WorldWideScience

Sample records for survey sdss quasar

  1. The Extremely Luminous Quasar Survey (ELQS) in SDSS and the high-z bright-end Quasar Luminosity Function

    Science.gov (United States)

    Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian

    2018-01-01

    Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i < 18.0) quasars in the redshift range of 2.8<= z<=5.0. It effectively uses Random Forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation.The ELQS is spectroscopically following up ~230 new quasar candidates in an area of ~12000 deg2 in the SDSS footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.

  2. The SDSS view of the Palomar-Green bright quasar survey

    Energy Technology Data Exchange (ETDEWEB)

    Jester, Sebastian; Schneider, Donald P.; Richards, Gordon T.; Green, Richard F.; Schmidt, Maarten; Hall, Patrick B.; Strauss, Michael A.; Vanden Berk, Daniel E.; Stoughton, Chris; Gunn, James E.; Brinkmann, Jon; Kent, Stephen M.; Smith, J.Allyn; Tucker, Douglas, L.; Yanny, Brian; /Fermilab /Penn State U., Astron. Astrophys. /Princeton U.

    2005-02-01

    The author investigates the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, they define the PG's parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows that the effective U-B cut in the PG survey is U-B < -0.71, implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B = -0.7 and the 2-{sigma} error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z < 0.5. There is however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z > 0.5 are inherently rare in bright surveys in any case). They find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.

  3. Mass Functions of the Active Black Holes in Distant Quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the Color-Selected Sample of the SDSS Fall Equatorial Stripe

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Osmer, Patrick S.

    2009-01-01

    We present mass functions of distant actively accreting supermassive black holes residing in luminous quasars discovered in the Large Bright Quasar Survey, the Bright Quasar Survey, and the Fall Equatorial Stripe of the Sloan Digital Sky Survey (SDSS). The quasars cover a wide range of redshifts (0...... functions at similar redshifts based on the SDSS Data Release 3 quasar catalog presented by Vestergaard et al. We see clear evidence of cosmic downsizing in the comoving space density distribution of active black holes in the LBQS sample alone. In forthcoming papers, further analysis, comparison......, and discussion of these mass functions will be made with other existing black hole mass functions, notably that based on the SDSS DR3 quasar catalog. We present the relationships used to estimate the black hole mass based on the MgII emission line; the relations are calibrated to the Hbeta and CIV relations...

  4. SDSS QUASARS IN THE WISE PRELIMINARY DATA RELEASE AND QUASAR CANDIDATE SELECTION WITH OPTICAL/INFRARED COLORS

    International Nuclear Information System (INIS)

    Wu Xuebing; Hao Guoqiang; Jia Zhendong; Zhang Yanxia; Peng Nanbo

    2012-01-01

    We present a catalog of 37,842 quasars in the Sloan Digital Sky Survey (SDSS) Data Release 7, which have counterparts within 6'' in the Wide-field Infrared Survey Explorer (WISE) Preliminary Data Release. The overall WISE detection rate of the SDSS quasars is 86.7%, and it decreases to less than 50.0% when the quasar magnitude is fainter than i = 20.5. We derive the median color-redshift relations based on this SDSS-WISE quasar sample and apply them to estimate the photometric redshifts of the SDSS-WISE quasars. We find that by adding the WISE W1- and W2-band data to the SDSS photometry we can increase the photometric redshift reliability, defined as the percentage of sources with photometric and spectroscopic redshift difference less than 0.2, from 70.3% to 77.2%. We also obtain the samples of WISE-detected normal and late-type stars with SDSS spectroscopy, and present a criterion in the z – W1 versus g – z color-color diagram, z – W1 > 0.66(g – z) + 2.01, to separate quasars from stars. With this criterion we can recover 98.6% of 3089 radio-detected SDSS-WISE quasars with redshifts less than four and overcome the difficulty in selecting quasars with redshifts between 2.2 and 3 from SDSS photometric data alone. We also suggest another criterion involving the WISE color only, W1 – W2 > 0.57, to efficiently separate quasars with redshifts less than 3.2 from stars. In addition, we compile a catalog of 5614 SDSS quasars detected by both WISE and UKIDSS surveys and present their color-redshift relations in the optical and infrared bands. By using the SDSS ugriz, UKIDSS, YJHK, and WISE W1- and W2-band photometric data, we can efficiently select quasar candidates and increase the photometric redshift reliability up to 87.0%. We discuss the implications of our results on the future quasar surveys. An updated SDSS-WISE quasar catalog consisting of 101,853 quasars with the recently released WISE all-sky data is also provided.

  5. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.; Ho, Shirley [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Myers, Adam D. [Department of Astronomy, MC-221, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Blgd 510, Upton, NY 11375 (United States); Yeche, Christophe; Aubourg, Eric [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Strauss, Michael A.; Lee, Khee-Gan [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bovy, Jo; Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Croft, Rupert A. C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Da Silva, Robert [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, UT (United States); Eisenstein, Daniel J. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hennawi, Joseph F., E-mail: npross@lbl.gov [Max-Planck-Institut fuer Astronomie, Konigstuhl 17, 69117 Heidelberg (Germany); and others

    2012-03-01

    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations

  6. THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSO QUASAR TARGETING CATALOG

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Hennawi, Joseph F.; Myers, Adam D.; Kirkpatrick, Jessica A.; Schlegel, David J.; Ross, Nicholas P.; Sheldon, Erin S.; McGreer, Ian D.; Schneider, Donald P.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 ∼ 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg 2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.

  7. Think Outside The Color Box: Probabilistic Target Selection And The SDSS-XDQSO Quasar Targeting Catalog

    International Nuclear Information System (INIS)

    Bovy, J.; Sheldon, E.; Hennawi, J.F.; Hogg, D.W.; Myers, A.D.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 ∼ 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg 2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.

  8. A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING

    International Nuclear Information System (INIS)

    MacLeod, Chelsea L.; Ivezić, Željko; Becker, Andrew C.; Anderson, Scott F.; Sesar, Branimir; De Vries, Wim; Kochanek, Christopher S.; Kelly, Brandon C.; Lupton, Robert H.; Hall, Patrick B.; Richards, Gordon T.; Schneider, Donald P.

    2012-01-01

    We provide a quantitative description and statistical interpretation of the optical continuum variability of quasars. The Sloan Digital Sky Survey (SDSS) has obtained repeated imaging in five UV-to-IR photometric bands for 33,881 spectroscopically confirmed quasars. About 10,000 quasars have an average of 60 observations in each band obtained over a decade along Stripe 82 (S82), whereas the remaining ∼25,000 have 2-3 observations due to scan overlaps. The observed time lags span the range from a day to almost 10 years, and constrain quasar variability at rest-frame time lags of up to 4 years, and at rest-frame wavelengths from 1000 Å to 6000 Å. We publicly release a user-friendly catalog of quasars from the SDSS Data Release 7 that have been observed at least twice in SDSS or once in both SDSS and the Palomar Observatory Sky Survey, and we use it to analyze the ensemble properties of quasar variability. Based on a damped random walk (DRW) model defined by a characteristic timescale and an asymptotic variability amplitude that scale with the luminosity, black hole mass, and rest wavelength for individual quasars calibrated in S82, we can fully explain the ensemble variability statistics of the non-S82 quasars such as the exponential distribution of large magnitude changes. All available data are consistent with the DRW model as a viable description of the optical continuum variability of quasars on timescales of ∼5-2000 days in the rest frame. We use these models to predict the incidence of quasar contamination in transient surveys such as those from the Palomar Transient Factory and Large Synoptic Survey Telescope.

  9. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    International Nuclear Information System (INIS)

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-01-01

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h –1 Mpc p –1 Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing ∼48, 000 quasars in the redshift range 0.4 ∼ sat = (7.4 ± 1.4) × 10 –4 , be satellites in dark matter halos. At z ∼ 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M cen = 4.1 +0.3 –0.4 × 10 12 h –1 M ☉ and M sat = 3.6 +0.8 –1.0 × 10 14 h –1 M ☉ , respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos—the inferred median mass of halos hosting central quasars at z ∼ 3.2 is M cen = 14.1 +5.8 –6.9 × 10 12 h –1 M ☉ . The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f q = 7.3 +0.6 –1.5 × 10 –4 at z ∼ 1.4 and f q = 8.6 +20.4 –7.2 × 10 –2 at z ∼ 3.2. We discuss the implications of our results for quasar evolution and quasar-galaxy co-evolution.

  10. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-01-01

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M 1450 2 , then extend to lower luminosities (M 1450 2 of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 1450 * ∼-27). The bright-end slope is steep (β ∼ 1450 < –26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate ∼30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  11. VizieR Online Data Catalog: Quasars narrow absorption lines from SDSS (Chen+, 2015)

    Science.gov (United States)

    Chen, Z.-F.; Gu, Q.-S.; Chen, Y.-M.; Cao, Y.

    2017-11-01

    The Baryon Oscillation Spectroscopic Survey (BOSS: Eisenstein et al. 2011AJ....142...72E; Paris et al. 2012, Cat. VII/269) is the main dark-time legacy survey of the third stage of the SDSS, which used the same 2.5-m telescope (Gunn et al. 2006AJ....131.2332G; Ross et al. 2012, J/ApJS/199/3) as the first and second stages of the SDSS (hereafter SDSS-I/II). SDSS-I/II spectra have a wavelength coverage from 3800-9200Å with a spectral resolution of 1800-2200 (e.g. York et al. 2000AJ....120.1579Y). BOSS spectra span a range from 3600-10500Å at a resolution of 1300-2500 (Paris et al. 2012, Cat. VII/269). During the first two years, BOSS detected 87822 quasars over an area of 3275 deg2, including 7932 quasars that were observed by SDSS-I/II as well. Quasars observed by both SDSS-I/II and BOSS provide a remarkable chance to study the variabilities of absorption lines in a large population. Throughout this work, we take the quasar emission redshifts provided by Hewett & Wild (2010, J/MNRAS/405/2302, http://das.sdss.org/va/HewettWilddr7qso_newz/) directly. (2 data files).

  12. NEAR-INFRARED PHOTOMETRIC PROPERTIES OF 130,000 QUASARS: AN SDSS-UKIDSS-MATCHED CATALOG

    International Nuclear Information System (INIS)

    Peth, Michael A.; Ross, Nicholas P.; Schneider, Donald P.

    2011-01-01

    We present a catalog of over 130,000 quasar candidates with near-infrared (NIR) photometric properties, with an areal coverage of approximately 1200 deg 2 . This is achieved by matching the Sloan Digital Sky Survey (SDSS) in the optical ugriz bands to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) in the NIR YJHK bands. We match the ∼1 million SDSS DR6 Photometric Quasar catalog to Data Release 3 of the UKIDSS LAS (ULAS) and produce a catalog with 130,827 objects with detections in one or more NIR bands, of which 74,351 objects have optical and K-band detections and 42,133 objects have the full nine-band photometry. The majority (∼85%) of the SDSS objects were not matched simply because these were not covered by the ULAS. The positional standard deviation of the SDSS Quasar to ULAS matches is δ R.A. = 0.''1370 and δ decl. = 0.''1314. We find an absolute systematic astrometric offset between the SDSS Quasar catalog and the UKIDSS LAS, of |R.A. offset | = 0.''025 and |decl. offset | = 0.''040; we suggest the nature of this offset to be due to the matching of catalog, rather than image, level data. Our matched catalog has a surface density of ∼53 deg -2 for K ≤ 18.27 objects; tests using our matched catalog, along with data from the UKIDSS Deep Extragalactic Survey, imply that our limiting magnitude is i ∼ 20.6. Color-redshift diagrams, for the optical and NIR, show a close agreement between our matched catalog and recent quasar color models at redshift z ∼ 4.6, and very high, z > 5.7, redshift previously discovered quasars.

  13. RADIO-SELECTED QUASARS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Helfand, David J.; White, Richard L.

    2009-01-01

    We have conducted a pilot survey for z > 3.5 quasars by combining the FIRST radio survey with the Sloan Digital Sky Survey (SDSS). While SDSS already targets FIRST sources for spectroscopy as quasar candidates, our survey includes fainter quasars and greatly improves the discovery rate by using strict astrometric criteria for matching the radio and optical positions. Our method allows for selection of high-redshift quasars with less color bias than with optical selection, as using radio selection essentially eliminates stellar contamination. We report the results of spectroscopy for 45 candidates, including 29 quasars in the range 0.37 3.5. We compare quasars selected using radio and optical criteria, and find that radio-selected quasars have a much higher fraction of moderately reddened objects. We derive a radio-loud quasar luminosity function at 3.5 < z < 4.0, and find that it is in good agreement with expectations from prior SDSS results.

  14. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Balokovic, M. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smolcic, V. [Argelander-Institut fuer Astronomie, Auf dem Hugel 71, D-53121 Bonn (Germany); Ivezic, Z. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Zamorani, G. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Schinnerer, E. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 {+-} 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  15. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    International Nuclear Information System (INIS)

    Baloković, M.; Smolčić, V.; Ivezić, Ž.; Zamorani, G.; Schinnerer, E.; Kelly, B. C.

    2012-01-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 ± 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  16. Mock Quasar-Lyman-α forest data-sets for the SDSS-III Baryon Oscillation Spectroscopic Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Julian E.; Busca, Nicolas G. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Bailey, Stephen; Font-Ribera, Andreu; Schlegel, David [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States); Pieri, Matthew M. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 38 rue Frédéric Joliot-Curie, 13388, Marseille (France); Miralda-Escudé, Jordi; Gontcho, Satya Gontcho A. [Institut de Ciències del Cosmos, Universitat de Barcelona/IEEC, 1 Martí i Franquès, Barcelona 08028, Catalonia (Spain); Palanque-Delabrouille, Nathalie; Rich, James; Goff, Jean Marc Le [CEA, Centre de Saclay, Irfu/SPP, D128, F-91191 Gif-sur-Yvette (France); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, 115 S 100 E, RM 201, Salt Lake City, UT 84112 (United States); Feng, Yu; Ho, Shirley [McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 (United States); Ge, Jian [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Noterdaeme, Pasquier; Pâris, Isabelle [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Rossi, Graziano, E-mail: bautista@astro.utah.edu [Department of Astronomy and Space Science, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747 (Korea, Republic of)

    2015-05-01

    We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Lyα forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Lyα forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at the time of the Data Release 11.

  17. The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey: Quasar Properties from Data Release Two and Three

    Science.gov (United States)

    Dong, X. Y.; Wu, Xue-Bing; Ai, Y. L.; Yang, J. Y.; Yang, Q.; Wang, F.; Zhang, Y. X.; Luo, A. L.; Xu, H.; Yuan, H. L.; Zhang, J. N.; Wang, M. X.; Wang, L. L.; Li, Y. B.; Zuo, F.; Hou, W.; Guo, Y. X.; Kong, X.; Chen, X. Y.; Wu, Y.; Yang, H. F.; Yang, M.

    2018-05-01

    This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to Hα, Hβ, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.

  18. Counts of low-Redshift SDSS quasar candidates

    International Nuclear Information System (INIS)

    Zeljko Ivezic

    2004-01-01

    We analyze the counts of low-redshift quasar candidates selected using nine-epoch SDSS imaging data. The co-added catalogs are more than 1 mag deeper than single-epoch SDSS data, and allow the selection of low-redshift quasar candidates using UV-excess and also variability techniques. The counts of selected candidates are robustly determined down to g = 21.5. This is about 2 magnitudes deeper than the position of a change in the slope of the counts reported by Boyle (and others) (1990, 2000) for a sample selected by UV-excess, and questioned by Hawkins and Veron (1995), who utilized a variability-selected sample. Using SDSS data, we confirm a change in the slope of the counts for both UV-excess and variability selected samples, providing strong support for the Boyle (and others) results

  19. The Sloan Digital Sky Survey Quasar Catalog V. Seventh Data Release

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Donald P.; /Penn State U.; Richards, Gordon T.; /Drexel U.; Hall, Patrick B.; /York U., Canada; Strauss, Michael A.; /Princeton U. Observ.; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Boroson, Todd A.; /Kitt Peak Observ.; Ross, Nicholas P.; /Penn State U.; Shen, Yue; /Princeton U. Observ.; Brandt, W.N.; /Penn State U.; Fan, Xiaohui; /Arizona U., Astron. Dept. - Steward Observ.; Inada, Naohisa; /Wako, RIKEN /Southampton U. /Heidelberg, Max Planck Inst. Astron.

    2010-04-01

    We present the fifth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog, which is based upon the SDSS Seventh Data Release. The catalog, which contains 105,783 spectroscopically confirmed quasars, represents the conclusion of the SDSS-I and SDSS-II quasar survey. The catalog consists of the SDSS objects that have luminosities larger than M{sub i} = -22.0 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or have interesting/complex absorption features, are fainter than i {approx} 15.0, and have highly reliable redshifts. The catalog covers an area of {approx} 9380 deg{sup 2}. The quasar redshifts range from 0.065 to 5.46, with a median value of 1.49; the catalog includes 1248 quasars at redshifts greater than 4, of which 56 are at redshifts greater than 5. The catalog contains 9210 quasars with i < 18; slightly over half of the entries have i < 19. For each object the catalog presents positions accurate to better than 0.1-inch rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 {angstrom} at a spectral resolution of {approx_equal} 2000; the spectra can be retrieved from the SDSS public database using the information provided in the catalog. Over 96% of the objects in the catalog were discovered by the SDSS. We also include a supplemental list of an additional 207 quasars with SDSS spectra whose archive photometric information is incomplete.

  20. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release

    Science.gov (United States)

    Pâris, Isabelle; Petitjean, Patrick; Aubourg, Éric; Myers, Adam D.; Streblyanska, Alina; Lyke, Brad W.; Anderson, Scott F.; Armengaud, Éric; Bautista, Julian; Blanton, Michael R.; Blomqvist, Michael; Brinkmann, Jonathan; Brownstein, Joel R.; Brandt, William Nielsen; Burtin, Étienne; Dawson, Kyle; de la Torre, Sylvain; Georgakakis, Antonis; Gil-Marín, Héctor; Green, Paul J.; Hall, Patrick B.; Kneib, Jean-Paul; LaMassa, Stephanie M.; Le Goff, Jean-Marc; MacLeod, Chelsea; Mariappan, Vivek; McGreer, Ian D.; Merloni, Andrea; Noterdaeme, Pasquier; Palanque-Delabrouille, Nathalie; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tojeiro, Rita; Weaver, Benjamin A.; Weijmans, Anne-Marie; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo

    2018-05-01

    We present the data release 14 Quasar catalog (DR14Q) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). This catalog includes all SDSS-IV/eBOSS objects that were spectroscopically targeted as quasar candidates and that are confirmed as quasars via a new automated procedure combined with a partial visual inspection of spectra, have luminosities Mi [z = 2] < -20.5 (in a Λ CDM cosmology with H0 = 70 km s-1 Mpc-1, Ω M =0.3, and Ω Λ = 0.7), and either display at least one emission line with a full width at half maximum larger than 500 km s-1 or, if not, have interesting/complex absorption features. The catalog also includes previously spectroscopically-confirmed quasars from SDSS-I, II, and III. The catalog contains 526 356 quasars (144 046 are new discoveries since the beginning of SDSS-IV) detected over 9376 deg2 (2044 deg2 having new spectroscopic data available) with robust identification and redshift measured by a combination of principal component eigenspectra. The catalog is estimated to have about 0.5% contamination. Redshifts are provided for the Mg II emission line. The catalog identifies 21 877 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3610-10 140 Å at a spectral resolution in the range 1300 < R < 2500, can be retrieved from the SDSS Science Archiver Server. http://www.sdss.org/dr14/algorithms/qso_catalog

  1. The optical, infrared and radio properties of extragalactic sources observed by SDSS, 2mass and first surveys

    International Nuclear Information System (INIS)

    Z. Ivezic et al.

    2002-01-01

    We positionally match sources observed by the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS), and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. Practically all 2MASS sources are matched to an SDSS source within 2 arcsec; ∼ 11% of them are optically resolved galaxies and the rest are dominated by stars. About 1/3 of FIRST sources are matched to an SDSS source within 2 arcsec; ∼ 80% of these are galaxies and the rest are dominated by quasars. Based on these results, we project that by the completion of these surveys the matched samples will include about 10 7 and 10 6 galaxies observed by both SDSS and 2MASS, and about 250,000 galaxies and 50,000 quasars observed by both SDSS and FIRST. Here we present a preliminary analysis of the optical, infrared and radio properties for the extragalactic sources from the matched samples. In particular, we find that the fraction of quasars with stellar colors missed by the SDSS spectroscopic survey is probably not larger than ∼ 10%, and that the optical colors of radio-loud quasars are ∼ 0.05 mag. redder (with 4σ significance) than the colors of radio-quiet quasars

  2. A Survey of z>5.7 Quasars in the Sloan Digital Sky Survey IV

    DEFF Research Database (Denmark)

    Fan, Xiaohui; Strauss, Michael A.; Richards, Gordon T.

    2005-01-01

    We present the discovery of seven quasars at z>5.7, selected from ~2000 deg^2 of multicolor imaging data of the Sloan Digital Sky Survey (SDSS). The new quasars have redshifts z from 5.79 to 6.13. Five are selected as part of a complete flux-limited sample in the SDSS Northern Galactic Cap; two...

  3. SDSS J1254+0846: A BINARY QUASAR CAUGHT IN THE ACT OF MERGING

    International Nuclear Information System (INIS)

    Green, Paul J.; Cox, Thomas J.; Aldcroft, Thomas L.; Myers, Adam D.; Barkhouse, Wayne A.; Mulchaey, John S.; Bennert, Vardha N.

    2010-01-01

    We present the first luminous, spatially resolved binary quasar that clearly inhabits an ongoing galaxy merger. SDSS J125455.09+084653.9 and SDSS J125454.87+084652.1 (SDSS J1254+0846 hereafter) are two luminous z = 0.44 radio-quiet quasars, with a radial velocity difference of just 215 km s -1 , separated on the sky by 21 kpc in a disturbed host galaxy merger showing obvious tidal tails. The pair was targeted as part of a complete sample of binary quasar candidates with small transverse separations drawn from SDSS DR6 photometry. We present follow-up optical imaging which shows broad, symmetrical tidal arm features spanning some 75 kpc at the quasars' redshift. Previously, the triggering of two quasars during a merger had only been hypothesized but our observations provide strong evidence of such an event. SDSS J1254+0846, as a face-on, pre-coalescence merger hosting two luminous quasars separated by a few dozen kpc, provides a unique opportunity to probe quasar activity in an ongoing gas-rich merger. Numerical modeling suggests that the system consists of two massive disk galaxies prograde to their mutual orbit, caught during the first passage of an active merger. This demonstrates rapid black hole growth during the early stages of a merger between galaxies with pre-existing bulges. Neither of the two luminous nuclei show significant intrinsic absorption by gas or dust in our optical or X-ray observations, illustrating that not all merging quasars will be in an obscured, ultraluminous phase. We find that the Eddington ratio for the fainter component B is rather normal, while for the A component L/L Edd is quite (>3σ) high compared to quasars of similar luminosity and redshift, possibly evidence for strong merger-triggered accretion. More such mergers should be identifiable at higher redshifts using binary quasars as tracers.

  4. A search for optical variability of type 2 quasars in SDSS stripe 82

    International Nuclear Information System (INIS)

    Barth, Aaron J.; Carson, Daniel J.; Voevodkin, Alexey; Woźniak, Przemysław

    2014-01-01

    Hundreds of Type 2 quasars have been identified in Sloan Digital Sky Survey (SDSS) data, and there is substantial evidence that they are generally galaxies with highly obscured central engines, in accord with unified models for active galactic nuclei (AGNs). A straightforward expectation of unified models is that highly obscured Type 2 AGNs should show little or no optical variability on timescales of days to years. As a test of this prediction, we have carried out a search for variability in Type 2 quasars in SDSS Stripe 82 using difference-imaging photometry. Starting with the Type 2 AGN catalogs of Zakamska et al. and Reyes et al., we find evidence of significant g-band variability in 17 out of 173 objects for which light curves could be measured from the Stripe 82 data. To determine the nature of this variability, we obtained new Keck spectropolarimetry observations for seven of these variable AGNs. The Keck data show that these objects have low continuum polarizations (p ≲ 1% in most cases) and all seven have broad Hα and/or Mg II emission lines in their total (unpolarized) spectra, indicating that they should actually be classified as Type 1 AGNs. We conclude that the primary reason variability is found in the SDSS-selected Type 2 AGN samples is that these samples contain a small fraction of Type 1 AGNs as contaminants, and it is not necessary to invoke more exotic possible explanations such as a population of 'naked' or unobscured Type 2 quasars. Aside from misclassified Type 1 objects, the Type 2 quasars do not generally show detectable optical variability over the duration of the Stripe 82 survey.

  5. Space Density Of Optically-Selected Type II Quasars From The SDSS

    Science.gov (United States)

    Reyes, Reinabelle; Zakamska, N. L.; Strauss, M. A.; Green, J.; Krolik, J. H.; Shen, Y.; Richards, G. T.

    2007-12-01

    Type II quasars are luminous Active Galactic Nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this poster, we present a catalog of 887 type II quasars with redshifts z<0.83 from the Sloan Digital Sky Survey (SDSS), selected based on their emission lines, and derive the 1/Vmax [OIII] 5007 luminosity function from this sample. Since some objects may not be included in the sample because they lack strong emission lines, the derived luminosity function is only a lower limit. We also derive the [OIII] 5007 luminosity function for a sample of type I (broad-line) quasars in the same redshift range. Taking [OIII] 5007 luminosity as a tracer of intrinsic luminosity in both type I and type II quasars, we obtain lower limits to the type II quasar fraction as a function of [OIII] 5007 luminosity, from L[OIII] = 108.3 to 1010 Lsun, which roughly correspond to bolometric luminosities of 1044 to 1046 erg/s.

  6. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. V. FINAL CATALOG FROM THE SEVENTH DATA RELEASE

    International Nuclear Information System (INIS)

    Inada, Naohisa; Oguri, Masamune; Kayo, Issha; Fukugita, Masataka; Shin, Min-Su; Strauss, Michael A.; Bahcall, Neta A.; Morokuma, Tomoki; Rusu, Cristian E.; Kochanek, Christopher S.; Richards, Gordon T.; Schneider, Donald P.; York, Donald G.; Frieman, Joshua A.; Hall, Patrick B.; White, Richard L.

    2012-01-01

    We present the final statistical sample of lensed quasars from the Sloan Digital Sky Survey (SDSS) Quasar Lens Search (SQLS). The well-defined statistical lens sample consists of 26 lensed quasars brighter than i = 19.1 and in the redshift range of 0.6 < z < 2.2 selected from 50,826 spectroscopically confirmed quasars in the SDSS Data Release 7 (DR7), where we restrict the image separation range to 1'' < θ < 20'' and the i-band magnitude differences in two images to be smaller than 1.25 mag. The SDSS DR7 quasar catalog also contains 36 additional lenses identified with various techniques. In addition to these lensed quasars, we have identified 81 pairs of quasars from follow-up spectroscopy, 26 of which are physically associated binary quasars. The statistical lens sample covers a wide range of image separations, redshifts, and magnitudes, and therefore is suitable for systematic studies of cosmological parameters and surveys of the structure and evolution of galaxies and quasars.

  7. THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III

    International Nuclear Information System (INIS)

    Ruan, John J.; Anderson, Scott F.; Davenport, James R. A.; Green, Paul J.; Morganson, Eric; Eracleous, Michael; Brandt, William N.; Myers, Adam D.; Badenes, Carles; Bershady, Matthew A.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick; Dawson, Kyle S.; Heckman, Timothy M.; Isler, Jedidah C.; Kneib, Jean-Paul; MacLeod, Chelsea L.; Ross, Nicholas P.; Paris, Isabelle

    2016-01-01

    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ∼220,000 optically variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ∼320 deg 2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population based on their H α emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ∼15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.

  8. THE TIME-DOMAIN SPECTROSCOPIC SURVEY: UNDERSTANDING THE OPTICALLY VARIABLE SKY WITH SEQUELS IN SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Davenport, James R. A. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Green, Paul J.; Morganson, Eric [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Eracleous, Michael; Brandt, William N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Myers, Adam D. [Department of Physics and Astronomy 3905, University of Wyoming, 1000 E. University, Laramie, WY 82071 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nick [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Heckman, Timothy M. [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Isler, Jedidah C. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Kneib, Jean-Paul [Laboratoire d’astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); MacLeod, Chelsea L.; Ross, Nicholas P. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Paris, Isabelle, E-mail: jruan@astro.washington.edu [INAF—Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste (Italy); and others

    2016-07-10

    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ∼220,000 optically variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ∼320 deg{sup 2} of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population based on their H α emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ∼15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.

  9. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. IV. STATISTICAL LENS SAMPLE FROM THE FIFTH DATA RELEASE

    International Nuclear Information System (INIS)

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Fukugita, Masataka; Strauss, Michael A.; Gott, J. Richard; Hennawi, Joseph F.; Morokuma, Tomoki; Becker, Robert H.; Gregg, Michael D.; White, Richard L.; Kochanek, Christopher S.; Chiu, Kuenley; Johnston, David E.; Clocchiatti, Alejandro; Richards, Gordon T.; Schneider, Donald P.; Frieman, Joshua A.

    2010-01-01

    We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i Λ = 0.84 +0.06 -0.08 (stat.) +0.09 -0.07 (syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of seven binary quasars with separations ranging from 1.''1 to 16.''6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.

  10. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    International Nuclear Information System (INIS)

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu; Ishizaki, Yoshifumi; Onoue, Masafusa; Toshikawa, Jun; Ishikawa, Shogo; Willott, Chris J.; Im, Myungshin; Shimasaku, Kazuhiro; Ouchi, Masami; Hibon, Pascale

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg 2 utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z B ) and (z B -z R ) colors, where z B and z R are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z R < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). We have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M 1450 = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M 1450 = –22.58 and a narrow Lyα emission with HWHM =427 km s –1 , which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6

  11. The Sloan Digital Sky Survey Quasar Catalog. 4. Fifth Data Release

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Donald P.; Hall, Patrick B.; Richards, Gordon T.; Strauss, Michael A.; Vanden Berk, Daniel E.; Anderson, Scott F.; Brandt, W.N.; Fan, Xiao-Hui; Jester,; Gray, Jim; Gunn, James E.; /Penn State U., Astron. Astrophys. /York U., Canada /Johns Hopkins U. /Princeton U. Observ. /Washington U., Seattle, Astron. Dept. /Arizona

    2007-04-01

    We present the fourth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog contains 77,429 objects; this is an increase of over 30,000 entries since the previous edition. The catalog consists of the objects in the SDSS Fifth Data Release that have luminosities larger than M{sub i} = -22.0 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or have interesting/complex absorption features, are fainter than i {approx} 15.0, and have highly reliable redshifts. The area covered by the catalog is {approx} 5740 deg{sup 2}. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.48; the catalog includes 891 quasars at redshifts greater than four, of which 36 are at redshifts greater than five. Approximately half of the catalog quasars have i < 19; nearly all have i < 21. For each object the catalog presents positions accurate to better than 0.2-minutes rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains basic radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 {angstrom} at a spectral resolution of {approx_equal} 2000; the spectra can be retrieved from the public database using the information provided in the catalog. The average SDSS colors of quasars as a function of redshift, derived from the catalog entries, are presented in tabular form. Approximately 96% of the objects in the catalog were discovered by the SDSS.

  12. Comments on the Redshift Distribution of 44,200 SDSS Quasars: Evidence for Predicted Preferred Redshifts?

    OpenAIRE

    Bell, M. B.

    2004-01-01

    A Sloan Digital Sky Survey (SDSS) source sample containing 44,200 quasar redshifts is examined. Although arguments have been put forth to explain some of the structure observed in the redshift distribution, it is argued here that this structure may just as easily be explained by the presence of previously predicted preferred redshifts.

  13. The Sloan Digital Sky Survey Quasar Catalog. 3. Third data release

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Donald P.; Hall, Patrick B.; Richards, Gordon T.; Vanden Berk, Daniel E.; Anderson, Scott F.; Fan, Xiao-Hui; Jester, Sebastian; Stoughton, Chris; Strauss,; SubbaRao, Mark; Brandt, W.N.; Gunn, James E.; Yanny, Brian; Bahcall, Neta A.; Barentine, J.C.; Blanton, Michael R.; Boroski, William N.; Brewington, Howard J.; Brinkmann, J.; Brunner, Robert; Csabai, Istvan; /Penn State U., Astron. Astrophys. /York U., Canada /Princeton U. Observ. /Washington U., Seattle, Astron. Dept. /Arizona U.,

    2005-03-01

    We present the third edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 46,420 objects in the SDSS Third Data Release that have luminosities larger than M{sub i} = -22 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or are unambiguously broad absorption line quasars, are fainter than i = 15.0, and have highly reliable redshifts. The area covered by the catalog is {approx} 4188 deg{sup 2}. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.47; the high-redshift sample includes 520 quasars at redshifts greater than four, of which 17 are at redshifts greater than five. For each object the catalog presents positions accurate to better than 0.2'' rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 at a spectral resolution of {approx} 2000; the spectra can be retrieved from the public database using the information provided in the catalog. A total of 44,221 objects in the catalog were discovered by the SDSS; 28,400 of the SDSS discoveries are reported here for the first time.

  14. GNIRS-DQS: A Gemini Near Infrared Spectrograph Distant Quasar Survey

    Science.gov (United States)

    Matthews, Brandon; Shemmer, Ohad; Brotherton, Michael S.; Andruchow, Ileana; Boroson, Todd A.; Brandt, W. Niel; Cellone, Sergio; Ferrero, Gabriel; Gallagher, Sarah; Green, Richard F.; Hennawi, Joseph F.; Lira, Paulina; Myers, Adam D.; Plotkin, Richard; Richards, Gordon T.; Runnoe, Jessie; Schneider, Donald P.; Shen, Yue; Strauss, Michael A.; Willott, Chris J.; Wills, Beverley J.

    2018-06-01

    We describe an ongoing three-year Gemini survey, launched in 2017, that will obtain near-infrared spectroscopy of 416 Sloan Digital Sky Survey (SDSS) quasars between redshifts of 1.5 and 3.5 in the ~1.0-2.5 μm band. These spectra will cover critical diagnostic emission lines, such as Mg II, Hβ, and [O III], in each source. This project will more than double the existing inventory of near-infrared spectra of luminous quasars at these redshifts, including the era of fast quasar growth. Additional rest frame ultraviolet coverage of at least the C IV emission line is provided by the SDSS spectrum of each source. We will utilize the spectroscopic inventory to determine the most accurate and precise quasar black hole masses, accretion rates, and redshifts, and use the results to derive improved prescriptions for UV-based proxies for these parameters. The improved redshifts will establish velocities of quasar outflows that interact with the host galaxies, and will help constrain how imprecise distance estimates bias quasar clustering measurements. Furthermore, our measurements will facilitate a more complete understanding of how the rest-frame UV-optical spectral properties depend on redshift and luminosity, and test whether the physical properties of the quasar central engine evolve over cosmic time. We will make our data immediately available to the public, provide reduced spectra via a dedicated website, and produce a catalog of measurements and fundamental quasar properties.

  15. Discovery and first models of the quadruply lensed quasar SDSS J1433+6007

    Science.gov (United States)

    Agnello, Adriano; Grillo, Claudio; Jones, Tucker; Treu, Tommaso; Bonamigo, Mario; Suyu, Sherry H.

    2018-03-01

    We report the discovery of the quadruply lensed quasar SDSS J1433+6007 (RA = 14:33:22.8, Dec. = +60:07:13.44), mined in the SDSS DR12 photometric catalogues using a novel outlier-selection technique, without prior spectroscopic or ultraviolet excess information. Discovery data obtained at the Nordic Optical Telescope (La Palma) show nearly identical quasar spectra at zs = 2.737 ± 0.003 and four quasar images in a fold configuration, one of which sits on a blue arc, with maximum separation 3.6 arcsec. The deflector redshift is zl = 0.407 ± 0.002, from Keck-ESI spectra. We describe the selection procedure, discovery and follow-up, image positions and BVRi magnitudes, and first results and forecasts from lens model fit to the relative image positions.

  16. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanxia; Ma He; Peng Nanbo; Zhao Yongheng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China); Wu Xuebing, E-mail: zyx@bao.ac.cn [Department of Astronomy, Peking University, 100871 Beijing (China)

    2013-08-01

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  17. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    International Nuclear Information System (INIS)

    Zhang Yanxia; Ma He; Peng Nanbo; Zhao Yongheng; Wu Xuebing

    2013-01-01

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  18. The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Naohisa; /Wako, RIKEN /Tokyo U., ICEPP; Oguri, Masamune; /Natl. Astron. Observ. of Japan /Stanford U., Phys. Dept.; Shin, Min-Su; /Michigan U. /Princeton U. Observ.; Kayo, Issha; /Tokyo U., ICRR; Strauss, Michael A.; /Princeton U. Observ.; Hennawi, Joseph F.; /UC, Berkeley /Heidelberg, Max Planck Inst. Astron.; Morokuma, Tomoki; /Natl. Astron. Observ. of Japan; Becker, Robert H.; /LLNL, Livermore /UC, Davis; White, Richard L.; /Baltimore, Space Telescope Sci.; Kochanek, Christopher S.; /Ohio State U.; Gregg, Michael D.; /LLNL, Livermore /UC, Davis /Exeter U.

    2010-05-01

    We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i < 19.1 in the redshift range 0.6 < z < 2.2, where we require the lenses to have image separations of 1 < {theta} < 20 and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be {Omega}{sub {Lambda}} = 0.84{sub -0.08}{sup +0.06}(stat.){sub -0.07}{sup + 0.09}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of 7 binary quasars with separations ranging from 1.1 to 16.6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.

  19. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Anderson, Scott F.; Aihara, Hiroaki; Allende Prieto, Carlos; Arns, James A.; Aubourg, Eric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; Bochanski, John J.; Bolton, Adam S.

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 5 evolved, late-type stars, measuring separate abundances for ∼15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s -1 , ∼24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z ≥ 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.

  20. Discovery of 16 New z  ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinyi; Wu, Xue-Bing; Wang, Feige; Yang, Qian; Yue, Minghao; Wang, Shu; Li, Zefeng [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui; Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Bian, Fuyan [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); McGreer, Ian D.; Green, Richard; Ding, Jiani [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Yi, Weimin [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Dye, Simon [School of Physics and Astronomy, Nottingham University, University Park, Nottingham, NG7 2RD (United Kingdom); Lawrence, Andy [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2017-04-01

    We present initial results from the first systematic survey of luminous z  ∼ 5.5 quasars. Quasars at z ∼ 5.5, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium, quasar evolution, and the early super-massive black hole growth. However, it has been very challenging to select quasars at redshifts 5.3 ≤ z ≤ 5.7 using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distributions. We develop a new selection technique for z ∼ 5.5 quasars based on optical, near-IR, and mid-IR photometric data from Sloan Digital Sky Survey (SDSS), UKIRT InfraRed Deep Sky Surveys—Large Area Survey (ULAS), VISTA Hemisphere Survey (VHS), and Wide Field Infrared Survey Explorer . From our pilot observations in the SDSS-ULAS/VHS area, we have discovered 15 new quasars at 5.3 ≤ z ≤ 5.7 and 6 new lower redshift quasars, with SDSS z band magnitude brighter than 20.5. Including other two z ∼ 5.5 quasars already published in our previous work, we now construct a uniform quasar sample at 5.3 ≤ z ≤ 5.7, with 17 quasars in a ∼4800 square degree survey area. For further application in a larger survey area, we apply our selection pipeline to do a test selection by using the new wide field J-band photometric data from a preliminary version of the UKIRT Hemisphere Survey (UHS). We successfully discover the first UHS selected z ∼ 5.5 quasar.

  1. Discovery of three strongly lensed quasars in the Sloan Digital Sky Survey

    Science.gov (United States)

    Williams, P. R.; Agnello, A.; Treu, T.; Abramson, L. E.; Anguita, T.; Apostolovski, Y.; Chen, G. C.-F.; Fassnacht, C. D.; Hsueh, J. W.; Lemaux, B. C.; Motta, V.; Oldham, L.; Rojas, K.; Rusu, C. E.; Shajib, A. J.; Wang, X.

    2018-06-01

    We present the discovery of three quasar lenses in the Sloan Digital Sky Survey, selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 arcsec on either side of a galaxy, has source and lens redshifts 1.54 and 0.343. Images of J2257+2349 show two point sources separated by 1.67 arcsec on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at zs = 2.10. SDSS J1640+1045 has two quasar spectra at zs = 1.70 and fits to the SDSS and Pan-STARRS images confirm the presence of a galaxy between the two point sources. We observed 56 photometrically selected lens candidates in this follow-up campaign, confirming three new lenses, re-discovering one known lens, and ruling out 36 candidates, with 16 still inconclusive. This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars.

  2. SDSS J2222+2745: A GRAVITATIONALLY LENSED SEXTUPLE QUASAR WITH A MAXIMUM IMAGE SEPARATION OF 15.''1 DISCOVERED IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Dahle, H.; Groeneboom, N.; Gladders, M. D.; Abramson, L. E.; Sharon, K.; Bayliss, M. B.; Wuyts, E.; Koester, B. P.; Brinckmann, T. E.; Kristensen, M. T.; Lindholmer, M. O.; Nielsen, A.; Krogager, J.-K.; Fynbo, J. P. U.

    2013-01-01

    We report the discovery of a unique gravitational lens system, SDSS J2222+2745, producing five spectroscopically confirmed images of a z s = 2.82 quasar lensed by a foreground galaxy cluster at z l = 0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.''1. Both the large image separations and the high image multiplicity are in themselves rare among known lensed quasars, and observing the combination of these two factors is an exceptionally unlikely occurrence in present data sets. This is only the third known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow-up and verification with the 2.56 m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from 2011 September to 2012 September reveals significant variability at the ∼10%-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system, we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at z s = 2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from ∼100 days to ∼6 yr

  3. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems

    Science.gov (United States)

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Allende Prieto, Carlos; Anderson, Scott F.; Arns, James A.; Aubourg, Éric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; Bochanski, John J.; Bolton, Adam S.; Bosman, Casey T.; Bovy, Jo; Brandt, W. N.; Breslauer, Ben; Brewington, Howard J.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burger, Dan; Busca, Nicolas G.; Campbell, Heather; Cargile, Phillip A.; Carithers, William C.; Carlberg, Joleen K.; Carr, Michael A.; Chang, Liang; Chen, Yanmei; Chiappini, Cristina; Comparat, Johan; Connolly, Natalia; Cortes, Marina; Croft, Rupert A. C.; Cunha, Katia; da Costa, Luiz N.; Davenport, James R. A.; Dawson, Kyle; De Lee, Nathan; Porto de Mello, Gustavo F.; de Simoni, Fernando; Dean, Janice; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eiting, Jacob M.; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Femenía Castellá, Bruno; Dutra Ferreira, Leticia; Fitzgerald, Greg; Fleming, Scott W.; Font-Ribera, Andreu; Ford, Eric B.; Frinchaboy, Peter M.; García Pérez, Ana Elia; Gaudi, B. Scott; Ge, Jian; Ghezzi, Luan; Gillespie, Bruce A.; Gilmore, G.; Girardi, Léo; Gott, J. Richard; Gould, Andrew; Grebel, Eva K.; Gunn, James E.; Hamilton, Jean-Christophe; Harding, Paul; Harris, David W.; Hawley, Suzanne L.; Hearty, Frederick R.; Hennawi, Joseph F.; González Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holtzman, Jon A.; Honscheid, Klaus; Inada, Naohisa; Ivans, Inese I.; Jiang, Linhua; Jiang, Peng; Johnson, Jennifer A.; Jordan, Cathy; Jordan, Wendell P.; Kauffmann, Guinevere; Kazin, Eyal; Kirkby, David; Klaene, Mark A.; Knapp, G. R.; Kneib, Jean-Paul; Kochanek, C. S.; Koesterke, Lars; Kollmeier, Juna A.; Kron, Richard G.; Lampeitl, Hubert; Lang, Dustin; Lawler, James E.; Le Goff, Jean-Marc; Lee, Brian L.; Lee, Young Sun; Leisenring, Jarron M.; Lin, Yen-Ting; Liu, Jian; Long, Daniel C.; Loomis, Craig P.; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Ma, Bo; Ma, Zhibo; MacDonald, Nicholas; Mack, Claude; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Maraston, Claudia; Margala, Daniel; Maseman, Paul; Masters, Karen L.; McBride, Cameron K.; McDonald, Patrick; McGreer, Ian D.; McMahon, Richard G.; Mena Requejo, Olga; Ménard, Brice; Miralda-Escudé, Jordi; Morrison, Heather L.; Mullally, Fergal; Muna, Demitri; Murayama, Hitoshi; Myers, Adam D.; Naugle, Tracy; Neto, Angelo Fausti; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; O'Connell, Robert W.; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Daniel J.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pandey, Parul; Parejko, John K.; Pâris, Isabelle; Pellegrini, Paulo; Pepper, Joshua; Percival, Will J.; Petitjean, Patrick; Pfaffenberger, Robert; Pforr, Janine; Phleps, Stefanie; Pichon, Christophe; Pieri, Matthew M.; Prada, Francisco; Price-Whelan, Adrian M.; Raddick, M. Jordan; Ramos, Beatriz H. F.; Reid, I. Neill; Reyle, Celine; Rich, James; Richards, Gordon T.; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Robin, Annie C.; Rocha-Pinto, Helio J.; Rockosi, Constance M.; Roe, Natalie A.; Rollinde, Emmanuel; Ross, Ashley J.; Ross, Nicholas P.; Rossetto, Bruno; Sánchez, Ariel G.; Santiago, Basilio; Sayres, Conor; Schiavon, Ricardo; Schlegel, David J.; Schlesinger, Katharine J.; Schmidt, Sarah J.; Schneider, Donald P.; Sellgren, Kris; Shelden, Alaina; Sheldon, Erin; Shetrone, Matthew; Shu, Yiping; Silverman, John D.; Simmerer, Jennifer; Simmons, Audrey E.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smee, Stephen; Smith, Verne V.; Snedden, Stephanie A.; Stassun, Keivan G.; Steele, Oliver; Steinmetz, Matthias; Stockett, Mark H.; Stollberg, Todd; Strauss, Michael A.; Szalay, Alexander S.; Tanaka, Masayuki; Thakar, Aniruddha R.; Thomas, Daniel; Tinker, Jeremy L.; Tofflemire, Benjamin M.; Tojeiro, Rita; Tremonti, Christy A.; Vargas Magaña, Mariana; Verde, Licia; Vogt, Nicole P.; Wake, David A.; Wan, Xiaoke; Wang, Ji; Weaver, Benjamin A.; White, Martin; White, Simon D. M.; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. Michael; Yanny, Brian; Yasuda, Naoki; Yèche, Christophe; York, Donald G.; Young, Erick; Zasowski, Gail; Zehavi, Idit; Zhao, Bo

    2011-09-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z R = λ/Δλ ≈ 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R ≈ 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 μm data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.

  4. VARIATIONS OF ABSORPTION TROUGHS IN THE QUASAR SDSS J125216.58+052737.7

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Fu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qin, Yi-Ping, E-mail: zhichenfu@126.com [Department of Physics and Telecommunication Engineering, Baise University, Baise 533000 (China)

    2015-01-20

    In this work, we analyze the spectra of quasar J125216.58+052737.7 (z {sub em} = 1.9035) which was observed by SDSS-I/II on 2003 January 30 and by BOSS on 2011 April 2. Both the continuum and the absorption spectra of this quasar show obvious variations between the two epochs. In the SDSS-I/II spectrum, we detect 8 C IV λλ1548,1551 absorption systems, which are detected at z {sub abs} = 1.9098, 1.8948, 1.8841, 1.8770, 1.8732, 1.8635, 1.8154, and 1.7359, respectively, and one Mg II λλ2796,2803 absorption system at z {sub abs} = 0.9912. Among these absorption systems, two C IV λλ1548,1551 absorption systems at z {sub abs} = 1.9098 and 1.7359 and the Mg II λλ2796,2803 absorption system are imprinted on the BOSS spectrum as well, and have similar absorption strengths when compared to those measured from the SDSS-I/II spectrum. Three C IV λλ1548,1551 absorption systems at z {sub abs} = 1.8948, 1.8841, and 1.8770 are also detected in the BOSS spectrum, while their absorption strengths are much weaker than those measured from the SDSS-I/II spectrum; three systems at z {sub abs} = 1.8732, 1.8635, and 1.8154 disappeared from the BOSS spectrum. Based on the variability analysis, the absorption systems that disappeared and weakened are likely to be intrinsic to the quasar. If these intrinsic absorption gases are blown away from the central region of the quasar, with respect to the quasar system, the absorption systems that disappeared would have separation velocities of 3147 kms{sup –1}, 4161 km s{sup –1}, and 9241 km s{sup –1}, while the absorption systems that weakened would have separation velocities of 900 km s{sup –1}, 2011 km s{sup –1}, and 2751 km s{sup –1}. Well-coordinated variations of the six C IV λλ1548,1551 absorption systems that disappeared and weakened, occurring on a timescale of 1026.7 days at the quasar rest frame, can be interpreted as a result of global changes in the ionization state of the absorbing gas.

  5. Broadband Photometric Reverberation Mapping Analysis on SDSS-RM and Stripe 82 Quasars

    Science.gov (United States)

    Zhang, Haowen; Yang, Qian; Wu, Xue-Bing

    2018-02-01

    We modified the broadband photometric reverberation mapping (PRM) code, JAVELIN, and tested the availability to get broad-line region time delays that are consistent with the spectroscopic reverberation mapping (SRM) project SDSS-RM. The broadband light curves of SDSS-RM quasars produced by convolution with the system transmission curves were used in the test. We found that under similar sampling conditions (evenly and frequently sampled), the key factor determining whether the broadband PRM code can yield lags consistent with the SRM project is the flux ratio of the broad emission line to the reference continuum, which is in line with the previous findings. We further found a critical line-to-continuum flux ratio, about 6%, above which the mean of the ratios between the lags from PRM and SRM becomes closer to unity, and the scatter is pronouncedly reduced. We also tested our code on a subset of SDSS Stripe 82 quasars, and found that our program tends to give biased lag estimations due to the observation gaps when the R-L relation prior in Markov Chain Monte Carlo is discarded. The performance of the damped random walk (DRW) model and the power-law (PL) structure function model on broadband PRM were compared. We found that given both SDSS-RM-like or Stripe 82-like light curves, the DRW model performs better in carrying out broadband PRM than the PL model.

  6. Investigations of Short-Timescale Outflow Variability in Quasars of the Sloan Digital Sky Survey

    Science.gov (United States)

    Hemler, Zachary; Grier, Catherine; Brandt, William; Hall, Patrick; Schneider, Donald; Shen, Yue; Fernandez-Trincado, Jose; SDSS-RM Collaboration

    2018-01-01

    Quasar outflows are hypothesized to regulate the growth of a quasar's host galaxy and the supermassive black hole (SMBH) itself. Thus, understanding the physics of these outflows is imperative to understanding galactic evolution. The physical properties of these outflows, such as density, radial distance from the SMBH, and kinetic energy can be investigated by measuring both the strength and shape variability of broad absorption lines (BALs) in quasar spectra. However, the accuracy of physical properties calculated using BAL variability methods is limited by the time resolution of the observations. Recent spectral data from the Sloan Digital Sky Survey Reverberation Mapping program (SDSS-RM) provides a novel opportunity to investigate the short-term BAL variability of many quasars at many epochs. The SDSS-RM program took many epochs of spectra for a large sample of quasars over a period of several years, many of which exhibit BALs. The median rest-frame time resolution of these observations is roughly 2 days, in contrast to previous large-sample studies, which typically have time spacing on the order of hundred of days. We are using the SDSS-RM dataset to conduct a BAL variability study that will further constrain outflow properties and provide significant insights into the variability mechanisms of quasar outflows. We are searching for variability in BALs on timescales of less than 2 days among our sample of 22 quasars and determining whether this behavior is common among quasars. We are also investigating the general short-term (less than 10 days) variability characteristics of the entire sample. We will present preliminary results from this study and the possible implications to our understanding of quasar outflows.

  7. DISCOVERING BRIGHT QUASARS AT INTERMEDIATE REDSHIFTS BASED ON OPTICAL/NEAR-INFRARED COLORS

    International Nuclear Information System (INIS)

    Wu, Xue-Bing; Zuo, Wenwen; Yang, Jinyi; Yang, Qian; Wang, Feige

    2013-01-01

    The identification of quasars at intermediate redshifts (2.2 < z < 3.5) has been inefficient in most previous quasar surveys since the optical colors of quasars are similar to those of stars. The near-IR K-band excess technique has been suggested to overcome this difficulty. Our recent study also proposed to use optical/near-IR colors for selecting z < 4 quasars. To verify the effectiveness of this method, we selected a list of 105 unidentified bright targets with i ≤ 18.5 from the quasar candidates of SDSS DR6 with both SDSS ugriz optical and UKIDSS YJHK near-IR photometric data, which satisfy our proposed Y – K/g – z criterion and have photometric redshifts between 2.2 and 3.5 estimated from the nine-band SDSS-UKIDSS data. We observed 43 targets with the BFOSC instrument on the 2.16 m optical telescope at Xinglong station of the National Astronomical Observatory of China in the spring of 2012. We spectroscopically identified 36 targets as quasars with redshifts between 2.1 and 3.4. The high success rate of discovering these quasars in the SDSS spectroscopic surveyed area further demonstrates the robustness of both the Y – K/g – z selection criterion and the photometric redshift estimation technique. We also used the above criterion to investigate the possible stellar contamination rate among the quasar candidates of SDSS DR6, and found that the rate is much higher when selecting 3 < z < 3.5 quasar candidates than when selecting lower redshift candidates (z < 2.2). The significant improvement in the photometric redshift estimation when using the nine-band SDSS-UKIDSS data over the five-band SDSS data is demonstrated and a catalog of 7727 unidentified quasar candidates in SDSS DR6 selected with optical/near-IR colors and having photometric redshifts between 2.2 and 3.5 is provided. We also tested the Y – K/g – z selection criterion with the recently released SDSS-III/DR9 quasar catalog and found that 96.2% of 17,999 DR9 quasars with UKIDSS Y- and K

  8. Identification of SDSS J141324.27+530527.0 as a New “Changing-look” Quasar with a “Turn-on” Transition

    Science.gov (United States)

    Wang, J.; Xu, D. W.; Wei, J. Y.

    2018-05-01

    We report an identification of SDSS J141324+530527.0 (SBS 1411+533) at z = 0.456344 as a new “changing-look” quasar with a “turn-on” spectral type transition from Type-1.9/2 to Type-1 within a rest-frame timescale of 1–10 yr by a comparison of our new spectroscopic observation and the Sloan Digital Sky Survey (SDSS) archive database. The SDSS DR7 spectrum taken in 2003 is dominated by a starlight emission from host galaxy redward of the Balmer limit, and has a non-detectable broad Hβ line. The new spectrum taken by us on 2017 June 1 and the SDSS DR14 spectrum taken on 2017 May 29 indicate that the object has a typical quasar spectrum with a blue continuum and strong Balmer broad emission lines. In addition, an intermediate spectral type can be identified in the SDSS DR13 spectrum taken in 2015. The invariability of the line wing of Mg II λ2800 emission and timescale argument (the invariability of [O III]λ5007 line blue asymmetry) suggests that a variation of obscuration (an accelerating outflow) is not a favorable scenario. The timescale argument allows us to believe the type transition is possibly caused by either a viscous radial inflow or a disk instability around a ∼ (5{--}9)× {10}7 {M}ȯ black hole.

  9. Discovery of two gravitationally lensed quasars with image separations of 3 arcseconds from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Hennawi, Joseph F.; Richards, Gordon T.; Johnston, David E.; Frieman, Joshua A.; Pindor, Bartosz; Strauss, Michael A.; Brunner, Robert; Becker, Robert H.; Castander, Francisco J.; Gregg, Michael D.; Hall, Patrick B.; Rix, Hans-Walter; Schneider, Donald P.; Bahcall, Neta A.; Brinkmann, Jonathan; York, Donald G.

    2004-11-01

    We report the discovery of two doubly-imaged quasars, SDSS J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and 1.789 and with image separations of 2.86'' and 2.90'', respectively. The objects were selected as lens candidates from the Sloan Digital Sky Survey (SDSS). Based on the identical nature of the spectra of the two quasars in each pair and the identification of the lens galaxies, we conclude that the objects are gravitational lenses. The lenses are complicated; in both systems there are several galaxies in the fields very close to the quasars, in addition to the lens galaxies themselves. The lens modeling implies that these nearby galaxies contribute significantly to the lens potentials. On larger scales, we have detected an enhancement in the galaxy density near SDSS J100128.61+502756.9. The number of lenses with image separation of {approx} 3'' in the SDSS already exceeds the prediction of simple theoretical models based on the standard Lambda-dominated cosmology and observed velocity function of galaxies.

  10. SDSS J090152.05+624342.6: A NEW “OVERLAPPING-TROUGH” FeLoBAL QUASAR AT Z ~ 2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Xu, Dawei; Wei, Jianyan, E-mail: wj@bao.ac.cn [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China); School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing (China)

    2017-11-22

    We here report an identification of SDSS J090152.04+624342.6 as a new “overlapping-trough” iron low-ionization broad absorption line quasar at redshift of z ~ 2.1. No strong variation of the broad absorption lines can be revealed through the two spectra taken by the Sloan Digital Sky Survey with a time interval of ~6 yr. Further optical and infrared spectroscopic study on this object is suggested.

  11. Mass Models and Environment of the New Quadruply Lensed Quasar SDSS J1330+1810

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Blackburne, Jeffrey A.; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Schneider, Donald P.; York, Donald G.

    2008-09-09

    We present the discovery of a new quadruply lensed quasar. The lens system, SDSS J1330+1810 at z{sub s} = 1.393, was identified as a lens candidate from the spectroscopic sample of the Sloan Digital Sky Survey. Optical and near-infrared images clearly show four quasar images with a maximum image separation of 1.76 inch, as well as a bright lensing galaxy. We measure a redshift of the lensing galaxy of z{sub 1} = 0.373 from absorption features in the spectrum. We find a foreground group of galaxies at z = 0.31 centred {approx} 120 inch southwest of the lens system. Simple mass models fit the data quite well, including the flux ratios between images, although the lens galaxy appears to be {approx} 1 mag brighter than expected by the Faber-Jackson relation. Our mass modeling suggests that shear from nearby structure is affecting the lens potential.

  12. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Prieto, Carlos Allende; Anderson, Scott F.; Arns, James A.; Aubourg, Eric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. The Baryon Oscillation Spectroscopic Survey (BOSS) will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation (BAO) feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 5 evolved, late-type stars, measuring separate abundances for ∼ 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s -1 , ∼ 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of January 2011, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z (ge) 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8) in January 2011.

  13. What BOSS has taught us about Quasars.

    Science.gov (United States)

    Ross, Nicholas; SDSS-III BOSS Quasar Science Working Group

    2015-01-01

    This talk presents science highlights from the SDSS-III BOSS Quasar Survey, which has obtained spectra for over 300,000 quasars, 200,000 of which are at redshift z>2. Using this dataset, new measurements of the luminosity function have been made, with the faint end of the luminosity function now measured to z~5. New clustering results from DR12 are presented, and the weak luminosity dependence of quasar clustering at z~0.5 is also discussed.New studies of the broad absorption line (BAL) quasar population have also been performed, with a sample of BAL quasars from the original SDSS being re-observed. These new data have shown the disappearance of CIV BAL troughs and indeed the transformation of BAL QSOs to non-BAL QSOs. BAL disappearance, and emergence, events appear to be extremes of general BAL variability, and have shed light on accretion-disk wind models.We highlight the discovery of new classes of quasars including: a population of broad-line Mg II emitters found in a passive galaxy sample; objects with extremely red optical-to-mid infrared colors; objects with very curious UV line (LyA:NV) ratios and potentially the long-sought after high-redshift Type 2 Quasar population.Finally, we describe two new dedicated programs, one focusing on reverberation mapping, the other on X-ray selected quasars.A full list of papers connected to the BOSS Quasar Survey is given at: http://www.sdss3.org/science/publications.php

  14. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III

    International Nuclear Information System (INIS)

    Alam, Shadab; Albareti, Franco D.; Prieto, Carlos Allende; Anders, F.; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Armengaud, Eric; Aubourg, Éric; Bautista, Julian E.; Bailey, Stephen; Basu, Sarbani; Beaton, Rachael L.; Beers, Timothy C.

