Glucose Reveals Distinct Metabolic Phenotypes in Murine Breast Cancer

    Science.gov (United States)

    Frees, Amy E.; Rajaram, Narasimhan; McCachren, Samuel S.; Fontanella, Andrew N.; Dewhirst, Mark W.; Ramanujam, Nimmi

    2014-01-01

    When monitoring response to cancer therapy, it is important to differentiate changes in glucose tracer uptake caused by altered delivery versus a true metabolic shift. Here, we propose an optical imaging method to quantify glucose uptake and correct for in vivo delivery effects. Glucose uptake was measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-D-glucose (2-NBDG) in mice implanted with dorsal skin flap window chambers. Additionally, vascular oxygenation (SO2) was calculated using only endogenous hemoglobin contrast. Results showed that the delivery factor proposed for correction, “RD”, reported on red blood cell velocity and injected 2-NBDG dose. Delivery-corrected 2-NBDG uptake (2-NBDG60/RD) inversely correlated with blood glucose in normal tissue, indicating sensitivity to glucose demand. We further applied our method in metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. The ratio 2-NBDG60/RD was increased in 4T1 tumors relative to 4T07 tumors yet average SO2 was comparable, suggesting a shift toward a “Warburgian” (aerobic glycolysis) metabolism in the metastatic 4T1 line. In heterogeneous regions of both 4T1 and 4T07, 2-NBDG60/RD increased slightly but significantly as vascular oxygenation decreased, indicative of the Pasteur effect in both tumors. These data demonstrate the utility of delivery-corrected 2-NBDG and vascular oxygenation imaging for differentiating metabolic phenotypes in vivo. PMID:25526261

  8. Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

    Science.gov (United States)

    Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2016-07-01

    We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that allow for reliable nucleation of domain walls and directly quantify the stability of the magnetic states. Our analysis of the processes occurring during field induced domain wall nucleation shows how the effective fields determine the nucleation location reproducibly, which is a key prerequisite toward using domain walls for spintronic devices.

  9. Live imaging of Drosophila gonad formation reveals roles for Six4 in regulating germline and somatic cell migration

    Directory of Open Access Journals (Sweden)

    Jarman Andrew P

    2007-05-01

    Full Text Available Abstract Background Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs, somatic gonadal precursors (SGPs, and in males, male-specific somatic gonadal precursors (msSGPs. These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells. Results We have used time-lapse fluorescence imaging to characterise gonadal cell behaviour in wild type and mutant embryos. We show that the homeodomain transcription factor Six4 is required for the migration of the PGCs and the msSGPs towards the SGPs. We have identified a likely cause of this in the case of PGCs as we have found that Six4 is required for expression of Hmgcr which codes for HMGCoA reductase and is necessary for attraction of PGCs by SGPs. Six4 affects msSGP migration by a different pathway as these move normally in Hmgcr mutant embryos. Additionally, embryos lacking fully functional Six4 show a novel phenotype in which the SGPs, which originate in distinct clusters, fail to coalesce to form unified gonads. Conclusion Our work establishes the Drosophila gonad as a model system for the analysis of coordinated cell migrations and morphogenesis using live imaging and demonstrates that Six4 is a key regulator of somatic cell function during gonadogenesis. Our data suggest that the initial association of SGP clusters

  10. MALDI-mass spectrometric imaging revealing hypoxia-driven lipids and proteins in a breast tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiang; Chughtai, Kamila; Purvine, Samuel O.; Bhujwalla, Zaver M.; Raman, Venu; Pasa-Tolic, Ljiljana; Heeren, Ronald M.; Glunde, Kristine

    2015-06-16

    Hypoxic areas are a common feature of rapidly growing malignant tumors and their metastases, and are typically spatially heterogeneous. Hypoxia has a strong impact on tumor cell biology and contributes to tumor progression in multiple ways. To date, only a few molecular key players in tumor hypoxia, such as for example hypoxia-inducible factor-1 (HIF-1), have been discovered. The distribution of biomolecules is frequently heterogeneous in the tumor volume, and may be driven by hypoxia and HIF-1α. Understanding the spatially heterogeneous hypoxic response of tumors is critical. Mass spectrometric imaging (MSI) provides a unique way of imaging biomolecular distributions in tissue sections with high spectral and spatial resolution. In this paper, breast tumor xenografts grown from MDA-MB-231-HRE-tdTomato cells, with a red fluorescent tdTomato protein construct under the control of a hypoxia response element (HRE)-containing promoter driven by HIF-1α, were used to detect the spatial distribution of hypoxic regions. We elucidated the 3D spatial relationship between hypoxic regions and the localization of small molecules, metabolites, lipids, and proteins by using principal component analysis – linear discriminant analysis (PCA-LDA) on 3D rendered MSI volume data from MDA-MB-231-HRE-tdTomato breast tumor xenografts. In this study we identified hypoxia-regulated proteins active in several distinct pathways such as glucose metabolism, regulation of actin cytoskeleton, protein folding, translation/ribosome, splicesome, the PI3K-Akt signaling pathway, hemoglobin chaperone, protein processing in endoplasmic reticulum, detoxification of reactive oxygen species, aurora B signaling/apoptotic execution phase, the RAS signaling pathway, the FAS signaling pathway/caspase cascade in apoptosis and telomere stress induced senescence. In parallel we also identified co-localization of hypoxic regions and various lipid species such as PC(16:0/18:1), PC(16:0/18:2), PC(18:0/18:1), PC

  11. Local symmetry breaking of a thin crystal structure of β-Si3N4 as revealed by spherical aberration corrected high-resolution transmission electron microscopy images.

    Science.gov (United States)

    Kim, Hwang Su; Zhang, Zaoli; Kaiser, Ute

    2012-06-01

    This report is an extension of the study for structural imaging of 5-6 nm thick β-Si(3)N(4) [0001] crystal with a spherical aberration corrected transmission electron microscope by Zhang and Kaiser [2009. Structure imaging of β-Si(3)N(4) by spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 109, 1114-1120]. In this work, a local symmetry breaking with an uneven resolution of dumbbells in the six-membered rings revealed in the reported images in the study of Zhang and Kaiser has been analyzed in detail. It is found that this local asymmetry in the image basically is not relevant to a slight mistilt of the specimen and/or a beam tilt (coma). Rather the certain variation of the tetrahedral bond length of Si-N(4) in the crystal structure is found to be responsible for the uneven resolution with a local structural variation from region to region. This characteristic of the variation is also supposed to give a distorted lattice of apparently 2°-2.5° deviations from the perfect hexagonal unit cell as observed in the reported image in the work of Zhang and Kaiser. It is discussed that this variation may prevail only in a thin specimen with a thickness ranging ~≤ 5-6 nm. At the same time, it is noted that the average of the bond length variation is close to the fixed length known in a bulk crystal of β-Si(3)N(4).

  12. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.

    Science.gov (United States)

    Lee, Hee Yoon; Raphael, Patrick D; Park, Jesung; Ellerbee, Audrey K; Applegate, Brian E; Oghalai, John S

    2015-03-10

    Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living cochlea that increase the amplitude of vibration and sharpen frequency tuning, the data have typically been limited to point measurements of basilar membrane vibration. In addition, opening the cochlea may alter its function and affect the findings. Here we describe volumetric optical coherence tomography vibrometry, a technique that overcomes these limitations by providing depth-resolved displacement measurements at 200 kHz inside a 3D volume of tissue with picometer sensitivity. We studied the mouse cochlea by imaging noninvasively through the surrounding bone to measure sound-induced vibrations of the sensory structures in vivo, and report, to our knowledge, the first measures of tectorial membrane vibration within the unopened cochlea. We found that the tectorial membrane sustains traveling wave propagation. Compared with basilar membrane traveling waves, tectorial membrane traveling waves have larger dynamic ranges, sharper frequency tuning, and apically shifted positions of peak vibration. These findings explain discrepancies between previously published basilar membrane vibration and auditory nerve single unit data. Because the tectorial membrane directly overlies the inner hair cell stereociliary bundles, these data provide the most accurate characterization of the stimulus shaping the afferent auditory response available to date.

  13. Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model.

    Science.gov (United States)

    Virostko, John; Radhika, Armandla; Poffenberger, Greg; Dula, Adrienne N; Moore, Daniel J; Powers, Alvin C

    2013-01-01

    We generated a mouse model (MIP-Luc-VU-NOD) that enables non-invasive bioluminescence imaging (BLI) of beta cell loss during the progression of autoimmune diabetes and determined the relationship between BLI and disease progression. MIP-Luc-VU-NOD mice displayed insulitis and a decline in bioluminescence with age which correlated with beta cell mass, plasma insulin, and pancreatic insulin content. Bioluminescence declined gradually in female MIP-Luc-VU-NOD mice, reaching less than 50% of the initial BLI at 10 weeks of age, whereas hyperglycemia did not ensue until mice were at least 16 weeks old. Mice that did not become diabetic maintained insulin secretion and had less of a decline in bioluminescence than mice that became diabetic. Bioluminescence measurements predicted a decline in beta cell mass prior to the onset of hyperglycemia and tracked beta cell loss. This model should be useful for investigating the fundamental processes underlying autoimmune diabetes and developing new therapies targeting beta cell protection and regeneration.

  14. Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users - a multi-voxel pattern analysis.

    Science.gov (United States)

    Cheng, H; Skosnik, P D; Pruce, B J; Brumbaugh, M S; Vollmer, J M; Fridberg, D J; O'Donnell, B F; Hetrick, W P; Newman, S D

    2014-11-01

    Chronic cannabis use can cause cognitive, perceptual and personality alterations, which are believed to be associated with regional brain changes and possible changes in connectivity between functional regions. This study aims to identify the changes from resting state functional magnetic resonance imaging scans. A two-level multi-voxel pattern analysis was proposed to classify male cannabis users from normal controls. The first level analysis works on a voxel basis and identifies clusters for the input of a second level analysis, which works on the functional connectivity between these regions. We found distinct clusters for male cannabis users in the middle frontal gyrus, precentral gyrus, superior frontal gyrus, posterior cingulate cortex, cerebellum and some other regions. Based on the functional connectivity of these clusters, a high overall accuracy rate of 84-88% in classification accuracy was achieved. High correlations were also found between the overall classification accuracy and Barrett Barrett Impulsiveness Scale factor scores of attention and motor. Our result suggests regional differences in the brains of male cannabis users that span from the cerebellum to the prefrontal cortex, which are associated with differences in functional connectivity. © The Author(s) 2014.

  15. Fluorescence resonance energy transfer imaging reveals that chemokine-binding modulates heterodimers of CXCR4 and CCR5 receptors.

