WorldWideScience

Sample records for survey reactor formation

  1. Survey of research reactors

    International Nuclear Information System (INIS)

    Boek, H.; Villa, M.

    2004-06-01

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  2. Survey of research reactor applications

    International Nuclear Information System (INIS)

    Boeck, H.

    2002-06-01

    This report is a revision of the report AIAU 21305 (Survey of research reactors), it was performed in June 2002. Specific applications of the research reactors such as neutron activation analysis (NAA), boron neutron capture therapy, argon geochronology, fission track geochronology, neutron transmutation doping (NTD) of silicon, gemstone coloration, neutron radiography positron source, material structure studies, education and training are briefly described. (nevyjel)

  3. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  4. Electromagnetic site survey at Dhruva research reactor

    International Nuclear Information System (INIS)

    Punekar, Parag; Ramkumar, N.; Roy, Kallol; Darbhe, M.D.

    2016-01-01

    Electromagnetic interference (EMI) has been a major source of disturbance in precision instrumentation, particularly in nuclear instrumentation systems processing signals in the range of nano and pico-amperes. The major sources of electromagnetic fields were identified to be Switched Mode Power Supplies, hand held transceivers, electrical circuit breakers, IGBT control circuits, high switching digital circuits, motor and transformer inrush currents, high current carrying cables etc. This paper provides technical information on EM site survey at Dhruva Research Reactor, basis for choosing the locations for EM survey, the issues involved, methodology, important observations and the experience feedback. The exercise was carried out in collaboration with M/s Automotive Research Association of India, Pune. This survey is a first attempt for characterization of EM environment at Dhruva Research Reactor and was primarily intended to generate base line data which is also expected to provide guidelines for locating new equipment having a potential to disturb existing EM environment

  5. Biofilm formation in attached microalgal reactors.

    Science.gov (United States)

    Shen, Y; Zhu, W; Chen, C; Nie, Y; Lin, X

    2016-08-01

    The objective of this study was to investigate the fundamental question of biofilm formation. First, a drum biofilm reactor was introduced. The drums were coated with three porous substrates (cotton rope, canvas, and spandex), respectively. The relationships among the substrate, extracellular polymeric substances (EPS), and adhesion ratio were analyzed. Second, a plate biofilm reactor (PBR) was applied by replacing the drum with multiple parallel vertical plates to increase the surface area. The plates were coated with porous substrates on each side, and the nutrients were delivered to the cells by diffusion. The influence of nitrogen source and concentration on compositions of EPS and biofilm formation was analyzed using PBR under sunlight. The results indicated that both substrate and nitrogen were critical on the EPS compositions and biofilm formation. Under the optimal condition (glycine with concentration of 1 g l(-1) and substrate of canvas), the maximum biofilm productivity of 54.46 g m(-2) d(-1) with adhesion ratio of 84.4 % was achieved.

  6. The void galaxy survey: Star formation properties

    NARCIS (Netherlands)

    Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-01-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is

  7. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    Amherd, N.A.

    1975-09-01

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  8. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  9. Star Formation Beyond the Solar Circle: A Survey of Surveys

    Science.gov (United States)

    Kerton, Charles R.

    2013-06-01

    This talk will review and distill the results of major radio, infrared, and combined radio/IR, surveys that have focused on the identification and characterization of active regions of star formation in the outer Galaxy. These surveys reveal that, in terms of star formation activity, the Milky Way beyond the solar circle is not a vast wasteland, but rather it is an area containing numerous regions of star formation well placed for detailed individual study, for large-scale studies of star formation within spiral arms, and for comparative studies with star formation occurring in different environments such as the inner Galaxy and Galactic center.

  10. Nuclear energy center site survey reactor plant considerations

    International Nuclear Information System (INIS)

    1976-05-01

    The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers

  11. Tritium formation and elimination in light-water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Briec, M.; Miquel, P.

    1976-01-01

    Light-water reactors have a tritium balance which should be considered from both the working constraint and environmental pollution aspects. The formation of tritium in the primary circuit and in the fuel, the elimination and enrichment processes are considered [fr

  12. Analysis of the radiometric survey during the Argonauta reactor operation

    International Nuclear Information System (INIS)

    Oliveira, Eara de S.L.; Cardozo, Katia K.M.; Silva, Joao Carlos P.; Santos, Joao Regis dos

    2013-01-01

    The Argonaut reactor at the Institute of Nuclear Engineering-IEN/CNEN, operates normally, the powers between 1.7 and 340 W on neutrongraphy procedures, production of radionuclides and experimental reactor physics lessons to postgraduate courses. The doses from neutrons and gamma radiation are measured when the reactor is critical, inside the reactor hall and surrounding regions. A study of the data obtained was performed to evaluate the daily need of this survey in the reactor hall. Taking into account the principle ALARA, which aims to optimize and minimize the dose received by the individual, we propose, in this work, through an analysis of the acquired data in occupational radiometric surveys, a reformulation of the area monitoring routine practiced by the team of radiological protection of the Institute of Nuclear Engineering - IEN/CNEN-RJ, whereas other monitoring routines regarding the radiological protection are also applied in the routine of the reactor. The operations under review occurred with the reactor operating 340 W power at intervals of 60, 120 and 180 minutes, in monitoring points in controlled areas, supervised and free. The results showed significant dose values in the output of the J-Channel 9 when the operation occurs with this open. With 180 minutes of operation, the measured values of dose rate were lower than the values at 60 min and 120 operations min. At the point in the supervised area, offsite to the reactor hall, situated in the direction of the J-Channel 9, the value reduces more than 14% in any operating time in relation to the dose rate measured at the point opposite the canal. There is a 50% reduction in the dose rates for operations with and J-9 closed. The results suggest a new frequency of radiometric survey whose mode of operation is maintained in similar conditions, since combined with other relevant practices of radiation protection

  13. 1980 nuclear plant survey: no reactors sold; more cancellations

    International Nuclear Information System (INIS)

    Friedlander, G.D.

    1980-01-01

    No sales were reported in 1979 by any of the big four reactor suppliers. Three cancellations were reported and construction was suspended on the Jersey Central Power and Light Co.'s Forked River unit. Since last year's survey, the commercial operation dates of about 80 units have been postponed from one year to indefinitely, and nuclear commitments are down from last year's 195 units to 193 units. Presently, there are 72 plants on line, with a capacity of more than 53,000 MW. A resumption of new reactor orders is expected in either late 1980 or early 1981

  14. Methyl Iodide Formation Under Postulated Nuclear Reactor Accident Conditions

    International Nuclear Information System (INIS)

    Kircher, J.F.; Barnes, R.H.

    1968-01-01

    The formation of methyl iodide under conditions of postulated nuclear reactor accidents is discussed. Although thermodynamic calculations indicate the equilibrium methyl iodide concentrations would be quite low, calculations based on a simple kinetic scheme involving reaction between small hydrocarbon species and iodine indicate that concentrations higher than equilibrium can occur during the course of the reaction. Such calculations were performed over a wide range of initial species concentrations and a range of temperatures representative of some reactor accident situations. These calculations suggest that little methyl iodide would be expected within the core volume where temperatures are maximum. As the gas leaves the core volume and expands into the plenum region, it cools and the concentration of methyl iodide increases. At the intermediate temperatures which might characterize this region, the formation of methyl iodide from thermally induced reactions could reach its maximum rate. The gas continues to cool, however, and it is probable that by the time it leaves the plenum region it has cooled to the point where thermally induced reactions may be of little importance. Although the thermally induced reactions will become slower as the gas expands and cools, the radiation-induced reactions will not be slowed to the same extent. The gases leaving the core carry fission products and hence a radiation source is available to initiate reaction by a temperature-independent process. An investigation of the radiation chemical formation and decomposition of methyl iodide in the presence of steam suggests that radiation-induced methyl iodide formation will generally be rapid under the postulated accident situations. Thus, in the plenum region where thermal reactions have become slow, the radiation-induced reaction can still proceed and may well become the dominant factor. The same situation probably pertains as well to the containment region. (author)

  15. Report on the Survey of the Design Review of New Reactor Applications. Volume 3: Reactor

    International Nuclear Information System (INIS)

    Downey, Steven; Monninger, John; Nevalainen, Janne; Lorin, Aurelie; ); Webster, Philip; Joyer, Philippe; Kawamura, Tomonori; Lankin, Mikhail; Kubanyi, Jozef; Haluska, Ladislav; Persic, Andreja; Reierson, Craig; Kang, Kyungmin; Kim, Walter

    2016-01-01

    At the tenth meeting of the CNRA Working Group on the Regulation of New Reactors (WGRNR) in March 2013, the Working Group agreed to present the responses to the Second Phase, or Design Phase, of the Licensing Process Survey as a multi-volume text. As such, each report will focus on one of the eleven general technical categories covered in the survey. The general technical categories were selected to conform to the topics covered in the International Atomic Energy Agency (IAEA) Safety Guide GS-G-4.1. This document, which is the third report on the results of the Design Phase Survey, focuses on the Reactor. The Reactor category includes the following technical topics: fuel system design, reactor internals and core support, nuclear design and core nuclear performance, thermal and hydraulic design, reactor materials, and functional design of reactivity control system. For each technical topic, the member countries described the information provided by the applicant, the scope and level of detail of the technical review, the technical basis for granting regulatory authorisation, the skill sets required and the level of effort needed to perform the review. Based on a comparison of the information provided by the member countries in response to the survey, the following observations were made: - Although the description of the information provided by the applicant differs in scope and level of detail among the member countries that provided responses, there are similarities in the information that is required. - All of the technical topics covered in the survey are reviewed in some manner by all of the regulatory authorities that provided responses. - Design review strategies most commonly used to confirm that the regulatory requirements have been met include document review and independent verification of calculations, computer codes, or models used to describe the design and performance of the core and the fuel. - It is common to consider operating experience and

  16. World-wide survey and analysis of research reactors fuels behaviour during its exploitation and storage

    International Nuclear Information System (INIS)

    Koziel, J.; Hofman, A.

    2002-01-01

    The paper describes the world-wide survey and analysis of the issues related to the fabrication technology, exploitation terms and experiences in the under water storage of research reactor fuels. Particularly the fuels of research reactors similar to the Polish EWA and MARIA reactors have been described and concluded. (author)

  17. Tritium Formation and Mitigation in High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  18. Report on the Survey of the Design Review of New Reactor Applications. Volume 4: Reactor Coolant and Associated Systems

    International Nuclear Information System (INIS)

    Downey, Steven; Monninger, John; Nevalainen, Janne; Joyer, Philippe; Koley, Jaharlal; Kawamura, Tomonori; Chung, Yeon-Ki; Haluska, Ladislav; Persic, Andreja; Reierson, Craig; Monninger, John; Choi, Young-Joon; )

    2017-01-01

    At the tenth meeting of the Committee on Nuclear Regulatory Activities (CNRA) Working Group on the Regulation of New Reactors (WGRNR) in March 2013, the Working Group agreed to present the responses to the Second Phase, or Design Phase, of the licensing process survey as a multi-volume text. As such, each report will focus on one of the eleven general technical categories covered in the survey. The general technical categories were selected to conform to the topics covered in the International Atomic Energy Agency (IAEA) Safety Guide GS-G-4.1. This report provides a discussion of the survey responses related to the Reactor Coolant and Associated Systems category. The Reactor Coolant and Associated Systems category includes the following technical topics: overpressure protection, reactor coolant pressure boundary, reactor vessel, and design of the reactor coolant system. For each technical topic, the member countries described the information provided by the applicant, the scope and level of detail of the technical review, the technical basis for granting regulatory authorisation, the skill sets required and the level of effort needed to perform the review. Based on a comparison of the information provided by the member countries in response to the survey, the following observations were made: - Although the description of the information provided by the applicant differs in scope and level of detail among the member countries that provided responses, there are similarities in the information that is required. - All of the technical topics covered in the survey are reviewed in some manner by all of the regulatory authorities that provided responses. - It is common to consider operating experience and lessons learnt from the current fleet during the review process. - The most commonly and consistently identified technical expertise needed to perform design reviews related to this category are mechanical engineering and materials engineering. The complete survey

  19. Tritium Formation and Mitigation in High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  20. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  1. STA survey shows reactor and equipment representing 64 % of R and D costs in private industry

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    On October 27, 1986, the Science and Technology Agency released the result of a survey on the nuclear research and development in private industry. This has been conducted as a part of the annual general survey on the development and utilization of atomic energy. There were a number of research and development projects having reached the stage of commercialization, and the need to draw on the resources of private industry for the research and development of atomic energy was increasingly recognized. The Agency believes that an overall picture of the research and development in private industry will provide with information required for the formation of future policy. The survey revealed 367 billion yen as the total research and development spending related to atomic energy, including 256 billion yen of government fund and 111 billion yen of private industry. The spending for reactors and equipment accounted for 63.7 % of the total spending. The method of survey and the results, such as the sales of nuclear equipment supply industry and the present situation of nuclear research and development, are reported. The nuclear equipment supply industry places much weight on the research and development, for which the investment ratio reached 4.5 %. (Kako, I.)

  2. Dynamics and Control of Chemical Reactors-Selectively Surveyed

    DEFF Research Database (Denmark)

    Jørgensen, S. B.; Jensen, N.

    1989-01-01

    in industry, many reactor control problems are still left unsolved or only partly solved using open loop strategies where disturbance rejection and model inaccuracies have to be handled through manual reactor control and feedback control of raw material preprocessing and product purification operations...

  3. Survey of Dust Production in Pebble Bed Reactors Cores

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderafi M. Ougouag; Javier Ortensi

    2011-06-01

    Graphite dust produced via mechanical wear from the pebbles in a pebble bed reactor is an area of concern for licensing. Both the German pebble bed reactors produced graphite dust that contained activated elements. These activation products constitute an additional source term of radiation and must be taken under consideration during the conduct of accident analysis of the design. This paper discusses the available literature on graphite dust production and measurements in pebble bed reactors. Limited data is available on the graphite dust produced from the AVR and THTR-300 pebble bed reactors. Experiments that have been performed on wear of graphite in pebble-bed-like conditions are reviewed. The calculation of contact forces, which are a key driving mechanism for dust in the reactor, are also included. In addition, prior graphite dust predictions are examined, and future areas of research are identified.

  4. Hydrogen formation in metals and alloys during fusion reactor operation

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji

    1994-08-01

    The results of neutron transport calculations of the hydrogen formation based on the JENDL gas-production cross section file are discussed for some metals and alloys, namely 51 V, Cr, Fe, Ni, Mo, austenitic stainless steel (Ti modified 316SS:PCA), ferritic steel (Fe-8Cr-2W:F82H) and the vanadium-base alloy (V-5Cr-5Ti). Impact of the steel fraction in steel/water homogeneous blanket/shield compositions on the hydrogen formation rate in above-mentioned metals and alloys is discussed both for the hydrogen formation in the first wall and the blanket/shield components. The results obtained for the first wall are compared with those for the helium formation obtained at JAERI by the same calculational conditions. Hydrogen formation rates at the first wall having 51 V, Cr, Fe, Ni and Mo are larger than those of helium by 3-8 times. (author)

  5. Survey of thorium utilization in power reactor systems

    International Nuclear Information System (INIS)

    Schwartz, M.H.; Schleifer, P.; Dahlberg, R.C.

    1976-01-01

    It is clear that thorium-fueled thermal power reactor systems based on current technology can play a vital role in serving present and long-term energy needs. Advanced thorium converters and thermal breeders can provide an expanded resource base from which the world's growing energy demands can be met. Utilization of a symbiotic system of fast breeders and thorium-fueled thermal reactors can be particularly effective in providing low cost power while conserving uranium resources. Breeder reactors are characterized by high capital costs and very low fuel costs since they produce more fuel than they consume. This excess fuel can be used to fuel thermal converter reactors whose capital costs are low. This symbiosis is optimized when 233 U is bred in the fast breeders and then used to fuel high-conversion-ratio thermal converter reactors operating on the thorium-uranium fuel cycle. The thorium-cycle HTGR, after undergoing more than fifteen years of development in both the United States and Europe, provides for the optimum utilization of our limited uranium resources. Other thermal reactor systems, previously operating on the uranium cycle, also show potential in their capability to utilize the thorium cycle effectively

  6. Survey of dust production in pebble bed reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Cogliati, Joshua J., E-mail: Joshua.Cogliati@inl.gov [Idaho National Laboratory, Reactor Physics Analysis and Design, 2525 N Fremont Ave, Idaho Falls, ID (United States); Ougouag, Abderrafi M., E-mail: Abderrafi.Ougouag@inl.gov [Idaho National Laboratory, Reactor Physics Analysis and Design, 2525 N Fremont Ave, Idaho Falls, ID (United States); Ortensi, Javier, E-mail: Javier.Ortensi@inl.gov [Idaho National Laboratory, Reactor Physics Analysis and Design, 2525 N Fremont Ave, Idaho Falls, ID (United States)

    2011-06-15

    Highlights: > We review potential sources of the graphite dust found in the German pebble bed reactors. > Available literature on graphite wear coefficients in pebble bed core-like conditions is reviewed. > Limited conclusions and remaining open questions are discussed. - Abstract: Graphite dust produced via mechanical wear from the pebbles in a pebble bed reactor is an area of concern for licensing. Both the German pebble bed reactors produced graphite dust that contained activated elements. These activation products constitute an additional source term of radiation and must be taken under consideration during the conduct of accident analysis of the design. This paper discusses the available literature on graphite dust production and measurements in pebble bed reactors. Limited data is available on the graphite dust produced from the AVR and THTR-300 pebble bed reactors. Experiments that have been performed on wear of graphite in pebble-bed-like conditions are reviewed. The calculation of contact forces, which are a key driving mechanism for dust in the reactor, are also included. In addition, prior graphite dust predictions are examined, and future areas of research are identified.

  7. A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources

    Science.gov (United States)

    Simonen, Pauli; Saukko, Erkka; Karjalainen, Panu; Timonen, Hilkka; Bloss, Matthew; Aakko-Saksa, Päivi; Rönkkö, Topi; Keskinen, Jorma; Dal Maso, Miikka

    2017-04-01

    Oxidation flow reactors (OFRs) or environmental chambers can be used to estimate secondary aerosol formation potential of different emission sources. Emissions from anthropogenic sources, such as vehicles, often vary on short timescales. For example, to identify the vehicle driving conditions that lead to high potential secondary aerosol emissions, rapid oxidation of exhaust is needed. However, the residence times in environmental chambers and in most oxidation flow reactors are too long to study these transient effects ( ˜ 100 s in flow reactors and several hours in environmental chambers). Here, we present a new oxidation flow reactor, TSAR (TUT Secondary Aerosol Reactor), which has a short residence time ( ˜ 40 s) and near-laminar flow conditions. These improvements are achieved by reducing the reactor radius and volume. This allows studying, for example, the effect of vehicle driving conditions on the secondary aerosol formation potential of the exhaust. We show that the flow pattern in TSAR is nearly laminar and particle losses are negligible. The secondary organic aerosol (SOA) produced in TSAR has a similar mass spectrum to the SOA produced in the state-of-the-art reactor, PAM (potential aerosol mass). Both reactors produce the same amount of mass, but TSAR has a higher time resolution. We also show that TSAR is capable of measuring the secondary aerosol formation potential of a vehicle during a transient driving cycle and that the fast response of TSAR reveals how different driving conditions affect the amount of formed secondary aerosol. Thus, TSAR can be used to study rapidly changing emission sources, especially the vehicular emissions during transient driving.

  8. A survey of thorium utilization in thermal power reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    The present status of thorium utilization in thermal reactors HTGR's, HWR's and LWR's has been reviewed. Physics considerations are made to obtain the optimum use of thorium. Existing information on reprocessing and refabrication is given together with the properties of thorium metal and thoria

  9. Radiological characteristics of light-water reactor spent fuel: A literature survey of experimental data

    International Nuclear Information System (INIS)

    Roddy, J.W.; Mailen, J.C.

    1987-12-01

    This survey brings together the experimentally determined light-water reactor spent fuel data comprising radionuclide composition, decay heat, and photon and neutron generation rates as identified in a literature survey. Many citations compare these data with values calculated using a radionuclide generation and depletion computer code, ORIGEN, and these comparisons have been included. ORIGEN is a widely recognized method for estimating the actinide, fission product, and activation product contents of irradiated reactor fuel, as well as the resulting heat generation and radiation levels. These estimates are used as source terms in safety evaluations of operating reactors, for evaluation of fuel behavior and regulation of the at-reactor storage, for transportation studies, and for evaluation of the ultimate geologic storage of spent fuel. 82 refs., 4 figs., 17 tabs

  10. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined

  11. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined.

  12. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor

    International Nuclear Information System (INIS)

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  13. A bibliographic survey of bearings for nuclear reactors

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Okamoto, Yoshizo

    1977-03-01

    In development of a multi-purpose high-temperature gas cooled reactor, design of its mechanical elements is essential. Machinery must be safely operable in the high temperature (1,000 0 C), high pressure (40kg/cm 2 ) helium environment for long time. A bibliographic review in this connection with technical reports, books, journals and patents, is presented, using NSA. As an element of the machinery bearings are classified into several categories, a bibliography on gas-lubricated bearings for 207 documents is given in chronical order. (auth.)

  14. A survey of recent applications of TRIGA research reactors

    International Nuclear Information System (INIS)

    Chesworth, R.H.

    1972-01-01

    Some relatively recent, somewhat novel, or unusual applications in the United States were surveyed. Several specific applications will be discussed briefly. They are divided into the major areas of nondestructive testing, medical applications, activation analysis, and special testing

  15. Radiation survey and preparing for the decommissioning of research reactor MR, RRC 'Kurchatov Institute'

    International Nuclear Information System (INIS)

    Volkov, V.G.; Volkovich, A.G.; Danilovich, A.S.; Zverkov, Y.A.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Smirnov, S.V.; Chesnokov, A.V.; Shisha, A.D.

    2010-01-01

    Works for the rehabilitation of nuclear and radioactively contaminated objects of the RRC Kurchatov Institute, continued for several years and now the experts of the center began work to prepare for the decommissioning of research reactor MR. As part of this work is carried out radiation survey radwaste repositories located in its premises, characterization of high-level waste that has accumulated in the storage basin and the extracts of the CPS, a survey of loop reactor facilities. Radiation survey carried out using robotic tools Brokk, equipped with gamma locator for the identification of intense gamma radiation sources. The gamma locator installed on a robotic tool serves for control and gamma vision of the Brokk. Management of the robotic tool and the gamma locator made from a safe place. Transfer of control signals and measurement data of the gamma locator were carried over by radio channel. For the radiation survey of the waste placed in cooling pools and the gateway of the reactor, the clarification and decontamination of water in these reservoirs was carried out. The clarification of the water was not carried out from 1993, when the reactor MR was shot down. Water purification was executed by standard water treatment systems for small basins. Sand coarse filters water collected radioactive particulate matter present in the pools and the gateway. Upon completion of the filter as radioactive waste were sent to long-term storage of Radon enterprise. Use of standard equipment was fully justified in referring to relatively low costs of conducting operations. In 2008 the characterization of the high level radwaste placed at the storages in the reactor hall was executed. For measuring of specific activities of the casks containing the radwaste the gamma locator installed at robot Brokk was used. The gamma locator allowed measuring of distribution of activity along the casks. This works allowed planning of amount of containers for removing of the high level

  16. Preliminary Geological Survey on the Proposed Sites for the New Research Reactor

    International Nuclear Information System (INIS)

    Lim, In Cheol; Ha, J. J.; Oh, K. B.

    2010-12-01

    · Performing the preliminary geological survey on the proposed sites for the new research reactor through the technical service · Ordering a technical service from The Geological Society of Korea · Contents of the geological survey - Confirmation of active fault - Confirmation of a large-scale fracture zone or weak zone - Confirmation of inappropriate items related to the underground water - Confirmation of historical seismicity and instrumental earthquakes data · Synthesized analysis and holding a report meeting · Results of the geological survey - Confirmation of the geological characteristics of the sites and drawing the requirements for the precise geological survey in the future

  17. Geodetical survey concerning the reactor vessel of the Paks nuclear power plant

    International Nuclear Information System (INIS)

    Czellar, A.; Zergi, I.

    1982-01-01

    A geodetical survey concerning the reactor vessel of the Paks nuclear power plant is reported. The accuracy of the position of the joining parts of the vessel to the primary coolant circuit was inspected by photogrammetry and by geodesic measurements applying iteration and traversing. The resulting dimensions of the vessel proved to be within the tolerance of the specified values. (Sz.J.)

  18. Analysis of the formation of local cooling disturbances in sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1976-09-01

    The aim of this analysis of the formation of local cooling disturbances in sodium-cooled fast breeder reactors is to get results on the possible extent of blockages and the time necessary for growth which may be used for a safety evaluation. After an introduction where the thermohydraulic and physical/chemical aspects of the problems are considered, the causes for the local cooling disturbances and the phenomena arising with it are freated in more detail. (orig./TK) [de

  19. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  20. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  1. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  2. Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor.

    Science.gov (United States)

    Ni, Shou-Qing; Lee, Po-Heng; Fessehaie, Anania; Gao, Bao-Yu; Sung, Shihwu

    2010-03-01

    An innovative reactor configuration for Anammox enrichment by connecting a non-woven membrane module with an anaerobic reactor was developed in this study. The Anammox non-woven membrane reactor (ANMR) exhibited high biomass retention ability through the formation of aggregates in the reactor and biofilm on the interior surface of the non-woven membrane. No fouling problems occurred on the membrane after the development of mature biofilms. After 8 months of operation, the nitrogen loading rate (NLR) and nitrogen removal rate (NRR) reached 1263 mg N/l/d and 1047.5 mg N/l/d, respectively, with a maximum specific ammonium consumption (SAC) of 51 nmol/mg protein/min. At steady state, the average ammonium and nitrite removal efficiencies were 90.9% and 95.0%, respectively. Morphological observation of Anammox aggregates and biofilm showed a high degree of compactness. Also, enrichment of Anammox bacteria was quantified by real-time polymerase chain reaction (PCR) analysis as 97.7%. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph Collin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Chemistry Materials and Life Sciences Directorate

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrade structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H+ and T+) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion

  4. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  5. Neutron dosimeters and survey meters in accelerators, reactors and other neutron environments

    International Nuclear Information System (INIS)

    1989-03-01

    Neutron fields in occupationally accessible areas around nuclear reactors, radioisotope sources and medical and high energy accelerators have been characterized using currently available information. Neutron, rem meters, such as the Leake detector, are the most suitable instruments available for conducting neutron dose rate surveys in the vicinity of radioisotope neutron sources, nuclear reactors and medical accelerators. However, these instruments have been shown to be deficient in that they overrespond by a factor of four to neutrons in the 0.1 to 1 MeV range and are insensitive to neutrons from about 1 eV up to about 10 keV. Also, they are insensitive to neutrons above 20 MeV and their use must be restricted near high energy accelerators where significant numbers of neutrons above 20 MeV are known to be present. The most suitable instrument of measure dose from neutrons above 20 MeV is the 12 C(n,2n) 11 C scintillation chamber. Commercially available rem meters frequently use BF 3 counters in the pulse mode to detect thermal neutrons. Therefore, measurements around pulsed accelerators must be made with caution to ensure that the detector is not saturated during each pulse and that the accelerator pulse period is greater than the response time of the detector. The personal neutron dosimeters currently available either are known to be insensitive to neutrons above 20 MeV or have not been tested. Also, all except the albedo dosimeter are insensitive to or have not been tested for neutron energies in the range 1 eV to 10 keV. Several dosimeter types respond reasonably well to neutrons in the energy range 0.1 to 15 MeV, for example, CR-39, bubble and superheated drop detectors. However, the first gas a lower limit of sensitivity of about 0.3 mSv. The bubble detector can be designed to measure doses as small as 1μSv and offers the additional benefit of direct-reading capability. The superheated drop detector is not suitable for use around pulsed accelerators because

  6. Seven years of operation of the U. S. geological survey TRIGA reactor

    International Nuclear Information System (INIS)

    Kraker, Pat

    1976-01-01

    February 1976 marks 7 years of operation of the U. S. Geological Survey TRIGA Reactor (GSTR) facility. In these 7 years we have generated more than 5800 MWH's of thermal energy and irradiated more than 47,000 samples for experimenters from the Survey, universities, and other Governmental agencies. Several mechanical and electrical components have required attention. Changes to the technical specifications have included one minor wording change involving the evacuation alarm, a reevaluation of the measurement of argon-41 concentrations, a revision concerning transient-rod maintenance, and a reduction in the frequency of fuel-element measurements. To improve physical security we have increased building security, installed an intrusion alarm, and, most recently, expanded the boundaries of the facility within the building to provide better control access. There also have been major changes to our operating procedures and the initiation of a reactor-operator requalification program. (author)

  7. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  8. Formation and deposition of platinum nanoparticles under boiling water reactor conditions

    Science.gov (United States)

    Grundler, Pascal V.; Veleva, Lyubomira; Ritter, Stefan

    2017-10-01

    Stress corrosion cracking (SCC) is a well-known degradation mechanism for components of boiling water reactors (BWRs). Therefore the mitigation of SCC is important for ensuring the integrity of the reactor system. Noble metal chemical application (NMCA) has been developed by General Electric to mitigate SCC and reduce the negative side-effects of hydrogen water chemistry used initially for SCC mitigation. NMCA is now widely applied as an online process (OLNC) during power operation. However, the understanding of the parameters that control the formation and deposition of the noble metal (Pt) particles in a BWR was still incomplete. To fill this knowledge gap, systematic studies on the formation and deposition behaviour of Pt particles in simulated and real BWR environment were performed in the framework of a research project at PSI. The present paper summarizes the most important findings. Experiments in a sophisticated high-temperature water loop revealed that the flow conditions, water chemistry, the Pt injection rate, and the pre-conditioning of the stainless steel surfaces have an impact on the Pt deposition behaviour. Slower Pt injection rates and stoichiometric excess of H2 over O2 produce smaller particles, which may increase the efficiency of the OLNC technique in mitigating SCC. Surfaces with a well-developed oxide layer retain more Pt particles. Furthermore, the pre- and post-OLNC exposure times play an important role for the Pt deposition on specimens exposed at the KKL power plant. Redistribution of Pt in the plant takes place, but most of the Pt apparently does not redeposit on the steel surfaces in the reactor system. Comparison of lab and plant results also demonstrated that plant OLNC applications can be simulated reasonably well on the lab scale.

  9. Formation mechanism of nitrifying granules observed in an aerobic upflow fluidized bed (AUFB) reactor.

    Science.gov (United States)

    Tsuneda, S; Ejiri, Y; Nagano, T; Hirata, A

    2004-01-01

    The influences of trace metals in the wastewater and shear stress by aeration were particularly examined to clarify the formation mechanism of nitrifying granules in an aerobic upflow fluidized bed (AUFB) reactor. It was found that Fe added as a trace element to the inorganic wastewater accumulated at the central part of the nitrifying granules. Another result obtained was that suitable shear stress by moderate aeration (0.07-0.20 L/min/L-bed) promoted granulation. Furthermore, it was successfully demonstrated that pre-aggregation of seed sludge using hematite promoted core formation, leading to rapid production of nitrifying granules. From these results, a nitrifying granulation mechanism is proposed: 1) as a first step, nitrifying bacteria aggregate along with Fe precipitation, and then the cores of granules are formed; 2) as a second step, the aggregates grow to be spherical or elliptical in form due to multiplication of the nitrifying bacteria and moderate shear stress in the reactor, and then mature nitrifying granules are produced. Fluorescence in situ hybridization (FISH) analysis successfully visualized the change in the spatial distribution of nitrifying bacteria in the granules, which supports the proposed granulation mechanism.

  10. RIM formation and its effect on fission gas release in water reactor fuels at high burnup

    International Nuclear Information System (INIS)

    Viswanadham, C.S.; Sah, D.N.