    2015-01-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg 2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg 2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg 2 ; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra

  15. The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Science.gov (United States)

    Alam, Shadab; Albareti, Franco D.; Allende Prieto, Carlos; Anders, F.; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Basu, Sarbani; Bautista, Julian E.; Beaton, Rachael L.; Beers, Timothy C.; Bender, Chad F.; Berlind, Andreas A.; Beutler, Florian; Bhardwaj, Vaishali; Bird, Jonathan C.; Bizyaev, Dmitry; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Bochanski, John J.; Bolton, Adam S.; Bovy, Jo; Shelden Bradley, A.; Brandt, W. N.; Brauer, D. E.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burden, Angela; Burtin, Etienne; Busca, Nicolás G.; Cai, Zheng; Capozzi, Diego; Carnero Rosell, Aurelio; Carr, Michael A.; Carrera, Ricardo; Chambers, K. C.; Chaplin, William James; Chen, Yen-Chi; Chiappini, Cristina; Chojnowski, S. Drew; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Covey, Kevin; Croft, Rupert A. C.; Cuesta, Antonio J.; Cunha, Katia; da Costa, Luiz N.; Da Rio, Nicola; Davenport, James R. A.; Dawson, Kyle S.; De Lee, Nathan; Delubac, Timothée; Deshpande, Rohit; Dhital, Saurav; Dutra-Ferreira, Letícia; Dwelly, Tom; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eisenstein, Daniel J.; Ellsworth, Tristan; Elsworth, Yvonne; Epstein, Courtney R.; Eracleous, Michael; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Feuillet, Diane; Filiz Ak, Nurten; Finley, Hayley; Finoguenov, Alexis; Flaherty, Kevin; Fleming, Scott W.; Font-Ribera, Andreu; Foster, Jonathan; Frinchaboy, Peter M.; Galbraith-Frew, J. G.; García, Rafael A.; García-Hernández, D. A.; García Pérez, Ana E.; Gaulme, Patrick; Ge, Jian; Génova-Santos, R.; Georgakakis, A.; Ghezzi, Luan; Gillespie, Bruce A.; Girardi, Léo; Goddard, Daniel; Gontcho, Satya Gontcho A.; González Hernández, Jonay I.; Grebel, Eva K.; Green, Paul J.; Grieb, Jan Niklas; Grieves, Nolan; Gunn, James E.; Guo, Hong; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hayden, Michael; Hearty, Fred R.; Hekker, Saskia; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Honscheid, Klaus; Huber, Daniel; Huehnerhoff, Joseph; Ivans, Inese I.; Jiang, Linhua; Johnson, Jennifer A.; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Klaene, Mark A.; Knapp, Gillian R.; Kneib, Jean-Paul; Koenig, Xavier P.; Lam, Charles R.; Lan, Ting-Wen; Lang, Dustin; Laurent, Pierre; Le Goff, Jean-Marc; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Licquia, Timothy C.; Liu, Jian; Long, Daniel C.; López-Corredoira, Martín; Lorenzo-Oliveira, Diego; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Mack, Claude E., III; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A.; Manera, Marc; Mao, Qingqing; Maraston, Claudia; Marchwinski, Robert C.; Margala, Daniel; Martell, Sarah L.; Martig, Marie; Masters, Karen L.; Mathur, Savita; McBride, Cameron K.; McGehee, Peregrine M.; McGreer, Ian D.; McMahon, Richard G.; Ménard, Brice; Menzel, Marie-Luise; Merloni, Andrea; Mészáros, Szabolcs; Miller, Adam A.; Miralda-Escudé, Jordi; Miyatake, Hironao; Montero-Dorta, Antonio D.; More, Surhud; Morganson, Eric; Morice-Atkinson, Xan; Morrison, Heather L.; Mosser, Benôit; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Newman, Jeffrey A.; Neyrinck, Mark; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; Noterdaeme, Pasquier; Nuza, Sebastián E.; O'Connell, Julia E.; O'Connell, Robert W.; O'Connell, Ross; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Audrey E.; Oravetz, Daniel J.; Osumi, Keisuke; Owen, Russell; Padgett, Deborah L.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Park, Changbom; Pattarakijwanich, Petchara; Pellejero-Ibanez, M.; Pepper, Joshua; Percival, Will J.; Pérez-Fournon, Ismael; P´rez-Ra`fols, Ignasi; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc H.; Porto de Mello, Gustavo F.; Prada, Francisco; Prakash, Abhishek; Price-Whelan, Adrian M.; Protopapas, Pavlos; Raddick, M. Jordan; Rahman, Mubdi; Reid, Beth A.; Rich, James; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodrigues, Thaíse S.; Rodríguez-Torres, Sergio; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Ruan, John J.; Rubiño-Martín, J. A.; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Samushia, Lado; Sánchez, Ariel G.; Santiago, Basílio; Sayres, Conor; Schiavon, Ricardo P.; Schlegel, David J.; Schmidt, Sarah J.; Schneider, Donald P.; Schultheis, Mathias; Schwope, Axel D.; Scóccola, C. G.; Scott, Caroline; Sellgren, Kris; Seo, Hee-Jong; Serenelli, Aldo; Shane, Neville; Shen, Yue; Shetrone, Matthew; Shu, Yiping; Silva Aguirre, V.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobreira, Flávia; Souto, Diogo; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Strauss, Michael A.; Streblyanska, Alina; Suzuki, Nao; Swanson, Molly E. C.; Tan, Jonathan C.; Tayar, Jamie; Terrien, Ryan C.; Thakar, Aniruddha R.; Thomas, Daniel; Thomas, Neil; Thompson, Benjamin A.; Tinker, Jeremy L.; Tojeiro, Rita; Troup, Nicholas W.; Vargas-Magaña, Mariana; Vazquez, Jose A.; Verde, Licia; Viel, Matteo; Vogt, Nicole P.; Wake, David A.; Wang, Ji; Weaver, Benjamin A.; Weinberg, David H.; Weiner, Benjamin J.; White, Martin; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. M.; Ye`che, Christophe; York, Donald G.; Zakamska, Nadia L.; Zamora, O.; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhou, Xu; Zhou, Zhimin; Zou, Hu; Zhu, Guangtun

    2015-07-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

  16. The eleventh and twelfth data release of the Sloan Digital Sky Survey: Final data from SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Shadab; Albareti, Franco D.; Prieto, Carlos Allende; Anders, F.; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Basu, Sarbani; Bautista, Julian E.; Beaton, Rachael L.; Beers, Timothy C.; Bender, Chad F.; Berlind, Andreas A.; Beutler, Florian; Bhardwaj, Vaishali; Bird, Jonathan C.; Bizyaev, Dmitry; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Bochanski, John J.; Bolton, Adam S.; Bovy, Jo; Bradley, A. Shelden; Brandt, W. N.; Brauer, D. E.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burden, Angela; Burtin, Etienne; Busca, Nicolás G.; Cai, Zheng; Capozzi, Diego; Rosell, Aurelio Carnero; Carr, Michael A.; Carrera, Ricardo; Chambers, K. C.; Chaplin, William James; Chen, Yen-Chi; Chiappini, Cristina; Chojnowski, S. Drew; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Covey, Kevin; Croft, Rupert A. C.; Cuesta, Antonio J.; Cunha, Katia; Costa, Luiz N. da; Rio, Nicola Da; Davenport, James R. A.; Dawson, Kyle S.; Lee, Nathan De; Delubac, Timothée; Deshpande, Rohit; Dhital, Saurav; Dutra-Ferreira, Letícia; Dwelly, Tom; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eisenstein, Daniel J.; Ellsworth, Tristan; Elsworth, Yvonne; Epstein, Courtney R.; Eracleous, Michael; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Feuillet, Diane; Ak, Nurten Filiz; Finley, Hayley; Finoguenov, Alexis; Flaherty, Kevin; Fleming, Scott W.; Font-Ribera, Andreu; Foster, Jonathan; Frinchaboy, Peter M.; Galbraith-Frew, J. G.; García, Rafael A.; García-Hernández, D. A.; Pérez, Ana E. García; Gaulme, Patrick; Ge, Jian; Génova-Santos, R.; Georgakakis, A.; Ghezzi, Luan; Gillespie, Bruce A.; Girardi, Léo; Goddard, Daniel; Gontcho, Satya Gontcho A.; Hernández, Jonay I. González; Grebel, Eva K.; Green, Paul J.; Grieb, Jan Niklas; Grieves, Nolan; Gunn, James E.; Guo, Hong; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hayden, Michael; Hearty, Fred R.; Hekker, Saskia; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Honscheid, Klaus; Huber, Daniel; Huehnerhoff, Joseph; Ivans, Inese I.; Jiang, Linhua; Johnson, Jennifer A.; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Klaene, Mark A.; Knapp, Gillian R.; Kneib, Jean-Paul; Koenig, Xavier P.; Lam, Charles R.; Lan, Ting-Wen; Lang, Dustin; Laurent, Pierre; Goff, Jean-Marc Le; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Licquia, Timothy C.; Liu, Jian; Long, Daniel C.; López-Corredoira, Martín; Lorenzo-Oliveira, Diego; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; III, Claude E. Mack; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A.; Manera, Marc; Mao, Qingqing; Maraston, Claudia; Marchwinski, Robert C.; Margala, Daniel; Martell, Sarah L.; Martig, Marie; Masters, Karen L.; Mathur, Savita; McBride, Cameron K.; McGehee, Peregrine M.; McGreer, Ian D.; McMahon, Richard G.; Ménard, Brice; Menzel, Marie-Luise; Merloni, Andrea; Mészáros, Szabolcs; Miller, Adam A.; Miralda-Escudé, Jordi; Miyatake, Hironao; Montero-Dorta, Antonio D.; More, Surhud; Morganson, Eric; Morice-Atkinson, Xan; Morrison, Heather L.; Mosser, Benôit; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Newman, Jeffrey A.; Neyrinck, Mark; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; Noterdaeme, Pasquier; Nuza, Sebastián E.; O’Connell, Julia E.; O’Connell, Robert W.; O’Connell, Ross; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Audrey E.; Oravetz, Daniel J.; Osumi, Keisuke; Owen, Russell; Padgett, Deborah L.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Park, Changbom; Pattarakijwanich, Petchara; Pellejero-Ibanez, M.; Pepper, Joshua; Percival, Will J.; Pérez-Fournon, Ismael; Pe´rez-Ra`fols, Ignasi; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc H.; Mello, Gustavo F. Porto de; Prada, Francisco; Prakash, Abhishek; Price-Whelan, Adrian M.; Protopapas, Pavlos; Raddick, M. Jordan; Rahman, Mubdi; Reid, Beth A.; Rich, James; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodrigues, Thaíse S.; Rodríguez-Torres, Sergio; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Ruan, John J.; Rubiño-Martín, J. A.; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Samushia, Lado; Sánchez, Ariel G.; Santiago, Basílio; Sayres, Conor; Schiavon, Ricardo P.; Schlegel, David J.; Schmidt, Sarah J.; Schneider, Donald P.; Schultheis, Mathias; Schwope, Axel D.; Scóccola, C. G.; Scott, Caroline; Sellgren, Kris; Seo, Hee-Jong; Serenelli, Aldo; Shane, Neville; Shen, Yue; Shetrone, Matthew; Shu, Yiping; Aguirre, V. Silva; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobreira, Flávia; Souto, Diogo; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Strauss, Michael A.; Streblyanska, Alina; Suzuki, Nao; Swanson, Molly E. C.; Tan, Jonathan C.; Tayar, Jamie; Terrien, Ryan C.; Thakar, Aniruddha R.; Thomas, Daniel; Thomas, Neil; Thompson, Benjamin A.; Tinker, Jeremy L.; Tojeiro, Rita; Troup, Nicholas W.; Vargas-Magaña, Mariana; Vazquez, Jose A.; Verde, Licia; Viel, Matteo; Vogt, Nicole P.; Wake, David A.; Wang, Ji; Weaver, Benjamin A.; Weinberg, David H.; Weiner, Benjamin J.; White, Martin; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. M.; Ye`che, Christophe; York, Donald G.; Zakamska, Nadia L.; Zamora, O.; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhou (周旭), Xu; Zhou (周志民), Zhimin; Zou (邹虎), Hu; Zhu, Guangtun

    2015-07-20

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

  17. Eight new quasars discovered by the Guoshoujing Telescope (LAMOST) in one extragalactic field

    International Nuclear Information System (INIS)

    Wu Xuebing; Jia Zhendong; Chen Zhaoyu; Zuo Wenwen; Zhao Yongheng; Luo Ali; Bai Zhongrui; Chen Jianjun; Zhang Haotong; Yan Hongliang; Ren Juanjuan; Sun Shiwei; Wu Hong; Zhang Yong; Li Yeping; Lu Qishuai; Wang You; Ni Jijun; Wang Hai; Kong Xu

    2010-01-01

    We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA = 08 h 58 m 08.2 s , Dec = 01 o 32'29.7') with the Guoshoujing Telescope (LAMOST) commissioning observations made on 2009 December 18. These quasars, with i magnitudes from 16.44 to 19.34 and redshifts from 0.898 to 2.773, were not identified in the SDSS spectroscopic survey, though six of them with redshifts less than 2.5 were selected as quasar targets in SDSS. Except for one source without near-IR Y-band data, seven of these eight new quasars satisfy a newly proposed quasar selection criterion involving both near-IR and optical colors. Two of them were found in the 'redshift desert' for quasars (z from 2.2 to 3), indicating that the new criterion is efficient for uncovering missing quasars with similar optical colors to stars. Although LAMOST encountered some problems during the commissioning observations, we were still able to identify 38 other known SDSS quasars in this field, with i magnitudes from 16.24 to 19.10 and redshifts from 0.297 to 4.512. Our identifications imply that a substantial fraction of quasars may be missing in previous quasar surveys. The implication of our results to the future LAMOST quasar survey is discussed. (research papers)

  18. Quasar feedback in the early Universe : The case of SDSS J1148+5251

    NARCIS (Netherlands)

    Valiante, Rosa; Schneider, Raffaella; Maiolino, Roberto; Salvadori, Stefania; Bianchi, Simone

    2012-01-01

    Galaxy-scale gas outflows triggered by active galactic nuclei have been proposed as a key physical process to regulate the co-evolution of nuclear black holes and their host galaxies. The recent detection of a massive gas outflow in one of the most distant quasars, SDSS J1148+5251 at z = 6.4,

  19. Quasar feedback in the early Universe: the case of SDSS J1148+5251

    NARCIS (Netherlands)

    Valiante, Rosa; Schneider, Raffaella; Maiolino, Roberto; Salvadori, Stefania; Bianchi, Simone

    2012-01-01

    Galaxy-scale gas outflows triggered by active galactic nuclei have been proposed as a key physical process to regulate the co-evolution of nuclear black holes and their host galaxies. The recent detection of a massive gas outflow in one of the most distant quasars, SDSS J1148+5251 at z= 6.4,

  20. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*

    Science.gov (United States)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  1. LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bayliss, Matthew B. [Colby College, 5800 Mayflower Hill, Waterville, 04901, Maine (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael K.; Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Whitaker, Katherine E. [Department of Astronomy, University of Massachusetts-Amherst, Amherst, MA 01003 (United States); Wuyts, Eva, E-mail: kerens@umich.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85741 Garching (Germany)

    2017-01-20

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  2. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Rumbaugh, N.; Shen, Yue; Morganson, Eric; Liu, Xin; Banerji, M.; McMahon, R. G.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Frieman, J.; García-Bellido, J.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Walker, A. R.; Wester, W.

    2018-02-20

    We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called "changing-look quasars", where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.

  3. Emission Line Correlations as Diagnostics of Quasar Winds

    Science.gov (United States)

    Sheldon, Keziah; Richards, Gordon

    2018-01-01

    We investigate correlations between UV and optical emission line properties for a sample of z~0.5 SDSS (Sloan Digital Sky Survey) quasars that have recently been observed by HST. The sample is designed to be comparable in luminosity to the existing reverberation mapping (RM) sample, but less biased in terms of their "eigenvector 1" properties. We seek to understand the conditions under which high-ionization emission lines become dominated by a wind. Our analysis takes advantage of spectral decomposition through Independent Component Analysis (ICA) and archival UV HST spectroscopy of SDSS quasars. With these data we will clarify the needs for RM analysis of quasars with wind-dominated emission features.

  4. THE PITTSBURGH SLOAN DIGITAL SKY SURVEY Mg II QUASAR ABSORPTION-LINE SURVEY CATALOG

    International Nuclear Information System (INIS)

    Quider, Anna M.; Nestor, Daniel B.; Turnshek, David A.; Rao, Sandhya M.; Weyant, Anja N.; Monier, Eric M.; Busche, Joseph R.

    2011-01-01

    We present a catalog of intervening Mg II quasar absorption-line systems in the redshift interval 0.36 ≤ z ≤ 2.28. The catalog was built from Sloan Digital Sky Survey Data Release Four (SDSS DR4) quasar spectra. Currently, the catalog contains ∼17, 000 measured Mg II doublets. We also present data on the ∼44, 600 quasar spectra which were searched to construct the catalog, including redshift and magnitude information, continuum-normalized spectra, and corresponding arrays of redshift-dependent minimum rest equivalent widths detectable at our confidence threshold. The catalog is available online. A careful second search of 500 random spectra indicated that, for every 100 spectra searched, approximately one significant Mg II system was accidentally rejected. Current plans to expand the catalog beyond DR4 quasars are discussed. Many Mg II absorbers are known to be associated with galaxies. Therefore, the combination of large size and well understood statistics makes this catalog ideal for precision studies of the low-ionization and neutral gas regions associated with galaxies at low to moderate redshift. An analysis of the statistics of Mg II absorbers using this catalog will be presented in a subsequent paper.

  5. Crowdsourcing Broad Absorption Line Properties and Other Features of Quasar Outflow Using Zooniverse Citizen Science Project Platform

    Science.gov (United States)

    Crowe, Cassie; Lundgren, Britt; Grier, Catherine

    2018-01-01

    The Sloan Digital Sky Survey (SDSS) regularly publishes vast catalogs of quasars and other astronomical objects. Previously, the SDSS collaboration has used visual inspection to check quasar redshift validity and flag instances of broad absorption lines (BALs). This information helps researchers to easily single out the quasars with BAL properties and study their outflows and other intervening gas clouds. Due to the ever-growing number of new SDSS quasar observations, visual inspections are no longer possible using previous methods. Currently, BAL information is being determined entirely computationally, and the accuracy of that information is not precisely known. This project uses the Zooniverse citizen science platform to visually inspect quasar spectra for BAL properties, to check the accuracy of the current autonomous methods, and to flag multi-phase outflows and find candidates for in-falling gas into the quasar central engine. The layout and format of a Zooniverse project provides an easier way to inspect and record data on each spectrum and share the workload via crowdsourcing. Work done by the SDSS collaboration members is serving as a beta test for a public project upon the official release of the DR14 quasar catalog by SDSS.

  6. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    International Nuclear Information System (INIS)

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u ' g ' r ' i ' z ' ) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from ∼250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i * B 0 =0.5). Several of the quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a broad absorption line (BAL) quasar at z=4.92. (c) (c) 2000. The American Astronomical Society

  7. High-redshift SDSS Quasars with Weak Emission Lines

    DEFF Research Database (Denmark)

    Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a promine...

  8. The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Hiroaki; /Tokyo U.; Prieto, Carlos Allende; /Laguna U., Tenerife; An, Deokkeun; /Ewha Women' s U., Seoul; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Aubourg, Eric; /APC, Paris /DAPNIA, Saclay; Balbinot, Eduardo; /Rio Grande do Sul U. /Rio de Janeiro Observ.; Beers, Timothy C.; /Michigan State U.; Berlind, Andreas A.; /Vanderbilt U.; Bickerton, Steven J.; /Princeton U.; Bizyaev, Dmitry; /Apache Point Observ.; Blanton, Michael R.; /New York U., CCPP /Penn State U.

    2011-01-01

    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly{alpha} forest, and a radial velocity search for planets around {approx}8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes 5-band imaging of roughly 5200 deg{sup 2} in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg{sup 2}, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.

  9. QUASAR CLUSTERING FROM SDSS DR5: DEPENDENCES ON PHYSICAL PROPERTIES

    International Nuclear Information System (INIS)

    Shen Yue; Strauss, Michael A.; Lin, Yen-Ting; Bahcall, Neta A.; Ross, Nicholas P.; Schneider, Donald P.; Vanden Berk, Daniel E.; Hall, Patrick B.; Richards, Gordon T.; Weinberg, David H.; Shankar, Francesco; Connolly, Andrew J.; Fan Xiaohui; Hennawi, Joseph F.; Brunner, Robert J.

    2009-01-01

    Using a homogenous sample of 38,208 quasars with a sky coverage of ∼4000 deg. 2 drawn from the Sloan Digital Sky Survey Data Release Five quasar catalog, we study the dependence of quasar clustering on luminosity, virial black hole (BH) mass, quasar color, and radio loudness. At z 13 h -1 M sun , compared to ∼2 x 10 12 h -1 M sun for radio-quiet quasar hosts at z ∼ 1.5.

  10. DOUBLE QUASARS: PROBES OF BLACK HOLE SCALING RELATIONSHIPS AND MERGER SCENARIOS

    International Nuclear Information System (INIS)

    Foreman, G.; Volonteri, M.; Dotti, M.

    2009-01-01

    We analyze the available sample of double quasars, and investigate their physical properties. Our sample comprises 85 pairs, selected from the Sloan Digital Sky Survey (SDSS). We derive physical parameters for the engine and the host, and model the dynamical evolution of the pair. First, we compare different scaling relationships between massive black holes and their hosts (bulge mass, velocity dispersion, and their possible redshift dependences), and discuss their consistency. We then compute dynamical friction timescales for the double quasar systems to investigate their frequency and their agreement with the m erger drivenscenario for quasar triggering. In optical surveys, such as the SDSS, N double,qso /N qso ∼ 0.1%. Comparing typical merging timescales to expected quasar lifetimes, the fraction of double quasars should be roughly a factor of 10 larger than observed. Additionally, we find that, depending on the correlations between black holes and their hosts, the occurrence of double quasars could be redshift dependent. Comparison of our models to the SDSS quasar catalog suggests that double quasars should be more common at high redshift. We compare the typical separations at which double quasars are observed to the predictions of merger simulations. We find that the distribution of physical separations peaks at ∼30 kpc, with a tail at larger separations (∼100-200 kpc). The peak of the distribution is roughly consistent with the first episode of quasar activity found in equal mass mergers simulations. The tail of the quasar pairs distribution at large separations is instead inconsistent with any quasar activity predicted by published simulations. These large separation pairs are instead consistent with unequal mass mergers where gas is dynamically perturbed during the first pericentric passage, but the gas reaches the black hole only at the next apocenter, where the pair is observed.

  11. Close companions to two high-redshift quasars

    Energy Technology Data Exchange (ETDEWEB)

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Strauss, Michael A. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Haiman, Zoltàn [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Jiang, Linhua [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Schneider, Donald P., E-mail: imcgreer@as.arizona.edu [Department of Astronomy and Astrophysics and the Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  12. IMPROVED SPECTROPHOTOMETRIC CALIBRATION OF THE SDSS-III BOSS QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Margala, Daniel; Kirkby, David [Frederick Reines Hall, Department of Physics and Astronomy, University of California, Irvine, CA (United States); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Bailey, Stephen [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Blanton, Michael [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schneider, Donald P., E-mail: dmargala@uci.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-11-10

    We present a model for spectrophotometric calibration errors in observations of quasars from the third generation of the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) and describe the correction procedure we have developed and applied to this sample. Calibration errors are primarily due to atmospheric differential refraction and guiding offsets during each exposure. The corrections potentially reduce the systematics for any studies of BOSS quasars, including the measurement of baryon acoustic oscillations using the Ly α forest. Our model suggests that, on average, the observed quasar flux in BOSS is overestimated by ∼19% at 3600 Å and underestimated by ∼24% at 10,000 Å. Our corrections for the entire BOSS quasar sample are publicly available.

  13. DISCOVERING THE MISSING 2.2 < z < 3 QUASARS BY COMBINING OPTICAL VARIABILITY AND OPTICAL/NEAR-INFRARED COLORS

    International Nuclear Information System (INIS)

    Wu Xuebing; Wang Ran; Bian Fuyan; Jiang Linhua; Fan Xiaohui; Schmidt, Kasper B.

    2011-01-01

    The identification of quasars in the redshift range 2.2 < z < 3 is known to be very inefficient because the optical colors of such quasars are indistinguishable from those of stars. Recent studies have proposed using optical variability or near-infrared (near-IR) colors to improve the identification of the missing quasars in this redshift range. Here we present a case study combining both methods. We select a sample of 70 quasar candidates from variables in Sloan Digital Sky Survey (SDSS) Stripe 82, which are non-ultraviolet excess sources and have UKIDSS near-IR public data. They are clearly separated into two parts on the Y - K/g - z color-color diagram, and 59 of them meet or lie close to a newly proposed Y - K/g - z selection criterion for z < 4 quasars. Of these 59 sources, 44 were previously identified as quasars in SDSS DR7, and 35 of them are quasars at 2.2 < z < 3. We present spectroscopic observations of 14 of 15 remaining quasar candidates using the Bok 2.3 m telescope and the MMT 6.5 m telescope, and successfully identify all of them as new quasars at z = 2.36-2.88. We also apply this method to a sample of 643 variable quasar candidates with SDSS-UKIDSS nine-band photometric data selected from 1875 new quasar candidates in SDSS Stripe 82 given by Butler and Bloom based on the time-series selections, and find that 188 of them are probably new quasars with photometric redshifts at 2.2 < z < 3. Our results indicate that the combination of optical variability and optical/near-IR colors is probably the most efficient way to find 2.2 < z < 3 quasars and is very helpful for constructing a complete quasar sample. We discuss its implications for ongoing and upcoming large optical and near-IR sky surveys.

  14. A very bright (i = 16.44) quasar in the 'redshift desert' discovered by the Guoshoujing Telescope (LAMOST)

    International Nuclear Information System (INIS)

    Wu Xuebing; Chen Zhaoyu; Jia Zhendong; Zuo Wenwen; Zhao Yongheng; Luo Ali; Bai Zhongrui; Chen Jianjun; Zhang Haotong; Yan Hongliang; Ren Juanjuan; Sun Shiwei; Wu Hong; Zhang Yong; Li Yeping; Lu Qishuai; Wang You; Ni Jijun; Wang Hai; Kong Xu

    2010-01-01

    The redshift range from 2.2 to 3 is known as the 'redshift desert' of quasars because quasars with redshifts in this range have similar optical colors as normal stars and are thus difficult to find in optical sky surveys. A quasar candidate, SDSS J085543.40-001517.7, which was selected by a recently proposed criterion involving near-IR Y - K and optical g - z colors, was identified spectroscopically as a new quasar with a redshift of 2.427 by the Guoshoujing Telescope (LAMOST) commissioning observation in 2009 December and confirmed by the observation made with the NAOC/Xinglong 2.16 m telescope in 2010 March. This quasar was not identified in the SDSS spectroscopic survey. Comparing with other SDSS quasars, we found that this new quasar, with an i magnitude of 16.44, is apparently the brightest one in the redshift range from 2.3 to 2.7. From its spectral properties, we derived its central black hole mass to be (1.4 ∼ 3.9) x 10 10 M o-dot and its bolometric luminosity to be 3.7 x 10 48 erg s -1 , which indicates that this new quasar is intrinsically very bright and belongs to the class of the most luminous quasars in the universe. Our identification supports the notion that quasars in the redshift desert can be found by the quasar selection criterion involving the near-IR colors. More missing quasars are expected to be uncovered by future LAMOST spectroscopic surveys, which is important to the study of the cosmological evolution of quasars at redshifts higher than 2.2. (research papers)

  15. The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Aubourg, Éric; Bailey, Stephen; Balbinot, Eduardo; Barnes, Rory; Bautista, Julian; Beers, Timothy C.; Beifiori, Alessandra; Berlind, Andreas A.; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Bochanski, John J.; Bolton, Adam S.; Borde, Arnaud; Bovy, Jo; Brandt, W. N.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Bundy, Kevin; Busca, N. G.; Carithers, William; Carnero, Aurelio R.; Carr, Michael A.; Casetti-Dinescu, Dana I.; Chen, Yanmei; Chiappini, Cristina; Comparat, Johan; Connolly, Natalia; Crepp, Justin R.; Cristiani, Stefano; Croft, Rupert A. C.; Cuesta, Antonio J.; da Costa, Luiz N.; Davenport, James R. A.; Dawson, Kyle S.; de Putter, Roland; De Lee, Nathan; Delubac, Timothée; Dhital, Saurav; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eisenstein, Daniel J.; Escoffier, S.; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Femenía Castellá, Bruno; Fernández Alvar, Emma; Ferreira, Leticia D.; Filiz Ak, N.; Finley, Hayley; Fleming, Scott W.; Font-Ribera, Andreu; Frinchaboy, Peter M.; García-Hernández, D. A.; Pérez, A. E. García; Ge, Jian; Génova-Santos, R.; Gillespie, Bruce A.; Girardi, Léo; González Hernández, Jonay I.; Grebel, Eva K.; Gunn, James E.; Guo, Hong; Haggard, Daryl; Hamilton, Jean-Christophe; Harris, David W.; Hawley, Suzanne L.; Hearty, Frederick R.; Ho, Shirley; Hogg, David W.; Holtzman, Jon A.; Honscheid, Klaus; Huehnerhoff, J.; Ivans, Inese I.; Ivezić, Željko; Jacobson, Heather R.; Jiang, Linhua; Johansson, Jonas; Johnson, Jennifer A.; Kauffmann, Guinevere; Kirkby, David; Kirkpatrick, Jessica A.; Klaene, Mark A.; Knapp, Gillian R.; Kneib, Jean-Paul; Le Goff, Jean-Marc; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Long, Daniel C.; Loomis, Craig P.; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Ma, Bo; Ma, Zhibo; MacDonald, Nicholas; Mack, Claude E.; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Makler, Martin; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A.; Mandelbaum, Rachel; Manera, Marc; Maraston, Claudia; Margala, Daniel; Martell, Sarah L.; McBride, Cameron K.; McGreer, Ian D.; McMahon, Richard G.; Ménard, Brice; Meszaros, Sz.; Miralda-Escudé, Jordi; Montero-Dorta, Antonio D.; Montesano, Francesco; Morrison, Heather L.; Muna, Demitri; Munn, Jeffrey A.; Murayama, Hitoshi; Myers, Adam D.; Neto, A. F.; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; Noterdaeme, Pasquier; Nuza, Sebastián E.; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Daniel J.; Owen, Russell; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Parihar, Prachi; Pâris, Isabelle; Pattarakijwanich, Petchara; Pepper, Joshua; Percival, Will J.; Pérez-Fournon, Ismael; Pérez-Ràfols, Ignasi; Petitjean, Patrick; Pforr, Janine; Pieri, Matthew M.; Pinsonneault, Marc H.; Porto de Mello, G. F.; Prada, Francisco; Price-Whelan, Adrian M.; Raddick, M. Jordan; Rebolo, Rafael; Rich, James; Richards, Gordon T.; Robin, Annie C.; Rocha-Pinto, Helio J.; Rockosi, Constance M.; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martin, J. A.; Samushia, Lado; Sanchez Almeida, J.; Sánchez, Ariel G.; Santiago, Basílio; Sayres, Conor; Schlegel, David J.; Schlesinger, Katharine J.; Schmidt, Sarah J.; Schneider, Donald P.; Schultheis, Mathias; Schwope, Axel D.; Scóccola, C. G.; Seljak, Uros; Sheldon, Erin; Shen, Yue; Shu, Yiping; Simmerer, Jennifer; Simmons, Audrey E.; Skibba, Ramin A.; Skrutskie, M. F.; Slosar, A.; Sobreira, Flavia; Sobeck, Jennifer S.; Stassun, Keivan G.; Steele, Oliver; Steinmetz, Matthias; Strauss, Michael A.; Streblyanska, Alina; Suzuki, Nao; Swanson, Molly E. C.; Tal, Tomer; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tojeiro, Rita; Tremonti, Christy A.; Vargas Magaña, M.; Verde, Licia; Viel, Matteo; Vikas, Shailendra K.; Vogt, Nicole P.; Wake, David A.; Wang, Ji; Weaver, Benjamin A.; Weinberg, David H.; Weiner, Benjamin J.; West, Andrew A.; White, Martin; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. M.; Yanny, Brian; Yèche, Christophe; York, Donald G.; Zamora, O.; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhu, Guangtun; Zinn, Joel C.

    2012-11-19

    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.

  16. HIGH-REDSHIFT SDSS QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Jiang Linhua; Kim, J. Serena; Schmidt, Gary D.; Smith, Paul S.; Vestergaard, Marianne; Young, Jason E.; Brandt, W. N.; Shemmer, Ohad; Gibson, Robert R.; Schneider, Donald P.; Strauss, Michael A.; Shen Yue; Anderson, Scott F.; Carilli, Christopher L.; Richards, Gordon T.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a prominent tail of the Lyα + N v equivalent width distribution, and we compare them to quasars with more typical emission-line properties and to low-redshift active galactic nuclei with weak/absent emission lines, namely BL Lac objects. We find that WLQs exhibit hot (T ∼ 1000 K) thermal dust emission and have rest-frame 0.1-5 μm spectral energy distributions that are quite similar to those of normal quasars. The variability, polarization, and radio properties of WLQs are also different from those of BL Lacs, making continuum boosting by a relativistic jet an unlikely physical interpretation. The most probable scenario for WLQs involves broad-line region properties that are physically distinct from those of normal quasars.

  17. A search for changing look quasars in second epoch imaging

    Science.gov (United States)

    Findlay, Joseph; Myers, Adam; McGreer, Ian

    2018-01-01

    Over nearly two decades, the Sloan Digital Sky Survey has compiled a catalog of over half a million confirmed quasars. During that period approximately ten percent of these objects have been spectroscopically observed in two or more epochs over baselines of ten or more years. This led recently to the discovery of the largest change in luminosity ever before observed in a quasar. The dimming emission was a reflection of very significant changes in continuum and broad line properties, the source had effectively transitioned from a Type I quasar to a Type II AGN. Since then several more "changing look" quasars have been discovered in multi-epoch SDSS spectroscopy. Among them are objects with rising and falling luminosities, appearing and disappearing broad lines. The origin of this behavior is still very uncertain, currently favored is the scenario in which an accreting black hole is simply starved of fuel. Other plausible scenarios include flaring due to stellar tidal disruption close to the black hole or large changes in accretion flow, which can occur during transitions between radiatively efficient and inefficient accretion regimes. Monitoring of larger numbers of changing look quasars will help to elucidate these ideas.In this poster, we report on the progress of a pilot study in which we hope to learn how to select changing look quasars in multi-epoch imaging. This will allow us to take advantage of the entire SDSS quasar catalog rather than just the ten percent of objects with multi-epoch spectroscopy. Comparing archival SDSS and more recent Legacy Survey imaging over ten-year baselines we select objects whose photometry is consistent with the large changes in luminosity expected in changing look quasars. We aim to build up a catalog of both transitioned and transitioning objects for future monitoring.

  18. Seeking the epoch of maximum luminosity for dusty quasars

    International Nuclear Information System (INIS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-01-01

    Infrared luminosities νL ν (7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 Survey Explorer. Infrared luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL ν (7.8 μm) ≳ 10 47 erg s –1 ; luminosity functions show one quasar Gpc –3 having νL ν (7.8 μm) > 10 46.6 erg s –1 for all 2 quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν (0.25 μm), have the largest values of the ratio νL ν (0.25 μm)/νL ν (7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  19. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J.; /Arizona U., Astron. Dept. - Steward Observ. /Harvard U., Phys. Dept.; Weinberg, David H.; /Ohio State U.; Agol, Eric; /Washington U., Seattle, Astron. Dept.; Aihara, Hiroaki; /Tokyo U.; Prieto, Carlos Allende; /Laguna U., Tenerife; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Arns, James A.; /Michigan U.; Aubourg, Eric; /APC, Paris /DAPNIA, Saclay; Bailey, Stephen; /LBL, Berkeley; Balbinot, Eduardo; /Rio Grande do Sul U. /Rio de Janeiro Observ.; Barkhouser, Robert; /Johns Hopkins U. /Michigan State U.

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. The Baryon Oscillation Spectroscopic Survey (BOSS) will measure redshifts of 1.5 million massive galaxies and Ly{alpha} forest spectra of 150,000 quasars, using the baryon acoustic oscillation (BAO) feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z {approx} 2.5. SEGUE-2, a now-completed continuation of the Sloan Extension for Galactic Understanding and Exploration, measured medium-resolution (R = {lambda}/{Delta}{lambda} 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R {approx} 30,000), high signal-to-noise ratio (S/N {ge} 100 per resolution element), H-band (1.51 {micro}m < {lambda} < 1.70 {micro}m) spectra of 10{sup 5} evolved, late-type stars, measuring separate abundances for {approx} 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s{sup -1}, {approx} 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of January 2011, SDSS-III has obtained

  20. Close Companions to Two High-redshift Quasars

    Science.gov (United States)

    McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.

  1. Space density of optically-selected type 2 quasars

    OpenAIRE

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon; Anderson, Scott; Schneider, Donald

    2008-01-01

    Type 2 quasars are luminous active galactic nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey (SDSS), selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is six times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [OIII]5008 luminosity function for...

  2. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Science.gov (United States)

    Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Anders, Friedrich; Anderson, Scott; Andrews, Brett H.; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barbuy, Beatriz; Barger, Kat; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Basu, Sarbani; Bates, Dominic; Battaglia, Giuseppina; Baumgarten, Falk; Baur, Julien; Bautista, Julian; Beers, Timothy C.; Belfiore, Francesco; Bershady, Matthew; Bertran de Lis, Sara; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Borissova, J.; Bovy, Jo; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burtin, Etienne; Busca, Nicolás G.; Orlando Camacho Chavez, Hugo; Cano Díaz, M.; Cappellari, Michele; Carrera, Ricardo; Chen, Yanping; Cherinka, Brian; Cheung, Edmond; Chiappini, Cristina; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert; Cunha, Katia; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; Da Costa, Luiz; Da Silva Ilha, Gabriele; Deconto Machado, Alice; Delubac, Timothée; De Lee, Nathan; De la Macorra, Axel; De la Torre, Sylvain; Diamond-Stanic, Aleksandar M.; Donor, John; Downes, Juan Jose; Drory, Niv; Du, Cheng; Du Mas des Bourboux, Hélion; Dwelly, Tom; Ebelke, Garrett; Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Escoffier, Stephanie; Evans, Michael L.; Falcón-Barroso, Jesús; Fan, Xiaohui; Favole, Ginevra; Fernandez-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gao, Yang; Garcia, Rafael A.; Garcia-Dias, R.; Garcia-Hernández, D. A.; Garcia Pérez, Ana E.; Gaulme, Patrick; Ge, Junqiang; Geisler, Douglas; Gillespie, Bruce; Gil Marin, Hector; Girardi, Léo; Goddard, Daniel; Gomez Maqueo Chew, Yilen; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul; Grier, Catherine J.; Grier, Thomas; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Matt; Harding, Paul; Harley, R. E.; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez Toledo, Hector; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Hu, Jian; Huber, Daniel; Hutchinson, Timothy Alan; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; Ivans, Inese I.; Ivory, KeShawn; Jaehnig, Kurt; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jullo, Eric; Kallinger, T.; Kinemuchi, Karen; Kirkby, David; Klaene, Mark; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Laurent, Pierre; Law, David R.; Leauthaud, Alexie; Le Goff, Jean-Marc; Li, Chen; Li, Cheng; Li, Niu; Li, Ran; Liang, Fu-Heng; Liang, Yu; Lima, Marcos; Lin, Lihwai; Lin, Lin; Lin, Yen-Ting; Liu, Chao; Long, Dan; Lucatello, Sara; MacDonald, Nicholas; MacLeod, Chelsea L.; Mackereth, J. Ted; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Olena; Malanushenko, Viktor; Dullius Mallmann, Nícolas; Manchado, Arturo; Maraston, Claudia; Marques-Chaves, Rui; Martinez Valpuesta, Inma; Masters, Karen L.; Mathur, Savita; McGreer, Ian D.; Merloni, Andrea; Merrifield, Michael R.; Meszáros, Szabolcs; Meza, Andres; Miglio, Andrea; Minchev, Ivan; Molaverdikhani, Karan; Montero-Dorta, Antonio D.; Mosser, Benoit; Muna, Demitri; Myers, Adam; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; O’Connell, Julia; Oravetz, Audrey; Oravetz, Daniel J.; Pace, Zachary; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John; Paris, Isabelle; Park, Changbom; Peacock, John A.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Percival, Jeffrey W.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew; Pinsonneault, Marc H.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Price-Jones, Natalie; Raddick, M. Jordan; Rahman, Mubdi; Raichoor, Anand; Barboza Rembold, Sandro; Reyna, A. M.; Rich, James; Richstein, Hannah; Ridl, Jethro; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Rodrigues, Thaíse S.; Roe, Natalie; Lopes, A. Roman; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Runnoe, Jessie C.; Salazar-Albornoz, Salvador; Salvato, Mara; Sanchez, Sebastian F.; Sanchez, Ariel G.; Sanchez-Gallego, José R.; Santiago, Basílio Xavier; Schiavon, Ricardo; Schimoia, Jaderson S.; Schlafly, Eddie; Schlegel, David J.; Schneider, Donald P.; Schönrich, Ralph; Schultheis, Mathias; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Sesar, Branimir; Shao, Zhengyi; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Victor; Skrutskie, M. F.; Slosar, Anže; Smith, Michael; Smith, Verne V.; Sobeck, Jennifer; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Storchi Bergmann, Thaisa; Strauss, Michael A.; Streblyanska, Alina; Stringfellow, Guy S.; Suarez, Genaro; Sun, Jing; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas; Trump, Jonathan R.; Unda-Sanzana, Eduardo; Valenzuela, O.; Van den Bosch, Remco; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Wang, Enci; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yeche, Christophe; Yuan, Fang-Ting; Zakamska, Nadia; Zamora, Olga; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2017-12-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ∼6 yr operations of SDSS-IV.

  3. VizieR Online Data Catalog: UV-bright quasars (Syphers+, 2009)

    Science.gov (United States)

    Syphers, D.; Anderson, S. F.; Zheng, W.; Haggard, D.; Meiksin, A.; Schneider, D. P.; York, D. G.

    2010-03-01

    Absorption along quasar sightlines remains among the most sensitive direct measures of HeII reionization in much of the intergalactic medium (IGM). Until recently, fewer than a half-dozen unobscured quasar sightlines suitable for the HeII Gunn-Peterson test were known; although these handful demonstrated great promise, the small sample size limited confidence in cosmological inferences. We have recently added nine more such clean HeII quasars, exploiting Sloan Digital Sky Survey (SDSS) quasar samples, broadband ultraviolet (UV) imaging from Galaxy Evolution Explorer (GALEX), and high-yield UV spectroscopic confirmations from Hubble Space Telescope (HST). Here we markedly expand this approach by cross-correlating SDSS DR7 and GALEX GR4+5 to catalog 428 SDSS and 165 other quasars with z>2.78 having likely (~70%) GALEX detections, suggesting they are bright into the far-UV. Reconnaissance HST Cycle 16 Supplemental prism data for 29 of these new quasar-GALEX matches spectroscopically confirm 17 as indeed far-UV bright. At least 10 of these confirmations have clean sightlines all the way down to HeII Lyα, substantially expanding the number of known clean HeII quasars, and reaffirming the order of magnitude enhanced efficiency of our selection technique. Combined confirmations from this and our past programs yield more than 20 HeII quasars, quintupling the sample. These provide substantial progress toward a sample of HeII quasar sightlines large enough, and spanning a sufficient redshift range, to enable statistical IGM studies that may avoid individual object peculiarity and sightline variance. Our expanded catalog of hundreds of high-likelihood far-UV-bright QSOs additionally will be useful for understanding the extreme-UV properties of the quasars themselves. (2 data files).

  4. A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey

    International Nuclear Information System (INIS)

    Tie, S. S.; Martini, P.; Mudd, D.; Ostrovski, F.; Reed, S. L.

    2017-01-01

    In this paper, we present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1), and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ"2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i 85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg"2 of the DES supernova fields. Finally, the catalog includes quasars with redshifts up to z ~ 4 and brighter than i = 22 mag, although the catalog is not complete up to this magnitude limit.

  5. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: BIASES IN z  > 1.46 REDSHIFTS DUE TO QUASAR DIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Denney, K. D.; Peterson, B. M. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Brandt, W. N.; Grier, C. J.; Trump, J. R. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Ge, J., E-mail: denney@astronomy.ohio-state.edu [Astronomy Department University of Florida 211 Bryant Space Science Center P.O. Box 112055 Gainesville, FL 32611-2055 (United States)

    2016-12-10

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z  > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for about half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s{sup −1}, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.

  6. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: BIASES IN z  > 1.46 REDSHIFTS DUE TO QUASAR DIVERSITY

    International Nuclear Information System (INIS)

    Denney, K. D.; Peterson, B. M.; Horne, Keith; Brandt, W. N.; Grier, C. J.; Trump, J. R.; Ho, Luis C.; Ge, J.

    2016-01-01

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z  > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for about half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s −1 , on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.

  7. Catalog of 3 < z < 5.5 Quasar Candidates Selected among XMM-Newton Sources and Its Spectroscopic Verification

    Energy Technology Data Exchange (ETDEWEB)

    Khorunzhev, Georgii; Sazonov, Sergey; Burenin, Rodion [High Energy Astrophysics, Space Research Institute, Russian Academy of Sciences, Moscow (Russian Federation); Eselevich, Maxim, E-mail: horge@iki.rssi.ru [Laboratory of Infrared Methods in Astrophysics, Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk (Russian Federation)

    2017-11-13

    We have compiled a catalog of 903 quasar candidates (including known quasars) at 3 < z < 5.5 selected among X-ray sources from the XMM-Newton serendipitous survey (3XMM-DR4 catalog). We used photometric SDSS, 2MASS, and WISE data to select the objects. The surface number density of objects in our sample exceeds that in the SDSS spectroscopic quasar sample at the same redshifts by a factor of 1.5. We have performed spectroscopic observations of a subsample of new quasar candidates using a new low- and medium-resolution spectrograph at the 1.6-m AZT-33IK telescope (Mondy, Russia) and demonstrated that the purity of these candidates is about 65%. We have discovered one of the most distant (z = 5.08) X-ray selected quasars.

  8. Catalog of 3 < z < 5.5 Quasar Candidates Selected among XMM-Newton Sources and Its Spectroscopic Verification

    Directory of Open Access Journals (Sweden)

    Georgii Khorunzhev

    2017-11-01

    Full Text Available We have compiled a catalog of 903 quasar candidates (including known quasars at 3 < z < 5.5 selected among X-ray sources from the XMM-Newton serendipitous survey (3XMM-DR4 catalog. We used photometric SDSS, 2MASS, and WISE data to select the objects. The surface number density of objects in our sample exceeds that in the SDSS spectroscopic quasar sample at the same redshifts by a factor of 1.5. We have performed spectroscopic observations of a subsample of new quasar candidates using a new low- and medium-resolution spectrograph at the 1.6-m AZT-33IK telescope (Mondy, Russia and demonstrated that the purity of these candidates is about 65%. We have discovered one of the most distant (z = 5.08 X-ray selected quasars.

  9. SELECTING QUASARS BY THEIR INTRINSIC VARIABILITY

    International Nuclear Information System (INIS)

    Schmidt, Kasper B.; Rix, Hans-Walter; Jester, Sebastian; Hennawi, Joseph F.; Marshall, Philip J.; Dobler, Gregory

    2010-01-01

    We present a new and simple technique for selecting extensive, complete, and pure quasar samples, based on their intrinsic variability. We parameterize the single-band variability by a power-law model for the light-curve structure function, with amplitude A and power-law index γ. We show that quasars can be efficiently separated from other non-variable and variable sources by the location of the individual sources in the A-γ plane. We use ∼60 epochs of imaging data, taken over ∼5 years, from the SDSS stripe 82 (S82) survey, where extensive spectroscopy provides a reference sample of quasars, to demonstrate the power of variability as a quasar classifier in multi-epoch surveys. For UV-excess selected objects, variability performs just as well as the standard SDSS color selection, identifying quasars with a completeness of 90% and a purity of 95%. In the redshift range 2.5 < z < 3, where color selection is known to be problematic, variability can select quasars with a completeness of 90% and a purity of 96%. This is a factor of 5-10 times more pure than existing color selection of quasars in this redshift range. Selecting objects from a broad griz color box without u-band information, variability selection in S82 can afford completeness and purity of 92%, despite a factor of 30 more contaminants than quasars in the color-selected feeder sample. This confirms that the fraction of quasars hidden in the 'stellar locus' of color space is small. To test variability selection in the context of Pan-STARRS 1 (PS1) we created mock PS1 data by down-sampling the S82 data to just six epochs over 3 years. Even with this much sparser time sampling, variability is an encouragingly efficient classifier. For instance, a 92% pure and 44% complete quasar candidate sample is attainable from the above griz-selected catalog. Finally, we show that the presented A-γ technique, besides selecting clean and pure samples of quasars (which are stochastically varying objects), is also

  10. MULTIWAVELENGTH OBSERVATIONS OF RADIO-QUIET QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Anderson, Scott F.; MacLeod, Chelsea L.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Shemmer, Ohad

    2010-01-01

    We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z < 2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are active galactic nuclei (AGNs) with abnormally weak emission features; 10 of those 13 are definitively radio quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGNs lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGNs appear to have intrinsically weak or absent broad emission line regions (BELRs), and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z < 2.2 radio-quiet BL Lac candidates already identified in the SDSS, but not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN BELRs.

  11. There Are (super)Giants in the Sky: Searching for Misidentified Massive Stars in Algorithmically-Selected Quasar Catalogs

    Science.gov (United States)

    Dorn-Wallenstein, Trevor Z.; Levesque, Emily

    2017-11-01

    Thanks to incredible advances in instrumentation, surveys like the Sloan Digital Sky Survey have been able to find and catalog billions of objects, ranging from local M dwarfs to distant quasars. Machine learning algorithms have greatly aided in the effort to classify these objects; however, there are regimes where these algorithms fail, where interesting oddities may be found. We present here an X-ray bright quasar misidentified as a red supergiant/X-ray binary, and a subsequent search of the SDSS quasar catalog for X-ray bright stars misidentified as quasars.

  12. Angular Baryon Acoustic Oscillation measure at z=2.225 from the SDSS quasar survey

    Science.gov (United States)

    de Carvalho, E.; Bernui, A.; Carvalho, G. C.; Novaes, C. P.; Xavier, H. S.

    2018-04-01

    Following a quasi model-independent approach we measure the transversal BAO mode at high redshift using the two-point angular correlation function (2PACF). The analyses done here are only possible now with the quasar catalogue from the twelfth data release (DR12Q) from the Sloan Digital Sky Survey, because it is spatially dense enough to allow the measurement of the angular BAO signature with moderate statistical significance and acceptable precision. Our analyses with quasars in the redshift interval z in [2.20,2.25] produce the angular BAO scale θBAO = 1.77° ± 0.31° with a statistical significance of 2.12 σ (i.e., 97% confidence level), calculated through a likelihood analysis performed using the theoretical covariance matrix sourced by the analytical power spectra expected in the ΛCDM concordance model. Additionally, we show that the BAO signal is robust—although with less statistical significance—under diverse bin-size choices and under small displacements of the quasars' angular coordinates. Finally, we also performed cosmological parameter analyses comparing the θBAO predictions for wCDM and w(a)CDM models with angular BAO data available in the literature, including the measurement obtained here, jointly with CMB data. The constraints on the parameters ΩM, w0 and wa are in excellent agreement with the ΛCDM concordance model.

  13. A Search for Nontoroidal Topological Lensing in the Sloan Digital Sky Survey Quasar Catalog

    Science.gov (United States)

    Fujii, Hirokazu; Yoshii, Yuzuru

    2013-08-01

    Flat space models with multiply connected topology, which have compact dimensions, are tested against the distribution of high-redshift (z >= 4) quasars of the Sloan Digital Sky Survey (SDSS). When the compact dimensions are smaller in size than the observed universe, topological lensing occurs, in which multiple images of single objects (ghost images) are observed. We improve on the recently introduced method to identify ghost images by means of four-point statistics. Our method is valid for any of the 17 multiply connected flat models, including nontoroidal ones that are compacted by screw motions or glide reflection. Applying the method to the data revealed one possible case of topological lensing caused by sixth-turn screw motion, however, it is consistent with the simply connected model by this test alone. Moreover, simulations suggest that we cannot exclude the other space models despite the absence of their signatures. This uncertainty mainly originates from the patchy coverage of SDSS in the south Galactic cap, and this situation will be improved by future wide-field spectroscopic surveys.

  14. A SEARCH FOR NONTOROIDAL TOPOLOGICAL LENSING IN THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG

    International Nuclear Information System (INIS)

    Fujii, Hirokazu; Yoshii, Yuzuru

    2013-01-01

    Flat space models with multiply connected topology, which have compact dimensions, are tested against the distribution of high-redshift (z ≥ 4) quasars of the Sloan Digital Sky Survey (SDSS). When the compact dimensions are smaller in size than the observed universe, topological lensing occurs, in which multiple images of single objects (ghost images) are observed. We improve on the recently introduced method to identify ghost images by means of four-point statistics. Our method is valid for any of the 17 multiply connected flat models, including nontoroidal ones that are compacted by screw motions or glide reflection. Applying the method to the data revealed one possible case of topological lensing caused by sixth-turn screw motion, however, it is consistent with the simply connected model by this test alone. Moreover, simulations suggest that we cannot exclude the other space models despite the absence of their signatures. This uncertainty mainly originates from the patchy coverage of SDSS in the south Galactic cap, and this situation will be improved by future wide-field spectroscopic surveys

  15. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    International Nuclear Information System (INIS)

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-01-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of ∼18% at M K s < -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  16. Deep learning of quasar spectra to discover and characterize damped Lyα systems

    Science.gov (United States)

    Parks, David; Prochaska, J. Xavier; Dong, Shawfeng; Cai, Zheng

    2018-05-01

    We have designed, developed, and applied a convolutional neural network (CNN) architecture using multi-task learning to search for and characterize strong H I Lyα absorption in quasar spectra. Without any explicit modelling of the quasar continuum or application of the predicted line profile for Lyα from quantum mechanics, our algorithm predicts the presence of strong H I absorption and estimates the corresponding redshift zabs and H I column density N_{H I}, with emphasis on damped Lyα systems (DLAs, absorbers with N_{H I}≥ 2 × 10^{20} cm^{-2}). We tuned the CNN model using a custom training set of DLAs injected into DLA-free quasar spectra from the Sloan Digital Sky Survey (SDSS), data release 5 (DR5). Testing on a held-back validation set demonstrates a high incidence of DLAs recovered by the algorithm (97.4 per cent as DLAs and 99 per cent as an H I absorber with N_{H I}> 10^{19.5} cm^{-2}) and excellent estimates for zabs and N_{H I}. Similar results are obtained against a human-generated survey of the SDSS DR5 data set. The algorithm yields a low incidence of false positives and negatives but is challenged by overlapping DLAs and/or very high N_{H I} systems. We have applied this CNN model to the quasar spectra of SDSS DR7 and the Baryon Oscillation Spectroscopic Survey (data release 12) and provide catalogues of 4913 and 50 969 DLAs, respectively (including 1659 and 9230 high-confidence DLAs that were previously unpublished). This work validates the application of deep learning techniques to astronomical spectra for both classification and quantitative measurements.

  17. PRECIOUS METALS IN SDSS QUASAR SPECTRA. I. TRACKING THE EVOLUTION OF STRONG, 1.5 < z < 4.5 C IV ABSORBERS WITH THOUSANDS OF SYSTEMS

    International Nuclear Information System (INIS)

    Cooksey, Kathy L.; Kao, Melodie M.; Simcoe, Robert A.; O'Meara, John M.; Prochaska, J. Xavier

    2013-01-01

    We have vastly increased the C IV statistics at intermediate redshift by surveying the thousands of quasars in the Sloan Digital Sky Survey (SDSS) Data-Release 7. We visually verified over 16,000 C IV systems with 1.46 r ≈ 0.6 Å. We analyzed the sample as a whole and in 10 small redshift bins with approximately 1500 doublets each. The equivalent width frequency distributions f(W r ) were well modeled by an exponential, with little evolution in shape. In contrast with previous studies that modeled the frequency distribution as a single power law, the fitted exponential gives a finite mass density for the C IV ions. The comoving line density dN CIV /dX evolved smoothly with redshift, increasing by a factor of 2.37 ± 0.09 from z = 4.55-1.96, then plateauing at dN CIV /dX∼0.34 for z = 1.96-1.46. Comparing our SDSS sample with z 5 (infrared) surveys, we see an approximately 10-fold increase in dN CIV /dX over z ≈ 6 → 0, for W r ≥ 0.6 Å. This suggests a monotonic and significant increase in the enrichment of gas outside galaxies over the 12 Gyr lifetime of the universe.

  18. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    International Nuclear Information System (INIS)

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2011-01-01

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 ≤ z ≤ 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ∼0.1-5 μm spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  19. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ryan A.; Shemmer, Ohad [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Fan Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Strauss, Michael A., E-mail: RyanLane@my.unt.edu, E-mail: ohad@unt.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  20. COMMENT ON THE BLACK HOLE RECOIL CANDIDATE QUASAR SDSS J092712.65+294344.0

    International Nuclear Information System (INIS)

    Shields, G. A.; Bonning, E. W.; Salviander, S.

    2009-01-01

    The Sloan Digital Sky Survey (SDSS) quasar J092712.65+294344.0 has been proposed as a candidate for a supermassive black hole (∼10 8.8 M sun ) ejected at high speed from the host galactic nucleus by gravitational radiation recoil, or alternatively for a supermassive black hole binary. This is based on a blueshift of 2650 km s -1 of the broad emission lines ('b-system') relative to the narrow emission lines ('r-system') presumed to reflect the galaxy velocity. New observations with the Hobby-Eberly Telescope (HET) confirm the essential features of the spectrum. We note a third redshift system, characterized by weak, narrow emission lines of [O III] and [O II] at an intermediate velocity 900 km s -1 redward of the broad-line velocity ('i-system'). A composite spectrum of SDSS QSOs similar to J0927+2943 illustrates the feasibility of detecting the calcium K absorption line in spectra of sufficient quality. The i-system may represent the QSO host galaxy or a companion. Photoionization requires the black hole to be ∼3 kpc from the r-system emitting gas, implying that we are observing the system only 10 6 yr after the recoil event and contributing to the low probability of observing such a system. The HET observations give an upper limit of 10 km s -1 per year on the rate of change of the velocity difference between the r- and b-systems, constraining the orbital phase in the binary model. These considerations and the presence of a cluster of galaxies apparently containing J0927+2943 favor the idea that this system represents a superposition of two active galactic nuclei.

  1. VizieR Online Data Catalog: Radio-loud and radio-quiet quasars sample (Gupta+, 2016)

    Science.gov (United States)

    Gupta, M.; Sikora, M.; Nalewajko, K.

    2017-11-01

    We performed matching of the FR II quasar sample of van Velzen et al. (2015, Cat. J/MNRAS/446/2985) (1108 sources) with the SDSS DR7 quasar catalogue (Schneider et al., 2010AJ....139.2360S, Cat. VII/260) (105 783 sources). We used a matching radius of 5 arcsec and obtained 899 objects. This resulting sample of FR II quasars was then matched with the sample of SDSS DR7 quasars detected by the Wide-field Infrared Survey Explorer (WISE) (Wu et al., 2012, Cat. J/AJ/144/49). This gave us 895 FR II quasars detected in the MIR band. The RQ sample with MIR data is constructed by matching the DR7 quasar catalogue (Schneider et al., 2010AJ....139.2360S, Cat. VII/260) and Wise all-sky catalogue (Wu et al., 2012, Cat. J/AJ/144/49), using a matching radius of 1 arcsec, resulting in 101 853 objects. From these we remove the 899 RL quasars matched with the catalogue by van Velzen et al. (2015, Cat. J/MNRAS/446/2985), this leaves us with 100 958 quasars. We then remove objects that were detected by the FIRST survey (Becker et al. 1995ApJ...450..559B, Cat. VIII/92), this gives us 92 648. We repeat the same process with the NVSS (Condon, Cotton & Broderick, 1998AJ....115.1693C, Cat. VIII/65) and end up with 92 445 objects. We also removed those objects that were outside the FIRST observation region. (2 data files).