    Directory of Open Access Journals (Sweden)

    Nilgun Isik

    Full Text Available BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET imaging method, we investigated the formation of CCR5 and CXCR4 heterodimers on the plasma membrane of live cells. We found that CCR5 and CXCR4 exist as constitutive heterodimers and ligands of CCR5 and CXCR4 promote different conformational changes within these preexisting heterodimers. Ligands of CCR5, in contrast to a ligand of CXCR4, induced a clear increase in FRET efficiency, indicating that selective ligands promote and stabilize a distinct conformation of the heterodimers. We also found that mutations at C-terminus of CCR5 reduced its ability to form heterodimers with CXCR4. In addition, ligands induce different conformational transitions of heterodimers of CXCR4 and CCR5 or CCR5(STA and CCR5(Delta4. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest a model in which CXCR4 and CCR5 spontaneously form heterodimers and ligand-binding to CXCR4 or CCR5 causes different conformational changes affecting heterodimerization, indicating the complexity of regulation of dimerization/function of these chemokine receptors by ligand binding.

  16. A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis.

    Science.gov (United States)

    Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl

    2013-01-01

    Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink-source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation.

  17. Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish

    Science.gov (United States)

    Perez-Camps, Mireia; Tian, Jing; Chng, Serene C; Sem, Kai Pin; Sudhaharan, Thankiah; Teh, Cathleen; Wachsmuth, Malte; Korzh, Vladimir; Ahmed, Sohail; Reversade, Bruno

    2016-01-01

    Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 PMID:27684073

  18. Calcium imaging in the ant Camponotus fellah reveals a conserved odour-similarity space in insects and mammals

    Directory of Open Access Journals (Sweden)

    Giurfa Martin

    2010-02-01

    Full Text Available Abstract Background Olfactory systems create representations of the chemical world in the animal brain. Recordings of odour-evoked activity in the primary olfactory centres of vertebrates and insects have suggested similar rules for odour processing, in particular through spatial organization of chemical information in their functional units, the glomeruli. Similarity between odour representations can be extracted from across-glomerulus patterns in a wide range of species, from insects to vertebrates, but comparison of odour similarity in such diverse taxa has not been addressed. In the present study, we asked how 11 aliphatic odorants previously tested in honeybees and rats are represented in the antennal lobe of the ant Camponotus fellah, a social insect that relies on olfaction for food search and social communication. Results Using calcium imaging of specifically-stained second-order neurons, we show that these odours induce specific activity patterns in the ant antennal lobe. Using multidimensional analysis, we show that clustering of odours is similar in ants, bees and rats. Moreover, odour similarity is highly correlated in all three species. Conclusion This suggests the existence of similar coding rules in the neural olfactory spaces of species among which evolutionary divergence happened hundreds of million years ago.

  19. Major mouse placental compartments revealed by diffusion-weighted MRI, contrast-enhanced MRI, and fluorescence imaging.

    Science.gov (United States)

    Solomon, Eddy; Avni, Reut; Hadas, Ron; Raz, Tal; Garbow, Joel Richard; Bendel, Peter; Frydman, Lucio; Neeman, Michal

    2014-07-15

    Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools--and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids' apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas.

  20. Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent "Pimonidazole" in Hypoxia.

    Science.gov (United States)

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Feng, Fei; Zhao, Songji; Higashino, Kenichi; Numata, Yoshito; Kuge, Yuji

    2016-01-01

    Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH.

  1. Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent “Pimonidazole” in Hypoxia

    Science.gov (United States)

    Yoshioka, Takeshi; Feng, Fei; Zhao, Songji; Higashino, Kenichi; Numata, Yoshito; Kuge, Yuji

    2016-01-01

    Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH. PMID:27580239

  2. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  3. Convergent evidence from multimodal imaging reveals amygdala abnormalities in schizophrenic patients and their first-degree relatives.

    Directory of Open Access Journals (Sweden)

    Lin Tian

    Full Text Available BACKGROUND: Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives. METHODS: Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data. RESULTS: Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents. CONCLUSIONS: Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.

  4. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  5. Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles.

    Science.gov (United States)

    Furuichi, Yasuro; Goto-Inoue, Naoko; Manabe, Yasuko; Setou, Mitsutoshi; Masuda, Kazumi; Fujii, Nobuharu L

    2014-10-01

    Carnitine is well recognized as a key regulator of long-chain fatty acyl group translocation into the mitochondria. In addition, carnitine, as acetylcarnitine, acts as an acceptor of excess acetyl-CoA, a potent inhibitor of pyruvate dehydrogenase. Here, we provide a new methodology for accurate quantification of acetylcarnitine content and determination of its localization in skeletal muscles. We used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to visualize acetylcarnitine distribution in rat skeletal muscles. MALDI-IMS and immunohistochemistry of serial cross-sections showed that acetylcarnitine was enriched in the slow-type muscle fibers. The concentration of ATP was lower in muscle regions with abundant acetylcarnitine, suggesting a relationship between acetylcarnitine and metabolic activity. Using our novel method, we detected an increase in acetylcarnitine content after muscle contraction. Importantly, this increase was not detected using traditional biochemical assays of homogenized muscles. We also demonstrated that acetylation of carnitine during muscle contraction was concomitant with glycogen depletion. Our methodology would be useful for the quantification of acetylcarnitine and its contraction-induced kinetics in skeletal muscles.

  6. Serial image analysis of Mycobacterium tuberculosis colony growth reveals a persistent subpopulation in sputum during treatment of pulmonary TB

    Science.gov (United States)

    Barr, David A.; Kamdolozi, Mercy; Nishihara, Yo; Ndhlovu, Victor; Khonga, Margaret; Davies, Geraint R.; Sloan, Derek J.

    2016-01-01

    Summary Faster elimination of drug tolerant ‘persister’ bacteria may shorten treatment of tuberculosis (TB) but no method exists to quantify persisters in clinical samples. We used automated image analysis to assess whether studying growth characteristics of individual Mycobacterium tuberculosis colonies from sputum on solid media during early TB treatment facilitates ‘persister’ phenotyping. As Time to Detection (TTD) in liquid culture inversely correlates with total bacterial load we also evaluated the relationship between individual colony growth parameters and TTD. Sputum from TB patients in Malawi was prepared for solid and liquid culture after 0, 2 and 4 weeks of treatment. Serial photography of agar plates was used to measure time to appearance (lag time) and radial growth rate for each colony. Mixed-effects modelling was used to analyse changing growth characteristics from serial samples. 20 patients had colony measurements recorded at ≥1 time-point. Overall lag time increased by 6.5 days between baseline and two weeks (p = 0.0001). Total colony count/ml showed typical biphasic elimination, but long lag time colonies (>20days) had slower, monophasic decline. TTD was associated with minimum lag time (time to appearance of first colony1). Slower elimination of long lag time colonies suggests that these may represent a persister subpopulation of bacilli. PMID:27156626

  7. Functional magnetic resonance imaging reveals abnormal brain connectivity in EGR3 gene transfected rat model of schizophrenia.

    Science.gov (United States)

    Song, Tianbin; Nie, Binbin; Ma, Ensen; Che, Jing; Sun, Shilong; Wang, Yuli; Shan, Baoci; Liu, Yawu; Luo, Senlin; Ma, Guolin; Li, Kefeng

    2015-05-01

    Schizophrenia is characterized by the disorder of "social brain". However, the alternation of connectivity density in brain areas of schizophrenia patients remains largely unknown. In this study, we successfully created a rat model of schizophrenia by the transfection of EGR3 gene into rat brain. We then investigated the connectivity density of schizophrenia susceptible regions in rat brain using functional magnetic resonance imaging (fMRI) in combination with multivariate Granger causality (GC) model. We found that the average signal strength in prefrontal lobe and hippocampus of schizophrenia model group was significantly higher than the control group. Bidirectional Granger causality connection was observed between hippocampus and thalamic in schizophrenia model group. Both connectivity density and Granger causality connection were changed in prefrontal lobe, hippocampus and thalamus after risperidone treatment. Our results indicated that fMRI in combination with GC connection analysis may be used as an important method in diagnosis of schizophrenia and evaluation the effect of antipsychotic treatment. These findings support the connectivity disorder hypothesis of schizophrenia and increase our understanding of the neural mechanisms of schizophrenia.

  8. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Science.gov (United States)

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  9. Live imaging reveals a new role for the sigma-1 (σ1) receptor in allowing microglia to leave brain injuries.

    Science.gov (United States)

    Moritz, Christian; Berardi, Francesco; Abate, Carmen; Peri, Francesca

    2015-03-30

    Microglial cells are responsible for clearing and maintaining the central nervous system (CNS) microenvironment. Upon brain damage, they move toward injuries to clear the area by engulfing dying neurons. However, in the context of many neurological disorders chronic microglial responses are responsible for neurodegeneration. Therefore, it is important to understand how these cells can be "switched-off" and regain their ramified state. Current research suggests that microglial inflammatory responses can be inhibited by sigma (σ) receptor activation. Here, we take advantage of the optical transparency of the zebrafish embryo to study the role of σ1 receptor in microglia in an intact living brain. By combining chemical approaches with real time imaging we found that treatment with PB190, a σ1 agonist, blocks microglial migration toward injuries leaving cellular baseline motility and the engulfment of apoptotic neurons unaffected. Most importantly, by taking a reverse genetic approach, we discovered that the role of σ1in vivo is to "switch-off" microglia after they responded to an injury allowing for these cells to leave the site of damage. This indicates that pharmacological manipulation of σ1 receptor modulates microglial responses providing new approaches to reduce the devastating impact that microglia have in neurodegenerative diseases.

  10. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells.

    Science.gov (United States)

    Ibl, Verena; Stoger, Eva

    2014-01-01

    The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs) in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  11. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth.

    Science.gov (United States)

    Spahn, Christoph; Endesfelder, Ulrike; Heilemann, Mike

    2014-03-01

    Bacterial replication and chromosome segregation are highly organized both in space and in time. However, spatial analysis is hampered by the resolution limit of conventional fluorescence microscopy. In this study, we incubate rapidly-growing Escherichia coli with 5-ethynyl-2'-deoxyuridine (EdU), label the resulting EdU-DNA with photoswitchable fluorophores, and image incorporated molecules with an average experimental precision of 13 nm. During the segregation process, nucleoids develop highly-defined and cell-cycle dependent hetero-structures, which contain discrete DNA fibers with diameters far below the diffraction limit. Strikingly, these structures appear temporally shifted between sister chromosomes, an asymmetry which accumulates for ongoing replication rounds. Moreover, nucleoid positioning and expansion along the bacterial length axis fit into an elongation-mediated segregation model in fast growing E. coli cultures. This is supported by close proximity of the nucleoids to the bacterial plasma membrane, the nature of the observed hetero-structures and recently found interactions of membrane-associated proteins with DNA.

  12. Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging.

    Science.gov (United States)

    Jung, Jaemyeong; Sethi, Anurag; Gaiotto, Tiziano; Han, Jason J; Jeoh, Tina; Gnanakaran, Sandrasegaram; Goodwin, Peter M

    2013-08-16

    The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.