    2005-01-01

    Water Reactor Fuels irradiated to burnup of more than 45 MWD/kg were found by several investigators to contain a porous region near the pellet periphery with submicroscopic grain sizes and a local burnup higher than the average fuel burnup. The resonance capture of neutrons in the rim region results in higher plutonium concentrations there, which results in more fissions, more accumulated burnup and more defects in the microstructure. The exact mechanism of the formation of the rim microstructure is still not very clear. This so-called RIM effect results in different properties in the rim region compared to the rest of the fuel pellet. The thermal conductivity of the rim region is significantly degraded, thereby resulting in increases in the fuel center temperature and higher fission gas release. The modelling of the effects of the rim on fuel properties and fission gas release so far has been largely empirical in nature. A threshold burnup is usually identified beyond which the RIM formation starts, and then a growth rate of the rim with burnup is assumed. This paper describes the current understanding of the Rim Effect and its consequences on fission gas release in water reactor fuels. The approach of modelling rim effect in computer code PROFESS is also described. (author)

  11. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik

    2016-06-20

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  12. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-07-01

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain on the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.

  13. Electric field formation in three different plasmas: A fusion reactor, arc discharge, and the ionosphere

    Science.gov (United States)

    Lee, Kwan Chul

    2017-11-01

    Three examples of electric field formation in the plasma are analyzed based on a new mechanism driven by ion-neutral collisions. The Gyro-Center Shift analysis uses the iteration of three equations including perpendicular current induced by the momentum exchange between ions and neutrals when there is asymmetry over the gyro-motion. This method includes non-zero divergence of current that leads the solution of time dependent state. The first example is radial electric field formation at the boundary of the nuclear fusion device, which is a key factor in the high-confinement mode operation of future fusion reactors. The second example is the reversed rotation of the arc discharge cathode spot, which has been a mysterious subject for more than one hundred years. The third example is electric field formations in the earth's ionosphere, which are important components of the equatorial electrojet and black aurora. The use of one method that explains various examples from different plasmas is reported, along with a discussion of the applications.

  14. Development of a novel heterogeneous flow reactor -- Soot formation and nanoparticle catalysis

    Science.gov (United States)

    Camacho, Joaquin

    The development of novel experimental approaches to investigate fundamental surface kinetics is presented. Specifically, fundamental soot formation and surface catalysis processes are examined in isolation from other competing processes. In terms of soot formation, two experimental techniques are presented: the Burner Stabilized Stagnation (BSS) flame configuration is extended to isolate the effect of the parent fuel structure on soot formation and the fundamental rate of surface oxidation for nascent soot is measured in a novel aerosol flow reactor. In terms of nanoparticles, the physical and chemical properties of freely suspended nanoparticles are investigated in a novel aerosol flow reactor for methane oxidation catalyzed by palladium. The role of parent fuel structure within soot formation is examined by following the time resolved formation nascent soot from the onset of nucleation to later growth stages for premixed BSS flames. Specifically, the evolution of the detailed particle size distribution function (PSDF) is compared for butanol, butane and C6 hydrocarbons in two separate studies where the C/O ratio and temperature are fixed. Under this constraint, the overall sooting process were comparable as evidenced by similar time resolved bimodal PSDF. However, the nucleation time and the persistence of nucleation with time is strongly dependent upon the structure of the parent fuel. For the C6 hydrocarbon fuels, the fastest onset of soot nucleation is observed in cyclohexane and benzene flames and this may be due to significant aromatic formation that is predicted in the pre-flame region. In addition, the evolution of the PSDF shows that nucleation ends sooner in cylclohexane and benzene flames and this may be due to relatively quick depletion of soot precursors such as acetylene and benzene. Interestingly,within the butanol fuels studied the effect of the branched chain in i-butanol and i-butane was more significant than the presence of fuel bound oxygen. A

  15. Survey of creep data on structural materials of fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, S.

    1977-11-01

    The reactor vessels and other components of fast breeder reactor is affected by high neutron irradiation at elevated temperatures. However, in this regard, related test data on creep property of component materials and welds at elevated temperatures are a few in Japan, and especially, there are no data available on the irradiation effect. It will take 3 to 7 years before the results of currently planned research and development on prototype fast breeder become available. On the other hand, establishment of design base for prototype fast breeder and other needs call for early solution to such problems. The Committee should, therefore, collect from documents the latest data on experiments on structural materials overseas and in our country, and survey and analyze the problems in order to proceed with the future research and development in the most effective way. It was for this purpose that the Fourth Subcommittee at Technical Research Association for Integrity of Structures at Elevated Service Temperatures was commissioned by Power Reactor and Nuclear Fuel Development Corporation to conduct the examination and study of related data by establishing Group 41G. This collection of data is the compilation of the above results. (author)

  16. Independent Confirmatory Survey Summary and Results for the Plum Brook Reactor Facility Sandusky OH

    International Nuclear Information System (INIS)

    Bailey, E.N.

    2008-01-01

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics (later known as the National Aeronautics and Space Administration or NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities. After successfully completing the objective of landing humans on the Moon and returning them safely to Earth, NASA was faced with budget reductions from Congress in 1973. These budgetary constraints caused NASA to cease operations at several research facilities across the country, including those at Plum Brook Station. The major test facilities at Plum Brook were maintained in a standby mode, capable of being reactivated for future use. The Plum Brook Reactor Facility (PBRF) was shut down January 5, 1973 and all of the nuclear fuel was eventually removed and shipped off site to a U.S. Department of Energy facility in Idaho for disposal or reuse. Decommissioning activities are currently underway at the PBRF (NASA 1999). The objectives of the confirmatory survey activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the Nuclear Regulatory Commission (NRC) in evaluating the adequacy and accuracy of the licensee's procedures and final status survey (FSS) results

  17. A dispenser-reactor apparatus applied for in situ XAS monitoring of Pt nanoparticle formation.

    Science.gov (United States)

    Boita, Jocenir; Castegnaro, Marcus Vinicius; Alves, Maria do Carmo Martins; Morais, Jonder

    2015-05-01

    In situ time-resolved X-ray absorption spectroscopy (XAS) measurements collected at the Pt L3-edge during the synthesis of Pt nanoparticles (NPs) in aqueous solution are reported. A specially designed dispenser-reactor apparatus allowed for monitoring changes in the XAS spectra from the earliest moments of Pt ions in solution until the formation of metallic nanoparticles with a mean diameter of 4.9 ± 1.1 nm. By monitoring the changes in the local chemical environment of the Pt atoms in real time, it was possible to observe that the NPs formation kinetics involved two stages: a reduction-nucleation burst followed by a slow growth and stabilization of NPs. Subsequently, the synthesized Pt NPs were supported on activated carbon and characterized by synchrotron-radiation-excited X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). The supported Pt NPs remained in the metallic chemical state and with a reduced size, presenting slight lattice parameter contraction in comparison with the bulk Pt values.

  18. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Science.gov (United States)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  19. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2018-01-01

    Full Text Available Secondary organic aerosol (SOA formation from ambient air was studied using an oxidation flow reactor (OFR coupled to an aerosol mass spectrometer (AMS during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5 field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3 or weeks (OH of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m−3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  20. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor-borne

    International Nuclear Information System (INIS)

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor-borne domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor-borne and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  1. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  2. Reactor

    International Nuclear Information System (INIS)

    Evans, R.M.

    1976-01-01

    Disclosed is a neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch. 1 claim, 16 figures

  3. Analysis of the radiometric survey during the Argonauta reactor operation; Analise do levantamento radiometrico durante operacao do reator Argonauta

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eara de S.L.; Cardozo, Katia K.M.; Silva, Joao Carlos P.; Santos, Joao Regis dos, E-mail: esluz@ien.gov.br, E-mail: cardozo@ien.gov.br, E-mail: jcarlos@ien.gov.br, E-mail: regis@ien.gov.br [Instituto de Engenharia Nuclear (CNEN-IEN/RJ), Rio de Janeiro - RJ (Brazil)

    2013-07-01

    The Argonaut reactor at the Institute of Nuclear Engineering-IEN/CNEN, operates normally, the powers between 1.7 and 340 W on neutrongraphy procedures, production of radionuclides and experimental reactor physics lessons to postgraduate courses. The doses from neutrons and gamma radiation are measured when the reactor is critical, inside the reactor hall and surrounding regions. A study of the data obtained was performed to evaluate the daily need of this survey in the reactor hall. Taking into account the principle ALARA, which aims to optimize and minimize the dose received by the individual, we propose, in this work, through an analysis of the acquired data in occupational radiometric surveys, a reformulation of the area monitoring routine practiced by the team of radiological protection of the Institute of Nuclear Engineering - IEN/CNEN-RJ, whereas other monitoring routines regarding the radiological protection are also applied in the routine of the reactor. The operations under review occurred with the reactor operating 340 W power at intervals of 60, 120 and 180 minutes, in monitoring points in controlled areas, supervised and free. The results showed significant dose values in the output of the J-Channel 9 when the operation occurs with this open. With 180 minutes of operation, the measured values of dose rate were lower than the values at 60 min and 120 operations min. At the point in the supervised area, offsite to the reactor hall, situated in the direction of the J-Channel 9, the value reduces more than 14% in any operating time in relation to the dose rate measured at the point opposite the canal. There is a 50% reduction in the dose rates for operations with and J-9 closed. The results suggest a new frequency of radiometric survey whose mode of operation is maintained in similar conditions, since combined with other relevant practices of radiation protection.

  4. Language arts achievement level, attitude survey format, and adolescents' attitudes towards reading.

    Science.gov (United States)

    Smith, L R; Ryan, B E

    1997-01-01

    The joint effects of student achievement level and attitude survey format upon attitudes toward reading were investigated. Sixth-grade students completed reading attitude surveys involving a standard Likert-type format or one involving pictures of the comic strip character, Garfield. The survey items were identical for both formats; only the presentation format was varied. There was no significant main effect on attitude responses due to achievement level, but the main effect due to survey format was significant, with the Likert-type format producing significantly higher attitude responses than the Garfield format. The interaction between achievement level and format also was significant, with above average students and average students giving higher attitude responses than did below average students when the Garfield format was used. When the Likert-type format was used, average students and below average students gave higher attitude responses than did above average students. The results imply that attitude responses of adolescents can be manipulated by varying the format of the survey.

  5. A review on granules initiation and development inside UASB Reactor and the main factors affecting granules formation process

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, Ab Aziz Bin Abdul; Daud, Zawawi Bin; Ahmad, Zulkifli Bin [Civil and Environmental Engineering, University Tun Hussein Onn Malaysia (Malaysia)

    2011-07-01

    Decades of investigations and explorations in the field of anaerobic wastewater treatment have resulted in significant indications about the role importance of sludge granules in biodegradation anaerobic process. It is believed that the development of anaerobic granules is reflecting an important role on the performance of reactor. An overview on the concept of up-flow anaerobic sludge bed (UASB) reactor operation as well as the main parts that reactor consists of is briefly explained in this paper, whereas the major theories of anaerobic granules formation are listed by related researchers. The correlations and compositions of such sludge granule have been specifically explained. It is believed that the extracellular polymer (ECP) is totally responsible of bacterial cell correlations and the formation of bacterial communities in the form of granules. In addition, the dependable factors for the performance of anaerobic granules formation process e.g. temperature, organic loading rate, pH, and alkalinity, nutrients, and cations and heavy metals have been discussed in this paper. Strong evidences proved that the process of gas production in the form of biogas is related to the methanogens activities, which are practically found in the core of granules. The aim of this review is to explore and assess the mechanisms of granules initiation and development inside UASB reactor.

  6. Survey of methods and measurements of nuclear reactor time and frequency responses

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1961-11-01

    Methods of measuring reactivity effects in nuclear reactors are described and the main control engineering analytical problems in nuclear reactors are detailed. A description of the use of reactor models and adaptive control in improving the economy of power producing nuclear reactors is included. (author)

  7. Radiological survey of the area surrounding the National Reactor Testing Station, Idaho Falls, Idaho. Date of survey: 1 and 2 February 1972

    International Nuclear Information System (INIS)

    1974-01-01

    The Aerial Radiological Measuring System (ARMS) was used to survey the National Reactor Testing Station (NRTS) during February 1972. The purpose of the survey was primarily to identify the presence of Ru-106 and Rh-106 in a release from the Chemical Processing Plant at NRTS. Additionally, the gamma-ray terrestrial exposure rate levels were mapped and the distribution of any man-made isotopes was located and defined

  8. Formatting a Paper-based Survey Questionnaire: Best Practices

    Directory of Open Access Journals (Sweden)

    Elizabeth Fanning

    2005-08-01

    Full Text Available This paper summarizes best practices with regard to paper-based survey questionnaire design. Initial design considerations, the cover and cover page, directions, ordering of questions, navigational path (branching, and page design are discussed.

  9. Confirmatory Survey Results for the Reactor Building Dome Upper Structural Surfaces, Rancho Saco Nuclear Generating Station, Herald, California

    International Nuclear Information System (INIS)

    Wade C. Adams

    2006-01-01

    Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006

  10. A WISE Survey of Star Formation in Nearby Molecular Clouds

    Science.gov (United States)

    Huard, Tracy

    During the last decade, sensitive mid-infrared observations obtained by the Spitzer Space Telescope significantly increased the known population of Young Stellar Objects (YSOs) associated with nearby molecular clouds. With such a census, recent studies have derived efficiencies of the star formation rates in the different environments. Given the small Spitzer coverage of these molecular clouds, relative to their large extended regions, these YSO populations may represent a limited view of star formation in these regions. We propose to take advantage of mid-infrared observations from the recent WISE mission, which provides an all-sky view and therefore full coverage of the nearby molecular clouds, to assess the degree to which their currently known YSO populations may be under-representative of the extended, more complete populations. We will extend and apply the well established classification method, developed by Spitzer Legacy teams, to archived WISE observations in order to identify and assemble a more complete census of YSOs associated with nearby clouds. Large-scale, high angular resolution extinction maps covering the full extent of these clouds will also be constructed in a uniform manner to enable cross-comparison studies of star formation rates in these different environments. Finally, we plan to provide enhanced WISE data products to the community through the Infrared Processing and Analysis Center, which will promote a diversity of studies by a wider group of investigators, facilitate star-formation studies across different environments, and help ensure the legacy of WISE data.

  11. NEA/CNRA Report of the Survey on the Review of New Reactor Applications

    International Nuclear Information System (INIS)

    Gibson, Steve

    2013-01-01

    This presentation treats of the NEA/CNRA report of the survey on the review of new reactor application. It indicates that licensing is state specific and that timelines vary from 6 months to 4 years. In addition, review effort and documentation is significant and most states have explicit guidance for the reviews. All states include some form of public participation and regulatory oversight. Next steps include two reports, one on design reviews and another on the construction phase. The author also presented on licensing experience in the United Kingdom. He highlighted the importance of several practices for ensuring a successful project, including: early engagement and communication between applicant and regulatory, sharing of plans between applicant and regulator, establishing and monitoring good metrics on progress and quality for both the applicant and the regulator, identifying 'work streams' and monitoring those streams closely, identifying and addressing risks, ensuring high quality interactions between applicant and regulator, and using dashboards as a way to maintain openness, transparency and trust. He also emphasized the need for engagement at different levels within the organization, including management as necessary

  12. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    Science.gov (United States)

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  13. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  14. Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation

    DEFF Research Database (Denmark)

    Torry-Smith, Mads Peter; Sommer, Peter; Ahring, Birgitte Kiær

    2003-01-01

    In this study, the prospect of using an Upflow Anaerobic Sludge Blanket (UASB) reactor for detoxification of process water derived from bioethanol production has been investigated. The bioethanol effluent (BEE) originated from wet oxidized wheat straw fermented by Saccharomyces cerevisiae...... acid, 4-hydroxyacetophenone, and acetovanillone as compared to conversion of the inhibitors as sole substrate in synthetic media. Furthermore, experiments were carried out treating BEE in a laboratory-scale UASB reactor. The results showed a Chemical Oxygen Demand (COD) removal of 80% (w...... of these compounds were removed from the BEE in the reactor. Implementation of a UASB purification step was found to be a promising approach to detoxify process water from bioethanol production allowing for recirculation of the process water and reduced production costs....

  15. Formation of 32P-labelled Polyphosphates in Reactor-irradiated Solutions of Orthophosphate

    DEFF Research Database (Denmark)

    Fenger, Jørgen Folkvard; Pagsberg, Palle Bjørn

    1973-01-01

    Aqueous solutions of potassium orthophosphate were reactor irradiated and analysed by electrophoresis. The resulting distributions of 32P-activity in phosphorus oxyanions resemble the ones obtained with reactor-irradiated solid phosphates. Even in dilute solutions, polymers are formed; their total...... yield increases with the concentration of the irradiated solution and varies in a complicated way with the pH. These observations and some experiments with addition of radical scavengers indicate that oxidation of the 32P-recoils by OH-radicals is an important step in the polymerization. It is suggested...

  16. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    Science.gov (United States)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  17. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W.

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  18. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  19. Formation of the high-spin Hf-179m2 isomer in reactor irradiations

    Czech Academy of Sciences Publication Activity Database

    Karamian, S. A.; Carroll, J. J.; Adam, Jindřich; Kulagin, EN.; Shabalin, EP.

    2004-01-01

    Roč. 14, č. 4 (2004), s. 438-441 ISSN 1054-660X R&D Projects: GA MŠk(CZ) ME 134 Keywords : reactor irradiation * high-spin Hf-179m2 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.836, year: 2004

  20. The Impact of Question Format, Context, and Content on Survey Answers in Early and Late Adolescence

    Directory of Open Access Journals (Sweden)

    Diersch Nadine

    2016-06-01

    Full Text Available Self-reports in surveys are often influenced by the presented question format and question context. Much less is known about how these effects influence the answers of younger survey respondents. The present study investigated how variations in response format, answer scale frequency, and question order influence self-reports of two age groups: younger (11–13 years old and older (16–18 years old adolescents. In addition, the impact of the respondents’ level of familiarity with the question content was taken into account. Results indicated that younger adolescents are more strongly influenced by the presented question format and context than older adolescents. This, however, was dependent on the particular question content, implying that response effects are more pronounced when questions deal with issues that lie outside of the respondents’ field of experience. Implications of these findings in survey research with younger respondents are discussed.

  1. Characterizing the Amount and Chemistry of Biogenic SOA Formation from Pine Forest Air Using a Flow Reactor

    Science.gov (United States)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Fry, J.; Zarzana, K. J.; Draper, D. C.; Brown, S. S.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Hodzic, A.; Dube, W. P.; Wagner, N. L.; Brune, W. H.; Jimenez, J. L.

    2013-12-01

    The amount and chemistry of biogenic secondary organic aerosol (SOA) formation was characterized as a function of oxidant exposure using a Potential Aerosol Mass (PAM) oxidative flow reactor, sampling air in a terpene- and MBO-dominated pine forest during the 2011 BEACHON-RoMBAS field campaign at the U.S. Forest Service Manitou Forest Experimental Observatory in the Colorado Rocky Mountains. In the reactor, a chosen oxidant (OH, O3, or NO3) was generated and stepped over a range of values up to 10,000 times ambient levels, accelerating the gas-phase and heterogeneous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and preexisting aerosol. The resulting SOA formation was measured using an Aerodyne HR-ToF-AMS, a TSI SMPS and a PTR-TOF-MS. Oxidative processing in the flow reactor was equivalent to a few hours up to ~20 days of atmospheric aging during the ~4-min reactor residence time. During BEACHON-RoMBAS, OH oxidation led to a net production of up to several μg/m3 of SOA at intermediate exposures (1-10 equivalent days) but resulted in net loss of OA mass (up to ~30%) at higher OH exposures (10-20 equivalent days), demonstrating the competing effects of functionalization/condensation vs. fragmentation/evaporation reactions as OH exposure increased. O3 and NO3 oxidation led to smaller (up to 0.5 μg/m3) SOA production, and loss of SOA mass due to fragmentation reactions was not observed. OH oxidation resulted in f44 vs. f43 and Van Krevelen diagram (H:C vs. O:C) slopes similar to ambient oxidation, suggesting the flow reactor oxidation pathways are similar to those in ambient air. Organic nitrate SOA production was observed from NO3 radical oxidation only. New particle formation was observed from OH oxidation, but not O3 or NO3 oxidation under our experimental conditions. An enhancement of SOA production under the influence of anthropogenic pollution (Denver) was also observed. High-resolution AMS measurements showed that the O:C and H

  2. Constraints on the Formation of M31’s Stellar Halo from the SPLASH Survey

    Directory of Open Access Journals (Sweden)

    Karoline Gilbert

    2017-09-01

    Full Text Available The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo Survey has observed fields throughout M31’s stellar halo, dwarf satellites, and stellar disk. The observations and derived measurements have either been compared to predictions from simulations of stellar halo formation or modeled directly in order to derive inferences about the formation and evolution of M31’s stellar halo. We summarize some of the major results from the SPLASH survey and the resulting implications for our understanding of the build-up of M31’s stellar halo.

  3. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation

    DEFF Research Database (Denmark)

    Qin, Ke; Jensen, Peter Arendt; Lin, Weigang

    2012-01-01

    Biomass gasification and pyrolysis were studied in a laboratory-scale atmospheric pressure entrained flow reactor. Effects of operating parameters and biomass types on the syngas composition were investigated. In general, the carbon conversion during biomass gasification was higher than 90......% at the optimal conditions of 1400 °C with steam addition. The biomass carbon that was not converted to gas in the gasification process only appeared as soot particles in the syngas in all of the experiments, except for the two experiments performed at 1000 °C, where a very small amount of char was also left....... In comparison to pyrolysis, lower yields of soot, H2, and CO were produced during gasification. The yield of soot could be reduced by a longer residence time, larger feeder air flow, lower oxygen concentration, higher excess air ratio, higher steam/carbon ratio, and higher reactor temperature. Changes...

  4. SUPERPHENIX: Reactor core temperatures survey by minicomputers - original aspects related to safety

    International Nuclear Information System (INIS)

    Berlin, C.; Josue, M.; Pinoteau, J.

    1986-01-01

    The system for core temperatures fast processing (TRIC) utilized in SUPERPHENIX is part of the reactor protection system. Due to the number of temperature measurements taken into account, to the specific data processing and to the rapidity required in the treatment, the use of digital computing devices is justified. The present paper describes the conception of the system in order to satisfy the special requirements for the computers used in power reactors protection systems

  5. A Review of the Application of Rate Theory to Simulate Vacancy Cluster Formation and Interstitial Defect Formation in Reactor Pressure Vessel Steel

    Directory of Open Access Journals (Sweden)

    Fallon Laliberte

    2015-10-01

    Full Text Available The beltline region of the reactor pressure vessel (RPV is subject to an extreme radiation, temperature, and pressure environment over several decades of operation; therefore it is necessary to understand the mechanisms through which radiation damage occurs and how it affects the mechanical and chemical properties of the RPV steel. Chemical rate theory is a mean field rate theory simulation model which applies chemistry to the evaluation of irradiation-induced embrittlement. It presents one method of analysis that may be coupled to other distinct methods, in order to analyze defect formation, ultimately providing useful information on strength, ductility, toughness and dimensional stability changes for effects such as embrittlement, reduction in ductility and toughness, void swelling, hardening, irradiation creep, stress corrosion cracking, etc. over time as materials are subjected to reactor operational irradiation. This paper serves as a brief review of rate theory fundamentals and presents several examples of research that exemplify the application and importance of rate theory in examining the effects of radiation damage on RPV steel.

  6. Hydrogen Peroxide and Ozone Formation in Hybrid Gas-Liquid Electrical Discharge Reactors

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Appleton, A. T.; Locke, B. R.

    2004-01-01

    Roč. 40, č. 1 (2004), s. 60-67 ISSN 0093-9994. [IEEE Industry Applications Society Annual Meeting 2002/37th./. Pittsburgh, Pennsylvania, 13.10.2002-18.10.2002] R&D Projects: GA ČR GA202/02/1026; GA MŠk ME 472 Grant - others:NSF(US) INT0086351 Keywords : hydrogen peroxide, ozone , corona discharge, water treatment , hybrid reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.987, year: 2004

  7. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    Science.gov (United States)

    Aleksandrova, I. V.; Koresheva, E. R.; Krokhin, O. N.; Osipov, I. E.

    2016-12-01

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain size should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.

  8. Utilization of a statistical procedure for DNBR calculation and in the survey of reactor protection limits

    International Nuclear Information System (INIS)

    Pontedeiro, A.C.; Camargo, C.T.M.; Galetti, M.R. da Silva.

    1987-01-01

    A new procedure is applied to Angra 1 NPP, which is related to DNBR calculations, considering the design parameters statistically: Improved Thermal Design Procedure (ITDP). The ITDP application leads to the determination of uncertainties in the input parameters, the sensitivity factors on DNBR. The DNBR limit and new reactor protection limits. This was done to Angra 1 with the subchannel code COBRA-IIIP. The analysis of limiting accident in terms of DNB confirmed a gain in DNBR margin, and greater operation flexibility of the plant, decreasing unnecessary trips of the reactor. (author) [pt

  9. Formation cross section of iron-60 with reactor neutrons in 59Fe(n, γ)60Fe reaction

    International Nuclear Information System (INIS)

    Sato, T.; Suzuki, T.

    1993-01-01

    Ingrowth of 60 Co radioactivity in an iron sample irradiated in a nuclear reactor has been measured for determination of formation cross section of 60 Fe in the 59 Fe(n, γ) 60 Fe reaction with reactor neutrons. After 5 years cooling, the irradiated iron was purified from 60 Co and other radioactive nuclides by an anion exchange separation method and isopropyl ether extraction in hydrochloric acid. The amount of 60 Co ingrowth was measured by γ-spectrometry using a Ge-detector coupled to a multichannel pulse height analyzer 4 years after the purification of iron. Neutron flux of the irradiation position was calculated from the amount of 55 Fe produced. The observed value of 12.5 ± 2.8 barn is slightly greater than reported value for burnup cross section of 59 Fe(n, x)X, where x refers γ, α, d, p and 2n, and X is any nuclide produced by the above reactions. (author) 8 refs.; 2 tabs

  10. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    International Nuclear Information System (INIS)

    Park, Daniel Sang-Won; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C; Datta, Proyag; Desta, Yohannes

    2010-01-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm 2 , matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ∼5 min at a flow velocity of 3 mm s −1 (15.3 s cycle −1 ) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s −1 (46.2 s cycle −1 ) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  11. A survey of the properties of copper alloys for use as fusion reactor materials

    International Nuclear Information System (INIS)

    Butterworth, G.J.; Forty, C.B.A.

    1992-01-01

    Pure copper and some selected dilute alloys are widely utilised in experimental plasma confinement devices and have also been proposed for various applications in fusion power reactors where a high thermal or electrical conductivity in the material is required. Available data on physical mechanical properties of a number of commercial coppers and alloys at elevated temperatures are collated and reviewed as an aid to materials selection and component design. Properties examined include the thermal and electrical conductivities, thermal fatigue resistance, softening behaviour, and creep and fatigue strengths. The effects of neutron irradiation on copper alloys are briefly discussed in terms of radiation damage and its influence on conductivity and mechanical properties, the compositional changes occurring through transmutation and the induced activity and associated γ-dose rate and biological hazard potential. Data emerging from recent fission reactor irradiation programmes on void swelling and changes in electrical conductivity and mechanical properties are presented and discussed. (orig.)

  12. Survey of considerations involved in introducing CANDU reactors into the United States

    International Nuclear Information System (INIS)

    Till, C.E.; Bohn, E.M.; Chang, Y.I.; van Erp, J.B.

    1977-01-01

    The important issues that must be considered in a decision to utilize CANDU reactors in the U.S. are identified in this report. Economic considerations, including both power costs and fuel utilization, are discussed for the near and longer term. Safety and licensing considerations are reviewed for CANDU-PHW reactors in general. The important issues, now and in the future, associated with power generation costs are the capital costs of CANDUs and the factors that impact capital cost comparisons. Fuel utilization advantages for the CANDU depend upon assumptions regarding fuel recycle at present, but the primary issue in the longer term is the utilization of the thorium cycle in the CANDU. Certain safety features of the CANDU are identified as intrinsic to the concept and these features must be examined more fully regarding licensability in the U.S

  13. Reincarnation Revisited: Question format and the distribution of belief in reincarnation in survey research

    OpenAIRE

    Siegers, Pascal

    2013-01-01

    Comparing frequency of belief in reincarnation from different international survey projects (RAMP, EVS, ISSP) reveals differences of about 15 to 20 percent depending on the specific question format. If single binary questions are used, then belief in reincarnation is more often reported than if a forced-choice question is used which offers respondents alternatives to belief in reincarnation (e.g. resurrection). One possible explanation for this result is that respondents confuse reincarnation...

  14. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fisher, S.E.

    1999-01-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option

  15. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  16. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  17. Survey of neutrons inside the containment of a pressurized water reactor

    International Nuclear Information System (INIS)

    Hankins, D.E; Griffith, R.V.

    1978-01-01

    A neutron survey was made inside the containment of the Farley Nuclear Plant, Alabama Power and Light Company, Dothan, Alabama, in November 1977. The survey was made to determine the spectra of leakage neutrons and to evaluate the accuracy of albedo neutron dosimeters and a 9-in.-diameter sphere rem meter. The survey also covered variations in the neutron spectra, the ratio of gamma-to-neutron dose rates, and the thermal neutron component of the neutron dose

  18. Adolescent Substance Abuse in Mexico, Puerto Rico and The United States: Effect of Anonymous versus Confidential Survey Formats

    Science.gov (United States)

    Latimer, William W.; O'Brien, Megan S.; Vasquez, Marco A.; Medina-Mora, Maria Elena; Rios-Bedoya, Carlos F.; Floyd, Leah J.

    2006-01-01

    Anonymous surveys have been widely used worldwide to describe adolescent substance use yet cannot elucidate causal drug abuse predictors. Studies in the U.S. have generally found that anonymous and confidential surveys yield comparable levels of self-reported substance use, yet the effect of survey format on youth self-report has not been…

  19. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Format and Content. NUREG-1537, Part 1

    International Nuclear Information System (INIS)

    1996-02-01

    NUREG - 1537, Part 1 gives guidance to non-power reactor licensees and applicants on the format and content of applications to the Nuclear Regulatory Commission for licensing actions. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination

  20. Thermophilic (55 - 65°C) and extreme thermophilic (70 - 80°C) sulfate reduction in methanol and formate-fed UASB reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Camarero, E.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The feasibility of thermophilic (55-65 degreesC) and extreme thermophilic (70-80 degreesC) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular

  1. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Format and Content. NUREG-1537, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    NUREG - 1537, Part 1 gives guidance to non-power reactor licensees and applicants on the format and content of applications to the Nuclear Regulatory Commission for licensing actions. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination.

  2. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  3. Investigation of the deposit formation in pipelines connecting liquefaction reactors; 1t/d PSU ni okeru ekika hanno tokan fuchakubutsu no seisei yoin ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Y.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-28

    The liquefaction reaction system of an NEDOL process coal liquefaction 1t/d PSU was opened and checked to investigate the cause of the rise of differential pressure between liquefaction reactors of the PSU. The liquefaction test at a coal concentration of 50 wt% using Tanito Harum coal was conducted, and it was found that the differential pressure between reactors was on the increase. By the two-phase flow pressure loss method, deposition thickness of deposit in pipelines was estimated at 4.4mm at the time of end operation, which agreed with a measuring value obtained from a {gamma} ray. The rise of differential pressure was caused by deposit formation in pipelines connecting reactors. The main component of the deposit is calcite (CaCO3 60-70%) and is the same as the usual one. It is also the same type as the deposit on the reactor wall. Ca in coal ash is concerned with this. To withdraw solid matters deposited in the reactor, there are installed pipelines for the withdrawal at the reactor bottom. The solid matters are regularly purged by reverse gas for prevention of clogging. As the frequency of purge increases, the deposit at the reactor bottom decreases, but the deposit attaches strongly to pipelines connecting reactors. It is presumed that this deposit is what Ca to be discharged out of the system as a form of deposition solid matter naturally in the Ca balance precipitated as calcite in the pipeline connecting the reactor. 3 refs., 5 figs., 4 tabs.