  2. Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog

    Science.gov (United States)

    Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.

    2018-06-01

    We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log} =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.

  3. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS

    International Nuclear Information System (INIS)

    Weedman, Daniel; Sargsyan, Lusine; Houck, James; Barry, Donald; Lebouteiller, Vianney

    2012-01-01

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer (IRS) on Spitzer are given for 125 hard X-ray active galactic nuclei (AGNs; 14-195 keV) from the Swift Burst Alert Telescope (BAT) sample and for 32 AGNs with black hole masses (BHMs) from reverberation mapping. The 9.7 μm silicate feature in emission or absorption defines an infrared AGN classification describing whether AGNs are observed through dust clouds, indicating that 55% of the BAT AGNs are observed through dust. The mid-infrared dust continuum luminosity is shown to be an excellent indicator of intrinsic AGN luminosity, scaling closely with the hard X-ray luminosity, log νL ν (7.8 μm)/L(X) = –0.31 ± 0.35, and independent of classification determined from silicate emission or absorption. Dust luminosity scales closely with BHM, log νL ν (7.8 μm) = (37.2 ± 0.5) + 0.87 log BHM for luminosity in erg s –1 and BHM in M ☉ . The 100 most luminous type 1 quasars as measured in νL ν (7.8 μm) are found by comparing Sloan Digital Sky Survey (SDSS) optically discovered quasars with photometry at 22 μm from the Wide-Field Infrared Survey Explorer (WISE), scaled to rest frame 7.8 μm using an empirical template determined from IRS spectra. The most luminous SDSS/WISE quasars have the same maximum infrared luminosities for all 1.5 IR = 10 14.4 L ☉ . Comparing with dust-obscured galaxies from Spitzer and WISE surveys, we find no evidence of hyperluminous obscured quasars whose maximum infrared luminosities exceed the maximum infrared luminosities of optically discovered quasars. Bolometric luminosities L bol estimated from rest-frame optical or ultraviolet luminosities are compared to L IR . For the local AGN, the median log L IR /L bol = –0.35, consistent with a covering factor of 45% for the absorbing dust clouds. For the SDSS/WISE quasars, the median log L IR /L bol = 0.1, with extremes indicating that ultraviolet-derived L bol can be seriously underestimated even for type 1

  4. The CTIO surveys for large redshift quasars

    International Nuclear Information System (INIS)

    Osmer, P.S.

    1978-01-01

    Lyman α emission in large redshift quasars is readily detectable on slitless spectrograms taken with an objective combination on the 4m telescope. This provides a new survey method, independent of color for finding radio-quiet quasars in large numbers. Surveys by Smith with the Curtis Schmidt and Hoag and Smith with the 4 m telescope, have produced more than 200 candidates with 1.5< z<3.5 and 16< m<21. Spectroscopic observations with the CTIO SIT vidicon system have been carried out for more than 50 of the candidates, with the result that the basic properties of the surveys are known. To date three 16th magnitude quasars with zapproximately2.2 and six quasars with 3.0< z<3.25 have been found. One of the most important uses of the surveys will be the determination of the surface and surface densities of large redshift quasars. A preliminary analysis of the data indicates that the space density of quasars is at least constant, if not increasing, over the interval 1.0< z<3.25. However, the Hoag-Smith sample has only one candidate with z<3.2.(Auth.)

  5. MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK

    International Nuclear Information System (INIS)

    MacLeod, C. L.; Ivezic, Z.; Bullock, E.; Kimball, A.; Sesar, B.; Westman, D.; Brooks, K.; Gibson, R.; Becker, A. C.; Kochanek, C. S.; Kozlowski, S.; Kelly, B.; De Vries, W. H.

    2010-01-01

    We model the time variability of ∼9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results of Kelly et al. and Kozlowski et al. that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical description of quasar light curves by a characteristic timescale (τ) and an asymptotic rms variability on long timescales (SF ∞ ). We searched for correlations between these two variability parameters and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF ∞ to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF ∞ and black hole mass with a power-law index of 0.18 ± 0.03, independent of the anti-correlation with luminosity. We find that τ increases with increasing wavelength with a power-law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with a power-law index of 0.21 ± 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability amplitude between the full sample and the small subsample of quasars detected

  6. Gravitationally Lensed Quasars in Gaia: II. Discovery of 24 Lensed Quasars

    Science.gov (United States)

    Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.; Ostrovski, Fernanda

    2018-04-01

    We report the discovery, spectroscopic confirmation and preliminary characterisation of 24 gravitationally lensed quasars identified using Gaia observations. Candidates were selected in the Pan-STARRS footprint with quasar-like WISE colours or as photometric quasars from SDSS, requiring either multiple detections in Gaia or a single Gaia detection near a morphological galaxy. The Pan-STARRS grizY images were modelled for the most promising candidates and 60 candidate systems were followed up with the William Herschel Telescope. 13 of the lenses were discovered as Gaia multiples and 10 as single Gaia detections near galaxies. We also discover 1 lens identified through a quasar emission line in an SDSS galaxy spectrum. The lenses have median image separation 2.13″ and the source redshifts range from 1.06 to 3.36. 4 systems are quadruply-imaged and 20 are doubly-imaged. Deep CFHT data reveal an Einstein ring in one double system. We also report 12 quasar pairs, 10 of which have components at the same redshift and require further follow-up to rule out the lensing hypothesis. We compare the properties of these lenses and other known lenses recovered by our search method to a complete sample of simulated lenses to show the lenses we are missing are mainly those with small separations and higher source redshifts. The initial Gaia data release only catalogues all images of ˜ 30% of known bright lensed quasars, however the improved completeness of Gaia data release 2 will help find all bright lensed quasars on the sky.

  7. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  8. The Cluster Lens SDSS 1004+4112: Constraining World Models With its Multiply-Imaged Quasar and Galaxies

    Science.gov (United States)

    Kochanek, C.

    2005-07-01

    We will use deep ACS imaging of the giant {15 arcsec} four-image z_s=1.734 lensed quasar SDSS 1004+4112, and its z_l=0.68 lensing galaxy cluster, to identify many additional multiply-imaged background galaxies. Combining the existing single orbit ACS I-band image with ground based data, we have definitely identified two multiply imaged galaxies with estimated redshifts of 2.6 and 4.3, about 15 probable images of background galaxies, and a point source in the core of the central cD galaxy, which is likely to be the faint, fifth image of the quasar. The new data will provide accurate photometric redshifts, confirm that the candidate fifth image has the same spectral energy distribution as the other quasar images, allow secure identification of additional multiply-lensed galaxies for improving the mass model, and permit identification of faint cluster members. Due to the high lens redshift and the broad redshift distribution of the lensed background sources, we should be able to use the source-redshift scaling of the Einstein radius that depends on {d_ls/d_os}, to derive a direct, geometric estimate of Omega_Lambda. The deeper images will also allow a weak lensing analysis to extend the mass distribution to larger radii. Unlike any other cluster lenses, the time delay between the lensed quasar images {already measured for the A-B images, and measurable for the others over the next few years}, breaks the so-called kappa-degeneracies that complicate weak-lensing analyses.

  9. THE COMPOSITE SPECTRUM OF BOSS QUASARS SELECTED FOR STUDIES OF THE Ly α FOREST

    Energy Technology Data Exchange (ETDEWEB)

    Harris, David W.; Jensen, Trey W.; Bautista, Julian E.; Dawson, Kyle S.; Vivek, M.; Brownstein, Joel R.; Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Suzuki, Nao [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, 277-8583 (Japan); Ge, Jian; Hamann, Fred; Herbst, H. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Moran, Sarah E. [Barnard College, 3009 Broadway, New York, NY 10027 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Schneider, Donald P., E-mail: davidharris314@gmail.com [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-06-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) has collected more than 150,000 2.1 ≤  z  ≤ 3.5 quasar spectra since 2009. Using this unprecedented sample, we create a composite spectrum in the rest-frame of 102,150 quasar spectra from 800–3300 Å at a signal-to-noise ratio close to 1000 per pixel (Δ v of 69 km s{sup −1}). Included in this analysis is a correction to account for flux calibration residuals in the BOSS spectrophotometry. We determine the spectral index as a function of redshift of the full sample, warp the composite spectrum to match the median spectral index, and compare the resulting spectrum to Sloan Digital Sky Survey (SDSS) photometry used in target selection. The quasar composite matches the color of the quasar population to 0.02 mag in g  −  r , 0.03 mag in r  −  i , and 0.01 mag in i  −  z over the redshift range 2.2 <  z  < 2.6. The composite spectrum deviates from the imaging photometry by 0.05 mag around z = 2.7, likely due to differences in target selection as the quasar colors become similar to the stellar locus at this redshift. Finally, we characterize the line features in the high signal-to-noise composite and identify nine faint lines not found in the previous composite spectrum from SDSS.

  10. The FIRST-2MASS Red Quasar Survey

    International Nuclear Information System (INIS)

    Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D; Lacy, M

    2007-01-01

    Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a ∼ 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that ∼> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K (le) 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%

  11. Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Science.gov (United States)

    Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Rigby, J. R.

    2015-11-01

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be {τ }{{AB}}=47.7+/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of {τ }{{CA}}=722+/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and including observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnologi´a e Innovación Productiva (Argentina).

  12. Precious metals in SDSS quasar spectra. II. Tracking the evolution of strong, 0.4 < z < 2.3 Mg II absorbers with thousands of systems

    International Nuclear Information System (INIS)

    Seyffert, Eduardo N.; Simcoe, Robert A.; Cooksey, Kathy L.; O'Meara, John M.; Kao, Melodie M.; Prochaska, J. Xavier

    2013-01-01

    We have performed an analysis of over 34,000 Mg II doublets at 0.36 < z < 2.29 in Sloan Digital Sky Survey (SDSS) Data Release 7 quasar spectra; the catalog, advanced data products, and tools for analysis are publicly available. The catalog was divided into 14 small redshift bins with roughly 2500 doublets in each and from Monte Carlo simulations, we estimate 50% completeness at rest equivalent width W r ≈ 0.8 Å. The equivalent width frequency distribution is described well by an exponential model at all redshifts, and the distribution becomes flatter with increasing redshift, i.e., there are more strong systems relative to weak ones. Direct comparison with previous SDSS Mg II surveys reveals that we recover at least 70% of the doublets in these other catalogs, in addition to detecting thousands of new systems. We discuss how these surveys came by their different results, which qualitatively agree but because of the very small uncertainties, differ by a statistically significant amount. The estimated physical cross section of Mg II-absorbing galaxy halos increased approximately threefold from z = 0.4 to z = 2.3, while the W r ≥ 1 Å absorber line density, dN MgII /dX, grew by roughly 45%. Finally, we explore the different evolution of various absorber populations—damped Lyα absorbers, Lyman limit systems, strong C IV absorbers, and strong and weaker Mg II systems—across cosmic time (0 < z < 6).

  13. SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT z = 5.18 WITH EXTREMELY HIGH LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Ho, Luis C.; Zuo, Wenwen; Yang, Qian; Ai, Yanli [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Brandt, William N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Wang, Ran [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); and others

    2014-11-10

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  14. BROAD ABSORPTION LINE DISAPPEARANCE ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 (Canada); Anderson, S. F.; Gibson, R. R. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Lundgren, B. F. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Myers, A. D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Petitjean, P. [Institut d' Astrophysique de Paris, Universite Paris 6, F-75014, Paris (France); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 92420 (United States); Shen Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); York, D. G. [Department of Astronomy and Astrophysics, and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Bizyaev, D.; Brinkmann, J.; Malanushenko, E.; Oravetz, D. J.; Pan, K.; Simmons, A. E. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Weaver, B. A., E-mail: nfilizak@astro.psu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-10-01

    We present 21 examples of C IV broad absorption line (BAL) trough disappearance in 19 quasars selected from systematic multi-epoch observations of 582 bright BAL quasars (1.9 < z < 4.5) by the Sloan Digital Sky Survey-I/II (SDSS-I/II) and SDSS-III. The observations span 1.1-3.9 yr rest-frame timescales, longer than have been sampled in many previous BAL variability studies. On these timescales, Almost-Equal-To 2.3% of C IV BAL troughs disappear and Almost-Equal-To 3.3% of BAL quasars show a disappearing trough. These observed frequencies suggest that many C IV BAL absorbers spend on average at most a century along our line of sight to their quasar. Ten of the 19 BAL quasars showing C IV BAL disappearance have apparently transformed from BAL to non-BAL quasars; these are the first reported examples of such transformations. The BAL troughs that disappear tend to be those with small-to-moderate equivalent widths, relatively shallow depths, and high outflow velocities. Other non-disappearing C IV BALs in those nine objects having multiple troughs tend to weaken when one of them disappears, indicating a connection between the disappearing and non-disappearing troughs, even for velocity separations as large as 10,000-15,000 km s{sup -1}. We discuss possible origins of this connection including disk-wind rotation and changes in shielding gas.

  15. A SYSTEMATIC SEARCH FOR PERIODICALLY VARYING QUASARS IN PAN-STARRS1: AN EXTENDED BASELINE TEST IN MEDIUM DEEP SURVEY FIELD MD09

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Gezari, S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Burgett, W. [GMTO Corp, 465 N. Halstead St, Suite 250, Pasadena, CA 91107 (United States); Chambers, K.; Hodapp, K.; Huber, M.; Kudritzki, R.-P.; Magnier, E.; Tonry, J.; Wainscoat, R.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P.; Metcalfe, N., E-mail: tingting@astro.umd.edu [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2016-12-10

    We present a systematic search for periodically varying quasars and supermassive black hole binary (SMBHB) candidates in the Pan-STARRS1 (PS1) Medium Deep Survey’s MD09 field. From a color-selected sample of 670 quasars extracted from a multi-band deep-stack catalog of point sources, we locally select variable quasars and look for coherent periods with the Lomb–Scargle periodogram. Three candidates from our sample demonstrate strong variability for more than ∼3 cycles, and their PS1 light curves are well fitted to sinusoidal functions. We test the persistence of the candidates’ apparent periodic variations detected during the 4.2 years of the PS1 survey with archival photometric data from the SDSS Stripe 82 survey or new monitoring with the Large Monolithic Imager at the Discovery Channel Telescope. None of the three periodic candidates (including PSO J334.2028+1.4075) remain persistent over the extended baseline of 7–14 years, corresponding to a detection rate of <1 in 670 quasars in a search area of ≈5 deg{sup 2}. Even though SMBHBs should be a common product of the hierarchal growth of galaxies, and periodic variability in SMBHBs has been theoretically predicted, a systematic search for such signatures in a large optical survey is strongly limited by its temporal baseline and the “red noise” associated with normal quasar variability. We show that follow-up long-term monitoring (≳5 cycles) is crucial to our search for these systems.

  16. The Discovery of a Luminous Z=5.80 Quasar from the Sloan Digital Sky Survey

    Science.gov (United States)

    Fan, Xiaohui; White, Richard L.; Davis, Marc; Becker, Robert H.; Strauss, Michael A.; Haiman, Zoltan; Schneider, Donald P.; Gregg, Michael D.; Gunn, James E.; Knapp, G. R.; Lupton, Robert H.; Anderson, John E., Jr.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Boroski, William N.; Brunner, Robert J.; Chen, Bing; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Hennessy, G. S.; Hindsley, Robert B.; Ichikawa, Takashi; Ivezić, Željko; Loveday, Jon; Meiksin, Avery; McKay, Timothy A.; Munn, Jeffrey A.; Newberg, Heidi Jo; Nichol, Robert; Okamura, Sadanori; Pier, Jeffrey R.; Sekiguchi, Maki; Shimasaku, Kazuhiro; Stoughton, Chris; Szalay, Alexander S.; Szokoly, Gyula P.; Thakar, Aniruddha R.; Vogeley, Michael S.; York, Donald G.

    2000-09-01

    We present observations of SDSSp J104433.04-012502.2, a luminous quasar at z=5.80 discovered from Sloan Digital Sky Survey (SDSS) multicolor imaging data. This object was selected as an i'-band dropout object, with i*=21.8+/-0.2 and z*=19.2+/-0.1. It has an absolute magnitude M1450=-27.2 (H0=50 km s-1 Mpc-1, q0=0.5). The spectrum shows a strong and broad Lyα emission line, strong Lyα forest absorption lines with a mean continuum decrement DA=0.91 and a Lyman limit system at z=5.72. The spectrum also shows strong O I and Si IV emission lines similar to those of quasars at zuniverse is already highly ionized at z~5.8. Using a high-resolution spectrum in the Lyα forest region, we place a conservative upper limit on the optical depth because of the Gunn-Peterson effect of τUniversity of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  17. Detection of baryon acoustic oscillations in the Lyman-α forests of BOSS quasar spectra

    International Nuclear Information System (INIS)

    Delubac, Timothee

    2013-01-01

    Baryon acoustic oscillations (BAO) form a standard ruler that can be used to constrain different cosmological models. This thesis reports the first measurement of the BAO feature in the correlation function of the transmitted flux fraction in the Lyman-α forests of high redshift quasars. This detection uses 89322 quasar spectra measured by the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). Redshift of used quasars belong to the range 2.1≤z≤3.5. A peak in the correlation function is seen at 1.043"+"0"."0"2"1_-_0_._0_2_0 times the expected BAO peak position for a concordance ΛCDM model. In addition this thesis presents a new method of quasar selection through their variability. This method is applied to the Stripe 82 region where an important number of multi-epoch photometric data is available. On this region it achieves a quasar density of 30 deg"-"2 to be compared with the 18 deg"-"2 of usual color selections. (author) [fr

  18. Cross-correlation of SDSS DR7 quasars and DR10 BOSS galaxies: The weak luminosity dependence of quasar clustering at z ∼ 0.5

    International Nuclear Information System (INIS)

    Shen, Yue; McBride, Cameron K.; Swanson, Molly E. C.; White, Martin; Kirkpatrick, Jessica A.; Ross, Nicholas P.; Schlegel, David J.; Zheng, Zheng; Myers, Adam D.; Guo, Hong; Zehavi, Idit; Padmanabhan, Nikhil; Parejko, John K.; Schneider, Donald P.; Streblyanska, Alina; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Malanushenko, Viktor

    2013-01-01

    We present the measurement of the two-point cross-correlation function (CCF) of 8198 Sloan Digital Sky Survey Data Release 7 quasars and 349,608 Data Release 10 CMASS galaxies from the Baryonic Oscillation Spectroscopic Survey at 0.3 < z < 0.9. The CCF can be reasonably well fit by a power-law model ξ QG (r) = (r/r 0 ) –γ on projected scales of r p = 2-25 h –1 Mpc with r 0 = 6.61 ± 0.25 h –1 Mpc and γ = 1.69 ± 0.07. We estimate a quasar linear bias of b Q = 1.38 ± 0.10 at (z) = 0.53 from the CCF measurements, which corresponds to a characteristic host halo mass of ∼4 × 10 12 h –1 M ☉ , compared with a ∼10 13 h –1 M ☉ characteristic host halo mass for CMASS galaxies. Based on the clustering measurements, most quasars at z-bar ∼0.5 are not the descendants of their higher luminosity counterparts at higher redshift, which would have evolved into more massive and more biased systems at low redshift. We divide the quasar sample in luminosity and constrain the luminosity dependence of quasar bias to be db Q /dlog L = 0.20 ± 0.34 or 0.11 ± 0.32 (depending on different luminosity divisions) for quasar luminosities –23.5 > M i (z = 2) > –25.5, implying a weak luminosity dependence of clustering for luminous quasars at z-bar ∼0.5. We compare our measurements with theoretical predictions, halo occupation distribution (HOD) models, and mock catalogs. These comparisons suggest that quasars reside in a broad range of host halos. The host halo mass distributions significantly overlap with each other for quasars at different luminosities, implying a poor correlation between halo mass and instantaneous quasar luminosity. We also find that the quasar HOD parameterization is largely degenerate such that different HODs can reproduce the CCF equally well, but with different satellite fractions and host halo mass distributions. These results highlight the limitations and ambiguities in modeling the distribution of quasars with the standard HOD approach.

  19. X-RAY AND MULTIWAVELENGTH INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT LOW REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92903 (United States); Hall, Patrick B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON M3J 1P3 (Canada); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Shemmer, Ohad, E-mail: jfwu@astro.psu.edu [Department of Physics, University of North Texas, Denton, TX 76203 (United States)

    2012-03-01

    We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z = 0.4-2.5. Our sample was selected from the Plotkin et al. catalog of radio-quiet, weak-featured active galactic nuclei (AGNs). The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. Over half of the low-redshift WLQ candidates are X-ray weak by a factor of {approx}> 5, compared to a typical SDSS quasar with similar UV/optical luminosity. These X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811 (weak and blueshifted high-ionization lines, weak semiforbidden lines, and strong UV Fe emission); they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization 'shielding gas' covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. The mid-infrared-to-UV SEDs of most radio-quiet weak-featured AGNs without sensitive X-ray coverage (34 objects) are also consistent with those of typical SDSS quasars. However, one source in our

  20. X-RAY AND MULTIWAVELENGTH INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT LOW REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Anderson, Scott F.; Diamond-Stanic, Aleksandar M.; Hall, Patrick B.; Plotkin, Richard M.; Shemmer, Ohad

    2012-01-01

    We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z = 0.4-2.5. Our sample was selected from the Plotkin et al. catalog of radio-quiet, weak-featured active galactic nuclei (AGNs). The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. Over half of the low-redshift WLQ candidates are X-ray weak by a factor of ∼> 5, compared to a typical SDSS quasar with similar UV/optical luminosity. These X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811 (weak and blueshifted high-ionization lines, weak semiforbidden lines, and strong UV Fe emission); they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization 'shielding gas' covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. The mid-infrared-to-UV SEDs of most radio-quiet weak-featured AGNs without sensitive X-ray coverage (34 objects) are also consistent with those of typical SDSS quasars. However, one source in our X

  1. Quasars as Cosmological Standard Candles

    International Nuclear Information System (INIS)

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W.; Esparza-Arredondo, Donají; Martínez-Aldama, Mary L.; Del Olmo, Ascensión

    2017-01-01

    We propose the use of quasars with accretion rate near the Eddington ratio (extreme quasars) as standard candles. The selection criteria are based on the Eigenvector 1 (E1) formalism. Our first sample is a selection of 334 optical quasar spectra from the SDSS DR7 database with a S/N > 20. Using the E1, we define primary and secondary selection criteria in the optical spectral range. We show that it is possible to derive a redshift-independent estimate of luminosity for extreme Eddington ratio sources. Our results are consistent with concordance cosmology but we need to work with other spectral ranges to take into account the quasar orientation, among other constrains.

  2. Quasars as Cosmological Standard Candles

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, C. Alenka [CONACYT Research Fellow - Instituto de Astronomía, UNAM, Mexico City (Mexico); Dultzin, Deborah [Instituto de Astronomía, UNAM, Mexico City (Mexico); Marziani, Paola [INAF, Osservatorio Astronomico di Padova, Padua (Italy); Sulentic, Jack W. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Granada (Spain); Esparza-Arredondo, Donají [Instituto de Radioastronomía y Astrofísica, Morelia (Mexico); Martínez-Aldama, Mary L.; Del Olmo, Ascensión, E-mail: alenka@astro.unam.mx [Instituto de Astrofísica de Andalucía, IAA-CSIC, Granada (Spain)

    2017-12-15

    We propose the use of quasars with accretion rate near the Eddington ratio (extreme quasars) as standard candles. The selection criteria are based on the Eigenvector 1 (E1) formalism. Our first sample is a selection of 334 optical quasar spectra from the SDSS DR7 database with a S/N > 20. Using the E1, we define primary and secondary selection criteria in the optical spectral range. We show that it is possible to derive a redshift-independent estimate of luminosity for extreme Eddington ratio sources. Our results are consistent with concordance cosmology but we need to work with other spectral ranges to take into account the quasar orientation, among other constrains.

  3. The clustering of quasars from an objective-prism survey

    International Nuclear Information System (INIS)

    Webster, A.

    1982-01-01

    The positions and redshifts of 108 quasars from the Cerro Tololo objective-prism survey are subjected to Fourier Power Spectrum Analysis in a search for clustering in their spatial distribution. It is found that, on the whole, these quasars are not clustered but are scattered in space independently at random. The sole exception is a group of four quasars at z = 0.37 which has a low probability of being a chance event and which, with a size of about 100 Mpc, may therefore be the largest known structure in the Universe. The conclusions disagree with Arp's analysis of this catalogue: his 'clouds of quasars' ejected by certain low-redshift galaxies, for example, are attributable to sensitivity variations among the different plates of the survey. It is shown that analysis of deeper surveys is likely to show up quasar clusters even at high redshift, and could therefore provide a useful new cosmological probe. (author)

  4. Selections from 2017: Mapping the Universe with SDSS-IV

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant UniversePublished June2017Main takeaway:The incredibly prolific Sloan Digital Sky Survey has provided photometric observations of around 500 million objects and spectra for more than 3 million objects. The survey has now entered its fourth iteration, SDSS-IV, with the first public data release made in June 2016. A publication led by Michael Blanton (New York University) describes the facilities used for SDSS-IV, its science goals, and itsthree coreprograms.Why its interesting:Since data collection began in 2000, SDSS has been one of the premier surveysproviding imaging and spectroscopy for objects in both the near and distant universe.SDSS has measured spectra not only for the stars in our own Milky Way, but also for galaxies that lie more than 7 billion light-years distant making itan extremelyuseful and powerful tool for mapping our universe.What SDSS-IV is looking for:SDSS image of an example MaNGA target galaxy (left), with some of the many things we can learn about it shown in the right and bottom panels: stellar velocity dispersion, stellar mean velocity, stellar population age, metallicity, etc. [Blanton et al. 2017]SDSS-IV containsthree core programs:Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2)provides high-resolution near-infrared spectra of hundreds of thousands of Milky-Way stars with the goal ofimproving our understanding of the history of the Milky Way and of stellar astrophysics.Mapping Nearby Galaxies at Apache Point Observatory (MaNGA)obtains spatially resolved spectra for thousands of nearby galaxiesto better understand the evolutionary histories of galaxies and what regulates their star formation

  5. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey

    International Nuclear Information System (INIS)

    Wang, Feige; Yang, Jinyi; Wu, Xue-Bing; Yang, Qian; Li, Zefeng; Fan, Xiaohui; McGreer, Ian D.; Ding, Jiani; Green, Richard; Bian, Fuyan; Li, Jiang-Tao; Dey, Arjun; Dye, Simon; Findlay, Joseph R.; Myers, Adam D.; James, David; Jiang, Linhua; Lang, Dustin; Lawrence, Andy; Ross, Nicholas P.

    2017-01-01

    We present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg 2 of sky down to z AB ∼ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J VEGA ∼ 19.6 (5- σ ). The combination of these data sets allows us to discover quasars at redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ∼ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M 1450 = −25.83 and M 1450 = −25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M 1450 = −25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Extrapolating from previous QLF measurements, we predict that these combined data sets will yield ∼200 z ∼ 6 quasars to z AB < 21.5, ∼1000 z ∼ 6 quasars to z AB < 23, and ∼30 quasars at z > 6.5 to J VEGA < 19.5.

  6. THE EXTENDED HIGH A ( V ) QUASAR SURVEY: SEARCHING FOR DUSTY ABSORBERS TOWARD MID-INFRARED-SELECTED QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Fynbo, J. P. U.; Heintz, K. E.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-20

    We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Ly α absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in their spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A ( V ) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Ly α in absorption.

  7. On the Role of the Environments and Star Formation for Quasar Activity

    International Nuclear Information System (INIS)

    Bettoni, Daniela; Falomo, Renato; Kotilainen, Jari K.; Karhunen, Kalle

    2017-01-01

    We investigate the host galaxy and environment properties of a sample of 400 low z (<0.5) quasars that were imaged in the SDSS Stripe82. We can detect and study the properties of the host galaxy for more than 75% of the data sample. We discover that quasar are mainly hosted in luminous galaxies of absolute magnitude M * − 3 < M(R) < M *1 and that in the quasar environments the galaxy number density is comparable to that of inactive galaxies of similar luminosities. For these quasars we undertake also a study in u,g,r,i, and z SDSS bands and again we discover that the mean colors of the quasar host galaxy it is not very different with respect to the values of the sample of inactive galaxies. For a subsample of low z sources the imaging study is complemented by spectroscopy of quasar hosts and of close companion galaxies. This study suggests that the supply and cause of the nuclear activity depends only weakly on the local environment of quasars. Contrary to past suggestions, for low redshift quasar there is a very modest connection between recent star formation and the nuclear activity.

  8. On the Role of the Environments and Star Formation for Quasar Activity

    Directory of Open Access Journals (Sweden)

    Daniela Bettoni

    2017-11-01

    Full Text Available We investigate the host galaxy and environment properties of a sample of 400 low z (<0.5 quasars that were imaged in the SDSS Stripe82. We can detect and study the properties of the host galaxy for more than 75% of the data sample. We discover that quasar are mainly hosted in luminous galaxies of absolute magnitude M* − 3 < M(R < M*1 and that in the quasar environments the galaxy number density is comparable to that of inactive galaxies of similar luminosities. For these quasars we undertake also a study in u,g,r,i, and z SDSS bands and again we discover that the mean colors of the quasar host galaxy it is not very different with respect to the values of the sample of inactive galaxies. For a subsample of low z sources the imaging study is complemented by spectroscopy of quasar hosts and of close companion galaxies. This study suggests that the supply and cause of the nuclear activity depends only weakly on the local environment of quasars. Contrary to past suggestions, for low redshift quasar there is a very modest connection between recent star formation and the nuclear activity.

  9. On the Role of the Environments and Star Formation for Quasar Activity

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Daniela; Falomo, Renato [INAF - Osservatorio Astronomico di Padova, Padua (Italy); Kotilainen, Jari K. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland); Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku (Finland); Karhunen, Kalle, E-mail: daniela.bettoni@oapd.inaf.it [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku (Finland)

    2017-11-16

    We investigate the host galaxy and environment properties of a sample of 400 low z (<0.5) quasars that were imaged in the SDSS Stripe82. We can detect and study the properties of the host galaxy for more than 75% of the data sample. We discover that quasar are mainly hosted in luminous galaxies of absolute magnitude M{sup *} − 3 < M(R) < M{sup *1} and that in the quasar environments the galaxy number density is comparable to that of inactive galaxies of similar luminosities. For these quasars we undertake also a study in u,g,r,i, and z SDSS bands and again we discover that the mean colors of the quasar host galaxy it is not very different with respect to the values of the sample of inactive galaxies. For a subsample of low z sources the imaging study is complemented by spectroscopy of quasar hosts and of close companion galaxies. This study suggests that the supply and cause of the nuclear activity depends only weakly on the local environment of quasars. Contrary to past suggestions, for low redshift quasar there is a very modest connection between recent star formation and the nuclear activity.

  10. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Hall, Patrick B. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); McGreer, Ian D.; Fan, Xiaohui [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Anderson, Scott F. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Chen, Yuguang [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Denney, Kelly D. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Eftekharzadeh, Sarah [Department of Physics and Astronomy, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071 (United States); Gao, Yang [Department of Engineering Physics and Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Green, Paul J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Horne, Keith [SUPA Physics/Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Jiang, Linhua [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1504 (United States); Kelly, Brandon C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); and others

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ∼4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ∼2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ∼10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.

  11. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW

    International Nuclear Information System (INIS)

    Shen, Yue; Brandt, W. N.; Dawson, Kyle S.; Hall, Patrick B.; McGreer, Ian D.; Fan, Xiaohui; Anderson, Scott F.; Chen, Yuguang; Denney, Kelly D.; Eftekharzadeh, Sarah; Gao, Yang; Green, Paul J.; Greene, Jenny E.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Kelly, Brandon C.

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg 2 field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i psf = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ∼4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ∼2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ∼10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science

  12. A z = 3 Lyα BLOB ASSOCIATED WITH A DAMPED Lyα SYSTEM PROXIMATE TO ITS BACKGROUND QUASAR

    International Nuclear Information System (INIS)

    Hennawi, Joseph F.; Prochaska, J. Xavier; Kollmeier, Juna; Zheng Zheng

    2009-01-01

    We report on the discovery of a bright Lyα blob associated with the z = 3 quasar SDSS J124020.91+145535.6 which is also coincident with strong damped Lyα absorption from a foreground galaxy (a so-called proximate damped Lyα (PDLA) system). The one-dimensional spectrum acquired by the Sloan Digital Sky Survey (SDSS) shows a broad Lyα emission line with a FWHM ≅500 km s -1 and a luminosity of L Lyα = 3.9 x 10 43 erg s -1 superposed on the trough of the PDLA. Follow-up observations using the Keck/LRIS spectrometer confirm that this source has a Lyα nebula with spatial extent exceeding 5'', corresponding to a proper size >39 kpc. Mechanisms for powering the large Lyα luminosity in this nebula are discussed. We use a Monte Carlo radiative transfer simulation to investigate the possibility that the line emission is fluorescent recombination radiation from a kpc-scale PDLA galaxy powered by the ionizing flux of the quasar, but find that the predicted Lyα flux is several orders of magnitude lower than observed. We conclude that the Lyα emission is not associated with the PDLA galaxy at all, but instead is intrinsic to the quasar's host and similar to the extended Lyα f uzzwhich is detected around many active galactic nuclei. PDLAs are natural coronagraphs that block their background quasar at Lyα and we discuss how systems similar to SDSS J124020.91+145535.6 might be used to image the neutral hydrogen in the PDLA galaxy in silhouette against the screen of extended Lyα emission from the background quasar.

  13. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feige; Yang, Jinyi; Wu, Xue-Bing; Yang, Qian; Li, Zefeng [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui; McGreer, Ian D.; Ding, Jiani; Green, Richard [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bian, Fuyan [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Li, Jiang-Tao [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Avenue, Ann Arbor, MI, 48109 (United States); Dey, Arjun [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Dye, Simon [School of Physics and Astronomy, Nottingham University, University Park, Nottingham, NG7 2RD (United Kingdom); Findlay, Joseph R.; Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); James, David [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Lang, Dustin [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, M5S 3H4 (Canada); Lawrence, Andy; Ross, Nicholas P. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); and others

    2017-04-10

    We present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg{sup 2} of sky down to z {sub AB} ∼ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J {sub VEGA} ∼ 19.6 (5- σ ). The combination of these data sets allows us to discover quasars at redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ∼ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M {sub 1450} = −25.83 and M {sub 1450} = −25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M {sub 1450} = −25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Extrapolating from previous QLF measurements, we predict that these combined data sets will yield ∼200 z ∼ 6 quasars to z {sub AB} < 21.5, ∼1000 z ∼ 6 quasars to z {sub AB} < 23, and ∼30 quasars at z > 6.5 to J {sub VEGA} < 19.5.

  14. Probing black hole accretion in quasar pairs at high redshift

    Science.gov (United States)

    Vignali, C.; Piconcelli, E.; Perna, M.; Hennawi, J.; Gilli, R.; Comastri, A.; Zamorani, G.; Dotti, M.; Mathur, S.

    2018-06-01

    Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here, we present the X-ray properties of two systems of dual quasars at z = 3.0-3.3 selected from the SDSS DR6 at separations of 6-8 arcsec (43-65 kpc) and observed by Chandra for ≈65 ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z = 5 (separation of 21 arcsec, 136 kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both quasar pairs at z ≈ 3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z ≈ 3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3 per cent probability that it is by chance.

  15. Probing black hole accretion in quasar pairs at high redshift

    Science.gov (United States)

    Vignali, C.; Piconcelli, E.; Perna, M.; Hennawi, J.; Gilli, R.; Comastri, A.; Zamorani, G.; Dotti, M.; Mathur, S.

    2018-03-01

    Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here we present the X-ray properties of two systems of dual quasars at z=3.0-3.3 selected from the SDSS DR6 at separations of 6-8 arcsec (43-65 kpc) and observed by Chandra for ≈65 ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z=5 (separation of 21″, 136 kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both quasar pairs at z ≈ 3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z ≈ 3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3% probability that it is by chance.

  16. The Clustering of High-redshift (2.9 ≤ z ≤ 5.1) Quasars in SDSS Stripe 82

    Science.gov (United States)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Myers, Adam D.; Pellegrino, Andrew; Bauer, Franz E.; Lacy, Mark; Schneider, Donald P.; Wollack, Edward J.; Zakamska, Nadia L.

    2018-05-01

    We present a measurement of the two-point autocorrelation function of photometrically selected high-z quasars over ∼100 deg2 on the Sloan Digital Sky Survey Stripe 82 field. Selection is performed using three machine-learning algorithms in a six-dimensional optical/mid-infrared color space. Optical data from the Sloan Digital Sky Survey are combined with overlapping deep mid-infrared data from the Spitzer IRAC Equatorial Survey and the Spitzer-HETDEX Exploratory Large-Area survey. Our selection algorithms are trained on the colors of known high-z quasars. The selected quasar sample consists of 1378 objects and contains both spectroscopically confirmed quasars and photometrically selected quasar candidates. These objects span a redshift range of 2.9 ≤ z ≤ 5.1 and are generally fainter than i = 20.2, a regime that has lacked sufficient number density to perform autocorrelation function measurements of photometrically classified quasars. We compute the angular correlation function of these data, marginally detecting quasar clustering. We fit a single power law with an index of δ = 1.39 ± 0.618 and amplitude of θ 0 = 0.‧71 ± 0.‧546 . A dark matter model is fit to the angular correlation function to estimate the linear bias. At the average redshift of our survey ( =3.38), the bias is b = 6.78 ± 1.79. Using this bias, we calculate a characteristic dark matter halo mass of 1.70–9.83× {10}12{h}-1 {M}ȯ . Our bias estimate suggests that quasar feedback intermittently shuts down the accretion of gas onto the central supermassive black hole at early times. If confirmed, these results hint at a level of luminosity dependence in the clustering of quasars at high-z.

  17. Millijansky radio variability in SDSS stripe 82

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, J. A.; Becker, R. H. [University of California, 1 Shields Avenue, Davis, CA 95616 (United States); White, R. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Richards, G. T., E-mail: hodge@mpia.de [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)

    2013-06-01

    We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the Faint Images of the Radio Sky at Twenty centimeters survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart and have an overlapping area of 60 deg{sup 2}. We uncover 89 variable sources down to the millijansky level, 75 of which are newly identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of active galactic nucleus radio variability of 14 yr. We find that only 1% of extragalactic sources have fractional variability f {sub var} > 3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the sub-millijansky regime.

  18. HOT-DUST-POOR QUASARS IN MID-INFRARED AND OPTICALLY SELECTED SAMPLES

    International Nuclear Information System (INIS)

    Hao Heng; Elvis, Martin; Civano, Francesca; Lawrence, Andy

    2011-01-01

    We show that the hot-dust-poor (HDP) quasars, originally found in the X-ray-selected XMM-COSMOS type 1 active galactic nucleus (AGN) sample, are just as common in two samples selected at optical/infrared wavelengths: the Richards et al. Spitzer/SDSS sample (8.7% ± 2.2%) and the Palomar-Green-quasar-dominated sample of Elvis et al. (9.5% ± 5.0%). The properties of the HDP quasars in these two samples are consistent with the XMM-COSMOS sample, except that, at the 99% (∼ 2.5σ) significance, a larger proportion of the HDP quasars in the Spitzer/SDSS sample have weak host galaxy contributions, probably due to the selection criteria used. Either the host dust is destroyed (dynamically or by radiation) or is offset from the central black hole due to recoiling. Alternatively, the universality of HDP quasars in samples with different selection methods and the continuous distribution of dust covering factor in type 1 AGNs suggest that the range of spectral energy distributions could be related to the range of tilts in warped fueling disks, as in the model of Lawrence and Elvis, with HDP quasars having relatively small warps.

  19. The Hunt for Red Quasars: Luminous Obscured Black Hole Growth Unveiled in the Stripe 82 X-Ray Survey

    Science.gov (United States)

    LaMassa, Stephanie M.; Glikman, Eilat; Brusa, Marcella; Rigby, Jane R.; Tasnim Ananna, Tonima; Stern, Daniel; Lira, Paulina; Urry, C. Megan; Salvato, Mara; Alexandroff, Rachael; Allevato, Viola; Cardamone, Carolin; Civano, Francesca; Coppi, Paolo; Farrah, Duncan; Komossa, S.; Lanzuisi, Giorgio; Marchesi, Stefano; Richards, Gordon; Trakhtenbrot, Benny; Treister, Ezequiel

    2017-10-01

    We present results of a ground-based near-infrared campaign with Palomar TripleSpec, Keck NIRSPEC, and Gemini GNIRS to target two samples of reddened active galactic nucleus (AGN) candidates from the 31 deg2 Stripe 82 X-ray survey. One sample, which is ˜89% complete to Kprogram, and is selected to have red R - K colors (> 4, Vega). The fainter sample (K> 17, Vega) represents a pilot program to follow-up four sources from a parent sample of 34 that are not detected in the single-epoch SDSS catalog and have WISE quasar colors. All 12 sources are broad-line AGNs (at least one permitted emission line has an FWHM exceeding 1300 km s-1) and span a redshift range 0.59 0.5), and a greater percentage have high X-ray luminosities ({L}{{X},{full}}> {10}44 erg s-1). Such outflows and high luminosities may be consistent with the paradigm that reddened broad-line AGNs represent a transitory phase in AGN evolution as described by the major merger model for black hole growth. Results from our pilot program demonstrate proof of concept that our selection technique is successful in discovering reddened quasars at z> 1 missed by optical surveys.

  20. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    Science.gov (United States)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; hide

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  1. Discovery of a red quasar with recurrent activity

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S.; Baes, M.; Gentile, G. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Roy, R. [Institut d' Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bât B5c, B-4000 Liège (Belgium); Saikia, D.J. [National Centre for Radio Astrophysics, TIFR, Pune University Campus, Post Bag 3, Pune 411007 (India); Singh, M.; Joshi, R. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital, 263002 (India); Chandola, H.C. [Department of Physics, Kumaun University, Nainital 263001 (India); Patgiri, M., E-mail: sumana1981@gmail.com, E-mail: Sumana.Nandi@UGent.be [Cotton College, Panbazar, Guwahati 781001 (India)

    2014-07-01

    We report a new double-double radio quasar (DDRQ) J0746+4526 which exhibits two cycles of episodic activity. From radio continuum observations at 607 MHz using the Giant Metrewave Radio Telescope and 1400 MHz from the Faint Images of the Radio Sky at Twenty-cm survey we confirm its episodic nature. We examine the Sloan Digital Sky Survey (SDSS) optical spectrum and estimate the black hole mass to be (8.2 ± 0.3)×10{sup 7} M {sub ☉} from its observed Mg II emission line, and the Eddington ratio to be 0.03. The black hole mass is significantly smaller than for the other reported DDRQ, J0935+0204, while the Eddington ratios are comparable. The SDSS spectrum is significantly red-continuum-dominated, suggesting that it is highly obscured with E(B – V){sub host} = 0.70 ± 0.16 mag. This high obscuration further indicates the existence of a large quantity of dust and gas along the line of sight, which may have a key role in triggering the recurrent jet activity in such objects.

  2. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  3. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  4. QUEST1 Variability Survey. III. Light Curve Catalog Update

    Science.gov (United States)

    Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Andrews, P.; Honeycutt, R. K.; Vivas, A. K.; Abad, C.; Adams, B.; Bailyn, C.; Baltay, C.; Bongiovanni, A.; Briceño, C.; Bruzual, G.; Coppi, P.; Della Prugna, F.; Emmet, W.; Ferrín, I.; Fuenmayor, F.; Gebhard, M.; Hernández, J.; Magris, G.; Musser, J.; Naranjo, O.; Oemler, A.; Rosenzweig, P.; Sabbey, C. N.; Sánchez, Ge.; Sánchez, Gu.; Schaefer, B.; Schenner, H.; Sinnott, J.; Snyder, J. A.; Sofia, S.; Stock, J.; van Altena, W.

    2009-03-01

    This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory, operated by the Centro de Investigaciones de Astronomía for the Ministerio de Ciencia y Tecnologia of Venezuela.

  5. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  6. Primordial non-Gaussianity from LAMOST surveys

    International Nuclear Information System (INIS)

    Gong Yan; Wang Xin; Chen Xuelei; Zheng Zheng

    2010-01-01

    The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of different magnitude limits are considered. We find that the Main1 sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r NL are |f NL | NL | NL | is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g NL | < 43 (2σ). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.

  7. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  8. Spectroscopic Observations of the Outflowing Wind in the Lensed Quasar SDSS J1001+5027

    Science.gov (United States)

    Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Charlton, Jane C.; Eracleous, Michael; Koyamada, Suzuka; Itoh, Daisuke

    2018-02-01

    We performed spectroscopic observations of the small-separation lensed quasar SDSS J1001+5027, whose images have an angular separation θ =2\\buildrel{\\prime\\prime}\\over{.} 86, and placed constraints on the physical properties of gas clouds in the vicinity of the quasar (i.e., in the outflowing wind launched from the accretion disk). The two cylinders of sight to the two lensed images go through the same region of the outflowing wind and they become fully separated with no overlap at a very large distance from the source (∼330 pc). We discovered a clear difference in the profile of the C IV broad absorption line (BAL) detected in the two lensed images in two observing epochs. Because the kinematic components in the BAL profile do not vary in concert, the observed variations cannot be reproduced by a simple change of ionization state. If the variability is due to gas motion around the background source (i.e., the continuum source), the corresponding rotational velocity is {v}rot} ≥ 18,000 km s‑1, and their distance from the source is r≤slant 0.06 pc assuming Keplerian motion. Among three Mg II and three C IV NAL systems that we detected in the spectra, only the Mg II system at {z}abs} = 0.8716 shows a hint of variability in its Mg I profile on a rest-frame timescale of {{Δ }}{t}rest} ≤slant 191 days and an obvious velocity shear between the sightlines whose physical separation is ∼7 kpc. We interpret this as the result of motion of a cosmologically intervening absorber, perhaps located in a foreground galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  9. A TWO-YEAR TIME DELAY FOR THE LENSED QUASAR SDSS J1029+2623

    Energy Technology Data Exchange (ETDEWEB)

    Fohlmeister, Janine; Wambsganss, Joachim [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Moenchhofstr. 12-14, D-69120 Heidelberg (Germany); Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Falco, Emilio E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Oguri, Masamune [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Dai, Xinyu [Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-02-20

    We present 279 epochs of optical monitoring data spanning 5.4 years from 2007 January to 2012 June for the largest image separation (22.''6) gravitationally lensed quasar, SDSS J1029+2623. We find that image A leads the images B and C by {Delta} t {sub AB} = (744 {+-} 10) days (90% confidence); the uncertainty includes both statistical uncertainties and systematic differences due to the choice of models. With only a {approx}1% fractional error, the interpretation of the delay is limited primarily by cosmic variance due to fluctuations in the mean line-of-sight density. We cannot separate the fainter image C from image B, but since image C trails image B by only 2-3 days in all models, the estimate of the time delay between images A and B is little affected by combining the fluxes of images B and C. There is weak evidence for a low level of microlensing, perhaps created by the small galaxy responsible for the flux ratio anomaly in this system. Interpreting the delay depends on better constraining the shape of the gravitational potential using the lensed host galaxy, other lensed arcs, and the structure of the X-ray emission.

  10. Observational Constraints on Quasar Black Hole Mass Distributions, Eddington Ratio Distributions, and Lifetimes

    DEFF Research Database (Denmark)

    Kelly, Brandon C.; Vestergaard, Marianne; Fan, X.

    2010-01-01

    I will present the black hole mass function (BHMF) of broad line quasars in the SDSS DR3. We employ a powerful Bayesian statistical technique that corrects for incompleteness and the statistical uncertainty in the mass estimates. We find evidence that the most massive black hole appeared as quasars...... earlier in the universe, and that most quasars are not radiating at or near the Eddington limit. I will also present constraints on the quasar lifetime and maximum black hole mass, derived from the mass functions....

  11. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Rao, Sandhya M. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ross, Ashley J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dawson, Kyle S.; Bautista, Julian E.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Comparat, Johan [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Tojeiro, Rita [School of Physics and Astronomy, St Andrews, KY16 9SS (United Kingdom); Ho, Shirley; Lang, Dustin [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Guangtun Ben, E-mail: abp15@pitt.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); and others

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  12. The optical variability of SDSS quasars from multi-epoch spectroscopy. I. Results from 60 quasars with ≥ six-epoch spectra

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hengxiao; Gu, Minfeng, E-mail: hxguo@shao.ac.cn, E-mail: gumf@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-09-01

    In a sample of 60 quasars selected from the Sloan Digital Sky Survey with at least six-epoch spectroscopy, we investigate the variability of emission lines and continuum luminosity at various aspects. A strong anti-correlation between the variability and continuum luminosity at 2500 Å is found for the sample, which is consistent with previous works. In individual sources, we find that half of the sample objects follow the trend of being bluer when brighter, while the remaining half follow the redder-when-brighter (RWB) trend. Although the mechanism for RWB is unclear, the effects of host galaxy contribution due to seeing variations cannot be completely ruled out. As expected from the photoionization model, the positive correlations between the broad emission line and continuum luminosity are found in most individual sources, as well as for the whole sample. We confirm the Baldwin effect in most individual objects and the whole sample, while a negative Baldwin effect is also found in several quasars, which can be at least partly (if not all) due to the host galaxy contamination. We find positive correlations between the broad emission line luminosity and line width in most individual quasars, as well as the whole sample, implying a line base that is more variable than the line core.

  13. Target Selection for the SDSS-IV APOGEE-2 Survey

    International Nuclear Information System (INIS)

    Zasowski, G.; Cohen, R. E.; Carlberg, J. K.; Fleming, Scott W.; Chojnowski, S. D.; Holtzman, J.; Santana, F.; Oelkers, R. J.; Bird, J. C.; Andrews, B.; Beaton, R. L.; Bender, C.; Cunha, K.; Bovy, J.; Covey, K.; Dell’Agli, F.; García-Hernández, D. A.; Frinchaboy, P. M.; Harding, P.; Johnson, J. A.

    2017-01-01

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10 5 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.

  14. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    Science.gov (United States)

    Rumbaugh, N.; Shen, Yue; Morganson, Eric; Liu, Xin; Banerji, M.; McMahon, R. G.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Frieman, J.; García-Bellido, J.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Walker, A. R.; Wester, W.; (DES Collaboration

    2018-02-01

    We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey and 3 Year Dark Energy Survey imaging, which provide light curves spanning more than 15 years. We identified ∼1000 EVQs with a maximum change in g-band magnitude of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol ∼ 1045–1047 erg s‑1 and L/L Edd ∼ 0.01–1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ∼30%–50% among all g≲ 22 quasars over a baseline of ∼15 yr. We performed detailed multi-wavelength, spectral, and variability analyses for the EVQs and compared them to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggests that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low rates, where the accretion flow is more likely to experience instabilities that drive the changes in flux by a factor of a few on multi-year timescales.

  15. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights

    Science.gov (United States)

    Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman

    2018-06-01

    We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.

  16. VizieR Online Data Catalog: LAMOST quasar survey: quasar properties from the DR1 (Ai+, 2016)

    Science.gov (United States)

    Ai, Y. L.; Wu, X.-B.; Yang, J.; Yang, Q.; Wang, F.; Guo, R.; Zuo, W.; Dong, X.; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Wang, J.; Dong, X.; Yang, M.; Wu, H.; Shen, S.-Y.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Luo, A.-L.; Zhao, Y.-H.; Zhang, H.-T.

    2018-03-01

    LAMOST began a pilot survey in 2011 October and a regular survey in 2012 September. The regular survey, carried out over five to six years, has two major components: the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) and the LAMOST Extragalactic Survey (LEGAS; Zhao et al. 2012RAA....12..723Z). LEGAS only uses a small part of the available observing time due to the limitations of the LAMOST site, especially the bright sky background and poor seeing. The first data release (DR1) contains spectra taken before 2013 June (Luo et al. 2015, Cat. V/146). In this paper we present the results of the quasar survey from LEGAS. LAMOST LEGAS spectroscopic observations are taken in a series of at least three 30 minute exposures. There are 70290 quasar candidates observed, with 82625 spectra in DR1. (2 data files).

  17. GALEX FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Worseck, Gabor; Prochaska, J. Xavier

    2011-01-01

    We study the small population of high-redshift (z em >2.7) quasars detected by the Galaxy Evolution Explorer(GALEX), whose far-UV emission is not extinguished by intervening H I Lyman limit systems. These quasars are of particular importance to detect intergalactic He II absorption along their sight lines. We correlate almost all verified z em >2.7 quasars to the GALEX GR4 source catalog covering ∼ 25,000 deg 2 , yielding 304 sources detected at signal-to-noise ratio (S/N) >3. However, ∼50% of these are only detected in the GALEX NUV band, signaling the truncation of the FUV flux by low-redshift optically thick Lyman limit systems. We exploit the GALEX UV color m FUV - m NUV to cull the most promising targets for follow-up studies, with blue (red) GALEX colors indicating transparent (opaque) sight lines. Extensive Monte Carlo simulations indicate an He II detection rate of ∼60% for quasars with m FUV - m NUV ∼ em ∼ 3 to be most promising for Hubble Space Telescope follow-up, with an additional 114 quasars if we consider S/N >2 detections in the FUV. Combining the statistical properties of H I absorbers with the Sloan Digital Sky Survey (SDSS) quasar luminosity function, we predict a large all-sky population of ∼200 quasars with z em >2.7 and i ∼ 304 em ∼ em ∼ em ∼< 3.5 quasars have likely underestimated their space density by selecting intergalactic medium sight lines with an excess of strong H I absorbers.

  18. THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Brandon C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); Shen, Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-02-10

    We employ a flexible Bayesian technique to estimate the black hole (BH) mass and Eddington ratio functions for Type 1 (i.e., broad line) quasars from a uniformly selected data set of {approx}58, 000 quasars from the Sloan Digital Sky Survey (SDSS) DR7. We find that the SDSS becomes significantly incomplete at M {sub BH} {approx}< 3 Multiplication-Sign 10{sup 8} M {sub Sun} or L/L {sub Edd} {approx}< 0.07, and that the number densities of Type 1 quasars continue to increase down to these limits. Both the mass and Eddington ratio functions show evidence of downsizing, with the most massive and highest Eddington ratio BHs experiencing Type 1 quasar phases first, although the Eddington ratio number densities are flat at z < 2. We estimate the maximum Eddington ratio of Type 1 quasars in the observable universe to be L/L {sub Edd} {approx} 3. Consistent with our results in Shen and Kelly, we do not find statistical evidence for a so-called sub-Eddington boundary in the mass-luminosity plane of broad-line quasars, and demonstrate that such an apparent boundary in the observed distribution can be caused by selection effect and errors in virial BH mass estimates. Based on the typical Eddington ratio in a given mass bin, we estimate growth times for the BHs in Type 1 quasars and find that they are comparable to or longer than the age of the universe, implying an earlier phase of accelerated (i.e., with higher Eddington ratios) and possibly obscured growth. The large masses probed by our sample imply that most of our BHs reside in what are locally early-type galaxies, and we interpret our results within the context of models of self-regulated BH growth.

  19. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    International Nuclear Information System (INIS)

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-01-01

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  20. Quasars and superclusters

    International Nuclear Information System (INIS)

    Osmer, P.S.

    1983-01-01

    The evidence for quasar superclusters is discussed, together with implications and survey techniques. The data base of clusters of pairs of quasars with similar redshifts, which is supportive of theories of gravitational lenses, indicates that quasar superclusters do exist. Surveys of large redshift quasars have shown that the quasars do not necessarily cluster. It is cautioned that randomness in an observational scheme, followed by assumptions of uniformity in analyses, will produce results that support a uniformity that may not exist. It is suggested that clusters observed in one survey should be sought in other direction using the same techniques. Continuing expanded surveys of large redshift quasars are recommended in order to form an all-sky distribution of the objects. 18 references

  1. CORRELATIONS OF QUASAR OPTICAL SPECTRA WITH RADIO MORPHOLOGY

    International Nuclear Information System (INIS)

    Kimball, Amy E.; Ivezic, Zeljko; Wiita, Paul J.; Schneider, Donald P.

    2011-01-01

    Using the largest homogeneous quasar sample with high-quality optical spectra and robust radio morphology classifications assembled to date, we investigate relationships between radio and optical properties with unprecedented statistical power. The sample consists of 4714 radio quasars from FIRST with S 20 ≥ 2 mJy and with spectra from the Sloan Digital Sky Survey (SDSS). Radio morphology classes include core-only (core), core-lobe (lobe), core-jet (jet), lobe-core-lobe (triple), and double-lobe. Electronic tables of the quasar samples, along with spectral composites for individual morphology classes, are made available. We examine the optical colors of these subsamples and find that radio quasars with core emission unresolved by FIRST (on ∼5'' scale) have a redder color distribution than radio-quiet quasars (S 20 ∼ I ) are correlated, which supports the hypothesis that both parameters are indicative of line-of-sight orientation. We investigate spectral line equivalent widths (EWs) as a function of R and R I , including the O [III] narrow line doublet and the C IV λ1549 and Mg II λ2799 broad lines. We find that the rest EWs of the broad lines correlate positively with R I at the 4σ-8σ level. However, we find no strong dependence of EW on R, in contrast to previously published results. A possible interpretation of these results is that EWs of quasar emission lines increase as the line-of-sight angle to the radio-jet axis decreases. These results are in stark contrast to commonly accepted orientation-based theories, which suggest that continuum emission should increase as the angle to the radio-jet axis decreases, resulting in smaller EWs of emission lines (assumed isotropic). Finally, we observe the Baldwin effect in our sample and find that it does not depend strongly on quasar radio morphology.

  2. Target Selection for the SDSS-IV APOGEE-2 Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zasowski, G. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Cohen, R. E.; Carlberg, J. K.; Fleming, Scott W. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chojnowski, S. D.; Holtzman, J. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88001 (United States); Santana, F. [Departamento de Astronomía, Universidad de Chile, Santiago (Chile); Oelkers, R. J.; Bird, J. C. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Andrews, B. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Beaton, R. L. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bender, C.; Cunha, K. [Steward Observatory, The University of Arizona, Tucson, AZ 85719 (United States); Bovy, J. [Department of Astronomy and Astrophysics and Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Covey, K. [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States); Dell’Agli, F.; García-Hernández, D. A. [Departamento de Astrofísica, Universidad de La Laguna, and Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Harding, P. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Johnson, J. A., E-mail: gail.zasowski@gmail.com [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); and others

    2017-11-01

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10{sup 5} stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.

  3. First discoveries of z ˜ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey

    NARCIS (Netherlands)

    Venemans, B. P.; Verdoes Kleijn, G. A.; Mwebaze, J.; Valentijn, E. A.; Bañados, E.; Decarli, R.; de Jong, J. T. A.; Findlay, J. R.; Kuijken, K. H.; Barbera, F. La; Mc Farland, John; McMahon, R. G.; Napolitano, N.; Sikkema, G.; Sutherland, W. J.

    2015-01-01

    We present the results of our first year of quasar search in the ongoing ESO public Kilo-Degree Survey (KiDS) and VISTA Kilo-Degree Infrared Galaxy (VIKING) surveys. These surveys are among the deeper wide-field surveys that can be used to uncover large numbers of z ˜ 6 quasars. This allows us to

  4. Quasars in the field of SA94. III. A colour survey

    International Nuclear Information System (INIS)

    Cristiani, S.; Barbieri, C.; La Franca, F.; Nota, A.

    1989-01-01

    A new sample of quasars has been selected in the central 10 square degrees of SA 94. The colour-colour U - B, B - V diagram has been used to identify low-redshift quasar candidates down to B = 19.8.99 extragalactic emission-line objects have been spectroscopically confirmed. The quasar surface density for QSOs with z ≤ 2.25 and other properties of this sample are derived and compared with other surveys

  5. A large sample of Kohonen-selected SDSS quasars with weak emission lines: selection effects and statistical properties

    Science.gov (United States)

    Meusinger, H.; Balafkan, N.