  13. Mechanistic insights into the distribution of carbohydrate clusters on cell membranes revealed by dSTORM imaging

    Science.gov (United States)

    Chen, Junling; Gao, Jing; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-01

    Cell surface carbohydrates play significant roles in many physiological processes and act as primary markers to indicate various cellular physiological states. The functions of carbohydrates are always associated with their expression and distribution on cell membranes. Based on our previous work, we found that carbohydrates tend to form clusters; however, the underlying mechanism of these clusters remains unknown. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we found that with the contributions of lipid raft as a stable factor and actin cytoskeleton as a restrictive factor, carbohydrate clusters can stably exist with restricted size. Additionally, we revealed that the formation of most carbohydrate clusters (Gal and GlcANc clusters) depended on the carbohydrate-binding proteins (i.e., galectins) cross-linking their specific carbohydrate ligands. Our results clarify the organizational mechanism of carbohydrates on cell surfaces from their formation, stable existence and size-restriction, which promotes a better understanding of the relationship between the function and distribution of carbohydrates, as well as the structure of cell membranes.Cell surface carbohydrates play significant roles in many physiological processes and act as primary markers to indicate various cellular physiological states. The functions of carbohydrates are always associated with their expression and distribution on cell membranes. Based on our previous work, we found that carbohydrates tend to form clusters; however, the underlying mechanism of these clusters remains unknown. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we found that with the contributions of lipid raft as a stable factor and actin cytoskeleton as a restrictive factor, carbohydrate clusters can stably exist with restricted size. Additionally, we revealed that the formation of most carbohydrate clusters (Gal and GlcANc clusters) depended on the

  14. Developmental patterning and segregation of alkaloids in areca nut (seed of Areca catechu) revealed by magnetic resonance and mass spectrometry imaging.

    Science.gov (United States)

    Srimany, Amitava; George, Christy; Naik, Hemanta R; Pinto, Danica Glenda; Chandrakumar, N; Pradeep, T

    2016-05-01

    Areca nut (seed of Areca catechu) is consumed by people from different parts of Asia, including India. The four major alkaloids present in areca nut are arecoline, arecaidine, guvacoline and guvacine. Upon cutting, the nut reveals two kinds of regions; white and brown. In our present study, we have monitored the formation of these two regions within the nut during maturation, using the non-invasive techniques of magnetic resonance imaging (MRI) and volume localized magnetic resonance spectroscopy (MRS). Electrospray ionization mass spectrometry (ESI MS) and desorption electrospray ionization mass spectrometry (DESI MS) imaging have been used to study the associated change in the alkaloid contents of these two regions during the growth of the nut. Our study reveals that white and brown regions start forming within the nut when the liquid within starts solidifying. At the final stage of maturity, arecoline, arecaidine and guvacoline get segregated in the brown region whereas guvacine gets to the white region of the nut. The transport of molecules with maturity and corresponding pattern formation are expected to be associated with a multitude of physiochemical changes.

  15. Aequorin-Based Luminescence Imaging Reveals Stimulus- and Tissue-Specific Ca2+ Dynamics in Arabidopsis Plants

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhu; Ying Feng; Gaimei Liang; Na Liu; Jian-Kang Zhu

    2013-01-01

    Calcium ion is a versatile second messenger for diverse cell signaling in response to developmental and environmental cues.The specificity of Ca2+-mediated signaling is defined by stimulus-elicited Ca2+ signature and down-stream decoding processes.Here,an Aequorin-based luminescence recording system was developed for monitoring Ca2+ in response to various stimuli in Arabidopsis.With the simple,highly sensitive,and robust Ca2+ recording,this system revealed stimulus-and tissue-specific Ca2+ signatures in seedlings.Cellular Ca2+ dynamics and relationship to Aequorin-based Ca2+ recording were explored using a GFP-based Ca2+ indicator,which suggested that a synchronous cellular Ca2+ signal is responsible for cold-induced Ca2+ response in seedlings,whereas asynchronous Ca2+ oscillation contributes to osmotic stress-induced Ca2+ increase in seedlings.The optimized recording system would be a powerful tool for the identification and characterization of novel components in Ca2+-mediated stress-signaling pathways.

  16. Ginsenoside PPD’s Antitumor Effect via Down-Regulation of mTOR Revealed by Super-Resolution Imaging

    Directory of Open Access Journals (Sweden)

    Bo Teng

    2017-03-01

    Full Text Available Derived from Panax ginseng, the natural product 20(S-Protopanaxadiol (PPD has been reported for its cytotoxicity against several cancer cell lines. The molecular mechanism is, however, not well understood. Here we show that PPD significantly inhibits proliferation, induces apoptosis and causes G2/M cell cycle arrest in human laryngeal carcinoma cells (Hep-2 cells. PPD also decreases the levels of proteins related to cell proliferation. Moreover, PPD-induced apoptosis is characterized by a dose-dependent down-regulation of Bcl-2 expression and up-regulation of Bax, and is accompanied by the activation of Caspase-3 as well. Further molecular mechanism is revealed by direct stochastic optical reconstruction microscopy (dSTORM—a novel high-precision localization microscopy which enables effective resolution down to the order of 10 nm. It shows the expression and spatial arrangement of mTOR and its downstream effectors, demonstrating that this ginsenoside exerts its excellent anticancer effects via down-regulation of mTOR signaling pathway in Hep-2 cells. Taken together, our findings elucidate that the antitumor effect of PPD is associated with its regulation of mTOR expression and distribution, which encourages further studies of PPD as a promising therapeutic agent against laryngeal carcinoma.

  17. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    2015-02-01

    Full Text Available The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  18. Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations.

    Science.gov (United States)

    Heringa, Maarten F; Slowik, Jay G; Prévôt, André S H; Baltensperger, Urs; Hemberger, Patrick; Bodi, Andras

    2016-05-26

    Adipic acid, a model compound for oxygenated organic aerosol, has been studied at the VUV beamline of the Swiss Light Source. Internal energy selected cations were prepared by threshold photoionization using vacuum ultraviolet synchrotron radiation and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The threshold photoelectron spectrum yields a vertical ionization energy (IE) of 10.5 eV, significantly above the calculated adiabatic IE of 8.6 eV. The cationic minimum is accessible after vertical ionization by H-transfer from one of the γ-carbons to a carbonyl oxygen and is sufficiently energetic to decay by water loss at the ionization onset. The slope of the breakdown curves, quantum chemical calculations, and selective deuteration of the carboxylic hydrogens establish the dissociative photoionization mechanism. After ionization, one γ-methylene hydrogen and the two carboxylic hydrogens are randomized prior to H2O loss. On the basis of the deuteration degree in the H2O + CO-loss product at higher energies, a direct water-loss channel without complete randomization also exists. The breakdown diagram and center of gravity of the H2O + CO-loss peak were modeled to obtain 0 K appearance energies of 10.77, 10.32, and 11.53 eV for H2O + CO loss, CH2COOH loss, and H2O + CH2COOH loss from adipic acid. These agree well with the CBS-QB3 calculated values of 10.68, 10.45, and 11.57 eV, respectively, which shows that threshold photoionization can yield energetics data as long as the dissociation is statistical, even when the parent ion cannot be observed. The results can be used as a starting point for a deeper understanding of the ionization and low-energy fragmentation of organic aerosol components.

  19. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  20. Surface circulation patterns in the Sicily Channel and Ionian Sea as revealed by MODIS chlorophyll images from 2003 to 2007

    Science.gov (United States)

    Ciappa, Achille Carlo

    2009-09-01

    The surface circulation in the Sicily Channel and in the Ionian Sea is investigated using MODerate-resolution Infrared Spectro-radiometer (MODIS) chlorophyll-a images collected from 2003 to 2007. The use of chlorophyll as surface tracer in the area is verified by comparison with satellite altimeter measurements available during the same period. The interaction between waters with different concentrations of chlorophyll adds new particulars to the surface circulation of the Atlantic Water (AW) in the study area. In the Sicily Channel, warm anticyclonic structures located in the southern end drive the AW flow along their northern boundary to the south-east, towards the Libyan coast. In winter, the anticyclonic structures contract in a stable nucleus (the Sidra gyre) close to the African coast allowing AW intrusion over the Tunisian shelf (Atlantic Tunisian Current). In summer, the anticyclonic structure expands westwards, limiting the Atlantic Tunisian Current, and northwards, grazing the Atlantic Ionian Stream. It also fragments, allowing occasional AW intrusion into the central part of the Sicily Channel along different pathways. Due to the activity of the Sidra gyre, no evidence of the extension of the Atlantic Tunisian Current along the Libyan coast (east of 15°E) is found in the observation period. AW spreads into the central Ionian for long periods in summer but rarely in winter. It reaches the northern Ionian Sea via anticyclonic eddies (already observed in thermal imagery) departing from the northern and eastern border of the anticyclonic structure, captured by the prevalent clockwise offshore circulation in the northern Ionian (except in summer 2003). The deduced circulation is in agreement with recent studies based on the altimetric Mean Dynamic Topography and trajectories of drifters released in the Sicily Channel in recent years.

  1. Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes.

    Science.gov (United States)

    Lind, Tania Kjellerup; Zielińska, Paulina; Wacklin, Hanna Pauliina; Urbańczyk-Lipkowska, Zofia; Cárdenas, Marité

    2014-01-28

    In this paper, an amphiphilic peptide dendrimer with potential applications against multi-resistant bacteria such as Staphylococcus aureus was synthesized and studied on model cell membranes. The combination of quartz crystal microbalance and atomic force microscopy imaging during continuous flow allowed for in situ monitoring of the very initial interaction processes and membrane transformations on longer time scales. We used three different membrane compositions of low and high melting temperature phospholipids to vary the membrane properties from a single fluid phase to a pure gel phase, while crossing the phase coexistence boundaries at room temperature. The interaction mechanism of the dendrimer was found to be time-dependent and to vary remarkably with the fluidity and coexistence of liquid-solid phases in the membrane. Spherical micelle-like dendrimer-lipid aggregates were formed in the fluid-phase bilayer and led to partial solubilization of the membrane, while in gel-phase membranes, the dendrimers caused areas of local depressions followed by redeposition of flexible lipid patches. Domain coexistence led to a sequence of events initiated by the formation of a ribbon-like network and followed by membrane solubilization via spherical aggregates from the edges of bilayer patches. Our results show that the dendrimer molecules were able to destroy the membrane integrity through different mechanisms depending on the lipid phase and morphology and shed light on their antimicrobial activity. These findings could have an impact on the efficacy of the dendrimers since lipid membranes in certain bacteria have transition temperatures very close to the host body temperature.

  2. Functional interactions within the parahippocampal region revealed by voltage-sensitive dye imaging in the isolated guinea pig brain.