  4. Survey of foreign reactor operator qualifications, training, and staffing requirements. Final report

    International Nuclear Information System (INIS)

    Au, M.L.; DiSalvo, R.; Merschoff, E.

    1982-05-01

    The report is a compilation of the data obtained from a survey of foreign nuclear power plant operator requirements. Included among the considerations are: (1) shift staffing; (2) operator eligibility; (3) operator training programs; (4) operator licensing or certification; and (5) operator retraining. The data obtained from this survey are presented in matrix form and contrasted with U.S. requirements

  5. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Science.gov (United States)

    Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.

    2013-12-01

    The geological CO2 sequestration into subsurface unmineable oil/gas fields and coal formations has been considered as one of the possible ways to reduce dispersal of anthropogenic greenhouse gasses into the atmosphere. However, feasibility of CO2 injection largely depends on a variety of geological and economical settings, and its ecological consequences have remained largely unpredictable. To address these issues, we developed a new flow-through-type CO2 injection system designated as the 'geobio-reactor system' to examine possible geophysical, geochemical and microbiological impact caused by CO2 injection under in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. In this study, we investigated Eocene bituminous coal-sandstones in the northwestern Pacific coast, Hokkaido, Japan, using the geobio-reactor system. Anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively) were continuously supplemented into the coal-sand column under the pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. Molecular analysis of bacterial 16S rRNA genes showed that predominant bacterial components were physically dispersed from coal to sand as the intact form during experiment. Cultivation experiments from sub-sampling fluids indicated that some terrestrial microbes could preserve their survival in subsurface condition. Molecular analysis of archaeal 16S rRNA genes also showed that no methanogens were activated during experiment. We also anaerobically incubated the coal sample using conventional batch-type cultivation technique with a medium for methanogens. After one year of the batch incubation at 20°C, methane could be detected from the cultures except for the acetate-fed culture. The sequence of archaeal 16S rRNA genes via PCR amplification obtained from the H2 plus formate-fed culture was affiliated with a hydrogenotrophic methanogen within the genus Methanobacterium, whereas the methanol plus trimethylamine culture

  6. Formation of 32P-labelled Polyphosphates in Reactor-irradiated Solutions of Orthophosphate

    DEFF Research Database (Denmark)

    Fenger, Jørgen Folkvard; Pagsberg, Palle Bjørn

    1973-01-01

    yield increases with the concentration of the irradiated solution and varies in a complicated way with the pH. These observations and some experiments with addition of radical scavengers indicate that oxidation of the 32P-recoils by OH-radicals is an important step in the polymerization. It is suggested...... that the actual formation of a P&z.sbnd;O&z.sbnd;P bridge takes place as an addition of a Lewis acid to a lone pair of electrons on a phosphate ion....

  7. Development Status for a Combined Solid Oxide Co-Electrolyzer and Carbon Formation Reactor System for Oxygen Regeneration

    Science.gov (United States)

    Green, Robert D.; Matter, Paul H.; Holt, Chris; Beachy, Michael; Gaydos, James; Farmer, Serene C.; Setlock, John

    2016-01-01

    A critical component in spacecraft life support loop closure is the removal of carbon dioxide (CO2, produced by the crew) from the cabin atmosphere and chemical reduction of this CO2 to recover the oxygen. In 2015, we initiated development of an oxygen recovery system for life support applications consisting of a solid oxide co-electrolyzer (SOCE) and a carbon formation reactor (CFR). The SOCE electrolyzes a combined stream of carbon dioxide (CO2) and water (H2O) gas mixtures to produce synthesis gas (e.g., CO and H2 gas) and pure dry oxygen as separate products. This SOCE is being developed from a NASA GRC solid oxide fuel cell and stack design originally developed for aeronautics long-duration power applications. The CFR, being developed by pHMatter LLC, takes the CO and H2 output from the SOCE, and converts it primarily to solid carbon (C(s)) and H2O and CO2. Although the solid carbon accumulates in the CFR, the innovative design allows easy removal of the carbon product, requiring minimal crew member (CM) time and low resupply mass (1.0 kg/year/CM) for replacement of the solid carbon catalyst, a significant improvement over previous Bosch reactor approaches. In this work, we will provide a status of our Phase I efforts in the development and testing of both the SOCE and CFR prototype units, along with an initial assessment of the combined SOCE-CFR system, including a mass and power projections, along with an estimate of the oxygen recovery rate.

  8. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    International Nuclear Information System (INIS)

    Kurepin, V. A.; Kulik, D. A.; Hitpold, A.; Nicolet, M.

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO 2 by incremental additions of O 2 in H 2 O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni phase, maintaining

  9. Subcascade formation in displacement cascade simulations: Implications for fusion reactor materials

    International Nuclear Information System (INIS)

    Stoller, R.E.; Greenwood, L.R.

    1998-01-01

    Primary radiation damage formation in iron has been investigated by the method of molecular dynamics (MD) for cascade energies up to 40 keV. The initial energy EMD given to the simulated PKA is approximately equivalent to the damage energy in the standard secondary displacement model by Norgett, Robinson, and Torrens (NRT); hence, EMD is less than the corresponding PKA energy. Using the values of EMD in Table 1, the corresponding EPKA and the NRT defects in iron have been calculated using the procedure described in Ref. 1 with the recommended 40 eV displacement threshold. These values are also listed in Table 1. Note that the difference between the EMD and the PKA energy increases as the PKA energy increases and that the highest simulated PKA energy of 61.3 keV is the average for a collision with a 1.77 MeV neutron. Thus, these simulations have reached well into the fast neutron energy regime. For purposes of comparison, the parameters for the maximum DT neutron energy of 14.1 MeV are also included in Table 1. Although the primary damage parameters derived from the MD cascades exhibited a strong dependence on cascade energy up to 10 keV, this dependence was diminished and slightly reversed between 20 and 40 keV, apparently due to the formation of well-defined subcascades in this energy region. Such an explanation is only qualitative at this time, and additional analysis of the high energy cascades is underway in an attempt to obtain a quantitative measure of the relationship between cascade morphology and defect survival

  10. Elemental researches on the critical issue of laser fusion reactor KOYO-F. Formation of aerosols, protection of beam port and flow stability

    International Nuclear Information System (INIS)

    Norimatsu, T.; Oshige, T.; Mima, K.; Shimada, Y.; Furukawa, H.; Kunugi, T.; Nakajima, H.; Kajimura, Y.

    2008-10-01

    Critical issues on laser fusion reactor with a liquid wall are discussed. Formation of aerosols after laser shot was studied experimentally and theoretically. Our simulation results for formation of aerosols agreed with experimental results obtained with electric discharge through a thin lead membrane. Formation of micro particles is discussed basing on experimental results obtained by backside irradiation of a lead membrane. Protection of beam ports of the laser fusion reactor with a liquid first wall is described. A magnetic field generated with a pulse current successfully shielded the tip of beam ports from alpha particles. A continuous protective liquid LiPb flow controlled with cascade scheme was formed as the protective first wall of KOYO-F. (author)

  11. A survey of commercially available manipulators, end-effectors, and delivery systems for reactor decommissioning activities

    International Nuclear Information System (INIS)

    Henley, D.R.; Litka, T.J.

    1996-05-01

    Numerous nuclear facilities owned by the U.S. Department of Energy (DOE) are under consideration for decommissioning. Currently, there are no standardized, automated, remote systems designed to dismantle and thereby reduce the size of activated reactor components and vessels so that they can be packaged and shipped to disposal sites. Existing dismantling systems usually consist of customized, facility-specific tooling that has been developed to dismantle a specific reactor system. Such systems have a number of drawbacks. Generally, current systems cannot be disassembled, moved, and reused. Developing and deploying the tooling for current systems is expensive and time-consuming. In addition, the amount of manual work is significant because long-handled tools must be used; as a result, personnel are exposed to excessive radiation. A standardized, automated, remote system is therefore needed to deliver the tooling necessary to dismantle nuclear facilities at different locations. Because this system would be reusable, it would produce less waste. The system would also save money because of its universal design, and it would be more reliable than current systems

  12. Star-Formation in Low Radio Luminosity AGN from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, W H; Hodge, J A; Becker, R H; White, R L; Helfand, D J

    2007-04-18

    We investigate faint radio emission from low- to high-luminosity Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey (SDSS). Their radio properties are inferred by coadding large ensembles of radio image cut-outs from the FIRST survey, as almost all of the sources are individually undetected. We correlate the median radio flux densities against a range of other sample properties, including median values for redshift, [O III] luminosity, emission line ratios, and the strength of the 4000{angstrom} break. We detect a strong trend for sources that are actively undergoing star-formation to have excess radio emission beyond the {approx} 10{sup 28} ergs s{sup -1} Hz{sup -1} level found for sources without any discernible star-formation. Furthermore, this additional radio emission correlates well with the strength of the 4000{angstrom} break in the optical spectrum, and may be used to assess the age of the star-forming component. We examine two subsamples, one containing the systems with emission line ratios most like star-forming systems, and one with the sources that have characteristic AGN ratios. This division also separates the mechanism responsible for the radio emission (star-formation vs. AGN). For both cases we find a strong, almost identical, correlation between [O III] and radio luminosity, with the AGN sample extending toward lower, and the star-formation sample toward higher luminosities. A clearer separation between the two subsamples is seen as function of the central velocity dispersion {sigma} of the host galaxy. For systems at similar redshifts and values of {sigma}, the star-formation subsample is brighter than the AGN in the radio by an order of magnitude. This underlines the notion that the radio emission in star-forming systems can dominate the emission associated with the AGN.

  13. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    , the removal of LAS in the reactor inoculated with active granular biomass exceeded the removal in the sterile reactor inoculated with sterile granular biomass. The effect of sorption ceased after 185 to 555 h depending on the LAS homologs. 40% of the LAS was biodegraded, and the removal rate was 0.5 x 10......Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...... atoms. The reactor was operated with a hydraulic retention time of 12 h with effluent recirculation in an effluent to influent ratio of 5 to 1. A sterile reactor operated in parallel revealed that sorption to sludge particles initially accounted for a major LAS removal. After 8 days of reactor operation...

  14. An international survey of in-service inspection experience with prestressed concrete pressure vessels and containments for nuclear reactors

    International Nuclear Information System (INIS)

    1982-04-01

    An international survey is presented of experience obtained from the in-service surveillance of prestressed concrete pressure vessels and containments for nuclear reactors. Some information on other prestressed concrete structures is also given. Experience has been gained during the working life of such structures in Western Europe and the USA over the years since 1967. For each country a summary is given of the nuclear programme, national standards and Codes of Practice, and the detailed in-service inspection programme. Reports are then given of the actual experience obtained from the inspection programme and the methods of measurement, examination and reporting employed in each country. A comprehensive bibliography of over 100 references is included. The appendices contain information on nuclear power stations which are operating, under construction or planned worldwide and which employ either prestressed concrete pressure vessels or containments. (U.K.)

  15. A WISE Survey of Star Formation in the Milky Way: New Insight into Galaxy Evolution

    Science.gov (United States)

    Koenig, Xavier

    We propose to measure the recent star formation rate (SFR) in the Perseus Arm of the Milky Way galaxy and its relation to the surface density of gas, whether molecular or atomic on a range of scales from star forming clusters through large star forming complexes to the full scale of the Galactic Arm. We will test the connection between the SFR-gas relationship in the Galaxy and comparable measurements made in external galaxies in order to probe its origin and better understand the role and contribution of star formation to cosmological galaxy evolution. We also propose to study star formation that has been triggered by the recent formation of massive star clusters in order to discern the mechanisms of triggering that may be operating on super bubble size scales of more than 100 parsecs. This study will allow us to understand one of the key factors that sets the efficiency with which gas becomes stars as galaxies evolve with time. In order to achieve these goals, we will carry out a census of young stellar objects in the outer Milky Way Perseus Arm, using data gathered by the WISE and 2MASS all-sky surveys, with additional use of archival data from the Spitzer Space Telescope. We will develop and refine a young star finding algorithm that uses WISE and 2MASS photometry to identify and classify young stars and filters out contaminating objects such as background galaxies. We will measure the gas content with extinction maps made with data from 2MASS. We will test the triggered star formation models by analyzing the spatial distributions of young stars in super-bubbles and massive star forming regions in the Perseus Arm. This study will produce a key, like-for-like comparison between the extragalactic star formation rate-molecular gas relation and the Galactic relation and will advance the progress in linking Galactic and extragalactic studies of star formation, studying massive star forming regions that are representative of the major mode of star formation. The

  16. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurepin, V.A.; Kulik, D.A.; Hitpold, A.; Nicolet, M

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO{sub 2} by incremental additions of O{sub 2} in H{sub 2}O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni

  17. A survey of microstructural evolution in high burnup fuels for light water reactor. Implantation of high energy particles in accelerator

    International Nuclear Information System (INIS)

    Sonoda, Takeshi; Kinoshita, Mikiyasu

    1998-01-01

    In recent years, the burnup of LWR UO 2 fuel has frequently been increased by steps from 33 to 55 GWd/tU assembly average have been reached. At burnups above about 45 GWd/tU of the pellet average, a porous outer ring (the so-called ''rim structure'') is formed with a typical thickness of 100 to 200 μm. This region exhibits several changes of material properties, such as degradation of thermal conductivity and swelling with high porosity. In order to develop fuels for high burnup usage, understanding of the formation process of the rim structure is essential. This survey summarizes the previous models for the formation mechanism of rim structure, and clarifies the relationship between the rim structure and the accumulation process of defects and precipitates under high burnup irradiation. The formation mechanism of rim structure is summarized as (1) fracture of grains due to intragranular pores and recrystallization, (2) polygonization, and (3) recrystallization after defect accumulation. The mechanism (1) occurs in the 'heterogeneous phase' and (2) and (3) to 'homogeneous phase' in the nucleation of recrystallized grains. In order to study various effects separately to investigate the formation and recovery of radiation damage as well as the behavior (lattice location, diffusion, dislocation, bubbles, precipitation, etc.) of the fission products, high energy particles (electron, γ, Kr, Xe, Cs and etc.) irradiation in accelerators is effective in clarifying the formation process of rim structure. This survey summarizes the advantages and possibilities of high energy particles irradiation experiments. Finally, the effective experiments for understanding of the formation mechanism of the rim structure are proposed. (author)

  18. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  19. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  20. Research reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2001-02-01

    This is a textbook on research reactor instrumentation for training purposes, it gives a survey on research reactor instrumentation requirements and eight exercises covering the major aspects of this topic are presented. (author)

  1. Reactor technology

    International Nuclear Information System (INIS)

    Erdoes, P.

    1977-01-01

    This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)

  2. Report of the Survey on the Design Review of New Reactor Applications. Volume 1 - Instrumentation and Control

    International Nuclear Information System (INIS)

    Downey, Steven

    2014-06-01

    At the tenth meeting of the CNRA Working Group on the Regulation of New Reactors (WGRNR) in March 2013, the members agreed to present the responses to the Second Phase, or Design Phase, of the Licensing Process Survey as a multi-volume text. As such, each report will focus on one of the eleven general technical categories covered in the survey. The general technical categories were selected to conform to the topics covered in the International Atomic Energy Agency (IAEA) Safety Guide GS-G-4.1. This report, which is the first volume, provides a discussion of the survey responses related to Instrumentation and Control (I and C). The Instrumentation and Control category includes the twelve following technical topics: Reactor trip system, actuation systems for Engineered Safety Features (ESF), safe shutdown system, safety-related display instrumentation, information and interlock systems important to safety, controls systems, main control room, supplementary control room, diverse I and C systems, data communication systems, software reliability and cyber-security. For each technical topic, the member countries described the information provided by the applicant, the scope and level of detail of the technical review, the technical basis for granting regulatory authorisation, the skill sets required and the Level of effort needed to perform the review. Based on a comparison of the information provided in response to the survey, the following observations were made: - Among the regulatory organisations that responded to the survey, there are similarities in the design information provided by an applicant. In most countries, the design information provided by an applicant includes, but is not limited to, a description of the I and C system design and functions, a description of the verification and validation programmes, and provisions for analysis, testing, and inspection of various I and C systems. - In addition to the regulations, it is a common practice for countries

  3. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  4. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  5. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Directory of Open Access Journals (Sweden)

    A. M. Ortega

    2016-06-01

    Full Text Available Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH  ∼  0.3 day SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope  ∼  −0.65. Oxidation state of carbon (OSc in reactor SOA increased steeply with age and remained elevated (OSC  ∼  2 at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background vs. photochemical age is similar to

  6. Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR)

    Science.gov (United States)

    Rák, Zs.; Bucholz, E. W.; Brenner, D. W.

    2015-06-01

    A serious concern in the safety and economy of a pressurized water nuclear reactor is related to the accumulation of boron inside the metal oxide (mostly NiFe2O4 spinel) deposits on the upper regions of the fuel rods. Boron, being a potent neutron absorber, can alter the neutron flux causing anomalous shifts and fluctuations in the power output of the reactor core. This phenomenon reduces the operational flexibility of the plant and may force the down-rating of the reactor. In this work an innovative approach is used to combine first-principles calculations with thermodynamic data to evaluate the possibility of B incorporation into the crystal structure of NiFe2O4 , under conditions typical to operating nuclear pressurized water nuclear reactors. Analyses of temperature and pH dependence of the defect formation energies indicate that B can accumulate in NiFe2O4 as an interstitial impurity and may therefore be a major contributor to the anomalous axial power shift observed in nuclear reactors. This computational approach is quite general and applicable to a large variety of solids in equilibrium with aqueous solutions.

  7. Multiple linear regression model for bromate formation based on the survey data of source waters from geographically different regions across China.

    Science.gov (United States)

    Yu, Jianwei; Liu, Juan; An, Wei; Wang, Yongjing; Zhang, Junzhi; Wei, Wei; Su, Ming; Yang, Min

    2015-01-01

    A total of 86 source water samples from 38 cities across major watersheds of China were collected for a bromide (Br(-)) survey, and the bromate (BrO3 (-)) formation potentials (BFPs) of 41 samples with Br(-) concentration >20 μg L(-1) were evaluated using a batch ozonation reactor. Statistical analyses indicated that higher alkalinity, hardness, and pH of water samples could lead to higher BFPs, with alkalinity as the most important factor. Based on the survey data, a multiple linear regression (MLR) model including three parameters (alkalinity, ozone dose, and total organic carbon (TOC)) was established with a relatively good prediction performance (model selection criterion = 2.01, R (2) = 0.724), using logarithmic transformation of the variables. Furthermore, a contour plot was used to interpret the influence of alkalinity and TOC on BrO3 (-) formation with prediction accuracy as high as 71 %, suggesting that these two parameters, apart from ozone dosage, were the most important ones affecting the BFPs of source waters with Br(-) concentration >20 μg L(-1). The model could be a useful tool for the prediction of the BFPs of source water.

  8. The remnants of galaxy formation from a panoramic survey of the region around M31.

    Science.gov (United States)

    McConnachie, Alan W; Irwin, Michael J; Ibata, Rodrigo A; Dubinski, John; Widrow, Lawrence M; Martin, Nicolas F; Côté, Patrick; Dotter, Aaron L; Navarro, Julio F; Ferguson, Annette M N; Puzia, Thomas H; Lewis, Geraint F; Babul, Arif; Barmby, Pauline; Bienaymé, Olivier; Chapman, Scott C; Cockcroft, Robert; Collins, Michelle L M; Fardal, Mark A; Harris, William E; Huxor, Avon; Mackey, A Dougal; Peñarrubia, Jorge; Rich, R Michael; Richer, Harvey B; Siebert, Arnaud; Tanvir, Nial; Valls-Gabaud, David; Venn, Kimberly A

    2009-09-03

    In hierarchical cosmological models, galaxies grow in mass through the continual accretion of smaller ones. The tidal disruption of these systems is expected to result in loosely bound stars surrounding the galaxy, at distances that reach 10-100 times the radius of the central disk. The number, luminosity and morphology of the relics of this process provide significant clues to galaxy formation history, but obtaining a comprehensive survey of these components is difficult because of their intrinsic faintness and vast extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We detect stars and coherent structures that are almost certainly remnants of dwarf galaxies destroyed by the tidal field of M31. An improved census of their surviving counterparts implies that three-quarters of M31's satellites brighter than M(v) = -6 await discovery. The brightest companion, Triangulum (M33), is surrounded by a stellar structure that provides persuasive evidence for a recent encounter with M31. This panorama of galaxy structure directly confirms the basic tenets of the hierarchical galaxy formation model and reveals the shared history of M31 and M33 in the unceasing build-up of galaxies.

  9. A multiwavelength survey of HI-excess galaxies with surprisingly inefficient star formation

    Science.gov (United States)

    Geréb, K.; Janowiecki, S.; Catinella, B.; Cortese, L.; Kilborn, V.

    2018-01-01

    We present the results of a multiwavelength survey of H I-excess galaxies, an intriguing population with large H I reservoirs associated with little current star formation. These galaxies have stellar masses M⋆ > 1010 M⊙, and were identified as outliers in the gas fraction vs. NUV-r color and stellar mass surface density scaling relations based on the GALEX Arecibo SDSS Survey (GASS). We obtained H I interferometry with the GMRT, Keck optical long-slit spectroscopy and deep optical imaging (where available) for four galaxies. Our analysis reveals multiple possible reasons for the H I excess in these systems. One galaxy, AGC 10111, shows an H I disk that is counter-rotating with respect to the stellar bulge, a clear indication of external origin of the gas. Another galaxy appears to host a Malin 1-type disk, where a large specific angular momentum has to be invoked to explain the extreme MHI/M⋆ ratio of 166%. The other two galaxies have early-type morphology with very high gas fractions. The lack of merger signatures (unsettled gas, stellar shells and streams) in these systems suggests that these gas-rich disks have been built several Gyr-s ago, but it remains unclear how the gas reservoirs were assembled. Numerical simulations of large cosmological volumes are needed to gain insight into the formation of these rare and interesting systems.

  10. Extensive survey of molecules related to wood formation and gravity for space agriculture.

    Science.gov (United States)

    Motohashi, Kyohei; Tomita-Yokotani, Kaori; Baba, Keiichi; Furukawa, Jun; Sato, Seigo; Suzuki, Toshisada; Hashimoto, Hirofumi; Yamashita, Masamichi; Japanese Space Tree Working Group

    Most, if not all, terrestrial subjects are under the influence of gravity. Since the gravitational force is proportional to the mass of subject, gravity is dominant for larger masses. The response of a plant against gravity is not an exception in this respect even it shows rather complicated features. For the angiosperm tree, its shape is determined by the forming tension wood, which induces more tensile stress in the xylem than in the normal wood. The mechanism of tension wood formation and its relevance to gravity have been extensively studied. Gibberellin is known to be responsible for this phenomenon in angiosperm tree, for example, the Japanese cherry tree, Prunus jamasakura. However, full understanding of the mechanisms has not yet been clarified. For an extensive survey of molecules related to tension wood formation, we induced an artificial tension wood formation and examined the tension wood formation by microscopic observations with double-staining. This enables the screening of really functional molecules in the space environment for future space agriculture. We demonstrated that Prunus incise is suitable for this research as a test material based on several reasons. We focused our attention in the region of the branch, i.e., the CosmoTree in CosmoBon, and established an experimental system to analyze the real functional factors of the tension wood. This study might ensure wood formation in a space environment and use woody plants as a material for space development. ("CosmoBon" is the Bonsai small tree for our space experiments. "CosmoTree" is a small branch/tree.)

  11. "INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, REVISION 1, ANN ARBOR, MICHIGAN

    Energy Technology Data Exchange (ETDEWEB)

    ALTIC, NICK A

    2013-08-01

    At the NRC's request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM's project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM's FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGL{sub W}. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGL{sub W} values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  12. INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE FORD NUCLEAR REACTOR, ANN ARBOR, MICHIGAN

    Energy Technology Data Exchange (ETDEWEB)

    ALTIC, NICK A

    2013-07-25

    At the NRC's request, ORAU conducted confirmatory surveys of the FNR during the period of December 4 through 6, 2012. The survey activities included visual inspections and measurement and sampling activities. Confirmatory activities also included the review and assessment of UM's project documentation and methodologies. Surface scans identified elevated activity in two areas. The first area was on a wall outside of Room 3103 and the second area was in the southwest section on the first floor. The first area was remediated to background levels. However, the second area was due to gamma shine from a neighboring source storage area. A retrospective analysis of UM's FSS data shows that for the SUs investigated by the ORAU survey team, UM met the survey requirements set forth in the FSSP. The total mean surface activity values were directly compared with the mean total surface activity reported by UM. Mean surface activity values determined by UM were within two standard deviations of the mean determined by ORAU. Additionally, all surface activity values were less than the corresponding gross beta DCGLW. Laboratory analysis of the soil showed that COC concentrations were less than the respective DCGLW values. For the inter-lab comparison, the DER was above 3 for only one sample. However, since the sum of fractions for each of the soil samples was below 1, thus none of the samples would fail to meet release guidelines. Based on the findings of the side-by-side direct measurements, and after discussion with the NRC and ORAU, UM decided to use a more appropriate source efficiency in their direct measurement calculations and changed their source efficiency from 0.37 to 0.25.

  13. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  14. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Energy Technology Data Exchange (ETDEWEB)

    De Buizer, James M.; Shuping, Ralph [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States); Liu, Mengyao; Tan, Jonathan C.; Staff, Jan E.; Tanaka, Kei E. I. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Beltrán, Maria T. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Whitney, Barbara [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States)

    2017-07-01

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μ m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m {sub *} ∼ 10–50 M {sub ⊙} accreting at ∼10{sup −4}–10{sup −3} M {sub ⊙} yr{sup −1} inside cores of initial masses M {sub c} ∼ 30–500 M {sub ⊙} embedded in clumps with mass surface densities Σ{sub cl} ∼ 0.1–3 g cm{sup −2}. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

  15. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Science.gov (United States)

    De Buizer, James M.; Liu, Mengyao; Tan, Jonathan C.; Zhang, Yichen; Beltrán, Maria T.; Shuping, Ralph; Staff, Jan E.; Tanaka, Kei E. I.; Whitney, Barbara

    2017-07-01

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μm. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m* ∼ 10–50 M⊙ accreting at ∼10‑4–10‑3 M⊙ yr‑1 inside cores of initial masses Mc ∼ 30–500 M⊙ embedded in clumps with mass surface densities Σcl ∼ 0.1–3 g cm‑2. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

  16. A survey of selected neutron-activation reactions with short-lived products of importance to fusion reactor technology

    International Nuclear Information System (INIS)

    Ward, R.C.; Gomes, I.C.; Smith, D.L.

    1994-11-01

    The status of the cross sections for production of short-lived radioactivities in the intense high-energy neutron fields associated with D-T fusion reactors is investigated. The main concerns relative to these very radioactive isotopes are with radiation damage to sensitive components such as superconducting magnets, the decay-heat problem and the safety of personnel during operation of the facility. The present report surveys the status of nuclear data required to assess these problems. The study is limited to a few high-priority nuclear reactions which appear to be of critical concern in this context. Other reactions of lesser concern are listed but are not treated in the present work. Among the factors that were considered in defining the relevant reactions and setting priorities are: quantities of the elemental materials in a fusion reactor, isotopic abundances within elemental categories, the decay properties of the induced radioactive byproducts, the reaction cross sections, and the nature of the decay radiations. Attention has been focused on radioactive species with half lives in the range from about 1 second to 15 minutes. Available cross-section and reaction-product decay information from the literature has been compiled and included in the report. Uncertainties have been estimated by examining several sets of experimental as well as evaluated data. Comments on the general status of data for various high-priority reactions are offered. On the basis of this investigation, it has been found that the nuclear data are in reasonably good shape for some of the most important reactions but are unacceptable for others. Based on this investigation, the reactions which should be given the greatest attention are: 16 O(n,p) 16 N, 55 Mn(n,p) 55 Cr, 57 Fe(n,p) 57 Mn, 186 W(n,2n) 185m W, and 207 Pb(n,n') 207m Pb. However, the development of fusion power would benefit from an across-the-board refinement in these nuclear data so that a more accurate quantitative

  17. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  18. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    Science.gov (United States)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  19. Origins Space Telescope: 3D infrared surveys of star formation and black hole growth in galaxies over cosmic time

    Science.gov (United States)

    Pope, Alexandra; Armus, Lee; bradford, charles; Origins Space Telescope STDT

    2018-01-01

    In the coming decade, new telescope facilities and surveys aim to provide a 3D map of the unobscured Universe over cosmic time. However, much of galaxy formation and evolution occurs behind dust, and is only observable through infrared observations. Previous extragalactic infrared surveys were fundamentally limited to a 2D mapping of the most extreme populations of galaxies due to spatial resolution and sensitivity. The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies sponsored by NASA to provide input to the 2020 Astronomy and Astrophysics Decadal survey. OST is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum, which will achieve spectral line sensitivities up to 1000 times deeper than previous infrared facilities. With powerful instruments such as the Medium Resolution Survey Spectrometer (MRSS), capable of simultaneous imaging and spectroscopy, the extragalactic infrared sky can finally be surveyed in 3D. In addition to spectroscopic redshifts, the rich suite of lines in the infrared provides unique diagnostics of the ongoing star formation (both obscured and unobscured) and the central supermassive black hole growth. In this poster, we present a simulated extragalactic survey with OST/MRSS which will detect millions of galaxies down to well below the knee of the infrared luminosity function. We demonstrate how this survey can map the coeval star formation and black hole growth in galaxies over cosmic time.

  20. AOX formation and elimination in the oxidative treatment of synthetic wastewaters in a UV-free surface reactor.

    Science.gov (United States)

    Baycan, Neval; Sengul, Füsun; Thomanetz, Erwin

    2005-01-01

    The effect of chloride concentration and pH on the UV oxidation systems was examined. Phenol and methanol were used as organic substances. The treatment of these chemicals by UV oxidation using a newly developed lab scale pretest UV-Free Surface Reactor (UV-FSR) with and without Cl- addition at different pH values, is evaluated. Results of this study indicated that the Cl- concentration of the water and the chemical structure of the substances is more important than the pH of the water. There was no AOX at the beginning of the experiments, but a de-novo synthesis of AOX was observed during the batch experiments. This is caused by the high chloride content of the wastewaters. It can be supposed that OH-radicals oxidize some chloride-ions to form chlorine, which further reacts with organic compounds. During the treatment, these AOX compounds which are produced from the beginning of the reaction are destroyed again. Evaluations of these experiments were done according to TOC and AOX results. Approximately 80% and 99% TOC removal efficiencies were obtained for the treatment of Phenol and Methanol-containing wastewaters, respectively. In the literature, there are no relevant publications concerning the AOX formation of wastewater by wet oxidation-iron catalysed or by application of UV. For that reason, the main objectives of this study were: 1. to see the influence of chloride concentration and pH on the AOX(de.novo) formation with newly developed UV-Free Surface Reactor (UV-FSR), 2. to make a comparison of different AOPs, 3. to observe the effect of the chloride concentration on the TOC degradation efficiency, 4. to optimise reaction conditions. In synthetic wastewaters, Methanol (CH3OH) and Phenol (C6H5 OH) are used as pollutants. The concentration of each substance was 1000 mg/l and COD values were calculated theoretically. The H2O2 addition was calculated according to the COD with a convenient stoichiometric factor (e.g. 1). During experiments, the pH was always

  1. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  2. A National Survey Examining Manuscript Dissertation Formats Among Nursing PhD Programs in the United States.