    2014-08-01

    Aims: A tiny fraction of the quasar population shows remarkably weak emission lines. Several hypotheses have been developed, but the weak line quasar (WLQ) phenomenon still remains puzzling. The aim of this study was to create a sizeable sample of WLQs and WLQ-like objects and to evaluate various properties of this sample. Methods: We performed a search for WLQs in the spectroscopic data from the Sloan Digital Sky Survey Data Release 7 based on Kohonen self-organising maps for nearly 105 quasar spectra. The final sample consists of 365 quasars in the redshift range z = 0.6 - 4.2 (z¯ = 1.50 ± 0.45) and includes in particular a subsample of 46 WLQs with equivalent widths WMg iiattention was paid to selection effects. Results: The WLQs have, on average, significantly higher luminosities, Eddington ratios, and accretion rates. About half of the excess comes from a selection bias, but an intrinsic excess remains probably caused primarily by higher accretion rates. The spectral energy distribution shows a bluer continuum at rest-frame wavelengths ≳1500 Å. The variability in the optical and UV is relatively low, even taking the variability-luminosity anti-correlation into account. The percentage of radio detected quasars and of core-dominant radio sources is significantly higher than for the control sample, whereas the mean radio-loudness is lower. Conclusions: The properties of our WLQ sample can be consistently understood assuming that it consists of a mix of quasars at the beginning of a stage of increased accretion activity and of beamed radio-quiet quasars. The higher luminosities and Eddington ratios in combination with a bluer spectral energy distribution can be explained by hotter continua, i.e. higher accretion rates. If quasar activity consists of subphases with different accretion rates, a change towards a higher rate is probably accompanied by an only slow development of the broad line region. The composite WLQ spectrum can be reasonably matched by the

  6. A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6

    Science.gov (United States)

    Fan, Xiaohui; Narayanan, Vijay K.; Lupton, Robert H.; Strauss, Michael A.; Knapp, Gillian R.; Becker, Robert H.; White, Richard L.; Pentericci, Laura; Leggett, S. K.; Haiman, Zoltán; Gunn, James E.; Ivezić, Željko; Schneider, Donald P.; Anderson, Scott F.; Brinkmann, J.; Bahcall, Neta A.; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Geballe, Tom; Grebel, Eva K.; Harbeck, Daniel; Hennessy, Gregory; Lamb, Don Q.; Miknaitis, Gajus; Munn, Jeffrey A.; Nichol, Robert; Okamura, Sadanori; Pier, Jeffrey R.; Prada, Francisco; Richards, Gordon T.; Szalay, Alex; York, Donald G.

    2001-12-01

    We present the results from a survey of i-dropout objects selected from ~1550 deg2 of multicolor imaging data from the Sloan Digital Sky Survey to search for luminous quasars at z>~5.8. Objects with i*-z*>2.2 and z*0.90. The ARC 3.5 m spectrum of SDSSp J103027.10+052455.0 shows that over a range of ~300 Å immediately blueward of the Lyα emission, the average transmitted flux is only 0.003+/-0.020 times that of the continuum level, consistent with zero flux over a ~300 Å range of the Lyα forest region and suggesting a tentative detection of the complete Gunn-Peterson trough. The existence of strong metal lines in the quasar spectra suggests early metal enrichment in the quasar environment. The three new objects, together with the previously published z=5.8 quasar SDSSp J104433.04-012502.2, form a complete color-selected flux-limited sample at z>~5.8. We estimate the selection function of this sample, taking into account the estimated variations in the quasar spectral energy distribution, as well as observational photometric errors. We find that at z=6, the comoving density of luminous quasars at M1450Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina) on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, made possible by the generous financial support of the W. M. Keck Foundation; on observations obtained at the German-Spanish Astronomical Centre, Calar Alto Observatory, operated by the Max Planck Institute for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; and on observations obtained at UKIRT, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council.

  7. The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars

    Science.gov (United States)

    Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.

    2017-08-01

    Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be

  8. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    Science.gov (United States)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He I absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg II, Fe II, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He I* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  9. Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne; Bourboux, Hélion du Mas des; Palanque-Delabrouille, Nathalie [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Eftekharzadeh, Sarah; Myers, Adam [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); White, Martin [Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley CA 94720 (United States); Ross, Ashley J. [Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Tinker, Jeremy [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, 10003 (United States); Tojeiro, Rita [School of Physics and Astronomy, North Haugh, St. Andrews KY16 9SS (United Kingdom); Bautista, Julian; Dawson, Kyle [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Comparat, Johan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, 85748 Garching (Germany); Kneib, Jean-Paul [Laboratoire d' Astrophysique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); McGreer, Ian D. [Steward Observatory, University of Arizona, Tucson, AZ 85721–0065 (United States); Percival, Will J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama building, PO1 3FX, Portsmouth (United Kingdom); Prada, Francisco, E-mail: jmlegoff@cea.fr [Instituto de Fìsica Teórica (IFT) UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); and others

    2017-07-01

    We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-bar =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.

  10. The triply-ionized carbon forest from eBOSS: cosmological correlations with quasars in SDSS-IV DR14

    Science.gov (United States)

    Blomqvist, Michael; Pieri, Matthew M.; du Mas des Bourboux, Hélion; Busca, Nicolás G.; Slosar, Anže; Bautista, Julian E.; Brinkmann, Jonathan; Brownstein, Joel R.; Dawson, Kyle; de Sainte Agathe, Victoria; Guy, Julien; Percival, Will J.; Pérez-Ràfols, Ignasi; Rich, James; Schneider, Donald P.

    2018-05-01

    We present measurements of the cross-correlation of the triply-ionized carbon (CIV) forest with quasars using Sloan Digital Sky Survey Data Release 14. The study exploits a large sample of new quasars from the first two years of observations by the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). The CIV forest is a weaker tracer of large-scale structure than the Lyα forest, but benefits from being accessible at redshifts zfit to the quasar-CIV cross-correlations for the CIV forest and the SiIV forest, the CIV redshift-space distortion parameter is βCIV=0.27 ‑0.14 ‑0.26 +0.16 +0.34 and its combination with the CIV linear transmission bias parameter is bCIV(1+βCIV)=‑0.0183 ‑0.0014 ‑0.0029 +0.0013 +0.0025 (1σ and 2σ statistical errors) at the mean redshift z=2.00. Splitting the sample at z=2.2 to constrain the bias evolution with redshift yields the power-law exponent γ=0.60±0.63, indicating a significantly weaker redshift-evolution than for the Lyα forest linear transmission bias. Additionally, we demonstrate that CIV absorption has the potential to be used as a probe of baryon acoustic oscillations (BAO). While the current data set is insufficient for a detection of the BAO peak feature, the final quasar samples for redshifts 1.4

  11. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    International Nuclear Information System (INIS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.

    2016-01-01

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections

  12. Detecting active comets with SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /MIT, MKI; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Princeton U. Observ.; Becker, Andrew; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Hall, Patrick B.; /York U., Canada; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  13. Discovery of three z > 6.5 quasars in the VISTA kilo-degree infrared galaxy (VIKING) survey

    Energy Technology Data Exchange (ETDEWEB)

    Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Findlay, J. R. [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Sutherland, W. J. [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, London, E1 4NS (United Kingdom); De Rosa, G. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); McMahon, R. G.; González-Solares, E. A.; Lewis, J. R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Simcoe, R. [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Kuijken, K., E-mail: venemans@mpia.de [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands)

    2013-12-10

    Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z ≅ 6.4, a limit set by the use of the z-band and CCD detectors. Only one z ≳ 6.4 quasar has been discovered, namely the z = 7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z ≳ 6.4 quasars in 332 deg{sup 2} of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z = 6.60, 6.75, and 6.89. The absolute magnitudes are between –26.0 and –25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the Mg II emission line in all three objects. The quasars are powered by black holes with masses of ∼(1-2) × 10{sup 9} M {sub ☉}. In our probed redshift range of 6.44 < z < 7.44 we can set a lower limit on the space density of supermassive black holes of ρ(M {sub BH} > 10{sup 9} M {sub ☉}) > 1.1 × 10{sup –9} Mpc{sup –3}. The discovery of three quasars in our survey area is consistent with the z = 6 quasar luminosity function when extrapolated to z ∼ 7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z = 6 to z = 7.

  14. THE FIFTH DATA RELEASE SLOAN DIGITAL SKY SURVEY/XMM-NEWTON QUASAR SURVEY

    International Nuclear Information System (INIS)

    Young, M.; Elvis, M.; Risaliti, G.

    2009-01-01

    We present a catalog of 792 Fifth Data Release Sloan Digital Sky Survey quasars with optical spectra that have been observed serendipitously in the X-rays with the XMM-Newton. These quasars cover a redshift range of z = 0.11-5.41 and a magnitude range of i = 15.3-20.7. Substantial numbers of radio-loud (70) and broad absorption line (51) quasars exist within this sample. Significant X-ray detections at ≥2σ account for 87% of the sample (685 quasars), and 473 quasars are detected at ≥6σ, sufficient to allow X-ray spectral fits. For detected sources, ∼60% have X-ray fluxes between F 2-10keV = (1-10) x10 -14 erg cm -2 s -1 . We fit a single power law, a fixed power law with intrinsic absorption left free to vary, and an absorbed power-law model to all quasars with X-ray signal-to-noise ratio ≥ 6, resulting in a weighted mean photon index Γ = 1.91 ± 0.08, with an intrinsic dispersion σ Γ = 0.38. For the 55 sources (11.6%) that prefer intrinsic absorption, we find a weighted mean N H = 1.5 ± 0.3 x 10 21 cm -2 . We find that Γ correlates significantly with optical color, Δ(g - i), the optical-to-X-ray spectral index (α ox ), and the X-ray luminosity. While the first two correlations can be explained as artifacts of undetected intrinsic absorption, the correlation between Γ and X-ray luminosity appears to be a real physical correlation, indicating a pivot in the X-ray slope.

  15. Quasar Photometric Redshifts and Candidate Selection: A New Algorithm Based on Optical and Mid-infrared Photometric Data

    Science.gov (United States)

    Yang, Qian; Wu, Xue-Bing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Green, Richard; Yang, Jinyi; Schindler, Jan-Torge; Wang, Feige; Zuo, Wenwen; Fu, Yuming

    2017-12-01

    We present a new algorithm to estimate quasar photometric redshifts (photo-zs), by considering the asymmetries in the relative flux distributions of quasars. The relative flux models are built with multivariate Skew-t distributions in the multidimensional space of relative fluxes as a function of redshift and magnitude. For 151,392 quasars in the SDSS, we achieve a photo-z accuracy, defined as the fraction of quasars with the difference between the photo-z z p and the spectroscopic redshift z s , | {{Δ }}z| =| {z}s-{z}p| /(1+{z}s) within 0.1, of 74%. Combining the WISE W1 and W2 infrared data with the SDSS data, the photo-z accuracy is enhanced to 87%. Using the Pan-STARRS1 or DECaLS photometry with WISE W1 and W2 data, the photo-z accuracies are 79% and 72%, respectively. The prior probabilities as a function of magnitude for quasars, stars, and galaxies are calculated, respectively, based on (1) the quasar luminosity function, (2) the Milky Way synthetic simulation with the Besançon model, and (3) the Bayesian Galaxy Photometric Redshift estimation. The relative fluxes of stars are obtained with the Padova isochrones, and the relative fluxes of galaxies are modeled through galaxy templates. We test our classification method to select quasars using the DECaLS g, r, z, and WISE W1 and W2 photometry. The quasar selection completeness is higher than 70% for a wide redshift range 0.5publicly available.

  16. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Kirkby, David; Blomqvist, Michael [Department of Physics and Astronomy, University of California, 4129 Frederick Reines Hall, Irvine, CA, 92697 (United States); Busca, Nicolas; Aubourg, Éric; Bautista, Julian [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Miralda-Escudé, Jordi [Institut de Ciències del Cosmos (IEEC/UB), Martí i Franquès 1, Barcelona, 08028 Catalonia (Spain); Ross, Nicholas P.; Bailey, Stephen; Beutler, Florian; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States); Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton, NY, 11375 (United States); Rich, James; Delubac, Timothée [CEA, Centre de Saclay, IRFU, Gif-sur-Yvette, 91191 France (France); Bhardwaj, Vaishali; Bizyaev, Dmitry [Department of Astronomy, University of Washington, Box 351580, Seattle, WA, 98195 (United States); Brewington, Howard; Brinkmann, Jon [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Brownstein, Joel R.; Dawson, Kyle S., E-mail: font@physik.uzh.ch [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT, 84112 (United States); and others

    2014-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight c/(H(z = 2.36)r{sub s}) = 9.0±0.3 and across the line of sight D{sub A}(z = 2.36)/r{sub s} = 10.8±0.4, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data (r{sub s} = 147.49 Mpc), we can translate these results to a measurement of the Hubble parameter of H(z = 2.36) = 226±8 km s{sup −1} Mpc{sup −1} and of the angular diameter distance of D{sub A}(z = 2.36) = 1590±60 Mpc. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.

  17. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    International Nuclear Information System (INIS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd =0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91 +0.24 -0.22 , which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  18. THE OPTICAL VARIABILITY OF SDSS QUASARS FROM MULTI-EPOCH SPECTROSCOPY. II. COLOR VARIATION

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hengxiao; Gu, Minfeng, E-mail: hxguo@shao.ac.cn, E-mail: gumf@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2016-05-01

    We investigated the optical/ultraviolet (UV) color variations for a sample of 2169 quasars based on multi-epoch spectroscopy in the Sloan Digital Sky Survey data releases seven (DR7) and nine (DR9). To correct the systematic difference between DR7 and DR9 due to the different instrumental setup, we produced a correction spectrum by using a sample of F-stars observed in both DR7 and DR9. The correction spectrum was then applied to quasars when comparing the spectra of DR7 with DR9. In each object, the color variation was explored by comparing the spectral index of the continuum power-law fit on the brightest spectrum with the faintest one, and also by the shape of their difference spectrum. In 1876 quasars with consistent color variations from two methods, we found that most sources (1755, ∼94%) show the bluer-when-brighter (BWB) trend, and the redder-when-brighter (RWB) trend is detected in only 121 objects (∼6%). The common BWB trend is supported by the composite spectrum constructed from bright spectra, which is bluer than that from faint spectra, and also by the blue composite difference spectrum. The correction spectrum is proven to be highly reliable by comparing the composite spectrum from corrected DR9 and original DR7 spectra. Assuming that the optical/UV variability is triggered by fluctuations, the RWB trend can likely be explained if the fluctuations occur first in the outer disk region, and the inner disk region has not yet fully responded when the fluctuations are being propagated inward. In contrast, the common BWB trend implies that the fluctuations likely more often happen first in the inner disk region.

  19. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  20. THE MAGELLANIC QUASARS SURVEY. III. SPECTROSCOPIC CONFIRMATION OF 758 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Kozłowski, Szymon; Udalski, Andrzej; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Onken, Christopher A.; Kochanek, Christopher S.; Meixner, M.; Bonanos, A. Z.

    2013-01-01

    The Magellanic Quasars Survey (MQS) has now increased the number of quasars known behind the Magellanic Clouds by almost an order of magnitude. All survey fields in the Large Magellanic Cloud (LMC) and 70% of those in the Small Magellanic Cloud (SMC) have been observed. The targets were selected from the third phase of the Optical Gravitational Lensing Experiment (OGLE-III) based on their optical variability, mid-IR, and/or X-ray properties. We spectroscopically confirmed 758 quasars (565 in the LMC and 193 in the SMC) behind the clouds, of which 94% (527 in the LMC and 186 in the SMC) are newly identified. The MQS quasars have long-term (12 yr and growing for OGLE), high-cadence light curves, enabling unprecedented variability studies of quasars. The MQS quasars also provide a dense reference grid for measuring both the internal and bulk proper motions of the clouds, and 50 quasars are bright enough (I ∼< 18 mag) for absorption studies of the interstellar/intergalactic medium of the clouds

  1. Quasars Probing Quasars: the Circumgalactic Medium Surrounding z ~ 2 Quasars

    Science.gov (United States)

    Lau, Marie; Quasars Probing Quasars survey

    2018-01-01

    Understanding the circumgalactic medium--the gaseous halo surrounding a galaxy, is an integral part to understanding galaxy evolution. The z ~ 2-3 universe is interesting as this is when the star formation rate and AGN activity peak. My thesis concludes the decade-long Quasars Probing Quasars survey designed for studying massive galaxy formation and quasar feedback. I use background quasar sightlines that pass close to foreground quasars to study the circumgalactic medium of quasar-host galaxies in absorption. My sample of 149 quasar pairs involve spectra taken with 17 different optical and near IR instruments. I present results on the statistical and physical properties of the circumgalactic medium. The circumgalactic medium is enriched even beyond the virial radius. The alpha/Fe abundance ratio is enhanced, suggesting enrichment from core-collapse supernovae. The cool gas mass within the virial radius is enough to fuel star formation for another Gyr, and may account for 1/3 of the baryonic budget of the galaxy halo. The ionization state increases with projected distance from the quasar, which implies the quasar does not dominate the ionizing radiation flux. However, detection of fluorescent Lyman-alpha emission and NV absorption imply these transverse absorbers are partially illuminated by the quasar. In one peculiar case, the absorbing clump has density >100 cm^-3 and sub-parsec size. The average absorption in the circumgalactic medium exhibits large velocity widths, and is asymmetric about the systemic redshift of the galaxies. The widths are consistent with gravitational motions and Hubble flow, and outflows are not required to explain them. The asymmetry can be explained if the ionizing radiation from the quasar is anisotropic or intermittent and the gas is not in inflow. My results pose challenges for cosmological hydrodynamic simulations to produce a substantial cool gas reservoir surrounding quasars, that is also enriched and shows extreme kinematics.

  2. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  3. Quasars Probing Quasars: The Circumgalactic Medium Surrounding Z 2 Quasars

    Science.gov (United States)

    Lau, Marie Wingyee

    Models of galaxy formation make the most direct predictions on gas related processes. Specifically, a picture on how gas flows through dark matter halos and onto galaxies to fuel star formation. A major prediction is that massive halos, including those hosting the progenitors of massive elliptical galaxies, exhibit a higher fraction of hot gas with T 107 K. Another prediction is that some mechanism must be invoked to quench the supply of cool gas in massive systems. Under the current galaxy formation paradigm, every massive galaxy has undergone a quasar phase, making high-redshift quasars the progenitors of inactive supermassive black holes found in the center of nearly all galaxies. Moreover, quasars clustering implies Mhalo = 1012.5 Msun , making quasar-host galaxies the progenitors of present day, massive, red and dead galaxies. The Quasars Probing Quasars survey is well-suited to examine gas related processes in the context of massive galaxy formation, as well as quasar feedback. To date the survey has selected 700 closely projected quasar pairs. To study the circumgalactic medium, a sub-sample of pairs with projected separation within 300 kpc at the foreground quasar's redshift are selected. From the first to seventh paper in the Quasars Probing Quasars series, the statistical results had been limited to covering fractions, equivalent widths, and without precise redshift measurements of the foreground quasars. Signatures of quasar feedback in the cool circumgalactic medium had not been identified. Hence, a sub-sample of 14 pairs with echellette spectra are selected for more detailed analysis. It is found that the low and high ions roughly trace each other in velocity structure. The HI and low ion surface densities decline with projected distance. HI absorption is strong even beyond the virial radius. Unresolved Lyalpha emission in one case and NV detection in another case together imply that a fraction of transverse sightlines are illuminated. The ionization

  4. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the ...

  5. UV-luminous, star-forming hosts of z ˜ 2 reddened quasars in the Dark Energy Survey

    Science.gov (United States)

    Wethers, C. F.; Banerji, M.; Hewett, P. C.; Lemon, C. A.; McMahon, R. G.; Reed, S. L.; Shen, Y.; Abdalla, F. B.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; CarrascoKind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.

    2018-04-01

    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B - V)QSO ≳ 0.5; Lbol > 1046 erg s-1] broad-line quasars at 1.5 VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr-1, with an average SFRUV = 130 ± 95 M⊙ yr-1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.

  6. VIRIAL BLACK HOLE MASS ESTIMATES FOR 280,000 AGNs FROM THE SDSS BROADBAND PHOTOMETRY AND SINGLE-EPOCH SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, Szymon, E-mail: simkoz@astrouw.edu.pl [Warsaw University Observatory, Al. Ujazdowskie, 4 00-478 Warszawa (Poland)

    2017-01-01

    We use the Sloan Digital Sky Survey (SDSS) Quasar Data Release 12 (DR12Q), containing nearly 300,000 active galactic nuclei (AGNs), to calculate the monochromatic luminosities at 5100, 3000, and 1350 Å, derived from the broadband extinction-corrected SDSS magnitudes. After matching these sources to their counterparts from the SDSS Quasar Data Release 7 (DR7Q), we find very high correlations between our luminosities and DR7Q spectra-based luminosities with minute mean offsets (∼0.01 dex) and dispersions of differences of 0.11, 0.10, and 0.12 dex, respectively, across a luminosity range of 2.5 dex. We then estimate the black hole (BH) masses of the AGNs using the broad line region radius–disk luminosity relations and the FWHM of the Mg ii and C iv emission lines, to provide a catalog of 283,033 virial BH mass estimates (132,451 for Mg ii, 213,071 for C iv, and 62,489 for both) along with the estimates of the bolometric luminosity and Eddington ratio for 0.1 <  z  < 5.5 and for roughly a quarter of the sky covered by SDSS. The BH mass estimates from Mg ii turned out to be closely matched to the ones from DR7Q with a dispersion of differences of 0.34 dex across a BH mass range of ∼2 dex. We uncovered a bias in the derived C iv FWHMs from DR12Q as compared to DR7Q, which we correct empirically. The C iv BH mass estimates should be used with caution because the C iv line is known to cause problems in the estimation of BH mass from single-epoch spectra. Finally, after the FWHM correction, the AGN BH mass estimates from C iv closely match the DR7Q ones (with a dispersion of 0.28 dex), and more importantly the Mg ii and C iv BH masses agree internally with a mean offset of 0.07 dex and a dispersion of 0.39 dex.

  7. Spectral Variability of Quasar SDSS J030639.57+000343.1 ...

    Indian Academy of Sciences (India)

    variability of emission lines and continuum luminosity. In this paper, we present the results of SDSS J030639.57 +000343.1. We found a strong anticorrelation between the continuum luminosity at 5100 Å and the spec- tral index, implying a bluer-when-brighter trend. The luminosity of the broad Hα line is in proportion to the ...

  8. THE X-RAY PROPERTIES OF THE OPTICALLY BRIGHTEST MINI-BAL QUASARS FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Comins, M. L.; Garmire, Gordon P.; Schneider, Donald P.; Gibson, Robert R.; Shemmer, Ohad

    2010-01-01

    We have compiled a sample of 14 of the optically brightest radio-quiet quasars (m i ≤ 17.5 and z ≥ 1.9) in the Sloan Digital Sky Survey Data Release 5 quasar catalog that have C IV mini-broad absorption lines (mini-BALs) present in their spectra. X-ray data for 12 of the objects were obtained via a Chandra snapshot survey using ACIS-S, while data for the other two quasars were obtained from archival XMM-Newton observations. Joint X-ray spectral analysis shows that the mini-BAL quasars have a similar average power-law photon index (Γ ∼ 1.9) and level of intrinsic absorption (N H ∼ 21 cm -2 ) as non-BMB (neither BAL nor mini-BAL) quasars. Mini-BAL quasars are more similar to non-BMB quasars than to BAL quasars in their distribution of relative X-ray brightness (assessed with Δα ox ). Relative colors indicate mild dust reddening in the optical spectra of mini-BAL quasars. Significant correlations between Δα ox and UV absorption properties are confirmed for a sample of 56 sources combining mini-BAL and BAL quasars with high signal-to-noise ratio rest-frame UV spectra, which generally supports models in which X-ray absorption is important in enabling driving of the UV absorption-line wind. We also propose alternative parameterizations of the UV absorption properties of mini-BAL and BAL quasars, which may better describe the broad absorption troughs in some respects.

  9. A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.

    Science.gov (United States)

    Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G

    2003-12-18

    Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.

  10. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8 < z < 2.2

    Science.gov (United States)

    Gil-Marín, Héctor; Guy, Julien; Zarrouk, Pauline; Burtin, Etienne; Chuang, Chia-Hsun; Percival, Will J.; Ross, Ashley J.; Ruggeri, Rossana; Tojerio, Rita; Zhao, Gong-Bo; Wang, Yuting; Bautista, Julian; Hou, Jiamin; Sánchez, Ariel G.; Pâris, Isabelle; Baumgarten, Falk; Brownstein, Joel R.; Dawson, Kyle S.; Eftekharzadeh, Sarah; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Myers, Adam D.; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tinker, Jeremy L.; Zhao, Cheng

    2018-06-01

    We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample (DR14Q). We measure the redshift space distortions using the power-spectrum monopole, quadrupole, and hexadecapole inferred from 148 659 quasars between redshifts 0.8 and 2.2, covering a total sky footprint of 2112.9 deg2. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, fσ8, and the Alcock-Paczynski dilation scales that allow constraints to be placed on the angular diameter distance DA(z) and the Hubble H(z) parameter. At the effective redshift of zeff = 1.52, fσ8(zeff) = 0.420 ± 0.076, H(z_eff)=[162± 12] (r_s^fid/r_s) {km s}^{-1} Mpc^{-1}, and D_A(z_eff)=[1.85± 0.11]× 10^3 (r_s/r_s^fid) Mpc, where rs is the comoving sound horizon at the baryon drag epoch and the superscript `fid' stands for its fiducial value. The errors take into account the full error budget, including systematics and statistical contributions. These results are in full agreement with the current Λ-Cold Dark Matter cosmological model inferred from Planck measurements. Finally, we compare our measurements with other eBOSS companion papers and find excellent agreement, demonstrating the consistency and complementarity of the different methods used for analysing the data.

  11. The Associated Absorption Features in Quasar Spectra of the Sloan Digital Sky Survey. I. Mg II Absorption Doublets

    Science.gov (United States)

    Chen, Zhi-Fu; Huang, Wei-Rong; Pang, Ting-Ting; Huang, Hong-Yan; Pan, Da-Sheng; Yao, Min; Nong, Wei-Jing; Lu, Mei-Mei

    2018-03-01

    Using the SDSS spectra of quasars included in the DR7Q or DR12Q catalogs, we search for Mg II λλ2796, 2803 narrow absorption doublets in the spectra data around Mg II λ2798 emission lines. We obtain 17,316 Mg II doublets, within the redshift range of 0.3299 ≤ z abs ≤ 2.5663. We find that a velocity offset of υ r 6000 km s‑1. If associated Mg II absorbers are defined by υ r present at least one associated Mg II system with {W}{{r}}λ 2796≥slant 0.2 \\mathringA . The fraction of associated Mg II systems with high-velocity outflows correlates with the average luminosities of their central quasars, indicating a relationship between outflows and the quasar feedback power. The υ r distribution of the outflow Mg II absorbers is peaked at 1023 km s‑1, which is smaller than the corresponding value of the outflow C IV absorbers. The redshift number density evolution of absorbers (dn/dz) limited by υ r > ‑3000 km s‑1 differs from that of absorbers constrained by υ r > 2000 km s‑1. Absorbers limited by υ r > 2000 km s‑1 and higher values exhibit profiles similar to dn/dz. In addition, the dn/dz is smaller when absorbers are constrained with larger υ r . The distributions of equivalent widths, and the ratio of {W}rλ 2796/{W}rλ 2803, are the same for associated and intervening systems, and independent of quasar luminosity.

  12. ASERA: A spectrum eye recognition assistant for quasar spectra

    Science.gov (United States)

    Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng

    2013-11-01

    Spectral type recognition is an important and fundamental step of large sky survey projects in the data reduction for further scientific research, like parameter measurement and statistic work. It tends out to be a huge job to manually inspect the low quality spectra produced from the massive spectroscopic survey, where the automatic pipeline may not provide confident type classification results. In order to improve the efficiency and effectiveness of spectral classification, we develop a semi-automated toolkit named ASERA, ASpectrum Eye Recognition Assistant. The main purpose of ASERA is to help the user in quasar spectral recognition and redshift measurement. Furthermore it can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). It is an interactive software allowing the user to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. It is an efficient and user-friendly toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope). The toolkit is available in two modes: a Java standalone application and a Java applet. ASERA has a few functions, such as wavelength and flux scale setting, zoom in and out, redshift estimation, spectral line identification, which helps user to improve the spectral classification accuracy especially for low quality spectra and reduce the labor of eyeball check. The function and performance of this tool is displayed through the recognition of several quasar spectra and a late type stellar spectrum from the LAMOST Pilot survey. Its future expansion capabilities are discussed.

  13. Identification of MgII Absorption Line Systems from SDSS Quasar ...

    Indian Academy of Sciences (India)

    Motivation. The quasar absorption lines are crucial to our understanding of the Universe since the absorption lines provide a wealth of information on the gaseous Universe from high redshift to present day. The absorption lines can also allow us to probe the metallicity and ionization state of the gas (Wild et al. 2008).

  14. The Formation of COINS: Equity and Inclusion in SDSS

    Science.gov (United States)

    Schmidt, Sarah J.; Sanchez-Gallego, Jose Ramon; Chanover, Nancy J.; Holley-Bockelmann, Kelly; Lucatello, Sara; Aragon-Salamanca, Alfonso; Belfiore, Francesco; Cherinka, Brian; Feuillet, Diane; Jones, Amy; Masters, Karen; Simmons, Audrey; Ross, Ashley; Stassun, Keivan G.; Tayar, Jamie

    2017-01-01

    In the era of large surveys, collaborations like the Sloan Digital Sky Survey (SDSS) are becoming a new normal for many scientists, and collaboration policies and climate have a considerable affect on scientific careers. As such, it is essential that collaborations actively strive to include all scientists regardless of gender, gender identity, race, ethnicity, sexual orientation, disability, career stage, geographic location, economic background, social and cultural backgrounds, and all possible intersections thereof. We report on the formation and progress of the Committee On INclusiveness in the SDSS (COINS). COINS was formed to assess the SDSS-IV project and collaboration's climate and demographics, to recommend new policies or practices with regard to increasing inclusiveness, and to assist in the implementation of these new activities where necessary. We report on our current activities, which include ongoing support for the SDSS Research Experience for Undergraduates program, support for the SDSS Faculty and Student Teams initiative, administering and analyzing the SDSS demographic surveys, working towards collaboration meeting inclusiveness and accessibility, and adopting strategies for integrating and mentoring new members. We welcome input from SDSS members and non-members about how to work towards a more equitable and inclusive collaboration.

  15. AGN Accretion Physics in the Time Domain: Survey Cadences, Stochastic Analysis, and Physical Interpretations

    Science.gov (United States)

    Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon; O'Brien, John T.; Kasliwal, Vishal

    2018-01-01

    We present rigorous testing of survey cadences (K2, SDSS, CRTS, & Pan-STARRS) for quasar variability science using a magnetohydrodynamics synthetic lightcurve and the canonical lightcurve from Kepler, Zw 229.15. We explain where the state of the art is in regards to physical interpretations of stochastic models (CARMA) applied to AGN variability. Quasar variability offers a time domain approach of probing accretion physics at the SMBH scale. Evidence shows that the strongest amplitude changes in the brightness of AGN occur on long timescales ranging from months to hundreds of days. These global behaviors can be constrained by survey data despite low sampling resolution. CARMA processes provide a flexible family of models used to interpolate between data points, predict future observations and describe behaviors in a lightcurve. This is accomplished by decomposing a signal into rise and decay timescales, frequencies for cyclic behavior and shock amplitudes. Characteristic timescales may point to length-scales over which a physical process operates such as turbulent eddies, warping or hotspots due to local thermal instabilities. We present the distribution of SDSS Stripe 82 quasars in CARMA parameters space that pass our cadence tests and also explain how the Damped Harmonic Oscillator model, CARMA(2,1), reduces to the Damped Random Walk, CARMA(1,0), given the data in a specific region of the parameter space.

  16. The LAMOST survey of background quasars in the vicinity of the Andromeda and Triangulum galaxies. II. Results from the commissioning observations and the pilot surveys

    International Nuclear Information System (INIS)

    Huo, Zhi-Ying; Bai, Zhong-Rui; Chen, Jian-Jun; Chen, Xiao-Yan; Du, Bing; Jia, Lei; Lei, Ya-Juan; Liu, Xiao-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Huang, Yang; Zhang, Hui-Hua; Yan, Lin; Chu, Jia-Ru; Chu, Yao-Quan; Hu, Hong-Zhuan; Cui, Xiang-Qun; Hou, Yong-Hui; Hu, Zhong-Wen; Jiang, Fang-Hua

    2013-01-01

    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, also named the Guoshoujing Telescope, during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available Sloan Digital Sky Survey, Kitt Peak National Observatory 4 m telescope, Xuyi Schmidt Telescope Photometric Survey optical, and Wide-field Infrared Survey Explorer near-infrared photometric data. We present 509 new quasars discovered in a stripe of ∼135 deg 2 from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey data sets, and also 17 new quasars discovered in an area of ∼100 deg 2 that covers the central region and the southeastern halo of M31 in the 2010 commissioning data sets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62, and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5, and 18.0, respectively, of which 5, 20, and 75 are newly discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the interstellar/intergalactic medium in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.°5 of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds are behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute proper motions (PMs) of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.

  17. The Core Collapse Supernova Rate from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Matt; Cinabro, David; Dilday, Ben; Galbany, Lluis; Gupta, Ravi R.; Kessler, R.; Marriner, John; Nichol, Robert C.; Richmond, Michael; Schneider, Donald P.; Sollerman, Jesper

    2014-08-26

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10(–)(4)((h/0.7)(3)/(yr Mpc(3))) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  18. Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory

    NARCIS (Netherlands)

    Bundy, Kevin; Bershady, Matthew A.; Law, David R.; Yan, Renbin; Drory, Niv; MacDonald, Nicholas; Wake, David A.; Cherinka, Brian; Sánchez-Gallego, José R.; Weijmans, Anne-Marie; Thomas, Daniel; Tremonti, Christy; Masters, Karen; Coccato, Lodovico; Diamond-Stanic, Aleksandar M.; Aragón-Salamanca, Alfonso; Avila-Reese, Vladimir; Badenes, Carles; Falcón-Barroso, Jésus; Belfiore, Francesco; Bizyaev, Dmitry; Blanc, Guillermo A.; Bland-Hawthorn, Joss; Blanton, Michael R.; Brownstein, Joel R.; Byler, Nell; Cappellari, Michele; Conroy, Charlie; Dutton, Aaron A.; Emsellem, Eric; Etherington, James; Frinchaboy, Peter M.; Fu, Hai; Gunn, James E.; Harding, Paul; Johnston, Evelyn J.; Kauffmann, Guinevere; Kinemuchi, Karen; Klaene, Mark A.; Knapen, Johan H.; Leauthaud, Alexie; Li, Cheng; Lin, Lihwai; Maiolino, Roberto; Malanushenko, Viktor; Malanushenko, Elena; Mao, Shude; Maraston, Claudia; McDermid, Richard M.; Merrifield, Michael R.; Nichol, Robert C.; Oravetz, Daniel; Pan, Kaike; Parejko, John K.; Sanchez, Sebastian F.; Schlegel, David; Simmons, Audrey; Steele, Oliver; Steinmetz, Matthias; Thanjavur, Karun; Thompson, Benjamin A.; Tinker, Jeremy L.; van den Bosch, Remco C. E.; Westfall, Kyle B.; Wilkinson, David; Wright, Shelley; Xiao, Ting; Zhang, Kai

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic

  19. The Sloan Digital Sky Survey: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Loveday, J.; SDSS Collaboration

    1996-05-01

    The Sloan Digital Sky Survey (SDSS) is a project to definitively map {pi} steradians of the local Universe. An array of CCD detectors used in drift-scan mode will digitally image the sky in five passbands to a limiting magnitude of r{prime} {approximately} 23. Selected from the imaging survey, 10{sup 6} galaxies and 10{sup 5} quasars will be observed spectroscopically. I describe the current status of the survey, which is due to begin observations early in 1997, and its prospects for constraining models for dark matter in the Universe. 8 refs., 7 figs.

  20. New background quasars in the vicinity of the Andromeda Galaxy discovered with the Guoshoujing Telescope (LAMOST)

    International Nuclear Information System (INIS)

    Huo Zhiying; Liu Xiaowei; Yuan Haibo; Zhang Huihua; Zhang Huawei; Zhao Yongheng; Chen Jianjun; Bai Zhongrui; Zhang Haotong; Yan Hongliang; Ren Juanjuan; Sun Shiwei; GarcIa-Benito, Ruben; Xiang Maosheng; Zhang Yong; Li Yeping; Lu Qishuai; Wang You; Ni Jijun; Wang Hai

    2010-01-01

    We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where one is close to the optical center of the disk and the other is towards the northeastern outskirts of the halo, obtained during the early stage of the GSJT commissioning in the last season of 2009. Both fields contain background low-redshift quasar candidates selected from the SDSS photometry. In total, 14 new quasars with redshifts up to 2 and i magnitudes between 16.7 and 19.2, are discovered, including 7 within the 2.5 0 central region of M 31. We briefly discuss the potential applications of these newly discovered bright quasars. (editor's recommendation)

  1. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    Science.gov (United States)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  2. Target Selection for the SDSS-III MARVELS Survey

    Science.gov (United States)

    Paegert, Martin; Stassun, Keivan G.; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W.; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E., III; Dhital, Saurav; Hebb, Leslie; Ge, Jian

    2015-06-01

    We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution (R ∼ 11,000) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between 4500 and 6250 K. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and log (g) for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of ∼30% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate giants and used the Infrared Flux Method to estimate effective temperatures, using only extant photmetric and proper-motion catalog information. The target selection method introduced here may be useful for other surveys that need to rely on extant catalog data for selection of specific stellar populations.

  3. Dusty WDs in the WISE all sky surveySDSS

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Sara D.; Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: barber@nhn.ou.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-10

    A recent cross-correlation between the Sloan Digital Sky Survey (SDSS) Data Release 7 White Dwarf Catalog with the Wide-Field Infrared Survey Explorer (WISE) all-sky photometry at 3.4, 4.6, 12, and 22 μm performed by Debes et al. resulted in the discovery of 52 candidate dusty white dwarfs (WDs). However, the 6'' WISE beam allows for the possibility that many of the excesses exhibited by these WDs may be due to contamination from a nearby source. We present MMT+SAO Wide-Field InfraRed Camera J- and H-band imaging observations (0.''5-1.''5 point spread function) of 16 of these candidate dusty WDs and confirm that four have spectral energy distributions (SEDs) consistent with a dusty disk and are not accompanied by a nearby source contaminant. The remaining 12 WDs have contaminated WISE photometry and SEDs inconsistent with a dusty disk when the contaminating sources are not included in the photometry measurements. We find the frequency of disks around single WDs in the WISE ∩ SDSS sample to be 2.6%-4.1%. One of the four new dusty WDs has a mass of 1.04 M {sub ☉} (progenitor mass 5.4 M {sub ☉}) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

  4. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey

    Science.gov (United States)

    Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro

    2018-01-01

    We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.

  5. Inspiraling halo accretion mapped in Ly α emission around a z ˜ 3 quasar

    Science.gov (United States)

    Arrigoni Battaia, Fabrizio; Prochaska, J. Xavier; Hennawi, Joseph F.; Obreja, Aura; Buck, Tobias; Cantalupo, Sebastiano; Dutton, Aaron A.; Macciò, Andrea V.

    2018-01-01

    In an effort to search for Ly α emission from circum- and intergalactic gas on scales of hundreds of kpc around z ∼ 3 quasars, and thus characterize the physical properties of the gas in emission, we have initiated an extensive fast survey with the Multi-Unit Spectroscopic Explorer (MUSE): Quasar Snapshot Observations with MUse: Search for Extended Ultraviolet eMission (QSO MUSEUM). In this work, we report the discovery of an enormous Ly α nebula (ELAN) around the quasar SDSS J102009.99+104002.7 at z = 3.164, which we followed-up with deeper MUSE observations. This ELAN spans ∼297 projected kpc, has an average Ly α surface brightness SBLy α ∼ 6.04 × 10-18 erg s-1 cm-2 arcsec-2(within the 2σ isophote) and is associated with an additional four previously unknown embedded sources: two Ly α emitters and two faint active galactic nuclei (one type-1 and one type-2 quasar). By mapping at high significance, the line-of-sight velocity in the entirety of the observed structure, we unveiled a large-scale coherent rotation-like pattern spanning ∼300 km s-1 with a velocity dispersion of <270 km s-1, which we interpret as a signature of the inspiraling accretion of substructures within the quasar's host halo. Future multiwavelength data will complement our MUSE observations and are definitely needed to fully characterize such a complex system. None the less, our observations reveal the potential of new sensitive integral-field spectrographs to characterize the dynamical state of diffuse gas on large scales in the young Universe, and thereby witness the assembly of galaxies.

  6. A SYSTEMATIC SEARCH FOR MASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE

    International Nuclear Information System (INIS)

    Tsalmantza, P.; Decarli, R.; Hogg, David W.; Dotti, M.

    2011-01-01

    We present the results of a systematic search for massive black hole binaries in the Sloan Digital Sky Survey (SDSS) spectroscopic database. We focus on bound binaries, under the assumption that one of the black holes is active. In this framework, the broad lines associated with the accreting black hole are expected to show systematic velocity shifts with respect to the narrow lines, which trace the rest frame of the galaxy. For a sample of 54,586 quasars and 3929 galaxies at redshifts 0.1 < z < 1.5, we brute-force model each spectrum as a mixture of two quasars at two different redshifts. The spectral model is a data-driven dimensionality reduction of the SDSS quasar spectra based on a matrix factorization. We identified 32 objects with peculiar spectra. Nine of them can be interpreted as black hole binaries. This doubles the number of known black hole binary candidates. We also report on the discovery of a new class of extreme double-peaked emitters with exceptionally broad and faint Balmer lines. For all the interesting sources, we present detailed analysis of the spectra and discuss possible interpretations.

  7. A Survey of Metal Lines at High Redshift. II. SDSS Absorption Line Studies—O VI Line Density, Space Density, and Gas Metallicity at z abs ~ 3.0

    Science.gov (United States)

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-01

    We have analyzed a large data set of O VI absorber candidates found in the spectra of 3702 Sloan Digital Sky Survey (SDSS) quasars, focusing on a subsample of 387 active galactic nuclei sight lines with an average S/N >=5.0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W r >= 0.19 Å for the O VI 1032 Å component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density ΔN/Δz for redshifts z abs >= 2.8. With extensive Monte Carlo simulations, we quantify the losses of absorbers due to blending with the ubiquitous Lyα forest lines and estimate the success rate of retrieving each individual candidate as a function of its redshift, the emission redshift of the quasar, the strength of the absorber, and the measured signal-to-noise ratio (S/N) of the spectrum by modeling typical Lyman forest spectra. These correction factors allow us to derive the "incompleteness and S/N-corrected" redshift number densities of O VI absorbers: ΔN O VI,c /Δzc (2.8 secure lower limit for the contribution of O VI to the closure mass density at the redshifts probed here: ΩO VI (2.8 = 1.9 × 10-8 h -1. We show that the strong lines we probe account for over 65% of the mass in the O VI absorbers; the weak absorbers, while dominant in line number density, do not contribute significantly to the mass density. Making a conservative assumption about the ionization fraction, {O VI}/{O}, and adopting the Anders & Grevesse solar abundance values, we derive the mean metallicity of the gas probed in our search: ζ(2.8 = 3.6 × 10-4 h, in good agreement with other studies. These results demonstrate that large spectroscopic data sets such as SDSS can play an important role in QSO absorption line studies, in spite of the relatively low resolution.

  8. A SURVEY OF METAL LINES AT HIGH REDSHIFT. II. SDSS ABSORPTION LINE STUDIES-O VI LINE DENSITY, SPACE DENSITY, AND GAS METALLICITY AT zabs ∼ 3.0

    International Nuclear Information System (INIS)

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-01-01

    We have analyzed a large data set of O VI absorber candidates found in the spectra of 3702 Sloan Digital Sky Survey (SDSS) quasars, focusing on a subsample of 387 active galactic nuclei sight lines with an average S/N ≥5.0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W r ≥ 0.19 A for the O VI 1032 A component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density ΔN/Δz for redshifts z abs ≥ 2.8. With extensive Monte Carlo simulations, we quantify the losses of absorbers due to blending with the ubiquitous Lyα forest lines and estimate the success rate of retrieving each individual candidate as a function of its redshift, the emission redshift of the quasar, the strength of the absorber, and the measured signal-to-noise ratio (S/N) of the spectrum by modeling typical Lyman forest spectra. These correction factors allow us to derive the 'incompleteness and S/N-corrected' redshift number densities of O VI absorbers: ΔN O V I,c /Δz c (2.8 O V I,c /Δz c (3.2 O V I,c /Δz c (3.6 O V I (2.8 -8 h -1 . We show that the strong lines we probe account for over 65% of the mass in the O VI absorbers; the weak absorbers, while dominant in line number density, do not contribute significantly to the mass density. Making a conservative assumption about the ionization fraction, O VI /O, and adopting the Anders and Grevesse solar abundance values, we derive the mean metallicity of the gas probed in our search: ζ(2.8 -4 h, in good agreement with other studies. These results demonstrate that large spectroscopic data sets such as SDSS can play an important role in QSO absorption line studies, in spite of the relatively low resolution.

  9. The SDSS-IV in 2015: Report of the Committee on the Participation of Women in the Sloan Digital Sky Survey

    Science.gov (United States)

    Diamond-Stanic, Aleksandar M.; Lucatello, Sara; Aragon-Salamanca, Alfonso; Cherinka, Brian; Cunha, Katia M. L.; Gillespie, Bruce Andrew; Hagen, Alex; Jones, Amy; Kinemuchi, Karen; Lundgren, Britt; Myers, Adam D.; Roman, Alexandre; Zasowski, Gail; SDSS-IV Collaboration

    2016-01-01

    Given that many astronomers now participate in large international scientific collaborations, it is important to examine whether these structures foster a healthy scientific climate that is inclusive and diverse. The Committee on the Participation of Women in the Sloan Digital Sky Survey (CPWS) was formed to evaluate the climate and demographics within the SDSS collaboration and to make recommendations for how best to establish the scientific and technical leadership team for SDSS-IV. Building on the work described in Lundgren et al. (2015), the CPWS conducted a demographic survey in Spring 2015 that included questions about career and leadership status, racial / ethnic identity, gender identity, identification with the LGBT community, disability, partnership status, and level of parental education. For example, 71% of survey respondents identify as male and 81% do not identify as a racial or ethnic minority at their current institution. This reflects the under-representation of women and men from minority groups (e.g., people of color in the United States) and women from majority groups (e.g., white women in the United States) in the field of astronomy. We have focused our analysis on the representation of scientists from these groups among the SDSS-IV leadership and the full collaboration. Our goal is to use these quantitative data to track the demographics of SDSS-IV membership and leadership over time as we work to assess and improve the climate of SDSS-IV.

  10. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    International Nuclear Information System (INIS)

    Smee, Stephen A.; Barkhouser, Robert H.; Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Leger, French; Owen, Russell; Anderson, Lauren; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Long, Dan; Honscheid, Klaus; Harding, Paul; Annis, James

    2013-01-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg 2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ∼ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances

  11. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Smee, Stephen A.; Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Uomoto, Alan [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Roe, Natalie; Schlegel, David [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rockosi, Constance M. [UC Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, 375 Interdisciplinary Sciences Building (ISB) Santa Cruz, CA 95064 (United States); Leger, French; Owen, Russell; Anderson, Lauren [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 09195 (United States); Dawson, Kyle S.; Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Brinkmann, Jon; Long, Dan [Apache Point Observatory, Sunspot, NM 88349 (United States); Honscheid, Klaus [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Annis, James, E-mail: smee@pha.jhu.edu [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); and others

    2013-08-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Ly{alpha} absorption of 160,000 high redshift quasars over 10,000 deg{sup 2} of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = {lambda}/FWHM {approx} 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < {lambda} < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  12. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Carr, Michael A.; Leger, French; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Owen, Russell; Barkhouser, Robert H.; Honscheid, Klaus; Harding, Paul; Long, Dan; Lupton, Robert H.; Loomis, Craig; Anderson, Lauren; Annis, James; Bernardi, Mariangela; Bhardwaj, Vaishali; Bizyaev, Dmitry; Bolton, Adam S.; Brewington, Howard; Briggs, John W.; Burles, Scott; Burns, James G.; Castander, Francisco Javier; Connolly, Andrew; Davenport, James R. A.; Ebelke, Garrett; Epps, Harland; Feldman, Paul D.; Friedman, Scott D.; Frieman, Joshua; Heckman, Timothy; Hull, Charles L.; Knapp, Gillian R.; Lawrence, David M.; Loveday, Jon; Mannery, Edward J.; Malanushenko, Elena; Malanushenko, Viktor; Merrelli, Aronne James; Muna, Demitri; Newman, Peter R.; Nichol, Robert C.; Oravetz, Daniel; Pan, Kaike; Pope, Adrian C.; Ricketts, Paul G.; Shelden, Alaina; Sandford, Dale; Siegmund, Walter; Simmons, Audrey; Smith, D. Shane; Snedden, Stephanie; Schneider, Donald P.; SubbaRao, Mark; Tremonti, Christy; Waddell, Patrick; York, Donald G.

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  13. SDSS J14584479+3720215: A BENCHMARK JHK{sub S} BLAZAR LIGHT CURVE FROM THE 2MASS CALIBRATION SCANS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Ruan, John J.; Becker, Andrew C. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Macleod, Chelsea L. [Physics Department, The United States Naval Academy, 572c Holloway Road, Annapolis, MD 21402 (United States); Cutri, Roc M., E-mail: jrad@astro.washington.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-04-10

    Active galactic nuclei (AGNs) are well-known to exhibit flux variability across a wide range of wavelength regimes, but the precise origin of the variability at different wavelengths remains unclear. To investigate the relatively unexplored near-IR (NIR) variability of the most luminous AGNs, we conduct a search for variability using well sampled JHK{sub s}-band light curves from the Two Micron All Sky Survey (2MASS) calibration fields. Our sample includes 27 known quasars with an average of 924 epochs of observation over three years, as well as one spectroscopically confirmed blazar (SDSS J14584479+3720215) with 1972 epochs of data. This is the best-sampled NIR photometric blazar light curve to date, and it exhibits correlated, stochastic variability that we characterize with continuous auto-regressive moving average (CARMA) models. None of the other 26 known quasars had detectable variability in the 2MASS bands above the photometric uncertainty. A blind search of the 2MASS calibration field light curves for active galactic nucleus (AGN) candidates based on fitting CARMA(1,0) models (damped-random walk) uncovered only seven candidates. All seven were young stellar objects within the ρ Ophiuchus star forming region, five with previous X-ray detections. A significant γ-ray detection (5σ) for the known blazar using 4.5 yr of Fermi photon data is also found. We suggest that strong NIR variability of blazars, such as seen for SDSS J14584479+3720215, can be used as an efficient method of identifying previously unidentified γ-ray blazars, with low contamination from other AGNs.

  14. Follow up observations of SDSS and CRTS candidate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Vasquez-Soltero, Stephanie [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Everett, Mark E.; Silva, David R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Landolt, Arlo U. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Bond, Howard E., E-mail: szkody@astro.washington.edu, E-mail: dsilva@noao.edu, E-mail: steve.b.howell@nasa.gov, E-mail: landolt@rouge.phys.lsu.edu, E-mail: heb11@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2014-10-01

    We present photometry and spectroscopy of 11 and 35 potential cataclysmic variables, respectively, from the Sloan Digital Sky Survey, the Catalina Real-Time Transient Survey, and vsnet alerts. The photometry results include quasi-periodic oscillations during the decline of V1363 Cyg, nightly accretion changes in the likely Polar (AM Herculis binary) SDSS J1344+20, eclipses in SDSS J2141+05 with an orbital period of 76 ± 2 minutes, and possible eclipses in SDSS J2158+09 at an orbital period near 100 minutes. Time-resolved spectra reveal short orbital periods near 80 minutes for SDSS J0206+20, 85 minutes for SDSS J1502+33, and near 100 minutes for CSS J0015+26, RXS J0150+37, SDSS J1132+62, SDSS J2154+15, and SDSS J2158+09. The prominent He II line and velocity amplitude of SDSS J2154+15 are consistent with a Polar nature for this object, while the absence of this line and a low velocity amplitude argue against this classification for RXS J0150+37. Single spectra of 10 objects were obtained near outburst and the rest near quiescence, confirming the dwarf novae nature of these objects.

  15. The LAMOST survey of background quasars in the vicinity of M31 and M33 – III. results from the 2013 regular survey

    International Nuclear Information System (INIS)

    Huo, Zhi-Ying; Shi, Jian-Rong; Yang, Ming; Liu, Xiao-Wei; Xiang, Mao-Sheng; Huang, Yang; Yuan, Hai-Bo; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei

    2015-01-01

    In this work, we report new quasars discovered in fields in the vicinity of the Andromeda (M31) and Triangulum (M33) galaxies with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) during the 2013 observational season, the second year of the regular survey. In total, 1330 new quasars are discovered in an area of ∼133 deg 2 around M31 and M33. With i magnitudes ranging from 14.79 to 20.0 and redshifts from 0.08 to 4.85, the 1330 new quasars represent a significant increase in the number of identified quasars in fields in the vicinity of M31 and M33. Up to now, there have been a total of 1870 quasars discovered by LAMOST in this area. The much enlarged sample of known quasars in this area can potentially be utilized to construct a precise astrometric reference frame for the measurement of minute proper motions of M31, M33 and their associated substructures, which are vital for understanding the formation and evolution of M31, M33 and the Local Group of galaxies. Moreover, in the sample, there are a total of 45, 98 and 225 quasars with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively. In the aforementioned brightness bins, 15, 35 and 84 quasars are reported here for the first time, and 6, 21 and 81 are reported in our pervious work. In addition, 0, 1 and 6 are from the Sloan Digital Sky Survey and 24, 41 and 54 are from the NED database. These bright quasars provide an invaluable sample to study the kinematics and chemistry of the interstellar/intergalactic medium of the Local Group. (paper)

  16. The luminosity function of quasars

    Science.gov (United States)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  17. A Statistical Study of Brown Dwarf Companions from the SDSS-III MARVELS Survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; De Lee, Nathan M.; Lee, Brian L.; Fleming, Scott W.; Sithajan, Sirinrat; Varosi, Frank; Liu, Jian; Zhao, Bo; Li, Rui; Agol, Eric; MARVELS Team

    2016-01-01

    We present 23 new Brown Dwarf (BD) candidates from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). The BD candidates were selected from the processed MARVELS data using the latest University of Florida 2D pipeline, which shows significant improvement and reduction of systematic errors over the 1D pipeline results included in the SDSS Data Release 12. This sample is the largest BD yield from a single radial velocity survey. Of the 23 candidates, 18 are around main sequence stars and 5 are around giant stars. Given a giant contamination rate of ~24% for the MARVELS survey, we find a BD occurrence rate around main sequence stars of ~0.7%, which agrees with previous studies and confirms the BD desert, while the BD occurrence rate around the MARVELS giant stars is ~0.6%. Preliminary results show that our new candidates around solar type stars support a two population hypothesis, where BDs are divided at a mass of ~42.5 MJup. BDs less massive than 42.5 MJup have eccentricity distributions consistent with planet-planet scattering models, where BDs more massive than 42.5 MJup have both period and eccentricity distributions similar to that of stellar binaries. Special Brown Dwarf systems such as multiple BD systems and highly eccentric BDs will also be presented.

  18. Type Ia supernova rate studies from the SDSS-II Supernova Study

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin [Univ. of Chicago, IL (United States)

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  19. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2

    Science.gov (United States)

    Zarrouk, Pauline; Burtin, Etienne; Gil-Marín, Héctor; Ross, Ashley J.; Tojeiro, Rita; Pâris, Isabelle; Dawson, Kyle S.; Myers, Adam D.; Percival, Will J.; Chuang, Chia-Hsun; Zhao, Gong-Bo; Bautista, Julian; Comparat, Johan; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Hou, Jiamin; Laurent, Pierre; Le Goff, Jean-Marc; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Schneider, Donald P.; Tinker, Jeremy L.; Wang, Yuting; Yèche, Christophe; Baumgarten, Falk; Brownstein, Joel R.; de la Torre, Sylvain; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; Mariappan, Vivek; Palanque-Delabrouille, Nathalie; Peacock, John; Petitjean, Patrick; Seo, Hee-Jong; Zhao, Cheng

    2018-06-01

    We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS). This data set includes 148 659 quasars spread over the redshift range 0.8 ≤ z ≤ 2.2 and spanning 2112.9 deg2. We use the Convolution Lagrangian Perturbation Theory approach with a Gaussian Streaming model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter haloes hosting eBOSS quasar tracers. At the effective redshift zeff = 1.52, we measure the linear growth rate of structure fσ8(zeff) = 0.426 ± 0.077, the expansion rate H(z_eff)= 159^{+12}_{-13}(rs^fid/r_s) {{}km s}^{-1} Mpc^{-1}, and the angular diameter distance DA(z_eff)=1850^{+90}_{-115} (r_s/rs^fid) {}Mpc, where rs is the sound horizon at the end of the baryon drag epoch and rs^fid is its value in the fiducial cosmology. The quoted uncertainties include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat Λ-cold dark matter cosmology with Planck parameters, and the measurement of fσ8 extends the validity of General Relativity to higher redshifts (z > 1). This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.

  20. CHEMICAL EVOLUTION OF THE UNIVERSE AT 0.7 < z < 1.6 DERIVED FROM ABUNDANCE DIAGNOSTICS OF THE BROAD-LINE REGION OF QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, H. [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-01-10

    We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 <  z  < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors of Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z  ∼ 2 or earlier.

  1. The SDSS Coadd: A Galaxy Photometric Redshift Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Ribamar R.R.; /Fermilab /Rio de Janeiro Federal U.; Soares-Santos, Marcelle; /Fermilab /Inst. Geo. Astron., Havana /Sao Paulo U.; Annis, James; /Fermilab; Dodelson, Scott; /Fermilab /Chicago U. /Chicago U., KICP; Hao, Jiangang; /Fermilab; Johnston, David; /Fermilab; Kubo, Jeffrey; /Fermilab; Lin, Huan; /Fermilab; Seo, Hee-Jong; /UC, Berkeley; Simet, Melanie; /Chicago U.

    2011-11-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-z's and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for {approx} 13 million objects classified as galaxies in the coadd with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx} 89, 000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS), the Visible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.036. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  2. THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE

    International Nuclear Information System (INIS)

    Singal, J.; Petrosian, V.; Stawarz, Ł.; Lawrence, A.

    2013-01-01

    We determine the radio and optical luminosity evolutions and the true distribution of the radio-loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining Sloan Digital Sky Survey optical and Faint Images of the Radio Sky at Twenty cm (FIRST) radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio-loudness parameter R is found to be quite different from the observed one and is smooth with no evidence of a bimodality in radio loudness for log R ≥ –1. The results we find are in general agreement with the previous analysis of Singal et al., which used POSS-I optical and FIRST radio data.

  3. TWO LENSED z ≅ 3 LYMAN BREAK GALAXIES DISCOVERED IN THE SDSS GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Koester, Benjamin P.; Gladders, Michael D.; Sharon, Keren; Wuyts, Eva; Bayliss, Matthew B.; Hennawi, Joseph F.; Rigby, J. R.; Dahle, Hakon

    2010-01-01

    We report the discovery of two strongly lensed z ∼ 3 Lyman break galaxies (LBGs) discovered as u-band dropouts as part of the SDSS Giant Arcs Survey (SGAS). The first, SGAS J122651.3+215220 at z = 2.9233, is lensed by one of several sub-clusters, SDSS J1226+2152, in a complex massive cluster at z = 0.43. Its (g, r, i) magnitudes are (21.14, 20.60, 20.51) which translate to surface brightnesses, μ g,r,i , of (23.78, 23.11, 22.81). The second, SGAS J152745.1+065219, is an LBG at z = 2.7593 lensed by the foreground SDSS J1527+0652 at z = 0.39, with (g, r, z) = (20.90, 20.52, 20.58) and μ g,r,z = (25.15, 24.52, 24.12). Moderate resolution spectroscopy confirms the redshifts suggested by photometric breaks and shows both absorption and emission features typical of LBGs. Lens mass models derived from combined imaging and spectroscopy reveal that SGAS J122651.3+215220 is a highly magnified source (M ≅ 40), while SGAS J152745.1+065219 is magnified by no more than M ≅ 15. Compared with LBG survey results, the luminosities and lensing-corrected magnitudes suggest that SGAS J122651.3+215220 is among the faintest ≅20% of LBGs in that sample. SGAS J152745.1+065219, on the other hand, has an unlensed r-band apparent magnitude similar to that of the 'Cosmic Eye', which places it near the mean of LBG survey results over similar redshifts.