    Science.gov (United States)

    Biella, Gerardo; Spaiardi, Paolo; Toselli, Mauro; de Curtis, Marco; Gnatkovsky, Vadym

    2010-02-01

    The massive transfer of information from the neocortex to the entorhinal cortex (and vice versa) is hindered by a powerful inhibitory control generated in the perirhinal cortex. In vivo and in vitro experiments performed in rodents and cats support this conclusion, further extended in the present study to the analysis of the interaction between the entorhinal cortex and other parahippocampal areas, such as the postrhinal and the retrosplenial cortices. The experiments were performed in the in vitro isolated guinea pig brain by a combined approach based on electrophysiological recordings and fast imaging of optical signals generated by voltage-sensitive dyes applied to the entire brain by arterial perfusion. Local stimuli delivered in different portions of the perirhinal, postrhinal, and retrosplenial cortex evoked local responses that did not propagate to the entorhinal cortex. Neither high- and low-frequency-patterned stimulation nor paired associative stimuli facilitated the propagation of activity to the entorhinal region. Similar stimulations performed during cholinergic neuromodulation with carbachol were also ineffective in overcoming the inhibitory network that controls propagation to the entorhinal cortex. The pharmacological inactivation of GABAergic transmission by local application of bicuculline (1 mM) in area 36 of the perirhinal cortex facilitated the longitudinal (rostrocaudal) propagation of activity into the perirhinal/postrhinal cortices but did not cause propagation into the entorhinal cortex. Bicuculline injection in both area 35 and medial entorhinal cortex released the inhibitory control and allowed the propagation of the neural activity to the entorhinal cortex. These results demonstrate that, as for the perirhinal-entorhinal reciprocal interactions, also the connections between the postrhinal/retrosplenial cortices and the entorhinal region are subject to a powerful inhibitory control.

  3. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Alessandro Gozzi

    Full Text Available Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R and orexin-2 (OX2R. Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated. Here we used functional magnetic resonance imaging (fMRI in the rat to map the modulatory effect of selective OXR blockade on the functional response produced by D-amphetamine, a psychostimulant and arousing drug that stimulates orexigenic activity. OXR blockade was produced by GSK1059865 and JNJ1037049, two novel OX1R and OX2R antagonists with unprecedented selectivity at the counter receptor type. Both drugs inhibited the functional response to D-amphetamine albeit with distinct neuroanatomical patterns: GSK1059865 focally modulated functional responses in striatal terminals, whereas JNJ1037049 induced a widespread pattern of attenuation characterised by a prominent cortical involvement. At the same doses tested in the fMRI study, JNJ1037049 exhibited robust hypnotic properties, while GSK1059865 failed to display significant sleep-promoting effects, but significantly reduced drug-seeking behaviour in cocaine-induced conditioned place preference. Collectively, these findings highlight an essential contribution of the OX2R in modulating cortical activity and arousal, an effect that is consistent with the robust hypnotic effect exhibited by JNJ1037049. The subcortical and striatal pattern observed with GSK1059865 represent a possible neurofunctional correlate for the modulatory role of OX1R in controlling reward-processing and goal-oriented behaviours in the rat.

  4. Flow behaviour of supercritical CO2 and brine in Berea sandstone during drainage and imbibition revealed by medical X-ray CT images

    Science.gov (United States)

    Zhang, Yi; Nishizawa, Osamu; Kiyama, Tamotsu; Chiyonobu, Shun; Xue, Ziqiu

    2014-06-01

    We injected Berea sandstone with supercritical CO2 and imaged the results with a medical X-ray computed tomography (CT) scanner. The images were acquired by injecting CO2 into a core of brine-saturated sandstone (drainage), and additional images were acquired during reinjection of brine (imbibition) after drainage. We then analysed the temporal variations of CO2 saturation maps obtained from the CT images. The experiments were performed under a confining pressure of 12 MPa, a pore pressure of 10 MPa and a temperature of 40 °C. Porosity and CO2 saturation were calculated for each image voxel of the rock on the basis of the Hounsfield unit values (CT numbers) measured at three states of saturation: dry, full brine saturation and full CO2 saturation. The saturation maps indicated that the distributions of CO2 and brine were controlled by the sub-core-scale heterogeneities which consisted of a laminated structure (bedding) with high- and low-porosity layers. During drainage, CO2 preferentially flowed through the high-porosity layers where most of the CO2 was entrapped during low flow-rate imbibition. The entrapped CO2 was flushed out when high flow-rate imbibition commenced. Plots of the voxel's CT number against porosity revealed the relationship between fluid replacement and porosity. By reference to the CT numbers at the full brine-saturated stage, differential CT numbers were classified into three bins corresponding to voxel porosity: high, medium and low porosity. Distributions of the differential CT number for the three porosity bins were bimodal and in order with respect to the porosity bins during both drainage and imbibitions; however, the order differed between the two stages. This difference suggested that different replacement mechanisms operated for the two processes. Spatial autocorrelation of CO2 saturation maps on sections perpendicular to the flow direction revealed remarkable changes during passage of the replacement fronts during both drainage and

  5. Brain microstructural abnormalities revealed by diffusion tensor images in patients with treatment-resistant depression compared with major depressive disorder before treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan, E-mail: clare1475@hotmail.com [Department of Radiology, Ren-Ji Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Qin Lingdi, E-mail: flyfool318@hotmail.com [Department of Radiology, Ren-Ji Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Chen Jun, E-mail: doctor_cj@msn.com [Shanghai Mental Health Center, Jiao Tong University Medical School, Shanghai, 200030 (China); Qian Lijun, E-mail: dearqlj@hotmail.com [Department of Radiology, Ren-Ji Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Tao Jing, E-mail: jing318@hotmail.com [Department of Radiology, Ren-Ji Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Fang Yiru, E-mail: fangyr@sina.com [Shanghai Mental Health Center, Jiao Tong University Medical School, Shanghai, 200030 (China); Xu Jianrong, E-mail: xujianr@hotmail.com [Department of Radiology, Ren-Ji Hospital, Jiao Tong University Medical School, Shanghai 200127 (China)

    2011-11-15

    Treatment-resistant depression (TRD) is a therapeutic challenge for clinicians. Despite a growing interest in this area, an understanding of the pathophysiology of depression, particularly TRD, remains lacking. This study aims to detect the white matter abnormalities of whole brain fractional anisotropy (FA) in patients with TRD compared with major depressive disorder (MDD) before treatment by voxel-based analysis using diffusion tensor imaging. A total of 100 patients first diagnosed with untreated MDD underwent diffusion tensor imaging scans. 8 weeks after the first treatment, 54 patients showed response to the medication, whereas 46 did not. Finally, 20 patients were diagnosed with TRD after undergoing another treatment. A total of 20 patients with TRD and another 20 with MDD before treatment matched in gender, age, and education was enrolled in the research. For every subject, an FA map was generated and analyzed using SPM5. Subsequently, t-test was conducted to compare the FA values voxel to voxel between the two groups (p < 0.001 [FDR corrected], t > 7.57, voxel size > 30). Voxel-based morphometric (VBM) analysis was performed using T1W images. Significant reductions in FA were found in the white matter located in the bilateral of the hippocampus (left hippocampus: t = 7.63, voxel size = 50; right hippocampus: t = 7.82, voxel size = 48). VBM analysis revealed no morphological abnormalities between the two groups. Investigation of brain anisotropy revealed significantly decreased FA in both sides of the hippocampus. Although preliminary, our findings suggest that microstructural abnormalities in the hippocampus indicate vulnerability to treatment resistance.

  6. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance.

    Science.gov (United States)

    McGugin, Rankin Williams; Gatenby, J Christopher; Gore, John C; Gauthier, Isabel

    2012-10-16

    The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177-1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670-674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm(2) on the right and 50 mm(2) on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region.

  7. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

    Science.gov (United States)

    Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T

    2016-02-01

    Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors.

  8. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli Volcano (Italy)

    Science.gov (United States)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Harris, Andrew; Bombrun, Maxime; Del Bello, Elisabetta; Ricci, Tullio

    2017-03-01

    Puffing, i.e., the frequent (1 s ca.) release of small (0.1-10 m3), over-pressurized pockets of magmatic gases, is a typical feature of open-conduit basaltic volcanoes worldwide. Despite its non-trivial contribution to the degassing budget of these volcanoes and its recognized role in volcano monitoring, detection and metering tools for puffing are still limited. Taking advantage of the recent developments in high-speed thermal infrared imaging, we developed a specific processing algorithm to detect the emission of individual puffs and measure their duration, size, volume, and apparent temperature at the vent. As a test case, we applied our method at Stromboli Volcano (Italy), studying "snapshots" of 1 min collected in the years 2012, 2013, and 2014 at several vents. In all 3 years, puffing occurred simultaneously at three or more vents with variable features. At the scale of the single vent, a direct relationship links puff temperature and radius, suggesting that the apparent temperature is mostly a function of puff thickness, while the real gas temperature is constant for all puffs. Once released in the atmosphere, puffs dissipate in less than 20 m. On a broader scale, puffing activity is highly variable from vent to vent and year to year, with a link between average frequency, temperature, and volume from 136 puffs per minute, 600 K above ambient temperature, 0.1 m3, and the occasional ejection of pyroclasts to 20 puffs per minute, 3 K above ambient, 20 m3, and no pyroclasts. Frequent, small, hot puffs occur at random intervals, while as the frequency decreases and size increases, an increasingly longer minimum interval between puffs, up to 0.5 s, appears. These less frequent and smaller puffs also display a positive correlation between puff volume and the delay from the previous puff. Our results suggest an important role of shallow bubble coalescence in controlling puffing activity. The smaller and more frequent puffing at "hotter" vents is in agreement with

  9. Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction.

    Science.gov (United States)

    McComb, Christie; Carrick, David; McClure, John D; Woodward, Rosemary; Radjenovic, Aleksandra; Foster, John E; Berry, Colin

    2015-08-01

    Imaging changes in left ventricular (LV) volumes during the cardiac cycle and LV ejection fraction do not provide information on regional contractility. Displacement ENcoding with Stimulated Echoes (DENSE) is a strain-encoded cardiac magnetic resonance (CMR) technique that measures strain directly. We investigated the relationships between strain revealed by DENSE and the presence and extent of infarction in patients with recent myocardial infarction (MI). 50 male subjects were invited to undergo serial CMR within 7 days of MI (baseline) and after 6 months (follow-up; n = 47). DENSE and late gadolinium enhancement (LGE) images were acquired to enable localised regional quantification of peak circumferential strain (Ecc) and the extent of infarction, respectively. We assessed: (1) receiver operating characteristic (ROC) analysis for the classification of LGE, (2) strain differences according to LGE status (remote, adjacent, infarcted) and (3) changes in strain revealed between baseline and follow-up. 300 and 258 myocardial segments were available for analysis at baseline and follow-up respectively. LGE was present in 130/300 (43%) and 97/258 (38%) segments, respectively. ROC analysis revealed moderately high values for peak Ecc at baseline [threshold 12.8%; area-under-curve (AUC) 0.88, sensitivity 84%, specificity 78%] and at follow-up (threshold 15.8%; AUC 0.76, sensitivity 85%, specificity 64%). Differences were observed between remote, adjacent and infarcted segments. Between baseline and follow-up, increases in peak Ecc were observed in infarcted segments (median difference of 5.6%) and in adjacent segments (1.5%). Peak Ecc at baseline was indicative of the change in LGE status between baseline and follow-up. Strain-encoded CMR with DENSE has the potential to provide clinically useful information on contractility and its recovery over time in patients with MI.