    Science.gov (United States)

    Graves, Janessa M; Postma, Julie; Katz, Janet R; Kehoe, Leanne; Swalling, Eileen; Barbosa-Leiker, Celestina

    2018-03-08

    Among research-focused nursing doctoral (PhD) programs in the United States, the traditional dissertation format has recently given way to a series of publication-ready manuscripts, often bookended by introduction and conclusion chapters. To help programs make decisions about the use of these formats, this study undertook a national survey of programs offering PhDs in nursing. The purpose of this study was to explore the advantages and disadvantages of the traditional format versus manuscript option for dissertations among nursing PhD programs in the United States. Cross-sectional census survey of U.S. nursing PhD programs. A web-based survey was administered to all U.S. nursing PhD programs. Respondents indicated formats offered, factors contributing to decisions of which formats to offer, and lessons learned. Descriptive statistics and inductive content analyses were used for analysis. Of 121 eligible institutions, 79 provided eligible responses (66.7%). The majority (59%) offered both formats; 11% offered the manuscript option only, and 24% offered the traditional format only. Faculty support (or lack thereof) contributed to adoption (or not) of the manuscript option. Respondents' approaches to the manuscript option (e.g., number of papers) and advice are summarized. Manuscript option dissertations are commonly offered and provide benefits to students and faculty; however, thoughtful implementation is critical. Programs need to agree upon clear expectations and have graduate school support (e.g., formatting). Faculty need mentorship in advising manuscript option students who choose to use this format, and the time and support. Finally, students need additional writing skills that could be provided through coursework or via individual work with mentors. As nursing education continues to expand further into doctoral research, programs must examine dissertation formats in order to both prepare future nurse scholars and disseminate nursing research that is critical

  3. Zr-alloys, the nuclear material for water reactor fuel. A survey and update with focus on fuel for pressurized water reactor systems

    International Nuclear Information System (INIS)

    Weidinger, H.

    2008-01-01

    This paper is intended to provide a solid overview on the development of the requirements and the respective answers found as far as water cooled fuel rods and assemblies are concerned. It shall be a help as well for designers and manufacturers as also for users of this fuel, because only a broad and consistent knowledge on all aspects of the application of this material in nuclear fuel can guarantee a successful operation under the still increasing requirements in water cooled reactor cores

  4. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  5. The Red MSX Source survey: critical tests of accretion models for the formation of massive stars

    Science.gov (United States)

    Davies, Ben; Hoare, Melvin G.; Lumsden, Stuart L.; Hosokawa, Takashi; Oudmaijer, René D.; Urquhart, James S.; Mottram, Joseph C.; Stead, Joseph

    2011-09-01

    There is currently no accepted theoretical framework for the formation of the most massive stars, and the manner in which protostars continue to accrete and grow in mass beyond ˜10 M⊙ is still a controversial topic. In this study we use several prescriptions of stellar accretion and a description of the Galactic gas distribution to simulate the luminosities and spatial distribution of massive protostellar population of the Galaxy. We then compare the observables of each simulation to the results of the Red MSX Source (RMS) survey, a recently compiled data base of massive young stellar objects (YSO). We find that the observations are best matched by accretion rates which increase as the protostar grows in mass, such as those predicted by the turbulent core and competitive accretion (i.e. Bondi-Hoyle) models. These 'accelerating accretion' models provide very good qualitative and quantitative fits to the data, though we are unable to distinguish between these two models on our simulations alone. We rule out models with accretion rates which are constant with time, and those which are initially very high and which fall away with time, as these produce results which are quantitatively and/or qualitatively incompatible with the observations. To simultaneously match the low- and high-luminosity YSO distribution we require the inclusion of a 'swollen-star' pre-main-sequence phase, the length of which is well-described by the Kelvin-Helmholz time-scale. Our results suggest that the lifetime of the YSO phase is ˜105 yr, whereas the compact H II region phase lasts between ˜2 and 4 × 105 yr depending on the final mass of the star. Finally, the absolute numbers of YSOs are best matched by a globally averaged star formation rate for the Galaxy of 1.5-2 M⊙.

  6. Critical survey of the neutron-induced creep behaviour of steel alloys for the fusion reactor materials programme

    International Nuclear Information System (INIS)

    Hausen, H.

    1985-01-01

    The differences between the irradiation environment of a fission reactor and that of a fusion reactor are respectively described in relation to the radiation damage found and expected in the two types of nuclear reactor. It is shown that the microstructure developing for instance in stainless steel alloys is almost invariant to whether the production rate of helium is high or low. The finding is valid up to neutron doses corresponding to about 60 dpa. For this reason, irradiation creep data obtained in fission reactors may be used, with caution, for predicting creep behaviour in fusion reactors.It was further recognized that irradiation creep performed with high energy particles from an accelerator, yields results which are comparable to those obtained in fission reactors. For this reason, simulation creep experiments are found to be valuable for the development of irradiation creep resistant materials using, for example, high energy electrons or protons. Such kind of experiments are performed in many laboratories. For irradiation doses larger than 60 dpa, predictions with respect to creep rates in fission and fusion reactors are difficult. In end-of-life tests, which concern swelling, ductility, tensile properties, rupture, fatigue and embrittlement, the presence of helium, due to its production rate being much higher in most materials exposed to 14 MeV neutrons than to fission neutrons, may be of great importance

  7. CARMA LARGE AREA STAR FORMATION SURVEY: OBSERVATIONAL ANALYSIS OF FILAMENTS IN THE SERPENS SOUTH MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M.; Looney, L.; Lee, K.; Segura-Cox, D. [Department of Astronomy, University of Illinois at Urbana—Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Arce, H. G.; Plunkett, A. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Mundy, L. G.; Storm, S.; Teuben, P. J.; Pound, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Isella, A.; Kauffmann, J. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Rosolowsky, E. [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747-AD Groningen (Netherlands); Ostriker, E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Tassis, K. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, P.O. Box 2208, GR-710 03 Heraklion, Crete (Greece); Shirley, Y. L., E-mail: manferna@gmail.com [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-01

    We present the N{sub 2}H{sup +} (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin{sup 2} and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s{sup –1}, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N{sub 2}H{sup +} emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N{sub 2}H{sup +} filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  8. Negative ion formation and neutralization processes, (1)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-01-01

    This review has been made preliminary for the purpose of contribute to the plasma heating by ''negative ion based neutral beam injection'' in the magnetic confinement fusion reactor. A compilation includes the survey of the general processes of negative ion formation, the data of the cross section of H - ion formation and the neutralization of H - ion, and some of new processes of H - ion formation. The data of cross section are mainly experimental, but partly include the results of theoretical calculation. (author)

  9. Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    Two models for deposit formation in suspension firing of biomass have been developed. Both models describe deposit buildup by diffusion and subsequent condensation of vapors, thermophoresis of aerosols, convective diffusion of small particles, impaction of large particles, and reaction. The models...... stronger influence of this parameter. Model #2 was able to provide a reasonable description of the influence of temperature on the deposit buildup rates observed in the EFR experiments. A parametric study was conducted to examine the influence of some physical parameters, including ash concentration...... used to describe the deposit formation rates and deposit chemistry observed in a series of entrained flow reactor (EFR) experiments using straw and wood as fuels. It was found that model #1 was not able to describe the observed influence of temperature on the deposit buildup rates, predicting a much...

  10. Survey of the thermal and fast neutron flux distribution in the core of IPR-R1 reactor

    International Nuclear Information System (INIS)

    Guimaraes, R.R.R.

    1985-01-01

    A methodology to obtain the neutron flux distribution inside the core of a reactor is presented, aiming to analyze specifications for increasing reactor power. The activation measurement technique with irradiation of steel eletrodes of 700 mm of lenght, put in acrylic rods was used. In the detection process and in the counting of activation product, a Ge (Li) detector with high resolution and a scanning mechanical system, constructed and projected in CDTN (Nuclear Technology Development Center) were used. (E.G.) [pt

  11. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  12. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Directory of Open Access Journals (Sweden)

    A. John Blacker

    2015-12-01

    Full Text Available The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  13. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors.

    Science.gov (United States)

    Blacker, A John; Jolley, Katherine E

    2015-01-01

    The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72-100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  14. Review of consequences of uranium hydride formation in N-Reactor fuel elements stored in the K-Basins

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.W.

    1994-09-28

    The 105-K Basins on the Hanford site are used to store uranium fuel elements and assemblies irradiated in and discharged from N Reactor. The storage cylinders in KW Basin are known to have some broken N reactor fuel elements in which the exposed uranium is slowly reacting chemically with water in the cylinder. The products of these reactions are uranium oxide, hydrogen, and potentially some uranium hydride. The purpose of this report is to document the results f the latest review of potential, but highly unlikely accidents postulated to occur as closed cylinders containing N reactor fuel assemblies are opened under water in the KW basin and as a fuel assembly is raised from the basin in a shipping cask for transportation to the 327 Building for examination as part of the SNF Characterization Program. The postulated accidents reviews in this report are considered to bound all potential releases of radioactivity and hydrogen. These postulated accidents are: (1) opening and refill of a cylinder containing significant amounts of hydrogen and uranium hydride; and (2) draining of the single element can be used to keep the fuel element submerged in water after the cask containing the can and element is lifted from the KW Basin. Analysis shows the release of radioactivity to the site boundary is significantly less than that allowed by the K Basin Safety Evaluation. Analysis further shows there would be no damage to the K Basin structure nor would there be injury to personnel for credible events.

  15. Staging of surveys of small uranium deposits in Bohemian Massif crystalline formation

    International Nuclear Information System (INIS)

    Vesely, T.

    1981-01-01

    The projecting and implementation of uranium prospecting is divided into seven stages. Research work consists of subject research and of prognostic estimation. Surveying work is implemented in the stage of preparatory prospecting, the stage of evaluation prospecting and the stage of detailed prospecting. The survey work proper consists of preliminary and detailed survey stages. The scope of the individual stages is described and the application is outlined of the respective stages in surveying small uranium deposits. (J.B.)

  16. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana-Champaign, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Kauffmann, Jens [Max Planck Institut für Radioastronomie, Auf dem Hügel 69 D-53121, Bonn Germany (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Volgenau, N. H. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tassis, Konstantinos, E-mail: ijlee9@astro.umd.edu [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, PO Box 2208, GR-710 03, Heraklion, Crete (Greece); and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 → 0), HCO{sup +} (J = 1 → 0), and HCN (J = 1 → 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ∼7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ∼0.2 pc and widths of ∼0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  17. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

    Science.gov (United States)

    Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.

    2009-08-01

    The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of

  18. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical ...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  19. Multilayered and digitally structured presentation formats of trustworthy recommendations: a combined survey and randomised trial

    Science.gov (United States)

    Vandvik, Per Olav; Alonso-Coello, Pablo; Akl, Elie A; Thornton, Judith; Rigau, David; Adams, Katie; O'Connor, Paul; Guyatt, Gordon; Kristiansen, Annette

    2017-01-01

    Objectives To investigate practicing physicians' preferences, perceived usefulness and understanding of a new multilayered guideline presentation format—compared to a standard format—as well as conceptual understanding of trustworthy guideline concepts. Design Participants attended a standardised lecture in which they were presented with a clinical scenario and randomised to view a guideline recommendation in a multilayered format or standard format after which they answered multiple-choice questions using clickers. Both groups were also presented and asked about guideline concepts. Setting Mandatory educational lectures in 7 non-academic and academic hospitals, and 2 settings involving primary care in Lebanon, Norway, Spain and the UK. Participants 181 practicing physicians in internal medicine (156) and general practice (25). Interventions A new digitally structured, multilayered guideline presentation format and a standard narrative presentation format currently in widespread use. Primary and secondary outcome measures Our primary outcome was preference for presentation format. Understanding, perceived usefulness and perception of absolute effects were secondary outcomes. Results 72% (95% CI 65 to 79) of participants preferred the multilayered format and 16% (95% CI 10 to 22) preferred the standard format. A majority agreed that recommendations (multilayered 86% vs standard 91%, p value=0.31) and evidence summaries (79% vs 77%, p value=0.76) were useful in the context of the clinical scenario. 72% of participants randomised to the multilayered format vs 58% for standard formats reported correct understanding of the recommendations (p value=0.06). Most participants elected an appropriate clinical action after viewing the recommendations (98% vs 92%, p value=0.10). 82% of the participants considered absolute effect estimates in evidence summaries helpful or crucial. Conclusions Clinicians clearly preferred a novel multilayered presentation format to the

  20. THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Tracy M. A.; Bonaventura, Nina [McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Muzzin, Adam [Leiden Observatory, University of Leiden, P.O. Box 9514, 2300 RA Leiden (Netherlands); Noble, Allison; Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Geach, James [Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Hertfordshire AL109AB (United Kingdom); Hezevah, Yashar [Kavli Institue for Particle Physics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Wilson, Gillian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Shupe, David [NASA Herschel Science Center, IPAC, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  1. The survey on data format of Earth observation satellite data at JAXA.

    Science.gov (United States)

    Matsunaga, M.; Ikehata, Y.

    2017-12-01

    JAXA's earth observation satellite data are distributed by a portal web site for search and deliver called "G-Portal". Users can download the satellite data of GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 from G-Portal. However, these data formats are different by each satellite like HDF4, HDF5, NetCDF4, CEOS, etc., and which formats are not familiar to new data users. Although the HDF type self-describing format is very convenient and useful for big dataset information, old-type format product is not readable by open GIS tool nor apply OGC standard. Recently, the satellite data are widely used to be applied to the various needs such as disaster, earth resources, monitoring the global environment, Geographic Information System(GIS) and so on. In order to remove a barrier of using Earth Satellite data for new community users, JAXA has been providing the format-converted product like GeoTIFF or KMZ. In addition, JAXA provides format conversion tool itself. We investigate the trend of data format for data archive, data dissemination and data utilization, then we study how to improve the current product format for various application field users and make a recommendation for new product.

  2. Protective structures on the surface of zirconium components of light water reactor cores: Formation, testing, and prototype equipment

    Energy Technology Data Exchange (ETDEWEB)

    Begrambekov, L. B.; Gordeev, A. A.; Evsin, A. E., E-mail: evsin@plasma.mephi.ru; Ivanova, S. V.; Kaplevsky, A. S.; Sadovskiy, Ya. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    The results of tests of plasma treatment of zirconium and deposition of protective yttrium coatings used as the methods of protection of zirconium components of light water reactor cores against hydrogenation are detailed. The amount of hydrogen in the treated sample exposed to superheated steam for 2500 h at temperature T = 400°C and pressure p = 1 atm was five times lower than the corresponding value for the untreated one. The amount of hydrogen in the sample coated with yttrium remained almost unchanged in 4000 h of exposure. A plasma method for rapid testing for hydrogen resistance is proposed. The hydrogenation rate provided by this method is 700 times higher than that in tests with superheated steam. The results of preliminary experiments confirm the possibility of constructing a unit for batch processing of the surfaces of fuel rod claddings.

  3. Protective structures on the surface of zirconium components of light water reactor cores: Formation, testing, and prototype equipment

    Science.gov (United States)

    Begrambekov, L. B.; Gordeev, A. A.; Evsin, A. E.; Ivanova, S. V.; Kaplevsky, A. S.; Sadovskiy, Ya. A.

    2015-12-01

    The results of tests of plasma treatment of zirconium and deposition of protective yttrium coatings used as the methods of protection of zirconium components of light water reactor cores against hydrogenation are detailed. The amount of hydrogen in the treated sample exposed to superheated steam for 2500 h at temperature T = 400°C and pressure p = 1 atm was five times lower than the corresponding value for the untreated one. The amount of hydrogen in the sample coated with yttrium remained almost unchanged in 4000 h of exposure. A plasma method for rapid testing for hydrogen resistance is proposed. The hydrogenation rate provided by this method is 700 times higher than that in tests with superheated steam. The results of preliminary experiments confirm the possibility of constructing a unit for batch processing of the surfaces of fuel rod claddings.

  4. Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor.

    Science.gov (United States)

    Ueno, Y; Haruta, S; Ishii, M; Igarashi, Y

    2001-10-01

    Changes in product formation during carbohydrate fermentation by anaerobic microflora in a continuous flow stirred tank reactor were investigated with respect to the dilution rate in the reactor. In the fermentation by methanogenic microflora, stable methane fermentation, producing methane and carbon dioxide, was observed at relatively low dilution rates (less than 0.33 d(-1) on glucose and 0.20 d(-1) on cellulose). Decomposition of cellulose in the medium was a rate-limiting step in the reaction, because glucose was easily consumed at all applied dilution rates (0.07-4.81 d(-1)). Intermediate metabolites of methane fermentation, such as lactate, ethanol, acetate, butyrate, formate, hydrogen, and carbon dioxide, were accumulated as dilution rate increased. Maximum yield of hydrogen was obtained at 4.81 d(-1) of dilution rate (0.1 mol/mol glucose on glucose or 0.7 mol/mol hexose on cellulose). Lactate was the major product on glucose (1.2 mol/mol glucose), whereas ethanol was predominant on cellulose (0.7 mol/mol hexose). An analysis by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial 16S rDNA of the microflora indicated that changes in the microbial community took place at various dilution rates, and these changes appeared to correspond to the changes in product distributions. Sequence analyses of the DGGE fragments revealed the probable major population of the microflora. A band closely related to the microorganisms of thermophilic anaerobic bacteria was detected with strong intensity on both glucose and cellulose. Differences in the production yield of hydrogen could have been caused by different populations of microorganisms in each microflora. In the case of cellulose, increasing the dilution rate brought about an accumulation of microorganisms related to Clostridia species that have cellulolytic activity, this being in accordance with the notion of cellulose decomposition being the rate-limiting reaction.

  5. Survey of radiological contaminants in the near-shore environment at the Hanford Site 100-N Area reactor

    International Nuclear Information System (INIS)

    Van Verst, S.P.; Albin, C.L.; Patton, G.W.; Blanton, M.L.; Poston, T.M.; Cooper, A.T.; Antonio, E.J.

    1998-09-01

    Past operations at the Hanford Site 100-N Area reactor resulted in the release of radiological contaminants to the soil column, local groundwater, and ultimately to the near-shore environment of the Columbia River. In September 1997, the Washington State Department of Health (WDOH) and the Hanford Site Surface Environmental Surveillance Project (SESP) initiated a special study of the near-shore vicinity at the Hanford Site's retired 100-N Area reactor. Environmental samples were collected and analyzed for radiological contaminants ( 3 H, 90 Sr, and gamma/ emitters), with both the WDOH and SESP analyzing a portion of the samples. Samples of river water, sediment, riverbank springs, periphyton, milfoil, flying insects, clam shells, and reed canary grass were collected. External exposure rates were also measured for the near-shore environment in the vicinity of the 100-N Area. In addition, samples were collected at background locations above Vernita Bridge

  6. Survey of radiological contaminants in the near-shore environment at the Hanford Site 100-N Area reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van Verst, S.P.; Albin, C.L. [Washington State Dept. of Health, Olympia, WA (United States); Patton, G.W.; Blanton, M.L.; Poston, T.M.; Cooper, A.T.; Antonio, E.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-09-01

    Past operations at the Hanford Site 100-N Area reactor resulted in the release of radiological contaminants to the soil column, local groundwater, and ultimately to the near-shore environment of the Columbia River. In September 1997, the Washington State Department of Health (WDOH) and the Hanford Site Surface Environmental Surveillance Project (SESP) initiated a special study of the near-shore vicinity at the Hanford Site`s retired 100-N Area reactor. Environmental samples were collected and analyzed for radiological contaminants ({sup 3}H, {sup 90}Sr, and gamma/ emitters), with both the WDOH and SESP analyzing a portion of the samples. Samples of river water, sediment, riverbank springs, periphyton, milfoil, flying insects, clam shells, and reed canary grass were collected. External exposure rates were also measured for the near-shore environment in the vicinity of the 100-N Area. In addition, samples were collected at background locations above Vernita Bridge.

  7. Formation of hybrid gold nanoparticle network aggregates by specific host-guest interactions in a turbulent flow reactor

    NARCIS (Netherlands)

    Weinhart-Mejia, R.; Huskens, Jurriaan

    2014-01-01

    A multi-inlet vortex mixer (MIVM) was used to investigate the formation of hybrid gold nanoparticle network aggregates under highly turbulent flow conditions. To form aggregates, gold nanoparticles were functionalized with β-cyclodextrin (CD) and mixed with adamantyl (Ad)-terminated

  8. Survey of Basic Red 18 Dye Removal Using Biofilm Formed on Granular Bagass in Continuous Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2015-12-01

    Full Text Available Dyes comprising a major pollutant in the effluent from textile plants are mostly toxic, carcinogenic, mutagenic, and non-biodegradable. This experimental-laboratory study was carried out using a biofilm formed on a granular bagass bed in a continuous aerobic reactor to investigate the kinetic coefficients of the aerobic reactor as well as the effects of color concentration (30-200 mg/l, hydraulic retention time (2-8 h, and BOD concentration (200-100 mg /l on the removal of Basic Red (18 from textile effluents. The results revealed a maximum removal efficiency of 90% for an initial color concentration of 30 mg/l and a hydraulic retention time of 8 hours. A color removal efficiency of 86% was recorded for an influent BOD concentration of 200 mg/l. Also, maximum substrate utilization rate (K for organic loadings of 100 and 200 mg/L were 0.23 and 1.41 while the half velocity constant values were 44.85 and 19.39, respectively. Moreover, for the same organic loadings, the values of 0.35 and 0.5 were recorded for decay coefficient (Kd and 37.36, 4.83 for maximum specific growth rate coefficient (μm, respectively. Based on the findings of this study, it may be claimed that the biofilm formed on a granular bagass bed in a continuous aerobic reactor has a good Basic Red (18 removal efficiency.

  9. Age- and gender-specific estimates of partnership formation and dissolution rates in the Seattle sex survey.

    Science.gov (United States)

    Nelson, Sara J; Hughes, James P; Foxman, Betsy; Aral, Sevgi O; Holmes, King K; White, Peter J; Golden, Matthew R

    2010-04-01

    Partnership formation and dissolution rates are primary determinants of sexually transmitted infection (STI) transmission dynamics. The authors used data on persons' lifetime sexual experiences from a 2003-2004 random digit dialing survey of Seattle residents aged 18-39 years (N=1,194) to estimate age- and gender-specific partnership formation and dissolution rates. Partnership start and end dates were used to estimate participants' ages at the start of each partnership and partnership durations, and partnerships not enumerated in the survey were imputed. Partnership formation peaked at age 19 at 0.9 (95% confidence interval [CI]: 0.76-1.04) partnerships per year and decreased to 0.1 to 0.2 after age 30 for women and peaked at age 20 at 1.4 (95% CI: 1.08-1.64) and declined to 0.5 after age 30 for men. Nearly one fourth (23.7%) of partnerships ended within 1 week and more than one half (51.2%) ended within 12 weeks. Most (63.5%) individuals 30 to 39 years of age had not formed a new sexual partnership in the past 3 years. A large proportion of the heterosexual population is no longer at substantial STI risk by their early 30s, but similar analyses among high-risk populations may give insight into reasons for the profound disparities in STI rates across populations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Theory of muonic molecule formation: survey of progress and open questions

    International Nuclear Information System (INIS)

    Leon, M.

    1993-01-01

    The Auger mechanism of muonic molecule formation is operative for all the isotopic reactions channels, and the agreement between theory and experiment is quite good for all the observable reactions. For ddμ and dtμ formation, however, the resonance mechanism of Vesman is dominant and produces some dramatic effects. For ddμ, the temperature dependences for the different hyperfine states provide a striking confirmation of the theory. For dtμ, the comparison with experimental is much more difficult, and furthermore the appearance of an evident three-body contribution to the formation cross section presents a formidable challenge to theory. A completely convincing and practical method of calculating this term has yet to be achieved, but a classical trajectory model which provides some insight into the underlying physics is presented. (orig.)

  11. Survey of Regulations Applicable to the Finned Containment in Korean Nuclear Power Plant for Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Kang, Hie Chan [Kunsan University, Gunsan (Korea, Republic of)

    2016-05-15

    In severe accident, the molten corium would discharge into the reactor cavity and interact with water and concrete of cavity. Molten corium includes non-oxidation metals such as Zr, Fe and Cr. These metal species reacted with water emit hydrogen gas. In addition to this, a mount of steam can be emitted to the containment such as steam line break accident. As a result, steam and hydrogen gas can pressurize containment over the design pressure and threaten its integrity. For this reasons, a concept equipped with finned on the containment building was proposed for coping with prolonged accident. Finned containment can enhance heat transfer to the ambient, and the building itself is working as a heat sink. Multiple metal fins and metal rod are penetrated into containment wall, and the rods are working as an additional path of heat removal. To be accepted in the nuclear power plants, this configuration should satisfy the requirement of heat removal and follow all regulations related with containment also. For applying to Korean nuclear power plants, the finned containment should follow all regulations specialized in Korea such as Nuclear regulatory criteria for light water reactor and Guidelines of nuclear safety examination for light water reactor. A concept of containment as a passive cooling system has been proposed. Furthermore, the new containment concept can be applied on the real containment which satisfies the various regulations. Finned containment would be expected positive effects on heat removal from the containment. If the fins are properly welded to the liner, finned containment could satisfy the leak tightness and prevention of external influences. Finned containment could be favorable to protect external impact like aircraft crash because of the additional structural integrity by the fins.

  12. Survey of Regulations Applicable to the Finned Containment in Korean Nuclear Power Plant for Light Water Reactor

    International Nuclear Information System (INIS)

    Noh, Hyung Gyun; Kang, Hie Chan

    2016-01-01

    In severe accident, the molten corium would discharge into the reactor cavity and interact with water and concrete of cavity. Molten corium includes non-oxidation metals such as Zr, Fe and Cr. These metal species reacted with water emit hydrogen gas. In addition to this, a mount of steam can be emitted to the containment such as steam line break accident. As a result, steam and hydrogen gas can pressurize containment over the design pressure and threaten its integrity. For this reasons, a concept equipped with finned on the containment building was proposed for coping with prolonged accident. Finned containment can enhance heat transfer to the ambient, and the building itself is working as a heat sink. Multiple metal fins and metal rod are penetrated into containment wall, and the rods are working as an additional path of heat removal. To be accepted in the nuclear power plants, this configuration should satisfy the requirement of heat removal and follow all regulations related with containment also. For applying to Korean nuclear power plants, the finned containment should follow all regulations specialized in Korea such as Nuclear regulatory criteria for light water reactor and Guidelines of nuclear safety examination for light water reactor. A concept of containment as a passive cooling system has been proposed. Furthermore, the new containment concept can be applied on the real containment which satisfies the various regulations. Finned containment would be expected positive effects on heat removal from the containment. If the fins are properly welded to the liner, finned containment could satisfy the leak tightness and prevention of external influences. Finned containment could be favorable to protect external impact like aircraft crash because of the additional structural integrity by the fins

  13. Formation of Se(0), Te(0), and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor.

    Science.gov (United States)

    Wadgaonkar, Shrutika L; Mal, Joyabrata; Nancharaiah, Yarlagadda V; Maheshwari, Neeraj O; Esposito, Giovanni; Lens, Piet N L

    2018-03-01

    Simultaneous removal of selenite and tellurite from synthetic wastewater was achieved through microbial reduction in a lab-scale upflow anaerobic sludge blanket reactor operated with 12 h hydraulic retention time at 30 °C and pH 7 for 120 days. Lactate was supplied as electron donor at an organic loading rate of 528 or 880 mg COD L -1  day -1 . The reactor was initially fed with a synthetic influent containing 0.05 mM selenite and tellurite each (phase I, day 1-60) and subsequently with 0.1 mM selenite and tellurite each (phase II, day 61-120). At the end of phase I, selenite and tellurite removal efficiencies were 93 and 96%, respectively. The removal percentage dropped to 87 and 81% for selenite and tellurite, respectively, at the beginning of phase II because of the increased influent concentrations. The removal efficiencies of both selenite and tellurite were gradually restored within 20 days and stabilized at ≥ 97% towards the end of the experiment. Powder X-ray diffraction and Raman spectroscopy confirmed the formation of biogenic Se(0), Te(0), and Se(0)-Te(0) nanostructures. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed aggregates comprising of Se(0), Te(0), and Se-Te nanostructures embedded in a layer of extracellular polymeric substances (EPS). Infrared spectroscopy confirmed the presence of chemical signatures of the EPS which capped the nanoparticle aggregates that had been formed and immobilized in the granular sludge. This study suggests a model for technologies for remediation of effluents containing Se and Te oxyanions coupled with biorecovery of bimetal(loid) nanostructures.

  14. The Impact of Alkaliphilic Biofilm Formation on the Release and Retention of Carbon Isotopes from Nuclear Reactor Graphite.

    Science.gov (United States)

    Rout, S P; Payne, L; Walker, S; Scott, T; Heard, P; Eccles, H; Bond, G; Shah, P; Bills, P; Jackson, B R; Boxall, S A; Laws, A P; Charles, C; Williams, S J; Humphreys, P N

    2018-03-13

    14 C is an important consideration within safety assessments for proposed geological disposal facilities for radioactive wastes, since it is capable of re-entering the biosphere through the generation of 14 C bearing gases. The irradiation of graphite moderators in the UK gas-cooled nuclear power stations has led to the generation of a significant volume of 14 C-containing intermediate level wastes. Some of this 14 C is present as a carbonaceous deposit on channel wall surfaces. Within this study, the potential of biofilm growth upon irradiated and 13 C doped graphite at alkaline pH was investigated. Complex biofilms were established on both active and simulant samples. High throughput sequencing showed the biofilms to be dominated by Alcaligenes sp at pH 9.5 and Dietzia sp at pH 11.0. Surface characterisation revealed that the biofilms were limited to growth upon the graphite surface with no penetration of the deeper porosity. Biofilm formation resulted in the generation of a low porosity surface layer without the removal or modification of the surface deposits or the release of the associated 14 C/ 13 C. Our results indicated that biofilm formation upon irradiated graphite is likely to occur at the pH values studied, without any additional release of the associated 14 C.

  15. Survey of legal aspects, regulations, standards and guidelines applicable to radioactive waste management of the Brazilian Multipurpose Reactor - RMB

    International Nuclear Information System (INIS)

    Salvetti, T.C.; Marumo, J.T.

    2017-01-01

    In Brazil, the Brazilian Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) are the agencies responsible for the execution, regulation and control of nuclear and environmental policies, respectively. Such regulatory activities are very comprehensive (IBAMA) or too specific (CNEN), revealing other aspects that would, also, need to be observed so that the management could be carried out efficiently (quality) and effectively (safety), including the three governmental administrative levels: Federal, State and Municipal. In addition to laws, regulations, decrees and resolutions, there are also national and international standards and guides that provide guidelines for structuring the current management and the use of best regulatory practices. The Brazilian Multipurpose Reactor Enterprise (RMB) is a CNEN project, complying with a Multi-Year Plan of the Brazilian Ministry of Planning, Development and Management (MPDG). The Enterprise is being developed under the responsibility of the Directorate of Research and Development - DPD of CNEN and will have a facility for treatment and initial temporary storage of the radioactive waste generated by the operation of the research reactor and the activities carried out in the associated laboratories. The RMB will be built in the city of IPERÓ, located in the state of São Paulo, near ARAMAR Experimental Center of the Brazilian Navy. This work aims to present the research results regarding the various aspects that regulate, legislate and standardize the practices proposed to the Radioactive Waste Management of the RMB project. (author)

  16. Survey of legal aspects, regulations, standards and guidelines applicable to radioactive waste management of the Brazilian Multipurpose Reactor - RMB

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, T.C.; Marumo, J.T., E-mail: salvetti@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In Brazil, the Brazilian Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) are the agencies responsible for the execution, regulation and control of nuclear and environmental policies, respectively. Such regulatory activities are very comprehensive (IBAMA) or too specific (CNEN), revealing other aspects that would, also, need to be observed so that the management could be carried out efficiently (quality) and effectively (safety), including the three governmental administrative levels: Federal, State and Municipal. In addition to laws, regulations, decrees and resolutions, there are also national and international standards and guides that provide guidelines for structuring the current management and the use of best regulatory practices. The Brazilian Multipurpose Reactor Enterprise (RMB) is a CNEN project, complying with a Multi-Year Plan of the Brazilian Ministry of Planning, Development and Management (MPDG). The Enterprise is being developed under the responsibility of the Directorate of Research and Development - DPD of CNEN and will have a facility for treatment and initial temporary storage of the radioactive waste generated by the operation of the research reactor and the activities carried out in the associated laboratories. The RMB will be built in the city of IPERÓ, located in the state of São Paulo, near ARAMAR Experimental Center of the Brazilian Navy. This work aims to present the research results regarding the various aspects that regulate, legislate and standardize the practices proposed to the Radioactive Waste Management of the RMB project. (author)

  17. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  18. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  19. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  20. Inertial confinement fusion reactor systems

    International Nuclear Information System (INIS)

    Frank, T.G.; Bohachevsky, I.O.; Pendergrass, J.H.