  4. Unshifted Metastable He I* Mini-broad Absorption Line System in the Narrow-line Type 1 Quasar SDSS J080248.18+551328.9

    Science.gov (United States)

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Ge, Jian; Wang, Huiyuan; Komossa, S.; Hamann, Fred; Zuther, Jens; Liu, Wenjuan; Lu, Honglin; Zuo, Wenwen; Yang, Chenwei; Yuan, Weimin

    2015-02-01

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ~ 1500 km s-1 centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n H ~ (1.0-2.5) × 105 cm-3 and a column density of N H ~ (1.0-3.2) × 1021 cm-2 and is located at R ~100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  5. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Myers, Adam D.; Hennawi, Joseph F.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.

    2012-01-01

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  6. EW[OIII] as an Orientation Indicator for Quasars: Implications for the Torus

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, Susanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Osservatorio Astrofisico di Arcetri, INAF, Florence (Italy); Marconi, Alessandro; Risaliti, Guido [Osservatorio Astrofisico di Arcetri, INAF, Florence (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Florence (Italy); Lusso, Elisabeta, E-mail: susanna.bisogni@cfa.harvard.edu [Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom)

    2017-11-21

    We present an analysis of the average spectral properties of 12,000 SDSS quasars as a function of accretion disc inclination, as measured from the equivalent width of the [OIII] 5007Å line. The use of this indicator on a large sample of quasars from the SDSS DR7 has proven the presence of orientation effects on the features of UV/optical spectra, confirming the presence of outflows in the NLR gas and that the geometry of the BLR is disc-like. Relying on the goodness of this indicator, we are now using it to investigate other bands/components of AGN. Specifically, the study of the UV/optical/IR SED of the same sample provides information on the obscuring “torus.” The SED shows a decrease of the IR fraction moving from face-on to edge-on sources, in agreement with models where the torus is co-axial with the accretion disc. Moreover, the fact we are able to observe the broad emission lines also in sources in an edge-on position, suggests that the torus is rather clumpy than smooth as in the Unified Model. The behavior of the SED as a function of EW[OIII] is in agreement with the predictions of the clumpy torus models as well.

  7. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    Science.gov (United States)

    Li, Jennifer; Shen, Yue; Horne, Keith; Brandt, W. N.; Greene, Jenny E.; Grier, C. J.; Ho, Luis C.; Kochanek, Chris; Schneider, Donald P.; Trump, Jonathan R.; Dawson, Kyle S.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena

    2017-09-01

    We present composite broad-line region (BLR) reverberation mapping lag measurements for Hα, Hβ, He II λ4686, and Mg II for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for Hα) and ˜0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg II, Hα, Hβ, and He II. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, Hα shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size-luminosity relation based on Hβ. The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.

  8. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jennifer; Shen, Yue [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Horne, Keith [SUPA Physics/Astronomy, Univ. of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Brandt, W. N.; Grier, C. J.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA, 16802 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Kochanek, Chris [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Trump, Jonathan R. [Department of Physics, University of Connecticut, 2152 Hillside Road, Unit 3046, Storrs, CT 06269 (United States); Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States)

    2017-09-01

    We present composite broad-line region (BLR) reverberation mapping lag measurements for H α , H β , He ii λ 4686, and Mg ii for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for H α ) and ∼0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg ii, H α , H β , and He ii. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, H α shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size–luminosity relation based on H β . The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.

  9. The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1

    International Nuclear Information System (INIS)

    Li, Jennifer; Shen, Yue; Horne, Keith; Brandt, W. N.; Grier, C. J.; Schneider, Donald P.; Greene, Jenny E.; Ho, Luis C.; Kochanek, Chris; Trump, Jonathan R.; Dawson, Kyle S.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena

    2017-01-01

    We present composite broad-line region (BLR) reverberation mapping lag measurements for H α , H β , He ii λ 4686, and Mg ii for a sample of 144, z ≲ 1 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM observations, we compile correlation function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of 0.4 (for H α ) and ∼0.65 (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg ii, H α , H β , and He ii. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at z > 0.3. Dividing our sample by luminosity, H α shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size–luminosity relation based on H β . The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar samples with reverberation mapping data.

  10. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    Science.gov (United States)

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.

  11. C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Sun, M.; Beatty, T. G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Filiz Ak, N. [Faculty of Sciences, Department of Astronomy and Space Sciences, Erciyes University, 38039 Kayseri (Turkey); Anderson, S. F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Vivek, M.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S. 1400 E., Salt Lake City, UT 84112 (United States); Roman-Lopes, Alexandre, E-mail: grier@psu.edu [Departamento de Fisica, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile)

    2016-06-20

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  12. BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z ∼ 3-4

    International Nuclear Information System (INIS)

    Hennawi, Joseph F.; Myers, Adam D.; Shen, Yue; Strauss, Michael A.; Djorgovski, S. G.; Glikman, Eilat; Mahabal, Ashish; Fan Xiaohui; Martin, Crystal L.; Richards, Gordon T.; Schneider, Donald P.; Shankar, Francesco

    2010-01-01

    The clustering of quasars on small scales yields fundamental constraints on models of quasar evolution and the buildup of supermassive black holes. This paper describes the first systematic survey to discover high-redshift binary quasars. Using color-selection and photometric redshift techniques, we searched 8142 deg 2 of Sloan Digital Sky Survey imaging data for binary quasar candidates, and confirmed them with follow-up spectroscopy. Our sample of 27 high-redshift binaries (24 of them new discoveries) at redshifts 2.9 perpendicular perpendicular 3.5. The completeness and efficiency of our well-defined selection algorithm are quantified using simulated photometry and we find that our sample is ∼50% complete. Our companion paper uses this knowledge to make the first measurement of the small-scale clustering (R -1 Mpc comoving) of high-redshift quasars. High-redshift binaries constitute exponentially rare coincidences of two extreme (M ∼> 10 9 M sun ) supermassive black holes. At z ∼ 4, there is about one close binary per 10 Gpc 3 , thus these could be the highest sigma peaks, the analogs of superclusters, in the early universe.

  13. WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES

    International Nuclear Information System (INIS)

    Lang, Dustin; Hogg, David W.; Schlegel, David J.

    2016-01-01

    We present photometry of images from the Wide-Field Infrared Survey Explorer (WISE) of over 400 million sources detected by the Sloan Digital Sky Survey (SDSS). We use a “forced photometry” technique, using measured SDSS source positions, star–galaxy classification, and galaxy profiles to define the sources whose fluxes are to be measured in the WISE images. We perform photometry with The Tractor image modeling code, working on our “unWISE” coaddds and taking account of the WISE point-spread function and a noise model. The result is a measurement of the flux of each SDSS source in each WISE band. Many sources have little flux in the WISE bands, so often the measurements we report are consistent with zero given our uncertainties. However, for many sources we get 3σ or 4σ measurements; these sources would not be reported by the “official” WISE pipeline and will not appear in the WISE catalog, yet they can be highly informative for some scientific questions. In addition, these small-signal measurements can be used in stacking analyses at the catalog level. The forced photometry approach has the advantage that we measure a consistent set of sources between SDSS and WISE, taking advantage of the resolution and depth of the SDSS images to interpret the WISE images; objects that are resolved in SDSS but blended together in WISE still have accurate measurements in our photometry. Our results, and the code used to produce them, are publicly available at http://unwise.me

  14. Eight New Luminous z > 6 Quasars Selected via SED Model Fitting of VISTA, WISE and Dark Energy Survey Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.L.; et al.

    2017-01-17

    We present the discovery and spectroscopic confirmation with the ESO NTT and Gemini South telescopes of eight new 6.0 < z < 6.5 quasars with z$_{AB}$ < 21.0. These quasars were photometrically selected without any star-galaxy morphological criteria from 1533 deg$^{2}$ using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). The photometric data was fitted with a grid of quasar model SEDs with redshift dependent Lyman-{\\alpha} forest absorption and a range of intrinsic reddening as well as a series of low mass cool star models. Candidates were ranked using on a SED-model based $\\chi^{2}$-statistic, which is extendable to other future imaging surveys (e.g. LSST, Euclid). Our spectral confirmation success rate is 100% without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants the method allows large data sets to be processed without human intervention and without being over run by spurious false candidates. We also present a robust parametric redshift estimating technique that gives comparable accuracy to MgII and CO based redshift estimators. We find two z $\\sim$ 6.2 quasars with HII near zone sizes < 3 proper Mpc which could indicate that these quasars may be young with ages < 10$^6$ - 10$^7$ years or lie in over dense regions of the IGM. The z = 6.5 quasar VDESJ0224-4711 has J$_{AB}$ = 19.75 is the second most luminous quasar known with z > 6.5.

  15. Hunting for Intrinsically X-ray Weak Quasars: The Case of PHL 1811 Analogs

    Science.gov (United States)

    Brandt, William

    2009-09-01

    A central dogma of X-ray astronomy is that luminous X-ray emission is a universal property of efficiently accreting supermassive black holes. One interesting challenge to this idea has come from the quasar PHL 1811 which appears to be intrinsically X-ray weak and also has distinctive emission-line properties. We propose to observe a sample of eight SDSS quasars, selected to have similar UV emission-line properties to that of PHL 1811, to test if they are also X-ray weak. Our analyses of the currently available X-ray data appear to support this hypothesis but do not provide a proper test. Our results will have implications for the nature of accretion-disk coronae, emission-line formation, and AGN selection.

  16. Strong chromatic microlensing in HE0047–1756 and SDSS1155+6346

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, K.; Motta, V. [Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102 (Chile); Mediavilla, E. [Instituto de Astrofísica de Canarias, Avda. Vía Lactea s/n, La Laguna, E-38200 Tenerife (Spain); Falco, E. [Whipple Observatory, Smithsonian Institution, 670 Mt. Hopkins Road, PO Box 6369, Amado, AZ 85645 (United States); Jiménez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A., E-mail: karina.rojas@uv.cl, E-mail: veronica.motta@uv.cl, E-mail: emg@iac.es, E-mail: falco@cfa.harvard.edu, E-mail: jjimenez@ugr.es, E-mail: jmunoz@uv.es [Departamento de Astronomía y Astrofísica, Universidad de Valencia, Burjassot, E-46100 Valencia (Spain)

    2014-12-10

    We use spectra of the double-lensed quasars HE0047–1756 and SDSS1155+6346 to study their unresolved structure through the impact of microlensing. There is no significant evidence of microlensing in the emission line profiles except for the Lyα line of SDSS1155+6346, which shows strong differences in the shapes for images A and B. However, the continuum of the B image spectrum in SDSS1155+6346 is strongly contaminated by the lens galaxy, and these differences should be considered with caution. Using the flux ratios of the emission lines for image pairs as a baseline to remove macro-magnification and extinction, we have detected strong chromatic microlensing in the continuum measured by CASTLES (www.cfa.harvard.edu/castles/) in both lens systems, with amplitudes 0.09(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for HE0047–1756, and 0.2(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for SDSS1155+6346. Using magnification maps to simulate microlensing and modeling the accretion disk as a Gaussian source (I ∝ exp(–R {sup 2}/2r {sub s}{sup 2})) of size r {sub s} ∝ λ {sup p}, we find r {sub s} = 2.5{sub −1.4}{sup +3.0} √(M/0.3M{sub ⊙}) lt-day and p = 2.3 ± 0.8 at the rest frame for λ = 2045 for HE0047–1756 (log prior) and r {sub s} = 5.5{sub −3.3}{sup +8.2} √(M/0.3M{sub ⊙}) lt-day and p = 1.5 ± 0.6 at the rest frame of λ = 1398 for SDSS1155+6346 (log prior). Contrary to other studied lens systems, the chromaticity detected in HE0047–1756 and SDSS1155+6346 is large enough to fulfill the thin disk prediction. The inferred sizes, however, are very large compared to the predictions of this model, especially in the case of SDSS1155+6346.

  17. Exploring the SDSS Data Set with Linked Scatter Plots. I. EMP, CEMP, and CV Stars

    Energy Technology Data Exchange (ETDEWEB)

    Carbon, Duane F.; Henze, Christopher; Nelson, Bron C., E-mail: Duane.F.Carbon@nasa.gov [NASA Ames Research Center, NASA Advanced Supercomputing Facility, Moffett Field, CA, 94035-1000 (United States)

    2017-02-01

    We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He ii emission CV stars found by the LSP approach that have not yet been discussed in the literature.

  18. Exploring the Variable Sky with the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Sesar, Branimir; Ivezic, Zeljko; Lupton, Robert; Juric, Mario; Gunn, James; Knapp, Gillian; De Lee, Nathan; Smith, J. Allyn; Miknaitis,Gajus; Lin, Huan; Tucker, Douglas; Doi, Mamoru; Tanaka, Masayuki; Fukugita, Masataka; Holtzman, Jon; Kent, Steve; Yanny, Brian; Schlegel,David; Finkbeiner, Douglas; Padmanabhan, Nikhil; Rockosi, Constance; Bond, Nicholas; Lee, Brian; Stoughton, Chris; Jester, Sebastian; Harris,Hugh; Harding, Paul; Brinkmann, Jon; Schneider, Donald; York, Donald; Richmond, Michael; Vanden Berk, Daniel

    2007-04-01

    We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS Stripe 82, which lies along the celestial equator in the Southern Galactic Hemisphere (22h 24m < {alpha}{sub J2000} < 04h 08m, -1.27{sup o} < {delta}{sub J2000} < +1.27{sup o}, {approx} 290 deg{sup 2}), and contains 58 million photometric observations in the SDSS ugriz system for 1.4 million unresolved sources that were observed at least 4 times in each of the gri bands (with a median of 10 observations obtained over {approx}5 years). In each photometric bandpass we compute various low-order lightcurve statistics such as root-mean-square scatter (rms), {chi}{sup 2} per degree of freedom, skewness, minimum and maximum magnitude, and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g = 20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The majority (2/3) of these variable sources are low-redshift (< 2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as is the UV excess color selection (at high Galactic latitudes). We analyze the distribution of lightcurve skewness for quasars and find that is centered on zero. We find that about 1/4 of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of lightcurve skewness in the g-r vs. u-g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over six hundred RR Lyrae stars, we demonstrate rich halo substructure out to distances of 100 kpc. We extrapolate these results to expected performance by the Large Synoptic Survey

  19. The WIRED Survey. 2; Infrared Excesses in the SDSS DR7 White Dwarf Catalog

    Science.gov (United States)

    Debes, John H.; Hoard, D. W.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2011-01-01

    With the launch of the Wide-field Infrar.ed Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From -18,000 input targets, there are WISE detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large (approx. 6") WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  20. The Low-Resolution Spectrograph of the Hobby-Eberly Telescope. II. Observations of Quasar Candidates from the Sloan Digital Sky Survey

    International Nuclear Information System (INIS)

    Schneider, D. P.; Hill, Gary J.; Fan, X.; Ramsey, L. W.; MacQueen, P. J.; Weedman, D. W.; Booth, J. A.; Eracleous, M.; Gunn, J. E.; Lupton, R. H.

    2000-01-01

    This paper describes spectra of quasar candidates acquired during the commissioning phase of the Low-Resolution Spectrograph of the Hobby-Eberly Telescope. The objects were identified as possible quasars from multicolor image data from the Sloan Digital Sky Survey. The 10 sources had typical r' magnitudes of 19-20, except for one extremely red object with r ' ≅23. The data, obtained with exposure times between 10 and 25 minutes, reveal that the spectra of four candidates are essentially featureless and are not quasars, five are quasars with redshifts between 2.92 and 4.15 (including one broad absorption line quasar), and the red source is a very late M star or early L dwarf. (c) (c) 2000. The Astronomical Society of the Pacific

  1. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  2. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations

    International Nuclear Information System (INIS)

    Reed, S. L.; McMahon, R. G.; Martini, P.; Banerji, M.; Auger, M.

    2017-01-01

    Here, we present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 < z < 6.5 quasars with zAB < 21.0. These quasars were photometrically selected without any morphological criteria from 1533 deg2 using spectral energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, i, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Ly α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg ii and CO-based redshift estimators. We find two z ~6.2 quasars with H ii near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 10 6 -10 7 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224–4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.

  3. Interferometer observations of quasars from the Jodrell Bank 966-MHz survey

    International Nuclear Information System (INIS)

    Owen, F.N.; Porcas, R.W.; Neff, S.G.

    1978-01-01

    Radio observations are reported of the 68 quasars with blue magnitudes < or =19.0 identified in the Jodrell Bank 966-MHz survey. The observations were made with the Green Bank interferometer at 2695 MHz with baselines ranging from 300 m to 35 km. Model brightness distributions are presented consisting of one to four elliptical Gaussian components. A limiting resolution of 0.1 arcsec was obtained in the best cases. For radio sources with steep spectra, angular sizes ranged from <0.2 to 85 arcsec. Only two of the sources with steep radio spectra were unresolved. The median angular size for the entire sample is 8 arcsec. For quasars larger than 10 arcsec, the structures can almost always be described in triple. Twenty-nine of the 30 such sources have outer lobes on either side of the optical source and 24 of the 30 have detectable central components. The ratio of the flux densities of the outer lobes varies over a wide range but has a median value of 1.8. The ratio of the flux density of the central component to the total flux density at 2695 MHz ranges from 1% to 95%, with a median value near 10%. The existence of triple structure in the vast majority of quasars, along the with failure to detect central components in blank field sources, suggests a close connection between the nuclear activity in the radio and optical regions of the spectrum. It is also consistent with a picture in which the difference between blank fields and quasars is just transient activity in the nucleus of a distant parent galaxy

  4. A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data

    DEFF Research Database (Denmark)

    Mosher, J.; Sako, M.; Corlies, L.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data...

  5. Using the Properties of Broad Absorption Line Quasars to Illuminate Quasar Structure

    Science.gov (United States)

    Yong, Suk Yee; King, Anthea L.; Webster, Rachel L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2018-06-01

    A key to understanding quasar unification paradigms is the emission properties of broad absorption line quasars (BALQs). The fact that only a small fraction of quasar spectra exhibit deep absorption troughs blueward of the broad permitted emission lines provides a crucial clue to the structure of quasar emitting regions. To learn whether it is possible to discriminate between the BALQ and non-BALQ populations given the observed spectral properties of a quasar, we employ two approaches: one based on statistical methods and the other supervised machine learning classification, applied to quasar samples from the Sloan Digital Sky Survey. The features explored include continuum and emission line properties, in particular the absolute magnitude, redshift, spectral index, line width, asymmetry, strength, and relative velocity offsets of high-ionisation C IV λ1549 and low-ionisation Mg II λ2798 lines. We consider a complete population of quasars, and assume that the statistical distributions of properties represent all angles where the quasar is viewed without obscuration. The distributions of the BALQ and non-BALQ sample properties show few significant differences. None of the observed continuum and emission line features are capable of differentiating between the two samples. Most published narrow disk-wind models are inconsistent with these observations, and an alternative disk-wind model is proposed. The key feature of the proposed model is a disk-wind filling a wide opening angle with multiple radial streams of dense clumps.

  6. INFRARED SPECTRA AND PHOTOMETRY OF COMPLETE SAMPLES OF PALOMAR-GREEN AND TWO MICRON ALL SKY SURVEY QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yong [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Rieke, G. H.; Su, K. Y. L. [Department of Astronomy And Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ogle, P. M. [Infrared Processing and Analysis Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Balog, Z., E-mail: yshipku@gmail.com [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-10-01

    As a step toward a comprehensive overview of the infrared (IR) diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 μm) and photometric (24, 70, and 160 μm) measurements of all Palomar-Green (PG) quasars at z < 0.5 and Two Micron All Sky Survey (2MASS) quasars at z < 0.3. We supplement these data with Herschel measurements at 160 μm. The sample is composed of 87 optically selected PG quasars and 52 near-IR-selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 μm) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the spectral energy distribution (SED) shape of ≲0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured—silicate emission) and 2MASS (obscured—silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 μm, possibly indicating effects on grain properties near the active galactic nucleus. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.

  7. NuSTAR unveils a compton-thick 2 quasar in MrK 34

    DEFF Research Database (Denmark)

    Gandhi, P.; Lansbury, G. B.; Alexander, D. M.

    2014-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) 3-40 keV observations of the optically selected Type 2 quasar (QSO2) SDSS J1034+6001 or Mrk 34. The high-quality hard X-ray spectrum and archival XMM-Newton data can be fitted self-consistently with a reflection-dominated continuum...... standard" CT QSO2 and is the nearest non-merging system in this class, in contrast to the other local CT quasar NGC 6240, which is currently undergoing a major merger coupled with strong star formation. For typical X-ray bolometric correction factors, the accretion luminosity of Mrk 34 is high enough...... to potentially power the total infrared luminosity. X-ray spectral fitting also shows that thermal emission related to star formation is unlikely to drive the observed bright soft component below similar to 3 keV, favoring photoionization instead....

  8. DES J0454-4448: discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Gonzalez-Solares, E.; Martini, P.; Ostrovski, F.; Rauch, M.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Levy, A.; Bertin, E.; Buckley-Geer, E.; Burke, D.; Carnero Rosell, A.; da Costa, L. N.; D' Andrea, C.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Cunha, C. E.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Fosalba, P.; Frieman, J.; Gruen, D.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J.; Merritt, K.; Miquel, R.; Mohr, J.; Nord, B.; Ogando, R.; Plazas, A.; Romer, K.; Roodman, A.; Rykoff, E.; Sako, M.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A.; Wechsler, R. H.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H I near zone size of 4.1+1.1-1.2 proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i-z and z-Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.

  9. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  10. VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)

    Science.gov (United States)

    Wen, Z. L.; Han, J. L.; Liu, F. S.

    2012-06-01

    Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).

  11. X-ray Spectral Survey of WGACAT Quasars, II: Optical and Radio Properties of Quasars with Low Energy X-ray Cut-offs

    OpenAIRE

    Elvis, Martin; Fiore, Fabrizio; Giommi, Paolo; Padovani, Paolo

    1997-01-01

    We have selected quasars with X-ray colors suggestive of a low energy cut-off, from the ROSAT PSPC pointed archive. We examine the radio and optical properties of these 13 quasars. Five out of the seven quasars with good optical spectra show associated optical absorption lines, with two having high delta-v candidate systems. Two other cut-off quasars show reddening associated with the quasar. We conclude that absorption is highly likely to be the cause of the X-ray cut-offs, and that the abso...

  12. X-RAY-EMITTING STARS IDENTIFIED FROM THE ROSAT ALL-SKY SURVEY AND THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Newsom, Emily R.; Anderson, Scott F.; Hawley, Suzanne L.; Silvestri, Nicole M.; Szkody, Paula; Covey, Kevin R.; Posselt, Bettina; Margon, Bruce; Voges, Wolfgang

    2009-01-01

    The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 [mag]). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate L X . We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (f X /f g ) and the equivalent width of the Hβ emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. We report on follow-up observations of three candidate cool X-ray-emitting WDs (one DA and two DB (helium) WDs); we have not

  13. The Eighth Data Release Of The Sloan Digital Sky Survey: First Data From SDSS-3

    Science.gov (United States)

    2011-04-01

    of galaxies (Strauss et al. 2002; Eisenstein et al. 2001), quasars (Richards et al. 2002b), stars (Yanny et al. 2009), and other objects are selected...interlocking surveys; it is described in detail in a companion paper ( Eisenstein et al. 2011). In brief, these surveys are as follows. 1. SEGUE-2. This...algorithms were refined in various ways, as detailed in C. Rockosi et al. (2011, in preparation; see also Eisenstein et al. 2011). We summarize the

  14. Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Cawthon, R.; et al.

    2017-12-19

    We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, which were used for galaxy clustering measurements and as lenses for galaxy-galaxy lensing measurements in DES Y1 cosmological analyses. We empirically determine the bias in redMaGiC photometric redshift estimates using angular cross-correlations with Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. For DES, we calibrate a single parameter redshift bias in three photometric redshift bins: $z \\in[0.15,0.3]$, [0.3,0.45], and [0.45,0.6]. Our best fit results in each bin give photometric redshift biases of $|\\Delta z|<0.01$. To further test the redMaGiC algorithm, we apply our calibration procedure to SDSS redMaGiC galaxies, where the statistical precision of the cross-correlation measurement is much higher due to a greater overlap with BOSS galaxies. For SDSS, we also find best fit results of $|\\Delta z|<0.01$. We compare our results to other analyses of redMaGiC photometric redshifts.

  15. A redshift survey of very faint (B <= 22.5) field galaxies, radio sources, and quasars

    International Nuclear Information System (INIS)

    Koo, D.C.

    1983-01-01

    As part of a three year program to study the evolution of quasars, radio sources and galaxies, a 10 night redshift survey has been carried out. A few preliminary results are presented (a magnitude-redshift plot of 54 galaxies). (Auth.)

  16. An approach to the analysis of SDSS spectroscopic outliers based on self-organizing maps. Designing the outlier analysis software package for the next Gaia survey

    Science.gov (United States)

    Fustes, D.; Manteiga, M.; Dafonte, C.; Arcay, B.; Ulla, A.; Smith, K.; Borrachero, R.; Sordo, R.

    2013-11-01

    Aims: A new method applied to the segmentation and further analysis of the outliers resulting from the classification of astronomical objects in large databases is discussed. The method is being used in the framework of the Gaia satellite Data Processing and Analysis Consortium (DPAC) activities to prepare automated software tools that will be used to derive basic astrophysical information that is to be included in final Gaia archive. Methods: Our algorithm has been tested by means of simulated Gaia spectrophotometry, which is based on SDSS observations and theoretical spectral libraries covering a wide sample of astronomical objects. Self-organizing maps networks are used to organize the information in clusters of objects, as homogeneously as possible according to their spectral energy distributions, and to project them onto a 2D grid where the data structure can be visualized. Results: We demonstrate the usefulness of the method by analyzing the spectra that were rejected by the SDSS spectroscopic classification pipeline and thus classified as "UNKNOWN". First, our method can help distinguish between astrophysical objects and instrumental artifacts. Additionally, the application of our algorithm to SDSS objects of unknown nature has allowed us to identify classes of objects with similar astrophysical natures. In addition, the method allows for the potential discovery of hundreds of new objects, such as white dwarfs and quasars. Therefore, the proposed method is shown to be very promising for data exploration and knowledge discovery in very large astronomical databases, such as the archive from the upcoming Gaia mission.

  17. DETERMINING QUASAR BLACK HOLE MASS FUNCTIONS FROM THEIR BROAD EMISSION LINES: APPLICATION TO THE BRIGHT QUASAR SURVEY

    International Nuclear Information System (INIS)

    Kelly, Brandon C.; Fan Xiaohui; Vestergaard, Marianne

    2009-01-01

    We describe a Bayesian approach to estimating quasar black hole mass functions (BHMF) using the broad emission lines to estimate black hole mass. We show how using the broad-line mass estimates in combination with statistical techniques developed for luminosity function estimation (e.g., the 1/V a correction) leads to statistically biased results. We derive the likelihood function for the BHMF based on the broad-line mass estimates, and derive the posterior distribution for the BHMF, given the observed data. We develop our statistical approach for a flexible model where the BHMF is modeled as a mixture of Gaussian functions. Statistical inference is performed using Markov chain Monte Carlo (MCMC) methods, and we describe a Metropolis-Hastings algorithm to perform the MCMC. The MCMC simulates random draws from the probability distribution of the BHMF parameters, given the data, and we use a simulated data set to show how these random draws may be used to estimate the probability distribution for the BHMF. In addition, we show how the MCMC output may be used to estimate the probability distribution of any quantities derived from the BHMF, such as the peak in the space density of quasars. Our method has the advantage that it is able to constrain the BHMF even beyond the survey detection limits at the adopted confidence level, accounts for measurement errors and the intrinsic uncertainty in broad-line mass estimates, and provides a natural way of estimating the probability distribution of any quantities derived from the BHMF. We conclude by using our method to estimate the local active BHMF using the z BH ∼> 10 8 M sun . Our analysis implies that at a given M BH , z < 0.5 broad-line quasars have a typical Eddington ratio of ∼0.4 and a dispersion in Eddington ratio of ∼<0.5 dex.

  18. The Data Reduction Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey

    Science.gov (United States)

    Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D'Souza, Richard; Fu, Hai; Jones, Amy; Kauffmann, Guinevere; MacDonald, Nicholas; Masters, Karen L.; Newman, Jeffrey A.; Parejko, John K.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Schlegel, David J.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Zhang, Kai

    2016-10-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 Å and an average footprint of ˜500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ˜100 million raw-frame spectra and ˜10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ˜8500 Å and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.

  19. THE DATA REDUCTION PIPELINE FOR THE SDSS-IV MaNGA IFU GALAXY SURVEY

    International Nuclear Information System (INIS)

    Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D’Souza, Richard; Jones, Amy; Kauffmann, Guinevere; Fu, Hai

    2016-01-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622–10354 Å and an average footprint of ∼500 arcsec 2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ∼100 million raw-frame spectra and ∼10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ∼8500 Å and reach a typical 10 σ limiting continuum surface brightness μ  = 23.5 AB arcsec −2 in a five-arcsecond-diameter aperture in the g -band. The wavelength calibration of the MaNGA data is accurate to 5 km s −1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ  = 72 km s −1 .

  20. Quasars Probing Quasars. X. The Quasar Pair Spectral Database

    Science.gov (United States)

    Findlay, Joseph R.; Prochaska, J. Xavier; Hennawi, Joseph F.; Fumagalli, Michele; Myers, Adam D.; Bartle, Stephanie; Chehade, Ben; DiPompeo, Michael A.; Shanks, Tom; Lau, Marie Wingyee; Rubin, Kate H. R.

    2018-06-01

    The rare close projection of two quasars on the sky provides the opportunity to study the host galaxy environment of a foreground quasar in absorption against the continuum emission of a background quasar. For over a decade the “Quasars probing quasars” series has utilized this technique to further the understanding of galaxy formation and evolution in the presence of a quasar at z > 2, resolving scales as small as a galactic disk and from bound gas in the circumgalactic medium to the diffuse environs of intergalactic space. Presented here is the public release of the quasar pair spectral database utilized in these studies. In addition to projected pairs at z > 2, the database also includes quasar pair members at z useful for small-scale clustering studies. In total, the database catalogs 5627 distinct objects, with 4083 lying within 5‧ of at least one other source. A spectral library contains 3582 optical and near-infrared spectra for 3028 of the cataloged sources. As well as reporting on 54 newly discovered quasar pairs, we outline the key contributions made by this series over the last 10 years, summarize the imaging and spectroscopic data used for target selection, discuss the target selection methodologies, describe the database content, and explore some avenues for future work. Full documentation for the spectral database, including download instructions, is supplied at http://specdb.readthedocs.io/en/latest/.

  1. MODERATE C IV ABSORBER SYSTEMS REQUIRE 1012 M☉ DARK MATTER HALOS AT z ∼ 2.3: A CROSS-CORRELATION STUDY OF C IV ABSORBER SYSTEMS AND QUASARS IN SDSS-III BOSS DR9

    International Nuclear Information System (INIS)

    Vikas, Shailendra; Wood-Vasey, W. Michael; Lundgren, Britt; Ross, Nicholas P.; Myers, Adam D.; AlSayyad, Yusra; York, Donald G.; Schneider, Donald P.; Brinkmann, J.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Snedden, Stephanie; Ge, Jian; Muna, Demitri; Pâris, Isabelle; Petitjean, Patrick

    2013-01-01

    We measure the two-point cross-correlation function of C IV absorber systems and quasars, using spectroscopic data from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS; Data Release 9). The 19,701 quasars and 6149 C IV ''moderate'' absorbers, 0.28 Å 2 and represent a factor of two increase in sample size over previous investigations. We find a correlation scale length and slope of the redshift-space cross-correlation function of s 0 = 8.46 ± 1.24 Mpc, γ = 1.68 ± 0.19, in the redshift-space range 10 0 = 7.76 ± 2.80 Mpc, γ = 1.74 ± 0.21. We measure the combined quasar and C IV bias to be b QSO b C I V = 8.81 ± 2.28. Using an estimate of b QSO from the quasar auto-correlation function we find b CIV = 2.38 ± 0.62. This b CIV implies that EW > 0.28 Å C IV absorbers at z ∼ 2.3 are typically found in dark matter halos that have masses ≥10 11.3 -10 13.4 M ☉ at that redshift. The complete BOSS sample will triple the number of both quasars and absorption systems and increase the power of this cross-correlation measurement by a factor of two.

  2. The distributed development environment for SDSS software

    International Nuclear Information System (INIS)

    Berman, E.; Gurbani, V.; Mackinnon, B.; Newberg, H. Nicinski, T.; Petravick, D.; Pordes, R.; Sergey, G.; Stoughton, C.; Lupton, R.

    1994-04-01

    The authors present an integrated science software development environment, code maintenance and support system for the Sloan Digital Sky Survey (SDSS) now being actively used throughout the collaboration

  3. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  4. Cosmological parameters from SDSS and WMAP

    International Nuclear Information System (INIS)

    Tegmark, Max; Strauss, Michael A.; Bahcall, Neta A.; Schlegel, David; Finkbeiner, Douglas; Gunn, James E.; Ostriker, Jeremiah P.; Seljak, Uros; Ivezic, Zeljko; Knapp, Gillian R.; Lupton, Robert H.; Blanton, Michael R.; Scoccimarro, Roman; Hogg, David W.; Abazajian, Kevork; Xu Yongzhong; Dodelson, Scott; Sandvik, Havard; Wang Xiaomin; Jain, Bhuvnesh

    2004-01-01

    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200 000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with Wilkinson Microwave Anisotropy Probe (WMAP) and other data. Our results are consistent with a 'vanilla' flat adiabatic cold dark matter model with a cosmological constant without tilt (n s =1), running tilt, tensor modes, or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1σ constraints on the Hubble parameter from h≅0.74 -0.07 +0.18 to h≅0.70 -0.03 +0.04 , on the matter density from Ω m ≅0.25±0.10 to Ω m ≅0.30±0.04 (1σ) and on neutrino masses from 0 ≅16.3 -1.8 +2.3 Gyr to t 0 ≅14.1 -0.9 +1.0 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened

  5. PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA

    International Nuclear Information System (INIS)

    Sako, Masao; Connolly, Brian; Gladney, Larry; Bassett, Bruce; Dilday, Benjamin; Cambell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Frieman, Joshua A.; Kessler, Richard; Marriner, John; Miquel, Ramon; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper

    2011-01-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ∼91% efficiency and with a contamination of ∼6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ∼20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  6. Photometric type Ia supernova candidates from the three-year SDSS-II SN survey data

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Masao; /Pennsylvania U.; Bassett, Bruce; /South African Astron. Observ. /Cape Town U., Dept. Math.; Connolly, Brian; /Pennsylvania U.; Dilday, Benjamin; /Las Cumbres Observ. /UC, Santa Barbara /Rutgers U., Piscataway; Cambell, Heather; /Portsmouth U., ICG; Frieman, Joshua A.; /Chicago U. /Chicago U., KICP /Fermilab; Gladney, Larry; /Pennsylvania U.; Kessler, Richard; /Chicago U. /Chicago U., KICP; Lampeitl, Hubert; /Portsmouth U., ICG; Marriner, John; /Fermilab; Miquel, Ramon; /Barcelona, IFAE /ICREA, Barcelona /Portsmouth U., ICG

    2011-07-01

    We analyze the three-year Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey data and identify a sample of 1070 photometric Type Ia supernova (SN Ia) candidates based on their multiband light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a subset of 210 candidates having spectroscopic redshifts of their host galaxies measured while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with {approx}91% efficiency and with a contamination of {approx}6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only {approx}20%-40% larger than that of the spectroscopically confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibits biases that require further investigation for precision cosmology.

  7. A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Fan, Xiaohui; Eftekharzadeh, Sarah; Myers, Adam D.

    2016-01-01

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r 0 ) −2 , this discovery implies a correlation length of r 0 ≳ 20h −1 Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift

  8. A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR

    Energy Technology Data Exchange (ETDEWEB)

    McGreer, Ian D.; Fan, Xiaohui [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Eftekharzadeh, Sarah; Myers, Adam D., E-mail: imcgreer@as.arizona.edu [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States)

    2016-03-15

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r{sub 0}){sup −2}, this discovery implies a correlation length of r{sub 0} ≳ 20h{sup −1} Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift.

  9. TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD

    International Nuclear Information System (INIS)

    D'Andrea, Chris B.; Sako, Masao; Dilday, Benjamin; Jha, Saurabh; Frieman, Joshua A.; Kessler, Richard; Holtzman, Jon; Konishi, Kohki; Yasuda, Naoki; Schneider, D. P.; Sollerman, Jesper; Wheeler, J. Craig; Cinabro, David; Nichol, Robert C.; Lampeitl, Hubert; Smith, Mathew; Atlee, David W.; Bassett, Bruce; Castander, Francisco J.; Goobar, Ariel

    2010-01-01

    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey-II Supernova Survey. The redshifts of these SNe-0.027 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.

  10. A Web-based Tool for SDSS and 2MASS Database Searches

    Science.gov (United States)

    Hendrickson, M. A.; Uomoto, A.; Golimowski, D. A.

    We have developed a web site using HTML, Php, Python, and MySQL that extracts, processes, and displays data from the Sloan Digital Sky Survey (SDSS) and the Two-Micron All-Sky Survey (2MASS). The goal is to locate brown dwarf candidates in the SDSS database by looking at color cuts; however, this site could also be useful for targeted searches of other databases as well. MySQL databases are created from broad searches of SDSS and 2MASS data. Broad queries on the SDSS and 2MASS database servers are run weekly so that observers have the most up-to-date information from which to select candidates for observation. Observers can look at detailed information about specific objects including finding charts, images, and available spectra. In addition, updates from previous observations can be added by any collaborators; this format makes observational collaboration simple. Observers can also restrict the database search, just before or during an observing run, to select objects of special interest.

  11. VizieR Online Data Catalog: The SDSS Photometric Catalogue, Release 12 (Alam+, 2015)

    Science.gov (United States)

    Alam, S.; et al.

    2016-03-01

    Data Release 12 (DR12) is the final data release of the SDSS-III, containing all SDSS observations through July 2014. It includes the complete dataset of the BOSS and APOGEE surveys, and also newly includes stellar radial velocity measurements from MARVELS. The principal changes from previous versions are summarized at http://www.sdss.org/dr12/whatsnew/ (1 data file).

  12. Quasars: Cosmological evolution and x-ray background contribution

    International Nuclear Information System (INIS)

    Schmidt, M.; Green, R.F.

    1986-01-01

    The luminosity function of quasars varies with redshift or cosmic epoch. The authors discuss how the luminosity function and its evolution can be determined from complete samples of quasars. They first concentrate on optical survey of quasars. For quasars of medium luminosity, the co-moving space density rises very steeply with redshift. Quasars of lower luminosity exhibit a slower increase of density with redshift, resulting in luminosity-dependent evolution of the space density. They also discuss evidence for a cutoff of quasar redshift and for a possible dependence of the cutoff on luminosity. They evaluate X-ray counts of quasars and show the need for negative X-ray luminosity evolution in order to explain the counts and the low average redshifts of X-ray quasars. As a consequence, the quasar contribution to the X-ray background is lower than originally suspected. They discuss other extragalactic contributors to the X-ray background and conclude that they, together with the quasars, contribute about 60 percent of the observed background. About half of this is contributed by active galactic nuclei with optical luminosities below those of quasars

  13. Dust reddened quasars in first and UKIDSS: Beyond the tip of the iceberg

    Energy Technology Data Exchange (ETDEWEB)

    Glikman, Eilat [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Urrutia, Tanya [Leibniz Institut fr Astrophysik, An der Sternwarte 16, D-14482 Potsdam (Germany); Lacy, Mark [National Radio Astronomy Observatory, Charlottesville, VA (United States); Djorgovski, S. G.; Mahabal, Ashish; Graham, Matthew [California Institute of Technology, Pasadena, CA 91125 (United States); Urry, Meg [Department of Physics and Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); Croom, Scott [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Ge, Jian, E-mail: eglikman@middlebury.edu [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States)

    2013-12-01

    We present the results of a pilot survey to find dust-reddened quasars by matching the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) radio catalog to the UKIDSS near-infrared survey and using optical data from Sloan Digital Sky Survey to select objects with very red colors. The deep K-band limit provided by UKIDSS allows for finding more heavily reddened quasars at higher redshifts as compared with previous work using FIRST and Two Micron All Sky Survey (2MASS). We selected 87 candidates with K ≤ 17.0 from the UKIDSS Large Area Survey (LAS) First Data Release (DR1), which covers 190 deg{sup 2}. These candidates reach up to ∼1.5 mag below the 2MASS limit and obey the color criteria developed to identify dust-reddened quasars. We have obtained 61 spectroscopic observations in the optical and/or near-infrared, as well as classifications in the literature, and have identified 14 reddened quasars with E(B – V) > 0.1, including 3 at z > 2. We study the infrared properties of the sample using photometry from the Wide-Field Infrared Survey Explorer and find that infrared colors improve the efficiency of red quasar selection, removing many contaminants in an infrared-to-optical color-selected sample alone. The highest-redshift quasars (z ≳ 2) are only moderately reddened, with E(B – V) ∼ 0.2-0.3. We find that the surface density of red quasars rises sharply with faintness, comprising up to 17% of blue quasars at the same apparent K-band flux limit. We estimate that to reach more heavily reddened quasars (i.e., E(B – V) ≳ 0.5) at z > 2 and a depth of K = 17, we would need to survey at least ∼2.5 times more area.

  14. THE DATA REDUCTION PIPELINE FOR THE SDSS-IV MaNGA IFU GALAXY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Law, David R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cherinka, Brian [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Andrews, Brett H. [Department of Physics and Astronomy and PITT PACC, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bolton, Adam S.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112 (United States); Bundy, Kevin [Kavli Institute for the Physics and Mathematics of the universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, 277-8583 (Kavli IPMU, WPI) (Japan); Chen, Yanmei [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Drory, Niv [McDonald Observatory, Department of Astronomy, University of Texas at Austin, 1 University Station, Austin, TX 78712-0259 (United States); D’Souza, Richard; Jones, Amy; Kauffmann, Guinevere [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Fu, Hai, E-mail: dlaw@stsci.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); and others

    2016-10-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622–10354 Å and an average footprint of ∼500 arcsec{sup 2} per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ∼100 million raw-frame spectra and ∼10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ∼8500 Å and reach a typical 10 σ limiting continuum surface brightness μ  = 23.5 AB arcsec{sup −2} in a five-arcsecond-diameter aperture in the g -band. The wavelength calibration of the MaNGA data is accurate to 5 km s{sup −1} rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ  = 72 km s{sup −1}.

  15. How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency?

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hengxiao; Wang Junxian; Cai Zhenyi; Sun Mouyuan, E-mail: hengxiaoguo@gmail.com, E-mail: jxw@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-10-01

    Studies have shown that UV/optical light curves of quasars can be described using the prevalent damped random walk (DRW) model, also known as the Ornstein–Uhlenbeck process. A white noise power spectral density (PSD) is expected at low frequency in this model; however, a direct observational constraint to the low-frequency PSD slope is difficult due to the limited lengths of the light curves available. Meanwhile, quasars show scatter in their DRW parameters that is too large to be attributed to uncertainties in the measurements and dependence on the variation of known physical factors. In this work we present simulations showing that, if the low-frequency PSD deviates from the DRW, the red noise leakage can naturally produce large scatter in the variation parameters measured from simulated light curves. The steeper the low-frequency PSD slope, the larger scatter we expect. Based on observations of SDSS Stripe 82 quasars, we find that the low-frequency PSD slope should be no steeper than −1.3. The actual slope could be flatter, which consequently requires that the quasar variabilities should be influenced by other unknown factors. We speculate that the magnetic field and/or metallicity could be such additional factors.

  16. THE DISCOVERY OF THE FIRST “CHANGING LOOK” QUASAR: NEW INSIGHTS INTO THE PHYSICS AND PHENOMENOLOGY OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    LaMassa, Stephanie M.; Cales, Sabrina; Urry, C. Megan [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); Moran, Edward C. [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Myers, Adam D. [Department of Physics and Astronomy 3905, University of Wyoming, 1000 E. University, Laramaie, WY 82071 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics, and Institute for Gravitation and the Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Heckman, Timothy M. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Gallo, Luigi [Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 (Canada)

    2015-02-20

    SDSS J015957.64+003310.5 is an X-ray selected, z = 0.31 active galactic nucleus (AGN) from the Stripe 82X survey that transitioned from a Type 1 quasar to a Type 1.9 AGN between 2000 and 2010. This is the most distant AGN, and first quasar, yet observed to have undergone such a dramatic change. We re-observed the source with the double spectrograph on the Palomar 5 m telescope in 2014 July and found that the spectrum is unchanged since 2010. From fitting the optical spectra, we find that the AGN flux dropped by a factor of 6 between 2000 and 2010 while the broad Hα emission faded and broadened. Serendipitous X-ray observations caught the source in both the bright and dim state, showing a similar 2–10 keV flux diminution as the optical while lacking signatures of obscuration. The optical and X-ray changes coincide with g-band magnitude variations over multiple epochs of Stripe 82 observations. We demonstrate that variable absorption, as might be expected from the simplest AGN unification paradigm, does not explain the observed photometric or spectral properties. We interpret the changing state of J0159+0033 to be caused by dimming of the AGN continuum, reducing the supply of ionizing photons available to excite gas in the immediate vicinity around the black hole. J0159+0033 provides insight into the intermittency of black hole growth in quasars, as well as an unprecedented opportunity to study quasar physics (in the bright state) and the host galaxy (in the dim state), which has been impossible to do in a single sources until now.

  17. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Shirley; Agarwal, Nishant; Lyons, Richard; Disbrow, Ashley; O' Connell, Ross [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong; Schlegel, David; Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94702 (United States); Ross, Ashley [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Hirata, Christopher; Huff, Eric; Weinberg, David [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Padmanabhan, Nikhil [Department of Physics and Astronomy, Yale University, New Haven, CT 06520 (United States); Slosar, Anže [Brookhaven National Laboratory, Bldg. 510, Upton NY 11375 (United States); Strauss, Michael; Bahcall, Neta [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Brinkmann, J. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Palanque-Delabrouille, Nathalie, E-mail: shirleyh@andrew.cmu.edu [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); and others

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0∼ 11,00 square degrees and probes a volume of 80 h{sup −3} Gpc{sup 3}. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ∼ 25% over a bin width of δ{sub l} ∼ 10−15 on scales corresponding to matter-radiation equality and larger (0ℓ ∼ 2−3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of f{sub NL} = −113{sup +154}{sub −154} (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be

  18. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Science.gov (United States)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Alonso-García, Javier; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Berlind, Andreas A.; Bernardi, Mariangela; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; van den Bosch, Remco; Bovy, Jo; Brandt, William N.; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cappellari, Michele; Delgado Carigi, Maria Leticia; Carlberg, Joleen K.; Carnero Rosell, Aurelio; Carrera, Ricardo; Chanover, Nancy J.; Cherinka, Brian; Cheung, Edmond; Gómez Maqueo Chew, Yilen; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comparat, Johan; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Garrido Cuadra, Daniel; Cunha, Katia; Damke, Guillermo J.; Darling, Jeremy; Davies, Roger; Dawson, Kyle; de la Macorra, Axel; Dell'Agli, Flavia; De Lee, Nathan; Delubac, Timothée; Di Mille, Francesco; Diamond-Stanic, Aleks; Cano-Díaz, Mariana; Donor, John; Downes, Juan José; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Eigenbrot, Arthur D.; Eisenstein, Daniel J.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane K.; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Fredrickson, Alexander; Freischlad, Gordon; Frinchaboy, Peter M.; Fuentes, Carla E.; Galbany, Lluís; Garcia-Dias, R.; García-Hernández, D. A.; Gaulme, Patrick; Geisler, Doug; Gelfand, Joseph D.; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gunn, James E.; Guo, Hong; Guy, Julien; Hagen, Alex; Hahn, ChangHoon; Hall, Matthew; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hearty, Fred; Gonzalez Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Huehnerhoff, Joseph; Hutchinson, Timothy A.; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; da Silva Ilha, Gabriele; Ivans, Inese I.; Ivory, KeShawn; Jackson, Kelly; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Lazarz, Daniel; Lee, Youngbae; Le Goff, Jean-Marc; Liang, Fu-Heng; Li, Cheng; Li, Hongyu; Lian, Jianhui; Lima, Marcos; Lin, Lihwai; Lin, Yen-Ting; Bertran de Lis, Sara; Liu, Chao; de Icaza Lizaola, Miguel Angel C.; Long, Dan; Lucatello, Sara; Lundgren, Britt; MacDonald, Nicholas K.; Deconto Machado, Alice; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, Arturo; Mao, Shude; Maraston, Claudia; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McBride, Cameron K.; McDermid, Richard M.; McGrath, Brianne; McGreer, Ian D.; Medina Peña, Nicolás; Melendez, Matthew; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Miyaji, Takamitsu; More, Surhud; Mulchaey, John; Müller-Sánchez, Francisco; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Correa do Nascimento, Janaina; Negrete, Alenka; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Ntelis, Pierros; O'Connell, Julia E.; Oelkers, Ryan J.; Oravetz, Audrey; Oravetz, Daniel; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Kaike; Parejko, John K.; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Patten, Alim Y.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Poleski, Radosław; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Roman-Lopes, A.; Román-Zúñiga, Carlos; Rosado, Margarita; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Sánchez, Ariel G.; Aguado, D. S.; Sánchez-Gallego, José R.; Santana, Felipe A.; Santiago, Basílio Xavier; Sayres, Conor; Schiavon, Ricardo P.; da Silva Schimoia, Jaderson; Schlafly, Edward F.; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Shao, Zhengyi; Shen, Shiyin; Shetrone, Matthew; Shull, Michael; Simon, Joshua D.; Skinner, Danielle; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobeck, Jennifer S.; Sobreira, Flavia; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan; Stauffer, Fritz; Steinmetz, Matthias; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Suzuki, Nao; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tissera, Patricia; Tojeiro, Rita; Hernandez Toledo, Hector; de la Torre, Sylvain; Tremonti, Christy; Troup, Nicholas W.; Valenzuela, Octavio; Martinez Valpuesta, Inma; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wild, Vivienne; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Xu; Zhou, Zhi-Min; Zhu, Guangtun B.; Zoccali, Manuela; Zou, Hu

    2017-07-01

    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z˜ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z˜ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

  19. NO CONFIRMED NEW ISOLATED NEUTRON STARS IN THE SDSS DATA RELEASE 4

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Newsom, Emily R.; Posselt, Bettina; Anderson, Scott F.; Rosenfield, Philip; Homer, Lee; Haberl, Frank; Voges, Wolfgang; Margon, Bruce

    2011-01-01

    We report on follow-up observations of candidate X-ray-bright, radio-quiet isolated neutron stars (INSs) identified from correlations of the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) Data Release 4 in Agueeros et al. We obtained Chandra X-ray Observatory exposures for 13 candidates in order to pinpoint the source of X-ray emission in optically blank RASS error circles. These observations eliminated 12 targets as good INS candidates. We discuss subsequent observations of the remaining candidate with XMM-Newton, the Gemini North Observatory, and the Apache Point Observatory. We identify this object as a likely extragalactic source with an unusually high log (f X /f opt ) ∼ 2.4. We also use an updated version of the population synthesis models of Popov et al. to estimate the number of RASS-detected INSs in the SDSS Data Release 7 footprint. We find that these models predict ∼3-4 INSs in the 11,000 deg 2 imaged by SDSS, which is consistent with the number of known INSs that fall within the survey footprint. In addition, our analysis of the four new INS candidates identified in the SDSS footprint implies that they are unlikely to be confirmed as INSs; together, these results suggest that new INSs are not likely to be found from further correlations of the RASS and SDSS.

  20. Overdensity of galaxies in the environment of quasar pairs

    Science.gov (United States)

    Sandrinelli, A.; Falomo, R.; Treves, A.; Scarpa, R.; Uslenghi, M.

    2018-03-01

    We report on a study of the galaxy environments of low redshift physical quasars pairs. We selected 20 pairs having projected separation Survey images, we evaluated the galaxy overdensity around these quasars in pairs and then compare it with that of a sample of isolated quasars with same redshift and luminosity. It is found that on average there is a systematic larger overdensity of galaxies around quasars in pairs with respect to that of isolated quasars. This may represent a significant link between nuclear activity and galaxy environment. However, at odds with that, the closest quasar pairs seem to inhabit poorer environments. Implications of present results and perspectives for future work are briefly discussed.

  1. Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data

    Science.gov (United States)

    Chanover, Nancy J.; Holley-Bockelmann, Kelly; Holtzman, Jon A.

    2017-01-01

    In the Summer of 2016 we conducted a 10-week pilot Research Experience for Undergraduates (REU) program aimed at increasing the participation of underrepresented minority undergraduate students in research using data from the Sloan Digital Sky Survey (SDSS). This program utilized a distributed REU model, whereby students worked with SDSS scientists on exciting research projects while serving as members of a geographically distributed research community. The format of this REU is similar to that of the SDSS collaboration itself, and since this collaboration structure has become a model for the next generation of large scale astronomical surveys, the students participating in the SDSS REU received early exposure and familiarity with this approach to collaborative scientific research. The SDSS REU also provided the participants with a low-risk opportunity to audition for graduate schools and to explore opportunities afforded by a career as a research scientist. The six student participants were placed at SDSS REU host sites at the Center for Astrophysics at Harvard University, University of Wisconsin-Madison, Vanderbilt University, and the University of Portsmouth. Their research projects covered a broad range of topics related to stars, galaxies, and quasars, all making use of SDSS data. At the start of the summer the REU students participated in a week-long Boot Camp at NMSU, which served as a program orientation, an introduction to skills relevant to their research projects, and an opportunity for team-building and cohort-forming. To foster a sense of community among our distributed students throughout the summer, we conducted a weekly online meeting for all students in the program via virtual meeting tools. These virtual group meetings served two purposes: as a weekly check-in to find out how their projects were progressing, and to conduct professional development seminars on topics of interest and relevance to the REU participants. We discuss the outcomes of this

  2. Exploring the Milky Way halo with SDSS-II SN survey RR Lyrae stars

    Science.gov (United States)

    De Lee, Nathan

    This thesis details the creation of a large catalog of RR Lyrae stars, their lightcurves, and their associated photometric and kinematic parameters. This catalog contains 421 RR Lyrae stars with 305 RRab and 116 RRc. Of these, 241 stars have stellar spectra taken with either the Blanco 4m RC spectrograph or the SDSS/SEGUE survey, and in some cases taken by both. From these spectra and photometric methods derived from them, an analysis is conducted of the RR lyrae's distribution, metallicity, kinematics, and photometric properties within the halo. All of these RR Lyrae originate from the SDSS-II Supernova Survey. The SDSS-II SN Survey covers a 2.5 degree equatorial stripe ranging from -60 to +60 degrees in RA. This corresponds to relatively high southern galactic latitudes in the anti-center direction. The full catalog ranges from g 0 magnitude 13 to 20 which covers a distance of 3 to 95 kpc from the sun. Using this sample, we explore the Oosterhoff dichotomy through the D log P method as a function of | Z | distance from the plane. This results in a clear division of the RRab stars into OoI and OoII groups at lower | Z |, but the population becomes dominated by OoI stars at higher | Z |. The idea of a dual halo is explored primarily in the context of radial velocity distributions as a function of | Z |. In particular, V gsr , the radial velocity in the galactic standard of rest, is used as a proxy for V [straight phi] , the cylindrical rotational velocity. This is then compared against a single halo model galaxy, which results in very similar V gsr histograms for both at low to medium | Z |. However, at high | Z | there is a clear separation into two distinct velocity groups for the data without a corresponding separation in the model, suggesting that at least a two-component model for the halo is necessary. The final part of the analysis involves [Fe/H] measurements from both spectra and photometric relations cut in both | Z | and radial velocity. In this case

  3. THE LICK/SDSS LIBRARY. I. SYNTHETIC INDEX DEFINITION AND CALIBRATION

    International Nuclear Information System (INIS)

    Franchini, M.; Morossi, C.; Di Marcantonio, P.; Malagnini, M. L.; Chavez, M.

    2010-01-01

    A new synthetic library of spectral feature indices, Lick/Sloan Digital Sky Survey (SDSS), for stellar population studies is presented. Lick/SDSS is computed from synthetic spectra with resolving power R = 1800 to fully exploit the content of the spectroscopic SDSS-DR7 stellar database. The Lick/SDSS system is based on the Lick/IDS one complemented with a UV index in the wavelength region of Ca II H and K lines. The system is well suited to study α-element abundances in F, G, and K stars. The reliability of synthetic indices in reproducing the behaviors of observational ones with effective temperature, surface gravity, overall metallicity, and α-element abundances is tested by using empirical stellar libraries (ELODIE, INDO-U.S., and MILES) and the SDSS-DR7 spectroscopic database. The importance of using the same temperature scale in comparing theoretical and observational indices is discussed. The full consistency between Lick/SDSS and observational indices derived from the above mentioned stellar libraries is assessed. The comparison with indices computed from SDSS-DR7 spectra evidences good consistency for 'dwarf' stars and significant disagreement for 'giant' stars due to systematic overestimation of the stellar T eff by the SEGUE Stellar Parameter Pipeline.

  4. After SDSS-IV: Pioneering Panoptic Spectroscopy

    Science.gov (United States)

    Kollmeier, Juna; AS4 Collaboration

    2018-01-01

    I will describe the current plans for a next generation sky survey that will begin After SDSS-IV --- AS4. AS4 will be an unprecedented all-sky spectroscopic survey of over six million objects. It is designed to decode the history of the Milky Way galaxy, trace the emergence of the chemical elements, reveal the inner workings of stars, the growth of black holes, and investigate the origin of planets. It will provide the most comprehensive all-sky spectroscopy to multiply the science from the Gaia, TESS and eROSITA missions. AS4 will also create a contiguous spectroscopic map of the interstellar gas in the Milky Way and nearby galaxies that is 1,000 times larger than the state of the art, uncovering the self-regulation mechanisms of Galactic ecosystems. It will pioneer systematic, spectroscopic monitoring across the whole sky, revealing changes on timescales from 20 minutes to 20 years. The project is now developing new hardware to build on the SDSS-IV infrastructure, designing the detailed survey strategy, and actively seeking to complete its consortium of institutional and individual members.

  5. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J.; Bailey, Stephen [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, Scott F.; Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Aubourg, Eric; Bautista, Julian E. [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beifiori, Alessandra [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, VU Station 1807, Nashville, TN 37235 (United States); Bizyaev, Dmitry; Brewington, Howard [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Blake, Cullen H. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Borde, Arnaud [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Brandt, W. N., E-mail: kdawson@astro.utah.edu [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); and others

    2013-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg{sup 2} to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly{alpha} forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly{alpha} forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d{sub A} to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly{alpha} forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D{sub A} (z) and H {sup -1}(z) parameters to an accuracy of 1.9% at z {approx} 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.

  6. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations

    Science.gov (United States)

    Reed, S. L.; McMahon, R. G.; Martini, P.; Banerji, M.; Auger, M.; Hewett, P. C.; Koposov, S. E.; Gibbons, S. L. J.; Gonzalez-Solares, E.; Ostrovski, F.; Tie, S. S.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2017-07-01

    We present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Ly α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg II and CO-based redshift estimators. We find two z ˜ 6.2 quasars with H II near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 106-107 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224-4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.

  7. Low resolution infrared spectra of quasars

    International Nuclear Information System (INIS)

    Soifer, B.T.; Neugebauer, G.; Oke, J.B.; Matthews, K.

    1980-01-01

    Low resolution spectra of a significant sample of quasars show that the Paschen α and Balmer line ratios do not agree with the radiative recombination case B result and vary widely within the quasars sampled. The range in Pα:Hβ ratios is a factor of approximately 6, while the range in Lyα:Hα ratios is a factor of approximately 5. For the Pα:Balmer series, the deviations from case B recombination are not consistent with reddening, but appear, within large dispersions, to be consistent with optical depth effects in the Balmer lines affecting the line ratios. The Lyα:Hα ratio is, however, correlated with the continuum spectral index, and can be explained as due to reddening affecting both the lines and continuum. Recent observational results based on a joint infrared/optical survey of the hydrogen line spectra of a significant number of the brightest low and high redshift quasars are summarised. This survey includes 12 quasars in the redshift range 0.07 1.5, where Hα and/or Hβ is redshifted into the 1.65μm or 2.2μm atmospheric windows. (Auth.)