  10. Record of Subducting Topography revealed in 3D Seismic Imaging of Pleistocene unconformities, offshore Southern Costa Rica

    Science.gov (United States)

    Edwards, J. H.; Kluesner, J. W.; Silver, E. A.

    2015-12-01

    3D seismic reflection data (CRISP) collected across the southern Costa Rica forearc reveals broad, survey-wide erosional events in the upper ~1 km of slope sediments in the mid-slope to outer shelf. The upper 0-280 m of continuous, weakly deformed sediments, designated by IODP Expedition 344 as structural domain I, is bounded by a major erosional event, (CRISP-U1, dated near 1 Ma), suggesting wave-plain erosion from the present shelf break out to 25 km seaward, to a present-day water depth of 900-1300 m. The eastern toe of its surface is characterized by a large drainage system, likely including submarine channels that eroded to depths >1500 m below present-day water depth. CRISP-U1 is variably uplifted by a series of fault propagation folds and cut by an intersecting array of normal faults. Another, major erosional event, (CRISP-M1, approximately 2 Ma) extended from the outer shelf to the mid slope and removed 500-1000 m of material. Overlying CRISP-M1 is up to 1 km of sediments that are more deformed by fault propagation folds, back thrusts, and intersecting arrays of normal faults. Unconformities with smaller areal extent are variably found in these overlying sediments across the mid-slope to outer shelf, at present-day water depths >220 m. Below CRISP-M1, sediments are more densely deformed and also contain major unconformities that extend survey-wide. Both unconformities, CRISP-U1 and CRISP-M1, are encountered in well U1413 and are demarcated by major benthic foraminifera assemblage changes at 149 mbsf and ~504 mbsf (Harris et al., 2013, Proceeding of the IODP, Volume 344).CRISP-M1 is likely correlative to the major sediment facies and benthic foraminifera assemblage change found in U1379 at ~880 mbsf (Vannuchi et al., 2013). The unconformities and intersecting array of normal faults may demarcate the passing of topography on the downgoing Cocos plate, episodically lifting and then subsiding the Costa Rica margin, with amplitudes up to about 1 km.

  11. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®

    Directory of Open Access Journals (Sweden)

    Vincent Kate

    2009-12-01

    Full Text Available Abstract Background TILLING (Targeting Induced Local Lesions IN Genomes is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor® software, aimed at simultaneous detection of mutations in three homoeologous genes. Results We demonstrate that High Resolution Melting (HRM analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor® is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Conclusion Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence

  12. Photometric characterization of the Chang'e-3 landing site using LROC NAC images

    Science.gov (United States)

    Clegg-Watkins, R. N.; Jolliff, B. L.; Boyd, A.; Robinson, M. S.; Wagner, R.; Stopar, J. D.; Plescia, J. B.; Speyerer, E. J.

    2016-07-01

    China's robotic Chang'e-3 spacecraft, carrying the Yutu rover, touched down in Mare Imbrium on the lunar surface on 14 December 2013. The Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) imaged the site both before and after landing. Multi-temporal NAC images taken before and after the landing, phase-ratio images made from NAC images taken after the landing, and Hapke photometric techniques were used to evaluate surface changes caused by the disturbance of regolith at the landing site (blast zone) by the descent engines of the Chang'e-3 spacecraft. The reflectance of the landing site increased by 10 ± 1% (from I/F = 0.040 to 0.044 at 30° phase angle) as a result of the landing, a value similar to reflectance increases estimated for the Apollo, Luna, and Surveyor landing sites. The spatial extent of the disturbed area at the Chang'e-3 landing site, 2530 m2, also falls close to what is predicted on the basis of correlations between lander mass, thrust, and blast zone areas for the historic landed missions. A multi-temporal ratio image of the Chang'e-3 landing site reveals a main blast zone (slightly elongate in the N-S direction; ∼75 m across N-S and ∼43 m across in the E-W direction) and an extended diffuse, irregular halo that is less reflective than the main blast zone (extending ∼40-50 m in the N-S direction and ∼10-15 m in the E-W direction beyond the main blast zone). The N-S elongation of the blast zone likely resulted from maneuvering during hazard avoidance just prior to landing. The phase-ratio image reveals that the blast zone is less backscattering than surrounding undisturbed areas. The similarities in magnitude of increased reflectance between the Chang'e-3 landing site and the Surveyor, Apollo, and Luna landing sites suggest that lunar soil reflectance changes caused by interaction with rocket exhaust are not significantly altered over a period of 40-50 years. The reflectance changes are independent of regolith composition

  13. Marine bird specimen, marine bird sighting, and other data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 24 July 1979 to 19 November 1982 (NODC Accession 8300058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine bird specimen, marine bird sighting, and other data were collected from the NOAA Ship SURVEYOR from 24 July 1979 to 19 November 1982. Data were collected by...

  14. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship SURVEYOR in the North Pacific Ocean in support of the Integrated Global Ocean Services System (IGOSS) project from 1976-09-27 to 1976-10-22 (NCEI Accession 7601473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship SURVEYOR in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the National Ocean...

  15. Delayed XBT data from the Southern Surveyor, collected by Commonwealth Scientific Industrial Research Organization (CSIRO), and submitted to the Global Temperature-Salinity Profile Program (GTSPP), date range from 02/07/2009 - 03/14/2009 (NODC Accession 0059379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected in the Pacific Ocean aboard the Southern Surveyor from 07 February to 14 March 2009. Data were submitted by the CommonWealth Scientific...

  16. Temperature profiles from expendable bathythermograph (XBT) casts from the NOAA Ship SURVEYOR in the North Pacific Ocean in support of the Integrated Global Ocean Services System (IGOSS) project from 14 November 1986 to 23 November 1986 (NODC Accession 8600384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from the NOAA Ship SURVEYOR in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the National...

  17. Marine animal sighting and census data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 11 May 1982 to 19 March 1983 (NODC Accession 8400150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine animal sighting and census data were collected from the NOAA Ship SURVEYOR from 11 May 1982 to 19 March 1983. Data were collected by the Envirosphere Co. as...

  18. Marine toxic substance and other data from bottle casts from the NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 13 August 1980 to 21 February 1981 (NODC Accession 8100531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine toxic substance and other data were collected from bottle casts from the NOAA Ship SURVEYOR from 13 August 1980 to 21 February 1981. Data were collected by...

  19. Physical, meteorological, and other data from surface sensors and CTD casts from the SURVEYOR and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 23 February 1981 to 30 April 1983 (NODC Accession 8300167)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the SURVEYOR and other platforms from 23 February 1981 to 30 April...

  20. Zooplankton and other data from net casts in Prince William Sound from NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1975-10-03 to 1975-10-10 (NCEI Accession 7601873)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts in Prince William Sound from the SURVEYOR from 03 October 1975 to 10 October 1975. Data were collected by...

  1. Zooplankton and other data from net casts in the Gulf of Alaska from the SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 30 September 1975 to 24 October 1975 (NODC Accession 7601809)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts in the Gulf of Alaska from the SURVEYOR from 30 September 1975 to 24 October 1975. Data were collected by...

  2. Zooplankton and other data from net casts from NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1977-06-28 to 1977-07-04 (NCEI Accession 7900066)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts from NOAA Ship SURVEYOR from 28 June 1977 to 04 July 1977. Data were collected by the University of Alaska,...

  3. Zooplankton and other data from net casts from NOAA Ship SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 1976-03-17 to 1976-04-26 (NCEI Accession 7601628)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton and other data were collected from net casts from NOAA Ship SURVEYOR from 17 March 1976 to 26 April 1976. Data were collected by the University of Alaska...

  4. Physical, meteorological, and other data from surface sensors and CTD casts from SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 16 August 1977 to 15 September 1977 (NODC Accession 7800013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the SURVEYOR. Data were collected by the Pacific Marine Environmental...

  5. Physical, meteorological, and other data from surface sensors, bottle casts, and CTD casts from SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 15 April 1976 to 26 April 1976 (NODC Accession 7601823)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors, bottle casts, and CTD casts from the SURVEYOR. Data were collected by the University of...

  6. Temperature, salinity and other measurements found in dataset CTD taken from the SOUTHERN SURVEYOR (VLHJ) in the Coastal S Pacific, Equatorial Pacific and other locations from 2003 to 2006 (NODC Accession 0043461)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, chemical, and other data were collected using CTD casts from the SOUTHERN SURVEYOR in the Iceland Sea and North / South Pacific Ocean. Data...

  7. Temperature and salinity profiles from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 21 September 1975 to 22 September 1975 (NODC Accession 7601224)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profiles were collected from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR. Data were collected by the Pacific...

  8. Physical and other data from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 05 June 1975 to 12 June 1975 (NODC Accession 7601225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data were collected from surface sensors and CTD casts in the Gulf of Alaska from the SURVEYOR. Data were collected by the Pacific Marine...

  9. Marine animal sighting and census data from NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 17 May 1975 to 13 October 1977 (NODC Accession 8000349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine animal sighting and census data were collected from the NOAA Ship SURVEYOR from 17 May 1975 to 13 October 1977. Data were collected by the U.S. National...

  10. Marine bird sighting and other data from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 01 September 1976 to 02 September 1976 (NODC Accession 7800704)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine bird sighting and other data were collected from the SURVEYOR as part of Outer Continental Shelf Environmental Assessment Program (OCSEAP). Data were...

  11. Physical, meteorological, and other data from surface sensors and CTD casts from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 15 August 1980 to 05 September 1980 (NODC Accession 8200116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from surface sensors and CTD casts from the NOAA Ship SURVEYOR from 15 August 1980 to 05 September 1980. Data...

  12. Oceanographic profile data collected aboard Atlantic Surveyor as part of project OPR-D302-KR-12 in the North Atlantic Ocean from 2012-07-05 to 2012-09-05 (NCEI Accession 0130622)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130622 includes physical and profile data collected aboard the Atlantic Surveyor during project OPR-D302-KR-12 in the North Atlantic Ocean from...

  13. Marine mammal specimen and other data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 22 July 1975 to 28 August 1979 (NODC Accession 8100349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected from the NOAA Ship SURVEYOR from 22 July 1975 to 28 August 1979. Data were collected by the University of...

  14. Marine mammal specimen and other data from the SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 10 February 1977 to 19 November 1977 (NODC Accession 7900320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected from the SURVEYOR and other platforms from 10 February 1977 to 19 November 1977. Data were collected by the...