    1980-01-01

    A variety of reactor cavity concepts, drivers, and energy conversion mechanisms are being considered to realize commercial applications of ICF. Presented in this paper are: (1) a review of reactor concepts with estimates of practically achievable pulse repetition rates; (2) a survey of drivers with estimates of the requirements on reactor conditions imposed by beam propagation characteristics; and (3) an assessment of compatible driver-reactor combinations

  1. Migros-3: a code for the generation of group constants for reactor calculations from neutron nuclear data in KEDAK format

    International Nuclear Information System (INIS)

    Broeders, I.; Krieg, B.

    1977-01-01

    The code MIGROS-3 was developed from MIGROS-2. The main advantage of MIGROS-3 is its compatibility with the new conventions of the latest version of the Karlsruhe nuclear data library, KEDAK-3. Moreover, to some extent refined physical models were used and numerical methods were improved. MIGROS-3 allows the calculation of microscopic group cross sections of the ABBN type from isotopic neutron data given in KEDAK-format. All group constants, necessary for diffusion-, consistent P 1 - and Ssub(N)-calculations can be generated. Anisotropy of elastic scattering can be taken into account up to P 5 . A description of the code and the underlying theory is given. The input and output description, a sample problem and the program lists are provided. (orig.) [de

  2. A Snapshot Imaging Survey of Spitzer-selected Young Stellar Objects in Nearby Star Formation Regions*.t23

    Science.gov (United States)

    Stapelfeldt, Karl

    2015-10-01

    Young circumstellar disks are the dusty reservoirs in which planetary systems may eventually form. Previous HST imaging surveys have spatially resolved about twenty circumstellar disks around young stars in nearby molecular clouds. Providing key measurements of disk inclinations, outer radii, asymmetries, vertical thicknesses, and dust properties, these observations have supplied valuable constraints on theories of star and planet formation. Most of this prior work was based on source identifications made 30 years ago by the IRAS survey. With its improved sensitivity and spatial resolution, the Spitzer Space Telescope identified numerous new members of nearby star-forming regions that are optically visible, not yet observed with HST, and which possess infrared excess > 40 mJy at 24 microns (5 times fainter than the IRAS survey 25 micron sensitivity). This group of objects consists of low mass stars, young brown dwarfs, transition disks, and edge-on disks that obscure their central sources. We propose a high dynamic range ACS snapshot survey of this lower-luminosity young star population. Our goals are (1) to determine the frequency of disk detections in scattered light; (2) to measure disk sizes, internal structures, and constituent dust properties in order to test theories of protoplanetary disk evolution; (3) to identify the nearly edge-on systems which are particularly favorable for studies of disk geometry; and (4) to discover faint substellar companion objects. This survey will extend previous HST young star imaging of protoplanetary environments from a solar mass down to the substellar limit, revealing their nature and frequency in the galaxy.

  3. Effect of microstructure of carbon steel on magnetite formation in simulated Hot Conditioning environment of nuclear reactors

    International Nuclear Information System (INIS)

    Sinha, Prafful Kumar; Kiran Kumar, M.; Kain, Vivekanand

    2015-01-01

    Highlights: • Heat treatments used to tailor microstructure of a low and a high carbon steel. • Oxide growth rates established in Hot Conditioning simulated environment. • Only magnetite formed on all microstructural conditions of both the steels. • Growth rate was higher for all microstructures of high carbon steel upto 72 h. • After 72 h growth rate stabilized in narrow band for all microstructures of a steel. - Abstract: The objective of present investigation is to establish the role of starting microstructure of carbon steel on the magnetite formation behaviour in Hot Conditioning simulated environment. Two grades of carbon steel (low and high carbon) were subjected to selective heat-treatments to generate different microstructures: martensite, tempered martensite and modified ferrite–pearlite. Oxidation was carried out in lithiated water of pH 10–10.2 in a static autoclave at 270 °C. The results of the investigation clearly establish that: (a) high carbon steel (0.63% C) showed a relatively higher rate of oxidation over the low carbon (0.08% C) grade at all the test durations and (b) the oxidation rates for both the grades were sensitive to microstructural differences at initial stages of oxidation while the differences narrowed down after 72 h of exposure. The oxide formed was established to be magnetite on all the specimens

  4. Utilization of research reactors - A global perspective

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1988-01-01

    This paper presents 1) a worldwide picture of research reactors, operable, shutdown, under construction and planned, 2) statistics on utilization of research reactors including TRIGA reactors, and 3) some results of a survey conducted during 1988 on the utilization of research reactors in developing Member States in the Asia-Pacific Region

  5. Constraints on silicates formation in the Si-Al-Fe system: Application to hard deposits in steam generators of PWR nuclear reactors

    Science.gov (United States)

    Berger, Gilles; Million-Picallion, Lisa; Lefevre, Grégory; Delaunay, Sophie

    2015-04-01

    Introduction: The hydrothermal crystallization of silicates phases in the Si-Al-Fe system may lead to industrial constraints that can be encountered in the nuclear industry in at least two contexts: the geological repository for nuclear wastes and the formation of hard sludges in the steam generator of the PWR nuclear plants. In the first situation, the chemical reactions between the Fe-canister and the surrounding clays have been extensively studied in laboratory [1-7] and pilot experiments [8]. These studies demonstrated that the high reactivity of metallic iron leads to the formation of Fe-silicates, berthierine like, in a wide range of temperature. By contrast, the formation of deposits in the steam generators of PWR plants, called hard sludges, is a newer and less studied issue which can affect the reactor performance. Experiments: We present here a preliminary set of experiments reproducing the formation of hard sludges under conditions representative of the steam generator of PWR power plant: 275°C, diluted solutions maintained at low potential by hydrazine addition and at alkaline pH by low concentrations of amines and ammoniac. Magnetite, a corrosion by-product of the secondary circuit, is the source of iron while aqueous Si and Al, the major impurities in this system, are supplied either as trace elements in the circulating solution or by addition of amorphous silica and alumina when considering confined zones. The fluid chemistry is monitored by sampling aliquots of the solution. Eh and pH are continuously measured by hydrothermal Cormet© electrodes implanted in a titanium hydrothermal reactor. The transformation, or not, of the solid fraction was examined post-mortem. These experiments evidenced the role of Al colloids as precursor of cements composed of kaolinite and boehmite, and the passivation of amorphous silica (becoming unreactive) likely by sorption of aqueous iron. But no Fe-bearing was formed by contrast to many published studies on the Fe

  6. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  8. Exploring the Evolution of Star Formation and Dwarf Galaxy Properties with JWST /MIRI Serendipitous Spectroscopic Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Bonato, Matteo; Sajina, Anna; McKinney, Jed; Marchesini, Danilo; Roebuck, Eric; Shipley, Heath [Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA (United States); Zotti, Gianfranco De [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Baronchelli, Ivano; Yan, Lin [California Institute of Technology, Pasadena, CA (United States); Negrello, Mattia [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Kurinsky, Noah [Department of Physics, Stanford University, Stanford, CA (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts Amherst, Amherst, MA (United States); Noriega-Crespo, Alberto [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Kirkpatrick, Allison [Department of Astronomy, Yale University, New Haven, CT (United States)

    2017-02-20

    The James Webb Space Telescope ’s Medium Resolution Spectrometer (MRS), will offer nearly two orders of magnitude improvement in sensitivity and >3× improvement in spectral resolution over our previous space-based mid-IR spectrometer, the Spitzer IRS. In this paper, we make predictions for spectroscopic pointed observations and serendipitous detections with the MRS. Specifically, pointed observations of Herschel sources require only a few minutes on source integration for detections of several star-forming and active galactic nucleus lines, out to z = 3 and beyond. But the same data will also include tens of serendipitous 0 ≲ z ≲ 4 galaxies per field with infrared luminosities ranging ∼10{sup 6}–10{sup 13} L {sub ☉}. In particular, for the first time and for free we will be able to explore the L {sub IR} < 10{sup 9} L {sub ☉} regime out to z ∼ 3. We estimate that with ∼ 100 such fields, statistics of these detections will be sufficient to constrain the evolution of the low- L end of the infrared luminosity function, and hence the star formation rate function. The above conclusions hold for a wide range in the potential low- L end of the IR luminosity function, and account for the PAH deficit in low- L , low-metallicity galaxies.

  9. SURVEY

    DEFF Research Database (Denmark)

    SURVEY er en udbredt metode og benyttes inden for bl.a. samfundsvidenskab, humaniora, psykologi og sundhedsforskning. Også uden for forskningsverdenen er der mange organisationer som f.eks. konsulentfirmaer og offentlige institutioner samt marketingsafdelinger i private virksomheder, der arbejder...... med surveys. Denne bog gennemgår alle surveyarbejdets faser og giver en praktisk indføring i: • design af undersøgelsen og udvælgelse af stikprøver, • formulering af spørgeskemaer samt indsamling og kodning af data, • metoder til at analysere resultaterne...

  10. THE ALFALFA H α SURVEY. I. PROJECT DESCRIPTION AND THE LOCAL STAR FORMATION RATE DENSITY FROM THE FALL SAMPLE

    International Nuclear Information System (INIS)

    Sistine, Angela Van; Salzer, John J.; Janowiecki, Steven; Sugden, Arthur; Giovanelli, Riccardo; Haynes, Martha P.; Jaskot, Anne E.; Wilcots, Eric M.

    2016-01-01

    The ALFALFA H α survey utilizes a large sample of H i-selected galaxies from the ALFALFA survey to study star formation (SF) in the local universe. ALFALFA H α contains 1555 galaxies with distances between ∼20 and ∼100 Mpc. We have obtained continuum-subtracted narrowband H α images and broadband R images for each galaxy, creating one of the largest homogeneous sets of H α images ever assembled. Our procedures were designed to minimize the uncertainties related to the calculation of the local SF rate density (SFRD). The galaxy sample we constructed is as close to volume-limited as possible, is a robust statistical sample, and spans a wide range of galaxy environments. In this paper, we discuss the properties of our Fall sample of 565 galaxies, our procedure for deriving individual galaxy SF rates, and our method for calculating the local SFRD. We present a preliminary value of log(SFRD[ M _⊙ yr"−"1 Mpc"−"3]) = −1.747 ± 0.018 (random) ±0.05 (systematic) based on the 565 galaxies in our Fall sub-sample. Compared to the weighted average of SFRD values around z ≈ 2, our local value indicates a drop in the global SFRD of a factor of 10.2 over that lookback time.

  11. THE ALFALFA H α SURVEY. I. PROJECT DESCRIPTION AND THE LOCAL STAR FORMATION RATE DENSITY FROM THE FALL SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Sistine, Angela Van [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Salzer, John J.; Janowiecki, Steven [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Sugden, Arthur [Department of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 (United States); Giovanelli, Riccardo; Haynes, Martha P. [Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Wilcots, Eric M. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-06-10

    The ALFALFA H α survey utilizes a large sample of H i-selected galaxies from the ALFALFA survey to study star formation (SF) in the local universe. ALFALFA H α contains 1555 galaxies with distances between ∼20 and ∼100 Mpc. We have obtained continuum-subtracted narrowband H α images and broadband R images for each galaxy, creating one of the largest homogeneous sets of H α images ever assembled. Our procedures were designed to minimize the uncertainties related to the calculation of the local SF rate density (SFRD). The galaxy sample we constructed is as close to volume-limited as possible, is a robust statistical sample, and spans a wide range of galaxy environments. In this paper, we discuss the properties of our Fall sample of 565 galaxies, our procedure for deriving individual galaxy SF rates, and our method for calculating the local SFRD. We present a preliminary value of log(SFRD[ M {sub ⊙} yr{sup −1} Mpc{sup −3}]) = −1.747 ± 0.018 (random) ±0.05 (systematic) based on the 565 galaxies in our Fall sub-sample. Compared to the weighted average of SFRD values around z ≈ 2, our local value indicates a drop in the global SFRD of a factor of 10.2 over that lookback time.

  12. The ALFALFA Hα Survey. I. Project Description and The Local Star-formation Rate Density from the Fall Sample

    Science.gov (United States)

    Van Sistine, Angela; Salzer, John J.; Sugden, Arthur; Giovanelli, Riccardo; Haynes, Martha P.; Janowiecki, Steven; Jaskot, Anne E.; Wilcots, Eric M.

    2016-06-01

    The ALFALFA Hα survey utilizes a large sample of H I-selected galaxies from the ALFALFA survey to study star formation (SF) in the local universe. ALFALFA Hα contains 1555 galaxies with distances between ˜20 and ˜100 Mpc. We have obtained continuum-subtracted narrowband Hα images and broadband R images for each galaxy, creating one of the largest homogeneous sets of Hα images ever assembled. Our procedures were designed to minimize the uncertainties related to the calculation of the local SF rate density (SFRD). The galaxy sample we constructed is as close to volume-limited as possible, is a robust statistical sample, and spans a wide range of galaxy environments. In this paper, we discuss the properties of our Fall sample of 565 galaxies, our procedure for deriving individual galaxy SF rates, and our method for calculating the local SFRD. We present a preliminary value of log(SFRD[M ⊙ yr-1 Mpc-3]) = -1.747 ± 0.018 (random) ±0.05 (systematic) based on the 565 galaxies in our Fall sub-sample. Compared to the weighted average of SFRD values around z ≈ 2, our local value indicates a drop in the global SFRD of a factor of 10.2 over that lookback time.

  13. Weak maser emission of methyl formate toward Sagittarius B2(N) in the green bank telescope PRIMOS survey

    Energy Technology Data Exchange (ETDEWEB)

    Faure, A.; Wiesenfeld, L. [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041 (France); Remijan, A. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Szalewicz, K. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2014-03-10

    A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH{sub 3}) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH{sub 3}-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (∼30 K), moderately dense (∼10{sup 4} cm{sup –3}), and extended region surrounding Sgr B2(N). The derived column density of ∼4 × 10{sup 14} cm{sup –2} is only a factor of ∼10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.

  14. Seismic Design of Nuclear Reactor

    International Nuclear Information System (INIS)

    Inoue, Tatsuya

    1995-01-01

    In case the requirement of design is against natural phenomena, it is important to grasp the detailed characteristics of the natural phenomena for the proper design, and as the grasp is more strict and accurate, the design of high adaptability or durability to the requirement can be done. The aseismatic design of nuclear reactors is similar to it, and the decision of the magnitude of supposed earthquakes is important. The aseismatic design of nuclear power stations in Japan has been carried out in conformity with the national guideline for examining the aseismatic design. The aseismatic design of nuclear reactors is carried out in the order of the survey of geological features, ground and earthquakes, the determination of the input magnitude and characteristics of earthquakes, the formation of simulated earthquake waves, the analysis of the response of buildings and structures to earthquakes, and structural analysis. The decision of input earthquakes is done by the detailed historical earthquake data based on local features and the survey of geological features and ground. The determination of earthquake input, the analysis of earthquake response and structural analysis, and the other features of the aseismatic design are explained. (K.I.)

  15. Surplus Facilities Management Program. Post remedial action survey report for the Sodium Reactor Experiment (SRE) facility, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.; Justus, A.L.

    1984-02-01

    Decontamination of the Sodium Reactor Experiment (SRE) began in 1976 and was completed in 1982. In view of the concurrent and post-remedial-action surveys, the following conclusions can be stated. All the buildings and areas included in this decommissioning project have been decontaminated to below the limits specified in the draft ANSI Standard N13.12 and the NRC Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses for By-Product, Source, or Special Nuclear Material, dated July 1982. Radioactive contamination was found in appropriate access points of the sanitary sewer and storm drain systems included within the boundaries of this decommissioning project. One sample indicated a 90 Sr concentration dissolved in the water of approximately half the recommended water concentration for controlled areas and approximately 15 times the recommended water concentration for uncontrolled areas as stated in DOE-5480.1 Chg. 6, Chapter XI. Therefore, the interior inaccessible surfaces of these systems must be considered contaminated in accordance with statements found in the NRC Regulatory Guidelines issued in July 1982. Effluent from the outfall of this drain system must also be considered as being potentially contaminated. 1 reference, 32 figures, 8 tables

  16. Survey for the presence of Naegleria fowleri amebae in lake water used to cool reactors at a nuclear power generating plant.

    Science.gov (United States)

    Jamerson, Melissa; Remmers, Kenneth; Cabral, Guy; Marciano-Cabral, Francine

    2009-04-01

    Water from Lake Anna in Virginia, a lake that is used to cool reactors at a nuclear power plant and for recreational activities, was assessed for the presence of Naegleria fowleri, an ameba that causes primary amebic meningoencephalitis (PAM). This survey was undertaken because it has been reported that thermally enriched water fosters the propagation of N. fowleri and, hence, increases the risk of infection to humans. Of 16 sites sampled during the summer of 2007, nine were found to be positive for N. fowleri by a nested polymerase chain reaction assay. However, total ameba counts, inclusive of N. fowleri, never exceeded 12/50 mL of lake water at any site. No correlation was obtained between the conductivity, dissolved oxygen, temperature, and pH of water and presence of N. fowleri. To date, cases of PAM have not been reported from this thermally enriched lake. It is postulated that predation by other protozoa and invertebrates, disturbance of the water surface from recreational boating activities, or the presence of bacterial or fungal toxins, maintain the number N. fowleri at a low level in Lake Anna.

  17. A total Ammonium Reactor (NHxR) for In Situ Mobile Measurements: A Critical Tool to Understand Aerosol Formation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop, demonstrate, and optimize a front-end ammonium reactor (NHxR) for the fast, precise, and accurate measurement of gas-phase ammonia (NH3) and...

  18. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  19. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  20. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  1. GALAXY CLUSTERING TOPOLOGY IN THE SLOAN DIGITAL SKY SURVEY MAIN GALAXY SAMPLE: A TEST FOR GALAXY FORMATION MODELS

    International Nuclear Information System (INIS)

    Choi, Yun-Young; Kim, Juhan; Kim, Sungsoo S.; Park, Changbom; Gott, J. Richard; Weinberg, David H.; Vogeley, Michael S.

    2010-01-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by M r -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (A V ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter A V depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in these models, voids should be emptier and more connected and the threshold for

  2. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  3. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  4. Tendencies in operating power reactors

    International Nuclear Information System (INIS)

    Brinckmann, H.F.

    1987-01-01

    A survey is given about new tendencies in operating power reactors. In order to meet the high demands for control and monitoring of power reactors modern procedures are applicated such as the incore-neutron flux detection by means of electron emission detectors and multi-component activation probes, the noise diagnostics as well as high-efficient automation systems

  5. Search for other natural fission reactors

    International Nuclear Information System (INIS)

    Apt, K.E.; Balagna, J.P.; Bryant, E.A.; Cowan, G.A.; Daniels, W.R.; Vidale, R.J.

    1977-01-01

    Precambrian uranium ores have been surveyed for evidence of other natural fission reactors. The requirements for formation of a natural reactor direct investigations to uranium deposits with large, high-grade ore zones. Massive zones with volumes approximately greater than 1 m 3 and concentrations approximately greater than 20 percent uranium are likely places for a fossil reactor if they are approximately greater than 0.6 b.a. old and if they contained sufficient water but lacked neutron-absorbing impurities. While uranium deposits of northern Canada and northern Australia have received most attention, ore samples have been obtained from the following worldwide locations: the Shinkolobwe and Katanga regions of Zaire; Southwest Africa; Rio Grande do Norte, Brazil; the Jabiluka, Nabarlek, Koongarra, Ranger, and El Sharana ore bodies of the Northern Territory, Australia; the Beaverlodge, Maurice Bay, Key Lake, Cluff Lake, and Rabbit Lake ore bodies and the Great Bear Lake region, Canada. The ore samples were tested for isotopic variations in uranium, neodymium, samarium, and ruthenium which would indicate natural fission. Isotopic anomalies were not detected. Criticality was not achieved in these deposits because they did not have sufficient 235 U content (a function of age and total uranium content) and/or because they had significant impurities and insufficient moderation. A uranium mill monitoring technique has been considered where the ''yellowcake'' output from appropriate mills would be monitored for isotopic alterations indicative of the exhumation and processing of a natural reactor

  6. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  7. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  8. Reactor Neutrinos

    OpenAIRE

    Kim, Soo-Bong; Lasserre, Thierry; Wang, Yifang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  9. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  10. Survey of nuclear parameters from the TRIGA Mark I IPR R1 Brazilian reactor with concentric configuration aiming the application of K0 neutron activation technique

    International Nuclear Information System (INIS)

    Franco, Milton Batista

    2006-01-01

    This research intended to determine the nuclear parameters a, f, spectral index and neutron temperature in several irradiations positions of the TRIGA Mark 1 IPR-R1 reactor, for use on the parametric method K 0 in the CDTN. K 0 is a monostandard method of neutron activation analysis. It is, on the whole, experimentally simple, flexible and an important tool for accurate and convenient standardization in instrumental multi-element analysis. At the time the parameters were determined at the rotatory rack, lower layer and in the central thimble: alpha was calculated applying the three bare monitor method using 197 Au, 94 Zr and 96 Zr; f determination was done according to the bare bi-isotopic method; neutron temperature was calculated through the direct method using 176 Lu, 94 Zr, 96 Zr and 197 Au and the Westcott's g(Tn) function for the 176 Lu was calculated and the result was interpolated in the Grintakis and Kim (1975) Table, determining the neutron temperature. The procedure to check the parameters consisted in using standard solutions of Au (metal foil, NBS), Lu (LuO 2 , Johnson Mattey Company - JMC) and Zr (ZrO 2 and metal foil, Johnson Mattey Company 99,99% and Zry - 4: 98,14% of Zr, National Bureau of Standard- NBS). Several certified reference materials and two samples of intercomparisons (samples of sediment of the IAEA/ARCAL XXVI project) have been analysed by means of k 0 - INAA in order to verify the efficiency of the method and the quality of the parameters. The certified reference materials were: GXR-2, GXR-5 and GXR-6 of the United States Geological Survey (USGS) and Soil-5, Soil-7 and SL-1 of the International Atomic Energy Agency (IAEA). (author)

  11. Reactor vessel

    NARCIS (Netherlands)

    Makkee, M.; Kapteijn, F.; Moulijn, J.A.

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and

  12. Can a Circular Payment Card Format Effectively Elicit Preferences? Evidence From a Survey on a Mandatory Health Insurance Scheme in Tunisia.

    Science.gov (United States)

    Chanel, Olivier; Makhloufi, Khaled; Abu-Zaineh, Mohammad

    2017-06-01

    The choice of elicitation format is a crucial but tricky aspect of stated preferences surveys. It affects not only the quantity and quality of the information collected on respondents' willingness to pay (WTP) but also the potential errors/biases that prevent their true WTP from being observed. We propose a new elicitation mechanism, the circular payment card (CPC), and show that it helps overcome the drawbacks of the standard payment card (PC) format. It uses a visual pie chart representation without start or end points: respondents spin the circular card in any direction until they find the section that best matches their true WTP. We performed a contingent valuation survey regarding a mandatory health insurance scheme in Tunisia, a middle-income country. Respondents were randomly allocated into one of three subgroups and their WTP was elicited using one of three formats: open-ended (OE), standard PC and the new CPC. We compared the elicited WTP. We found significant differences in unconditional and conditional analyses. Our empirical results consistently indicated that the OE and standard PC formats led to significantly lower WTP than the CPC format. Overall, our results are encouraging and suggest CPC could be an effective alternative format to elicit 'true' WTP.

  13. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  14. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  15. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  16. The Chernobyl reactor accident

    International Nuclear Information System (INIS)

    1986-01-01

    The documentation abstracted contains a complete survey of the broadcasts transmitted by the Russian wire service of the Deutsche Welle radio station between April 28 and Mai 15, 1986 on the occasion of the Chernobyl reactor accident. Access is given to extracts of the remarkable eastern and western echoes on the broadcasts of the Deutsche Welle. (HP) [de

  17. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Nagatomi, Shozo.

    1976-01-01

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  18. Characterizing interstellar filaments as revealed by the Herschel Gould Belt survey: Insights into the initial conditions for star formation

    International Nuclear Information System (INIS)

    Arzoumanian, Doris

    2012-01-01

    This thesis aims to characterize the physical properties of interstellar filaments imaged in nearby molecular clouds with the Herschel Space Observatory as part of the Herschel Gould Belt survey. In order to get insight into the formation and evolution of interstellar filaments I analyzed, during my PhD work, a large sample of filaments detected in various nearby clouds. The observed density profiles of the filaments show a power law behavior at large radii and their dust temperature profiles show a drop towards the center. The filaments are characterized by a narrow distribution of de-convolved inner widths, centered around a typical value of ∼ 0.1 pc, while they span more than three orders of magnitude in central column density. This typical filament width corresponds to the sonic scale below which interstellar turbulence becomes subsonic in diffuse gas, which may suggest that the filaments form as a result of the dissipation of large-scale turbulence. While the turbulent fragmentation picture provides a plausible mechanism for forming interstellar filaments, the fact that pre-stellar cores tend to form in dense, gravitationally unstable filaments suggests that gravity is a major driver in the subsequent evolution of the dense supercritical filaments. The latter hypothesis is supported by molecular line observations with the IRAM 30 m telescope, which show an increase in the non-thermal velocity dispersion of supercritical filaments as a function of their central column density, suggesting that self gravitating filaments grow in mass per unit length by accretion of background material while at the same time fragmenting into star-forming cores. (author) [fr

  19. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Cho, S.W.; Kim, Y.C.; Kim, T.S.; Whang, C.K.; Oh, Y.K.

    1982-01-01

    Design parameters of the Tokamak are as follows: 51 cm of major radius, 14.5 cm minor radius, 2.5 T toroidal magnetic field, 5 x 10 13 /cm 3 electron density, 800 eV electron temperature, 110 KA plasma current and 2 ms energy confinement time. And the Tokamak will have an ironcore transformer with no return legs for ohmic heating. Toroidal field configurations, ripples and pure tension D shape of toroidal field coils were computer-calculated and the rough calculation of poloidal field configuration was carried out manually and then a detailed calculation is underway by utilizing POISSON code. The power supply for toroidal field coils was designed to be enable to store 4 MJ energy by a capacitor bank and the mechanical parts such as a vacuum chamber, observation ports and the supporting mechanism etc. were designed with the aid of a mock-up of actual scale to realize maximum conveniency for operation and maintenance and proper arrangement and dimensions of the constituent parts. The detailed designs of various plasma diagnostics systems were also done. They are magnetic, microwave, X-ray, Laser, electrostatic systems of which the observed data will be analyzed automatically by a CAMAC data acquistion and analysis system in conjunction with Tokamak discharge. Apart from the design works of a compact Tokamak and related facilities, a proto-type theta pinch device was constructed and applied to the turbulent heating experiments. Also, accelerating column and high tension (200 KDC, 100 mA) for intense D-T neutron generator were constructed and now they are under tests. (Author)

  20. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  1. First Results from the Dense Extragalactic GBT+ARGUS Survey (DEGAS): A Direct, Quantitative Test of the Role of Gas Density in Star Formation

    Science.gov (United States)

    Kepley, Amanda; Bigiel, Frank; Bolatto, Alberto; Church, Sarah; Cleary, Kieran; Frayer, David; Gallagher, Molly; Gundersen, Joshua; Harris, Andrew; Hughes, Annie; Jimenez-Donaire, Maria Jesus; Kessler, Sarah; Lee, Cheoljong; Leroy, Adam; Li, Jialu; Donovan Meyer, Jennifer; Rosolowsky, Erik; Sandstrom, Karin; Schinnener, Eva; Schruba, Andreas; Sieth, Matt; Usero, Antonio

    2018-01-01

    Gas density plays a central role in all modern theories of star formation. A key test of these theories involves quantifying the resolved gas density distribution and its relationship to star formation within a wide range of galactic environments. Until recently, this experiment has been difficult to perform owing to the faint nature of key molecular gas tracers like HCN and HCO+, but the superior sensitivity of modern millimeter instruments like ALMA and the IRAM 30m make these types of experiments feasible. In particular, the sensitivity and resolution provided by large aperture of the GBT combined with fast mapping speeds made possible by its new 16-pixel, 3mm focal plane array (Argus) make the GBT an almost-ideal instrument for this type of study. The Dense Extragalactic GBT+Argus Survey (DEGAS) will leverage these capabilities to perform the largest, resolved survey of molecular gas tracers in nearby galaxies, ultimately mapping a suite of four molecular gas tracers in the inner 2’ by 2’ of 36 nearby galaxies. When complete in 2020, DEGAS will be the largest resolved survey of dense molecular gas tracers in nearby galaxies. This talk will present early results from the first observations for this Green Bank Telescope large survey and highlight some exciting future possibilities for this survey.

  2. Mutagens from the cooking of food. III. Survey by Ames/Salmonella test of mutagen formation in secondary sources of cooked dietary protein.

    Science.gov (United States)

    Bjeldanes, L F; Morris, M M; Felton, J S; Healy, S; Stuermer, D; Berry, P; Timourian, H; Hatch, F T

    1982-08-01

    A survey of mutagen formation during the cooking of a variety of protein-rich foods that are minor sources of protein intake in the American diet is reported (see Bjeldanes, Morris, Felton et al. (1982) for survey of major protein foods). Milk, cheese, tofu and organ meats showed negligible mutagen formation except following high-temperature cooking for long periods of time. Even under the most extreme conditions, tofu, cheese and milk exhibited fewer than 500 Ames/Salmonella typhimurium revertants/100 g equivalents (wet weight of uncooked food), and organ meats only double that amount. Beans showed low mutagen formation after boiling and boiling followed by frying (with and without oil). Only boiling of beans followed by baking for 1 hr gave appreciable mutagenicity (3650 revertants/100g equivalents). Seafood samples gave a variety of results: red snapper, salmon, trout, halibut and rock cod all gave more than 1000 revertants/100 g wet weight equivalents when pan-fried or griddle-fried for about 6 min/side. Baked or poached rock and deep-fried shrimp showed no significant mutagen formation. Broiled lamb chops showed mutagen formation similar to that in red meats tested in the preceding paper: 16,000 revertants/100 g equivalents. These findings show that as measured by bioassay in S. typhimurium, most of the foods that are minor sources of protein in the American diet are also minor sources of cooking-induced mutagens.