  8. THE HIGH A{sub V} Quasar Survey: Reddened Quasi-Stellar Objects selected from optical/near-infrared photometry. II

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Fynbo, J. P. U.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Kangas, T.; Pursimo, T.; Smirnova, O. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Saturni, F. G. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö (Finland)

    2015-03-15

    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the ones used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared (near-IR) color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 μm flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 μm relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-IR selection of red QSOs.

  9. A PRECISION MULTI-BAND TWO-EPOCH PHOTOMETRIC CATALOG OF 44 MILLION SOURCES IN THE NORTHERN SKY FROM A COMBINATION OF THE USNO-B AND SLOAN DIGITAL SKY SURVEY CATALOGS

    International Nuclear Information System (INIS)

    Madsen, G. J.; Gaensler, B. M.

    2013-01-01

    A key science driver for the next generation of wide-field optical and radio surveys is the exploration of the time variable sky. These surveys will have unprecedented sensitivity and areal coverage, but will be limited in their ability to detect variability on time scales longer than the lifetime of the surveys. We present a new precision, multi-epoch photometric catalog that spans 60 yr by combining the US Naval Observatory-B (USNO-B) and Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9) catalogs. We recalibrate the photometry of the original USNO-B catalog and create a catalog with two epochs of photometry in up to five different bands for 43,647,887 optical point sources that lie in the DR9 footprint of the northern sky. The recalibrated objects span a magnitude range 14 ≲ m ≲ 20 and are accurate to ≈0.1 mag. We minimize the presence of spurious objects and those with inaccurate magnitudes by identifying and removing several sources of systematic errors in the two originating catalogs, with a focus on spurious objects that exhibit large apparent magnitude variations. After accounting for these effects, we find ≈250,000 stars and quasars that show significant (≥4σ) changes in brightness between the USNO-B and SDSS DR9 epochs. We discuss the historical value of the catalog and its application to the study of long time scale, large amplitude variable stars and quasars

  10. An Intercomparison Study of Two Proximate Damped Lyα Systems with Residual Flux upon the Lyα Absorption Trough toward Quasars

    Science.gov (United States)

    Xie, Xiaoyi; Zhou, Hongyan; Pan, Xiang; Jiang, Peng; Shi, Xiheng; Ji, Tuo; Zhang, Shaohua; Wu, Shengmiao; Zhong, Zhihao

    2018-05-01

    In this paper, we present an intercomparison study of two quasars, SDSS J145618.32+340037.2 and SDSS J215331.50–025514.1, which have proximate damped Lyα systems (PDLAs) with residual flux upon the Lyα absorption trough. Though they both have residual flux as luminous as 1043 erg s‑1, their PDLAs are quite different in, e.g., neutral hydrogen column density, metal line absorption strength, high-ionization absorption lines as well as residual flux strength. For J1456+3400, the H I column density is log(N H I /cm–2) = 20.6 ± 0.2, with z abs = 2.3138, nearly identical to the quasar redshift (z = 2.3142) determined from the [O III] emission line. The metallicity of this system is typical of DLAs and there is high ionization therein, suggesting that the PDLA system is multiphase, putting it in the quasar environment. For J2153–0255, we measure the H I column density to be log(N H I /cm–2) = 21.5 ± 0.1 at z abs = 3.511, slightly redshifted with respect to the quasar (z = 3.490) measured from C III]. The metallicity of this system is quite low and there is a lack of significant high-ionization absorption lines therein, suggesting that the system is beyond the quasar host galaxy. The residual flux is wide (∼1000 km s‑1) in J1456, with a significance of ∼8σ, while also wide (∼1500 km s‑1) but with a smaller significance of ∼3σ in J2153. Among many explanations, we find that Lyα fuzz or resonant scattering can be used to explain the residual flux in the two sources while partial coverage cannot be excluded for J1456. By comparing these two cases, together with a similar case reported previously, we suggest that the strength of the residual flux is related to properties such as metallicity and high-ionization absorption lines of PDLAs. The residual flux recorded upon the PDLA absorption trough opens a window for us to see the physical conditions and processes of the quasar environment, and their profile and strength further remind us of their

  11. FIRST-2MASS RED QUASARS: TRANSITIONAL OBJECTS EMERGING FROM THE DUST

    International Nuclear Information System (INIS)

    Glikman, Eilat; Urrutia, Tanya; Lacy, Mark; Djorgovski, S. George; Mahabal, Ashish; Myers, Adam D.; Ross, Nicholas P.; Petitjean, Patrick; Ge, Jian; Schneider, Donald P.; York, Donald G.

    2012-01-01

    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the Faint Images of the Radio Sky at Twenty Centimeters survey with the near-infrared Two Micron All Sky Survey catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B – V). We demonstrate that the reddening in these quasars is best described by Small-Magellanic-Cloud-like dust. This sample spans a wide range in redshift and reddening (0.1 ∼< z ∼< 3, 0.1 ∼< E(B – V) ∼< 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a 'normal' blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up ∼< 15%-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15%-20% as long as the unobscured, blue quasar phase.

  12. GALEX-SDSS CATALOGS FOR STATISTICAL STUDIES

    International Nuclear Information System (INIS)

    Budavari, Tamas; Heinis, Sebastien; Szalay, Alexander S.; Nieto-Santisteban, Maria; Bianchi, Luciana; Gupchup, Jayant; Shiao, Bernie; Smith, Myron; Chang Ruixiang; Kauffmann, Guinevere; Morrissey, Patrick; Wyder, Ted K.; Martin, D. Christopher; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Schiminovich, David; Milliard, Bruno; Donas, Jose; Seibert, Mark

    2009-01-01

    We present a detailed study of the Galaxy Evolution Explorer's (GALEX) photometric catalogs with special focus on the statistical properties of the All-sky and Medium Imaging Surveys. We introduce the concept of primaries to resolve the issue of multiple detections and follow a geometric approach to define clean catalogs with well understood selection functions. We cross-identify the GALEX sources (GR2+3) with Sloan Digital Sky Survey (SDSS; DR6) observations, which indirectly provides an invaluable insight into the astrometric model of the UV sources and allows us to revise the band merging strategy. We derive the formal description of the GALEX footprints as well as their intersections with the SDSS coverage along with analytic calculations of their areal coverage. The crossmatch catalogs are made available for the public. We conclude by illustrating the implementation of typical selection criteria in SQL for catalog subsets geared toward statistical analyses, e.g., correlation and luminosity function studies.

  13. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    International Nuclear Information System (INIS)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Wood-Vasey, W. M.; Bizyaev, Dmitry

    2015-01-01

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s −1 wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n e ≳ 3.9 × 10 5 cm −3 . The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios

  14. Continuing Long Term Optical and Infrared Reverberation Mapping of 17 Sloan Digital Sky Survey Quasars

    Science.gov (United States)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling

    2018-05-01

    Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.

  15. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle S.; Bautista, Julian E. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire dástrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Alam, Shadab [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Albareti, Franco D. [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Armengaud, Eric [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Aubourg, Éric [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Bailey, Stephen; Beutler, Florian [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, PMB 401807, 2401 Vanderbilt Place, Nashville, TN 37240 (United States); Bershady, Matthew A. [University of Wisconsin-Madison, Department of Astronomy, 475 N. Charter St., Madison WI 53703 (United States); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, sunspot, NM 88349 (United States); Blanton, Michael R., E-mail: kdawson@astro.utah.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2016-02-15

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d{sub A}(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of d{sub A}(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d{sub A}(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d{sub A}(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non

  16. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Wu, Xue-Bing; Jiang, Linhua [Kavli Institute of Astronomy and Astrophysics at Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Momjian, Emmanuel; Carilli, Chris L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Walter, Fabian [Max-Planck-Institute for Astronomy, Königsstuhl 17, D-69117 Heidelberg (Germany); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wang, Feige [Department of Astronomy, School of Physics, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China)

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  17. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-06-20

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  18. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    International Nuclear Information System (INIS)

    Hlozek, Renée; Kunz, Martin; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Frieman, Joshua; Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John; Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Dilday, Ben; Falck, Bridget; Riess, Adam G.; Sako, Masao; Schneider, Donald P.

    2012-01-01

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10 4 SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the Ω m , Ω Λ contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are Ω BEAMS m = 0.194 ± 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  19. Star Formation in Dusty Quasars

    Science.gov (United States)

    Lumsden, Stuart; Croom, Scott

    2012-04-01

    Quasar mode feedback is thought to be a crucial ingredient in galaxy formation for luminous merging and star-bursting systems at high redshift. The energy from the active nucleus should cause significant gas outflows, reducing the available free gas reservoir for future star formation. It is currently unknown which observational state best corresponds to the stage at which this "blowout" should occur. We intend to test one possible source population for this transition phase, by studying the molecular gas content in a small, statistically complete sample of 3 K-band selected reddened quasars from the AUS survey. All lie in the redshift range 2quasar activity in typical galaxies, where we also expect the bulk of the stars for form as well.

  20. RESOLVED DUST EMISSION IN A QUASAR AT z = 3.65

    International Nuclear Information System (INIS)

    Clements, D. L.; Babbedge, T.; Rowan-Robinson, M.; Petitpas, G.; Farrah, D.; Hatziminaoglou, E.; Perez-Fournon, I.; Hernan-Caballero, Antonio; Castro-RodrIguez, Nieves; Lonsdale, C.; Surace, J.; Franceschini, A.; Wilkes, B. J.; Smith, H.

    2009-01-01

    We present submillimeter observations of the z= 3.653 quasar SDSS 160705+533558 together with data in the optical and infrared. The object is unusually bright in the far-IR and submillimeter with an IR luminosity of ∼10 14 L sun . We ascribe this luminosity to a combination of active galactic nucleus (AGN) and starburst emission, with the starburst forming stars at a rate of a few thousand solar masses per year. Submillimeter Array imaging observations with a resolution ∼1'' show that the submillimeter (850 μm) emission is extended on scales of 10- 35 kpc and is offset from the optical position by ∼10 kpc. This morphology is dissimilar to that found in submillimeter galaxies, which are generally unresolved or marginally resolved on arcsecond scales, or submillimeter-luminous AGNs where the AGN lies at the peak of the submillimeter or molecular emission. The simplest explanation is that the object is in the early stages of a merger between a gas-rich galaxy, which hosts the starburst, and a gas-poor AGN-host galaxy, which is responsible for the quasar emission. It is also possible that jet-induced star formation might contribute to the unusual morphology.

  1. Objective-prism spectrophotometry of quasars

    International Nuclear Information System (INIS)

    Clowes, R.G.

    1980-01-01

    A procedure is derived for obtaining low-resolution spectrophotometry of quasars directly from the objective-prism plates on which they were discovered. Measurements with a PDS microdensitometer of approximately 130 quasar candidates in approximately the central 19 square degrees of the UK Schmidt prism plate UJ3682P were used in the application of the procedure. The success of the objective-prism spectrophotometry is demonstrated in a comparison with 12 slit spectra. Redshifts and equivalent widths can be determined with typical discrepancies of 1% and 40% respectively. This work on objective-prism spectrophotometry leads to a quantification of the selection effects that operate in the searches for emission-line objects on objective-prism plates. The quantification successfully explains an apparent discrepancy in the detection efficiencies of the CTIO-4m and Curtis Schmidt surveys for quasars. Spectra of quasars that were observed with the Image Photon Counting System on the Anglo-Australian Telescope are presented. The observations of quasars with broad absorption troughs indicate the ejection of matter with velocities up to approximately 22000kms -1 and with velocity dispersions up to approximately 11000kms -1 . Data on the wavelength dependences of the contrast γ and the grain response function g of the Kodak emulsion IIIaJ are presented. (author)

  2. Constraining The Abundance Of Massive Black Hole Binaries By Spectroscopic Monitoring Of Quasars With Offset Broad Emission Lines

    Science.gov (United States)

    Liu, Xin; Shen, Y.

    2012-05-01

    A fraction of quasars have long been known to show significant bulk velocity offsets (of a few hundred to thousands of km/s) in the broad permitted emission lines with respect to host galaxy systemic redshift. Various scenarios may explain these features such as massive black hole binaries or broad line region gas kinematics. As previously demonstrated by the dedicated work of Eracleous and colleagues, long-term spectroscopic monitoring provides a promising test to discriminate between alternative scenarios. Here, we present a sample of 300 shifted-line quasars homogeneously selected from the SDSS DR7. For 60 of them, we have conducted second-epoch optical spectra using MMT/BCS, ARC 3.5m/DIS, and/or FLWO 1.5m/FAST. These new observations, combined with the existing SDSS spectra, enable us to constrain the velocity drifts of these shifted broad lines with time baselines of a few years up to a decade. Previous work has been focusing on objects with extreme velocity offsets: > 1000 km/s. Our work extends to the parameter space of smaller velocity offsets, where larger velocity drifts would be expected in the binary scenario. Our results may be used to identify strong candidates for and to constrain the abundance of massive black hole binaries, which are expected in the hierarchical universe, but have so far been illusive.

  3. Serendipitous discovery of quadruply imaged quasars: two diamonds

    Science.gov (United States)

    Lucey, John R.; Schechter, Paul L.; Smith, Russell J.; Anguita, T.

    2018-05-01

    Gravitationally lensed quasars are powerful and versatile astrophysical tools, but they are challengingly rare. In particular, only ˜25 well-characterized quadruple systems are known to date. To refine the target catalogue for the forthcoming Taipan Galaxy Survey, the images of a large number of sources are being visually inspected in order to identify objects that are confused by a foreground star or galaxies that have a distinct multicomponent structure. An unexpected by-product of this work has been the serendipitous discovery of about a dozen galaxies that appear to be lensing quasars, i.e. pairs or quartets of foreground stellar objects in close proximity to the target source. Here, we report two diamond-shaped systems. Follow-up spectroscopy with the IMACS instrument on the 6.5m Magellan Baade telescope confirms one of these as a z = 1.975 quasar quadruply lensed by a double galaxy at z = 0.293. Photometry from publicly available survey images supports the conclusion that the other system is a highly sheared quadruply imaged quasar. In starting with objects thought to be galaxies, our lens finding technique complements the conventional approach of first identifying sources with quasar-like colours and subsequently finding evidence of lensing.

  4. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, D.; et al.

    2017-11-30

    We present accretion disk size measurements for 15 luminous quasars at $0.7 \\leq z \\leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.

  5. MODERATE C IV ABSORBER SYSTEMS REQUIRE 10{sup 12} M{sub Sun} DARK MATTER HALOS AT z {approx} 2.3: A CROSS-CORRELATION STUDY OF C IV ABSORBER SYSTEMS AND QUASARS IN SDSS-III BOSS DR9

    Energy Technology Data Exchange (ETDEWEB)

    Vikas, Shailendra; Wood-Vasey, W. Michael [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Lundgren, Britt [Department of Physics, Yale University, New Haven, CT 06511 (United States); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 92420 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); AlSayyad, Yusra [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); York, Donald G. [Department of Astronomy, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Brinkmann, J.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Snedden, Stephanie [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Ge, Jian [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Muna, Demitri [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Paris, Isabelle; Petitjean, Patrick, E-mail: skv4@pitt.edu [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); and others

    2013-05-01

    We measure the two-point cross-correlation function of C IV absorber systems and quasars, using spectroscopic data from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS; Data Release 9). The 19,701 quasars and 6149 C IV ''moderate'' absorbers, 0.28 A < rest-frame equivalent width (EW) < 5 A, in our study cover a redshift range of 2.1 < z < 2.5 over 3300 deg{sup 2} and represent a factor of two increase in sample size over previous investigations. We find a correlation scale length and slope of the redshift-space cross-correlation function of s{sub 0} = 8.46 {+-} 1.24 Mpc, {gamma} = 1.68 {+-} 0.19, in the redshift-space range 10 < s < 100 Mpc. We find a projected cross-correlation function of C IV absorption systems and quasars of r{sub 0} = 7.76 {+-} 2.80 Mpc, {gamma} = 1.74 {+-} 0.21. We measure the combined quasar and C IV bias to be b{sub QSO} b{sub C{sub IV}} = 8.81 {+-} 2.28. Using an estimate of b{sub QSO} from the quasar auto-correlation function we find b{sub CIV} = 2.38 {+-} 0.62. This b{sub CIV} implies that EW > 0.28 A C IV absorbers at z {approx} 2.3 are typically found in dark matter halos that have masses {>=}10{sup 11.3}-10{sup 13.4} M{sub Sun} at that redshift. The complete BOSS sample will triple the number of both quasars and absorption systems and increase the power of this cross-correlation measurement by a factor of two.

  6. Lens-Aided Multi-Angle Spectroscopy (LAMAS) Reveals Small-Scale Outflow Structure in Quasars

    Science.gov (United States)

    Green, Paul J.

    2006-06-01

    Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. Here we advance a novel third hypothesis: some spectral differences are due to small line-of-sight differences through quasar disk wind outflows. In particular, we propose that variable spectral differences seen only in component A of the widest separation lens SDSS J1004+4112 are due to differential absorption along the sight lines. The absorber properties required by this hypothesis are akin to known broad absorption line (BAL) outflows but must have a broader, smoother velocity profile. We interpret the observed C IV emission-line variability as further evidence for spatial fine structure transverse to the line of sight. Since outflows are likely to be rotating, such absorber fine structure can consistently explain some of the UV and X-ray variability seen in AGNs. The implications are many: (1) Spectroscopic differences in other lensed objects may be due to this ``lens-aided multi-angle spectroscopy'' (LAMAS). (2) Outflows have fine structure on size scales of arcseconds, as seen from the nucleus. (3) Assuming either broad absorption line region sizes proposed in recent wind models, or typically assumed continuum emission region sizes, LAMAS and/or variability provide broadly consistent absorber size scale estimates of ~1015 cm. (4) Very broad smooth absorption may be ubiquitous in quasar spectra, even when no obvious troughs are seen.

  7. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Bundy, Kevin [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); Bershady, Matthew A.; Wake, David A.; Tremonti, Christy; Diamond-Stanic, Aleksandar M. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Law, David R.; Cherinka, Brian [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Yan, Renbin; Sánchez-Gallego, José R. [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Drory, Niv [McDonald Observatory, Department of Astronomy, University of Texas at Austin, 1 University Station, Austin, TX 78712-0259 (United States); MacDonald, Nicholas [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Weijmans, Anne-Marie [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Thomas, Daniel; Masters, Karen; Coccato, Lodovico [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth (United Kingdom); Aragón-Salamanca, Alfonso [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Avila-Reese, Vladimir [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 70-264, 04510 Mexico D.F. (Mexico); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 OHara St, Pittsburgh, PA 15260 (United States); Falcón-Barroso, Jésus [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Belfiore, Francesco [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); and others

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ∼ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å{sup –1} per 2'' fiber) at 23 AB mag arcsec{sup –2}, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M {sub *} ≳ 10{sup 9} M {sub ☉} using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

  8. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    International Nuclear Information System (INIS)

    Bundy, Kevin; Bershady, Matthew A.; Wake, David A.; Tremonti, Christy; Diamond-Stanic, Aleksandar M.; Law, David R.; Cherinka, Brian; Yan, Renbin; Sánchez-Gallego, José R.; Drory, Niv; MacDonald, Nicholas; Weijmans, Anne-Marie; Thomas, Daniel; Masters, Karen; Coccato, Lodovico; Aragón-Salamanca, Alfonso; Avila-Reese, Vladimir; Badenes, Carles; Falcón-Barroso, Jésus; Belfiore, Francesco

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ∼ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å –1 per 2'' fiber) at 23 AB mag arcsec –2 , which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * ≳ 10 9 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr

  9. Evolution of the clustering of photometrically selected SDSS galaxies

    OpenAIRE

    Ross, Ashley; Percival, Will; Brunner, R.

    2010-01-01

    We measure the angular auto-correlation functions, ω(θ), of Sloan Digital Sky Survey (SDSS) galaxies selected to have photometric redshifts 0.1 < z < 0.4 and absolute r-band magnitudes Mr < −21.2. We split these galaxies into five overlapping redshift shells of width 0.1 and measure ω(θ) in each subsample in order to investigate the evolution of SDSS galaxies. We find that the bias increases substantially with redshift – much more so than one would expect for a passively evolving sample. We u...

  10. GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Heather L.; Ma, Zhibo; Connor, Thomas; Schechtman-Rook, Andrew; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Clem, James L. [Department of Physics, Grove City College, 100 Campus Dr., Grove City, PA 16127 (United States); An, Deokkeun [Department of Science Education, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510 (United States); Beers, Timothy C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); Johnson, Jennifer A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Schneider, Donald P., E-mail: hlm5@case.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T{sub eff} to g–r for giants of near solar abundance, using IRFM T{sub eff} measures of stars with good ugriz  and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  11. Two more, bright, z > 6 quasars from VST ATLAS and WISE

    Science.gov (United States)

    Chehade, B.; Carnall, A. C.; Shanks, T.; Diener, C.; Fumagalli, M.; Findlay, J. R.; Metcalfe, N.; Hennawi, J.; Leibler, C.; Murphy, D. N. A.; Prochaska, J. X.; Irwin, M. J.; Gonzalez-Solares, E.

    2018-03-01

    Recently, Carnall et al. discovered two bright high redshift quasars using the combination of the VST ATLAS and WISE surveys. The technique involved using the 3-D colour plane i - z: z - W1: W1 - W2 with the WISE W1(3.4 micron) and W2 (4.5 micron) bands taking the place of the usual NIR J band to help decrease stellar dwarf contamination. Here we report on our continued search for 5.7 6 quasars, VST-ATLAS J158.6938-14.4211 at z = 6.07 and J332.8017-32.1036 at z = 6.32 with magnitudes of zAB = 19.4 and 19.7 mag respectively. J158.6938-14.4211 was confirmed by Keck LRIS observations and J332.8017-32.1036 was confirmed by ESO NTT EFOSC-2 observations. Here we present VLT X-shooter Visible and NIR spectra for the four ATLAS quasars. We have further independently rediscovered two z > 5.7 quasars previously found by the VIKING/KiDS and PanSTARRS surveys. This means that in ATLAS we have now discovered a total of six quasars in our target 5.7 ATLAS quasars.

  12. On the periodicity in the distribution of quasar redshifts

    International Nuclear Information System (INIS)

    Kjaergaard, P.

    1978-01-01

    The periodicity in the distribution of quasar redshifts is explained in terms of selection effects. Special attention is drawn to a selection effect caused by the redshift dependent influence of the strong emission lines on the limiting magnitude for detecting quasars. This is especially important since the number of quasars increases with a large factor per magnitude. The limiting magnitude effect applies both to spectroscopic and to UV-excess surveys. It is shown that the redshift distribution of quasars selected by a combination of UV-excess information and agreement between radio and optical position is intermediate between the redshift distribution of the two groups of quasars selected by one of the two criteria. It is also shown that the distribution of redshifts for UV-excess selected quasars is very similar to the variation of the ultrsviolet excess as a function of redshift. This evidence indicates that strong selection effects are in play. (Auth.)

  13. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Vivek, M.; Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Ak, N. Filiz [Faculty of Sciences, Department of Astronomy and Space Sciences, Erciyes University, 38039 Kayseri (Turkey); Chen, Yuguang [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Denney, K. D.; Kochanek, C. S.; Peterson, B. M. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Green, Paul J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); McGreer, Ian D. [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Pâris, I. [INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste (Italy); Tao, Charling [Centre de Physique des Particules de Marseille, Aix-Marseille Universite, CNRS /IN2P3, 163, avenue de Luminy, Case 902, F-13288 Marseille Cedex 09 (France); Wood-Vasey, W. M. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Bizyaev, Dmitry, E-mail: grier@psu.edu [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); and others

    2015-06-10

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.

  14. Storm in a Teacup: X-Ray View of an Obscured Quasar and Superbubble

    Science.gov (United States)

    Lansbury, George B.; Jarvis, Miranda E.; Harrison, Chris M.; Alexander, David M.; Del Moro, Agnese; Edge, Alastair C.; Mullaney, James R.; Thomson, Alasdair P.

    2018-03-01

    We present the X-ray properties of the “Teacup AGN” (SDSS J1430+1339), a z = 0.085 type 2 quasar that is interacting dramatically with its host galaxy. Spectral modeling of the central quasar reveals a powerful, highly obscured active galactic nucleus (AGN) with a column density of N H = (4.2–6.5) × 1023 cm‑2 and an intrinsic luminosity of L 2–10 keV = (0.8–1.4) × 1044 erg s‑1. The current high bolometric luminosity inferred (L bol ≈1045–1046 erg s‑1) has ramifications for previous interpretations of the Teacup as a fading/dying quasar. High-resolution Chandra imaging data reveal a ≈10 kpc loop of X-ray emission, cospatial with the “eastern bubble” previously identified in luminous radio and ionized gas (e.g., [O III] line) emission. The X-ray emission from this structure is in good agreement with a shocked thermal gas, with T = (4–8) × 106 K, and there is evidence for an additional hot component with T ≳ 3 × 107 K. Although the Teacup is a radiatively dominated AGN, the estimated ratio between the bubble power and the X-ray luminosity is in remarkable agreement with observations of ellipticals, groups, and clusters of galaxies undergoing AGN feedback.

  15. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    Science.gov (United States)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  16. VizieR Online Data Catalog: Faint cataclysmic variables from SDSS (Woudt+, 2012)

    Science.gov (United States)

    Woudt, P. A.; Warner, B.; de Bude, D.; Macfarlane, S.; Schurch, M. P. E.; Zietsman, E.

    2013-01-01

    We present high-speed photometric observations of 20 faint cataclysmic variables (CVs) selected from the Sloan Digital Sky Survey (SDSS) and Catalina catalogues. Measurements are given of 15 new directly measured orbital periods, including four eclipsing dwarf novae (SDSS 0904+03, CSS 0826-00, CSS 1404-10 and CSS 1626-12), two new polars (CSS 0810+00 and CSS 1503-22) and two dwarf novae with superhumps in quiescence (CSS 0322+02 and CSS 0826-00). Whilst most of the dwarf novae presented here have periods below 2h, SDSS 0805+07 and SSS 0617-36 have relatively long orbital periods of 5.489 and 3.440h, respectively. The double-humped orbital modulations observed in SSS 0221-26, CSS 0345-01, CSS 1300+11 and CSS 1443-17 are typical of low-mass transfer rate dwarf novae. The white dwarf primary of SDSS 0919+08 is confirmed to have non-radial oscillations, and quasi-periodic oscillations were observed in the short-period dwarf nova CSS 1028-08 during outburst. We further report the detection of a new nova-like variable (SDSS 1519+06). The frequency distribution of orbital periods of CVs in the Catalina Real-time Transient Survey (CRTS) has a high peak near ~80min orbital period, independently confirming that found by Gansicke et al. (2009MNRAS.397.2170G) from SDSS sources. We also observe a marked correlation between the median in the orbital period distribution and the outburst class, in the sense that dwarf novae with a single observed outburst (over the 5-year baseline of the CRTS coverage) occur predominantly at shortest orbital period. (2 data files).

  17. Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    DEFF Research Database (Denmark)

    Ganguly, Rajib; Brotherton, Michael S.; Arav, Nahum

    2007-01-01

    We present low-resolution ultraviolet spectra of 14 low redshift (z zz 1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar......, HE0441-2826, contains extremely weak emission lines and our spectrum is consistent with a simple power-law continuum. The quasar is radio-loud, but has a steep spectral index and a lobe-dominated morphology, which argues against it being a blazar. The unusual spectrum of this quasar resembles...... the spectra of the quasars PG1407+265, SDSSJ1136+0242, and PKS1004+13 for which several possible explanations have been entertained....

  18. The Frequency of Intrinsic X-Ray Weakness among Broad Absorption Line Quasars

    Science.gov (United States)

    Liu, Hezhen; Luo, B.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.

    2018-06-01

    We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes ({{{Γ }}}eff}={2.2}-0.9+0.9 and {1.9}-0.8+0.9) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.

  19. A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA

    International Nuclear Information System (INIS)

    Mosher, J.; Sako, M.; Corlies, L.; Folatelli, G.; Frieman, J.; Kessler, R.; Holtzman, J.; Jha, S. W.; Marriner, J.; Phillips, M. M.; Morrell, N.; Stritzinger, M.; Schneider, D. P.

    2012-01-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

  20. The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune [Univ. of Tokyo (Japan); et al.

    2012-05-01

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to \\Omega_\\Lambda=0.79^{+0.06}_{-0.07}(stat.)^{+0.06}_{-0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w=-1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z<1 in any combinations of constraints. For instance, number density evolution quantified as \

  1. CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION

    International Nuclear Information System (INIS)

    Kelly, Brandon C.; Hernquist, Lars; Siemiginowska, Aneta; Vestergaard, Marianne; Fan Xiaohui; Hopkins, Philip

    2010-01-01

    We present an estimate of the black hole mass function of broad-line quasars (BLQSOs) that self-consistently corrects for incompleteness and the statistical uncertainty in the mass estimates, based on a sample of 9886 quasars at 1 1 it is highly incomplete at M BH ∼ 9 M sun and L/L Edd ∼ BL > 150 ± 15 Myr for black holes at z = 1 with a mass of M BH = 10 9 M sun , and we constrain the maximum mass of a black hole in a BLQSO to be ∼3 x 10 10 M sun . Our estimated distribution of BLQSO Eddington ratios peaks at L/L Edd ∼ 0.05 and has a dispersion of ∼0.4 dex, implying that most BLQSOs are not radiating at or near the Eddington limit; however, the location of the peak is subject to considerable uncertainty. The steep increase in number density of BLQSOs toward lower Eddington ratios is expected if the BLQSO accretion rate monotonically decays with time. Furthermore, our estimated lifetime and Eddington ratio distributions imply that the majority of the most massive black holes spend a significant amount of time growing in an earlier obscured phase, a conclusion which is independent of the unknown obscured fraction. These results are consistent with models for self-regulated black hole growth, at least for massive systems at z > 1, where the BLQSO phase occurs at the end of a fueling event when black hole feedback unbinds the accreting gas, halting the accretion flow.

  2. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Blake, C. H. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Carlberg, J. K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Zasowski, G.; Hearty, F. [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Crepp, J. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Rajpurohit, A. S.; Reylé, C. [Institut UTINAM, CNRS UMR 6213, Observatoire des Sciences de l' Univers THETA Franche-Comt é-Bourgogne, Université de Franche Comté, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Prieto, C. Allende; Hernández, J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Bizyaev, D. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Ebelke, G. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Frinchaboy, P. M. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Ge, J. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ∼2 km s{sup –1} and a measurement floor at vsin i = 4 km s{sup –1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ∼100-200 m s{sup –1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we

  3. Paired quasars near NGC 2639: Evidence for quasars in superclusters

    International Nuclear Information System (INIS)

    Ford, H.; Ciardullo, R.; Harms, R.

    1983-01-01

    Arp found 10 quasars near a low-redshift galaxy 27' SSE of NGC 2639. Six of the quasars can be grouped into three redshift pairs which align across the anonymous galaxy. The large number of quasars and pairings could show an association with the low-redshift galaxy, or alternatively, might be due to superclusters seen along the line of sight. We tested the latter hypothesis by using deep, red-sensitive Lick 3 m prime focus plates to search for a supercluster associated with the z = 0.3 quasar pair. The plates show extended nebulosity associated with the quasar U10 (thetaapprox.7'', or 20 kpc at z = 0.3) and a richness class 1, Bautz-Morgan type III cluster 4' NW of U10. A spectrum of one the cluster's brightest galaxies gives z = 0.34, suggesting that the cluster and quasar are unassociated. We obtained spectra of eight of the quasars and find that (i) two of the quasars have very strong absorption shortward of Lyα, and (ii) two of Arp's redshifts (including one which Arp considered uncertain) are incorrect. Our redshifts break two of the redshift pairs, including the pair at z = 0.3. We use the redshift distribution of optically selected quasars to argue that the third pair has no statistical significance, and conclude that there is no basis for associating the quasars with the low-redshift anonymous galaxy. The disappearance of the redshift pairs vitiates the possibility of testing the paired-quasars-in-superclusters hypothesis in the NGC 2639 field

  4. On the selection of high-z quasars using LOFAR observations

    Science.gov (United States)

    Retana-Montenegro, Edwin; Röttgering, Huub

    2018-03-01

    We present a method to identify candidate quasars which combines optical/infrared color selection with radio detections from the Low Frequency ARray (LOFAR) at 150MHz. We apply this {method} in a region of 9 square degrees located in the Boötes field, with a wealth of multi-wavelength data. Our LOFAR imaging in the central region reaches a rms noise of ˜50μJy with a resolution of 5''. This is so deep that we also routinely, `radio-quiet' quasars. We use quasar spectroscopy from the literature to calculate the completeness and efficiency of our selection method. We conduct our analysis in two redshift intervals, 151% of the spectroscopic quasars, and 80% of our candidates are in the spectroscopic sample; while for objects at 2.0-1.0 sources can be detected in the WSRT-Boötes map, we find that the spectral index distribution of the 21 quasars in the resulting sample is steeper than the general LOFAR-WSRT spectral index distribution with a median of α=-0.80±0.06. As the upcoming LOFAR wide area surveys are much deeper than the traditional 1.4GHz surveys like NVSS and FIRST, this indicates that LOFAR in combination with optical and infrared will be an excellent fishing ground to obtain large samples of quasars.

  5. A Full Year's Chandra Exposure on Sloan Digital Sky Survey Quasars from the Chandra Multiwavelength Project

    Science.gov (United States)

    Green, Paul J.; Aldcroft, T. L.; Richards, G. T.; Barkhouse, W. A.; Constantin, A.; Haggard, D.; Karovska, M.; Kim, D.-W.; Kim, M.; Vikhlinin, A.; Anderson, S. F.; Mossman, A.; Kashyap, V.; Myers, A. D.; Silverman, J. D.; Wilkes, B. J.; Tananbaum, H.

    2009-01-01

    We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project. Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.2 3, substantially expanding the known sample. We find no evidence for evolution out to z ~ 5 for either the X-ray photon index Γ or for the ratio of optical/UV to X-ray flux αox. About 10% of detected QSOs show best-fit intrinsic absorbing columns greater than 1022 cm-2, but the fraction might reach ~1/3 if most nondetections are absorbed. We confirm a significant correlation between αox and optical luminosity, but it flattens or disappears for fainter (MB gsim -23) active galactic nucleus (AGN) alone. We report significant hardening of Γ both toward higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in nonthermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and AGN. For uniformly selected subsamples of narrow-line Seyfert 1s and narrow absorption line QSOs, we find no evidence for unusual distributions of either αox or Γ.

  6. MOTION VERIFIED RED STARS (MoVeRS): A CATALOG OF PROPER MOTION SELECTED LOW-MASS STARS FROM WISE, SDSS, AND 2MASS

    Energy Technology Data Exchange (ETDEWEB)

    Theissen, Christopher A.; West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Dhital, Saurav, E-mail: ctheisse@bu.edu [Department of Physical Sciences, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

    2016-02-15

    We present a photometric catalog of 8,735,004 proper motion selected low-mass stars (KML-spectral types) within the Sloan Digital Sky Survey (SDSS) footprint, from the combined SDSS Data Release 10 (DR10), Two Micron All-Sky Survey (2MASS) point-source catalog (PSC), and Wide-field Infrared Survey Explorer (WISE) AllWISE catalog. Stars were selected using r − i, i − z, r − z, z − J, and z − W1 colors, and SDSS, WISE, and 2MASS astrometry was combined to compute proper motions. The resulting 3,518,150 stars were augmented with proper motions for 5,216,854 earlier type stars from the combined SDSS and United States Naval Observatory B1.0 catalog (USNO-B). We used SDSS+USNO-B proper motions to determine the best criteria for selecting a clean sample of stars. Only stars whose proper motions were greater than their 2σ uncertainty were included. Our Motion Verified Red Stars catalog is available through SDSS CasJobs and VizieR.

  7. PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Brescia, M.; Mercurio, A. [INAF-Astronomical Observatory of Capodimonte, via Moiariello 16, I-80131 Napoli (Italy); Cavuoti, S.; Longo, G. [Department of Physics, University Federico II, via Cinthia 6, I-80126 Napoli (Italy); D' Abrusco, R., E-mail: brescia@oacn.inaf.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-08-01

    The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) is a machine learning method that can be used to cope with regression and classification problems on complex and massive data sets. In this paper, we give a formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (Sloan Digital Sky Survey, GALEX, UKIDSS, and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able (1) to achieve a very high accuracy, (2) to drastically reduce the number of outliers and catastrophic objects, and (3) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of {Delta}z{sub norm} (i.e., (z{sub spec} - z{sub phot})/(1 + z{sub spec})), to an average of {Delta}z{sub norm} = 0.004, a standard deviation of {sigma} = 0.069, and a median absolute deviation, MAD = 0.02, over the whole redshift range (i.e., z{sub spec} {<=} 3.6), defined by the four-survey cross-matched spectroscopic sample. The fraction of catastrophic outliers, i.e., of objects with photo-z deviating more than 2{sigma} from the spectroscopic value, is <3%, leading to {sigma} = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE Web application.

  8. Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey

    International Nuclear Information System (INIS)

    Leclercq, Florent; Wandelt, Benjamin; Jasche, Jens

    2015-01-01

    Recent application of the Bayesian algorithm \\textsc(borg) to the Sloan Digital Sky Survey (SDSS) main sample galaxies resulted in the physical inference of the formation history of the observed large-scale structure from its origin to the present epoch. In this work, we use these inferences as inputs for a detailed probabilistic cosmic web-type analysis. To do so, we generate a large set of data-constrained realizations of the large-scale structure using a fast, fully non-linear gravitational model. We then perform a dynamic classification of the cosmic web into four distinct components (voids, sheets, filaments, and clusters) on the basis of the tidal field. Our inference framework automatically and self-consistently propagates typical observational uncertainties to web-type classification. As a result, this study produces accurate cosmographic classification of large-scale structure elements in the SDSS volume. By also providing the history of these structure maps, the approach allows an analysis of the origin and growth of the early traces of the cosmic web present in the initial density field and of the evolution of global quantities such as the volume and mass filling fractions of different structures. For the problem of web-type classification, the results described in this work constitute the first connection between theory and observations at non-linear scales including a physical model of structure formation and the demonstrated capability of uncertainty quantification. A connection between cosmology and information theory using real data also naturally emerges from our probabilistic approach. Our results constitute quantitative chrono-cosmography of the complex web-like patterns underlying the observed galaxy distribution

  9. THE BLACK HOLE MASS-GALAXY LUMINOSITY RELATIONSHIP FOR SLOAN DIGITAL SKY SURVEY QUASARS

    International Nuclear Information System (INIS)

    Salviander, S.; Shields, G. A.; Bonning, E. W.

    2015-01-01

    We investigate the relationship between the mass of the central supermassive black hole, M BH , and the host galaxy luminosity, L gal , in a sample of quasars from the Sloan Digital Sky Survey Data Release 7. We use composite quasar spectra binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H+K features in the composite spectra. We evaluate the evolution in the M BH -L gal relationship by examining the redshift dependence of Δ log M BH , the offset in M BH from the local M BH -L gal relationship. There is little systematic trend in Δ log M BH out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, σ * , we find agreement of our derived host luminosities with the locally observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for σ * in statistical studies

  10. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); McGreer, Ian; Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Greiner, Jochen [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Price, Paul, E-mail: morganson@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  11. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    International Nuclear Information System (INIS)

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter; Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher; McGreer, Ian; Fan, Xiaohui; Greiner, Jochen; Price, Paul

    2012-01-01

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i P1 dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z P1 magnitude of 19.4, a luminosity of 3.8 × 10 47 erg s –1 , and a black hole mass of 6.9 × 10 9 M ☉ . It is a broad absorption line quasar with a prominent Lyβ peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i P1 dropout quasars and could potentially find more than 10 z P1 dropout (z > 6.8) quasars.

  12. Space Density of Optically Selected Type 2 Quasars

    Science.gov (United States)

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2008-12-01

    Type 2 quasars are luminous active galactic nuclei whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey, selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is 6 times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [O III]5007 luminosity function (LF) for 108.3 L sun < L [O III] < 1010 L sun (corresponding to intrinsic luminosities up to M[2500 Å] ~= -28 mag or bolometric luminosities up to 4 × 1047 erg s-1). This LF provides robust lower limits to the actual space density of obscured quasars due to our selection criteria, the details of the spectroscopic target selection, and other effects. We derive the equivalent LF for the complete sample of type 1 (unobscured) quasars and determine the ratio of type 2 to type 1 quasar number densities. Our data constrain this ratio to be at least ~1.5:1 for 108.3 L sun < L [O III] < 109.5 L sun at z < 0.3, and at least ~1.2:1 for L [O III] ~ 1010 L sun at 0.3 < z < 0.83. Type 2 quasars are at least as abundant as type 1 quasars in the relatively nearby universe (z <~ 0.8) for the highest luminosities.

  13. Constraints on Primordial Non-Gaussianity from 800 000 Photometric Quasars.

    Science.gov (United States)

    Leistedt, Boris; Peiris, Hiranya V; Roth, Nina

    2014-11-28

    We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800 000 photometric quasars from the Sloan Digital Sky Survey in the redshift range 0.5quasar halo bias at the largest scales, while discarding as little as possible of the data. The standard local-type PNG parameters f_{NL} and g_{NL} both imprint a k^{-2} scale-dependent effect in the bias. Constraining these individually, we obtain -49quasar clustering to the underlying dark matter. These are the strongest constraints obtained to date on PNG using a single population of large-scale structure tracers, and are already at the level of pre-Planck constraints from the cosmic microwave background. A conservative forecast for a Large Synoptic Survey Telescope (LSST)-like survey incorporating mode projection yields σ(f_{NL})∼5-competitive with the Planck result-highlighting the power of upcoming large scale structure surveys to probe the initial conditions of the Universe.

  14. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  15. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  16. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel; Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa; Gladders, Michael D.; Rigby, Jane R.; Dahle, Hakon; Florian, Michael

    2017-01-01

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  17. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin [Center for the Exploration of the Origin of the Universe (CEOU), Building 45, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Minjin; Park, Won-Kee [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Karouzos, Marios [Astronomy Program, FPRD, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Ji Hoon [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong, E-mail: yjkim@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to z = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.

  18. VizieR Online Data Catalog: SDSS-III/APOGEE. I. Be stars (Chojnowski+, 2015)

    Science.gov (United States)

    Chojnowski, S. D.; Whelan, D. G.; Wisniewski, J. P.; Majewski, S. R.; Hall, M.; Shetrone, M.; Beaton, R.; Burton, A.; Damke, G.; Eikenberry, S.; Hasselquist, S.; Holtzman, J. A.; Meszaros, S.; Nidever, D.; Schneider, D. P.; Wilson, J.; Zasowski, G.; Bizyaev, D.; Brewington, H.; Brinkmann, J.; Ebelke, G.; Frinchaboy, P. M.; Kinemuchi, K.; Malanushenko, E.; Malanushenko, V.; Marchante, M.; Oravetz, D.; Pan, K.; Simmons, A.

    2015-01-01

    The sample at hand consists of 238 B-type emission line (Be) stars that have been observed by APOGEE. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument is a 300 fiber, R~22500 spectrograph attached to the SDSS 2.5m telescope at Apache Point Observatory. APOGEE records a vacuum wavelength range of 15145-16955Å via an arrangement of three Teledyne H2RG 2048*2048 detectors. The detector layout consists of "blue," "green," and "red" detectors which cover 15145-15808Å, 15858-16433Å, and 16474-16955Å respectively, resulting in coverage gaps between 15808-15858Å and 16433-16474Å. The APOGEE survey uses the Two Micron All Sky Survey (2MASS; cat. II/246) as a source catalog. Both proprietary and publicly available spectra are used and displayed in this paper. The publicly available spectra were included in SDSS data release 10 (DR10: pertains to APOGEE data taken prior to MJD=56112), and the full data set will be made publicly available in SDSS data release 12 (DR12: scheduled for 2014 December). Shortly after DR12, we intend to convert the ABE star spectra to the format accepted by the Be Star Spectra Database (BeSS; Neiner et al., 2011AJ....142..149N) and deposit them there, ensuring convenient public access. More details on DR10-released APOGEE data can be found on the SDSS-III website (http://www.sdss3.org/dr10/irspec/). (2 data files).

  19. Panchromatic properties of 99 000 galaxies detected by SDSS, and (some by) ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS surveys

    NARCIS (Netherlands)

    Obric, M.; Ivezic, Z.; Best, P. N.; Lupton, R. H.; Tremonti, C.; Brinchmann, J.; Agueeros, M. A.; Knapp, G. R.; Gunn, J. E.; Rockosi, C. M.; Schlegel, D.; Finkbeiner, D.; Gacesa, M.; Smolcic, V.; Anderson, S. F.; Voges, W.; Juric, M.; Siverd, R. J.; Steinhardt, W.; Jagoda, A. S.; Blanton, M. R.; Schneider, D. P.

    2006-01-01

    We discuss the panchromatic properties of 99 088 galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 1 'main' spectroscopic sample ( a flux-limited sample for 1360 deg(2)). These galaxies are positionally matched to sources detected by ROSAT, Galaxy Evolution Explorer (GALEX),

  20. Quasars.

    Science.gov (United States)

    Smith, H J

    1966-11-01

    A short historical outline of the discovery and a description of observed properties of quasars introduces questions as to their nature. Some of the principal arguments concerning their reality, distance, intrinsic properties and age lead to the conclusion that, while there is room for other points of view; a strong case can be made for the interpretation, on which quasars are the most distant observable objects in the known universe. To produce such luminosities over times of thousands to millions of years requires the presence of millions of solar masses. For each quasar this enormous mass may be concentrated into a single object, in which case novel physics comes into play. Whatever the final interpretation, quasars seem certain to illuminate such questions as the origin and evolution of galaxies, perhaps also the structure and origin of the universe.

  1. The SDSS Discovery of a Strongly Lensed Post-Starburst Galaxy at z=0.766

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Min-Su; Strauss, Michael A.; Oguri, Masamune; Inada, Naohisa; Falco, Emilio E.; Broadhurst, Tom; Gunn, James E.

    2008-09-30

    We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of {approx} 1.2 x 10{sup 12} M{sub {circle_dot}} and the corresponding mass to light ratio in the B-band is {approx} 26 M{sub {circle_dot}}/L{sub {circle_dot}} inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.

  2. SDSS Log Viewer: visual exploratory analysis of large-volume SQL log data

    Science.gov (United States)

    Zhang, Jian; Chen, Chaomei; Vogeley, Michael S.; Pan, Danny; Thakar, Ani; Raddick, Jordan

    2012-01-01

    User-generated Structured Query Language (SQL) queries are a rich source of information for database analysts, information scientists, and the end users of databases. In this study a group of scientists in astronomy and computer and information scientists work together to analyze a large volume of SQL log data generated by users of the Sloan Digital Sky Survey (SDSS) data archive in order to better understand users' data seeking behavior. While statistical analysis of such logs is useful at aggregated levels, efficiently exploring specific patterns of queries is often a challenging task due to the typically large volume of the data, multivariate features, and data requirements specified in SQL queries. To enable and facilitate effective and efficient exploration of the SDSS log data, we designed an interactive visualization tool, called the SDSS Log Viewer, which integrates time series visualization, text visualization, and dynamic query techniques. We describe two analysis scenarios of visual exploration of SDSS log data, including understanding unusually high daily query traffic and modeling the types of data seeking behaviors of massive query generators. The two scenarios demonstrate that the SDSS Log Viewer provides a novel and potentially valuable approach to support these targeted tasks.

  3. The B3-VLA CSS sample. VIII. New optical identifications from the Sloan Digital Sky Survey The ultraviolet-optical spectral energy distribution of the young radio sources

    Science.gov (United States)

    Fanti, C.; Fanti, R.; Zanichelli, A.; Dallacasa, D.; Stanghellini, C.

    2011-04-01

    Context. Compact steep-spectrum radio sources and giga-hertz peaked spectrum radio sources (CSS/GPS) are generally considered to be mostly young radio sources. In recent years we studied at many wavelengths a sample of these objects selected from the B3-VLA catalog: the B3-VLA CSS sample. Only ≈60% of the sources were optically identified. Aims: We aim to increase the number of optical identifications and study the properties of the host galaxies of young radio sources. Methods: We cross-correlated the CSS B3-VLA sample with the Sloan Digital Sky Survey (SDSS), DR7, and complemented the SDSS photometry with available GALEX (DR 4/5 and 6) and near-IR data from UKIRT and 2MASS. Results: We obtained new identifications and photometric redshifts for eight faint galaxies and for one quasar and two quasar candidates. Overall we have 27 galaxies with SDSS photometry in five bands, for which we derived the ultraviolet-optical spectral energy distribution (UV-O-SED). We extended our investigation to additional CSS/GPS selected from the literature. Most of the galaxies show an excess of ultra-violet (UV) radiation compared with the UV-O-SED of local radio-quiet ellipticals. We found a strong dependence of the UV excess on redshift and analyzed it assuming that it is generated either from the nucleus (hidden quasar) or from a young stellar population (YSP). We also compare the UV-O-SEDs of our CSS/GPS sources with those of a selection of large size (LSO) powerful radio sources from the literature. Conclusions: If the major process of the UV excess is caused by a YSP, our conclusion is that it is the result of the merger process that also triggered the onset of the radio source with some time delay. We do not see evidence for a major contribution from a YSP triggered by the radio sources itself. Appendices A-G are only available in electronic form at http://www.aanda.org

  4. Imaging of SDSS z > 6 Quasar Fields: Gravitational Lensing, Companion Galaxies, and the Host Dark Matter Halos

    Science.gov (United States)

    Willott, Chris J.; Percival, Will J.; McLure, Ross J.; Crampton, David; Hutchings, John B.; Jarvis, Matt J.; Sawicki, Marcin; Simard, Luc

    2005-06-01

    We have undertaken deep optical imaging observations of three 6.2dropouts is consistent with that found in random fields. We consider the expected dark matter halo masses that host these quasars under the assumption that a correlation between black hole mass and dark matter halo mass exists. We show that the steepness of the high-mass tail of the halo mass function at this redshift, combined with realistic amounts of scatter in this correlation, leads to expected halo masses substantially lower than previously believed. This analysis can explain the lack of companion galaxies found here and the low dynamical mass recently published for one of the quasars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  5. Discovery of A Young L Dwarf Binary, SDSS J224953.47+004404.6AB

    Science.gov (United States)

    Allers, K. N.; Liu, Michael C.; Dupuy, Trent J.; Cushing, Michael C.

    2010-05-01

    We report discovery of a young 0farcs32 L dwarf binary, SDSS J2249+0044AB, found as the result of a Keck laser guide star adaptive optics imaging survey of young field brown dwarfs. Weak K I, Na I, and FeH features as well as strong VO absorption in the integrated-light J-band spectrum indicate a low surface gravity and hence young age for the system. From spatially resolved K-band spectra we determine spectral types of L3 ± 0.5 and L5 ± 1 for components A and B, respectively. SDSS J2249+0044A is spectrally very similar to G196-3B, an L3 companion to a young M2.5 field dwarf. Thus, we adopt 100 Myr (the age estimate of the G196-3 system) as the age of SDSS J2249+0044AB, but ages of 12-790 Myr are possible. By comparing our photometry to the absolute magnitudes of G196-3B, we estimate a distance to SDSS J2249+0044AB of 54 ± 16 pc and infer a projected separation of 17 ± 5 AU for the binary. Comparison of the luminosities to evolutionary models at an age of 100 Myr yields masses of 0.029 ± 0.006 and 0.022+0.006 -0.009 M sun for SDSS J2249+0044A and B, respectively. Over the possible ages of the system (12-790 Myr), the mass of SDSS J2249+0044A could range from 0.011 to 0.070 M sun and the mass of SDSS J2249+0044B could range from 0.009 to 0.065 M sun. Evolutionary models predict that either component could be burning deuterium, which could result in a mass ratio as low as 0.4, or alternatively, a reversal in the luminosities of the binary. We find a likely proper motion companion, GSC 00568-01752, which lies 48farcs9 away (a projected separation of 2600 AU) and has Sloan Digital Sky Survey and Two Micron All Sky Survey colors consistent with an early M dwarf. We calculate a photometric distance to GSC 00568-01752 of 53 ± 15 pc, in good agreement with our distance estimate for SDSS J2249+0044AB. The space motion of SDSS J2249+0044AB shows no obvious coincidence with known young moving groups, though radial velocity and parallax measurements are necessary to

  6. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Sun, Jiayi; Shen, Yue

    2015-01-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L Edd ) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ * (hence, the BH mass via the M–σ * relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ * systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ * on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties

  7. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    Science.gov (United States)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  8. Cataclysmic Variables from SDSS I. The First Results

    OpenAIRE

    Szkody, P.; Anderson, S. F.; Agueros, M.; Covarrubias, R.; Bentz, M.; Hawley, S.; Margon, B.; Voges, W.; Henden, A.; Knapp, G. R.; Berk, D. E. Vanden; Rest, A.; Miknaitis, G.; Magnier, E.; Brinkmann, J.

    2001-01-01

    The commissioning year of the Sloan Digital Sky Survey has demonstrated that many cataclysmic variables have been missed in previous surveys with brighter limits. We report the identification of 22 cataclysmic variables, of which 19 are new discoveries and 3 are known systems (SW UMa, BH Lyn and Vir4). A compendium of positions, colors and characteristics of these systems obtained from the SDSS photometry and spectroscopy is presented along with data obtained during follow-up studies with the...

  9. Black-hole masses of distant quasars

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2011-01-01

    A brief overview of the methods commonly used to determine or estimate the black hole mass in quiescent or active galaxies is presented and it is argued that the use of mass-scaling relations is both a reliable and the preferred method to apply to large samples of distant quasars. The method uses...... that the black hole masses are very large, of order 1 to 10 billion solar masses, even at the highest redshifts of 4 to 6. The black holes must build up their mass very fast in the early universe. Yet they do not grow much larger than that: a maximum mass of about 10 billion solar masses is also observed....... Preliminary mass functions of active black holes are presented for several quasar samples, including the Sloan Digital Sky Survey. Finally, common concerns related to the application of the mass scaling relations, especially for high redshift quasars, are briefly discussed....

  10. MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Becker, Andrew C.; Kowalski, Adam F.; Hawley, Suzanne L.; Schmidt, Sarah J.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Cutri, Roc, E-mail: jrad@astro.washington.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-20

    We present the first rates of flares from M dwarf stars in both red optical and near-infrared (NIR) filters. We have studied {approx}50,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) Stripe 82 area and 1321 M dwarfs from the Two Micron All Sky Survey (2MASS) Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r - i) and (i - z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have {approx}1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small-amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the recovery efficiency for flares in each filter, we extend a two-component flare model into the NIR. Quiescent M0-M6 spectral templates were used with the model to predict the photometric response of flares from u to K{sub s} . We determine that red optical filters are sensitive to flares with u-band amplitudes {approx}>2 mag, and NIR filters to flares with {Delta}u {approx}> 4.5 mag. Our model predicts that M0 stars have the best color contrast for J-band detections, but M4-M6 stars should yield the highest rate of NIR flares with amplitudes of {Delta}J {>=} 0.01 mag. Characterizing flare rates and photometric variations at longer wavelengths is important for predicting the signatures of M dwarf variability in next-generation surveys, and we discuss their impact on surveys such as the Large Synoptic Survey Telescope.

  11. MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS

    International Nuclear Information System (INIS)

    Davenport, James R. A.; Becker, Andrew C.; Kowalski, Adam F.; Hawley, Suzanne L.; Schmidt, Sarah J.; Hilton, Eric J.; Sesar, Branimir; Cutri, Roc

    2012-01-01

    We present the first rates of flares from M dwarf stars in both red optical and near-infrared (NIR) filters. We have studied ∼50,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) Stripe 82 area and 1321 M dwarfs from the Two Micron All Sky Survey (2MASS) Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r – i) and (i – z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have ∼1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small-amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the recovery efficiency for flares in each filter, we extend a two-component flare model into the NIR. Quiescent M0-M6 spectral templates were used with the model to predict the photometric response of flares from u to K s . We determine that red optical filters are sensitive to flares with u-band amplitudes ∼>2 mag, and NIR filters to flares with Δu ∼> 4.5 mag. Our model predicts that M0 stars have the best color contrast for J-band detections, but M4-M6 stars should yield the highest rate of NIR flares with amplitudes of ΔJ ≥ 0.01 mag. Characterizing flare rates and photometric variations at longer wavelengths is important for predicting the signatures of M dwarf variability in next-generation surveys, and we discuss their impact on surveys such as the Large Synoptic Survey Telescope.

  12. The Sloan Digital Sky Survey Stripe 82 Imaging Data: Depth-Optimized Co-adds Over 300 deg$^2$ in Five Filters

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Linhua; Fan, Xiaohui; Bian, Fuyan; McGreer, Ian D.; Strauss, Michael A.; Annis, James; Buck, Zoë; Green, Richard; Hodge, Jacqueline A.; Myers, Adam D.; Rafiee, Alireza; Richards, Gordon

    2014-06-25

    We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ~300 deg(2) on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of the co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ~1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ~90 deg(2) of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources).

  13. Quasar energy distributions. I. Soft X-ray spectra of quasars

    International Nuclear Information System (INIS)

    Wilkes, B.J.; Elvis, M.

    1987-01-01

    As the initial stage of a study of quasar energy distributions (QEDs), Einstein IPC spectra of 24 quasars are presented. These are combined with previously reported IPC spectra to form a sample of 33 quasars with well-determined soft X-ray slopes. A correlation analysis shows that radio loudness, rather than redshift or luminosity, is fundamentally related to the X-ray slope. This correlation is not followed by higher energy spectra of active galaxies. Two components are required to explain both sets of results. The best-fit column densities are systematically smaller than the Galactic values. The same effect is not present in a sample of BL Lac objects, implying that the effect is intrinsic to the quasars and is caused by a low-energy turnup in the quasar spectra. 74 references

  14. What are quasars. 3. ed.

    International Nuclear Information System (INIS)

    Dautcourt, G.

    1982-01-01

    The subject is covered under the following headings: gigantic explosions in galaxies, the puzzle of far radio sources, all records are broken, the quasar light - a messenger from the far past, the radio mantle of quasars, where do spectral lines originate, mysterious absorption, restless quasars, quasars as infrared sources, what is the gist of the matter, was Einstein wrong, when is a quasar no quasar, quasars and cosmology, youthful escapades of a galaxy, and once again the red shift

  15. NuSTAR observations of heavily obscured quasars at z ~ 0.5

    DEFF Research Database (Denmark)

    Lansbury, G. B.; Alexander, D. M.; Del Moro, A.

    2014-01-01

    We present NuSTAR hard X-ray observations of three Type 2 quasars at z ≈ 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O III] luminosity ratio and multiwavelength...

  16. A complete quasar sample at intermediate redshift

    International Nuclear Information System (INIS)

    Cristiani, S.; La Franca, F.; Barbieri, C.; Iovino, A.

    1991-01-01

    A search for intermediate-redshift quasars has been carried out with slitless spectroscopy in the central 21.07 deg 2 of the SA 94, where the existence of a large database of objects for which slit spectroscopy was already available provided a valuable opportunity of testing the properties of our selection technique. Fifty candidates have been observed with slit spectroscopy, confirming 34 quasars and two H II galaxies. The completeness of this survey as a function of magnitude and redshift has been analysed, and an effective area of 16.9 deg 2 has been evaluated. (author)

  17. Is 1146+111B, C a lensed quasar or a quasar pair

    International Nuclear Information System (INIS)

    Huchra, J.P.

    1986-01-01

    It has been speculated that the quasar pair 1146+B, C are two bright images of a single quasar produced by a gravitational lens. The author reports additional observations of these objects, made with an ultraviolet-sensitive spectrograph on the Multiple Mirror Telescope. The ultraviolet spectra of the two quasars are different. There are also different velocity shifts between the quasars as measured by the C III] and Mg II lines. Although it is impossible to rule out the lensing hypothesis, these observations increase the probability that these objects are just two quasars at nearly the same redshift. (author)

  18. Automated analysis of slitless spectra. II. Quasars

    International Nuclear Information System (INIS)

    Edwards, G.; Beauchemin, M.; Borra, F.