  15. Marine mammal specimen and other data from the SURVEYOR and other platforms as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 20 March 1977 to 02 November 1977 (NODC Accession 7900319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine mammal specimen and other data were collected from the SURVEYOR and other platforms from 20 March 1977 to 02 November 1977. Data were collected by the Alaska...

  16. Marine bird sighting and other data from the NOAA Ship SURVEYOR as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 16 August 1980 to 05 September 1980 (NODC Accession 8100473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine bird sighting and other data were collected from the NOAA Ship SURVEYOR from 16 August 1980 to 05 September 1980. Data were collected by the University of...

  17. Interference of Co-Amplified Nuclear Mitochondrial DNA Sequences on the Determination of Human mtDNA Heteroplasmy by Using the SURVEYOR Nuclease and the WAVE HS System

    OpenAIRE

    Hsiu-Chuan Yen; Shiue-Li Li; Wei-Chien Hsu; Petrus Tang

    2014-01-01

    High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detectin...

  18. Feedhorn-coupled Bolometer Detectors at 40 GHz Implemented on the Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Chuss, David T.; Ali, A.; Appel, J. W.; Bennett, C. L.; Colazo, F.; Crowe, E.; Denis, K.; Eimer, J.; Essinger-Hileman, T.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wollack, E.; Zeng, L.

    2014-01-01

    We have designed, produced, and tested 40 GHz feedhorn-coupled transition-edge sensor (TES) detectors using microstrip circuits on monocrystalline silicon dielectric substrates. Symmetric planar orthomode transducers (OMTs) couple two independent orthogonal linear polarization modes from feedhorns onto planar transmission lines over a broad (60 %) bandwidth. The 33-43 GHz band is defined by a combination of on-chip planar filtering and effective integrated shielding of stray light (blue leaks). The integrated stray light control is achieved over a frequency range of > 10:1. The monocrystalline silicon substrate provides a highly uniform dielectric constant that results in reliable circuit uniformity and performance. In addition, the monocrystalline silicon enables high efficiency due to its extremely low loss. The efficiency of the devices, including all integrated filtering, has been measured to be ~90 % for each polarization. The Cosmology Large Angular Scale Surveyor (CLASS) cosmic microwave background B-mode experiment is employing a 36-element focal plane of these detectors, along with similar detectors at higher frequencies, to map a large fraction of the sky.

  19. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  20. Optical electrocorticogram (OECoG) using wide-field calcium imaging reveals the divergence of neuronal and glial activity during acute rodent seizures.

    Science.gov (United States)

    Daniel, Andy G S; Laffont, Philippe; Zhao, Mingrui; Ma, Hongtao; Schwartz, Theodore H

    2015-08-01

    The role of glia in epilepsy has been widely debated. Using in vivo bulk loading of calcium dyes, we imaged neuronal and glial activity in an acute pharmacologic rodent model of neocortical seizures. Optical calcium-based ECoG maps revealed that neuronal waves propagated rapidly and remained mostly confined to the seizure focus. Glial waves were triggered by ictal onset but propagated slowly in a stereotypical fashion far beyond the seizure focus. Although related at their onset, the divergence of these two phenomena during seizure evolution calls into question their interdependence and the criticality of the role of glia in seizure onset and neurovascular coupling. This article is part of a Special Issue entitled "Status Epilepticus".

  1. Fluorescent imaging of antigen released by a skin-invading helminth reveals differential uptake and activation profiles by antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Ross A Paveley

    Full Text Available Infection of the mammalian host by the parasitic helminth Schistosoma mansoni is accompanied by the release of excretory/secretory molecules (ES from cercariae which aid penetration of the skin. These ES molecules are potent stimulants of innate immune cells leading to activation of acquired immunity. At present however, it is not known which cells take up parasite antigen, nor its intracellular fate. Here, we develop a technique to label live infectious cercariae which permits the imaging of released antigens into macrophages (MPhi and dendritic cells (DCs both in vitro and in vivo. The amine reactive tracer CFDA-SE was used to efficiently label the acetabular gland contents of cercariae which are released upon skin penetration. These ES products, termed '0-3hRP', were phagocytosed by MHC-II(+ cells in a Ca(+ and actin-dependent manner. Imaging of a labelled cercaria as it penetrates the host skin over 2 hours reveals the progressive release of ES material. Recovery of cells from the skin shows that CFDA-SE labelled ES was initially (3 hrs taken up by Gr1(+MHC-II(- neutrophils, followed (24 hrs by skin-derived F4/80(+MHC-II(lo MPhi and CD11c(+ MHC-II(hi DC. Subsequently (48 hrs, MPhi and DC positive for CFDA-SE were detected in the skin-draining lymph nodes reflecting the time taken for antigen-laden cells to reach sites of immune priming. Comparison of in vitro-derived MPhi and DC revealed that MPhi were slower to process 0-3hRP, released higher quantities of IL-10, and expressed a greater quantity of arginase-1 transcript. Combined, our observations on differential uptake of cercarial ES by MPhi and DC suggest the development of a dynamic but ultimately balanced response that can be potentially pushed towards immune priming (via DC or immune regulation (via MPhi.

  2. Lines of Evidence–Incremental Markings in Molar Enamel of Soay Sheep as Revealed by a Fluorochrome Labeling and Backscattered Electron Imaging Study

    Science.gov (United States)

    Kierdorf, Horst; Kierdorf, Uwe; Frölich, Kai; Witzel, Carsten

    2013-01-01

    We studied the structural characteristics and periodicities of regular incremental markings in sheep enamel using fluorochrome injections for vital labeling of forming enamel and backscattered electron imaging in the scanning electron microscope. Microscopic analysis of mandibular first molars revealed the presence of incremental markings with a daily periodicity (laminations) that indicated successive positions of the forming front of interprismatic enamel. In addition to the laminations, incremental markings with a sub-daily periodicity were discernible both in interprismatic enamel and in enamel prisms. Five sub-daily increments were present between two consecutive laminations. Backscattered electron imaging revealed that each sub-daily growth increment consisted of a broader and more highly mineralized band and a narrower and less mineralized band (line). The sub-daily markings in the prisms of sheep enamel morphologically resembled the (daily) prisms cross striations seen in primate enamel. Incremental markings with a supra-daily periodicity were not observed in sheep enamel. Based on the periodicity of the incremental markings, maximum mean daily apposition rates of 17.0 µm in buccal enamel and of 13.4 µm in lingual enamel were recorded. Enamel extension rates were also high, with maximum means of 180 µm/day and 217 µm/day in upper crown areas of buccal and lingual enamel, respectively. Values in more cervical crown portions were markedly lower. Our results are in accordance with previous findings in other ungulate species. Using the incremental markings present in primate enamel as a reference could result in a misinterpretation of the incremental markings in ungulate enamel. Thus, the sub-daily growth increments in the prisms of ungulate enamel might be mistaken as prism cross striations with a daily periodicity, and the laminations misidentified as striae of Retzius with a supra-daily periodicity. This would lead to a considerable overestimation of

  3. Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study.

    Science.gov (United States)

    Kierdorf, Horst; Kierdorf, Uwe; Frölich, Kai; Witzel, Carsten

    2013-01-01

    We studied the structural characteristics and periodicities of regular incremental markings in sheep enamel using fluorochrome injections for vital labeling of forming enamel and backscattered electron imaging in the scanning electron microscope. Microscopic analysis of mandibular first molars revealed the presence of incremental markings with a daily periodicity (laminations) that indicated successive positions of the forming front of interprismatic enamel. In addition to the laminations, incremental markings with a sub-daily periodicity were discernible both in interprismatic enamel and in enamel prisms. Five sub-daily increments were present between two consecutive laminations. Backscattered electron imaging revealed that each sub-daily growth increment consisted of a broader and more highly mineralized band and a narrower and less mineralized band (line). The sub-daily markings in the prisms of sheep enamel morphologically resembled the (daily) prisms cross striations seen in primate enamel. Incremental markings with a supra-daily periodicity were not observed in sheep enamel. Based on the periodicity of the incremental markings, maximum mean daily apposition rates of 17.0 µm in buccal enamel and of 13.4 µm in lingual enamel were recorded. Enamel extension rates were also high, with maximum means of 180 µm/day and 217 µm/day in upper crown areas of buccal and lingual enamel, respectively. Values in more cervical crown portions were markedly lower. Our results are in accordance with previous findings in other ungulate species. Using the incremental markings present in primate enamel as a reference could result in a misinterpretation of the incremental markings in ungulate enamel. Thus, the sub-daily growth increments in the prisms of ungulate enamel might be mistaken as prism cross striations with a daily periodicity, and the laminations misidentified as striae of Retzius with a supra-daily periodicity. This would lead to a considerable overestimation of

  4. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Svetlana Uzbekova

    2015-03-01

    Full Text Available In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs. Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments.

  5. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging

    Science.gov (United States)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau

    2016-08-01

    Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm‑1) and lipid (~2845 cm‑1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.

  6. Image processing techniques revealing the relationship between the field-measured ambient gamma dose equivalent rate and geological conditions at a granitic area, Velence Mountains, Hungary

    Science.gov (United States)

    Beltran Torres, Silvana; Petrik, Attila; Zsuzsanna Szabó, Katalin; Jordan, Gyozo; Szabó, Csaba

    2017-04-01

    In order to estimate the annual dose that the public receive from natural radioactivity, the identification of the potential risk areas is required which, in turn, necessitates understanding the relationship between the spatial distribution of natural radioactivity and the geogenic risk factors (e.g., rock types, dykes, faults, soil conditions, etc.). A detailed spatial analysis of ambient gamma dose equivalent rate was performed in the western side of Velence Mountains, the largest outcropped granitic area in Hungary. In order to assess the role of local geology in the spatial distribution of ambient gamma dose rates, field measurements were carried out at ground level at 300 sites along a 250 m x 250 m regular grid in a total surface of 14.7 km2. Digital image processing methods were applied to identify anomalies, heterogeneities and spatial patterns in the measured gamma dose rates, including local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction, second derivative profile curvature, local variability, lineament density, 2D autocorrelation and directional variogram analyses. Statistical inference showed that different gamma dose rate levels are associated with the rock types (i.e., Carboniferous granite, Pleistocene colluvial, proluvial, deluvial sediments and talus, and Pannonian sand and pebble), with the highest level on the Carboniferous granite including outlying values. Moreover, digital image processing revealed that linear gamma dose rate spatial features are parallel to the SW-NE dyke system and possibly to the NW-SE main fractures. The results of this study underline the importance of understanding the role of geogenic risk factors influencing the ambient gamma dose rate received by public. The study also demonstrates the power of the image processing techniques for the identification of spatial pattern in field-measured geogenic radiation.