  3. Power reactors in member states

    International Nuclear Information System (INIS)

    1975-01-01

    This is the first issue of a periodical computer-based listing of civilian nuclear power reactors in the Member States of the IAEA, presenting the situation as of 1 April 1975. It is intended as a replacement for the Agency's previous annual publication of ''Power and Research Reactors in Member States''. In the new format, the listing contains more information about power reactors in operation, under construction, planned and shut down. As far as possible all the basic design data relating to reactors in operation have been included. In future these data will be included also for other power reactors, so that the publication will serve to give a clear picture of the technical progress achieved. Test and research reactors and critical facilities are no longer listed. Of interest to nuclear power planners, nuclear system designers, nuclear plant operators and interested professional engineers and scientists

  4. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  5. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Volgenau, Nikolaus H. [Owens Valley Radio Observatory, MC 105-24 OVRO, Pasadena, CA 91125 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Isella, Andrea, E-mail: sstorm@astro.umd.edu [Astronomy Department, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 → 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup –1}. We imaged ∼150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ∼0.05 to 0.50 km s{sup –1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  6. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  7. Stellar Populations And Star-formation Histories Of Early-type Galaxies From The Atlas3d Survey

    NARCIS (Netherlands)

    McDermid, Richard; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Davies, R. L.; Davis, T.; de Zeeuw, T.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Young, L.

    Atlas3D is a new survey based on integral-field spectroscopy for a complete, volume-limited sample of 260 early-type galaxies observed within the local 40 Mpc volume - the largest survey of its kind. This K-band selected sample spans a range in mass from 10e10 to 10e12 solar masses, and probes two

  8. Future direction for effective sustainable design : A survey on the extent and the format of a decision support tool

    NARCIS (Netherlands)

    Erbas, I.; Van Dijk, S.

    2012-01-01

    This paper – as part of a broader research - summarizes the key findings of a survey based on an online questionnaire which has investigated existing insights, needs and expectations of architects about decision support tools (DSTs) to assess sustainability of buildings. The survey is conducted in

  9. Final-Independent Confirmatory Survey Report For The Reactor Building, Hot Laboratory, Primary Pump House, And Land Areas At The Plum Brook Reactor Facility, Sandusky, Ohio DCN:2036-SR-01-10

    International Nuclear Information System (INIS)

    Bailey, Erika N.

    2011-01-01

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  10. U.S. Geological Survey input-data forms for the assessment of the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas, 2017

    Science.gov (United States)

    Marra, Kristen R.

    2017-10-24

    In 2017, the U.S. Geological Survey (USGS) completed an updated assessment of undiscovered, technically recoverable oil and gas resources in the Spraberry Formation of the Midland Basin (Permian Basin Province) in southwestern Texas (Marra and others, 2017). The Spraberry Formation was assessed using both the standard continuous (unconventional) and conventional methodologies established by the USGS for three assessment units (AUs): (1) Lower Spraberry Continuous Oil Trend AU, (2) Middle Spraberry Continuous Oil Trend AU, and (3) Northern Spraberry Conventional Oil AU. The revised assessment resulted in total estimated mean resources of 4,245 million barrels of oil, 3,112 billion cubic feet of gas, and 311 million barrels of natural gas liquids. The purpose of this report is to provide supplemental documentation of the input parameters used in the USGS 2017 Spraberry Formation assessment.

  11. The impact of frequency rating scale formats on the measurement of latent variables in web surveys - an experimental investigation using a measure of affectivity as an example

    Directory of Open Access Journals (Sweden)

    Menold Natalja

    2015-01-01

    Full Text Available The effects of verbal and/or numerical labeling and number of categories on the measurement of latent variables in web surveys are addressed. Data were collected online in a quota sample of the German adult population (N = 741. A randomized 2x2x2 experimental design was applied, with variation of the number of categories, as well as of verbal and numerical labeling, using an abbreviated version of the Positive and Negative Affect Schedule (PANAS. Experimental manipulation of the rating scale formats resulted in an effect on measurement model testing and reliability, as well as on factorial and convergent validity. In addition, measurement invariance between several rating scale formats was limited. With the five category end verbalized and fully labeled seven category formats, acceptable results for all measurement quality metrics could be obtained.

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  13. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  14. Reactor power distribution monitor

    International Nuclear Information System (INIS)

    Hoizumi, Atsushi.

    1986-01-01

    Purpose: To grasp the margin for the limit value of the power distribution peaking factor inside the reactor under operation by using the reactor power distribution monitor. Constitution: The monitor is composed of the 'constant' file, (to store in-reactor power distributions obtained from analysis), TIP and thermocouple, lateral output distribution calibrating apparatus, axial output distribution synthesizer and peaking factor synthesizer. The lateral output distribution calibrating apparatus is used to make calibration by comparing the power distribution obtained from the thermocouples to the power distribution obtained from the TIP, and then to provide the power distribution lateral peaking factors. The axial output distribution synthesizer provides the power distribution axial peaking factors in accordance with the signals from the out-pile neutron flux detector. These axial and lateral power peaking factors are synthesized with high precision in the three-dimensional format and can be monitored at any time. (Kamimura, M.)

  15. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. VI. The role of bars in quenching star formation from z = 3 to the present epoch

    Science.gov (United States)

    Gavazzi, G.; Consolandi, G.; Dotti, M.; Fanali, R.; Fossati, M.; Fumagalli, M.; Viscardi, E.; Savorgnan, G.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.

    2015-08-01

    A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal main-sequence star-forming galaxies. Many processes have been advocated as being responsible for this trend (also known as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. In order to improve our insight into the mechanisms regulating the star formation in normal star-forming galaxies across cosmic epochs, we determine a refined star formation versus stellar mass relation in the local Universe. To this end we use the Hα narrow-band imaging follow-up survey (Hα3) of field galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Coma and Local superclusters. By complementing this local determination with high-redshift measurements from the literature, we reconstruct the star formation history of main-sequence galaxies as a function of stellar mass from the present epoch up to z = 3. In agreement with previous studies, our analysis shows that quenching mechanisms occur above a threshold stellar mass Mknee that evolves with redshift as ∝ (1 + z)2. Moreover, visual morphological classification of individual objects in our local sample reveals a sharp increase in the fraction of visually classified strong bars with mass, hinting that strong bars may contribute to the observed downturn in the sSFR above Mknee. We test this hypothesis using a simple but physically motivated numerical model for bar formation, finding that strong bars can rapidly quench star formation in the central few kpc of field galaxies. We conclude that strong bars contribute significantly to the red colors observed in the inner parts of massive galaxies, although additional mechanisms are likely required to quench the star formation in the outer regions of massive spiral galaxies. Intriguingly, when we extrapolate our model to higher redshifts, we successfully recover the observed

  16. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  17. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  18. Framing of research question using the PICOT format in randomised controlled trials of venous ulcer disease: a protocol for a systematic survey of the literature.

    Science.gov (United States)

    Abbade, Luciana P F; Wang, Mei; Sriganesh, Kamath; Mbuagbaw, Lawrence; Thabane, Lehana

    2016-11-11

    Although venous ulcers have a great social and economic impact, there is a lack of evidence from randomised controlled trials (RCTs) to support appropriate management for this disease. Framing the research question using the Population; Intervention; Comparator; Outcome; Time frame (PICOT) format in RCTs can improve the quality of the research design. To evaluate how the PICOT format is used to frame a research question in reports of RCTs of venous ulcer disease and to determine the factors associated with better adherence to the PICOT format in framing the research question. We will conduct a systematic survey of RCTs on venous ulcers published in the National Institute of Health, PubMed database between January 2009 and May 2016. We will include all RCTs addressing therapeutic intervention for venous ulcer disease involving human subjects, and published in the English language. The selection process will be carried out in duplicate by two independent investigators. First, titles and abstracts will be screened, then full-text articles. We will examine whether the five elements of the PICOT format are used in formulating the research question and give a score between 0 and 5. The primary outcome will be the proportion of studies that have adequately reported all five PICOT elements. This will be the first survey to assess how the PICOT format is used to frame research questions on the management of venous ulcers in reports of RCTs. On completion, this review will be submitted to a peer-reviewed biomedical journal for publication and the findings will also be presented at scientific conferences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  20. Lithofacies and sequence stratigraphic description of the upper part of the Avon Park Formation and the Arcadia Formation in U.S. Geological Survey G–2984 test corehole, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Robinson, Edward

    2017-07-18

    Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.

  1. New reactor concepts. An analysis of the actual research status; Neue Reaktorkonzepte. Eine Analyse des aktuellen Forschungsstands

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias

    2017-04-15

    The report on new reactor concepts covers the following issues: characterization and survey of new reactor concepts; evaluation criteria: safety, resources for fuel supply, waste problems, economy and proliferation; comprehensive relevant aspects: thorium as alternative resource, partitioning and transmutation; actual developments and preliminary experiences for fast breeding reactor (FBR), high-temperature reactor (HTR), molten salt reactor (MSR), small modular reactor (SMR).

  2. SLOWPOKE reactor

    International Nuclear Information System (INIS)

    Evans, D.J.R.; Downs, W.E.

    1974-01-01

    The SLOWPOKE reactor is described, which is a small pool type with thermal neutron fluxes ranging from 10 11 -10 12 n cm -2 sec -1 . It differs in many ways from conventional pool type, namely small critical mass, beryllium reflector and a closed reactor container. The reactor is designed as small and simply as possible, and consistently with safety and good operating practice. Access to the present model is via pneumatic irradiation tubes only, which limits the use of the facility to activation analysis, tracer production and training. (Mori, K.)

  3. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 65: Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this article, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as: (a) the order in which report components are read; (b) components used to determine if a report would be read; (c) those components that could be deleted; (d) the placement of such components as the symbols list; (e) the desirability of a table of contents; (f) the format of reference citations; (g) column layout and right margin treatment; and (h) writing style in terms of person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  6. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  7. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  8. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  9. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  10. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  11. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 2: A survey of the accuracy of the Studsvik of America CMS codes

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-02-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. Thus, before performing any kind of calculation with MOx fuels, it is necessary to be able to establish the reliability and the accuracy of these Core Management System (CMS) codes. This report presents a quantitative analysis of the models used in the package. A qualitative presentation is realized in a coming report

  12. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  13. Propulsion reactors

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A nuclear reactor equips the recently constructed French aircraft- carrier Charles-De-Gaulle, in a few months the second nuclear submarine (SNLE) of new generation will be operational. In last october the government launched the program Barracuda which consists of 6 submarines (SNA) whose series head will be operational in 2010. The main asset of nuclear propulsion is to allow an almost unlimited autonomy: soft water, air are produced inside the submarine and the maximum time spent underwater is only limited by human capacity to cope with confinement. CEA has 3 missions concerning country defence. First the designing, the fabrication and the maintenance of weapons, secondly the supplying of fissile materials and thirdly the nuclear propulsion. A new generation of propulsion reactors is being studied and a ground installation involving a test reactor equivalent to that on board is being built. This test reactor (RES) will simulate any type of on-board reactors by adjusting temperature, pressure, flowrate and even equipment such as steam generator. This reactor will validate the technological choices for the Barracuda program. (A.C.)

  14. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  15. Temperature dependence of liquid lithium film formation and deuterium retention on hot W samples studied by LID-QMS. Implications for future fusion reactors

    Science.gov (United States)

    de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.

    2018-04-01

    Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C–400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W–Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface  =  225 °C, when the W–Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C–400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W–Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of  ≈100 nm thick. These results bode well (in terms of tritium inventory) for the

  16. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). V. EXTENT AND SPATIAL DISTRIBUTION OF STAR FORMATION IN z ∼ 0.5 CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), the University of Tokyo, Kashiwa, 277-8582 (Japan); Treu, Tommaso; Malkan, Matthew; Abramson, Louis [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Poggianti, Bianca M. [INAF-Astronomical Observatory of Padova (Italy); Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fontana, Adriano; Pentericci, Laura [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio Catone (Italy); Bradac, Marusa; Hoag, Austin; Huang, Kuan-Han; He, Julie [Department of Physics, University of California, Davis, CA 95616 (United States); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trenti, Michele [School of Physics, University of Melbourne, VIC 3010 (Australia); Linden, Anja von der [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Morris, Glenn [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States)

    2015-12-01

    We present the first study of the spatial distribution of star formation in z ∼ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS 0717.5+3745 and MACS 1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as a field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10{sup 8}–10{sup 11} M{sub ⊙} and star formation rates in the range 1–20 M{sub ⊙} yr{sup −1}. Both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside-out growth. In ∼20% of the cases, the Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models, and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental processes that regulate star formation. Upcoming analysis of the full GLASS data set will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial data set.

  17. Main problems of research into WWER reactors

    International Nuclear Information System (INIS)

    Filip, R.; Kott, J.; Stepanek, S.

    1978-01-01

    A survey is presented of the principal research studies made by SKODA Plzen into WWER type reactors, reactor physics and the technical and nuclear safety of light water reactors. Load test equipment is described used for t-ensile tests of bodies whose dimensions are comparable to those of pressure vessel walls. Technical diagnosis and in-service inspections of nuclear power facilities, and water regime problems are also discussed. (J.B.)

  18. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  19. The framing of research questions using the PICOT format in randomized controlled trials of venous ulcer disease is suboptimal: A systematic survey.

    Science.gov (United States)

    Abbade, Luciana P F; Wang, Mei; Sriganesh, Kamath; Jin, Yanling; Mbuagbaw, Lawrence; Thabane, Lehana

    2017-09-01

    Despite several publications on venous ulcers, there is still a lack of evidence from randomized controlled trials (RCTs) to support certain treatments for patients with this disorder. Well-designed research questions using the PICOT (Population; Intervention; Comparator; Outcome; Time-frame) format in RCTs can improve the quality of research. The objectives of this study were to assess how the PICOT format is used to frame research questions in RCTs published on venous ulcer disease and to determine the factors associated with better adherence to the PICOT format. We conducted a systematic survey of RCTs on venous ulcers published in the PubMed database between January 2009 and May 2016. All RCTs published in English addressing therapeutic interventions for venous ulcer disease in human subjects were included. We examined whether the five elements of the PICOT format were used in formulating the research question and scored them between 0 and 5. The primary outcome of this systematic survey was the percentage of studies that adequately reported all five PICOT elements. Eighty-five (85) RCTs were included with median PICOT score of 3 (IQR = 1.5). Four elements of PICOT were present in 28 reports (32.9%) and only 2 RCTS (2.3%) reported all the PICOT elements. Population and intervention were often appropriately described, in (70/85) 82.4% and (83/85) 97.6% of the studies, respectively; however, comparison intervention and outcome were presented in only (53/85) 62.3% and (48/85) 56.5% of studies, respectively. Very few RCTs (7.1%; 6/85) reported the study time frame. No journal or RCT characteristics were found to be significantly associated with better reporting. Use of the PICOT format to frame research questions in RCTs published on venous ulcers is suboptimal, and our study reinforces the importance of framing a good research question to improve the design of trials and quality of evidence in venous ulcer disease. © 2017 by the Wound Healing Society.

  20. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  1. Reactor utilization

    International Nuclear Information System (INIS)

    Zecevic, V.

    1963-01-01

    In 1962, the RA reactor was operated almost three times more than in 1961, producing total of 25 555 MWh. Diagram containing comparative data about reactor operation for 1960, 1961, and 1962, percent of fuel used and U-235 burnup shows increase in reactor operation. Number of samples irradiated was 659, number of experiments done was 16. mean powered level was 5.93 MW. Fuel was added into the core twice during the reporting year. In fact the core was increased from 56 to 68 fuel channels and later to 84 fuel channels. Fuel was added to the core when the reactivity worth decreased to the minimum operation level due to burnup. In addition to this 5 central fuel channels were exchanged with fresh fuel in february for the purpose of irradiation in the VISA-2 channel

  2. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  3. Thermonuclear reactor

    International Nuclear Information System (INIS)

    Araki, Takao; Saito, Yasushi.

    1987-01-01

    Purpose: To reduce the seismic wave responsivity of an exhaust duct shields thereby preventing the release of tritium in an evacuating device due to failures upon earthquakes. Constitution: The ends on the cutting side of upper outer exhaust duct shields of a thermonuclear reactor are connected with a plurality of support beams. In a case where seismic vibrations are exerted to such a thermonuclear reactor, since the ends on the cutting side are coupled with the support beams, vibrations of the upper outer exhaust duct shields are greatly restricted. Thus, since there is no more such a possibility, for example, that an exhaust duct connected to the upper portion of a reactor main body is greatly distorted due to the seismic response of the upper outside exhaust duct shields to result in the failure of the connection portion with a vacuum pump, the release of tritium due to failure of the evacuating device can be prevented. (Yoshino, Y.)

  4. Kinetic studies of the radical oxidation in gaseous phase of organic iodides and of the formation of iodine oxide particles under the simulated conditions of a nuclear reactor containment submitted to a severe accident

    International Nuclear Information System (INIS)

    Zhang, S.

    2012-01-01

    Within the framework of the research in the nuclear reactor safety field, the iodine oxides formation by organic iodides destruction in the containment has been studied with the means of the atmospheric chemistry field. The destruction kinetics and their activation energy of organic iodides by . OH and . O radical has been quantified by a Flash Photolysis system able to monitor the oxidant radicals by resonance fluorescence. Those results have been published and some of them for the first time in the literature. The mechanisms leading to the organic iodides destruction are either by a hydrogen atom abstraction, either by the formation of a complex, depending on the organic iodide involved. Then, certain kinetics reactions have been updated in the IODAIR code. Other reactions have been added based on the recent literature available. A comparison of the kinetics destruction of CH 3 I by . OH and . O with IODAIR and the global kinetics of destruction in ASTEC/IODE showed a difference of about 2 which shows the importance of these two radicals (and mainly . O) in those destruction processes. The other main path of destruction would be by electron radiation. Other radicals like . H and . N would not contribute significantly to organic iodides destruction. A sensitivity analysis highlighted that organic iodides would mostly be destroyed into iodine oxides with a almost complete conversion within a few hours. Finally, an atmospheric chamber has been used to quantify iodine oxides growth, density and composition. Under the conditions studied, their formation is fast. Particles sizes of about 200-400 nm are formed within a few hours. The main parameters influencing their growth are the relative humidity and the presence of ozone (whose function is to create . O and . OH radicals). (author)

  5. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The decline of cosmic star formation: quenching, mass, and environment connections

    Science.gov (United States)

    Cucciati, O.; Davidzon, I.; Bolzonella, M.; Granett, B. R.; De Lucia, G.; Branchini, E.; Zamorani, G.; Iovino, A.; Garilli, B.; Guzzo, L.; Scodeggio, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Franzetti, P.; Fritz, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Blaizot, J.; Coupon, J.; Hawken, A.; Ilbert, O.; Moscardini, L.; Peacock, J. A.; Gargiulo, A.

    2017-06-01

    We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of the environment on the evolution of galaxies between z = 0.5 and z = 0.9. We characterise local environment in terms of the density contrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the fifth nearest neighbour. This is performed by using a volume-limited sub-sample of galaxies complete up to z = 0.9, but allows us to attach a value of local density to all galaxies in the full VIPERS magnitude-limited sample to I web site is http://www.vipers.inaf.it/

  6. Fluidized-Bed Silane-Decomposition Reactor

    Science.gov (United States)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  7. Crop Rotational Effects on Yield Formation in Current Sugar Beet Production – Results From a Farm Survey and Field Trials

    Directory of Open Access Journals (Sweden)

    Heinz-Josef Koch

    2018-03-01

    Full Text Available In Europe, the framework for sugar beet (Beta vulgaris L. production was subject to considerable changes and for the future it is expected that sugar beet cultivation might concentrate around the sugar factories for economic reasons. Based on data from a national sugar beet farmers’ survey and multi-year crop rotation trials, the effects of cropping interval (number of years in between two subsequent sugar beet crops and of preceding crops on sugar yield were elucidated under current Central European management conditions. The dominating sugar beet cropping interval was ≥4 years in the farm survey with pronounced differences between regions. However, the cropping intervals 2, 3, and ≥4 years did not affect the sugar yield. Therefore, significant differences in sugar yield between regions were assumed to be caused by multiple interactions between year, site, and farmers’ skills. Throughout Germany, the dominating preceding crops in sugar beet cultivation were winter wheat (Triticum aestivum L. and winter barley (Hordeum vulgare L.. In the field trials, the sugar yield was 5% higher after pea (Pisum sativum L. compared to maize (Zea mays L. as preceding crop, while differences between the preceding crops pea and winter wheat, and wheat and maize were not significant. Repeated measurements of canopy development and leaf color during the growing season revealed a higher N-availability after pea as preceding crop. However, decreased growth after maize was not completely compensated for by high N-fertilizer doses. Overall, the causes for the differences in sugar yield between the preceding crops remained open. The results do not support concerns about substantial yield losses in sugar beet production due to a reduction in the cropping interval from 3 to 2 years. Nevertheless, short rotations with maize and sugar beet might increase the risk of Rhizoctonia solani crown and root rot infestation. Leguminous crops such as pea offer the potential

  8. Crop Rotational Effects on Yield Formation in Current Sugar Beet Production – Results From a Farm Survey and Field Trials

    Science.gov (United States)

    Koch, Heinz-Josef; Trimpler, Kerrin; Jacobs, Anna; Stockfisch, Nicol

    2018-01-01

    In Europe, the framework for sugar beet (Beta vulgaris L.) production was subject to considerable changes and for the future it is expected that sugar beet cultivation might concentrate around the sugar factories for economic reasons. Based on data from a national sugar beet farmers’ survey and multi-year crop rotation trials, the effects of cropping interval (number of years in between two subsequent sugar beet crops) and of preceding crops on sugar yield were elucidated under current Central European management conditions. The dominating sugar beet cropping interval was ≥4 years in the farm survey with pronounced differences between regions. However, the cropping intervals 2, 3, and ≥4 years did not affect the sugar yield. Therefore, significant differences in sugar yield between regions were assumed to be caused by multiple interactions between year, site, and farmers’ skills. Throughout Germany, the dominating preceding crops in sugar beet cultivation were winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.). In the field trials, the sugar yield was 5% higher after pea (Pisum sativum L.) compared to maize (Zea mays L.) as preceding crop, while differences between the preceding crops pea and winter wheat, and wheat and maize were not significant. Repeated measurements of canopy development and leaf color during the growing season revealed a higher N-availability after pea as preceding crop. However, decreased growth after maize was not completely compensated for by high N-fertilizer doses. Overall, the causes for the differences in sugar yield between the preceding crops remained open. The results do not support concerns about substantial yield losses in sugar beet production due to a reduction in the cropping interval from 3 to 2 years. Nevertheless, short rotations with maize and sugar beet might increase the risk of Rhizoctonia solani crown and root rot infestation. Leguminous crops such as pea offer the potential for higher

  9. The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264

    Science.gov (United States)

    Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.

    2018-01-01

    Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later

  10. Changes in the influence of affect and cognition over time on consumer attitude formation toward nanotechnology: A longitudinal survey study.

    Science.gov (United States)

    van Giesen, Roxanne I; Fischer, Arnout R H; van Trijp, Hans C M

    2018-02-01

    Insights into how consumer attitudes toward nanotechnology are formed and develop are crucial for understanding and anticipating possible barriers in consumer acceptance of nanotechnology applications. In this study, the influence of affect and cognition on overall opinion is investigated longitudinally for emerging nanotechnologies, and compared with conventional technologies. Overall, in attitude formation toward nanotechnology applications, people rely relatively more on affect than cognition. Over time, reliance on affect decreases whereas reliance on cognition increases for nanotechnology. This suggests that over time nanotechnology applications have become somewhat more integrated within people's already existing knowledge structure. However, for conventional technologies the influence of affect and cognition on overall attitude remains stable over time. The current study shows that it is essential to address both affective and cognitive aspects of public opinion of nanotechnology.

  11. Status of small reactor designs without on-site refuelling

    International Nuclear Information System (INIS)

    2007-01-01

    objectives of small reactors without on-site refuelling for a variety of uses, on the state of the art in technology development for such reactors, and on their design status. The report is intended for many categories of stakeholders, including electricity producers, non-electrical producers, policy makers, designers, and regulators. The main sections of this report, addressed to all above mentioned groups of stakeholders, survey emerging energy market characteristics and draw a rationale for small reactors without on-site refuelling; provide a summary and an assessment of major design specifications, applications and user-related special features for the surveyed reactor concepts; review the design status and targeted deployment dates; and outline the possible fuel cycle approaches. The annexes, intended mostly for designers and technical managers, provide detailed design descriptions of small reactors without on-site refuelling under development worldwide and are patterned along a common format, which makes it possible to identify the design philosophy, objectives and approaches, as well as technical features and non-technical factors and arrangements with a potential to provide solutions in the specific areas of concern associated with future nuclear energy systems. The scope of this report is limited to reactors without on-site refuelling, i.e. small reactors of less than 300 MW(e) effective output that are designed for infrequent replacement of well-contained fuel cassettes in a manner that impedes clandestine diversion of nuclear fuel material. SMRs with conventional refuelling schemes have been addressed in previous IAEA publications

  12. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    Science.gov (United States)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    Gilroy, J.E.

    1980-01-01

    An improved cover structure for liquid metal cooled fast breeder type reactors is described which it is claimed reduces the temperature differential across the intermediate grid plate of the core cover structure and thereby reduces its subjection to thermal stresses. (UK)

  14. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  15. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  16. Reactor licensing

    International Nuclear Information System (INIS)

    Harvie, J.D.

    2002-01-01

    This presentation discusses reactor licensing and includes the legislative basis for licensing, other relevant legislation , the purpose of the Nuclear Safety and Control Act, important regulations, regulatory document, policies, and standards. It also discusses the role of the CNSC, its mandate and safety philosophy

  17. Neutronic reactor

    International Nuclear Information System (INIS)

    Carleton, J.T.

    1977-01-01

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment. 3 claims, 6 figures

  18. INFRARED SPECTROSCOPIC SURVEY OF THE QUIESCENT MEDIUM OF NEARBY CLOUDS. I. ICE FORMATION AND GRAIN GROWTH IN LUPUS

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, A. C. A. [IPAC, NASA Herschel Science Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Chiar, J. E. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Knez, C.; Mundy, L. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Öberg, K. I. [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Pendleton, Y. J. [Solar System Exploration Research Virtual Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Tielens, A. G. G. M.; Van Dishoeck, E. F., E-mail: aboogert@ipac.caltech.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-11-01

    Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H{sub 2}O ices form at extinctions of A{sub K} = 0.25 ± 0.07 mag (A{sub V} = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H{sub 2}O ice (2.3 ± 0.1 × 10{sup –5} relative to N{sub H}) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH{sub 3}OH abundance (<3%-8% relative to H{sub 2}O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A{sub K} increases as a function of A{sub K}. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R{sub V} ∼ 3.5 (A{sub K} = 0.71) and R{sub V} ∼ 5.0 (A{sub K} = 1.47). For lines of sight with A{sub K} > 1.0 mag, the τ{sub 9.7}/A{sub K} ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ{sub 9.7}/A{sub K} ratio. This process is likely related to grain growth by coagulation, as traced by the A{sub 7.4}/A{sub K} continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts.

  19. Report of scientific results 1976. Section nuclear chemistry and reactor

    International Nuclear Information System (INIS)

    1976-01-01

    The report of the section Nuclear Chemistry and Reactor presents the results of R and D in the fields of neutron scattering, radiation damage in solids, reactor chemistry, trace elements research in biomedicine, geochemistry, reactor operation, radioisotope production, and gives a survey of publications and lectures. (HK) [de

  20. Tokamak experimental power reactor studies

    International Nuclear Information System (INIS)

    1975-06-01

    The principal results of a scoping and project definition study for the Tokamak Experimental Power Reactor are presented. Objectives are discussed; a preliminary conceptual design is described; detailed parametric, survey and sensitivity studies are presented; and research and development requirements are outlined. (U.S.)

  1. The extended epoch of galaxy formation: Age dating of 3600 galaxies with 2 < z < 6.5 in the VIMOS Ultra-Deep Survey

    Science.gov (United States)

    Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.

    2017-06-01

    In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the

  2. The Pan-STARRS1 Medium-deep Survey: Star Formation Quenching in Group and Cluster Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Hung-Yu; Lin, Lihwai; Lin, Kai-Yang; Chen, Chin-Wei [Institute of Astronomy and Astrophysics, Academia Sinica, 106, Taipei, Taiwan, R.O.C. (China); Foucaud, Sebastien [Department of Earth Sciences, National Taiwan Normal University, N.88, Tingzhou Road, Sec. 4, Taipei 11677, Taiwan, R.O.C. (China); Chiueh, Tzihong [Department of Physics, National Taiwan University, 106, Taipei, Taiwan, R.O.C. (China); Bower, R. G.; Cole, Shaun; Draper, P. W.; Metcalfe, N. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Chen, Wen-Ping [Graduate Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan, R.O.C. (China); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Wainscoat, R. J.; Waters, C., E-mail: hyjian@asiaa.sinica.edu.tw [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2017-08-10

    We make use of a catalog of 1600 Pan-STARRS1 groups produced by the probability friends-of-friends algorithm to explore how the galaxy properties, i.e., the specific star formation rate (SSFR) and quiescent fraction, depend on stellar mass and group-centric radius. The work is the extension of Lin et al. In this work, powered by a stacking technique plus a background subtraction for contamination removal, a finer correction and more precise results are obtained than in our previous work. We find that while the quiescent fraction increases with decreasing group-centric radius, the median SSFRs of star-forming galaxies in groups at fixed stellar mass drop slightly from the field toward the group center. This suggests that the main quenching process in groups is likely a fast mechanism. On the other hand, a reduction in SSFRs by ∼0.2 dex is seen inside clusters as opposed to the field galaxies. If the reduction is attributed to the slow quenching effect, the slow quenching process acts dominantly in clusters. In addition, we also examine the density–color relation, where the density is defined by using a sixth-nearest-neighbor approach. Comparing the quiescent fractions contributed from the density and radial effect, we find that the density effect dominates the massive group or cluster galaxies, and the radial effect becomes more effective in less massive galaxies. The results support mergers and/or starvation as the main quenching mechanisms in the group environment, while harassment and/or starvation dominate in clusters.

  3. The Pan-STARRS1 Medium-deep Survey: Star Formation Quenching in Group and Cluster Environments

    Science.gov (United States)

    Jian, Hung-Yu; Lin, Lihwai; Lin, Kai-Yang; Foucaud, Sebastien; Chen, Chin-Wei; Chiueh, Tzihong; Bower, R. G.; Cole, Shaun; Chen, Wen-Ping; Burgett, W. S.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2017-08-01

    We make use of a catalog of 1600 Pan-STARRS1 groups produced by the probability friends-of-friends algorithm to explore how the galaxy properties, I.e., the specific star formation rate (SSFR) and quiescent fraction, depend on stellar mass and group-centric radius. The work is the extension of Lin et al. In this work, powered by a stacking technique plus a background subtraction for contamination removal, a finer correction and more precise results are obtained than in our previous work. We find that while the quiescent fraction increases with decreasing group-centric radius, the median SSFRs of star-forming galaxies in groups at fixed stellar mass drop slightly from the field toward the group center. This suggests that the main quenching process in groups is likely a fast mechanism. On the other hand, a reduction in SSFRs by ˜0.2 dex is seen inside clusters as opposed to the field galaxies. If the reduction is attributed to the slow quenching effect, the slow quenching process acts dominantly in clusters. In addition, we also examine the density-color relation, where the density is defined by using a sixth-nearest-neighbor approach. Comparing the quiescent fractions contributed from the density and radial effect, we find that the density effect dominates the massive group or cluster galaxies, and the radial effect becomes more effective in less massive galaxies. The results support mergers and/or starvation as the main quenching mechanisms in the group environment, while harassment and/or starvation dominate in clusters.

  4. STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Strandet, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Saliwanchik, B. R., E-mail: jingzhema@ufl.edu [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-10-10

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  5. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  6. Radiochemical problems of radiation chemical synthesis in n,. gamma. -field of nuclear reactor. 1. Formation and accumulation of chemically non-separable radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.P.; Freidus, N.V.; Bugaenko, L.T.; Kalyazin, E.P.; Petryaev, E.P.