    1988-01-01

    Automated software have been developed to process slitless spectra. The software, described in a previous paper, automatically separates stars from extended objects and quasars from stars. This paper describes the quasar search techniques and discusses the results. The performance of the software is compared and calibrated with a plate taken in a region of SA 57 that has been extensively surveyed by others using a variety of techniques: the proposed automated software performs very well. It is found that an eye search of the same plate is less complete than the automated search: surveys that rely on eye searches suffer from incompleteness at least from a magnitude brighter than the plate limit. It is shown how the complete automated analysis of a plate and computer simulations are used to calibrate and understand the characteristics of the present data. 20 references

  19. CATACLYSMIC VARIABLES FROM SDSS. VII. THE SEVENTH YEAR (2006)

    International Nuclear Information System (INIS)

    Szkody, Paula; Anderson, Scott F.; Hayden, Michael; Kronberg, Martin; McGurk, Rosalie; Riecken, Thomas; Schmidt, Gary D.; West, Andrew A.; Gaensicke, Boris T.; Gomez-Moran, Ada N.; Schwope, Axel D.; Schneider, Donald P.; Schreiber, Matthias R.

    2009-01-01

    Coordinates, magnitudes, and spectra are presented for 39 cataclysmic variables (CVs) found in Sloan Digital Sky Survey (SDSS) spectra that were primarily obtained in 2006. Of these, 13 were CVs identified prior to the SDSS spectra (AK Cnc, GY Cnc, GO Com, ST LMi, NY Ser, MR Ser, QW Ser, EU UMa, IY UMa, HS1340+1524, RXJ1610.1+0352, Boo 1, Leo 5). Follow-up spectroscopic observations of seven systems (including one from year 2005 and another from year 2004) were obtained, resulting in estimates of the orbital periods for three objects. The new CVs include two candidates for high inclination, eclipsing systems, four new polars, and three systems whose spectra clearly reveal atmospheric absorption lines from the underlying white dwarf.

  20. Quasars in galaxy cluster environments

    International Nuclear Information System (INIS)

    Ellingson, E.

    1989-01-01

    The evolution of radio loud quasars is found to be strongly dependent upon their galaxy cluster environment. Previous studies have shown that bright quasars are found in rich clusters, while high luminosity quasars are found only in poorer environments. The analysis of low luminosity radio quiet quasars indicate that they are never found in rich environments, suggesting that they are a physically different class of objects. Properties of the quasar environment are investigated to determine constraints on the physical mechanisms of quasar formation and evolution. The optical cluster morphology indicates that the cluster cores have smaller radii and higher galaxy densities than are typical for low redshift clusters of similar richness. Radio morphologies may indicate that the formation of a dense intra-cluster medium is associated with the quasars' fading at these epochs. Galaxy colors appear to be normal, but there may be a tendency for clusters associated with high luminosity quasars to contain a higher fraction of gas-rich galaxies than those associated with low luminosity quasars. Multislit spectroscopic observations of galaxies associated with high luminosity quasars indicate that quasars are preferentially located in regions of low relative velocity dispersion, either in rich clusters of abnormally low dispersion, or in poor groups which are dynamically normal. This suggests that galaxy-galaxy interactions may play a role in quasar formation and sustenanace. Virialization of rich clusters and the subsequent increase in galaxy velocities may therefore be responsible for the fading of quasars in rich environments

  1. Characterizing the evolution of WISE-selected obscured and unobscured quasars using HOD models.

    Science.gov (United States)

    Myers, Adam D.; DiPompeo, Michael A.; Mitra, Kaustav; Hickox, Ryan C.; Chatterjee, Suchetana; Whalen, Kelly

    2018-06-01

    Large-area imaging surveys in the infrared are now beginning to unlock the links between the activity of supermassive black holes and the cosmic evolution of dark matter halos during the significant times when black hole growth is enshrouded in dust. With data from the Wide-Field Infrared Survey Explorer (WISE) and complementary optical photometry, we construct samples of nearly half-a-million obscured and unobscured quasars around redshift 1. We study the dark matter halos of these populations using both angular autocorrelation functions and CMB lensing cross-correlations, carefully characterizing the redshift distribution of the obscured quasar sample using cross-correlations. Independent of our measurement technique, we find that obscured quasars occupy dark matter halos a few times more massive than their unobscured counterparts, despite being matched in luminosity at 12 and 22 microns. Modeling the two-point correlation function using a four-parameter Halo Occupation Distribution (HOD) formalism, we determine that purely optically selected quasars reside in dark matter halos that are about half the mass of WISE-selected obscured quasars, and that satellite fractions are somewhat larger for obscured quasars. We investigate scenarios such as merger-driven fueling and Eddington-dependent obscuration to explore what combinations of physical effects can reproduce our observed halo mass measurements. This work was, in part, supported by NASA ADAP award NNX16AN48G.

  2. Photometric Separation of Stellar Properties Using SDSS Filters

    Science.gov (United States)

    Lenz, Dawn D.; Newberg, Jo; Rosner, Robert; Richards, Gordon T.; Stoughton, Chris

    1998-12-01

    Using synthetic photometry of Kurucz model spectra, we explore the colors of stars as a function of temperature, metallicity, and surface gravity with Sloan Digital Sky Survey (SDSS) filters, u'g'r'i'z'. The synthetic colors show qualitative agreement with the few published observations in these filters. We find that the locus of synthetic stars is basically two-dimensional for 4500 advantageous to use more than two colors when determining stellar properties by color. Strategic observations in SDSS filters are required to resolve the source of a ~5% discrepancy between synthetic colors of Gunn-Stryker stars, Kurucz models, and external determinations of the metallicities and surface gravities. The synthetic star colors can be used to investigate the properties of any normal star and to construct analytic expressions for the photometric prediction of stellar properties in special cases.

  3. SDSS DR7 WHITE DWARF CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, S. J.; Nitta, A. [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Koester, D. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Kiel, D-24098 Kiel (Germany); Krzesinski, J. [Mt. Suhora Observatory, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Cracow (Poland); Dufour, P.; Lachapelle, F.-R.; Bergeron, P. [Departement de Physique, Universite de Montreal, C. P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7 (Canada); Yip, Ching-Wa [Department of Physics and Astronomy, The Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Harris, Hugh C. [United States Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Althaus, L.; Corsico, A., E-mail: hch@nofs.navy.mil [Facultad de Ciencias Astronomicas y Geofisicas, Paseo del Bosque S/N, (1900) La Plata (Argentina)

    2013-01-15

    We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.

  4. Prediction and Confirmation of V-type Asteroids Beyond 2.5 AU Based on SDSS Colors

    Science.gov (United States)

    Binzel, Richard P.; Masi, G.; Foglia, S.

    2006-09-01

    We apply a taxonomic classification system developed by Masi et al. (2006, submitted to Icarus) to identify C-, S-, and V-type asteroids present within the 3rd Release of the Sloan Digital Sky Survey Moving Object Catalog (SDSS MOC3). The classifications deduced by Masi et al. for 43,000 asteroids using SDSS colors are based on the taxonomy of Bus (1999; MIT Ph.D. thesis). To link SDSS colors to the Bus taxonomy, Masi et al. (2006) use 149 objects measured in common by both SDSS and the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) (Bus and Binzel 2002, Icarus 158, 106). We report results of direct testing of SDSS V-type classification predictions for six objects, where the tests were performed by visible wavelength spectroscopy (Lazzaro et al. 2004, Icarus 172, 179) and target of opportunity near-infrared spectroscopy obtained using the NASA Infrared Telescope Facility (IRTF). Vesta-like spectra and a V-type taxonomy are confirmed for five of the six predicted V-type objects sampled. Most interestingly, the SDSS taxonomy correctly predicted the V-type spectral characteristics for asteroid (21238) 1995 WV7, a 6 km asteroid located far from Vesta across the 3:1 mean motion resonance at 2.54 AU. (Proper elements a,e,i: 2.54 AU, 0.14, and 10.8 deg.) Given the 2 km/sec ejection velocity required from Vesta to reach the current orbit, and the difficulty of migrating across the 3:1 resonance (at 2.5 AU) by a process such as Yarkovsky drift or via secular resonances (Carruba et al. 2005, Astron. Astrophys. 441, 819), asteroid 21238 may be a new candidate for a basaltic asteroid having no relationship to Vesta.

  5. X-ray spectra of PG quasars. I. The continuum from X-rays to infrared

    International Nuclear Information System (INIS)

    Elvis, M.; Green, R.F.; Bechtold, J.; Schmidt, M.; Neugebauer, G.; Kitt Peak National Observatory, Tucson, AZ; Steward Observatory, Tucson, AZ; Palomar Observatory, Pasadena, CA)

    1986-01-01

    Einstein IPC X-ray spectra for a sample of eight optically selected quasars from the Palomar Bright Quasar survey are presented. The quasars have a mean power law energy slope which in five individual cases is inconsistent with the value found in hard X-ray selection criterion rather than luminosity, redshift, or U-B color. New IUE and optical continuum spectra and infrared photometry are presented for these quasars. The data are combined into log vf(v) and log v distributions which support the decomposition of the overall quasar spectrum into a power law plus a superposed optical-UV big bump which may be due to an accretion disk. At least six of the quasars have vf(v)s which are roughly constant between their infrared and X-ray power laws, suggesting a strong link between the two regions. 104 references

  6. Quasar Mass Functions Across Cosmic Time

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2010-01-01

    I present mass functions of actively accreting black holes detected in different quasar surveys which in concert cover a wide range of cosmic history. I briefly address what we learn from these mass functions. I summarize the motivation for such a study and the methods by which we determine black...

  7. The Gaseous Environments of Quasars: Outflows, Feedback & Cold Mode Accretion

    Science.gov (United States)

    Chen, Chen; Hamann, Fred

    2018-06-01

    The early stages of massive galaxy evolution can involve galaxy-scale outflows driven by a starburst or a central quasar and cold-mode accretion (infall) that adds to the mass buildup in the galaxies. I will describe three related studies that use quasar absorption lines to measure outflows, infall, and the general gaseous environments of quasars across a range of spatial scales. The three studies are: 1) High-resolution spectroscopy with Keck-HIRES and VLT-UVES to study associated absorption lines (AALs) that have redshifts greater than the emission redshifts indicating infall and/or rich multi-component AAL complexes that might be interstellar clouds in the host galaxies that have been shredded and dispersed by a fast unseen quasar-driven wind. The data provide strong constraints on the gas kinematics, spatial structure, column densities, metallicities, and energetics. 2) A complete inventory of high-velocity CIV 1548,1550 mini-BAL outflows in quasars using high-resolution high signal-to-noise spectra in the public VLT-UVES and Keck-HIRES archives. This sensitive mini-BAL survey fills an important niche between previous work on narrow absorption lines (NALs) and the much-studied broad absorption lines (BALs) to build a more complete picture of quasar outflows. I will report of the mini-BAL statistics, the diversity of lines detected, and some tests for correlations with the quasar properties. We find, for example, that mini-BALs at v > 4000 km/s in at least 10% of 511 quasars studied, including 1% at v > 0.1 c. Finally, 3) Use the much larger database of NALs measured in 262,449 BOSS quasars by York et al. (in prep.) to study their potential relationships to the quasars and, specifically, their origins in quasar outflows. This involves primarily comparisons of the incidence and properties of NALs at different velocity shifts to other measured properties of the quasars such as BAL outflows, emission line characteristics, radio-loudness, and red colors. We find

  8. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey

    DEFF Research Database (Denmark)

    Sako, Masao; Bassett, Bruce; C. Becker, Andrew

    2014-01-01

    This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS S...

  9. On the fairness of the main galaxy sample of SDSS

    International Nuclear Information System (INIS)

    Meng Kelai; Pan Jun; Feng Longlong; Ma Bin

    2011-01-01

    Flux-limited and volume-limited galaxy samples are constructed from the Sloan Digital Sky Survey (SDSS) data releases DR4, DR6 and DR7 for statistical analysis. The two-point correlation functions ξ(s), monopole of three-point correlation functions ζ 0 , projected two-point correlation function w p and pairwise velocity dispersion σ 12 are measured to test if galaxy samples are fair for these statistics. We find that with the increment of sky coverage of subsequent data releases in SDSS, ξ(s) of the flux-limited sample is extremely robust and insensitive to local structures at low redshift. However, for volume-limited samples fainter than L* at large scales s > or approx. 10 h -1 Mpc, the deviation of ξ(s) from different SDSS data releases (DR7, DR6 and DR4) increases with the increment of absolute magnitude. The case of ζ 0 (s) is similar to that of ξ(s). In the weakly nonlinear regime, there is no agreement between ζ 0 of different data releases in all luminosity bins. Furthermore, w p of volume-limited samples of DR7 in luminosity bins fainter than -M r,0.1 = [18.5, 19.5] are significantly larger and σ 12 of the two faintest volume-limited samples of DR7 display a very different scale dependence than results from DR4 and DR6. Our findings call for caution in understanding clustering analysis results of SDSS faint galaxy samples and higher order statistics of SDSS volume-limited samples in the weakly nonlinear regime. The first zero-crossing points of ξ(s) from volume-limited samples are also investigated and discussed. (research papers)

  10. Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, Dale; Martini, Paul; Tie, Suk Sien; Lidman, Chris; McMahon, Richard; Banerji, Manda; Davis, Tamara; Peterson, Bradley; Sharp, Rob; Seymour, Nicholas; Childress, Michael; Lewis, Geraint; Tucker, Brad; Yuan, Fang; Abbot, Tim; Abdalla, Filipe; Allam, Sahar; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Camero Rosell, A.; Carrasco Kind, Matias; Carretero, Jorge; da Costa, Luiz N.; Desai, Shantanu; Diehl, Thomas; Eifler, Tim; Finley, David; Flaugher, Brenna; Glazebrook, Karl; Gruen, Daniel; Gruendl, Robert; Gutierrez, Gaston; Hinton, Samuel; Honscheid, Klaus; James, David; Kuehn, Kyler; Kuropatkin, Nikolav; Macaulay, Edward; Maia, Marcio A. G.; Miquel, Ramon; Ogando, Ricardo; Plazas, Andres; Riel, Kevin; Sanchez, Eusebio; Santiago, Basillio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Robert C.; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly; Tarle, Gregory; Thomas, Daniel; Uddin, Syed; Walker, Alistair; Zhang, Bonnie

    2017-03-23

    We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.

  11. CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH WISE AND SDSS

    International Nuclear Information System (INIS)

    Yan Lin; Donoso, E.; Tsai, Chao-Wei; Cutri, R.; Jarrett, T.; Stern, D.; Assef, R. J.; Eisenhardt, P.; Blain, A. W.; Stanford, S. A.; Wright, E.; Bridge, C.; Riechers, D. A.

    2013-01-01

    The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey in four channels at 3.4-22 μm, detecting hundreds of millions of objects. We merge the WISE mid-infrared data with optical data from the Sloan Digital Sky Survey (SDSS) and provide a phenomenological characterization of WISE extragalactic sources. WISE is most sensitive at 3.4 μm (W1) and least sensitive at 22 μm (W4). The W1 band probes massive early-type galaxies out to z ∼> 1. This is more distant than SDSS identified early-type galaxies, consistent with the fact that 28% of 3.4 μm sources have faint or no r-band counterparts (r > 22.2). In contrast, 92%-95% of 12 μm and 22 μm sources have SDSS optical counterparts with r ≤ 22.2. WISE 3.4 μm detects 89.8% of the entire SDSS QSO catalog at S/N W1 >7σ, but only 18.9% at 22 μm with S/N W4 > 5σ. We show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies, and strong active galactic nuclei (AGNs)/QSOs at z ∼ 0.8 and W2 –2 . (2) Selection of dust-obscured, type-2 AGN/QSO candidates. We show that WISE W1 – W2 > 0.8, W2 6 (Vega) colors can be used to identify type-2 AGN candidates. The fraction of these type-2 AGN candidates is one-third of all WISE color-selected AGNs. (3) Selection of ultraluminous infrared galaxies (ULIRGs) at z ∼ 2 with extremely red colors, r – W4 > 14 or well-detected 22 μm sources lacking detections in the 3.4 and 4.6 μm bands. The surface density of z ∼ 2 ULIRG candidates selected with r – W4 > 14 is 0.9 ± 0.07 deg –2 at S/N W4 ≥ 5 (the corresponding, lowest flux density of 2.5 mJy), which is consistent with that inferred from smaller area Spitzer surveys. Optical spectroscopy of a small number of these high-redshift ULIRG candidates confirms our selection, and reveals a possible trend that optically fainter or r – W4 redder candidates are at higher redshifts.

  12. The Quasar Fraction in Low-Frequency Selected Complete Samples and Implications for Unified Schemes

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    2000-01-01

    Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines - the 'quasar fraction' - as a function of redshift and of radio and narrow emission line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow line and radio) than it is on redshift. Above a narrow [OII] emission line luminosity of log(base 10) (L(sub [OII])/W) approximately > 35 [or radio luminosity log(base 10) (L(sub 151)/ W/Hz.sr) approximately > 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle theta(sub trans) approximately equal 53 deg. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower-luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in theta(sub trans) and/or a gradual increase in the fraction of lightly-reddened (0 approximately quasar luminosity; and (ii) the emergence of a distinct second population of low luminosity radio sources which, like M8T, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.

  13. Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam Wide-field imaging

    Science.gov (United States)

    He, Wanqiu; Akiyama, Masayuki; Bosch, James; Enoki, Motohiro; Harikane, Yuichi; Ikeda, Hiroyuki; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nagashima, Masahiro; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Onoue, Masafusa; Oogi, Taira; Ouchi, Masami; Schulze, Andreas; Shirasaki, Yuji; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Toba, Yoshiki; Uchiyama, Hisakazu; Yamashita, Takuji

    2018-01-01

    We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at \\overline{z}_phot˜ 3.8 with -24.73 Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at 3.4 Digital Sky Survey that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright z ˜ 4 Lyman break galaxies in M1450 < -21.25 photometrically selected from the HSC dataset. Over an angular scale of 10.0" to 1000.0", the bias factors are 5.93+1.34-1.43 and 2.73+2.44-2.55 for the low- and high-luminosity quasars, respectively, indicating no significant luminosity dependence of quasar clustering at z ˜ 4. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function over a similar redshift range, especially on scales below 40.0". Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos is 0.3-2 × 1012 h-1 M⊙, corresponding to a quasar duty cycle of 0.001-0.06.

  14. The SDSS-III DR12 MARVELS radial velocity data release: the first data release from the multiple object Doppler exoplanet survey

    Science.gov (United States)

    Ge, Jian; Thomas, Neil B.; Li, Rui; Senan Seieroe Grieves, Nolan; Ma, Bo; de Lee, Nathan M.; Lee, Brian C.; Liu, Jian; Bolton, Adam S.; Thakar, Aniruddha R.; Weaver, Benjamin; SDSS-Iii Marvels Team

    2015-01-01

    We present the first data release from the SDSS-III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) through the SDSS-III DR12. The data include 181,198 radial velocity (RV) measurements for a total of 5520 different FGK stars with V~7.6-12, of which more than 80% are dwarfs and subdwarfs while remainders are GK giants, among a total of 92 fields nearly randomly spread out over the entire northern sky taken with a 60-object MARVELS dispersed fixed-delay interferometer instrument over four years (2008-2012). There were 55 fields with a total of 3300 FGK stars which had 14 or more observations over about 2-year survey window. The median number of observations for these plates is 27 RV measurements. This represents the largest homogeneous sample of precision RV measurements of relatively bright stars. In this first released data, a total of 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries with additional 96 targets having RV variability indicative of a giant planet companion are reported. The released data were produced by the MARVELS finalized 1D pipeline. We will also report preliminary statistical results from the MARVELS 2D data pipeline which has produced a median RV precision of ~30 m/s for stable stars.

  15. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    Science.gov (United States)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  16. THE PROPERTIES OF QUASAR HOSTS AT THE PEAK OF THE QUASAR ACTIVITY

    International Nuclear Information System (INIS)

    Kotilainen, Jari K.; Falomo, Renato; Decarli, Roberto; Treves, Aldo; Uslenghi, Michela; Scarpa, Riccardo

    2009-01-01

    We present near-infrared imaging obtained with ESO VLT/ISAAC of a sample of 16 low luminosity radio-quiet quasars (RQQs) at the epoch around the peak of the quasar activity (2 2. The luminosity trend with a cosmic epoch resembles that observed for massive inactive galaxies, suggesting a similar star formation history. In particular, both quasar host galaxies and massive inactive galaxies appear mostly assembled already at the peak age of the quasar activity. This result is of key importance for testing the models of joint formation and evolution of galaxies and their active nuclei.

  17. Radio structure in quasars

    International Nuclear Information System (INIS)

    Barthel, P.D.

    1984-01-01

    In this thesis, observational attention is given to the extended extragalactic radio sources associated with quasars. The isolated compact radio sources, often identified with quasars, are only included in the discussions. Three aspects of the radio structure in quasars and their cosmic evolution are considered: a study of the parsec scale morphology in quasar cores, in relation to the extended morphologies; an investigation of possible epoch dependent hotspot properties as well as a more detailed investigation of this fine scale structure; a VLA project was carried out to obtain morphological information on scales of 0.5 arcsec on high redshift quasars and to investigate possible epoch dependent morphological properties. MERLIN observations at 0.1 arcsec resolution to supplement the VLA data were initiated. (Auth.)

  18. Distribution in depth of quasars

    International Nuclear Information System (INIS)

    Schmidt, M.; Green, R.F.

    1980-01-01

    The authors discuss the distribution in depth of different kinds of quasars: quasi-stellar radio sources with steep radio spectrum, those with flat radio spectrum, and optically selected quasars. All exhibit an increase of space density with distance to a different degree. The optically selected quasars, in particular, show a steep increase of surface density with magnitude. The steepness of the increase is inconsistent with a uniform distribution of quasars in the local hypothesis. In the cosmological hypothesis the co-moving space density of optically selected quasars increases by a factor of 100,000 to a redshift of 2, and by factors of 1000 and 10 for steep-spectrum and flat-spectrum radio quasars, respectively. (Auth.)

  19. Outflow and hot dust emission in broad absorption line quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Zhou, Hongyan [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China); Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhang, Kai, E-mail: zhangshaohua@pric.gov.cn, E-mail: whywang@mail.ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  20. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  1. A Sample of Quasars with Strong Nitrogen Emission Lines from the Sloan Digital Sky Survey

    DEFF Research Database (Denmark)

    Jiang, Linhua; Fan, Xiaohui; Vestergaard, Marianne

    2008-01-01

    We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7......We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7...

  2. A high signal-to-noise ratio composite quasar spectrum

    International Nuclear Information System (INIS)

    Francis, P.J.; Hewett, P.C.; Foltz, C.B.; Chaffee, F.H.; Weymann, R.J.

    1991-01-01

    A very high signal-to-noise ratio (S/N of about 400) composite spectrum of the rest-frame ultraviolet and optical region of high luminosity quasars is presented. The spectrum is derived from 718 individual spectra obtained as part of the Large Bright Quasar Survey. The moderate resolution, 4A or less, and high signal-to-noise ratio allow numerous weak emission features to be identified. Of particular note is the large equivalent-width of the Fe II emission in the rest-frame ultraviolet and the blue continuum slope of the composite. The primary aim of this paper is to provide a reference spectrum for use in line identifications, and a series of large-scale representations of the composite spectrum are shown. A measure of the standard deviation of the individual quasar spectra from the composite spectrum is also presented. 12 refs

  3. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  4. Sunyaev–Zel’Dovich Signal from Quasar Hosts: Implications for Detection of Quasar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Dhruba Dutta; Chatterjee, Suchetana, E-mail: dhruba.duttachowdhury@yale.edu [Department of Physics, Presidency University, Kolkata, 700073 (India)

    2017-04-10

    Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev–Zel’dovich (SZ) effect. Recently, many groups have tried to detect this signal by cross-correlating CMB maps with quasar catalogs. Using a self-similar model for the gas in the intra-cluster medium and a realistic halo occupation distribution (HOD) prescription for quasars, we estimate the level of SZ signal from gravitational heating of quasar hosts. The bias in the host halo signal estimation due to an unconstrained high mass HOD tail and yet unknown redshift dependence of the quasar HOD restricts us from drawing any robust conclusions at low redshift ( z < 1.5) from our analysis. However, at higher redshifts ( z > 2.5), we find an excess signal in recent observations than what is predicted from our model. The excess signal could be potentially generated from additional heating due to quasar feedback.

  5. Sunyaev–Zel’Dovich Signal from Quasar Hosts: Implications for Detection of Quasar Feedback

    International Nuclear Information System (INIS)

    Chowdhury, Dhruba Dutta; Chatterjee, Suchetana

    2017-01-01

    Several analytic and numerical studies have indicated that the interstellar medium of a quasar host galaxy heated by feedback can contribute to a substantial secondary signal in the cosmic microwave background (CMB) through the thermal Sunyaev–Zel’dovich (SZ) effect. Recently, many groups have tried to detect this signal by cross-correlating CMB maps with quasar catalogs. Using a self-similar model for the gas in the intra-cluster medium and a realistic halo occupation distribution (HOD) prescription for quasars, we estimate the level of SZ signal from gravitational heating of quasar hosts. The bias in the host halo signal estimation due to an unconstrained high mass HOD tail and yet unknown redshift dependence of the quasar HOD restricts us from drawing any robust conclusions at low redshift ( z < 1.5) from our analysis. However, at higher redshifts ( z > 2.5), we find an excess signal in recent observations than what is predicted from our model. The excess signal could be potentially generated from additional heating due to quasar feedback.

  6. Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82

    Science.gov (United States)

    Pasquet-Itam, J.; Pasquet, J.

    2018-04-01

    We have applied a convolutional neural network (CNN) to classify and detect quasars in the Sloan Digital Sky Survey Stripe 82 and also to predict the photometric redshifts of quasars. The network takes the variability of objects into account by converting light curves into images. The width of the images, noted w, corresponds to the five magnitudes ugriz and the height of the images, noted h, represents the date of the observation. The CNN provides good results since its precision is 0.988 for a recall of 0.90, compared to a precision of 0.985 for the same recall with a random forest classifier. Moreover 175 new quasar candidates are found with the CNN considering a fixed recall of 0.97. The combination of probabilities given by the CNN and the random forest makes good performance even better with a precision of 0.99 for a recall of 0.90. For the redshift predictions, the CNN presents excellent results which are higher than those obtained with a feature extraction step and different classifiers (a K-nearest-neighbors, a support vector machine, a random forest and a Gaussian process classifier). Indeed, the accuracy of the CNN within |Δz| < 0.1 can reach 78.09%, within |Δz| < 0.2 reaches 86.15%, within |Δz| < 0.3 reaches 91.2% and the value of root mean square (rms) is 0.359. The performance of the KNN decreases for the three |Δz| regions, since within the accuracy of |Δz| < 0.1, |Δz| < 0.2, and |Δz| < 0.3 is 73.72%, 82.46%, and 90.09% respectively, and the value of rms amounts to 0.395. So the CNN successfully reduces the dispersion and the catastrophic redshifts of quasars. This new method is very promising for the future of big databases such as the Large Synoptic Survey Telescope. A table of the candidates is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A97

  7. THE LICK/SDSS LIBRARY. II. [Ca/Fe] AND [Mg/Fe] IN F, G, AND K STARS FROM SDSS-DR7

    International Nuclear Information System (INIS)

    Franchini, M.; Morossi, C.; Di Marcantonio, P.; Malagnini, M. L.; Chavez, M.

    2011-01-01

    We analyzed the spectra of 17,600 F, G, and K stars extracted from the seventh Sloan Digital Sky Survey Data Release (SDSS-DR7) database in order to derive ([α/Fe]), [Ca/Fe], and [Mg/Fe] ratios. Particular attention has been devoted to estimating homogeneous and self-consistent atmospheric parameter values, T eff , log g, and [Fe/H], by comparing synthetic and observational Lick/SDSS indices. We present results for the sub-sample of more than 4000 spectra whose overall quality allowed us to derive fairly accurate stellar atmospheric parameter values and, therefore, reliable abundance ratios. A Monte Carlo approach was adopted to evaluate both the errors in the observational Lick/SDSS indices and in the derived parameter estimates. The analysis of the trends of [Ca/Fe] and [Mg/Fe] versus [Fe/H] pointed out that (1) the [Ca/Fe] and [Mg/Fe] ratios increase with decreasing [Fe/H] with different slopes reaching maximum average levels of +0.25 and +0.40 dex at [Fe/H] ≅ -1.75, respectively; (2) our sample contains, at a given [Fe/H], stars characterized by significantly different amounts of α-enhancement, thus belonging to different Galactic populations; and (3) the analyzed sample shows a predominance of thick disk stars for [Fe/H] > - 0.5 and the presence of stars belonging to the h igh-αhalo population for -2.0 < [Fe/H] <-0.5.

  8. Spectrophotometric Properties of E+A Galaxies in SDSS-IV MaNGA

    Science.gov (United States)

    Marinelli, Mariarosa; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Johnson, Amalya; Kerrison, Nicole; Melchert, Nancy; Ojanen, Winonah; Weaver, Olivia; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    Quenched post-starburst galaxies, or E+A galaxies, represent a unique and informative phase in the evolution of galaxies. We used a qualitative rubric-based methodology, informed by the literature, to manually select galaxies from the SDSS-IV IFU survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) using the single-fiber spectra from the Sloan Digital Sky Survey Data Release 8. Of the 2,812 galaxies observed so far in MaNGA, we found 39 galaxies meeting our criteria for E+A classification. Spectral energy distributions of these 39 galaxies from the far-UV to the mid-infrared demonstrate a heterogeneity in our sample emerging in the infrared, indicating many distinct paths to visually similar optical spectra. We used SDSS-IV MaNGA Pipe3D data products to analyze stellar population ages, and found that 34 galaxies exhibited stellar populations that were older at 1 effective radius than at the center of the galaxy. Given that our sample was manually chosen based on E+A markers in the single-fiber spectra aimed at the center of each galaxy, our E+A galaxies may have only experienced their significant starbursts in the central region, with a disk of quenched or quenching material further outward. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  9. New constraints on Lyman-α opacity using 92 quasar lines of sight

    Science.gov (United States)

    Bosman, Sarah E. I.; Fan, Xiaohui; Jiang, Linhua; Reed, Sophie; Matsuoka, Yoshiki; Becker, George; Rorai, Albert

    2018-05-01

    The large scatter in Lyman-α opacity at z > 5.3 has been an ongoing mystery, prompting a flurry of numerical models. A uniform ultra-violet background has been ruled out at those redshifts, but it is unclear whether any proposed models produce sufficient inhomogeneities. In this paper we provide an update on the measurement which first highlighted the issue: Lyman-α effective optical depth along high-z quasar lines of sight. We nearly triple on the previous sample size in such a study thanks to the cooperation of the DES-VHS, SHELLQs, and SDSS collaborations as well as new reductions and spectra. We find that a uniform UVB model is ruled out at 5.1 < z < 5.3, as well as higher redshifts, which is perplexing. We provide the first such measurements at z ~ 6. None of the numerical models we confronted to this data could reproduce the observed scatter.

  10. First Time Rapid and Accurate Detection of Massive Number of Metal Absorption Lines in the Early Universe Using Deep Neural Network

    Science.gov (United States)

    Zhao, Yinan; Ge, Jian; Yuan, Xiaoyong; Li, Xiaolin; Zhao, Tiffany; Wang, Cindy

    2018-01-01

    Metal absorption line systems in the distant quasar spectra have been used as one of the most powerful tools to probe gas content in the early Universe. The MgII λλ 2796, 2803 doublet is one of the most popular metal absorption lines and has been used to trace gas and global star formation at redshifts between ~0.5 to 2.5. In the past, machine learning algorithms have been used to detect absorption lines systems in the large sky survey, such as Principle Component Analysis, Gaussian Process and decision tree, but the overall detection process is not only complicated, but also time consuming. It usually takes a few months to go through the entire quasar spectral dataset from each of the Sloan Digital Sky Survey (SDSS) data release. In this work, we applied the deep neural network, or “ deep learning” algorithms, in the most recently SDSS DR14 quasar spectra and were able to randomly search 20000 quasar spectra and detect 2887 strong Mg II absorption features in just 9 seconds. Our detection algorithms were verified with previously released DR12 and DR7 data and published Mg II catalog and the detection accuracy is 90%. This is the first time that deep neural network has demonstrated its promising power in both speed and accuracy in replacing tedious, repetitive human work in searching for narrow absorption patterns in a big dataset. We will present our detection algorithms and also statistical results of the newly detected Mg II absorption lines.

  11. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  12. The large-scale quasar-Lyman α forest cross-correlation from BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Arnau, Eduard [Institut de Ciències del Cosmos (IEEC/UB), Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain); Miralda-Escudé, Jordi, E-mail: font@physik.uzh.ch, E-mail: edu.arnau.lazaro@gmail.com, E-mail: miralda@icc.ub.edu [Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia (Spain); and others

    2013-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption in redshift space, using ∼ 60000 quasar spectra from Data Release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is detected over a wide range of scales, up to comoving separations r of 80 h{sup −1}Mpc. For r > 15 h{sup −1}Mpc, we show that the cross-correlation is well fitted by the linear theory prediction for the mean overdensity around a quasar host halo in the standard ΛCDM model, with the redshift distortions indicative of gravitational evolution detected at high confidence. Using previous determinations of the Lyα forest bias factor obtained from the Lyα autocorrelation, we infer the quasar bias factor to be b{sub q} = 3.64{sup +0.13}{sub −0.15} at a mean redshift z = 2.38, in agreement with previous measurements from the quasar auto-correlation. We also obtain a new estimate of the Lyα forest redshift distortion factor, β{sub F} = 1.1±0.15, slightly larger than but consistent with the previous measurement from the Lyα forest autocorrelation. The simple linear model we use fails at separations r < 15h{sup −1}Mpc, and we show that this may reasonably be due to the enhanced ionization due to radiation from the quasars. We also provide the expected correction that the mass overdensity around the quasar implies for measurements of the ionizing radiation background from the line-of-sight proximity effect.

  13. The large-scale quasar-Lyman α forest cross-correlation from BOSS

    International Nuclear Information System (INIS)

    Font-Ribera, Andreu; Arnau, Eduard; Miralda-Escudé, Jordi

    2013-01-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption in redshift space, using ∼ 60000 quasar spectra from Data Release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is detected over a wide range of scales, up to comoving separations r of 80 h −1 Mpc. For r > 15 h −1 Mpc, we show that the cross-correlation is well fitted by the linear theory prediction for the mean overdensity around a quasar host halo in the standard ΛCDM model, with the redshift distortions indicative of gravitational evolution detected at high confidence. Using previous determinations of the Lyα forest bias factor obtained from the Lyα autocorrelation, we infer the quasar bias factor to be b q = 3.64 +0.13 −0.15 at a mean redshift z = 2.38, in agreement with previous measurements from the quasar auto-correlation. We also obtain a new estimate of the Lyα forest redshift distortion factor, β F = 1.1±0.15, slightly larger than but consistent with the previous measurement from the Lyα forest autocorrelation. The simple linear model we use fails at separations r −1 Mpc, and we show that this may reasonably be due to the enhanced ionization due to radiation from the quasars. We also provide the expected correction that the mass overdensity around the quasar implies for measurements of the ionizing radiation background from the line-of-sight proximity effect

  14. The Halo Occupation Distribution of obscured quasars: revisiting the unification model

    Science.gov (United States)

    Mitra, Kaustav; Chatterjee, Suchetana; DiPompeo, Michael A.; Myers, Adam D.; Zheng, Zheng

    2018-06-01

    We model the projected angular two-point correlation function (2PCF) of obscured and unobscured quasars selected using the Wide-field Infrared Survey Explorer (WISE), at a median redshift of z ˜ 1 using a five parameter Halo Occupation Distribution (HOD) parametrization, derived from a cosmological hydrodynamic simulation by Chatterjee et al. The HOD parametrization was previously used to model the 2PCF of optically selected quasars and X-ray bright active galactic nuclei (AGNs) at z ˜ 1. The current work shows that a single HOD parametrization can be used to model the population of different kinds of AGN in dark matter haloes suggesting the universality of the relationship between AGN and their host dark matter haloes. Our results show that the median halo mass of central quasar hosts increases from optically selected (4.1^{+0.3}_{-0.4} × 10^{12} h^{-1} M_{⊙}) and infra-red (IR) bright unobscured populations (6.3^{+6.2}_{-2.3} × 10^{12} h^{-1} M_{⊙}) to obscured quasars (10.0^{+2.6}_{-3.7} × 10^{12} h^{-1} M_{⊙}), signifying an increase in the degree of clustering. The projected satellite fractions also increase from optically bright to obscured quasars and tend to disfavour a simple `orientation only' theory of active galactic nuclei unification. Our results also show that future measurements of the small-scale clustering of obscured quasars can constrain current theories of galaxy evolution where quasars evolve from an IR-bright obscured phase to the optically bright unobscured phase.

  15. Extreme Variability in a Broad Absorption Line Quasar

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Daniel; Jun, Hyunsung D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Steidel, Charles C. [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Arav, Nahum; Chamberlain, Carter [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Glikman, Eilat, E-mail: daniel.k.stern@jpl.nasa.gov [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2017-04-20

    CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.

  16. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  17. Report of the Committee on the Participation of Women in the Sloan Digital Sky Survey

    Science.gov (United States)

    Myers, Adam D.; Diamond-Stanic, Aleks; Gallagher, John S.; Gillespie, Bruce Andrew; Ho, Shirley; Kinemuchi, Karen; Lucatello, Sara; Lundgren, Britt; Tremonti, Christina A.; Zasowski, Gail; SDSS-III Collaboration, SDSS-IV Collaboration

    2015-01-01

    The Committee on the Participation of Women in the SDSS (CPWS) was formed by the SDSS to evaluate the gender climate within the collaboration. The CPWS seeks to foster gender balance in our collaboration by fielding concerns from our members and by recommending best practices for establishing the SDSS leadership team. An important aspect of the mission of the CPWS is to regularly assess gender diversity and inclusiveness within the SDSS. Against the backdrop of the transition from SDSS-III to SDSS-IV, the CPWS has been collecting data relevant to gender issues through interviews and surveys. In April, 2014, the CPWS surveyed 251 SDSS-IV members (~50% of active membership) regarding gender and leadership. Broad findings from this survey include that the male-to-female ratio in SDSS-IV is about 3:1 and that the male-to-female ratio among those that identify themselves as being in an SDSS-IV leadership role is also close to 3:1. About 35% of those surveyed self-identify as an SDSS-IV "leader," though we recognize the possibility that active stakeholders might be more likely to respond to a demographics survey. About 80% of those that self-identify as leaders consider their leadership role within SDSS-IV to be officially acknowledged, regardless of gender. The fraction of women in SDSS leadership roles appears to be a weak function of current job position in that 6 of 32 (19%) senior faculty that are SDSS leaders are women, compared to 4 of 13 (31%) postdocs. Similarly, the fraction of SDSS leaders who are women is highest (32%) amongst those leaders who received their PhDs 6-10 years ago, while the fraction of female leaders amongst other age demographics is somewhat lower (20%). Although these are small sample sizes, this hints at a trend where women are most likely to fill SDSS leadership roles at certain stages of their lives and careers. The CPWS intends to use this initial survey data to establish a baseline for tracking SDSS-IV demographics, and thus hopes to

  18. Generating mock data sets for large-scale Lyman-α forest correlation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB, Fac. Ciències, torre C5 parell 2, Bellaterra, Catalonia (Spain); McDonald, Patrick [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Miralda-Escudé, Jordi, E-mail: font@ieec.uab.es, E-mail: pvmcdonald@lbl.gov, E-mail: miralda@icc.ub.edu [Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia (Spain)

    2012-01-01

    Massive spectroscopic surveys of high-redshift quasars yield large numbers of correlated Lyα absorption spectra that can be used to measure large-scale structure. Simulations of these surveys are required to accurately interpret the measurements of correlations and correct for systematic errors. An efficient method to generate mock realizations of Lyα forest surveys is presented which generates a field over the lines of sight to the survey sources only, instead of having to generate it over the entire three-dimensional volume of the survey. The method can be calibrated to reproduce the power spectrum and one-point distribution function of the transmitted flux fraction, as well as the redshift evolution of these quantities, and is easily used for modeling any survey systematic effects. We present an example of how these mock surveys are applied to predict the measurement errors in a survey with similar parameters as the BOSS quasar survey in SDSS-III.

  19. Generating mock data sets for large-scale Lyman-α forest correlation measurements

    International Nuclear Information System (INIS)

    Font-Ribera, Andreu; McDonald, Patrick; Miralda-Escudé, Jordi

    2012-01-01

    Massive spectroscopic surveys of high-redshift quasars yield large numbers of correlated Lyα absorption spectra that can be used to measure large-scale structure. Simulations of these surveys are required to accurately interpret the measurements of correlations and correct for systematic errors. An efficient method to generate mock realizations of Lyα forest surveys is presented which generates a field over the lines of sight to the survey sources only, instead of having to generate it over the entire three-dimensional volume of the survey. The method can be calibrated to reproduce the power spectrum and one-point distribution function of the transmitted flux fraction, as well as the redshift evolution of these quantities, and is easily used for modeling any survey systematic effects. We present an example of how these mock surveys are applied to predict the measurement errors in a survey with similar parameters as the BOSS quasar survey in SDSS-III

  20. THE JET POWER AND EMISSION-LINE CORRELATIONS OF RADIO-LOUD OPTICALLY SELECTED QUASARS

    International Nuclear Information System (INIS)

    Punsly, Brian; Zhang Shaohua

    2011-01-01

    In this Letter, the properties of the extended radio emission form Sloan Digital Sky Survey Data Release 7 quasars with 0.4 20-30 kpc). The frequency of quasars with FR II level extended radio emission is ∼2.3% and >0.4% of quasars have FR I level extended radio emission. The lower limit simply reflects the flux density limit of the survey. The distribution of the long-term time-averaged jet powers of these quasars, Q-bar , has a broad peak ∼3 x 10 44 erg s -1 that turns over below 10 44 erg s -1 and sources above 10 45 erg s -1 are extremely rare. It is found that the correlation between the bolometric (total thermal) luminosity of the accretion flow, L bol , and Q-bar is not strong. The correlation of Q-bar with narrow line luminosity is stronger than the correlation with broad line luminosity and the continuum luminosity. It is therefore concluded that previous interpretations of correlations of Q-bar with narrow line strengths in radio galaxies as a direct correlation of jet power and accretion power have been overstated. It is explained why this interpretation mistakenly overlooks the sizeable fraction of sources with weak accretion luminosity and powerful jets discovered by Ogle et al.

  1. VizieR Online Data Catalog: BAL QSOs from SDSS DR3 (Trump+, 2006)

    Science.gov (United States)

    Trump, J. R.; Hall, P. B.; Reichard, T. A.; Richards, G. T.; Schneider, D. P.; vanden Berk, D. E.; Knapp, G. R.; Anderson, S. F.; Fan, X.; Brinkman, J.; Kleinman, S. J.; Nitta, A.

    2007-11-01

    We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release (Cat. ). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000km/s in the CIV and MgII absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional balnicity index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. (1 data file).

  2. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    International Nuclear Information System (INIS)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi; Yin, Jun

    2015-01-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α ν12 (1000 ∼ 2000 Å) and α ν24 (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α ν ) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α ν12 and α ν24 show significant anti-correlations with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α ν − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ v ∼ 10 −5 h Mpc −1 at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed

  3. THE SPITZER EXTRAGALACTIC REPRESENTATIVE VOLUME SURVEY: THE ENVIRONMENTS OF HIGH-z SDSS QUASI-STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Falder, J. T.; Stevens, J. A.; Jarvis, Matt J.; Bonfield, D. G.; Lacy, M.; Farrah, D.; Oliver, S.; Surace, J.; Mauduit, J.-C.; Vaccari, M.; Marchetti, L.; Gonzalez-Solares, E.; Afonso, J.; Cava, A.; Seymour, N.

    2011-01-01

    This paper presents a study of the environments of SDSS quasi-stellar objects (QSOs) in the Spitzer Extragalactic Representative Volume Survey (SERVS). We concentrate on the high-redshift QSOs as these have not been studied in large numbers with data of this depth before. We use the IRAC 3.6-4.5 μm color of objects and ancillary r-band data to filter out as much foreground contamination as possible. This technique allows us to find a significant (>4σ) overdensity of galaxies around QSOs in a redshift bin centered on z ∼ 2.0 and an (>2σ) overdensity of galaxies around QSOs in a redshift bin centered on z ∼ 3.3. We compare our findings to the predictions of a semi-analytic galaxy formation model, based on the ΛCDM MILLENNIUM simulation, and find for both redshift bins that the model predictions match well the source density we have measured from the SERVS data.

  4. Proper motions and distances of quasars

    International Nuclear Information System (INIS)

    Varshni, Y.P.

    1982-01-01

    The author's theory that quasars are stars raises the question of their proper motions. From the evidence presented in a previous paper, it is hypothesised that planetary nuclei and quasars are related objects and that their distributions in the galaxy are not very different. Proper motions of 30 quasars, calculated from existing measurements, are discussed. It is shown that three of these, namely PHL 1033, LB 8956 and LB 8991, have proper motions comparable to the largest proper motion known amongst the planetary nuclei. From this it is estimated that these three quasars lie within a few hundred parsecs from the sun. The evidence presented in a previous paper and the present one clearly supports the theory that quasars are stars. The possibility of using the interstellar K and H lines as distance indicators of quasars is discussed and the available evidence summarised. The desirability of determining more accurate values of the proper motions of quasars is emphasised. (Auth.)

  5. A luminous quasar at a redshift of z = 7.085.

    Science.gov (United States)

    Mortlock, Daniel J; Warren, Stephen J; Venemans, Bram P; Patel, Mitesh; Hewett, Paul C; McMahon, Richard G; Simpson, Chris; Theuns, Tom; Gonzáles-Solares, Eduardo A; Adamson, Andy; Dye, Simon; Hambly, Nigel C; Hirst, Paul; Irwin, Mike J; Kuiper, Ernst; Lawrence, Andy; Röttgering, Huub J A

    2011-06-29

    The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.

  6. Erratum: "Space Density of Optically Selected Type 2 Quasars" (2008, AJ, 136, 2373)

    Science.gov (United States)

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2010-03-01

    Figure 12 of the paper "Space Density of Optically Selected Type 2 Quasars" compares the obscured quasar fractions derived in our work with those of other studies. Unfortunately, some of the points from these other studies were shown incorrectly. Specifically, the results from X-ray data—Hasinger (2004; open circles) and Ueda et al. (2003; open squares)—which we had taken from Figure 16 of Hopkins et al. (2006), were affected by a luminosity conversion error, in the sense that the displayed luminosities for these data were too high by ~1 dex. With this erratum, we correct this problem and update the figure. The new version (Figure 12) shows more recent results from Hasinger (2008), in lieu of the Hasinger (2004) data points. These are based on data in the redshift range z = 0.2-3.2 (open circles) in that work. The best linear fit to these data (black dashed line) is consistent with that derived for the redshift slice z = 0.4-0.8, which overlaps with the highest redshift bin in our study, and is higher than that derived for redshifts smaller than 0.4 (corresponding to a shift of ~0.7 dex in luminosity). Figure 12 also shows estimates of the obscured quasar fraction derived from the ratio of IR to bolometric luminosities of an AGN sample at redshift z ~ 1 (Treister et al. 2008; filled triangles). Because the obscured quasar fractions derived from our analysis (colored arrows) are strict lower limits, there was already a hint in the previous version of Figure 12 that at high quasar luminosities, we find higher obscured quasar fractions than X-ray surveys. The correction and updates of Figure 12 strengthen this conclusion. At face value, our derived obscured quasar fractions are consistent with those from IR data (Treister et al. 2008; filled triangles). However, we find that they are significantly higher than those derived from X-ray surveys at L_[O\\,\\mathsc {iii]}\\gtrsim 10^{9.5}\\;L_{\\odot }, especially those from the recent analysis by Hasinger (2008). This

  7. The statistics of radio emission from quasars

    International Nuclear Information System (INIS)

    Peacock, J.A.; Miller, L.; Longair, M.S.; Edinburgh Univ.

    1986-01-01

    The radio properties of quasars have traditionally been discussed in terms of the radio-to-optical flux-density ratio R, implying a correlation between emission in these wavebands. It is here shown that, for bright quasars, this apparent correlation is largely due to an abrupt change in the radio properties of the quasar population near absolute magnitude Msub(B)=-24. It is suggested that this change in due to the existence of two classes of quasar with differing host galaxies: a proportion of quasars brighter than Msub(B)approx.=-24 lie in elliptical galaxies and thus generate powerful radio sources, while elliptical galaxies with weaker nuclear quasar components are classified as N-galaxies rather than quasars; quasars fainter than Msub(B)approx.=-24 lie in spiral galaxies and thus are high-luminosity analogues of radio-quiet Seyfert galaxies. (author)

  8. On the completeness of a sample of bright quasars selected by colour excess in the direction of the North Galactic Pole

    International Nuclear Information System (INIS)

    Warnock, A. III; Usher, P.D.

    1986-01-01

    The Medium Bright Quasar survey (MBQS) shows evidence for a dearth of bright quasars in a Palomar Schmidt field centred on Selected Area (SA) 57 near the North Galactic Pole, compared to similar fields centred on SA 28, 29, 55, and 94. The SA 57 field has been searched again for bright quasar candidates with the held of a second survey plate exposed according to a slightly modified Haro-Luyten three-colour (Tonantzintla) prescription. Candidates so selected have both a blue and ultraviolet excess (B-UVX). The main result of the paper is that there appear to be no B-UVX quasars in the SA 57 field that are brighter than B=17.25 mag. The significance of this apparent anomaly is briefly discussed. (author)

  9. Companions of low-redshift radio-quiet quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1987-01-01

    Using imaging data from a relatively complete subset of low-redshift radio-quiet quasars, the frequency of finding associated companion galaxies of the quasars is determined statistically. With an average completeness limit of M/sub r/ of about -19, it is found that about 40 percent of the quasars have at least one close physical companion within a projected distance of 100 kpc. The percentage of quasars with detected companions is consistent with all quasars in the sample having a companion of luminosity brighter than about -16.5 mag. It is estimated that the frequency of finding close companions to quasars is about six times higher than that expected for field galaxies. This frequency is similar to that found for lower-luminosity Seyfert galaxies. The properties of the companions appear to be uncorrelated with the level of activity in the quasars. This suggests that, for radio-quiet quasars, the companions act mainly as triggers of the activity and are probably not a strong determining factor of the detailed properties of the quasars. 28 references

  10. Imprints of quasar duty cycle on the 21cm signal from the Epoch of Reionization

    Science.gov (United States)

    Bolgar, Florian; Eames, Evan; Hottier, Clément; Semelin, Benoit

    2018-05-01

    Quasars contribute to the 21-cm signal from the Epoch of Reionization (EoR) primarily through their ionizing UV and X-ray emission. However, their radio continuum and Lyman-band emission also regulates the 21-cm signal in their direct environment, potentially leaving the imprint of their duty cycle. We develop a model for the radio and UV luminosity functions of quasars from the EoR, and constrain it using recent observations. Our model is consistent with the recent discovery of the quasar J1342+0928 at redshift ˜7.5, and also predicts only a few quasars suitable for 21-cm forest observations (˜10 mJy) in the sky. We exhibit a new effect on the 21-cm signal observed against the CMB: a radio-loud quasar can leave the imprint of its duty cycle on the 21-cm tomography. We apply this effect in a cosmological simulation and conclude that the effect of typical radio-loud quasars is most likely negligible in an SKA field of view. For a ˜10mJy quasar the effect is stronger though hardly observable at SKA resolution. Then we study the contribution of the lyman band (Ly-α to Ly-β) emission of quasars to the Wouthuisen-Field coupling. The collective effect of quasars on the 21-cm power spectrum is larger than the thermal noise at low k, though featureless. However, a distinctive pattern around the brightest quasars in an SKA field of view may be observable in the tomography, encoding the duration of their duty cycle. This pattern has a high signal-to-noise ratio for the brightest quasar in a typical SKA shallow survey.

  11. Mean and extreme radio properties of quasars and the origin of radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Rachael M.; Richards, Gordon T. [Department of Physics, Drexel University, Philadelphia, PA (United States)

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  12. A main sequence for quasars

    Science.gov (United States)

    Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.

    2018-03-01

    The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  13. A Main Sequence for Quasars

    Directory of Open Access Journals (Sweden)

    Paola Marziani

    2018-03-01

    Full Text Available The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  14. Transverse and Longitudinal proximity effect

    Science.gov (United States)

    Jalan, Pryianka; Chand, Hum; Srianand, Raghunathan

    2018-04-01

    With close pairs (˜1.5arcmin) of quasars (QSOs), absorption in the spectra of a background quasar in the vicinity of a foreground quasar can be used to study the environment of the latter quasar at kpc-Mpc scales. For this we used a sample of 205 quasar pairs from the Sloan Digital Sky-Survey Data Release 12 (SDSS DR12) in the redshift range of 2.5 to 3.5 by studying their H I Ly-α absorption. We study the environment of QSOs both in the longitudinal as well as in the transverse direction by carrying out a statistical comparison of the Ly-α absorption lines in the quasar vicinity to that of the absorption lines caused by the inter-galactic medium (IGM). This comparison was done with IGM, matched in absorption redshift and signal-to-noise ratio (SNR) to that of the proximity region. In contrast to the measurements along the line-of-sight, the regions transverse to the quasars exhibit enhanced H I Ly-α absorption. This discrepancy can either be interpreted as due to an anisotropic emission from the quasars or as a consequence of their finite lifetime.

  15. The statistics of quasar-galaxy separations

    International Nuclear Information System (INIS)

    Phillips, S.

    1983-01-01

    One of the arguments put forward in favor of physical associations between low redshift galaxies and high redshift quasars is shown to be void. The argument is based on the form of the relationship for 'close' pairs of quasars and galaxies and on the size of their separations. Simple statistical reasoning based on selection effects shows that the relationship for quasar-galaxy pairs is expected if the objects are not physically associated. Further, the actual separations of the closest pairs are in close agreement with those expected given the observed numbers of nearby galaxies and the total number of known quasars. This argument avoids the controversial number density of quasars

  16. Superconducting cosmic string evolution of quasars

    International Nuclear Information System (INIS)

    Liu Yulin.

    1988-09-01

    The quasars may have been undergoing two evolutionary processes after they formed. As a result of the string loops shrinking at the first stage, the luminosities of the quasars increased gradually up to their maximum value at the redshift z ∼ 2, after then the second evolutionary stage began and the luminosity reduced. This result can be fitted by luminosity counting of quasars. Observable limit of quasars can be obtained naturally. Many phenomena, such as radiomorphology, density distribution between fuzz structure and broad line region and rotational curve may also originate from the first evolutionary stage of quasars as cosmic string. (author). 10 refs

  17. Gaia Space Mission and Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zwitter, Tomaž, E-mail: tomaz.zwitter@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia)

    2017-11-15

    Quasars are often considered to be point-like objects. This is largely true and allows for an excellent alignment of the optical positional reference frame of the ongoing ESA mission Gaia with the International Celestial Reference Frame. But presence of optical jets in quasars can cause shifts of the optical photo-centers at levels detectable by Gaia. Similarly, motion of emitting blobs in the jet can be detected as proper motion shifts. Gaia's measurements of spectral energy distribution for around a million distant quasars is useful to determine their redshifts and to assess their variability on timescales from hours to years. Spatial resolution of Gaia allows to build a complete magnitude limited sample of strongly lensed quasars. The mission had its first public data release in September 2016 and is scheduled to have the next and much more comprehensive one in April 2018. Here we briefly review the capabilities and current results of the mission. Gaia's unique contributions to the studies of quasars are already being published, a highlight being a discovery of a number of quasars with optical jets.

  18. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  19. Quasar outflow energetics from broad absorption line variability

    Science.gov (United States)

    McGraw, S. M.; Shields, J. C.; Hamann, F. W.; Capellupo, D. M.; Herbst, H.

    2018-03-01

    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in active galactic nucleus (AGN) feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P V broad absorption. The presence of P V BALs indicates that other BALs like C IV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ) BAL variations from 10 quasars in our sample over rest-frame time-scales between ≤0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally ≲ 1-10 pc from the SMBH using the transverse-motion scenario, and ≲ 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NH ≳ 1022 cm-2), yield outflow kinetic luminosities between ˜ 0.001 and 1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.

  20. The Identification of Z-dropouts in Pan-STARRS1: Three Quasars at 6.5< z< 6.7

    Science.gov (United States)

    Venemans, B. P.; Bañados, E.; Decarli, R.; Farina, E. P.; Walter, F.; Chambers, K. C.; Fan, X.; Rix, H.-W.; Schlafly, E.; McMahon, R. G.; Simcoe, R.; Stern, D.; Burgett, W. S.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Tonry, J. L.; Waters, C.; AlSayyad, Y.; Banerji, M.; Chen, S. S.; González-Solares, E. A.; Greiner, J.; Mazzucchelli, C.; McGreer, I.; Miller, D. R.; Reed, S.; Sullivan, P. W.

    2015-03-01

    Luminous distant quasars are unique probes of the high-redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral hydrogen in the IGM makes quasars beyond a redshift of z≃ 6.5 very faint in the optical z band, thus locating quasars at higher redshifts requires large surveys that are sensitive above 1 micron. We report the discovery of three new z\\gt 6.5 quasars, corresponding to an age of the universe of \\lt 850 Myr, selected as z-band dropouts in the Pan-STARRS1 survey. This increases the number of known z\\gt 6.5 quasars from four to seven. The quasars have redshifts of z = 6.50, 6.52, and 6.66, and include the brightest z-dropout quasar reported to date, PSO J036.5078 + 03.0498 with {{M}1450}=-27.4. We obtained near-infrared spectroscopy for the quasars, and from the Mg ii line, we estimate that the central black holes have masses between 5 × 108 and 4 × 109 {{M}⊙ } and are accreting close to the Eddington limit ({{L}Bol}/{{L}Edd}=0.13-1.2). We investigate the ionized regions around the quasars and find near-zone radii of {{R}NZ}=1.5-5.2 proper Mpc, confirming the trend of decreasing near-zone sizes with increasing redshift found for quasars at 5.7\\lt z\\lt 6.4. By combining RNZ of the PS1 quasars with those of 5.7\\lt z\\lt 7.1 quasars in the literature, we derive a luminosity-corrected redshift evolution of {{R}NZ,corrected}=(7.2+/- 0.2)-(6.1+/- 0.7)× (z-6) Mpc. However, the large spread in RNZ in the new quasars implies a wide range in quasar ages and/or a large variation in the neutral hydrogen fraction along different lines of sight. Based in part on observations collected at the European Southern Observatory, Chile, programs 179.A-2010, 092.A-0150, 093.A-0863, and 093.A-0574, and at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). This paper

  1. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi; Yin, Jun, E-mail: ssy@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2015-04-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α{sub ν12} (1000 ∼ 2000 Å) and α{sub ν24} (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α{sub ν}) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α{sub ν12} and α{sub ν24} show significant anti-correlations with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α{sub ν} − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ{sub v} ∼ 10{sup −5}h Mpc{sup −1} at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed.

  2. C IV EMISSION AND THE ULTRAVIOLET THROUGH X-RAY SPECTRAL ENERGY DISTRIBUTION OF RADIO-QUIET QUASARS

    International Nuclear Information System (INIS)

    Kruczek, Nicholas E.; Richards, Gordon T.; Deo, Rajesh P.; Krawczyk, Coleman M.; Gallagher, S. C.; Hall, Patrick B.; Hewett, Paul C.; Leighly, Karen M.; Proga, Daniel

    2011-01-01

    In the rest-frame ultraviolet (UV), two of the parameters that best characterize the range of emission-line properties in quasar broad emission-line regions are the equivalent width and the blueshift of the C IV λ1549 line relative to the quasar rest frame. We explore the connection between these emission-line properties and the UV through X-ray spectral energy distribution (SED) for radio-quiet (RQ) quasars. Our sample consists of a heterogeneous compilation of 406 quasars from the Sloan Digital Sky Survey (at z > 1.54) and Palomar-Green survey (at z < 0.4) that have well-measured C IV emission-line and X-ray properties (including 164 objects with measured Γ). We find that RQ quasars with both strong C IV emission and small C IV blueshifts can be classified as 'hard-spectrum' sources that are (relatively) strong in the X-ray as compared to the UV. On the other hand, RQ quasars with both weak C IV emission and large C IV blueshifts are instead 'soft-spectrum' sources that are (relatively) weak in the X-ray as compared to the UV. This work helps to further bridge optical/soft X-ray 'eigenvector 1' relationships to the UV and hard X-ray. Based on these findings, we argue that future work should consider systematic errors in bolometric corrections (and thus accretion rates) that are derived from a single mean SED. Detailed analysis of the C IV emission line may allow for SED-dependent corrections to these quantities.