  7. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  8. Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Anna Ljungdahl

    Full Text Available L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors

  9. RV Ocean Surveyor cruise O1-02-GM: bathymetry and acoustic backscatter of selected areas of the outer continental shelf, northwestern Gulf of Mexico; June 8, through June 28, 2002; Iberia, LA to Iberia, LA

    Science.gov (United States)

    Beaudoin, Jonathan D.; Gardner, James V.; Clarke, John E. Hughes

    2002-01-01

    Following the publication of high-resolution multibeam echosounder (MBES) images and data of the Flower Gardens area of the northwest Gulf of Mexico outer continental shelf (Gardner et al., 1998), the Flower Gardens Banks National Marine Sanctuary (FGBNMS) and the Minerals Management Service (MMS) have been interested in additional MBES data in the area. A coalition of FGBNMS, MMS, and the US Geological Survey (USGS) was formed to map additional areas of interest in the northwestern Gulf of Mexico in 2002. The areas were chosen by personnel of the FGBNMS and the choice of MBES was made by the USGS. MMS and FGBNMS funded the mapping and the USGS organized the ship and multibeam systems through a Cooperative Agreement between the USGS and the University of New Brunswick. The University of New Brunswick (UNB) contracted the RV Ocean Surveyor and the EM1000 MBES system from C&C Technologies, Inc., Lafayette, LA. C&C personnel oversaw data collection whereas UNB personnel conducted the cruise and processed all the data. USGS personnel were responsible for the overall cruise including the final data processing and digital map products.

  10. ESA's billion star surveyor - Flight operations experience from Gaia's first 1.5 Years

    Science.gov (United States)

    Milligan, D.; Rudolph, A.; Whitehead, G.; Loureiro, T.; Serpell, E.; di Marco, F.; Marie, J.; Ecale, E.

    2016-10-01

    This paper details the initial in-flight mission operations experience from ESA's ultra-precise Gaia spacecraft. Tasked with mapping the positions and movements of 1 billion stars to unprecedented precision (to the 10 s of micro-arc-second level, comparable to the width of a coin on the Moon as viewed from Earth). ESA's Science cornerstone mission is expected to also discover and chart 100,000's of new objects including near Earth Asteroids, exoplanets, brown dwarfs and Quasars. After a flawless launch 19 Dec 2013, Gaia was brought the circa 1.5 million kms into L2 via a sequence of technically demanding orbit transfer manoeuvres using onboard thrusters in thrust vectoring mode. Starting in parallel to this, and lasting 6 months, the full spacecraft was commissioned and brought gradually up to the highest operational mode. A number of problems were detected and tackled during commissioning and early routine phase operations. An apparent dimming of the on-board laser and imaged stars, was tracked down to water ice building up inside the telescope enclosure. Also apparent was more straylight than expected. Elsewhere, a micro-propulsion thruster developed unexpected performance levels and a back-up chemical thruster suffered a failed latch valve. These issues, like several others, were dealt with and solved in a series of review meetings, in-orbit special operations and newly developed procedures and on-board software changes. After commissioning Gaia was working so well that it was producing approximately 45% more science data than originally foreseen, primarily since it was able to see stars fainter than required. The mission operations concept was quickly adapted to partially automate ground operations and increase ground station time to allow the full scientific potential of Gaia to be realised.

  11. Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions

    Science.gov (United States)

    Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.

    2016-07-01

    We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.

  12. Observing Magnetic and Current Profiles of the Night side and Terminator of Mars through the Mars Global Surveyor Data

    Science.gov (United States)

    Ponce, N.; Fillingim, M. O.; Fogle, A. L.

    2014-12-01

    Mars has no global magnetic field. Changes in the solar wind and interplanetary magnetic field can impact the upper atmosphere and induce currents in the ionosphere of Mars. During aerobraking maneuvers, Mars Global Surveyor (MGS) made over 1000 passes through Mars's ionosphere. During these passes, MGS measured the local magnetic field. From these measurements, we can determine the ionospheric currents. We restrict our analysis to passes where the radial component of the magnetic field is nearly zero. This restriction, along with some assumptions about the gradients in the magnetic field, allows us to estimate the horizontal ionospheric currents. Additionally, we focus on the magnetic field data acquired over regions above negligible crustal magnetic fields in order to simplify the analysis. At a maximum altitude of 250 km, the Mars map was segmented to 30 by 30 degrees east longitude and latitude for analysis. We find that on the night side, where the solar zenith angle (SZA) lies between 130 to 180 degrees, only 4% of the data (out of a total of 52 profiles) is usable for computing currents, that is the radial component of the magnetic field is nearly zero. We also find that near the terminator, where the SZA lies between 50 to 130 degrees, an average of 2% of the magnetic field profiles (out of 1905) are usable to compute currents. This implies that currents are rarely horizontal (as required by our assumptions) in these regions. The currents computed from these profiles can give us insights into how the changing solar wind and interplanetary magnetic field can affect the upper atmosphere of Mars. For example, induced currents can lead to Joule heating of the atmosphere potentially modifying the neutral dynamics.

  13. Characterization of overwintering sites of the invasive brown marmorated stink bug in natural landscapes using human surveyors and detector canines.

    Directory of Open Access Journals (Sweden)

    Doo-Hyung Lee

    Full Text Available Halyomorpha halys is an invasive species from Asia causing major economic losses in agricultural production in the mid-Atlantic region of the United States. Unlike other crop pests, H. halys is also well-known for nuisance problems in urban, suburban, and rural areas, as massive numbers of adults often invade human-made structures to overwinter inside protected environments. Research efforts have focused on populations in human-made structures while overwintering ecology of H. halys in natural landscapes is virtually unknown. We explored forested landscapes in the mid-Atlantic region to locate and characterize natural overwintering structures used by H. halys. We also evaluated the use of detector canines to locate overwintering H. halys to enhance the accuracy and efficiency of surveys. From these studies, we indentified shared characteristics of overwintering sites used by H. halys in natural landscapes. Overwintering H. halys were recovered from dry crevices in dead, standing trees with thick bark, particularly oak (Quercus spp. and locust (Robinia spp.; these characteristics were shared by 11.8% of all dead trees in surveyed landscapes. For trees with favorable characteristics, we sampled ∼20% of the total above-ground tree area and recovered 5.9 adults per tree from the trees with H. halys present. Two detector canines were successfully trained to recognize and detect the odor of adult H. halys yielding >84% accuracy in laboratory and semi-field trials. Detector canines also found overwintering H. halys under field conditions. In particular, overwintering H. halys were recovered only from dead trees that yielded positive indications from the canines and shared key tree characteristics established by human surveyors. The identified characteristics of natural overwintering sites of H. halys will serve as baseline information to establish crop economic risk levels posed by overwintering populations, and accordingly develop sustainable

  14. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects.

    Science.gov (United States)

    Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique

    2005-06-01

    Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.

  15. Revealing the Nature and Distribution of Metal Carboxylates in Jackson Pollock's Alchemy (1947) by Micro-Attenuated Total Reflection FT-IR Spectroscopic Imaging.

    Science.gov (United States)

    Gabrieli, Francesca; Rosi, Francesca; Vichi, Alessandra; Cartechini, Laura; Pensabene Buemi, Luciano; Kazarian, Sergei G; Miliani, Costanza

    2017-01-17

    Protrusions, efflorescence, delamination, and opacity decreasing are severe degradation phenomena affecting oil paints with zinc oxide, one of the most common white pigments of the 20th century. Responsible for these dramatic alterations are the Zn carboxylates (also known as Zn soaps) originated by the interaction of the pigment and the fatty acids resulting from the hydrolysis of glycerides in the oil binding medium. Despite their widespread occurrence in paintings and the growing interest of the scientific community, the process of formation and evolution of Zn soaps is not yet fully understood. In this study micro-attenuated total reflection (ATR)-FT-IR spectroscopic imaging was required for the investigation at the microscale level of the nature and distribution of Zn soaps in the painting Alchemy by J. Pollock (1947, Peggy Guggenheim Collection, Venice) and for comparison with artificially aged model samples. For both actual samples and models, the role of AlSt(OH)2, a jellifying agent commonly added in 20th century paint tube formulations, proved decisive for the formation of zinc stearate-like (ZnSt2) soaps. It was observed that ZnSt2-like soaps first form around the added AlSt(OH)2 particles and then eventually grow within the whole painting stratigraphy as irregularly shaped particles. In some of the Alchemy samples, and diversely from the models, a peculiar distribution of ZnSt2 aggregates arranged as rounded and larger particles was also documented. Notably, in one of these samples, larger agglomerates of ZnSt2 expanding toward the support of the painting were observed and interpreted as the early stage of the formation of internal protrusions. Micro-ATR-FT-IR spectroscopic imaging, thanks to a very high chemical specificity combined with high spatial resolution, was proved to give valuable information for assessing the conservation state of irreplaceable 20th century oil paintings, revealing the chemical distribution of Zn soaps within the paint

  16. Animal-borne imaging reveals novel insights into the foraging behaviors and Diel activity of a large-bodied apex predator, the American alligator (Alligator mississippiensis.

    Directory of Open Access Journals (Sweden)

    James C Nifong

    Full Text Available Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour as well as the probability of prey-capture success (mean = 0.52 per attack were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals' experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal

  17. Animal-Borne Imaging Reveals Novel Insights into the Foraging Behaviors and Diel Activity of a Large-Bodied Apex Predator, the American Alligator (Alligator mississippiensis)

    Science.gov (United States)

    Nifong, James C.; Nifong, Rachel L.; Silliman, Brian R.; Lowers, Russell H.; Guillette, Louis J.; Ferguson, Jake M.; Welsh, Matthew; Abernathy, Kyler; Marshall, Greg

    2014-01-01

    Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals’ experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal

  18. Phase-contrast magnet resonance imaging reveals regional, transmural, and base-to-apex dispersion of mechanical dysfunction in patients with long QT syndrome.

    Science.gov (United States)

    Brado, Johannes; Dechant, Markus J; Menza, Marius; Komancsek, Adriana; Lang, Corinna N; Bugger, Heiko; Foell, Daniela; Jung, Bernd A; Stiller, Brigitte; Bode, Christoph; Odening, Katja E

    2017-09-01

    Regional dispersion of prolonged repolarization is a hallmark of long QT syndrome (LQTS). We have also revealed regional heterogeneities in mechanical dysfunction in transgenic rabbit models of LQTS. In this clinical pilot study, we investigated whether patients with LQTS exhibit dispersion of mechanical/diastolic dysfunction. Nine pediatric patients with genotyped LQTS (12.2 ± 3.3 years) and 9 age- and sex-matched healthy controls (10.6 ± 1.5 years) were subjected to phase-contrast magnetic resonance imaging to analyze radial (Vr) and longitudinal (Vz) myocardial velocities during systole and diastole in the left ventricle (LV) base, mid, and apex. Twelve-lead electrocardiograms were recorded to assess the heart rate-corrected QT (QTc) interval. The QTc interval was longer in patients with LQTS than in controls (469.1 ± 39.4 ms vs 417.8 ± 24.4 ms; P dispersion of contraction duration was increased in the LV apex (TTPVz_max-min: 38.9 ± 25.5 ms vs 20.2 ± 14.7 ms; P = .07; TTPVz-Vr: -21.7 ± 14.5 ms vs -8.7 ± 11.3 ms; P dispersion is increased in LQTS with an increased regional and transmural dispersion of contraction duration and altered apicobasal longitudinal relaxation sequence. LQTS is an electromechanical disorder, and phase-contrast magnetic resonance imaging Heterogeneity in mechanical dysfunction enables a detailed assessment of mechanical consequences of LQTS. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. A Hot Companion to a Blue Straggler in NGC 188 as Revealed by the Ultra-Violet Imaging Telescope (UVIT) on ASTROSAT

    Science.gov (United States)

    Subramaniam, Annapurni; Sindhu, N.; Tandon, S. N.; Kameswara Rao, N.; Postma, J.; Côté, Patrick; Hutchings, J. B.; Ghosh, S. K.; George, K.; Girish, V.; Mohan, R.; Murthy, J.; Sankarasubramanian, K.; Stalin, C. S.; Sutaria, F.; Mondal, C.; Sahu, S.