    1981-01-01

    A wide applicability of products of radiation chemical synthesis (RCS), using n, ..gamma..-irradiation, is limited by possible contamination of the latter with long-lived radioactive isotopes of chemical elements included in the composition of the reagent and compounds synthesized (chemically non-separable radionuclides - CNR). A technique of the determination of the limit accumulation CNR on the basis of radiation chemical parameters of the synthesis (radiation-chemical yield, the dose rate absorbed, singleness of purpose of RCS etc.) and radiochemical parameters of formation and accumulation of CNR (radiochemical yields of CNR in the products of radiolysis, neutron fluence, the reagent purity etc.) is suggested. The radiochemical evaluation of CNR accumulation (tritium and carbon-14), formed at the expense of activation with neutrons of chemical elements of water and organic substances, consisting of hydrogen, carbon and oxygen has shown that at relatively low yields of final products (> or approximately 3 molecules/100 eV) no accumulation of radionuclides in concentrations reaching the average admissible concentration takes place.

  7. A large Hα survey of star formation in relaxed and merging galaxy cluster environments at z ∼ 0.15-0.3

    Science.gov (United States)

    Stroe, Andra; Sobral, David; Paulino-Afonso, Ana; Alegre, Lara; Calhau, João; Santos, Sergio; van Weeren, Reinout

    2017-03-01

    We present the first results from the largest Hα survey of star formation and active galactic nucleus activity in galaxy clusters. Using nine different narrow-band filters, we select >3000 Hα emitters within 19 clusters and their larger scale environment over a total volume of 1.3 × 105 Mpc3. The sample includes both relaxed and merging clusters, covering the 0.15-0.31 redshift range and spanning from 5 × 1014 to 30 × 1014 M⊙. We find that the Hα luminosity function for merging clusters has a higher characteristic density ϕ* compared to relaxed clusters. ϕ* drops from cluster core to cluster outskirts for both merging and relaxed clusters, with the merging cluster values ∼0.3 dex higher at each projected radius. The characteristic luminosity L* drops over the 0.5-2.0 Mpc distance from the cluster centre for merging clusters and increases for relaxed objects. Among disturbed objects, clusters hosting large-scale shock waves (traced by radio relics) are overdense in Hα emitters compared to those with turbulence in their intracluster medium (traced by radio haloes). We speculate that the increase in star formation activity in disturbed, young, massive galaxy clusters can be triggered by interactions between gas-rich galaxies, shocks and/or the intracluster medium, as well as accretion of filaments and galaxy groups. Our results indicate that disturbed clusters represent vastly different environments for galaxy evolution compared to relaxed clusters or average field environments.

  8. A PUBLIC CATALOG OF STELLAR MASSES, STAR FORMATION AND METALLICITY HISTORIES, AND DUST CONTENT FROM THE SLOAN DIGITAL SKY SURVEY USING VESPA

    International Nuclear Information System (INIS)

    Tojeiro, Rita; Wilkins, Stephen; Heavens, Alan F.; Panter, Ben; Jimenez, Raul

    2009-01-01

    We applied the VESPA algorithm to the Sloan Digital Sky Survey final data release of the Main Galaxies and Luminous Red Galaxies samples. The result is a catalog of stellar masses, detailed star formation and metallicity histories and dust content of nearly 800,000 galaxies. We make the catalog public via a T-SQL database, which is described in detail in this paper. We present the results using a range of stellar population and dust models, and will continue to update the catalog as new and improved models are made public. We also present a brief exploration of the catalog, and show that the quantities derived are robust: luminous red galaxies can be described by one to three populations, whereas a main galaxy sample galaxy needs on average two to five; red galaxies are older and less dusty; the dust values we recover are well correlated with measured Balmer decrements and star formation rates are also in agreement with previous measurements. We find that whereas some derived quantities are robust to the choice of modelling, many are still not.

  9. The Oklo reactors

    International Nuclear Information System (INIS)

    Skytte Jensen, B.

    1982-01-01

    The Oklo reactors comprise up to nine 235-U depleted zones in an uranium ore in the Republic of Gabon in West Africa. The depletion in fissile U-235 has been proved to have caused by nuclear chain reactions. The study of the Oklo phenomenon indicates that very efficient retardation mechanisms may operate in nature - at least under special conditions. A closer study of these processes ought to be made to establish the limitations to their occurrence. The Oklo sandstone formation today would probably be considered unacceptable as a host rock for a repository. (EG)

  10. Nuclear reactor

    International Nuclear Information System (INIS)

    Gibbons, J.F.; McLaughlin, D.J.

    1978-01-01

    In the pressure vessel of the water-cooled nuclear reactor there is provided an internal flange on which the one- or two-part core barrel is hanging by means of an external flange. A cylinder is extending from the reactor vessel closure downwards to a seat on the core cupport structure and serves as compression element for the transmission of the clamping load from the closure head to the core barrel (upper guide structure). With the core barrel, subject to tensile stress, between the vessel internal flange and its seat on one hand and the compression of the cylinder resp. hold-down element between the closure head and the seat on the other a very strong, elastic sprung structure is obtained. (DG) [de

  11. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  12. Reactor container

    International Nuclear Information System (INIS)

    Otsuka, Hiroaki; Yoshida, Takashi.

    1979-01-01

    Purpose: To prevent rain water falling along the outer wall of the container during the construction work of an atomic power plant from making ingress into the inner part of a reactor container through a large size material carry-in port. Constitution: A weir for preventing the ingress of rain water is provided on the border between the foot floor of a large material carry-in port provided on the side surface at the bottom part of the reactor container and the floor surface of the building. This weir is of a semi-circular plate shape, and formed so that the lower semi-circular part of the carry-in port is tightly closed. (Kamimura, M.)

  13. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  14. Reactor container

    International Nuclear Information System (INIS)

    Oyamada, Osamu; Furukawa, Hideyasu; Uozumi, Hiroto.

    1979-01-01

    Purpose: To lower the position of an intermediate slab within a reactor container and fitting a heat insulating material to the inner wall of said intermediate slab, whereby a space for a control rod exchanging device and thermal stresses of the inner peripheral wall are lowered. Constitution: In the pedestal at the lower part of a reactor pressure vessel there is formed an intermediate slab at a position lower than diaphragm floor slab of the outer periphery of the pedestal thereby to secure a space for providing automatic exchanging device of a control rod driving device. Futhermore, a heat insulating material is fitted to the inner peripheral wall at the upper side of the intermediate slab part, and the temperature gradient in the wall thickness direction at the time of a piping rupture trouble is made gentle, and thermal stresses at the inner peripheral wall are lowered. (Sekiya, K.)

  15. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  16. Nuclear reactor

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To prevent cladding tube injuries due to thermal expansion of each of the pellets by successively extracting each of the control rods loaded in the reactor core from those having less number of notches, as well as facilitate the handling work for the control rods. Constitution: A recycle flow control device is provided to a circulation pump for forcibly circulating coolants in the reactor container and an operational device is provided for receiving each of the signals concerning number of notches for each of the control rods and flow control depending on the xenon poisoning effect obtained from the signals derived from the in-core instrument system connected to the reactor core. The operational device is connected with a control rod drive for moving each of the control rods up and down and a recycle flow control device. The operational device is set with a pattern for the aimed control rod power and the sequence of extraction. Upon extraction of the control rods, they are extracted successively from those having less notch numbers. (Moriyama, K.)

  17. Reactor building

    International Nuclear Information System (INIS)

    Ebata, Sakae.

    1990-01-01

    At least one valve rack is disposed in a reactor building, on which pipeways to a main closure valve, valves and bypasses of turbines are placed and contained. The valve rack is fixed to the main body of the building or to a base mat. Since the reactor building is designed as class A earthquake-proofness and for maintaining the S 1 function, the valve rack can be fixed to the building main body or to the base mat. With such a constitution, the portions for maintaining the S 1 function are concentrated to the reactor building. As a result, the dispersion of structures of earthquake-proof portion corresponding to the reference earthquake vibration S 1 can be prevented. Accordingly, the conditions for the earthquake-proof design of the turbine building and the turbine/electric generator supporting rack are defined as only the class B earthquake-proof design conditions. In view of the above, the amount of building materials can be saved and the time for construction can be shortened. (I.S.)

  18. The Format Dilemma.

    Science.gov (United States)

    Oder, Norman

    2002-01-01

    Reports results of a survey of public libraries that investigated trends in audiovisual materials. Highlights include format issues; audiobooks; media budgets for various formats; video collections; DVDs; circulation; collection sizes; music CDs; and future possibilities. (LRW)

  19. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  20. Design and analysis of pressurized water reactor systems

    International Nuclear Information System (INIS)

    Juhn, P.E.; Kim, Y.H.

    1979-01-01

    To help develop nuclear engineering technologies in local industry sectors, technical and economical data on pressurized water reactor systems and components have been collected, systematically analyzed and computerized to a certain degree. Codes and standards necessary for engineering design of PWR systems have been surveyed and clarified in terms of NSSS, turbine-generator system and BOP, then again rearranged with respect to quality classes and seismic classes. Some design manuals, criteria and guidelines regarding design, construction, test and operation of PWR plants have also been surveyed and collected. Benchmark cost calculation for the construction of a 900 MWe PWR plant, according to the standard format, was carried out, and computer model on construction costs was improved and updated by considering the local supply of labor and materials. And for the indigeneous development of PWR equipment and materials, such data as delivery schedule and manufacturers of 52 systems and 36,000 components have also been reviewed herein. (author)

  1. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  2. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  3. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  4. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gruber, E.A.

    1979-01-01

    A nuclear reactor with control rods in channels between fuel assemblies wherein the fuel assemblies incorporate guide rods which protrude outwardly into the control rod channels to prevent the control rods from engaging the fuel elements. The guide rods also extend back into the fuel assembly such that they are relatively rigid members. The guide rods are tied to the fuel assembly end or support plates and serve as structural members which are supported independently of the fuel element. Fuel element spacing and support means may be attached to the guide rods. 9 claims

  6. XMM-NEWTON/SLOAN DIGITAL SKY SURVEY: STAR FORMATION EFFICIENCY IN GALAXY CLUSTERS AND CONSTRAINTS ON THE MATTER-DENSITY PARAMETER

    Energy Technology Data Exchange (ETDEWEB)

    Lagana, Tatiana F. [Universidade de Sao Paulo, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Departamento de Astronomia, Cidade Universitaria, CEP:05508-090, Sao Paulo, SP (Brazil); Zhang Yuying; Reiprich, Thomas H.; Schneider, Peter [Argelander-Institut fuer Astronomie, Universitaet Bonn, 53121 Bonn (Germany)

    2011-12-10

    It is believed that the global baryon content of clusters of galaxies is representative of the matter distribution of the universe, and can, therefore, be used to reliably determine the matter-density parameter {Omega}{sub m}. This assumption is challenged by the growing evidence from optical and X-ray observations that the total baryon mass fraction increases toward rich clusters. In this context, we investigate the dependence of stellar and total baryon mass fractions as a function of mass. To do so, we used a subsample of 19 clusters extracted from the X-ray flux-limited sample HIFLUGCS that have available Sloan Digital Sky Survey Data Release 7 data. From the optical analysis we derived the stellar masses. Using XMM-Newton we derived the gas masses. Then, adopting a scaling relation we estimate the total masses. Adding the gas and the stellar mass fractions we obtain the total baryonic content that we find to increase with cluster mass, reaching seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) prediction for clusters with M{sub 500} = 1.6 Multiplication-Sign 10{sup 15} M{sub Sun }. We observe a decrease of the stellar mass fraction (from 4.5% to {approx}1.0%) with increasing total mass where our findings for the stellar mass fraction agree with previous studies. This result suggests a difference in the number of stars formed per unit of halo mass, though with a large scatter for low-mass systems. That is, the efficiency of star formation varies on a cluster scale that lower mass systems are likely to have higher star formation efficiencies. It follows immediately that the dependence of the stellar mass fraction on total mass results in an increase of the mass-to-light ratio from lower to higher mass systems. We also discuss the consequences of these results in the context of determining the cosmic matter-density parameter {Omega}{sub m}.

  7. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Science.gov (United States)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. RESEARCH OF SOCIAL FACTORS OF FORMATION OF THE STUDENT’S LANGUAGE AND COMMUNICATIVE COMPETENCE (BASED ON THE SURVEY OF STUDENTS OF THE FORESTRY SPECIALTIES

    Directory of Open Access Journals (Sweden)

    Oksana Hrydzhuk

    2017-03-01

    Full Text Available The problem of formation of the student’s language and communicative competence in the context of clarification of social factors that affect their learning of the Ukrainian Language for Proficiency is revealed. The results of survey conducted in the Ukrainian National Forestry University in 2013–2016 among the students of the first and second years (the specialities “Forestry and Landscaping” and “The Woodworking Technology” are described. Students’ attitude to the Ukrainian language as a means of communication in performing of industrial actions and choosing the language of communication in future professional activities was found out in the analysis. Environmental impact, the factor of a companion, and the peculiarities of speech situation are considered to be among the main social factors that contribute to the student's communication in a certain language. Students’ evaluation of their own level of command of the state language as a means of professional communication is defined. Students’ understanding of appropriateness of development of language knowledge and also communicative abilities and skills for professional communication are researched. A set of knowledge and skills that students consider as those necessary to be improved is revealed. The appropriateness of studentsʹ language training at high school is outlined. The systems of reasons that are crucial for students during their studies of’ the Ukrainian Language for Proficiency are identified. A clear idea of the future profession and understanding what we should know and be able to do, creative development of professional skills and desire to create, increase of social status, and interest in continuing education are highlighted among the values prevailing in attitude to learning in general. Some questions covered the necessity of professional terminology learning in the linguistic aspect. The major reasons that motivate students to learn professional

  9. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  10. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  11. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Reactor container

    International Nuclear Information System (INIS)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-01-01

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.)

  13. Reactor container

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-09-07

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.).

  14. Reactor monitor

    International Nuclear Information System (INIS)

    Takada, Tamotsu.

    1992-01-01

    The device of the present invention monitors a reactor so that each of the operations for the relocation of fuel assemblies and the withdrawal and the insertion of control rods upon exchange of fuel assemblies and control rods in the reactor. That is, when an operator conducts relocating operation by way of a fuel assembly operation section, the device of the present invention judges whether the operation indication is adequate or not, based on the information of control rod arrangement in a control rod memory section. When the operation indication is wrong, a stop signal is sent to a fuel assembly relocating device. Further, when the operator conducts control rod operation by way of a control rod operation section, the device of the present invention judges in the control rod withdrawal judging section, as to whether the operation indication given by the operator is adequate or not by comparing it with fuel assembly arrangement information. When the operation indication is wrong, a stop signal is sent to control rod drives. With such procedures, increase of nuclear heating upon occurrence of erroneous operation can be prevented. (I.S.)

  15. The Star Formation in Radio Survey: Jansky Very Large Array 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions

    Science.gov (United States)

    Murphy, E. J.; Dong, D.; Momjian, E.; Linden, S.; Kennicutt, R. C., Jr.; Meier, D. S.; Schinnerer, E.; Turner, J. L.

    2018-02-01

    We present 33 GHz imaging for 112 pointings toward galaxy nuclei and extranuclear star-forming regions at ≈2″ resolution using the Karl G. Jansky Very Large Array (VLA) as part of the Star Formation in Radio Survey. A comparison with 33 GHz Robert C. Byrd Green Bank Telescope single-dish observations indicates that the interferometric VLA observations recover 78% ± 4% of the total flux density over 25″ regions (≈kpc scales) among all fields. On these scales, the emission being resolved out is most likely diffuse non-thermal synchrotron emission. Consequently, on the ≈30–300 pc scales sampled by our VLA observations, the bulk of the 33 GHz emission is recovered and primarily powered by free–free emission from discrete H II regions, making it an excellent tracer of massive star formation. Of the 225 discrete regions used for aperture photometry, 162 are extranuclear (i.e., having galactocentric radii r G ≥ 250 pc) and detected at >3σ significance at 33 GHz and in Hα. Assuming a typical 33 GHz thermal fraction of 90%, the ratio of optically-thin 33 GHz to uncorrected Hα star formation rates indicates a median extinction value on ≈30–300 pc scales of A Hα ≈ 1.26 ± 0.09 mag, with an associated median absolute deviation of 0.87 mag. We find that 10% of these sources are “highly embedded” (i.e., A Hα ≳ 3.3 mag), suggesting that on average, H II regions remain embedded for ≲1 Myr. Finally, we find the median 33 GHz continuum-to-Hα line flux ratio to be statistically larger within r G < 250 pc relative to the outer disk regions by a factor of 1.82 ± 0.39, while the ratio of 33 GHz to 24 μm flux densities is lower by a factor of 0.45 ± 0.08, which may suggest increased extinction in the central regions.

  16. The VIMOS Public Extragalactic Redshift Survey (VIPERS):. A quiescent formation of massive red-sequence galaxies over the past 9 Gyr

    Science.gov (United States)

    Fritz, A.; Scodeggio, M.; Ilbert, O.; Bolzonella, M.; Davidzon, I.; Coupon, J.; Garilli, B.; Guzzo, L.; Zamorani, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Granett, B. R.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-03-01

    We explore the evolution of the colour-magnitude relation (CMR) and luminosity function (LF) at 0.4 contamination varies for the different methods and with redshift, but regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4 1011 M⊙) and expeditious RS formation over a short period of ~1.5 Gyr starting before z = 1. This is supported by the detection of ongoing SF in early-type galaxies at 0.9 Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS website is http://www.vipers.inaf.it/.Appendices are available in electronic form at http://www.aanda.org

  17. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Yoder, John; Bessler, Nancy J.

    1988-01-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  18. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  19. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  20. Human factors in the safe operation of nuclear power reactors. Survey of research carried out through the Commission of the European Communities

    International Nuclear Information System (INIS)

    Ancarani, A.; Reijen, G. van; Amendola, A.; Mancini, G.

    1983-01-01

    A survey is made of the study and development of approaches to model operators in routine operation and accident sequences. Particular attention is given to the application of simulators. Simulators as tools to improve safety in nuclear power plant operation can be used in two ways: for training and requalification of operators, and for assistance during routine and abnormal events. Whereas the second application is still in its infancy, training simulators of various degrees of complexity and fidelity are widely used. They range from reduced scope to replica models, or can take the form of modular mini-simulators for studying single parts of the plant. The best reliance on a simulator of any kind will be ensured when the definitions of a method for measuring relevant quantities under well-defined conditions (normal and abnormal) will have been established and agreed upon. Results are also given of a study on human factors in relation to risk management in different electricity production processes. This study derives information from the experience of the staff of power stations and analyses management responsibilities and the functions of operating personnel; both aspects have been put in perspective. (author)

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Schabert, H.P.; Weber, R.; Bauer, A.

    1975-01-01

    The refuelling of a PWR power reactor of about 1,200 MWe is performed by a transport pipe in the containment leading from an external to an internal fuel pit. A wagon to transport the fuel elements can go from a vertical loading position to an also vertical deloading position in the inner fuel pit via guide rollers. The necessary horizontal movement is effected by means of a cable line through the transport pipe which is inclined at least 10 0 . Gravity thus helps in the movement to the deloading position. The cable line with winch is fastened outside the containment. Swivelling devices tip the wagon from the horizontal to the vertical position or vice versa. Loading and deloading are done laterally. (TK/LH) [de

  2. NEUTRONIC REACTOR

    Science.gov (United States)

    McGarry, R.J.

    1958-04-22

    Fluid-cooled nuclear reactors of the type that utilize finned uranium fuel elements disposed in coolant channels in a moderater are described. The coolant channels are provided with removable bushings composed of a non- fissionable material. The interior walls of the bushings have a plurality of spaced, longtudinal ribs separated by grooves which receive the fins on the fuel elements. The lands between the grooves are spaced from the fuel elements to form flow passages, and the size of the now passages progressively decreases as the dlstance from the center of the core increases for the purpose of producing a greater cooling effect at the center to maintain a uniform temperature throughout the core.

  3. Nuclear reactor

    International Nuclear Information System (INIS)

    Schweiger, F.; Glahe, E.

    1976-01-01

    In a nuclear reactor of the kind which is charged with spherical reaction elements and in which control rods are arranged to be thrust directly into the charge, each control rod has at least one screw thread on its external surface so that as the rod is thrust into the charge it is caused to rotate and thus make penetration easier. The length of each control rod may have two distinct portions, a latter portion which carries a screw thread and a lead-in portion which is shorter than the latter portion and which may carry a thread of greater pitch than that on the latter portion or may have a number of axially extending ribs instead of a thread

  4. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  5. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  6. Characterization of nuclear reactor containment penetrations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shackelford, M.H.; Bump, T.R.; Seidensticker, R.W.

    1985-02-01

    This report concludes a preliminary report prepared by ANL for Sandia, published as NUREG/CR-3855, in June 1984. The preliminary report, NUREG/CR-3855, presented the results of a survey of nuclear reactor containment penetrations, covering the number of plants surveyed at that time (22 total). Since that time, an additional 26 plants have been included in the survey. This final report serves two purposes: (1) to add the summary data sheets and penetration details for the additional plants now included in the survey; and (2) to confirm, revise, or add to analyses and discussions presented in the first report which, of course, were based solely on the earlier sample of 22 plants. This final report follows the outline and format of the preliminary survey report. In general, changes and additions to the preliminary report are implied, rather than stated as such to avoid repeated reference to that report. If no changes have been made in a section the title of the section of the previous report is simply repeated followed by ''No Changes''. Some repetition is used for continuity and clarity.

  7. Characterization of nuclear reactor containment penetrations. Final report

    International Nuclear Information System (INIS)

    Shackelford, M.H.; Bump, T.R.; Seidensticker, R.W.

    1985-02-01

    This report concludes a preliminary report prepared by ANL for Sandia, published as NUREG/CR-3855, in June 1984. The preliminary report, NUREG/CR-3855, presented the results of a survey of nuclear reactor containment penetrations, covering the number of plants surveyed at that time (22 total). Since that time, an additional 26 plants have been included in the survey. This final report serves two purposes: (1) to add the summary data sheets and penetration details for the additional plants now included in the survey; and (2) to confirm, revise, or add to analyses and discussions presented in the first report which, of course, were based solely on the earlier sample of 22 plants. This final report follows the outline and format of the preliminary survey report. In general, changes and additions to the preliminary report are implied, rather than stated as such to avoid repeated reference to that report. If no changes have been made in a section the title of the section of the previous report is simply repeated followed by ''No Changes''. Some repetition is used for continuity and clarity

  8. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  9. Review of current and proposed reactor upgrades

    International Nuclear Information System (INIS)

    Moon, R.M.

    1985-01-01

    In an effort to foresee the future health of neutron scattering, a survey of plans to upgrade reactors and associated experimental facilities was undertaken. The results indicate that we are now entering a period characterized by a substantial reinvestment in reactor sources and expansion in the number of neutron scattering instruments. For the group of institutions participating in this survey there will be a total investment in improved sources and experimental facilities of $500 M to $1,000 M over the next decade. This investment will result in a 30 to 40% increase in the total power of research reactors and an increase of 30 to 50% in the number of neutron scattering instruments. It is therefore reasonable to anticipate an approximate doubling in the number of reactor neutrons incident on samples in the mid 90s compared to the present

  10. Elementary migration around the Oklo nuclear reactors. Implications for high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Menet-Dressayre, C.; Menager, M.T.

    1993-01-01

    The study of Uranium and rare earths near the reactors has displayed the radioelements transfer in the reactors neighbourhood. The main implications for high level radioactive wastes disposal in geological formations are discussed. 12 refs

  11. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  12. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  13. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  14. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  15. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, D.; Sugiyama, N. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Kajisawa, M. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Koekemoer, A. M., E-mail: daichi@nagoya-u.jp [HST and JWST Instruments/Science Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-11-01

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.

  16. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  17. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  18. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  19. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  20. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Irion, L.; Tautz, J.; Ulrych, G.

    1976-01-01

    This additional patent complements the arrangement of non-return valves to prevent loss of cooling water on fracture of external tubes in the main coolant circuit (according to PS 24 24 427.7) by ensuring that the easily movable valves only operate in case of a fault, but do not flutter in operation, because the direction of flow is not the same at each location where they are installed. The remedy for this undesirable effect consists of allocating 1 non-return valve unit with 5 to 10 valves to each (of several) ducts for the cooling water intake. These units are installed in the annular space between the reactor vessel and the pressure vessel below the inlet of the ducts. Due to flow guidance surfaces in the same space, the incoming cooling water is deflected downwards and as the guiding surfaces are closed at the sides, must pass parallel to the valves of the non-return valve unit. On fracture of the external cooling water inlet pipe concerned, all valves of this unit close due to reversal of flow on the outlet side. (TK) [de

  2. Reactor container

    International Nuclear Information System (INIS)

    Kagawa, Tatsuo; Yanai, Ryoichi.

    1976-01-01

    Object: To provide a reactor container which is free from water shock action or condensing vibrations and cannot be readily broken by a missile from a pump impeller, pipe whipping, steam jet reaction, etc., and which also quickly condenses issuing steam and possesses a large vibration-proof strength. Structure: A high pressure containment vessel accommodating a pressure container includes a plurality of pressurized water tanks arranged along its inner periphery, and a pneumatic valve is provided in a lower portion of each of these pressurized water tanks. If an accident occurs, vapor is caused to issue from the pressure container into the vessel. When a certain value is reached, the pneumatic valves are opened, whereby the gas within the pressurized water tanks causes pressurized water to flow through the pipe and be ejected from spray nozzles to cause condensation of water within the vessel. Further, water of a pool within the container is circulated to allow heat release to the outside. (Horiuchi, T.)

  3. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  4. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  5. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  6. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  7. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  8. Techniques for preparing flowchart-format emergency operating procedures: Background (Sections 1.0-9.0)

    International Nuclear Information System (INIS)

    Barnes, V.E.; Moore, C.J.; Wieringa, D.R.; Isakson, C.S.; Kono, B.K.; Gruel, R.L.

    1989-01-01

    This two-volume report describes the activities, findings, and recommendations of a project entitled ''Techniques for Presenting Flowchart-Format Emergency Operating Procedures.'' The project team surveyed the literature pertaining to flowcharts, reviewed existing flowchart emergency operating procedures (EOPs), interviewed consultants who produced flowcharts, and interviewed reactor operator licensing examiners about the use of flowcharts in nuclear power plants. This document, and Volume 1 of this report, discusses the use of flowchart-format EOPs in nuclear power plants and presents issue to be addressed in the design and implementation of flowchart EOPs. 66 refs., 76 figs., 2 tabs

  9. The Oklo natural reactor, Gabon

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1989-01-01

    This paper reports how the Oklo natural reactor, Gabon, remains the best natural analog for assessing the behavior of fission products, actinides, and actinide daughters in rocks. The rocks at Oklo are porous and permeable, as well as being fractured and containing abundant water, yet many of the fission products and actinides have remained in place or close to their formation sites. The actinides Th, U, Np, Pu, and Am are similar in their crystal chemical characteristics, and all were retained in the host pitchblende. Elements incompatible in the pitchblende structure were lost by diffusion into the rocks surrounding the high grade reactor ore. Alkali and Alkaline earth elements Rb, Sr, Cs, and Ba were fixed in and very close to the reactor ores in clay minerals and in some secondary carbonates and sulfates. Local oxidizing conditions in the reactor zones caused some loss of Tc, Mo, Cd, and Ru, but the Tc, Mo, and Ru were fixed in sulfides formed close by under chemically reducing conditions. Local migration for Ag and Sn has been documented for some samples

  10. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  11. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  12. Fast reactor physics at CEA: present studies and future prospects

    International Nuclear Information System (INIS)

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  13. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  14. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  15. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  16. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  17. Reactor shutdown method

    International Nuclear Information System (INIS)

    Nishino, Yoshitaka; Sawa, Toshio; Matsumoto, Takayuki; Osumi, Katsumi; Usui, Naoshi.

    1991-01-01

    A device for injecting a hydrogen gas, a chelating agent or a reducing agent is disposed in a reactor water recycling system. Upon reactor shutdown, the hydrogen gas, the chelating agent or the reducing agent is injected to primary coolants. With such a procedure, radioactive ions formed by the dissolution of oxide layers at the surface of pipelines and equipments in a reactor water recycling system and a reactor water cleanup system are removed from the primary coolants by a reactor water cleanup device. Accordingly, since the dose rate at the surface of the pipelines can be reduced, the operator's radiation dose can be reduced upon periodical inspection for a power plant. Further, the inner pressure of the reactor is kept higher than the saturated steam pressure at the reactor water temperature to suppress boiling of the reactor water. This can suppress the peeling of cruds deposited to the surface of the fuel cladding tube. (I.N.)

  18. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  19. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  20. Development of the floating sulphur biofilm reactor for sulphide ...

    African Journals Online (AJOL)

    Development of the floating sulphur biofilm reactor for sulphide oxidation in biological water treatment systems. ... water interface of anaerobic, organically loaded and actively sulphate reducing systems. ... The effect of influent sulphide concentrations, flow rate and reactor dimensions on the sulphur biofilm formation were

  1. Reactor Monitoring with Antineutrinos - A Progress Report

    Science.gov (United States)

    Bernstein, Adam

    2012-08-01

    The Reactor Safeguards regime is the name given to a set of protocols and technologies used to monitor the consumption and production of fissile materials in nuclear reactors. The Safeguards regime is administered by the International Atomic Energy Agency (IAEA), and is an essential component of the global Treaty on Nuclear Nonproliferation, recently renewed by its 189 remaining signators. (The 190th, North Korea, withdrew from the Treaty in 2003). Beginning in Russia in the 1980s, a number of researchers worldwide have experimentally demonstrated the potential of cubic meter scale antineutrino detectors for non-intrusive real-time monitoring of fissile inventories and power output of reactors. The detectors built so far have operated tens of meters from a reactor core, outside of the containment dome, largely unattended and with remote data acquisition for an entire 1.5 year reactor cycle, and have achieved levels of sensitivity to fissile content of potential interest for the IAEA safeguards regime. In this article, I will describe the unique advantages of antineutrino detectors for cooperative monitoring, consider the prospects and benefits of increasing the range of detectability for small reactors, and provide a partial survey of ongoing global research aimed at improving near-field and far field monitoring and discovery of nuclear reactors.

  2. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Science.gov (United States)

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  3. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates.

    Science.gov (United States)

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-08-25

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL(-1) can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  4. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  5. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  6. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  7. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  8. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  9. Neutronics and mass transport in a chemical reactor associated with controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.; Lazareth, O.W.; Powell, J.R.

    1976-05-01

    The formation of ozone from oxygen and the dissociation carbon dioxide to carbon monoxide and oxygen is studied in a gamma-neutron chemical process blanket associated with a controlled thermonuclear reactor. Materials used for reactor tube wall will affect the efficiency of the energy absorption by the reactants and consequently the yield of reaction products. Three kinds of materials, aluminum, stainless steel and fiber (Al 2 O 3 )-aluminium are investigated for the tube wall material in the study

  10. Material accountancy and control practice at a research reactor facility

    International Nuclear Information System (INIS)

    Bouchard, J.; Maurel, J.J.; Tromeur, Y.

    1982-01-01

    This session surveys the regulations, organization, and accountancy practice that compose the French State System of Accountancy and Control. Practical examples are discussed showing how inventories are verified at a critical assembly facility and at a materials testing reactor

  11. Tokamak reactor cost model based on STARFIRE/WILDCAT costing

    International Nuclear Information System (INIS)

    Evans, K. Jr.

    1983-03-01

    A cost model is presented which is useful for survey and comparative studies of tokamak reactors. The model is heavily based on STARFIRE and WILDCAT costing guidelines, philosophies, and procedures and reproduces the costing for these devices quite accurately

  12. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  13. Ulysse, mentor reactor

    International Nuclear Information System (INIS)

    Bouquin, B.; Rio, I.; Safieh, J.