  3. An Archival Chandra and XMM-Newton Survey of Type 2 Quasars

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.

    2013-01-01

    In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).

  4. Evolution of radio quasars from redshift 0.6-3.7

    International Nuclear Information System (INIS)

    Neff, S.G.; Hutchings, J.B.

    1990-01-01

    This paper presents the results of VLA radio imaging of 58 radio-loud quasars with redshift 2.0 or higher, which fill the redshift-luminosity plane as evenly as possible. This work completes a survey of about 250 quasars covering redshifts from 0.6-3.7, which attempts to sample luminosity and look-back time in a uniform way. Within the constraints of possible selection effects it is found that the relative population of extended and unresolved sources changes with redshift in a way that suggests that radio quasars may live longer and spend more time as large triple sources in the present epoch than in the earlier universe. There appear to be few low-luminosity radio quasars at high redshift. Ejection of material appears to occur on one side at a time, with usually at least one reversal of direction in the source lifetime. The velocity of ejection appears to be mildly relativistic at high redshift, but of lower velocity in the present epoch. There is also evidence suggestive of changes in the IGM with cosmic time; however, the data presented do not show the minimum in density at z about 2 that has been suggested for cluster environments. 11 refs

  5. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    International Nuclear Information System (INIS)

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O.

    2009-01-01

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  6. A closer look at the quadruply lensed quasar PSOJ0147: spectroscopic redshifts and microlensing effect

    Science.gov (United States)

    Lee, Chien-Hsiu

    2018-04-01

    I present a timely spectroscopic follow-up of the newly discovered, quadruply lensed quasar PSOJ0147 from the Pan-STARRS 1 survey. The newly acquired optical spectra with GMOS onboard the Gemini North Telescope allow us to pin down the redshifts of both the foreground lensing galaxy and the background lensed quasar to be z = 0.572 and 2.341, providing a firm basis for cosmography with future high-cadence photometric monitoring. I also inspect difference spectra from two of the quasar images, revealing the microlensing effect. Long-term spectroscopic follow-ups will shed lights on the structure of the active galactic nucleus and its environment.

  7. Evidence for the Thermal Sunyaev Zeldovich Effect Associated with Quasar Feedback

    Science.gov (United States)

    Crichton, Devin; Gralla, Megan B.; Hall, Kirsten; Marriage, Tobias A.; Zakamska, Nadia L.; Battaglia, Nick; Bond, J. Richard; Devlin, Mark J.; Hill, J. Colin; Hilton, Matt; hide

    2016-01-01

    Using a radio-quiet subsample of the Sloan Digital Sky Survey spectroscopic quasar catalogue, spanning redshifts 0.5-3.5, we derive the mean millimetre and far-infrared quasar spectral energy distributions (SEDs) via a stacking analysis of Atacama Cosmology Telescope and Herschel-Spectral and Photometric Imaging REceiver data. We constrain the form of the far-infrared emission and find 3 sigma-4 sigma evidence for the thermal Sunyaev-Zel'dovich (SZ) effect, characteristic of a hot ionized gas component with thermal energy (6.2 plus or minus 1.7) × 10 (exp 60) erg. This amount of thermal energy is greater than expected assuming only hot gas in virial equilibrium with the dark matter haloes of (1-5) × 10(exp 12) h(exp -1) solar mass that these systems are expected to occupy, though the highest quasar mass estimates found in the literature could explain a large fraction of this energy. Our measurements are consistent with quasars depositing up to (14.5 +/- 3.3)tau (sub 8)(exp -1) per cent of their radiative energy into their circumgalactic environment if their typical period of quasar activity is tau(sub 8) x 108 yr. For high quasar host masses, approximately 10(exp 13) h(exp -1) solar mass, this percentage will be reduced. Furthermore, the uncertainty on this percentage is only statistical and additional systematic uncertainties enter at the 40 per cent level. The SEDs are dust dominated in all bands and we consider various models for dust emission. While sufficiently complex dust models can obviate the SZ effect, the SZ interpretation remains favoured at the 3 sigma-4 sigma level for most models.

  8. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6.

    Science.gov (United States)

    Decarli, R; Walter, F; Venemans, B P; Bañados, E; Bertoldi, F; Carilli, C; Fan, X; Farina, E P; Mazzucchelli, C; Riechers, D; Rix, H-W; Strauss, M A; Wang, R; Yang, Y

    2017-05-24

    The existence of massive (10 11 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 10 9 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C ii] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C ii] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C ii] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C ii] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  9. The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Abolfathi, Bela; Aguado, D. S.; Aguilar, Gabriela; Allende Prieto, Carlos; Almeida, Andres; Tasnim Ananna, Tonima; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Ata, Metin; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Balland, Christophe; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bastien, Fabienne; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; Bovy, Jo; Andres Bradna Diaz, Christian; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cañas, Caleb I.; Cano-Díaz, Mariana; Cappellari, Michele; Carrera, Ricardo; Casey, Andrew R.; Cervantes Sodi, Bernardo; Chen, Yanping; Cherinka, Brian; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Cruz-Gonzalez, Irene; Cunha, Katia; da Silva Ilha, Gabriele; Damke, Guillermo J.; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; de Icaza Lizaola, Miguel Angel C.; de la Macorra, Axel; de la Torre, Sylvain; De Lee, Nathan; de Sainte Agathe, Victoria; Deconto Machado, Alice; Dell’Agli, Flavia; Delubac, Timothée; Diamond-Stanic, Aleksandar M.; Donor, John; José Downes, Juan; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Davis Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Erfanianfar, Ghazaleh; Escoffier, Stephanie; Fan, Xiaohui; Fernández Alvar, Emma; Fernandez-Trincado, J. G.; Cirolini, Rafael Fernando; Feuillet, Diane; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gómez Maqueo Chew, Yilen; Galbany, Lluís; García Pérez, Ana E.; Garcia-Dias, R.; García-Hernández, D. A.; Garma Oehmichen, Luis Alberto; Gaulme, Patrick; Gelfand, Joseph; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; González Hernández, Jonay I.; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gueguen, Alain; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Patrick; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez, Jesus; Hernandez Toledo, Hector; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Hou, Jiamin; Hsieh, Bau-Ching; Hunt, Jason A. S.; Hutchinson, Timothy A.; Hwang, Ho Seong; Jimenez Angel, Camilo Eduardo; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Sakil Khan, Fahim; Kinemuchi, Karen; Kirkby, David; Kirkpatrick, Charles C., IV; Kitaura, Francisco-Shu; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Le Goff, Jean-Marc; Lee, Young-Bae; Li, Hongyu; Li, Cheng; Lian, Jianhui; Liang, Yu; Lima, Marcos; Lin, Lihwai; Long, Dan; Lucatello, Sara; Lundgren, Britt; Mackereth, J. Ted; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Majewski, Steven; Manchado, Arturo; Maraston, Claudia; Mariappan, Vivek; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McDermid, Richard M.; McGreer, Ian D.; Melendez, Matthew; Meneses-Goytia, Sofia; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Mueller, Eva-Maria; Muller-Sanchez, Francisco; Muna, Demitri; Muñoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Noterdaeme, Pasquier; O’Connell, Julia; Oelkers, Ryan James; Oravetz, Audrey; Oravetz, Daniel; Aquino Ortíz, Erik; Osorio, Yeisson; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Hsi-An; Pan, Kaike; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rodríguez Torres, Sergio; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Ruiz, Jose; Salvato, Mara; Sánchez, Ariel G.; Sánchez, Sebastián F.; Sanchez Almeida, Jorge; Sánchez-Gallego, José R.; Santana Rojas, Felipe Antonio; Santiago, Basílio Xavier; Schiavon, Ricardo P.; Schimoia, Jaderson S.; Schlafly, Edward; Schlegel, David; Schneider, Donald P.; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Shen, Shiyin; Shen, Yue; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Víctor; Simon, Joshua D.; Skrutskie, Mike; Slosar, Anže; Smethurst, Rebecca; Smith, Verne; Sobeck, Jennifer; Somers, Garrett; Souter, Barbara J.; Souto, Diogo; Spindler, Ashley; Stark, David V.; Stassun, Keivan; Steinmetz, Matthias; Stello, Dennis; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Talbot, Michael S.; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Tissera, Patricia; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas W.; Urry, Meg; Valenzuela, O.; van den Bosch, Remco; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vogt, Nicole; Wake, David; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2018-04-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as “The Cannon” and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

  10. THE REDSHIFT DISTRIBUTION OF INTERVENING WEAK Mg II QUASAR ABSORBERS AND A CURIOUS DEPENDENCE ON QUASAR LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jessica L.; Churchill, Christopher W.; Nielsen, Nikole M.; Klimek, Elizabeth S. [New Mexico State University, Las Cruces, NM 88003 (United States); Murphy, Michael T. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 (Australia)

    2013-05-01

    We have identified 469 Mg II {lambda}{lambda}2796, 2803 doublet systems having W{sub r} {>=} 0.02 A in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 A {<=}W{sub r} < 0.3 A), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z {approx} 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z {approx_equal} 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 10{sup 6}-10{sup 9} Mpc{sup -3} for spherical geometries and 10{sup 2}-10{sup 5} Mpc{sup -3} for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (W{sub r} {>=} 1.0 A) absorbers. For weak absorption, dN/dz toward bright quasars is {approx}25% higher than toward faint quasars (10{sigma} at low redshift, 0.4 {<=} z {<=} 1.4, and 4{sigma} at high redshift, 1.4 < z {<=} 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being {approx}20% higher than toward bright quasars (also 10{sigma} at low redshift and 4{sigma} at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  11. TRACING SAGITTARIUS STRUCTURE WITH SDSS AND SEGUE IMAGING AND SPECTROSCOPY

    International Nuclear Information System (INIS)

    Yanny, Brian; Newberg, Heidi Jo; Johnson, Jennifer A.; Lee, Young Sun; Beers, Timothy C.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie; Fiorentin, Paola Re; Harding, Paul

    2009-01-01

    We show that the Sagittarius dwarf tidal stream can be traced with very red K/M-giant stars, selected from Sloan Digital Sky Survey (SDSS) photometry. A subset of these stars are spectroscopically confirmed with SEGUE and SDSS spectra, and the distance scale of 2MASS and SDSS M giants is calibrated to the RR Lyrae distance scale. The absolute magnitude of the K/M-giant stars at the tip of the giant branch is M g 0 =-1.0. The line-of-sight velocities of the M giant and blue horizontal-branch (BHB) stars that are spatially coincident with the Sgr dwarf tidal stream are consistent with those of previous authors, reinforcing the need for new models that can explain all of the Sgr tidal debris stream observations. We estimate stellar densities along the tidal tails that can be used to help constrain future models. The K/M giant, BHB, and F-turnoff stars in the lower surface brightness tidal stream that is adjacent to the main leading Sgr dwarf tidal tail have velocities and metallicities that are similar to those of the stars in the leading tidal tail. The ratio of K/M giants to BHBs and BHBs to F-turnoff stars are also similar for both branches of the leading tidal tail. We show that there is an additional low-metallicity tidal stream near the Sgr trailing tidal tail.

  12. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA

    Science.gov (United States)

    Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration

    2017-01-01

    Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.

  13. Phylogenetic Analyses of Quasars and Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fraix-Burnet, Didier [University Grenoble Alpes, CNRS, IPAG, Grenoble (France); D' Onofrio, Mauro [Osservatorio Astronomico di Padova (INAF), Padua (Italy); Marziani, Paola, E-mail: didier.fraix-burnet@univ-grenoble-alpes.fr [Dipartimento di Fisica e Astronomia, Università di Padova, Padua (Italy)

    2017-10-10

    Phylogenetic approaches have proven to be useful in astrophysics. We have recently published a Maximum Parsimony (or cladistics) analysis on two samples of 215 and 85 low-z quasars (z < 0.7) which offer a satisfactory coverage of the Eigenvector 1-derived main sequence. Cladistics is not only able to group sources radiating at higher Eddington ratios, to separate radio-quiet (RQ) and radio-loud (RL) quasars and properly distinguishes core-dominated and lobe-dominated quasars, but it suggests a black hole mass threshold for powerful radio emission as already proposed elsewhere. An interesting interpretation from this work is that the phylogeny of quasars may be represented by the ontogeny of their central black hole, i.e. the increase of the black hole mass. However these exciting results are based on a small sample of low-z quasars, so that the work must be extended. We are here faced with two difficulties. The first one is the current lack of a larger sample with similar observables. The second one is the prohibitive computation time to perform a cladistic analysis on more that about one thousand objects. We show in this paper an experimental strategy on about 1,500 galaxies to get around this difficulty. Even if it not related to the quasar study, it is interesting by itself and opens new pathways to generalize the quasar findings.

  14. Phylogenetic Analyses of Quasars and Galaxies

    International Nuclear Information System (INIS)

    Fraix-Burnet, Didier; D'Onofrio, Mauro; Marziani, Paola

    2017-01-01

    Phylogenetic approaches have proven to be useful in astrophysics. We have recently published a Maximum Parsimony (or cladistics) analysis on two samples of 215 and 85 low-z quasars (z < 0.7) which offer a satisfactory coverage of the Eigenvector 1-derived main sequence. Cladistics is not only able to group sources radiating at higher Eddington ratios, to separate radio-quiet (RQ) and radio-loud (RL) quasars and properly distinguishes core-dominated and lobe-dominated quasars, but it suggests a black hole mass threshold for powerful radio emission as already proposed elsewhere. An interesting interpretation from this work is that the phylogeny of quasars may be represented by the ontogeny of their central black hole, i.e. the increase of the black hole mass. However these exciting results are based on a small sample of low-z quasars, so that the work must be extended. We are here faced with two difficulties. The first one is the current lack of a larger sample with similar observables. The second one is the prohibitive computation time to perform a cladistic analysis on more that about one thousand objects. We show in this paper an experimental strategy on about 1,500 galaxies to get around this difficulty. Even if it not related to the quasar study, it is interesting by itself and opens new pathways to generalize the quasar findings.

  15. The discovery of timescale-dependent color variability of quasars

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu-Han; Wang, Jun-Xian; Chen, Xiao-Yang [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Zhen-Ya, E-mail: sunyh92@mail.ustc.edu.cn, E-mail: jxw@ustc.edu.cn [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-09-01

    Quasars are variable on timescales from days to years in UV/optical and generally appear bluer while they brighten. The physics behind the variations in fluxes and colors remains unclear. Using Sloan Digital Sky Survey g- and r-band photometric monitoring data for quasars in Stripe 82, we find that although the flux variation amplitude increases with timescale, the color variability exhibits the opposite behavior. The color variability of quasars is prominent at timescales as short as ∼10 days, but gradually reduces toward timescales up to years. In other words, the variable emission at shorter timescales is bluer than that at longer timescales. This timescale dependence is clearly and consistently detected at all redshifts from z = 0 to 3.5; thus, it cannot be due to contamination to broadband photometry from emission lines that do not respond to fast continuum variations. The discovery directly rules out the possibility that simply attributes the color variability to contamination from a non-variable redder component such as the host galaxy. It cannot be interpreted as changes in global accretion rate either. The thermal accretion disk fluctuation model is favored in the sense that fluctuations in the inner, hotter region of the disk are responsible for short-term variations, while longer-term and stronger variations are expected from the larger and cooler disk region. An interesting implication is that one can use quasar variations at different timescales to probe disk emission at different radii.

  16. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    Science.gov (United States)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  17. NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT z  ∼ 5.7

    International Nuclear Information System (INIS)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F.; Overzier, R.

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old ( z  > 5.5), are known to host massive black holes (∼10 9 M ⊙ ) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z  ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin 2 , i.e., ∼206 comoving Mpc 2 at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  18. NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT z  ∼ 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F. [Max Planck Institute für Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Overzier, R. [Observatório Nacional, Rua José Cristino, 77. CEP 20921-400, São Cristóvão, Rio de Janeiro-RJ (Brazil)

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old ( z  > 5.5), are known to host massive black holes (∼10{sup 9} M {sub ⊙}) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z  ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin{sup 2}, i.e., ∼206 comoving Mpc{sup 2} at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  19. Quasars, pulsars and black holes (a bibliography with abstracts). Report for 1964--Feb 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    Astronomical surveys of quasars, pulsars, and black holes are cited. Computer simulations, mathematical models and other methods used for the verification of hypotheses about astrophysical processes are included

  20. Are quasars really far away

    International Nuclear Information System (INIS)

    Narlikar, J.V.

    1983-01-01

    Most astrophysicists think that quasars are distant objects. But new data, based on red-shift anomalies, and new theories embracing non-cosmological doppler effect and gravitational effects could account for the peculiarities of quasars. (U.K.)

  1. THE MICROLENSING PROPERTIES OF A SAMPLE OF 87 LENSED QUASARS

    International Nuclear Information System (INIS)

    Mosquera, A. M.; Kochanek, C. S.

    2011-01-01

    Gravitational microlensing is a powerful tool for probing the physical properties of quasar accretion disks and properties of the lens galaxy such as its dark matter fraction and mean stellar mass. Unfortunately, the number of lensed quasars (∼90) exceeds our monitoring capabilities. Thus, estimating their microlensing properties is important for identifying good microlensing candidates as well as for the expectations of future surveys. In this work, we estimate the microlensing properties of a sample of 87 lensed quasars. While the median Einstein radius crossing timescale is 20.6 years, the median source crossing timescale is 7.3 months. Broadly speaking, this means that on ∼10 year timescales roughly half the lenses will be quiescent, with the source in a broad demagnified valley, and roughly half will be active with the source lying in the caustic ridges. We also found that the location of the lens system relative to the cosmic microwave background dipole has a modest effect on microlensing timescales, and in theory microlensing could be used to confirm the kinematic origin of the dipole. As a corollary of our study we analyzed the accretion rate parameters in a sub-sample of 32 lensed quasars. At fixed black hole mass, it is possible to sample a broad range of luminosities (i.e., Eddington factors) if it becomes feasible to monitor fainter lenses.

  2. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-03-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey (SDSS) r-band images with artificial AGN point sources added which are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source PS is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover PS and host galaxy magnitudes with smaller systematic error and a lower average scatter (49%). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ±50% if it is trained on multiple PSF's. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN it is more robust and easy to use than parametric methods as it requires no input parameters.

  3. The Faint End of the Quasar Luminosity Function at z ~ 4

    Science.gov (United States)

    Glikman, Eilat; Bogosavljević, Milan; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Mahabal, Ashish

    2010-02-01

    The evolution of the quasar luminosity function (QLF) is one of the basic cosmological measures providing insight into structure formation and mass assembly in the universe. We have conducted a spectroscopic survey to find faint quasars (-26.0 law (Φ vprop L β) gives a faint-end slope β = -1.6 ± 0.2. If we consider our larger, but highly incomplete sample going 1 mag fainter, we measure a steeper faint-end slope -2 law LF. Our best fit finds a bright-end slope, α = -2.4 ± 0.2, and faint-end slope, β = -2.3 ± 0.2, without a well-constrained break luminosity. This is effectively a single power law, with β = -2.7 ± 0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  5. Outshining the quasars at reionization

    DEFF Research Database (Denmark)

    Watson, D.; Reeves, J.N.; Hjorth, J.

    2006-01-01

    Gamma Rays: Bursts, Galaxies: Intergalactic Medium, Galaxies: Quasars: Absorption Lines, X-Rays: Galaxies, X-Rays: General Udgivelsesdato: 19 January......Gamma Rays: Bursts, Galaxies: Intergalactic Medium, Galaxies: Quasars: Absorption Lines, X-Rays: Galaxies, X-Rays: General Udgivelsesdato: 19 January...

  6. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    Energy Technology Data Exchange (ETDEWEB)

    Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-04-10

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.

  7. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    International Nuclear Information System (INIS)

    Krolewski, Alex G.; Eisenstein, Daniel J.

    2015-01-01

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h −1 Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity

  8. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    Science.gov (United States)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  9. Quasar Parallax: a Method for Determining Direct Geometrical Distances to Quasars

    OpenAIRE

    Elvis, Martin; Karovska, Margarita

    2002-01-01

    We describe a novel method to determine direct geometrical distances to quasars that can measure the cosmological constant, Lambda, with minimal assumptions. This method is equivalent to geometric parallax, with the `standard length' being the size of the quasar broad emission line region (BELR) as determined from the light travel time measurements of reverberation mapping. The effect of non-zero Lambda on angular diameter is large, 40% at z=2, so mapping angular diameter distances vs. redshi...

  10. Far-infrared properties of optically selected quasars

    International Nuclear Information System (INIS)

    Edelson, R.A.

    1986-01-01

    The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references

  11. Emission-line galaxies and quasars in the southern hemisphere. I. Description and applications of an objective-prism survey

    International Nuclear Information System (INIS)

    Smith, M.G.

    1975-01-01

    A selection of objects from the first plates of a low-dispersion, objective-prism survey for emission-line galaxies and quasars is used to illustrate the application of the survey to the following lines of research in extragalactic astronomy: quasi-stellar objects, Seyfert galaxies, instabilities in galaxies produced by tidal interaction or explosive events, and rates of star formation and the general chemical evolution of galaxies. Included in the discussion is a description of how the survey provides a new, purely optical, color-independent method for the direct isolation of bright, high-redshift QSOs with strong emission lines (Lα is often directly visible on the Schmidt-survey plates). The newly discovered objects used for illustration are a radio-quiet QSO of redshift 2.07, a luminous, class 2 Seyfert galaxy, a compact blue emission-line galaxy with a jet or streamer, yet with no obvious interacting companion, and a blue galaxy with Hβ flux 50 times that of 30 Doradus, and low metal abundances, which is undergoing a very intense burst of star formation. These objects are to be discussed in greater detail in subsequent papers in this series

  12. Photometric properties of galaxies in the SDSS

    Science.gov (United States)

    Hogg, D. W.; Blanton, M.; SDSS Collaboration

    2001-12-01

    We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02calculated for each galaxy. The photometry is of excellent quality; every galaxy has CCD imaging with signal-to-noise for the flux well above 100. The distribution of galaxies in the (six-dimensional) space spanned by four colors, central surface-brightness, and radial concentration is described and analyzed, with the following results: \\textsl{(1)} The galaxies occupy only a small part of the six-dimensional space. \\textsl{(2)} The distribution of galaxy number density in the space is a strong function of intrinsic galaxy luminosity. \\textsl{(3)} Elliptical (or early type) and spiral (or late type) galaxies are clearly separated in the space. The ratio of early-type to late-type galaxy contributions to the luminosity density of the Universe is computed, as a function of wavelength. At 1 {μm }, early-type galaxies dominate the luminosity density. \\textsl{(4)} Outliers in color tend to be lower surface-brightness galaxies. Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, NASA, NSF, DOE, the Japanese Monbukagakusho, and the Max Planck Society. This research has been supported by the NYU Faculty of Arts and Sciences.

  13. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    Science.gov (United States)

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. Copyright © 2015, American Association for the Advancement of Science.

  14. Highly Accreting Quasars at High Redshift

    Science.gov (United States)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  15. Phylogenetic Analyses of Quasars and Galaxies

    Science.gov (United States)

    Fraix-Burnet, Didier; D'Onofrio, Mauro; Marziani, Paola

    2017-10-01

    Phylogenetic approaches have proven to be useful in astrophysics. We have recently published a Maximum Parsimony (or cladistics) analysis on two samples of 215 and 85 low-z quasars (z phylogeny of quasars may be represented by the ontogeny of their central black hole, i.e. the increase of the black hole mass. However these exciting results are based on a small sample of low-z quasars, so that the work must be extended. We are here faced with two difficulties. The first one is the current lack of a larger sample with similar observables. The second one is the prohibitive computation time to perform a cladistic analysis on more that about one thousand objects. We show in this paper an experimental strategy on about 1500 galaxies to get around this difficulty. Even if it not related to the quasar study, it is interesting by itself and opens new pathways to generalize the quasar findings.

  16. Are quasars local

    International Nuclear Information System (INIS)

    Terrell, J.

    1974-01-01

    The problems of interpreting quasars as galaxies, at distances of billions of light-years, seem to be increasing with time and with observational knowledge. The incredibly large energy and brightness requirements, the very small size and thus high surface brightness required by their rapid fluctuations in luminosity, the recently-discovered radio-source separation speeds apparently much greater than the speed of light, their general lack of association with distant galaxies, and many other properties are all very difficult to explain on the basis of cosmological distance. The very local quasar model, involving much less massive and bright objects--perhaps similar to Type O stars--emitted at relativistic speeds by the center of our own galaxy, greatly eases these difficulties. Since such ejected objects also seem necessary to explain the similarly strange properties of radio galaxies, the emission of local quasars from some galaxies might be deduced on this basis alone. (6 figures) (U.S.)

  17. Using quasars as standard clocks for measuring cosmological redshift.

    Science.gov (United States)

    Dai, De-Chang; Starkman, Glenn D; Stojkovic, Branislav; Stojkovic, Dejan; Weltman, Amanda

    2012-06-08

    We report hitherto unnoticed patterns in quasar light curves. We characterize segments of the quasar's light curves with the slopes of the straight lines fit through them. These slopes appear to be directly related to the quasars' redshifts. Alternatively, using only global shifts in time and flux, we are able to find significant overlaps between the light curves of different pairs of quasars by fitting the ratio of their redshifts. We are then able to reliably determine the redshift of one quasar from another. This implies that one can use quasars as standard clocks, as we explicitly demonstrate by constructing two independent methods of finding the redshift of a quasar from its light curve.

  18. A Hubble Diagram for Quasars

    Directory of Open Access Journals (Sweden)

    Susanna Bisogni

    2018-01-01

    Full Text Available The cosmological model is at present not tested between the redshift of the farthest observed supernovae (z ~ 1.4 and that of the Cosmic Microwave Background (z ~ 1,100. Here we introduce a new method to measure the cosmological parameters: we show that quasars can be used as “standard candles” by employing the non-linear relation between their intrinsic UV and X-ray emission as an absolute distance indicator. We built a sample of ~1,900 quasars with available UV and X-ray observations, and produced a Hubble Diagram up to z ~ 5. The analysis of the quasar Hubble Diagram, when used in combination with supernovae, provides robust constraints on the matter and energy content in the cosmos. The application of this method to forthcoming, larger quasar samples, will also provide tight constraints on the dark energy equation of state and its possible evolution with time.

  19. A unique UV flare in the optical light curve of the quasar J004457.9+412344

    Directory of Open Access Journals (Sweden)

    Hatzidimitriou D.

    2012-12-01

    Full Text Available We found that the nova candidate J004457.9+412344 is a radio-quiet quasar at z ∼ 2. Its optical long-term light curve, covering more than half a century, shows quasar typical flux variations superimposed by a spectacular single flare lasting more than one year (observer frame. We could not find comparable light curves among the several thousand catalogued radio-quiet quasars in the stripe 82 of the Sloan Digital Sky Survey. The decreasing part of the flare light curve roughly follows a power law t−5/3. The quasar spectrum, the total energy of the flare, and the decline of the light curve are consistent with the tidal disruption of a ∼10 Mʘ giant star by a supermassive black hole of a few 108 Mʘ. We argue that the alternative explanation by gravitational microlensing is less likely, though it cannot be definitely excluded.

  20. Intergalactic dust and quasar distribution

    International Nuclear Information System (INIS)

    Soltan, A.

    1979-01-01

    Non-homogeneous intergalactic extinction may considerably affect the quasar distribution. Especially samples of quasars isolated on the basis of B-V colours are subject to this phenomenon. Apparent grouping and close pairs of quasars reported in the literature may be a result of intergalactic dust. Using surface distribution of faint blue objects selected by Hawkins and Reddish it is estimated that intergalactic extinction in B should reach approximately 1 mag out to the redshift of approximately 1. This is slightly larger than predicted by theory and comparable to the mean dust density derived from observations. (Author)

  1. High-redshift quasars in the Cold Dark Matter cosmogony

    International Nuclear Information System (INIS)

    Efstathiou, G.; Rees, M.J.

    1988-01-01

    The relationship between high-redshift quasars and the epoch of galaxy formation in the Cold Dark Matter (CDM) cosmogony is investigated. Luminous quasars could only form after galactic sized systems had collapsed. A constant comoving density of luminous quasars between z = 2 and z = 4 is compatible with the CDM model if quasars are short-lived and radiate at about the Eddington limit. However, according to the CDM model the abundance of high-luminosity quasars must decline exponentially at higher redshifts. Even if all protogalaxies form quasars, and about 1 per cent of the baryons within a protogalaxy collapse into a compact object, a steep fall in the density of quasars with L > 10 47 erg s -1 at redshifts z ≥ 5. The existence of a 'cut-off' in the quasar numbers at high redshift could therefore supply an important test of the CDM theory. (author)

  2. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you

  3. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    International Nuclear Information System (INIS)

    Hao, Jiangang; Annis, James

    2010-01-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of ∼100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want

  4. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wentao [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Yang, Xiaohu; Zhang, Jun; Tweed, Dylan [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Fu, Liping; Shu, Chenggang [Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Bosch, Frank C. van den [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Li, Ran [Key Laboratory for Computational Astrophysics, Partner Group of the Max Planck Institute for Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Liu, Xiangkun; Pan, Chuzhong [Department of Astronomy, Peking University, Beijing 100871 (China); Wang, Yiran [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Radovich, Mario, E-mail: walt@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [INAF-Osservatorio Astronomico di Napoli, via Moiariello 16, I-80131 Napoli (Italy)

    2017-02-10

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% at 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  5. A sample of galaxy pairs identified from the LAMOST spectral survey and the Sloan Digital Sky Survey

    International Nuclear Information System (INIS)

    Shen, Shi-Yin; Argudo-Fernández, Maria; Chen, Li; Feng, Shuai; Hou, Jin-Liang; Shao, Zheng-Yi; Chen, Xiao-Yan; Luo, A-Li; Wu, Hong; Yang, Hai-Feng; Yang, Ming; Hou, Yong-Hui; Wang, Yue-Fei; Jiang, Peng; Wang, Ting-Gui; Jing, Yi-Peng; Kong, Xu; Wang, Wen-Ting; Luo, Zhi-Jian; Wu, Xue-Bing

    2016-01-01

    A small fraction (< 10%) of the SDSS main galaxy (MG) sample has not been targeted with spectroscopy due to the effect of fiber collisions. These galaxies have been compiled into the input catalog of the LAMOST ExtraGAlactic Surveys and named the complementary galaxy sample. In this paper, we introduce this project and status of the spectroscopies associated with the complementary galaxies in the first two years of the LAMOST spectral survey (till Sep. of 2014). Moreover, we present a sample of 1102 galaxy pairs identified from the LAMOST complementary galaxies and SDSS MGs, which are defined as two members that have a projected distance smaller than 100 h −1 70 kpc and a recessional velocity difference smaller than 500 km s −1 . Compared with galaxy pairs that are only selected from SDSS, the LAMOST-SDSS pairs have the advantages of not being biased toward large separations and therefore act as a useful supplement in statistical studies of galaxy interaction and galaxy merging. (paper)

  6. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-01-01

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z ∼ 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of ∼13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be ∼< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset (∼30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. X

  7. Various Approaches for Targeting Quasar Candidates

    Science.gov (United States)

    Zhang, Y.; Zhao, Y.

    2015-09-01

    With the establishment and development of space-based and ground-based observational facilities, the improvement of scientific output of high-cost facilities is still a hot issue for astronomers. The discovery of new and rare quasars attracts much attention. Different methods to select quasar candidates are in bloom. Among them, some are based on color cuts, some are from multiwavelength data, some rely on variability of quasars, some are based on data mining, and some depend on ensemble methods.

  8. The Fourteenth Data Release of the Sloan Digital Sky Survey

    DEFF Research Database (Denmark)

    Abolfathi, Bela; Aguado, D. S.; Aguilar, Gabriela

    2018-01-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its firs...

  9. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  10. Discovery and spectrophotometry of high-redshift quasars

    International Nuclear Information System (INIS)

    MacAlpine, G.M.; Feldman, F.R.

    1982-01-01

    We report on the discovery and spectrophotometry of 30 new high-redshift quasars, which were detected using the Curtis Schmidt technique. We also discuss new follow-up spectrophotometry for 23 quasar candidates from University of Michigan Lists I--IV. Our program sample contains eight quasars with z>3, at least five objects exhibiting broad absorption troughs, and a pair of quasars which are 1' apart on the sky and nearly identical in redshift, at z near 2.13. The redshift distribution for the majority of quasars in UM List IV suggests that most of the single-line quasar candidates in the UM List have low to moderate redshifts, with the reported line often being Mg II lambda2798 or C III] lambda1909. For 17 high-redshift quasars where lambda912 at the emission-line redshift could be examined, we did not find any definite Lyman limit cutoffs. Although three objects show a decline of the continuum within 100 A of lambda912, we do not believe them to be unambiguous examples for emission-line clouds situated in the line of sight. When our O I lambda1304 measurements are combined with the data of others to yield a composite spectrum, we obtain O I lambda1304/lambda8446 = 1.35. This suggests reddening with E/sub B/-Vroughly-equal0.23. Finally, our data exhibit a correlation between Lyα emission line velocity widths and redshift. The higher z quasars in the sample tend to have narrower lines, due, at least in part, to bias in the detection technique

  11. ASPECT: A spectra clustering tool for exploration of large spectral surveys

    Science.gov (United States)

    in der Au, A.; Meusinger, H.; Schalldach, P. F.; Newholm, M.

    2012-11-01

    Context. Analysing the empirical output from large surveys is an important challenge in contemporary science. Difficulties arise, in particular, when the database is huge and the properties of the object types to be selected are poorly constrained a priori. Aims: We present the novel, semi-automated clustering tool ASPECT for analysing voluminous archives of spectra. Methods: The heart of the program is a neural network in the form of a Kohonen self-organizing map. The resulting map is designed as an icon map suitable for the inspection by eye. The visual analysis is supported by the option to blend in individual object properties such as redshift, apparent magnitude, or signal-to-noise ratio. In addition, the package provides several tools for the selection of special spectral types, e.g. local difference maps which reflect the deviations of all spectra from one given input spectrum (real or artificial). Results: ASPECT is able to produce a two-dimensional topological map of a huge number of spectra. The software package enables the user to browse and navigate through a huge data pool and helps them to gain an insight into underlying relationships between the spectra and other physical properties and to get the big picture of the entire data set. We demonstrate the capability of ASPECT by clustering the entire data pool of ~6 × 105 spectra from the Data Release 4 of the Sloan Digital Sky Survey (SDSS). To illustrate the results regarding quality and completeness we track objects from existing catalogues of quasars and carbon stars, respectively, and connect the SDSS spectra with morphological information from the GalaxyZoo project. Code is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A115

  12. OBSERVATIONAL UPPER BOUND ON THE COSMIC ABUNDANCES OF NEGATIVE-MASS COMPACT OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi; Asada, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan)

    2013-05-01

    The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two exotic objects for {approx}50, 000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic abundances of these lenses. The number density of negative-mass compact objects is n < 10{sup -8}(10{sup -4}) h {sup 3} Mpc{sup -3} at the mass scale |M| > 10{sup 15}(10{sup 12}) M{sub Sun }, which corresponds to the cosmological density parameter |{Omega}| < 10{sup -4} at the galaxy and cluster mass range |M| = 10{sup 12-15} M{sub Sun }. The number density of the Ellis wormhole is n < 10{sup -4} h {sup 3} Mpc{sup -3} for a range of the throat radius a = 10-10{sup 4} pc, which is much smaller than the Einstein ring radius.

  13. The Second Data Release of the Sloan Digital Sky Survey

    CERN Document Server

    Abazajian, Kevork; ̈ueros, Marcel A. Ag; Allam, Sahar S.; Anderson, KurtS. J.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Baldry, Ivan K.; StevenBastian; Berlind, Andreas; Bernardi, Mariangela; Blanton, Michael R.; BochanskiJr., John J.; Boroski, William N.; Briggs, John W.; Brinkmann, J.; Brunner, Robert J.; ́ari, Tam ́asBudav; Carey, Larry N.; Carliles, Samuel; Castander, Francisco J.; Connolly, A. J.; Csabai, Istvan; Doi, Mamoru; Dong, Feng; Eisenstein, Daniel J.; Evans, Michael L.; Fan, Xiaohui; Finkbeiner, Douglas P.; Friedman, Scott D.; Frieman, Joshua A.; Fukugita, Masataka; Gal, RoyR.; Gillespie, Bruce; Glazebrook, Karl; Gray, Jim; Grebel, Eva K.; Gunn, James E.; Gurbani, Vijay K.; Hall, Patrick B.; Hamabe, Masaru; Harris, Frederick H.; C.Harris, Hugh; Harvanek, Michael; Heckman, Timothy M.; Hendry, John S.; Hennessy, Gregory S.; Hindsley, Robert B.; Hogan, Craig J.; Hogg, David W.; Holmgren, Donald J.; Ichikawa, Shin-ichi; Ichikawa, Takashi; Ivezic, Zeljko; Jester, Sebastian; Johnston, David E.; Jorgensen, AndersM.; Kent, Stephen M.; Kleinman, S. J.; Knapp, G. R.; Kniazev, Alexei Yu.; Kron, Richard G.; Krzesinski, Jurek; Kunszt, Peter Z.; Kuropatkin, Nickolai; Q.Lamb, Donald; Lampeitl, Hubert; Lee, Brian C.; Leger, R. French; Li, Nolan; Lin, Huan; Loh, Yeong-Shang; Long, Daniel C.; Loveday, Jon; Lupton, Robert H.; Malik, Tanu; BruceMargon; Matsubara, Takahiko; McGehee, Peregrine M.; McKay, Timothy A.; AveryMeiksin; Munn, Jeffrey A.; Nakajima, Reiko; Nash, Thomas; Neilsen, Eric H. Jr.; JoNewberg, Heidi; Newman, Peter R.; Nichol, Robert C.; Nicinski, Tom; Nieto-Santisteban, Maria; Nitta, Atsuko; Okamura, Sadanori; O'Mullane, William; Ostriker, Jeremiah P.; Owen, Russell; Padmanabhan, Nikhil; Peoples, John; Pier, Jeffrey R.; Pope, Adrian C.; Quinn, Thomas R.; Richards, Gordon T.; Richmond, Michael W.; Rix, Hans-Walter; Rockosi, Constance M.; Schlegel, David J.; Schneider, Donald P.; Scranton, Ryan; Sekiguchi, Maki; Seljak, Uros; Sergey, Gary; Sesar, Branimir; Sheldon, Erin; Shimasaku, Kazu; Siegmund, Walter A.; Silvestri, Nicole M.; Smith, J. Allyn; ́c, Vernesa Smolči; Snedden, Stephanie A.; AlbertStebbins; Stoughton, Chris; Strauss, Michael A.; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istv ́an; Szkody, Paula; Szokoly, Gyula P.; Tegmark, Max; Teodoro, Luis; Thakar, AniruddhaR.; Tremonti, Christy; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Daniel E.; Vandenberg, Jan; Vogeley, Michael S.; Voges, Wolfgang; Vogt, Nicole P.; M.Walkowicz, Lucianne; Wang, Shu-i; Weinberg, David H.; West, Andrew A.; White, Simon D.M.; Wilhite, BrianC.; Xu, Yongzhong; Yanny, Brian; Yasuda, Naoki; Yip, Ching-Wa; Yocum, D. R.; York, Donald G.; Zehavi, Idit; Zibetti, Stefano; Zucker, Daniel B.

    2004-01-01

    The Sloan Digital Sky Survey has validated and made publicly available its Second Data Release. This data release consists of 3324 square degrees of five-band (u g r i z) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 2627 degrees of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ~ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point spread function (PSF) magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 38...

  14. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools. I. UKIDSS LAS DR5 vs. SDSS DR7

    Science.gov (United States)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.

    2012-06-01

    Aims: The aim of the project is to improve our knowledge of the low-mass and low-metallicity population to investigate the influence of metallicity on the stellar (and substellar) mass function. Methods: We present the results of a photometric and proper motion search aimed at discovering ultracool subdwarfs in large-scale surveys. We employed and combined the Fifth Data Release (DR5) of the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) and the Sloan Digital Sky Survey (SDSS) Data Release 7 complemented with ancillary data from the Two Micron All-Sky Survey (2MASS), the DEep Near-Infrared Survey (DENIS) and the SuperCOSMOS Sky Surveys (SSS). Results: The SDSS DR7 vs. UKIDSS LAS DR5 search returned a total of 32 ultracool subdwarf candidates, only two of which are recognised as a subdwarf in the literature. Twenty-seven candidates, including the two known ones, were followed-up spectroscopically in the optical between 600 and 1000 nm, thus covering strong spectral features indicative of low metallicity (e.g., CaH), 21 with the Very Large Telescope, one with the Nordic Optical Telescope, and five were extracted from the Sloan spectroscopic database to assess (or refute) their low-metal content. We confirm 20 candidates as subdwarfs, extreme subdwarfs, or ultra-subdwarfs with spectral types later than M5; this represents a success rate of ≥ 60%. Among those 20 new subdwarfs, we identify two early-L subdwarfs that are very likely located within 100 pc, which we propose as templates for future searches because they are the first examples of their subclass. Another seven sources are solar-metallicity M dwarfs with spectral types between M4 and M7 without Hα emission, suggesting that they are old M dwarfs. The remaining five candidates do not have spectroscopic follow-up yet; only one remains as a bona-fide ultracool subdwarf after revision of their proper motions. We assigned spectral types based on the current classification schemes and, when

  15. Astronomical Surveys and Big Data

    Directory of Open Access Journals (Sweden)

    Mickaelian Areg M.

    2016-03-01

    Full Text Available Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ-rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc., proper motions (Tycho, USNO, Gaia, variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS, and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA. An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  16. Diversity of soft X-ray spectra in quasars

    International Nuclear Information System (INIS)

    Elvis, M.; Wilkes, B.J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed. 46 references

  17. A topological analysis of large-scale structure, studied using the CMASS sample of SDSS-III

    International Nuclear Information System (INIS)

    Parihar, Prachi; Gott, J. Richard III; Vogeley, Michael S.; Choi, Yun-Young; Kim, Juhan; Kim, Sungsoo S.; Speare, Robert; Brownstein, Joel R.; Brinkmann, J.

    2014-01-01

    We study the three-dimensional genus topology of large-scale structure using the northern region of the CMASS Data Release 10 (DR10) sample of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select galaxies with redshift 0.452 < z < 0.625 and with a stellar mass M stellar > 10 11.56 M ☉ . We study the topology at two smoothing lengths: R G = 21 h –1 Mpc and R G = 34 h –1 Mpc. The genus topology studied at the R G = 21 h –1 Mpc scale results in the highest genus amplitude observed to date. The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random phase initial conditions. The data thus support the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random phase initial conditions. Modest deviations in the observed genus from random phase are as expected from shot noise effects and the nonlinear evolution of structure. We suggest the use of a fitting formula motivated by perturbation theory to characterize the shift and asymmetries in the observed genus curve with a single parameter. We construct 54 mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample and find the observed genus topology to be consistent with ΛCDM as simulated by the HR3 mock samples. We conclude that the topology of the large-scale structure in the SDSS CMASS sample is consistent with cosmological models having primordial Gaussian density fluctuations growing in accordance with general relativity to form galaxies in massive dark matter halos.

  18. Far infrared peculiar behavior of quasars

    International Nuclear Information System (INIS)

    Liu Yulin; Liu Jiying

    1988-09-01

    Many quasars possibly have nebulous envelopes with far infrared radiation. These nebulosities may be similar to fuzz in the optical region in morphology. These quasars have many properties in common. (author). Refs, 3 figs

  19. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    International Nuclear Information System (INIS)

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-01-01

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F 1.4 G Hz ∼> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z ∼< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  20. Data mining for gravitationally lensed quasars

    Science.gov (United States)

    Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso; Marshall, Philip J.

    2015-04-01

    Gravitationally lensed quasars are brighter than their unlensed counterparts and produce images with distinctive morphological signatures. Past searches and target-selection algorithms, in particular the Sloan Quasar Lens Search (SQLS), have relied on basic morphological criteria, which were applied to samples of bright, spectroscopically confirmed quasars. The SQLS techniques are not sufficient for searching into new surveys (e.g. DES, PS1, LSST), because spectroscopic information is not readily available and the large data volume requires higher purity in target/candidate selection. We carry out a systematic exploration of machine-learning techniques and demonstrate that a two-step strategy can be highly effective. In the first step, we use catalogue-level information (griz+WISE magnitudes, second moments) to pre-select targets, using artificial neural networks. The accepted targets are then inspected with pixel-by-pixel pattern recognition algorithms (gradient-boosted trees), to form a final set of candidates. The results from this procedure can be used to further refine the simpler SQLS algorithms, with a twofold (or threefold) gain in purity and the same (or 80 per cent) completeness at target-selection stage, or a purity of 70 per cent and a completeness of 60 per cent after the candidate-selection step. Simpler photometric searches in griz+WISE based on colour cuts would provide samples with 7 per cent purity or less. Our technique is extremely fast, as a list of candidates can be obtained from a Stage III experiment (e.g. DES catalogue/data base) in a few CPU hours. The techniques are easily extendable to Stage IV experiments like LSST with the addition of time domain information.

  1. Spectroscopy of the fuzz associated with four quasars

    International Nuclear Information System (INIS)

    Balick, B.; Heckman, T.M.

    1983-01-01

    The spectroscopic properties of the ''fuzz'' near four quasars are consistent with starlight in a galactic environment at essentially the same redshift as the quasar. Apparently, then, the same processes that determine the redshifts of galaxies also determine the redshifts of quasars

  2. First observation of a quasar with a redshift of 4

    International Nuclear Information System (INIS)

    Warren, S.J.; Hewett, P.C.; Irwin, M.J.; McMahon, R.G.; Bridgeland, M.T.; Bunclark, P.S.; Kibblewhite, E.J.

    1987-01-01

    The authors report the discovery of a quasar (0046-293) with a redshift z = 4.01 and another (0044-276) with a redshift z 3.42. The redshift of the former quasar is the highest yet detected and compares with the z = 3.80 of the previous most distant known quasar. The new quasars lie in the same field as three other known high-redshift quasars and were identified in a preliminary analysis of new multi-colour data derived from measurements of direct photographic plates taken with the United Kingdom Schmidt Telescope. The two new quasars are significantly fainter (msub(R) > 19) than previously known high-redshift quasars discovered by optical techniques, and demonstrate that the luminosity function of optically selected high-redshift quasars extends over at least two magnitudes. (author)

  3. Summary of the workshop on active galaxies and quasars

    International Nuclear Information System (INIS)

    Weistrop, D.

    1981-01-01

    The paper reports highlights of discussions carried out at the Tenth Texas Symposium on Relativistic Astrophysics concerning BL Lacertae objects and quasars and their relationship to active galactic nuclei. The discussions considered X-ray, optical and radio observations of active galaxies and quasars showing features which may be interpreted as jets or beams, and X-ray and VLBI observations of core-jet structures exhibiting apparent supraluminal expansion. Attention was also given to the properties of the energy source in the center of the active galaxies and quasars, the nature of quasar emission line regions, the production of the continuum in quasars and active galactic nuclei, and evidence for the association of quasars and BL Lac objects with galaxies

  4. NuSTAR observations of heavily obscured quasars at z ∼ 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Lansbury, G. B.; Alexander, D. M.; Moro, A. Del; Gandhi, P.; Aird, J. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Assef, R. J. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Baloković, M.; Grefenstette, B. W.; Harrison, F. A. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Catlica de Chile, Casilla 306, Santiago 22 (Chile); Boggs, S. E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Christensen, F. E.; Craig, W. W. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hailey, C. J. [Columbia Astrophysics Laboratory, 550 W 120th Street, Columbia University, NY 10027 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Koss, M., E-mail: g.b.lansbury@durham.ac.uk [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2014-04-10

    We present NuSTAR hard X-ray observations of three Type 2 quasars at z ≈ 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O III] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N {sub H}) are poorly known. In this analysis, (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N {sub H}. (2) We further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N {sub H} ≳ 5 × 10{sup 23} cm{sup –2}. The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low-energy (2-10 keV) and high-energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N {sub H} ≳ 10{sup 24} cm{sup –2}). We find that for quasars at z ∼ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.

  5. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  6. X-ray, optical, and radio properties of quasars

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Keel, W.C.; Miller, J.S.

    1982-01-01

    We have examined a sample of 26 low-redshift quasars for the relationships between X-ray luminosity and optical spectroscopic features. All quasars were observed with the Einstein Observatory and with the IDS on the Lick 3 meter telescope. We find evidence for correlations between quasar X-ray luminosity and both optical continuum luminosity and Hβ luminosity. In the latter case, there is a smooth relationship connecting quasars, Seyfert 1, and Seyfert 2 galaxies. For the quasars in this sample, there is also a strong correlation between optical continuum luminosity and both the Hβ luminosity and equivalent width. Unlike the case for Seyfert 1 nuclei, there is no evidence for a correlation between X-ray luminosity and either the Hβ/[O III] ratio or the width at zero intensity of the Hβ line. However, we do find some evidence for a weak correlation between α'/sub o/x, the mean continuum spectral index between 5000 A and 2 keV, and Fe II equivalent width, Hβ equivalent width, Hβ line width at zero intensity, and the ratio of Hβ equivalent width to its line width at zero intensity. Overall, we found few strong correlations between optical spectroscopic quanitites and X-ray properties of quasars. Some of the implications of these results for models of quasars and quasar emission line regions are discussed

  7. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaomi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki [Institute of Astronomy, School of Science, University of Tokyo, Mitaka, Tokyo 181-0015 (Japan); Itoh, Ryosuke [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tominaga, Nozomu [Department of Physics, Faculty of Science and Engineering, Konan University, Kobe, Hyogo 658-8501 (Japan); Saito, Yoshihiko; Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Stawarz, Łukasz [Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210 (Japan); Gandhi, Poshak [Department of Physics, Durham University, Durham DH1-3LE (United Kingdom); Ali, Gamal; Essam, Ahmad; Hamed, Gamal [National Research Institute of Astronomy and Geophysics, Helwan, Cairo (Egypt); Aoki, Tsutomu [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, Kiso, Nagano 397-0101 (Japan); Contreras, Carlos; Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Iwata, Ikuru, E-mail: masaomi.tanaka@nao.ac.jp [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  8. Circum-Galactic Medium in the Halo of Quasars

    Directory of Open Access Journals (Sweden)

    Riccardo Ottolina

    2017-12-01

    Full Text Available The properties of circum-galactic gas in the halo of quasar host galaxies are investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along the line of sight close to quasars. We used optical spectroscopy of closely aligned pairs of quasars (projected distance ≤ 200 kpc, but at very different redshift obtained at the VLT and Gran Telescopio Canarias to investigate the distribution of the absorbing gas for a sample of quasars at z ~1. Absorption systems of EW ≥0.3 associated with the foreground quasars are revealed up to 200 kpc from the centre of the host galaxy, showing that the structure of the absorbing gas is patchy with a covering fraction quickly decreasing beyond 100 kpc. In this contribution we use optical and near-IR images obtained at VLT to investigate the relations between the properties of the circum-galactic medium of the host galaxies and of the large scale galaxy environments of the foreground quasars.

  9. VizieR Online Data Catalog: ROSAT detected quasars. II. (Yuan+ 1998)

    Science.gov (United States)

    Yuan, W.; Brinkmann, W.; Siebert, J.; Voges, W.

    1997-11-01

    We have compiled a sample of all radio-quiet quasars or quasars without radio detection from the Veron-Cetty - Veron catalogue (1993, VV93, Cat. ) detected by ROSAT in the ALL-SKY SURVEY (RASS, Voges 1992, in Proc. of the ISY Conference `Space Science', ESA ISY-3, ESA Publications, p.9, See Cat. ), as targets of pointed observations, or as serendipitous sources from pointed observations publicly available from the ROSAT point source catalogue (ROSAT-SRC, Voges et al. 1995, Cat. ). For all sources we used the results of the Standard Analysis Software System (SASS, Voges et al. 1992, in Proc. of the ISY Conference `Space Science', ESA ISY-3, ESA Publications, p.223), employing the most recent processing for the Survey data (RASS-II, Voges et al. 1996, Cat. ). The total number of quasars is 846. 69 of the radio-quiet objects with radio detections have already been presented in a previous paper (Brinkmann, Yuan, & Siebert 1997, Cat. ) using the RASS-I results. 17 objects were found to be radio-loud from recent radio surveys and were marked in the table. When available, the power law photon indices and the corresponding absorption column densities (NH) were estimated from the two hardness ratios given by the SASS, both with free fitted NH and for Galactic absorption. The unabsorbed X-ray flux densities in the ROSAT band (0.1-2.4keV) were calculated from the count rates using the energy to counts conversion factor for power law spectra and Galactic absorption. As the photon index we used the value obtained for the individual source if the estimated 1-σ error is smaller than 0.5, otherwise we used the redshift-dependent mean value (see the paper for details). (1 data file).

  10. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  11. Primordial environment of supermassive black holes. II. Deep Y- and J-band images around the z 6.3 quasar SDSS J1030+0524

    Science.gov (United States)

    Balmaverde, B.; Gilli, R.; Mignoli, M.; Bolzonella, M.; Brusa, M.; Cappelluti, N.; Comastri, A.; Sani, E.; Vanzella, E.; Vignali, C.; Vito, F.; Zamorani, G.

    2017-10-01

    Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large-scale structures marked by galaxy overdensities that may extend up to 10 physical Mpc. This scenario, however, has not been confirmed observationally, as the search for galaxy overdensities around high-z quasars has returned conflicting results. The field around the z = 6.31 quasar SDSSJ1030+0524 (J1030) is unique for multi-band coverage and represents an excellent data legacy for studying the environment around a primordial SMBH. In this paper we present wide-area ( 25' × 25') Y- and J-band imaging of the J1030 field obtained with the near infrared camera WIRCam at the Canada-France-Hawaii Telescope (CFHT). We built source catalogs in the Y- and J-band, and matched those with our photometric catalog in the r, z, and I bands presented in our previous paper and based on sources with zAB4σ. The overdensity value and its significance are higher than those found in our previous paper and we interpret this as evidence of an improved LBG selection.

  12. Models of the strongly lensed quasar DES J0408-5354

    Science.gov (United States)

    Agnello, A.; Lin, H.; Buckley-Geer, L.; Treu, T.; Bonvin, V.; Courbin, F.; Lemon, C.; Morishita, T.; Amara, A.; Auger, M. W.; Birrer, S.; Chan, J.; Collett, T.; More, A.; Fassnacht, C. D.; Frieman, J.; Marshall, P. J.; McMahon, R. G.; Meylan, G.; Suyu, S. H.; Castander, F.; Finley, D.; Howell, A.; Kochanek, C.; Makler, M.; Martini, P.; Morgan, N.; Nord, B.; Ostrovski, F.; Schechter, P.; Tucker, D.; Wechsler, R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Gill, M. S.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-12-01

    We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass Mp(RE, G2) ≲ 1.0 × 1010 M⊙. The main deflector has stellar mass log _{10}(M_{\\star }/M_{⊙})=11.49^{+0.46}_{-0.32}, a projected mass Mp(RE, G1) ≈ 6 × 1011 M⊙ within its Einstein radius RE, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267-280 km s-1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (ΔtAB = (135.0 ± 12.6) d, ΔtBD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.

  13. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    International Nuclear Information System (INIS)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike

    2014-01-01

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M * ∼2 × 10 11 M ☉ . We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M dyn /M * ∼(1 + z) –0.30±0.12 , further strengthening the evidence for an increase of M dyn /M * with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  14. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Chen, Yan-Mei; Wake, David [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Bolton, Adam; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Leauthaud, Alexie [Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8582 (Japan); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Skibba, Ramin [Department of Physics, Center for Astrophysics and Space Sciences, University of California, 9500 Gilman Drive, San Diego, CA 92093 (United States); Pan, Kaike, E-mail: beifiori@mpe.mpg.de [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  15. The QUASAR facility

    Science.gov (United States)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  16. Discovery of a bright quasar without a massive host galaxy.

    Science.gov (United States)

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  17. X-ray studies of quasars with the Einstein observatory. II

    International Nuclear Information System (INIS)

    Zamorani, G.; Henry, J.P.; Maccacaro, T.; Tananbaum, H.; Soltan, A.; Avni, Y.; Liebert, J.; Stocke, J.; Strittmatter, P.A.; Weymann, R.J.; Smith, M.G.; Condon, J.J.

    1981-01-01

    Using the Einstein Observatory, we have carried out X-ray observations of 107 quasars and have detected 79. From the analysis of this sample of objects we find a correlation between optical emission and X-ray emission. Our data for radio-loud quasars also show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is approx.3 times higher than that of ratio-quiet quasars. In addition, our data suggest that the radio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. Taking into account the differences in X-ray luminosity between radio-loud and radio-quiet quasars, and between low-redshift and high-redshift quasars, we estimate that approx.30% of the observed X-ray background is contributed by quasars brighter than m/sub B/roughly-equal20, while much of the remainder can be contributed by still fainter quasars. Our data also imply that the optical log N--m/sub B/ relation for quasars cannot be extrapolated much beyond m/sub B/roughly-equal20 with the steep slope used to characterize optical source counts at brighter magnitudes. This situation supports the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift. We briefly discuss the observed correlation of X-ray luminosity with radio luminosity in the context of current quasar models

  18. Quasars and cosmology

    International Nuclear Information System (INIS)

    Fliche, H.-H.; Souriau, J.-M.

    1978-03-01

    On the basis of colorimetric data a composite spectrum of quasars is established from the visible to the Lyman's limit. Its agreement with the spectrum of the quasar 3C273, obtained directly, confirms the homogeneity of these objects. The compatibility of the following hypotheses: negligible evolution of quasars, Friedmann type model of the universe with cosmological constant, is studied by means of two tests: a non-correlation test adopted to the observation conditions and the construction of diagrams (absolute magnitude, volume) using the K-correction deduced from the composite spectrum. This procedure happens to give relatively well-defined values of the parameters; the central values of the density parameter, the reduced curvature and the reduced cosmological constant are: Ω 0 =0.053, k 0 =0.245, lambda-zero=1.19, which correspond to a big bang model, eternally expanding, spatially finite, in which Hubble's parameter H is presently increasing. This model responds well to different cosmological tests: density of matter, diameter of radio sources, age of the universe. Its characteristics suggest various cosmogonic mechanisms, espacially mass formation by growth of empty spherical bubbles [fr

  19. A QUASAR CATALOG WITH SIMULTANEOUS UV, OPTICAL, AND X-RAY OBSERVATIONS BY SWIFT

    International Nuclear Information System (INIS)

    Wu Jian; Grupe, Dirk; Koch, Scott; Gelbord, Jonathan; Schneider, Donald P.; Gronwall, Caryl; Porterfield, Blair L.; Vanden Berk, Daniel; Wesolowski, Sarah

    2012-01-01

    We have compiled a catalog of optically selected quasars with simultaneous observations in UV/optical and X-ray bands by the Swift Gamma-ray Burst Explorer. Objects in this catalog are identified by matching the Swift pointings with the Sloan Digital Sky Survey Data Release 5 quasar catalog. The final catalog contains 843 objects, among which 637 have both Ultraviolet Optical Telescope (UVOT) and X-Ray Telescope (XRT) observations and 354 of which are detected by both instruments. The overall X-ray detection rate is ∼60% which rises to ∼85% among sources with at least 10 ks of XRT exposure time. We construct the time-averaged spectral energy distribution (SED) for each of the 354 quasars using UVOT photometric measurements and XRT spectra. From model fits to these SEDs, we find that the big blue bump contributes about ∼0.3 dex to the quasar luminosity. We re-visit the α ox -L 2500Å relation by selecting a clean sample with only Type 1 radio-quiet quasars; the dispersion of this relation is reduced by at least 15% compared with studies that use non-simultaneous UV/optical and X-ray data. We only found a weak correlation between L bol /L Edd and α UV . We do not find significant correlations between α x and α ox , α ox and α UV , and α x and log L(0.3-10 keV). The correlations between α UV and α x , α ox and α x , α ox and α UV , L bol /L Edd and α x , and L bol /L Edd and α ox are stronger among low-redshift quasars, indicating that these correlations are likely driven by the changes of SED shape with accretion state.

  20. Chitah: Strong-gravitational-lens hunter in imaging surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.