    2016-12-01

    We present early results from the Ultra-Violet Imaging Telescope (UVIT) on board the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC 188. Using fluxes measured in four filters in UVIT’s far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, Ultraviolet Imaging Telescope, Ultraviolet Optical Telescope, SPITZER, WISE, and several ground-based facilities. The resulting SED spans a wavelength range of 0.15 μm to 7.8 μm. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6000 ± 150 K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be ˜1.1-1.2 M ⊙. The hotter component, with an estimated temperature of 17,000 ± 500 K, has a radius of ˜ 0.6 R ⊙ and L ˜30 L ⊙. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.

  20. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  1. Live imaging of bioluminescent leptospira interrogans in mice reveals renal colonization as a stealth escape from the blood defenses and antibiotics.

    Directory of Open Access Journals (Sweden)

    Gwenn Ratet

    2014-12-01

    Full Text Available Leptospira (L. interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a

  2. Orientation and direction-of-motion response in the middle temporal visual area (MT of New World owl monkeys as revealed by intrinsic-signal optical imaging

    Directory of Open Access Journals (Sweden)

    Peter M Kaskan

    2010-07-01

    Full Text Available Intrinsic-signal optical imaging was used to evaluate relationships of domains of neurons in visual area MT selective for stimulus orientation and direction of motion. Maps of activation were elicited in MT of owl monkeys by gratings drifting back-and-forth, flashed stationary gratings and unidirectionally drifting fields of random dots. Drifting gratings, typically used to reveal orientation preference domains, contain a motion component that may be represented in MT. Consequently, this stimulus could activate groups of cells responsive to the motion of the grating, its orientation or a combination of both. Domains elicited from either moving or static gratings were remarkably similar, indicating that these groups of cells are responding to orientation, although they may also encode information about motion. To assess the relationship between domains defined by drifting oriented gratings and those responsive to direction of motion, the response to drifting fields of random dots was measured within domains defined from thresholded maps of activation elicited by the drifting gratings. The optical response elicited by drifting fields of random dots was maximal in a direction orthogonal to the map of orientation preference. Thus, neurons in domains selective for stimulus orientation are also selective for motion orthogonal to the preferred stimulus orientation.

  3. Live-cell and super-resolution imaging reveal that the distribution of wall-associated protein A is correlated with the cell chain integrity of Streptococcus mutans.

    Science.gov (United States)

    Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y

    2015-10-01

    Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation.

  4. Time-lapse imaging reveals symmetric neurogenic cell division of GFAP-expressing progenitors for expansion of postnatal dentate granule neurons.

    Directory of Open Access Journals (Sweden)

    Takashi Namba

    Full Text Available Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45% or pairs of neuron-committed cells (45%, whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%. The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors.

  5. Time-lapse imaging reveals symmetric neurogenic cell division of GFAP-expressing progenitors for expansion of postnatal dentate granule neurons.

    Science.gov (United States)

    Namba, Takashi; Mochizuki, Hideki; Suzuki, Ryusuke; Onodera, Masafumi; Yamaguchi, Masahiro; Namiki, Hideo; Shioda, Seiji; Seki, Tatsunori

    2011-01-01

    Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP) and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice) in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45%) or pairs of neuron-committed cells (45%), whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%). The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors.

  6. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis.

    Science.gov (United States)

    Brandl, Maria T; Huynh, Steven

    2014-08-01

    Salmonella enterica has the ability to form biofilms and large aggregates on produce surfaces, including on cilantro leaves. Aggregates of S. enterica serovar Thompson that remained attached to cilantro leaves after rigorous washing and that were present free or bound to dislodged leaf tissue in the wash suspension were observed by confocal microscopy. Measurement of S. Thompson population sizes in the leaf washes by plate counts failed to show an effect of 0.05% Tween 80 on the removal of the pathogen from cilantro leaves 2 and 6 days after inoculation. On the contrary, digital image analysis of micrographs of single cells and aggregates of green fluorescent protein (GFP)-S. Thompson present in cilantro leaf washes revealed that single cells represented 13.7% of the cell assemblages in leaf washes containing Tween 80, versus 9.3% in those without the surfactant. Moreover, Tween 80 decreased the percentage of the total S. Thompson cell population located in aggregates equal to or larger than 64 cells from 9.8% to 4.4% (P Tween 80 showed that the surfactant promoted the dispersal of cells from large aggregates into smaller ones and into single cells (P < 0.05). Our study underlines the importance of investigating bacterial behavior at the scale of single cells in order to uncover trends undetectable at the population level by bacterial plate counts. Such an approach may provide valuable information to devise strategies aimed at enhancing the efficacy of produce sanitization treatments.

  7. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.

  8. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    Full Text Available The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.

  9. The Atlas-3D project - IX. The merger origin of a fast and a slow rotating Early-Type Galaxy revealed with deep optical imaging: first results

    CERN Document Server

    Duc, Pierre-Alain; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M

    2011-01-01

    The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby Early-Type Galaxies (ETGs) selected from the Atlas-3D sample, NGC 680 and NGC 5557. Our ultra deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag/arcsec^2 in the g-band. They reveal very low-surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long tail East of NGC 5557 hosts gas-rich star-forming objects. NGC 680 exhibits two major diffuse plumes apparently connected to extended HI tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galax...

  10. [Imaging].

    Science.gov (United States)

    Chevrot, A; Drapé, J L; Godefroy, D; Dupont, A M; Pessis, E; Sarazin, L; Minoui, A

    1997-01-01

    The panoply of imaging techniques useful in podology is essentially limited to X-rays. Standard "standing" and "lying" X-rays furnish most of the required information. Arthrography is sometimes performed, in particular for trauma or tumour of the ankle. CT scan and MRI make a decisive contribution in difficult cases, notably in fractures and in small fractures without displacement. The two latter techniques are useful in tendon, ligament and muscular disorders, where echography is also informative. Rigorous analysis of radiographies and a good knowledge of foot disorders make these imaging techniques efficacious.

  11. The Evolution of the Surveyor Fan and Channel System, Gulf of Alaska based on Core-Log-Seismic Integration at IODP Site U1417

    Science.gov (United States)

    Morey, S.; Gulick, S. P. S.; Walton, M. A. L.; Swartz, J. M.; Worthington, L. L.; Reece, R.; Somchat, K.; Wagner, P. F.; Jaeger, J. M.; Mix, A. C.

    2015-12-01

    The transition to quasi-periodic ~100-kyr glacial cycles during the mid-Pleistocene transition (MPT, ~1.2 Ma) saw an acceleration of sediment delivery from the St. Elias orogen. Eroded sediment from the St. Elias Mountains is transferred to the deep sea via glacially carved shelf troughs and eventually to the Aleutian Trench via the Surveyor Channel and Fan system. By analyzing the submarine sediments in this Fan, we can evaluate the source-to-sink relationship between the erosion of an orogen and deep-sea deposition and inform our understanding of the impact of climate on local tectonics. Our work seeks to update depositional models of the unique sedimentary sequences, architecture, and origins of the glacially-fed Surveyor Fan using well-log-seismic correlation and new data from Integrated Ocean Drilling Program (IODP) Expedition 341. Exp. 341 results question proposed ages of major fan stratigraphic packages, necessitating this update. We created an integrated velocity model using discrete core-based p-wave velocities acquired at site U1417 from 100-152m, down-hole sonic log velocities from 152m-476m, and then projected the trend of the sonic log velocity from 476m to the base of the borehole. Previous work has interpreted the Sequence I/II boundary (~300 mbsf at U1417) to correspond with the start of the Surveyor Fan and the onset of tidewater glaciation in the late Miocene and the Sequence II/III boundary (~160 mbsf at U1417) to coincide with the intensification of glaciation and subsequent increase in sediment flux at the MPT. Our updated velocity model places these major sequence boundaries at the correct depths in borehole site U1417. We can use the revised velocity model to correlate lithologic, biostratigraphic, paleomagnetic, and logging data from the borehole/cores to seismic data, allowing for construction of a temporal model for the evolution of the Surveyor fan. We can then examine the relationship between glacial-interglacial cycle duration and

  12. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  13. The Behavior of Warm Molecules in Planet-forming Disks and CHESS: a Pathfinder UV Spectrograph for the LUVOIR Surveyor

    Science.gov (United States)

    Hoadley, Keri; France, Kevin

    2017-01-01

    Understanding the evolution of gas over the lifetime of protoplanetary disks provides us with important clues about how planet formation mechanisms drive the diversity of exoplanetary systems observed to date. In the first part of my talk, I will discuss how we use emission line observations of molecular hydrogen (H2) in the far-ultraviolet (far-UV) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to study the warm molecular regions (a disks. We compare the observations with analytic disk models that produce synthetic H2 profiles, and we statistically determine the disk representations that best replicate the data. I will discuss the results of our comparisons and how the modeled radial distributions of H2 in the disk help provide important constraints on the effective density of gas left in the inner disk of protoplanetary disks at various disk evolutionary stages. Finally, I will talk about follow-up studies that look to connect the warm, UV-pumped molecular populations of the inner disk to thermally-excited molecules observed in similar regions of the disk in the near- to mid-IR.In the second part of my talk, I will discuss the observational requirements in the UV and IR band passes to gain further insights into the behavior of the warm, gaseous protoplanetary disk, focusing specifically on a spectrograph concept for the next-generation LUVOIR Surveyor. I will discuss a testbed instrument, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), built as a demonstration of one component of the LUVOIR spectrograph and new technological improvements to UV optical components for the next generation of near- to far-UV astrophysical observatories. CHESS is a far-UV sounding rocket experiment designed to probe the warm and cool atoms and molecules near sites of recent star formation in the local interstellar medium. I will talk about the science goals, design, research and development (R&D) components, and calibration of the CHESS

  14. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible

  15. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study

    Institute of Sci