    1997-01-01

    On July 23, 1961, the ULYSSE reactor began its first power rise. Designed at that time to train nuclear engineering students and reactor operators, this reactor still remains an indispensable tool for nuclear teaching and a choice instrument for scientists. (author)

  14. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  15. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  16. The Jules Horowitz reactor

    International Nuclear Information System (INIS)

    2003-01-01

    The Jules Horowitz reactor is the future european reactor for irradiation. It will be used for materials and new fuels irradiation. Experiments for the safety and the validation of neutronics calculation will be also realized. This paper presents the design and the performance of the reactor and the schedule of the remaining design studies. (A.L.B.)

  17. The role of bars in quenching star formation from z = 3 to the present epoch. Halpha3: an Halpha imaging survey of HI selected galaxies from ALFALFA, VI

    OpenAIRE

    Gavazzi, G.; Consolandi, G.; Dotti, M.; Fanali, R.; Fossati, M.; Fumagalli, M.; Viscardi, E.; Savorgnan, G.; Boselli, A.; Gutiérrez, L.; Toledo, H. Hernández; Giovanelli, R.; Haynes, M. P.

    2015-01-01

    A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal main-sequence star-forming galaxies. Many processes have been advocated as being responsible for this trend (also known as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. In order to improve our insight into the mechanisms regulating the star formation in normal star-forming galaxies across cosmic epo...

  18. Fusion reactor design studies: standard accounts for cost estimates

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  19. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    CERN Document Server

    Hasegawa, M; Suzuki, M; Tang, Z; Yubuta, K

    2003-01-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) ...

  20. Urananite leaching: literature survey

    International Nuclear Information System (INIS)

    Grisham, G.F.; Bryant, E.A.; Williams, K.E.

    1979-04-01

    A literature survey was undertaken to provide background materials for a series of experiments involving the interaction of spent uranium dioxide fuel with various environments. Notes and references pertaining to the basic properties of UO 2 as produced and after reactor exposure are presented. The use of computerized literature searches is illustrated with specific topics related to leaching experiments. 57 references

  1. Urananite leaching: literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, G.F.; Bryant, E.A.; Williams, K.E.

    1979-04-01

    A literature survey was undertaken to provide background materials for a series of experiments involving the interaction of spent uranium dioxide fuel with various environments. Notes and references pertaining to the basic properties of UO/sub 2/ as produced and after reactor exposure are presented. The use of computerized literature searches is illustrated with specific topics related to leaching experiments. 57 references.

  2. Decommissioning of the Northrop TRIGA reactor

    International Nuclear Information System (INIS)

    Cozens, George B.; Woo, Harry; Benveniste, Jack; Candall, Walter E.; Adams-Chalmers, Jeanne

    1986-01-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  3. Thorium fueled reactor

    Science.gov (United States)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  4. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  5. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  6. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  7. Evaluation of nuclear reactor based activation analysis techniques

    International Nuclear Information System (INIS)

    Obrusnik, I.; Kucera, J.

    1977-09-01

    A survey is presented of the basic types of activation analysis applied in environmental control. Reactor neutron activation analysis is described (including the reactor as a neutron source, sample activation in the reactor, methodology of neutron activation analysis, sample transport into the reactor and sample packaging after irradiation, instrumental activation analysis with radiochemical separation, data measurement and evaluation, sampling and sample preparation). Sources of environmental contamination with trace elements, sampling and sample analysis by neutron activation are described. The analysis is described of soils, waters and biological materials. Methods are shown of evaluating neutron activation analysis results and of their interpretation for purposes of environmental control. (J.B.)

  8. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  9. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  10. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  11. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  12. One piece reactor removal

    International Nuclear Information System (INIS)

    Chia, Wei-Min; Wang, Song-Feng

    1993-01-01

    The strategy of Taiwan Research Reactor Renewal plan is to remove the old reactor block with One Piece Reactor Removal (OPRR) method for installing a new research reactor in original building. In this paper, the engineering design of each transportation works including the work method, the major equipments, the design policy and design criteria is described and discussed. In addition, to ensure the reactor block is safety transported for storage and to guarantee the integrity of reactor base mat is maintained for new reactor, operation safety is drawn special attention, particularly under seismic condition, to warrant safe operation of OPRR. ALARA principle and Below Regulatory Concern (BRC) practice were also incorporated in the planning to minimize the collective dose and the total amount of radioactive wastes. All these activities are introduced in this paper. (J.P.N.)

  13. Reactor physics using a microcomputer

    International Nuclear Information System (INIS)

    Murray, R.L.

    1983-01-01

    The object of the work reported is to develop educational computer modules for all aspects of reactor physics. The modules consist of a description of the theory, mathematical method, computer program listing, sample calculations, and problems for the student, along with a card deck. Modules were first written in FORTRAN for an IBM 360/75, then later in BASIC for microcomputers. Problems include: limitation of equipment, choice of format for the program, the variety of dialects of BASIC used in the different microcomputer and peripherals brands, and knowing when to quit in the process of developing a program

  14. Experimental reactors in the European Community and their utilization

    International Nuclear Information System (INIS)

    Ehringer, H.; Lecoq, J.P.

    1976-01-01

    Research and test reactors which in the first years of the peaceful use of nuclear energy had to found the basis for building and operation of commercial nuclear power plants, having achieved their aim, have faded into the background of the report. They still play an important role, however, for the further development of today's power reactor generation and for the development of progressing reactor lines as well as for fuel and material irradiation, for isotope production and, last but not least, for research and training. At the moment, over 100 test reactors are being operated in the widest sense in the European Community. In the present survey, their purpose and charge are dealt with particular consideration to the more important materials test reactors and to the programme reactors. (orig./LH) [de

  15. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    The invention deals with disengaging the coupling of a reactor coolant pump of a nuclear reactor feeding pressurized coolant. The disengaging coupling has two parts joined by bolts, at least one of them containing a driving agent within a bore. This is provided with a speed-depending ignition device in such manner that, if the critical speed is reached, the driving charge is ignited and the coupling is disengaged by destroying the bolts. (UWI) [de

  16. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  17. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  18. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NARCIS (Netherlands)

    Adamo, A.; Ryon, J.E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Whitmore, B.C.; Elmegreen, B.G.; Ubeda, L.; Smith, L.J.; Bright, S.N.; Runnholm, A.; Andrews, J.E.; Fumagalli, M.; Gouliermis, D.A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; Dale, D.A.; de Mink, S.E.; Dobbs, C.; Elmegreen, D.M.; Evans, A.S.; Gallagher III, J.S.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S.D.; Zackrisson, E.

    2017-01-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify

  19. A Survey of Beginning Crop Science Courses at 49 U.S. Universities. I. Lecture Format, Teaching Methods, and Topical Content.

    Science.gov (United States)

    Karnok, Keith J.; Connors, Krista L.

    1986-01-01

    This paper is the first of a two-part series which discusses the findings related to lecture information in beginning crop science courses offered in Land Grant institutions. Survey results revealed considerable differences regarding course organization and teaching methods, but similarities in overall goals and topic areas. (ML)

  20. A Survey of Beginning Crop Science Courses at 49 U.S. Universities. II. Laboratory Format, Teaching Methods, and Topical Content.

    Science.gov (United States)

    Connors, Krista L.; Karnok, Keith J.

    1986-01-01

    This paper is the second of a two-part series which discusses the findings related to laboratory segments in the beginning crop science courses offered in Land Grant institutions. Survey results reveal that laboratories are used but employ traditional teaching rather than individualized or auto-tutorial techniques. (ML)

  1. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  2. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  3. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  5. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1985-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  6. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.

    1981-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits

  7. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  8. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  9. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  10. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  11. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  12. TRIGA reactor characteristics

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the general design, characteristics and parameters of TRIGA reactors and fuels. It is recommended that most of this information should be incorporated into any reactor operator training program and, in many cases, the facility Safety Analysis Report. It is oriented to teach the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and the differences between TRIGA fuels and others more traditional reactor fuels. (nevyjel)

  13. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.

    1999-01-01

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  14. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  15. The Oklo natural nuclear reactors in Gabon

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After a recall of the first experiments of fission chain reaction within the first man-made nuclear reactor, the author describes how the formation of the Earth resulted in the presence of radioactive isotopes, and recalls how the existence of the natural reactor was discovered in the 1970's: measurements revealed a content of uranium hexafluoride which was abnormally but only slightly smaller than normal. The author gives some explanations presently given to the Oklo phenomenon, and wanders whether Oklo is a natural analogue of geological storage

  16. Transplutonium elements - a literature survey

    International Nuclear Information System (INIS)

    Sivaramakrishnan, C.K.; Jadhav, A.V.

    1974-01-01

    The report surveys reported work on the discovery of transplutonium elements and their production through various methods like bombardment of heavy elements with charged ions, successive neutron captures on heavy elements in reactors and multiple neutron captures by heavy elements during nuclear explosions. Estimated yields of transplutonium elements in special targets irradiated in reactors, and also as byproducts from spent power reactor fuels are quoted. Various chemical procedures adopted for recovery of these elements from irradiated target and also from power reactor fuel reprocessing streams are described. A brief survey of shielded facilities available at various centres for transplutonium programmes is also included. Major uses of some of these heavy elements are described. (author)

  17. New reactor concepts

    International Nuclear Information System (INIS)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A.

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  18. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  19. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  20. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  1. Trench reactor: an overview

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.; Sankoorikal, J.T.; Schmidt, R.S.; Lofshult, J.; Ramin, T.; Sokmen, N.; Lin, L.C.

    1988-01-01

    Recent fast, sodium-cooled reactor designs reflect new conditions. In nuclear energy these conditions are (a) emphasis on maintainability and operability, (b) design for more transparent safety, and (c) a surplus of uranium and enrichment availability that eases concerns about light water reactor fueling costs. In utility practice the demand is for less capital exposure, short construction time, smaller new unit sizes, and low capital cost. The PRISM, SAFR, and integral fast reactor (IFR) concepts are responses to these conditions. Fast reactors will not soon be deployed commercially, so more radical designs can be considered. The trench reactor is the product of such thinking. Its concepts are intended as contributions to the literature, which may be picked up by one of the existing programs or used in a new experimental project. The trench reactor is a thin-slab, pool-type reactor operated at very low power density and- for sodium-modest temperature. The thin slab is repeated in the sodium tank and the reactor core. The low power density permits a longer than conventional core height and a large-diameter fuel pin. Control is by borated steel slabs that can be lowered between the core and lateral sodium reflector. Shutdown is by semaphore slabs that can be swung into place just outside the control slabs. The paper presents major characteristics of the trench reactor that have been changed since the last report

  2. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  3. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  4. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  5. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  6. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  7. MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at z = 2.5

    Science.gov (United States)

    Shimakawa, Rhythm; Kodama, Tadayuki; Hayashi, Masao; Prochaska, J. Xavier; Tanaka, Ichi; Cai, Zheng; Suzuki, Tomoko L.; Tadaki, Ken-ichi; Koyama, Yusei

    2018-01-01

    We carried out deep H α narrowband imaging with 10 h net integrations towards the young protocluster, USS1558-003 at z = 2.53 with the Subaru Telescope. This system is composed of four dense groups with massive local overdensities, traced by 107 H α emitters (HAEs) with stellar masses and dust-corrected star formation rates down to 1 × 108 M⊙ and 3 M⊙ yr-1, respectively. We have investigated the environmental dependence of various physical properties within the protocluster by comparing distributions of HAEs in higher and lower densities with a standard Kolmogorov-Smirnov test. At 97 per cent confidence level, we find enhanced star formation across the star-forming main sequence of HAEs living in the most extreme 'supergroup', corresponding to the top quartile of overdensities. Furthermore, we derive distribution functions of H α luminosity and stellar mass in group and intergroup regions, approximately corresponding to 30 and 8 times higher densities than the general field. As a consequence, we identify 0.7 and 0.9 dex higher cut-offs in H α luminosity and stellar mass functions in the dense groups, respectively. On the other hand, HAEs in the intergroup environment of the protocluster show similar distribution functions to those of field galaxies despite residing in significant overdensities. In the early phase of cluster formation, as inferred from our results, the densest parts in the protocluster have had an accelerated formation of massive galaxies. We expect that these eventually grow and transform into early-type galaxies at the bright end of the red sequence as seen in present-day rich clusters of galaxies.

  8. Radiation protection in nuclear reactors

    International Nuclear Information System (INIS)

    El-Ashkar, Mohamed

    2008-01-01

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  9. Reactor core monitor for nuclear reactor

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    The device of the present invention provides a various information of a wide adaptability, such as a power distribution, to an operator by determining a reactor core performance of the reactor by a performance calculation with improved accuracy. That is, a calculation means determines a neutron flux distribution of the reactor and coolant temperature based on the neutron flux distribution. A measuring means measures a cooled temperature of a reactor core inlet and a temperature at the exit of a fuel assembly. The result of coolant temperature by the measuring means and the result of the calculation by the calculation means are compared. The result of the calculation for the neutron flux distribution obtained by the calculation means is corrected based on the result of the comparison. The calculation means introduces calculation at higher accuracy by adopting two-dimensional balance in the fuel assembly. Further, a more accurate three-dimensional neutron diffusion calculation model is introduced in an on-line computer. Then, the accuracy of the calculation for the neutron flux distribution, power distribution, temperature distribution, etc. is improved. In view of the above, adaptability of a reactor core monitor is widened. (I.S.)

  10. RB Research nuclear reactor RB reactor, Annual report for 2000

    International Nuclear Information System (INIS)

    Milosevic, M.

    2000-12-01

    Report on RB reactor operation during 2000 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor. It contains data about reactor operation during previous 14 years, i.e. from 1986 - 2000

  11. MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z ∼ 3

    International Nuclear Information System (INIS)

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Uchimoto, Y. K.; Yoshikawa, T.; Onodera, M.

    2010-01-01

    We study the evolution of star formation activity of galaxies at 0.5 9.5-10 M sun even at z ∼ 3. We estimated star formation rates (SFRs) of the sample with two indicators, namely, the Spitzer/MIPS 24 μm flux and the rest-frame 2800 A luminosity. The SFR distribution at a fixed M star shifts to higher values with increasing redshift at 0.5 1. We found galaxies at 2.5 -1 . Galaxies in the low-SSFR group have SSFRs of ∼0.5-1.0 Gyr -1 , while the high-SSFR population shows ∼10 Gyr -1 . The cosmic SFR density (SFRD) is dominated by galaxies with M star = 10 10-11 M sun at 0.5 star = 10 11-11.5 M sun shows a strong evolution at z>1 and becomes significant at z ∼ 3, especially in the case with the SFR based on MIPS 24 μm. In galaxies with M star = 10 10-11.5 M sun , those with a relatively narrow range of SSFR (∼<1 dex) dominates the cosmic SFRD at 0.5 < z < 3.5. The SSFR of galaxies that dominate the SFRD systematically increases with redshift. At 2.5 < z < 3.5, the high-SSFR population, which is relatively small in number, dominates the SFRD. Major star formation in the universe at higher redshift seems to be associated with a more rapid growth of stellar mass of galaxies.

  12. Production capabilities in US nuclear reactors for medical radioisotopes

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted

  13. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  14. The economic impact of reactor transients

    International Nuclear Information System (INIS)

    Rossin, A.D.; Vine, G.L.

    1984-01-01

    This chapter discusses the cost estimation of transients and the causal relationship between transients and accidents. It is suggested that the calculation of the actual cost of a transient that has occurred is impossible without computerized records. Six months of operating experience reports, based on a survey of pressurized water reactors (PWRs) and boiling water reactors (BWRs) conducted by the Nuclear Safety Analysis Center (NSAC), are analyzed. The significant costs of a reactor transient are the repair costs resulting from severe damage to plant equipment, the cost of scrams (the actions the system is designed to take to avoid safety risks), US NRC fines, negative publicity, utility rates and revenues. It is estimated that the Three Mile Island-2 accident cost the US over $100 billion in nuclear plant delays and cancellations, more expensive fuel, oil imports, backfits, bureaucratic, administrative and legal costs, and lost productivity

  15. Optimum refuelling strategy in light water reactors

    International Nuclear Information System (INIS)

    Hermansky, B.

    1977-01-01

    The flow sheets are presented of refuelling schedules aimed at obtaining deep average fuel burnup with levelling up the output along the reactor radius in large PWR reactors. The zone refuelling is described in which only 1/3 of the fuel element number is replaced. The elements are placed in the outer zone of the core. Also described is the distributed refuelling in which fuel elements with different burnups are evenly spaced. A modified refuelling schedule is shown involving the replacement from the outside to the inside where a uniform radial distribution of thermal output is achieved. Calculation methods are shown of determining the optimum refuelling strategy. Dynamic programming is one of the prospective computer methods. Its general algorithm is indicated. A survey is made of some studies on the optimum refuelling strategy in pressurized water reactors. (J.B.)

  16. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  17. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  18. Reactor cost driving items

    International Nuclear Information System (INIS)

    Spears, W.R.

    1987-01-01

    Assuming that the design solutions presently perceived for NET can be extrapolated for use in a power reactor, and using costing experience with present day fusion experiments and with fission power plants, the major components of the cost of a tokamak fusion power reactor are described. The analysis shows the emphasis worth placing on various areas of plant design to reduce costs

  19. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  20. CAREM 25 nuclear reactor

    International Nuclear Information System (INIS)

    Rossini, A.A.; Ordonez, J.P.; Rajoy, J.E.; Durione, C.

    1990-01-01

    This work describes the CAREM project reactor, its design philosophy, its main characteristics and its advantages with respect to similar reactors. The main objective is to use the nuclear energy at lower costs than those applied up to now. (Author) [es

  1. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  2. International thermal reactor development

    International Nuclear Information System (INIS)

    Zebroski, E.L.

    1977-01-01

    The worldwide development of nuclear power plants is reviewed. Charts are presented which show the commitment to light-water reactor capacity construction with breakdown by region and country. Additional charts show the major nuclear research centers which have substantial scope in light water reactor development and extensive international activities

  3. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  4. Advanced converter reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1979-01-01

    Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U 3 O 8 at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals

  5. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  6. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  7. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  8. Nuclear reactor instrumentation method

    International Nuclear Information System (INIS)

    Handa, Hiroyuki; Hayashi, Katsumi; Nemesawa, Shigeki; Nemoto, Yuji; Ohashi, Masahisa.

    1993-01-01

    The present invention can appropriately monitor the state of a reactor core in an FBR type reactor which has a system of storing spent fuel assemblies in a reactor container while reducing the weight and making the structure compact in the reactor. That is, a fuel assembly having a shield lacking portion in upper axial shields is disposed. The shield lacking portion defines neutrons' leaking path from the reactor core. The leakage of neutrons from the path is detected by a neutron monitor disposed just above the fuel assembly. With such a constitution, influence of neutrons from stored spent fuel assemblies disposed to the out side of the radial shields can be reduced by a shielding effect of the existent radial shields around the reactor core. Further, if a shield lacking portion is locally disposed in the region of the upper axial shields just below the neutron monitor, neutrons from the reactor core can be monitored while suppressing excessive neutron leakage. As a result, it is unnecessary to dispose shields on the outer side of the spent fuel assembly disposed in the reactor core. (I.S.)

  9. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  10. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  11. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  12. Reactor control device

    International Nuclear Information System (INIS)

    Fukami, Haruo; Morimoto, Yoshinori.

    1981-01-01

    Purpose: To operate a reactor always with safety operation while eliminating the danger of tripping. Constitution: In a reactor control device adapted to detect the process variants of a reactor, control a control rod drive controlling system based on the detected signal to thereby control the driving the control rods, control the reactor power and control the electric power generated from an electric generator by the output from the reactor, detection means is provided for the detection of the electric power from said electric generator, and a compensation device is provided for outputting control rod driving compensation signals to the control rod driving controlling system in accordance with the amount of variation in the detected value. (Seki, T.)

  13. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  14. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  15. Status of French reactors

    International Nuclear Information System (INIS)

    Ballagny, A.

    1997-01-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm 3 . The OSIRIS reactor has already been converted to LEU. It will use U 3 Si 2 as soon as its present stock of UO 2 fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU

  16. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1984-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  17. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  18. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  19. Technology selection for offshore underwater small modular reactors

    International Nuclear Information System (INIS)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil

    2016-01-01

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO 2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options

  20. Technology selection for offshore underwater small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States)

    2016-12-15

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO{sub 2} cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  1. Technology Selection for Offshore Underwater Small Modular Reactors

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1 a lead–bismuth fast reactor based on the Russian SVBR-100; (2 a novel organic cooled reactor; (3 an innovative superheated water reactor; (4 a boiling water reactor based on Toshiba's LSBWR; and (5 an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50–80% with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  2. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  3. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  4. Fuel management for TRIGA reactor operators

    International Nuclear Information System (INIS)

    Totenbier, R.E.; Levine, S.H.

    1980-01-01

    One responsibility of the Supervisor of Reactor Operations is to follow the TRIGA core depletion and recommend core loading changes for refueling and special experiments. Calculations required to analyze such changes normally use digital computers and are extremely difficult to perform for one who is not familiar with computer language and nuclear reactor diffusion theory codes. The TRICOM/SCRAM program developed to perform such calculations for the Penn State TRIGA Breazeale Reactor (PSBR), has a very simple input format and is one which can be used by persons having no knowledge of computer codes. The person running the program need not understand computer language such as Fortran, but should be familiar with reactor core geometry and effects of loading changes. To further simplify the input requirements but still allow for all of the studies normally needed by the reactor operations supervisor, the options required for input have been isolated to two. Given a master deck of computer cards one needs to change only three cards; a title card, core energy history information card and one with core changes. With this input, the program can provide individual fuel element burn-up for a given period of operation and the k eff of the core. If a new loading is desired, a new master deck containing the changes is also automatically provided. The life of a new core loading can be estimated by feeding in projected core burn-up factors and observing the resulting loss in individual fuel elements. The code input and output formats have now been made sufficiently convenient and informative as to be incorporated into a standard activity for the Reactor Operations Supervisor. (author)

  5. The environmental survey manual

    International Nuclear Information System (INIS)

    1987-08-01

    The purpose of this manual is to provide guidance to the Survey and Sampling and Analysis teams that conduct the one-time Environmental Survey of the major US Department of Energy (DOE) operating facilities. This manual includes a discussion of DOE's policy on environmental issues, a review of statutory guidance as it applies to the Survey, the procedures and protocols to be used by the Survey teams, criteria for the use of the Survey teams in evaluating existing environmental data for the Survey effort, generic technical checklists used in every Survey, health and safety guidelines for the personnel conducting the Survey, including the identification of potential hazards, prescribed protective equipment, and emergency procedures, the required formats for the Survey reports, guidance on identifying environmental problems that need immediate attention by the Operations Office responsible for the particular facility, and procedures and protocols for the conduct of sampling and analysis

  6. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  7. Reactor scram device for FBR type reactor

    International Nuclear Information System (INIS)

    Kumasaka, Katsuyuki; Arashida, Genji; Itooka, Satoshi.

    1991-01-01

    In a control rod attaching structure in a reactor scram device of an FBR type reactor, an anti-rising mechanism proposed so far against external upward force upon occurrence of earthquakes relies on the engagement of a mechanical structure but temperature condition is not taken into consideration. Then, in the present invention, a material having curie temperature characteristics and which exhibits ferromagnetism only under low temperature condition and a magnet device are disposed to one of a movable control rod and a portion secured to the reactor. Alternatively, a bimetal member or a shape memory alloy which actuates to fix to the mating member only under low temperature condition is secured. The fixing device is adapted to operate so as to secure the control rods when the low temperature state is caused depending on the temperature condition. With such a constitution, when the control rods are separated from a driving device, they are prevented from rising even if they undergo external upward force due to earthquakes and so on, which can improve the reactor safety. (N.H.)

  8. Behavior of water reactor fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1990-08-01

    This paper reviewed the fuels used widely in forms of (1) Zircaloy-sheathed UO 2 fuel in light water-commercial power reactor, (2) Zircaloy-sheathed PuO 2 -UO 2 fuel in plutonium-thermal reactor and advanced reactor (ATR), (3) aluminide and silicide fuel in Material Testing Reactors. From fundamental view points, physical/chemical properties and irradiation behaviors of both fuels and zircaloy claddings are briefly reviewed in chapters 1 and 2. Change of the fuel rod physical parameters with progress of burn-up are summed up in chapter 3. Some fuel troubles and failures encountered in past usage of worldwide LWR fuels are introduced with counterplans taken. In the last session of this chapter, recent results of R and D works have been carried out by fuel vendors are reviewed. Especially, in-core behaviors of PCI-remedy fuels developed to use for high burn-up extension and for load-follow operation are highlighted. Reactor accidents occurred through past forty years are surveyed and reviewed. Fuel behaviors during the reactivity initiated accident (RIA), the power-coolant mismatch (PCM), and the loss-of-coolant accident (LOCA) are taken into this review by using disclosed literatures. Safety criteria being used in Japanese licensing authorities are introduced relating to the fuel design limit. (author)

  9. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  10. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  11. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  12. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  13. Reactor safety protection system

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Yokoyama, Tsuguo.

    1989-01-01

    A plurality of neutron detectors are disposed around a reactor core and detection signals from optional two neutron detectors are inputted into a ratio calculation device. If the ratio between both of the neutron flux level signals exceeds a predetermined value, a reactor trip signal is generated from an alarm setting device. Further, detection signals from all of the neutron detection devices are inputted into an average calculation device and the reactor trip signal is generated also in a case where the average value exceeds a predetermined set value. That is, when the reactor core power is increased locally, the detection signal from the neutron detector nearer to the point of power increase is greater than the increase rate for the entire reactor core power, while the detection signal from the neutron detector remote from the point of power increase is smaller. Thus, the local power increase ratio in the FBR reactor core can be detected efficiently by calculating the ratio for the neutron flux level signals from two neutron detectors, thereby enabling to exactly recognize the local power increase rate in the reactor core. (N.H.)

  14. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  15. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  16. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  18. Water cooled nuclear reactors

    International Nuclear Information System (INIS)

    Donaldson, A.J.

    1989-01-01

    In order to reduce any loss of primary water coolant from around a reactor core of a water cooled nuclear reactor caused by any failure of a pressure vessel, an inner vessel is positioned within and spaced from the pressure vessel. The reactor core and main portion of the primary water coolant circuit and a heat exchanger are positioned within the inner vessel to maintain some primary water coolant around the reactor core and to allow residual decay heat to be removed from the reactor core by the heat exchanger. In the embodiment shown an aperture at the upper region of the inner vessel is dimensioned configured and arranged to prevent steam from a steam space of an integral pressurised water cooled nuclear reactor for a ship entering the main portion of the primary water coolant circuit in the inner vessel if the longitudinal axis of the nuclear reactor is displaced from its normal substantially vertical position to an abnormal position at an angle to the vertical direction. Shields are integral with the inner vessel. (author)

  19. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  20. Reactor monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1996-01-01

    The device of the present invention monitors the stability of a power of a BWR type reactor by using each of recycling flow rates in addition to a reactor core flow rate to improve monitoring accuracy. Namely, a set value registering means is disposed for registering reactor core flow rate set values corresponding to the number of recycling flow rates not reaching a reference value for each of the recycling flow rates. A reactor flow rate take-out means judges whether each of the recycling flow rates reaches the reference value or not. The set values of the set value registering means are taken out based on the number of each of the recycling flow rate signals not reaching the reference values. The taken out set value and calculated reactor core flow rate value are compared by an abnormal alarm means. When calculated value is smaller than the set value, abnormality is informed. The accuracy for the monitoring is improved by monitoring the reactor power by using each of recycling flow rates in addition to the reactor core flow rate. (I.S.)

  1. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  2. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  3. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  4. Reactor safety device

    International Nuclear Information System (INIS)

    Okada, Yasumasa.

    1987-01-01

    Purpose: To scram control rods by processing signals from a plurality of temperature detectors and generating abnormal temperature warning upon occurrence of abnormal temperature in a nuclear reactor. Constitution: A temperature sensor comprising a plurality of reactors each having a magnetic body as the magnetic core having a curie point different from each other and corresponding to the abnormal temperature against which reactor core fuels have to be protected is disposed in an identical instrumentation well near the reactor core fuel outlet/inlet of a reactor. A temperature detection device actuated upon detection of an abnormal temperature by the abrupt reduction of the reactance of each of the reactors is disposed. An OR circuit and an AND circuit for conducting OR and AND operations for each of the abnormal temperature detection signals from the temperature detection device are disposed. The output from the OR circuit is used as the abnormal temperature warning signal, while the output from the AND circuit is utilized as a signal for actuating the scram operation of control rod drive mechanisms. Accordingly, it is possible to improve the reliability of the reactor scram system, particularly, improve the reliability under a high temperature atmosphere. (Kamimura, M.)

  5. Inherently safe reactors

    International Nuclear Information System (INIS)

    Maartensson, Anders

    1992-01-01

    A rethinking of nuclear reactor safety has created proposals for new designs based on inherent and passive safety principles. Diverging interpretations of these concepts can be found. This article reviews the key features of proposed advanced power reactors. An evaluation is made of the degree of inherent safety for four different designs: the AP-600, the PIUS, the MHTGR and the PRISM. The inherent hazards of today's most common reactor principles are used as reference for the evaluation. It is concluded that claims for the new designs being inherently, naturally or passively safe are not substantiated by experience. (author)

  6. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  7. Fast breeder reactors

    International Nuclear Information System (INIS)

    1978-01-01

    The subject of this invention is a liquid metal cooled nuclear reactor construction in which a concrete pit is lagged to protect it from the heat radiated from the reactor in normal operation but in which the efficiency of the lagging is reduced in case of emergency to allow the excess heat generated by the reactor to be dissipated throughout the pit. The lagging is in two layers, the first covering the internal surface of the pit wall is impermeable to the liquid metal, whilst the second layer over the first is permeable [fr

  8. Reactor shutdown device

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1983-01-01

    Purpose : To provide a reactor shutdown device suitable to the low temperature shutdown of a heavy water-moderated type nuclear reactor and capable of ensuring an adequate shutdown margin. Constitution : Xenon reactivity is calculated based on the detection signals for reactor neutrons, the temperature reactivity is calculated based on the temperature of the moderators and of the coolants and, further, poisons in the moderators are detected. Injection amount of the poisons is calculated based on the result of the calculation and the detection, and the calculated amount of poisons is injected into the moderators. (Kamimura, M.)

  9. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  10. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  11. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  12. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-04-01

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  13. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  14. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  15. Power reactor design trends

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-01-01

    Cascade and Pulse Star represent new trends in ICF power reactor design that have emerged in the last few years. The most recent embodiments of these two concepts, and that of the HYLIFE design with which they will compare them, are shown. All three reactors depend upon protecting structural elements from neutrons, x rays and debris by injecting massive amounts of shielding material inside the reaction chamber. However, Cascade and Pulse Star introduce new ideas to improve the economics, safety, and environmental impact of ICF reactors. They also pose different development issues and thus represent technological alternatives to HYLIFE

  16. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  17. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  18. Reactors of the world

    International Nuclear Information System (INIS)

    1971-01-01

    Basic data relating to 127 power reactors in 15 countries which are expected to be in operation at the end of this year, with a total installed electrical generating capacity of 35 340.15 MW(e), and a listing of 361 research reactors in 46 countries are given in the 1971 edition of the IAEA handbook, Power and Research Reactors in Member States, which has just been published. This edition, the fourth, was prepared especially for the Fourth International Conference on the Peaceful Uses of Atomic Energy. (author)

  19. Elmo Bumpy Torus Reactor

    International Nuclear Information System (INIS)

    McAlees, D.G.; Uckan, N.A.; Lidsky, L.M.

    1976-01-01

    In the Elmo Bumpy Torus Reactor (EBTR) study the feasibility of achieving a fusion power plant based on the EBT confinement concept was evaluated. If the present understanding of the physics can be extrapolated to reactor scale devices the reactor could operate at high beta, high power density, and at steady state. The high aspect ratio of the device eases the accessibility, structural design and remote maintenance problems which are common to low aspect ratio machines. A version of the EBTR reference design described here could be constructed with only minor extrapolations in available technology

  20. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions